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Abstract
We introduce a novel family of expander-based error correcting codes. These codes can be sampled
with randomness linear in the block-length, and achieve list decoding capacity (among other local
properties). Our expander-based codes can be made starting from any family of sufficiently low-bias
codes, and as a consequence, we give the first construction of a family of algebraic codes that can be
sampled with linear randomness and achieve list-decoding capacity. We achieve this by introducing
the notion of a pseudorandom puncturing of a code, where we select n indices of a base code C ⊂ Fm

q

in a correlated fashion. Concretely, whereas a random linear code (i.e. a truly random puncturing of
the Hadamard code) requires O(n log(m)) random bits to sample, we sample a pseudorandom linear
code with O(n + log(m)) random bits by instantiating our pseudorandom puncturing as a length n

random walk on an exapnder graph on [m]. In particular, we extend a result of Guruswami and
Mosheiff (FOCS 2022) and show that a pseudorandom puncturing of a small-bias code satisfies the
same local properties as a random linear code with high probability. As a further application of our
techniques, we also show that pseudorandom puncturings of Reed-Solomon codes are list-recoverable
beyond the Johnson bound, extending a result of Lund and Potukuchi (RANDOM 2020). We do
this by instead analyzing properties of codes with large distance, and show that pseudorandom
puncturings still work well in this regime.
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1 Introduction

A central topic of interest in coding theory is that of list decodability. We seek an encoding
function E : {0, 1}k → {0, 1}n, such that for any possible received codeword r, there are only
a few encoded messages that are close to r. More formally, we say that an encoding function
is (ρ, L) list-decodable if for any possible received message ẑ ∈ {0, 1}n, there are at most L

codewords in {0, 1}k whose encodings are within hamming distance L of ẑ. This notion of
list decodability provably allows for a notion of error-correction beyond the unique-decoding
radius of n/4. As such, many years of research have focused on the construction of codes
with better list-decoding properties. In this work, we suggest a new tool that can be used in
such codes, by combining expander graphs with error-correcting codes in a novel manner.
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Random linear codes (RLCs) are a fundamental tool in coding theory and specifically the
construction of list-decodable codes because of their many favorable combinatorial properties.
RLCs attain near-optimal distance and list decodability with high probability, while still
maintaining efficient encoding. Indeed, a RLC is simply the image of a uniformly random
generating matrix E ∈ {0, 1}n×k, mapping messages of length k to codewords of length n as
an F2-linear map. However, the main drawback of RLCs is that there is no known algorithm
for efficient decoding or list decoding. This is often attributed to a lack of structure in the
codes, resulting from the fact that each codeword E(x) is chosen uniformly at random.

While there existed codes that achieve some favorable properties of RLCs using much
less randomness (for instance the Toeplitz codes which achieve a near-optimal rate-distance
tradeoff using O(n) random bits), there did not exist O(n)-randomness constructions of
codes achieving list-decoding capacity until the work of Guruswami and Moshieff [14]. To
explicate their result, we recall that for a binary code C ⊂ Fn

2 , the bias is defined as

max
c∈C

|2|c| − n|
n

.

Starting from the observation that an RLC is equivalent to a random puncturing of a
Hadamard code, the work of [14] showed that taking a random puncturing of any code of
sufficiently low-bias is “locally similar” to an RLC. Local similarity in this context refers
to local properties of a code, which includes characterizations like list-decodability. Local
properties are characterized by not containing certain sets of a small number of bad codewords.

Using this result, they were able to show that for every n, one can sample a code
C ⊆ Fn

q generated with O(n) bits of randomness with rate R that is list-decodable to
distance 1 − R − ε. This follows by using sufficiently low-bias codes of length n′ = O(n),
and correspondingly choosing a random subset of size n of the indices. Choosing such a
subset requires log

(
n′

n

)
= O(n) random bits. However, this construction has three potential

drawbacks:
1. The “mother” codes of sufficiently low-bias can be quite complex constructions [1, 21].
2. The subsets of indices that are chosen are not structured, and thus unlikely to be amenable

to efficient decoding. This is in contrast to the highly successful paradigm of decoding
codes with graph-theoretic constructions [1, 6, 9, 12,17,20].

3. The random puncturing procedure can be implemented using O(n) bits of randomness
only when the mother code itself is of length n′ = O(n) (and hence is not randomness
efficient for an arbitrary base code).

