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Abstract
Suppose that S ⊆ [n]2 contains no three points of the form (x, y), (x, y + δ), (x + δ, y′), where δ ̸= 0.
How big can S be? Trivially, n ≤ |S| ≤ n2. Slight improvements on these bounds are obtained from
Shkredov’s upper bound for the corners problem [23], which shows that |S| ≤ O(n2/(log log n)c) for
some small c > 0, and a construction due to Petrov [19], which shows that |S| ≥ Ω(n log n/

√
log log n).

Could it be that for all ε > 0, |S| ≤ O(n1+ε)? We show that if so, this would rule out obtaining
ω = 2 using a large family of abelian groups in the group–theoretic framework of [12, 11] (which
is known to capture the best bounds on ω to date), for which no barriers are currently known.
Furthermore, an upper bound of O(n4/3−ε) for any fixed ε > 0 would rule out a conjectured approach
to obtain ω = 2 of [11]. Along the way, we encounter several problems that have much stronger
constraints and that would already have these implications.
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1 Introduction

The exponent of matrix multiplication ω is the smallest number such that for any ε > 0,
there exists an algorithm for multiplying n × n matrices using O(nω+ε) arithmetic operations.
Since Strassen’s initial discovery that ω < 3 [25], there has been much work on understanding
this fundamental constant, with the end goal being the determination of whether or not
ω = 2. It is currently known that 2 ≤ ω < 2.3716 [26].

The best upper bounds on ω obtained since 1987 [24] can be understood as solutions
to the following hypergraph packing problem. Let Mn be the matrix multiplication hyper-
graph, the tripartite 3-uniform hypergraph with parts X1 = X2 = X3 = [n]2, and where
((i, j), (k, l), (m, n)) ∈ X1 × X2 × X3 is a hyperedge if and only if j = k, l = m, n = i. Given
an abelian group G, let XG be its “addition hypergraph” with vertex sets G ⊔ G ⊔ G, and
where (a1, a2, a3) ∈ G × G × G is a hyperedge exactly when a1 + a2 + a3 = 0. Suppose that
XG contains k disjoint induced copies of Mn. Then

ω < logn(|G|/k). (1)

Phrased in terms of the group–theoretic approach proposed by Cohn and Umans [12] and
further developed by Cohn, Kleinberg, Szegedy, and Umans [11], this is equivalent to proving
upper bounds on ω via simultaneous triple product property (STPP) constructions in abelian
groups. The above inequality was established in [11, Theorem 5.5]. It can be also be deduced
via the asymptotic sum inequality of [21].

From this perspective, the best bounds on ω to date are obtained by taking G to be a
large power of a cyclic group – specifically, Zℓ

7 with ℓ → ∞. However, in [8] ideas related to
the resolution of the cap-set problem in additive combinatorics [13] were used to show that
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89:2 On Generalized Corners and Matrix Multiplication

one cannot obtain ω = 2 using groups of bounded exponent – such as Zℓ
7 – via this approach.

This obstruction is due to the fact that when G has bounded exponent, there is power-savings
over the trivial upper bound on the size of the largest induced matching in XG (also called
a 3-matching [20], or a tricolored sum-free set [8]). For example, when G = Zℓ

7 the largest
induced matching has size at most O(6.16ℓ). On the other hand, Mn contains an induced
matching of size n2−o(1): if we identify vertices in Mn with edges in the complete tripartite
graph Kn,n,n, an induced matching in Mn corresponds to a tripartite graph on at most 3n

vertices where every edge is contained in a unique triangle, and the number of vertices in the
induced matching equals the number of edges in this graph. A well-known construction in
extremal combinatorics yields such a graph with n2−o(1) edges (see [27, Corollary 2.5.2])1

and hence Mn contains an induced matching of size n2−o(1). Modulo minor details, the
claimed barrier then follows, as an efficient packing of copies of Mn into XG would imply the
existence of a large induced matching in XG, a contradiction.2 This barrier was identified in
[5] and executed in [8].

This is the only obstruction to obtaining ω = 2 via the use of Equation (1) that we are
aware of. Unfortunately,3 this barrier says nothing about the viability of general abelian
groups, as their addition hypergraphs may contain large induced matchings. For example,
if A is a 3-term arithmetic progression free (hereon abbreviated to 3AP-free) subset of G,
then the subsets A, A, −2A of the vertex sets of XG induce a matching of size |A|. Hence
this barrier cannot apply to any group containing a 3AP-free subset of size |G|1−o(1), such
as Zn [7]. Could one achieve ω = 2 using cyclic groups, or perhaps products of cyclic groups
of growing orders?

In this paper we identify problems in additive combinatorics whose answer we conjecture
would rule out obtaining ω = 2 using a large family of abelian groups for which the induced
matching barrier is irrelevant. This family includes abelian groups with a bounded number
of direct factors. If abelian groups of bounded exponent are at one end of a spectrum, these
groups are at the opposite end. These problems have not been studied before as far as we are
aware. Aside from their connections to fast matrix multiplication, we find them intrinsically
interesting. We now discuss the simplest-to-state such problem.

1.1 A skew corners problem
The corners problem in additive combinatorics asks for the size of the largest subset of [n]2
containing no three points of the form

(x, y), (x, y + δ), (x + δ, y)

where δ ̸= 0. Ajtai and Szemerédi [1] settled this problem up to factors of no(1) by proving
an upper bound of o(n2) and a lower bound of n2−o(1). This problem is significant as it
was the first multidimensional case of Szemerédi’s theorem to be established, and for its
application to the number-on-forehead model in communication complexity [9].

Here is a subtle strengthening of the condition of the corners problem for which we know
essentially nothing:

1 This is the Rusza-Szemerédi problem. The equivalence between induced matchings in Mn and this
problem was independently noted in [2].

2 The techniques involved in the resolution of the cap–set problem (in particular, slice rank) actually give
stronger “tensor analogues” of this barrier; see [10, 3].

3 Or fortunately, for the optimist.
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Figure 1 The orange points form a skew corner-free subset of [10] × [10] of size 24.

▶ Question 1. What is the size of the largest S ⊆ [n]2 which does not contain three points
of the form

(x, y), (x, y + δ), (x + δ, y′)

where x, y, y′ ∈ S and δ ̸= 0?

That is, not only must S avoid all corners, but given any two points in S lying on the same
vertical line, the entire vertical line passing through the third point that would form a corner
with these two points must be absent from S! Naturally, we call such a set of points skew
corner-free. See Figure 1 for an example of such a set. Note that any skew corner-free set is
clearly corner-free.

Note that there is a trivial lower bound of n, obtained by taking S to be all points lying
on a vertical or horizontal line. We conjecture that this is almost optimal:

▶ Conjecture 2. Fix any ε > 0. If S is skew corner-free, then |S| ≤ O(n1+ε).

A construction due to Petrov [19] (Proposition 39) shows that one can have
|S| ≥ Ω(n log n/

√
log log n). On the other hand, the best upper bound we know is

O(n2/(log log n)0.0137···), which follows immediately from Shkredov’s upper bound on the
corners problem [23].

Two of the main results of this paper are the following.

▶ Theorem 3. If Conjecture 2 is true, then one cannot obtain ω = 2 via STPP constructions
in the family of groups Zℓ

q, where q is a prime power.

Furthermore, a weakening of Conjecture 2 would rule out obtaining ω = 2 using a specific
type of STPP construction in arbitrary abelian groups. In [11], it was conjectured that this
type of construction can be used to obtain ω = 2.

▶ Theorem 4. If the largest skew corner-free subset of [n]2 has size O(n4/3−ε) for some
ε > 0, then [11, Conjecture 4.7] is false.

In fact, seemingly much weaker conjectures than Conjecture 2 would already have these
implications. The weakest conjecture we make is the following. Let ∆n be a triangular array
of n(n + 1)/2 points. Suppose that we delete from ∆n sets of points lying on lines parallel to
the sides of this array, such that the remaining set of points does not contain any equilateral
trapezoid with sides parallel to the sides of the array (see Figure 4). For example, we might

ITCS 2024



89:4 On Generalized Corners and Matrix Multiplication

Figure 2 The 90 orange points form a skew corner-free subset of the triangular grid ∆45

(Definition 35): for any two orange points on the same line parallel to one of the sides of the grid, the
line parallel to this side and passing through a third point that would form an equilateral triangle
with these two points contains no orange points. This is largest-possible among subsets of ∆45 that
are symmetric under the S3 action on ∆n.

delete all lines in one direction but one. Then, what is the maximum number of points
that can remain? By our example, one can achieve at least n. We conjecture that this is
essentially optimal (Conjecture 24). Another condition we introduce, which is intermediate
between this and being skew-corner free, is that of a skew corner-free subset of a triangular
grid (see Figure 2).

1.2 Paper overview

In Section 2 we review the group–theoretic approach of [12, 11]. In Section 2.1 we record a
very weak lower bound for this approach, which follows easily from the removal lemma in
groups of [22]. This lower bound becomes much stronger in Zℓ

q (Corollary 14), thanks to the
improved bounds on the removal lemma of [16], and we make later use of this fact.

In Section 3 we note that the matrix multiplication hypergraph Mn is an extremal
solution to a certain forbidden hypergraph problem. This was our motivating observation.
We define the “value” of a group, val(G), which captures this forbidden hypergraph problem
in a group–theoretic context. This quantity equals the maximum number of triangles in
an induced subhypergraph of XG that does not contain the triforce hypergraph or a cycle
of 4 triangles (see Figure 3). This can also be expressed in terms of the group operation
slightly awkwardly (Definition 17). The trivial bounds are that |G| ≤ val(G) ≤ |G|3/2; using
the removal lemma of [22], the upper bound can be improved to o(|G|3/2) (Proposition 22).
STPP constructions yield lower bounds on the quantity val(G) (Proposition 18), so ultimately
it is upper bounds on val(G) that we are interested in as a means towards barriers. The
quantity val(G) is super-multiplicative under direct product (Proposition 20), which is one
reason why power-improvements over the trivial bound seem to be easier to obtain in direct
products of groups.
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We then focus on the case of abelian groups in Section 4. We show that a bound of
ω = 2 using the family of groups Zℓ

q would imply that val(Zn) ≥ Ω(n1+c) for some c > 0
Theorem 27. We also show that a proof of ω = 2 via simultaneous double product property
constructions [11] in any family of abelian groups would imply that val(Zn) ≥ Ω(n4/3−ε) for
any given ε > 0 (Theorem 30). We thank Chris Umans for mentioning a related fact to us,
which motivated this result. We then relate val(Zn) to various questions about sets of points
in the plane, including Question 1 (Definitions 33, 35, and 37). This gives Theorems 3 and 4.
We also give an example which shows that one cannot hope to prove strong upper bounds on
val(Zn) via a certain “asymmetric” averaging argument (Proposition 31).

The take-away of this paper is that STPP constructions yield subsets of G × G which
satisfy dramatically stronger properties than that of being corner-free. While subsets
satisfying these stronger properties do not imply STPP constructions in any obvious way, we
believe that understanding them will be a stepping stone to understanding the power of the
group–theoretic approach, and possibly towards improved upper bounds on ω.

2 Background

Bounds on ω from the group–theoretic approach are obtained by designing subsets of groups
satisfying the following condition. Throughout this paper, I denotes the identity element of
a group G.

▶ Definition 5. A collection of triples of subsets Si, Ti, Ui of a group G satisfy the simultaneous
triple product property (or STPP for short) if
1. For each i, the sets Si, Ti, Ui satisfy the triple product property: if ss′−1tt′−1uu′−1 = I

with s, s′ ∈ Si, t, t′ ∈ Ti, u, u′ ∈ Ui, then s = s′, t = t′, u = u′.
2. Setting Ai = SiT

−1
i , Bj = TjU−1

j , Ck = UkS−1
k ,

aibjck = I ⇐⇒ i = j = k

for all ai ∈ Ai, bj ∈ Bj , ck ∈ Ck.
The crucial fact is the following:

▶ Theorem 6 ([11, Theorem 5.5]). If G is abelian and Si, Ti, Ui ⊆ G satisfy the STPP, then∑
i

(|Si||Ti||Ui|)ω/3 ≤ |G|.