We aim to make progress on these drawbacks by introducing a more randomness efficient
and structured way of performing puncturings and providing a new lens with which we can
analyze the success events of puncturing procedures. We are particularly excited to introduce
a new way to use expanders to create error-correcting codes given the rich history of decoding
algorithms for these codes.

As an aside, we note that there have been several recent works studying random punc-
turings. In particular, a series of works [2, 10] has proved that random puncturings of
Reed-Solomon codes achieve list-decoding capacity over linear-sized alphabets. The work
we present here works for even constant size alphabets, provided the bias of the code is
sufficiently small.

1.1 Our Contributions
We introduce the notion of a pseudorandom puncturing, and show codes generated in this
fashion exhibit several desirable properties exhibited by truly random puncturings. In a truly
random puncturing, we choose n indices i.i.d. uniformly from the [m] indices of the mother
code, and preserve these indices.
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We begin by describing a special case of our main result:1

▶ Theorem 1 (Optimal list-decoding with linear randomness). For every ρ ∈ (0, 1/2), ε > 0,
there is an explicit family of binary linear codes of rate R ≥ 1 − h2(ρ) − ε that can be sampled
with O (n/ε) random bits and are, with high probability, (ρ, L) list decodable for L := O(1/ε).

We now explain the framework for achieving this result. One way to view a truly random
puncturing is to take a length n random walk over the complete graph on m vertices. Letting
the sequence of visited vertices be I = (i1, . . . , in), we define the puncturing by retaining the
code indices in I. Performing such a random walk will then necessitate n · log m random bits
(exactly equivalent to choosing n indices in [m] in the naive fashion).

However, this view of puncturing allows the application of derandomization techniques.
We introduce an expander walk puncturing, by replacing the complete graph on m vertices
with a sufficiently-expanding d-regular expander on m vertices. Now we perform a length n

random walk on this expander, which only requires O(log m + n · log d) random bits, and (as
before) let the punctured code be defined by the indices of the walk. Even when taking the
mother code to be a Hadamard code of length 2O(n), we can sample a puncturing with O(n)
random bits by having d a constant independent of n. Our primary contribution is showing
such a walk is “close enough” to a truly random walk such that we can still conclude the
punctured code has the desired properties.

Our results directly extend [14] (who in turn used the framework developed by [13,19]), in
that we show even an expander walk puncturing of every sufficiently small bias code achieves
list-decoding capacity.

▶ Theorem 2 (More general case, informally). Let D ⊆ Fm
q be a linear, sufficiently low-bias

code. Let C be a λ-expander walk puncturing of D for sufficiently small λ. Then, C is likely
to have every monotone-decreasing, local property that is typically satisfied by an RLC of
similar rate. In fact, for every sufficiently low-bias mother code, we can pseudorandomly
subsample the indices of our puncturing with randomness O(nb), where b is the locality of
the property, even when the block length m of D is exponential in n.

As a consequence, we can now construct pseudorandom linear codes (with generator
matrix G) list-decodable to capacity that are sampled with O(n) random bits such that
the rows of G come from an arbitrary low-bias mother code, and the columns of G are a
pseudorandom subset.

In particular, as noted by [14], we can take the mother code D to be a dual-BCH code,
where every codeword encodes a low-degree polynomial over F2ℓ by the trace of its evaluations
over F2ℓ . In the setting of [14], a random puncturing of D corresponds to codewords being
evaluations over a random subset of F2ℓ . However, by instead taking an expander walk
puncturing, the codewords are now evaluations over more constrained subsets of F2ℓ . In fact,
we decrease the randomness required in this construction from Ω(n log n) to O(n), while still
preserving its list-decodability. The work of [14] requires log(

(poly(n/ε)
n

)
) = Ω(n log(n)) bits

of randomness to choose a subset of n coordinates from a BCH code, as low-bias BCH codes
have a super-linear block length of poly(n/ε) [15]. With our expander walk puncturing, we
achieve O(n) randomness even in this regime. We view it as an interesting open question to
find pseudorandom puncturings with sufficient algebraic structure such that they may make
decoding in this scheme tractable.