The conditions of the STPP imply that the sets involved satisfy a simple “packing bound”
(see the discussion preceding [8, Definition 2.3]).

▶ Proposition 7 (Packing bound). If Si, Ti, Ui satisfy the STPP in a group G, then∑
i |Si||Ti| ≤ |G|,

∑
i |Ti||Ui| ≤ |G|, and

∑
i |Ui||Si| ≤ |G|.

A particular type of STPP construction can be obtained from pairs of sets satisfying a
condition termed the simultaneous double product property in [11].

▶ Definition 8. We say that sets (Ai, Bi)n
i=1 satisfy the simultaneous double product property

(or SDPP for short) if
1. For all i, aa′−1 = bb′−1 only has the solution a = a′, b = b′ for a, a′ ∈ Ai, b, b′ ∈ Bi,
2. ai(a′

j)−1bj(b′
k)−1 = 1 implies i = k, where ai ∈ Ai, a′

j ∈ Aj , bj ∈ Bj , b′
k ∈ Bk.

In [11] it was conjectured that one can achieve ω = 2 using SDPP constructions in abelian
groups. This amounts to the following.

ITCS 2024



89:6 On Generalized Corners and Matrix Multiplication

▶ Conjecture 9 ([11, Conjecture 4.7]). For arbitrarily large n, there exists an abelian group
G of order n2−o(1) and n pairs of sets Ai, Bi where |Ai||Bi| > n2−o(1) satisfy the SDPP.

If G is a finite group, we let XG denote the tripartite 3-uniform hypergraph with vertex
parts X1 = X2 = X3 = G, and where (g1, g2, g3) is a hyperedge (a triangle) whenever
g1g2g3 = I. In the event that G is nonabelian, it is important that we fix some ordering on
the parts of XG here. Recall that a 3-uniform hypergraph is said to be linear if any two vertices
are contained in at most one hyperedge. For example, XG is linear. The matrix multiplication
hypergraph Mp,q,r is defined to be the hypergraph with parts [p] × [q], [q] × [r], [r] × [p],
and where ((i, j), (k, l), (m, n)) is a hyperedge if and only if j = k, l = m, n = i. If X is a
hypergraph, we sometimes write E(X) for the set of hyperedges of X.

It is convenient to view STPP constructions from a hypergraph perspective.

▶ Proposition 10. There exist sets Si, Ti, Ui ⊆ G, satisfying the STPP if and only if XG

contains as an induced subhypergraph the disjoint union of M|Si|,|Ti|,|Ui|.

Proof. It follows from the first condition of the STPP that for all i, the subhypergraph
induced by Ai := SiT

−1
i , Bi := TiU

−1
i , Ci := UiS

−1
i equals M|Si|,|Ti|,|Ui|. The second

condition implies that Ai and Aj are disjoint when i ̸= j, and similarly for the subsets of the
other parts. The second condition also implies that the only hyperedges in the subhypergraph
induced by ⊔iAi, ⊔iBi, ⊔iCi are between sets of the form Ai, Bi, Ci, so the claim follows.

Conversely, suppose that ⊔iAi, ⊔iBi, ⊔iCi induce disjoint hypergraphs Mpi,qi,ri
. Fix some

i, and for shorthand write A := Ai, B := Bi, C := Ci and let p := pi, q := qi, r := ri. Since
A, B, C induce Mp,q,r, we can by definition write A = {aij}i∈[p],j∈[q], B = {bij}i∈[q],j∈[r], C =
{cij}i∈[r],j∈[p] ∈ G where

aijbklcmn = I ⇐⇒ j = k, l = m, n = i. (2)

We claim that there exist X = {xi}i∈[p], Y = {yj}j∈[q], Z = {zk}k∈[r] such that aij = xiy
−1
j ,

bjk = yjz−1
k , cki = zkx−1

i for all i ∈ [p], j ∈ [q], k ∈ [r]. This can be accomplished by
taking x0 = 1, xi = ai0a−1

00 for i > 0, yi = a−1
0i , zi = ci0. Furthermore, Equation (2) implies

that X, Y, Z will satisfy the TPP. This shows that for each i there are Xi, Yi, Zi such that
A1,i = XiY

−1
i , A2,i = YiZ

−1
i , A3,i = ZiX

−1
i , and Xi, Yi, Zi satisfy the TPP. The fact that

they induce a disjoint union of hypergraphs implies that if a ∈ Ai, b ∈ Bj , c ∈ Ck, then
abc = I implies i = j = k, which implies the second condition in the definition of the
STPP. ◀

▶ Remark 11. The second direction of this proposition is essentially the fact that a complete
2-dimensional simplicial complex has trivial 1-cohomology with coefficients in any group.

2.1 Triangle Removal and the Group-Theoretic approach
In [22], a nonabelian generalization of Green’s arithmetic removal lemma [17] was shown to
follow from the directed graph removal lemma of Alon and Shapira [4]. Specifically, they
showed the following:

▶ Theorem 12. Let G be a finite group of order N . Let A1, . . . , Am, m ≥ 2, be sets of
elements of G and let g be an arbitrary element of G. If the equation x1x2 · · · xm = g has
o(Nm−1) solutions with xi ∈ Ai, then there are subsets A′

i ⊆ Ai with |A′
i| = o(N) such that

there is no solution of the equation x1x2 · · · xm = g with xi ∈ Ai \ A′
i.
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The best quantitative bounds for this theorem are due to Fox [15], and show that if there
are at most δNm−1 solutions to x1 · · · xm = g, then there exist A′

i ⊆ Ai of size at most εn

satisfying the conclusion of the theorem, whenever δ−1 is a tower of twos of height O(log ε−1).
Theorem 12 implies the following:

▶ Corollary 13. If Xi, Yi, Zi satisfy the STPP in a group G of order n, then at least one of∑
|Xi||Yi|,

∑
|Xi||Zi|,

∑
|Yi||Zi| is at most o(n).

Proof. Let A1 = ⊔iXiY
−1

i , A2 = ⊔iYiZ
−1
i , A3 = ⊔iZiX

−1
i . By definition of the STPP, the

equation x1x2x3 = I with xi ∈ Ai has
∑

i |Xi||Yi||Zi| solutions. By the packing bound
Proposition 7,

∑
i |Xi||Yi| ≤ n,

∑
i |Yi||Zi| ≤ n,

∑
i |Zi||Xi| ≤ n, so by Cauchy–Schwarz there

are at most n3/2 = o(n2) solutions to a1a2a3 = I.
Now suppose that Bj ⊆ Aj satisfy |Bj |/|Aj | > 0.9999; we will show that there is

a solution to b1b2b3 = I. For more than a 0.99 fraction of the values of i we must have
|B1∩XiY

−1
i |/|XiY

−1
i | > 0.99 (because 0.99·1+0.01·0.99 = 0.9999) and similarly for the other

sets. Hence by the pigeonhole principle there is some i for which |B1 ∩ XiY
−1

i |/|XiY
−1

i | >

0.99, |B2 ∩ YiZ
−1
i |/|YiZ

−1
i | > 0.99, |B3 ∩ ZiX

−1
i |/|YiZ

−1
i | > 0.99. Now consider the tripartite

graph with parts Xi, Yi, Zi, where (x, y) is an edge between Xi and Yi if xy−1 ∈ B1 ∩ XiY
−1

i ,
(y, z) is an edge between YI , Zi when yz−1 ∈ B2 ∩ YiZ

−1
i , and (z, x) is an edge when zx−1 ∈

B3 ∩ZiX
−1
i . Note that the existence of a triangle in this graph implies that there is a solution

to b1b2b3 = I. First, note that at least 0.9|Xi| vertices in Xi have at least 0.9|Yi| neighbors in
Yi. (If this were not the case, there would be at most 0.9|Xi||Yi|+0.1·0.9·|Xi||Yi| ≤ 0.99|Xi||Yi|
edges between Xi and Yi, and hence |B1∩XiY

−1
i |/|XiY

−1
i | ≤ 0.99, a contradiction.) Similarly,

at least 0.9|Xi| vertices in Xi have at least 0.9|Zi| neighbors in Zi. Hence at least 0.8|Xi|
vertices in Xi have 0.9|Yi| neighbors in Yi and 0.9|Zi| neighbors in Zi. Pick any such vertex
x0 ∈ Xi. There must be an edge between a neighbor of x0 in Yi and a neighbor of x0 in Zi,
since if not, there would be at most |Yi||Zi| − 0.92|Yi||Zi| = 0.19|Yi||Zi| edges between Yi

and Zi. Thus we have found our triangle.
By Theorem 12, we can delete subsets of Ai of size o(n) to eliminate all solutions to

x1x2x3 = I. On the other hand, any three subsets of the Ai’s of density 0.9999 contain some
such solution. Hence we must have |Ai| = o(n) for some i. ◀

As a corollary of this proof, we have the following.

▶ Corollary 14. There exists an absolute constant C > 1 such that if Xi, Yi, Zi satisfy the
STPP in Zℓ

q, then at least one of
∑

|Xi||Yi|,
∑

|Xi||Zi|,
∑

|Yi||Zi| is at most (q/C)ℓ.

Proof. The proof of Corollary 13 shows that A1 = ⊔iXiY
−1

i , A2 = ⊔iYiZ
−1
i , A3 = ⊔iZiX

−1
i

have the following properties: there are at most q3n/2 solutions to a1 + a2 + a3 = 0, and any
subsets of A1, A2, A3 of density 0.9999 each contain some such solution. At the same time, by
[16, Theorem 1], if A1, A2, A3 ⊆ Zℓ

q and there are less than δq2n solutions to a1 + a2 + a3 = 0,
then we may remove εqℓ elements from A1 ∪ A2 ∪ A3 and eliminate all solutions, when
δ = (ε/3)Θ(log q).4 In our setting, δ = q−n/2 and so ε = 3qΘ(−n/ log q) ≤ 3C ′−n for some
universal C ′. Hence it must have been the case that one of A1, A2, A3 had size at most
(q/C)ℓ to begin with, for some universal C. ◀

One can interpret Corollary 13 as saying that the best upper bound on the rank of a
direct sum of matrix multiplication tensors provable via the group–theoretic approach is
superlinear. We remark the only important property of the matrix multiplication hypergraph

4 While [16, Theorem] is only stated for Zℓ
p, it extends to Zℓ

q by the same argument via the use of [8,
Theorem A’].

ITCS 2024
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Figure 3 The forbidden hypergraphs in Proposition 16, up to permutations of the three parts
(represented by different colors).

for this result was that it satisfies the very weak “regularity” condition that very large subsets
of the three vertex parts span at least one triangle. Specifically, considerations similar to
those of the proof of Corollary 13 show the following:

▶ Theorem 15. Let ε > 0. Let G be a group of order n. Let X = ⊔3
i=1Ai be a tripartite

hypergraph with o(n2) triangles such that for any Yi ⊆ Ai with |Yi|/n ≥ 1 − ε, there exists
yi ∈ Yi such that (y1, y2, y3) ∈ E(X). Then if X is an induced subhypergraph of XG,
|Ai| ≤ o(n) for i = 1, 2, 3.

3 Equilateral trapezoid-freeness in hypergraphs and groups

We begin with the observation that the matrix multiplication hypergraph is an extremal
solution to a certain forbidden hypergraph problem.

▶ Proposition 16. Let X be a linear tripartite hypergraph with parts of size N such that any
two vertices from different parts are incident to at most one common vertex in the third part.
Then the number of triangles in X is at most N3/2. Furthermore, when N is a square, an
extremal example is the matrix multiplication hypergraph MN1/2 .

The hypergraphs satisfying the condition of Proposition 16 can be equivalently characterized
as the linear hypergraphs that do not contain copies of the hypergraphs in Figure 3. We
remark that the proof of the upper bound in Proposition 16 is closely related to the upper
bound on the Turán density of the 4-cycle.