1 We remark that [14] achieved this specific result by a different proof.

ITCS 2024
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We remark that our analysis techniques using expander graphs have already found
themselves applicable in subsequent works in coding theory. The work of [4] showed that
random shortening (a different technique from random puncturing) can also be shown to
work in a pseudorandom manner, using exactly the same hitting-set style argument. This
leads to randomness efficient yet still non-trivial random shortening.

We further illustrate the flexibility of the pseudorandom puncturing approach in two
regimes. First, we observe (Theorem 35) that pseudorandom linear codes achieve capacity
against the memoryless additive channel, extending the analogous result of [14].

Finally, we apply our techniques in a different regime: we partially derandomize the result
of Lund and Potukuchi [18], who show that random puncturings of Reed-Solomon codes can
be list-recovered beyond the “Johnson bound.”

▶ Definition 3 (Zero-Error List Recoverability). Let C ∈ Fn
q be a code. We say C is (ℓ, L)

zero-error list recoverable if for every collection of sets A1, . . . , An with |Ai| ≤ ℓ for all i,
we have |{c ∈ C : c ∈ A1 × . . . × An}| ≤ L.

We show that expander walk puncturings of Reed Solomon codes are zero-error list recoverable
beyond the Johnson bound:

▶ Theorem 4 (Zero-Error List Recovery of Reed Solomon Codes). Given a prime power q and
ε ≥ 1/

√
q, there are Reed-Solomon codes of length n and rate Ω(ε/ log q) that can be sampled

with O(n) random bits that are (ε−2, O(ε−2))-zero error list recoverable whp.

For comparison, the Johnson bound (for list recovery) states that a code C over Fn
q with

distance at least n(1 − ε) is (ρ, ℓ, L) list-recoverable for any ℓ ≤ (1−ρ)2

ε and L = ℓ
(1−ρ)2−εℓ .

As remarked in [18], this roughly translates to saying that any code over alphabet Fq of
relative distance 1 − 1/q − ε is (ρ, ℓ, O(ℓ)) list-recoverable for ℓ = O(1/ε), and ρ ≤ 1 −

√
2εℓ.

A natural question (and one that exceeds the capabilities of the Johnson bound) is whether
one is able to construct q-ary Reed-Solomon codes that are (ρ, ℓ, L) list-recoverable for
ρ = 0, ℓ = ω(1/ε), L = poly(ℓ). We show that this is indeed possible, even using an expander
walk puncturing puncturing, by achieving ℓ = 1/ε2, L = O(ℓ).

We do this by analyzing how expander walk puncturings work for codes with near-maximal
distance. We note that [14] analyzed random puncturings in the case of large distance as well,
though their more structured analysis does not carry over to the regime of pseudorandom
puncturings.

1.2 Proof Techniques and Comparison to [14]
As mentioned previously, for a truly random puncturing φ : Fm

q → Fn
q , one perspective of

such a function is that we take a length n random walk on a complete graph on the vertex
set [m]. By reading off the vertices that this truly random walk visits (u1, . . . un), and using
these as the indices that we preserve from our m-dimensional vector, we can exactly model
the action of a truly random puncturing. This model is easy to analyze in the sense that the
n steps of the random walk are all independent. That is, the next vertex to be visited has no
dependence on the current vertex that the walk is at, since each vertex is connected to all
other vertices. A priori, it is not clear that replacing this complete graph with an expander
should allow us to preserve all the desirable properties of our random puncturing. To this end,
one of our main contributions is to characterize the “success” events of a random puncturing
(i.e. in this case a success is being list-decodable) as a type of hitting constraint. We then
invoke known results showing that the probability of satisfying this hitting constraint is
approximately preserved even under an expander random walk. This allows us to improve
and build upon the result of [14].
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1.3 Overview
In Section 2 we recall concentration results for expander random walks, local properties of
codes, and notation related to distributions on rows of a matrix. In Section 3 we prove a
weaker version of Theorem 1 with exponential list sizes to introduce our proof strategy. In
Section 4 we prove Theorem 1. In Section 5 we prove random puncturings achieve capacity in
the memoryless channel. In Section 6 we prove Theorem 4, and in Appendix B we conclude
a small derandomization of a result constructing unbalanced expanders.

2 Preliminaries

We first introduce concepts required for the proofs.
We recall the definitions of q-ary entropy and KL-divergence.

▶ Definition 5 (q-ary entropy). For x ∈ [0, 1] the q-ary entropy is defined to be

hq(x) = −x logq(x) − (1 − x) logq(1 − x) + x logq(q − 1).