Proof. Restricting our attention to one of the parts X1 of X, let dv be the number of
triangles that vertex v ∈ X1 is contained in. Each v ∈ X1 is contained in dv triangles,
where the vertices of these triangles belonging to X2 and X3 are distinct (as X is linear).
Additionally, no pair of such vertices in X2 and X3 can be contained in a triangle incident to
another vertex u ∈ X1, so there are 2

(
dv

2
)

pairs of vertices in X2 and X3 that are contained
in no common triangle. Let (x2, x3) be some such pair of vertices. Observe that furthermore,
for all u ̸= v ∈ X1, the set of vertices in X2 and X3 incident to the set of triangles containing
u cannot also contain both x2 and x3. For if this happened, there would be triangles
(v, x2, x′

3), (v, x′
2, x3), (u, x2, x′′

3), (u, x′′
2 , x3), and then x2 and x3 violate the constraint. The

total number of triangles equals m :=
∑

v∈X1
dv, and by the prior observations it follows

that
∑

2
(

dv

2
)

+ m ≤ N2. So
∑

dv(dv − 1) + m =
∑

d2
v ≤ N2. The conclusion follows from

Cauchy–Schwarz.
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To see that MN1/2 is extremal, note that it contains N3/2 triangles, has parts of size N ,
and is linear. To see that it satisfies the second condition, let (i, j) be a vertex in the first
part, and let (k, l) be a vertex in the second part. Then (i, j) is contained in a common
triangle with exactly the vertices in the third part of the form (∗, i), and (k, l) is incident to
exactly the vertices in the third part of the form (l, ∗). Hence (l, i) is the unique neighbor of
both. The same argument shows the claim for vertices in any two parts. ◀

The key definition in this paper is that of an “equilateral trapezoid-free” triple of subsets
of a group. The reason for this name will eventually be explained in Section 4.

▶ Definition 17. Let A, B, C ⊆ G. We call (A, B, C) equilateral trapezoid-free if the
subhypergraph of XG induced by A ⊆ X1, B ⊆ X2, C ⊆ X3 satisfies the conditions of
Proposition 16. Equivalently, (A, B, C) is equilateral trapezoid-free if for any fixed a′ ∈
A, b′ ∈ B, c′ ∈ C, the following systems of equations in the variables a ∈ A, b ∈ B, c ∈ C each
have at most one solution:

I = a′bc = ab′c,

I = a′bc = abc′,

I = ab′c = abc′.

Let val(G) be the maximum number of solutions to abc = I over all equilateral trapezoid-free
triples (A, B, C).

The relevance of val(G) to ω is due to the following.

▶ Proposition 18. Suppose that XG contains disjoint induced subhypergraphs Mni,mi,pi
.

Then, val(G) ≥
∑

i nimipi.

Proof. By the same reasoning as in the second part of the proof of Proposition 16, Mni,mi,pi

satisfies the constraints of Definition 17 and contains nimipi hyperedges. As the disjoint
union of these hypergraphs satisfies these constraints as well, the claim follows. ◀

In fact, STPP constructions are essentially the only approach we know of for proving lower
bounds on val(G).

To start, we have the following trivial bounds.

▶ Proposition 19. For any group G, |G| ≤ val(G) ≤ |G|3/2.

Proof. The lower bound is obtained by the triple ({I}, G, G). The upper bound follows from
Proposition 16. ◀

The following super-multiplicative behavior of val is easily checked.

▶ Proposition 20. If (A, B, C) is equilateral trapezoid-free in G, and (A′, B′, C ′) is equilateral
trapezoid-free in H, then (A × A′, B × B′, C × C ′) is a equilateral trapezoid-free in G × H.

It is also easily seen that being equilateral trapezoid-free is preserved by cyclic permutations
of the three sets.5

▶ Proposition 21. If (A, B, C) is equilateral trapezoid-free, then so is (B, C, A).

5 This may not hold for all permutations in the case when G is nonabelian.
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89:10 On Generalized Corners and Matrix Multiplication

By an application of Theorem 15 combined with the observation that near-extremal
solutions to Proposition 16 are highly “regular”, we have the following weak improvement to
the trivial upper bound of |G|3/2.

▶ Proposition 22. For any group G, val(G) ≤ o(|G|3/2).

Proof. Suppose for contradiction that there exists ε0 > 0 such that val(G) > ε0|G|3/2,
and let A0, B0, C0 ⊆ G witness val(G) = ε0|G|3/2. Next consider the triple (A, B, C) :=
(A0 × B0 × C0, B0 × C0 × A0, C0 × A0 × B0), which is equilateral-trapezoid free inside of
H := G3 by Proposition 20 and Proposition 21, and witnesses val(H) ≥ ε|H|3/2 where
ε := ε3

0. Let |H| = N . Let X be the tripartite hypergraph with parts A, B, C and where
there is a triangle between all triples (a, b, c) where abc = I. Let n := |A| = |B| = |C|. By
Proposition 16 we must have n ≥ ε2/3N . Note that the number of triangles in X equals
εN3/2 ≥ εn3/2. In what follows, the degree of a vertex in X refers to the number of triangles
containing it.

Let Y be the random variable that is uniformly distributed over the multiset of vertex
degrees from one part of X, say A. Then E[Y ] ≥ εn1/2 and E[Y 2] ≤ n (this second inequality
follows from the use of Cauchy–Schwarz in the proof of Proposition 16). By the Payley-
Zygmund inequality, for any θ > 0, Pr(Y > θ · εn1/2) ≥ (1 − θ2)ε2. Taking θ = 1/2, we
conclude that at least p · n := 3nε2/4 vertices in A have degree at least εn1/2/2. This holds
for B and C as well.

Now let S, T, and U be any subsets of A, B, C of size at least n(1 − p/λ); we’ll pick λ ∈ N
later. Then the number of triangles incident to any one of these sets, say S, is at least

np(1 − λ−1) · εn1/2/2 = (3/8)n3/2ε3(1 − λ−1),

and the number of triangles incident to [n] \ T or [n] \ U , sets of size at most np/λ, is at most

(n2 · np/λ)1/2 = (31/2/2)n3/2ελ−1/2

by Cauchy–Schwarz. It follows that the number of triangles with one vertex in each of S, T, U

is at least

(3/8)n3/2ε3(1 − λ−1) − 2 · (31/2/2)n3/2ελ−1/2

which is greater than 1 for λ ≫ ε−4. In summary, between any three subsets of A, B, C size
roughly n(1 − ε6), there is a triangle.

Recall that n ≥ ε2/3N . Since X has at most N3/2 ≤ o(N2) triangles, by Theorem 15 we
can remove o(N) = o(n) vertices to remove all triangles. But by what we have just shown,
after deleting this few vertices some triangle will remain, a contradiction. ◀

▶ Remark 23. By combining this proof with [16], it follows that for fixed n and some ε > 0,
val(Zℓ

n) ≤ O(n3/2(1−ε)ℓ).

4 val(Zn) and its applications

Our weakest conjecture is the following.

▶ Conjecture 24. For all ε > 0, val(Zn) ≤ O(n1+ε).

In this section we give our potential applications of this conjecture. We then introduce
several related quantities and make preliminary progress on understanding them.
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Figure 4 Left: some forbidden trapezoids and triangles in ∆8. Right: a trapezoid-free subset of
∆8 of size 8 obtained by deleting all lines but one along one direction.

While the quantity val(Zn) may seem opaque from Definition 17, it can easily be visualized.
This is done by first considering the natural notion of an equilateral trapezoid-free subset of
the plane, which is convenient to introduce sooner rather than later. Throughout this section,
we let ∆n+1 = {(a, b, c) ∈ Z3

≥0 : a + b + c = n}. A subset of ∆n+1 is said to be corner-free if
it contains no configuration (x + δ, y, z), (x, y + δ, z), (x, y, z + δ).

▶ Definition 25. Let A, B, C ⊆ {0, . . . , n}. We call (A, B, C) an equilateral trapezoid-free
triple if for any fixed a′, b′, c′, the following systems of equations in the variables a ∈ A, b ∈
B, c ∈ C each have at most one solution:

n = a′ + b + c = a + b′ + c

n = a′ + b + c = a + b + c′

n = a + b′ + c = a + b + c′.

Let val(n) be the maximum number of solutions to a + b + c = n over all equilateral trapezoid-
free triples (A, B, C).

We may visualize equilateral trapezoid-free sets as follows. Draw ∆n+1 in the plane as a
triangular grid of points. Sets A, B, C correspond to collections of lines parallel to the sides
of ∆n+1, and a solution a + b + c = n corresponds a point in ∆n+1 contained in one line in
each of these three directions. Let S ⊆ ∆n+1 be the collection of all such points. A violation
of a constraint of Definition 25 corresponds to either a subset of 3 points in S forming an
equilateral triangle with sides parallel to the sides of ∆n+1, or a subset of 4 points with sides
parallel to the sides of ∆n+1 forming an equilateral trapezoid. Equivalently, we are deleting
lines parallel to the sides of ∆n+1 to eliminate all of such configurations, while leaving as
many points as possible. The maximum possible number of points left equals val(n). See
Figure 4.

The following shows that val(n) and val(Zn) are essentially the same.

▶ Proposition 26.
1. val(n) ≥ val(n − 1).
2. 1 + 2 · val(2n) ≥ val(Zn) ≥ val(⌊n/3⌋).
3. For n ≥ 6n′, val(Zn) ≥ val(Z′

n)/2 − 1

Proof. Suppose that val(n) is witnessed by sets A, B, C. For N > n, A + (N − n), B, C

then witness val(N) ≥ val(n), which shows (1). If we take N = 3n, we have that A + 2n ⊆
{0, . . . , N} and B, C ⊆ {0, . . . , N/3}, so a + b + c ≤ 5N/3 < 2N . Since a + 2n + b + c =
0 mod N ⇐⇒ a + 2n + b + c = N , this implies that the sets A + 2n, B, C are equilateral
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89:12 On Generalized Corners and Matrix Multiplication

trapezoid-free when viewed as subsets of ZN . This shows one direction of (2). In the other
direction, suppose val(Zn) is witnessed by A, B, C mod n. There are at least (val(Zn) − 1)/2
solutions to one of a + b + c = n, a + b + c = 2n; let N be the right-hand side of the
most frequently satisfied equation. Since every solution to a + b + c = N is a solution to
a + b + c = 0 mod n, A, B, C must be equilateral trapezoid-free when viewed as subsets of
{0, . . . , N}. This shows the other direction of (2).

Finally, (3) follows from (1) and (2). ◀

▶ Theorem 27. Suppose that one can achieve ω = 2 via STPP constructions in the family of
groups Zℓ

q, q a prime power. Then there exists a constant c > 0 such that val(Zn) ≥ Ω(n1+c).

Proof. By Corollary 13 and Corollary 14, any STPP construction with sets Xi, Yi, Zi satisfies∑
|Xi||Yi| ≤ (q/C)ℓ (we choose the X and Y sets without loss of generality) where C is an

absolute constant. By Hölder’s inequality,
∑

(|Xi||Yi||Zi|)2/3 ≤ q2ℓ/3(q/C)ℓ/3 = (q/C1/3)ℓ.
If we can obtain ω < 3 − α via Theorem 6, then

qℓ <
∑

(|Xi||Yi||Zi|)2/3·α+(1−α) =
∑

(|Xi||Yi||Zi|)2/3·α(|Xi||Yi||Zi|)1−α

≤ (
∑

(|Xi||Yi||Zi|)2/3)α(
∑

|Xi||Yi||Zi|)1−α

≤ (q/C1/3)αℓval(G)1−α

so val(G) > qℓ(Cα/3(1−α))ℓ. By choosing α sufficiently close to 1, val(G) > qℓ4ℓ. By taking
k-fold products of the sets defining the STPP constructions (using that products of STPPs
are STPPs [11, Lemma 5.4]), we find that val(Zkℓ

q ) > (4q)kℓ for all k.
Let N = kℓ. Consider the embedding φ : ZN

q → Z(3q)N defined by φ(x1, . . . , xN ) =
x1 + x23q + · · · + xn(3q)N−1. Since

∑
yi(3q)i−1 has a unique such expression in Z(3q)N when

yi < 3q, it follows that that

a1 + a2 + a3 ̸= a4 + a5 + a6 =⇒ φ(a1) + φ(a2) + φ(a3) ̸= φ(a4) + φ(a5) + φ(a6).

Hence the image of an STPP under φ is an STPP inside of Z(3q)N , so val(Z(3q)N ) > (4q)N .
Because this holds for some particular q and all N = kℓ, by part (3) of Proposition 26 the
theorem follows. ◀

▶ Corollary 28. Suppose that there is a family of STPP constructions obtaining ω = 2 in a
family of abelian groups with a bounded number of direct factors. Then there exists a constant
c > 0 such that val(Zn) ≥ Ω(n1+c).

Proof. Suppose we have a family of STPP construction in groups of the form G = Zm1 ×
· · · × Zmℓ

, with ℓ fixed. We can then obtain an STPP construction in Zℓ
p, where p is the

smallest prime greater than maxi∈k 3mi, by taking the image of this STPP under the map
sending (x1, . . . , xk) → x1 + x2p + · · · + xkpk−1. As k is fixed, it follows from Bertrand’s
postulate that pk ≤ O(|G|). The inequality Theorem 6 then implies that one can also obtain
ω = 2 in the family of groups Zℓ

p, so we conclude by Theorem 27. ◀

▶ Remark 29. Although we expect that Theorem 27 is true when the hypothesis is extended
to arbitrary abelian groups, we do not know how to generalize to e.g. Zℓ

n for arbitrary n. This
is due to the fact that better bounds on the size of 3-matchings in cyclic groups with prime
power modului are known than for general moduli (compare Theorems A and A’ in [8]). To
the best of our knowledge, it is an open problem whether the known bounds for non-prime
power moduli are tight. For prime power moduli, the known bounds are tight by [18].
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Next we show that sufficiently strong simultaneous double product property constructions,
which are known to prove ω < 2.48 [11, Proposition 4.5], imply strong lower bounds on
val(Zn). We thank Chris Umans for informing us of the fact that if Conjecture 9 is true,
then it is true in cyclic groups, which motivated the following theorem.

▶ Theorem 30. If Conjecture 9 is true, then for any ε > 0, val(Zn) ≥ O(n4/3−ε).

Proof. We begin by recalling how to turn an SDPP construction into an STPP construction
[11, Section 6.2]. Let S ⊂ ∆n be corner-free and of size n2−o(1). For all v = (v1, v2, v3) ∈ S,
define the following subsets of G3:

Av = Av1 × {1} × Bv3 ,

Bv = Bb1 × Av2 × {1},

Cv = {1} × Bv2 × Av3 .

It can be verified that the sets (Av, Bv, Cv)v∈S satisfy the STPP. Hence Conjecture 9 yields
an STPP with n2−o(1) triples of sets of size n2−o(1), inside a group of size n6−o(1).

Now consider the map from G3 = Zm1 × · · · × Zmk
, where m1 ≤ m2 ≤ · · · ≤ mk,

to G′ := Z∏
i

3mi
sending (x1, . . . , xk) to x1 + (3m1)x2 + (3m1)(3m2)x3 + · · · . First, the

image of sets satisfying the STPP under this map still satisfy the STPP. This shows that
val(G′) > n2−o(1) · n3(2−o(1)) = n8−o(1). Second, for all fixed c > 0 and ℓ ∈ N, G3 cannot
contain a subgroup of size |G3|c generated by elements of order at most ℓ by [8, Proposition
4.2]. Hence the number of mi’s which are at most ℓ is at most log2(|G3|c). The number of
mi’s which are greater than ℓ is trivially less than logℓ |G3|. So,

|G′| =
∏

mi≤ℓ

3mi

∏
mi>ℓ

3mi ≤ 3log2(|G3|c)+logℓ |G3| · |G3|.

By taking c sufficiently small and ℓ sufficiently large, this is at most n6+δ for any desired
δ > 0. The claimed bound follows. ◀

Note that here there is no restriction on the family of abelian groups in consideration, unlike
there was in the previous theorem.

4.1 Relaxations of val(Zn)
In this section we explore some strengthenings of Conjecture 24 which may be easier to
understand. We start by discussing an over-strengthening of Conjecture 24 which cannot give
any barriers. We then discuss a few strengthenings for which our knowledge is embarrassingly
bad, including the notions of skew-corner free sets from the introduction.

Considerations of the proof of the n3/2 upper bound of Proposition 19 reveal that it
actually held for a (possibly) much weaker problem, where one only requires that the expected
number of solutions of one of the three systems of two equations in Definition 17 is at most
1. We begin by noting that this upper bound is essentially best-possible for this weakened
problem. In other words, one cannot hope to prove Conjecture 24 via an “asymmetric”
averaging argument.

▶ Proposition 31. There exist A, B, C ⊆ Zn such that

Ea′∈A,b′∈B [#{(a, b, c) : 0 = a′ + b + c = a + b′ + c}] ≤ 1

and there are n3/2−o(1) solutions to the equation a + b + c = 0 with a ∈ A, b ∈ B, c ∈ C.
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Proof. Let r(A, B, c) denote the number of representations of c as a + b. First note
that the proposition is equivalent to the statement that

∑
c∈C r(A, B, −c)2 ≤ |A||B| and∑

c∈C r(A, B, −c) = n3/2−o(1).
Let S ⊂ [n] be 3AP-free and of size n1−o(1). Consider the sets

A = B = [3n2, 4n2] ∪
⋃

x∈S

[xn, xn + n/2], C = −{2xn + y : x ∈ S, y ∈ [n]}

regarded as subsets of Z100n2 . By definition, for any x ∈ S and y ∈ [n], −(2xn+y) = c ∈ C. If
we have any representation −c = a+b, then a, b < 3n2. So we have a = x1n+y1, b = x2n+y1
with x1, x2 ∈ S and 1 ≤ y1, y2 ≤ n. So (x1+x2)n+(y1+y2) = 2xn+y, and then we are forced
to have x1 + x2 = 2x and y1 + y2 = y. But because S is 3AP-free, we must have x1 = x2 = x.
Hence r(A, B, −c) is exactly the number of solutions to y = y1 + y2 with y1, y2 ∈ [n], which
is Ω(n) for Ω(n) choices of y ∈ [n]. Hence

∑
c∈C r(A, B, −c) = Θ(|S|n2) = n3−o(1). Also, we

have that
∑

c∈C r(A, B, −c)2 = n4−o(1) < |A||B| = Θ(n4), and we are done. ◀

Can one find a construction achieving n3/2−o(1) for the averaging version of Definition 17
that involves all three systems of equations? That is:

▶ Question 32. What is the maximum over all A, B, C ⊆ Zn satisfying

Ea′∈A,b′∈B [#{(a, b, c) : 0 = a′ + b + c = a + b′ + c}] ≤ 1,

Ea′∈A,c′∈C [#{(a, b, c) : 0 = a′ + b + c = a + b + c′}] ≤ 1,

Eb′∈B,c′∈C [#{(a, b, c) : 0 = a + b′ + c = a + b + c′}] ≤ 1,

of the number of solutions to a + b + c = 0?

There are a number of relaxations of the quantity val(n) for which we know basically
nothing. A first relaxation that still seems very stringent is that of a triforce-free triple,
defined as follows.

▶ Definition 33. Let A, B, C ⊆ {0, . . . , n}. We say that (A, B, C) is triforce-free if there is
no solution to

a + b + c′ = a + b′ + c = a′ + b + c = n

with a ̸= a′, b ≠ b′, c ̸= c′. We write val( , n) for the maximum over all such A, B, C of the
number of solutions to a + b + c = n.

This condition just says that {(a, b, c) ∈ A × B × C : a + b + c = n} ⊆ ∆n+1 is corner-free.
Equivalently, (A, B, C) is triforce-free if the hypergraph with parts A, B, C and triangles
between any triples summing to n does not contain the triforce hypergraph (the second
hypergraph in Figure 3). As every equilateral trapezoid-free triple of sets also has this
property, we have the following.

▶ Proposition 34. val( , n) ≥ val(n).

Here is an even weaker notion than that of being triforce-free. We thank Ryan O’Donnell
for suggesting this definition.

▶ Definition 35. We call S ⊆ ∆n skew-corner free if for (a, b, c), (a, b′, c′) ∈ S, it holds
that (a + b − b′, b′′, c′′) /∈ S for all b′′, c′′, and this remains true after any permutation of the
coordinates of S.
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Pictorially, this says that for any two points lying on an axis-aligned line in ∆n, the parallel
line passing through a third point that would form a corner with these two points must
contain no points. As Definition 33 yields corner-free subsets of ∆n obtained by deleting
axis-aligned lines, it follows that this is a relaxation of being triforce-free. More formally, we
have the following.

▶ Proposition 36. The largest skew-corner free subset of ∆n+1 is at least val( , n).

Proof. Suppose that A, B, C ⊂ {0, . . . , n} satisfy the conditions of Definition 33, and let
S = {(a, b, c) ⊂ A × B × C : a + b + c = n} ⊆ ∆n+1. Suppose for contradiction that
(a, b, c), (a, b′, c′) ∈ S and (a − b + b′, b′′, c′′) ∈ S. Since a − b + b′ ∈ A, b ∈ B, c′ ∈ C and
(a−b+b′)+b+c′ = a+b′ +c′ = n, it follows that (a−b+b′, b, c′) ∈ S. But this is impossible:
the three solutions a + b′ + c′ = n, a + b + c = n, (a − b + b′) + b + c′ violate Definition 33.
One reasons similarly about other permutations of coordinates. ◀

The best lower bound that we know on the size of the largest skew-corner free subset of
∆n is Ω(n); n is obtained trivially by taking one line on the side of ∆n, and it is not hard
to improve this to 3n/2. We have found examples exceeding these bounds with computer
search (see Figure 2).

If we weaken Definition 35 by dropping the requirement that the condition holds for all
permutations of coordinates, we are led to the following notion.

▶ Definition 37. We say S ⊂ [n]2 is skew corner-free if it contains no configuration
(x, y), (x, y + d), (x + d, y′) with d ̸= 0.

▶ Proposition 38. The largest skew corner-free subset of [n]2 is at least as big as the largest
skew corner-free subset of ∆n.

Proof. Given a skew corner-free set S ⊆ ∆n, let S′ be its projection onto the first two
coordinates. This is a subset of {0, . . . , n − 1}2 of size |S|. By definition, it contains no points
(a, b), (a, b′), (a + b − b′, b′′). By shifting each point by (1, 1) we obtain a subset of [n]2 with
this property. ◀

As a consequence, we have Theorems 3 and 4.

Proof of Theorem 3 and Theorem 4. By Theorem 27, if ω = 2 via STPP constructions in
Zℓ

q, then val(Zn) ≥ Ω(n1+c). By Proposition 26, val(Zn) = Θ(val(n)), and by Propositions 36
and 38, val(n) is at most the size of the largest skew corner-free subset of [n]2. This proves
Theorem 3. One similarly concludes Theorem 4 by using Theorem 30. ◀

We have the following nontrivial lower bound for this relaxed problem, due to a Math-
Overflow answer of Fedor Petrov [19].

▶ Proposition 39. There is a skew corner-free subset of [n]2 of size Ω(n log n/
√

log log n).

Proof. A ⊆ [n] is called primitive if for all a ̸= a′ ∈ A, a ∤ a′. It is easily seen that if
A is primitive then the set of points (a, ka) ⊆ [n]2 for all k ≤ n/a avoids the forbidden
configurations. This gives a subset of size n

∑
a∈A 1/a. At the same time, there exists a

c > 0 and a primitive set A where
∑

a∈A 1/a > c log n/(log log n)1/2 [14]. We note that this
is best-possible, matching (up to the constant) an upper bound on

∑
a∈A 1/a for primitive

A due to Behrend [6]. ◀
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This construction breaks when we strengthen the definition of skew corner-freeness in
[n]2 to forbid skew corners with two points parallel to the x axis. This corresponds to the
following notion.

▶ Definition 40. We say S ⊂ [n]2 is bi-skew corner-free if it contains no configurations
(x, y), (x, y + d), (x + d, y′) or (x, y), (x + d, y), (x′, y + d), with d ̸= 0.

As far as we know, it is possible that the largest bi-skew corner-free subset of [n]2 has
size O(n).
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