▶ Definition 6 (q-ary KL divergence). The q-ary KL divergence of two distributions τ, σ over
a set S is defined as

DKLq (τ∥σ) =
∑
s∈S

τ(s) logq

τ(s)
σ(s) .

2.1 Properties of Expander Walks
We recall some useful statements of properties of expander random walks. We reference the
excellent survey of Hoory, Linial, and Wigderson [16].

First, we reintroduce the definition of an expander, and that ones exist with good
properties. Our results are not sensitive to the precise degree-expansion tradeoff, except in
optimizing the constant factor on the number of bits required to sample.

▶ Definition 7 (Expander graphs [16]). We say a graph (G, V ) is an (m, d, λ)-expander if G

is d-regular on m vertices, and satisfies |λ2(G)|, |λm(G)| ≤ λd. The notation λi(G) refers to
the ith eigenvalue of the adjacency matrix of G.

▶ Theorem 8 (Existence of near-optimal expanders [3, 22]). For a fixed d ∈ N, λ, there exist
(strongly) explicit constructions of (m, d, λ)-expanders for all m large enough if λ ≥ 1

d0.49 .

We remark that our notion of explicitness is that, given a vertex v ∈ [m] and a neighbor
i ∈ [d], we can compute Γ(v, i) in time poly(log m).

▶ Remark 9. To take an n-step random walk on an m vertex, degree d graph takes log(m)+n ·
O(log d) random bits. Using known degree-expansion trade-offs (Theorem 8) for the existence
of strongly explicit expanders, (m, d, λ)-expanders exist for λ ≥ 1

d0.49 . So, for any given
λ, one can choose d =

( 1
λ

)1/0.49, and then perform a random walk on an (m,
( 1

λ

)1/0.49
, λ)

expander using log(m) + cn · log(1/λ) + O(n) random bits suffices for some constant c = 1
0.49 .

We will also make use of the non-equal expander hitting set lemma, which states that a
random walk on an expander lies inside a sequence of sets with probability approximately
the product of the sets densities. Our analysis relies on the ability of the sets to differ at
each timestep.

ITCS 2024
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▶ Theorem 10 (Non-equal expander hitting-set lemma, [16], Theorem 3.11). Let B1, B2, . . . Bt

be vertex sets of densities β1, . . . βt in an (m, d, λ)-graph G. Let X1, . . . Xn be an n-step
random walk on G. Then,

Pr[∀i ∈ [n], Xi ∈ Bi] ≤
n−1∏
i=1

(√
βiβi+1 + λ

)
≤
(

max
i

βi + λ
)n−1

.

Additionally, we will require the expander Chernoff bound [7].

▶ Theorem 11 (Expander Chernoff bound [7]). Let G be an (m, d, λ) regular graph. Let
B ⊂ [m] be a set with density µ := |B|/m. Let X1, . . . , Xn be an n-step random walk on G,
initialized at a random vertex. Then,

Pr
[∣∣∣∣∣

n∑
i=1

I[Xi ∈ B] − nµ

∣∣∣∣∣ > nε

]
≤ 2e−Ω((1−λ)nε2).

2.2 Expander Walk Puncturing
Of primary importance in this paper will be following instantiation of a pseudorandom
puncturing:

▶ Definition 12 (λ-expander-walk puncturing). Given a prime power q and m, n ∈ N, a
(m → n) λ-expander-walk puncturing map (with puncturing graph G) φ : Fm

q → Fn
q

is a random function obtained by taking an expander G = ([m], E) satisfying λ(G) ≤ λ and
taking a length n random walk. Letting the vertex labels of the walk be (i1, . . . , in), we define
the map by

φ(u = (u1, . . . , um)) = (ui1 , . . . , uin).

For j ∈ [n] let φj = ij be the jth index of the map. Given a code D ⊂ Fm
q , which we call the

mother code, we say C is a λ-expander-walk puncturing of D if

C := φ(D) = {φ(u) : u ∈ D}.

The design rate of C is R = logq |D|/n.

We note that our λ-expander-walk puncturing map places no constraints on the expander
beyond its spectral gap.

[14] show that the rate of a random puncturing (of a small-bias code) is equal to the
design rate with high probability. We extend this result to λ-expander-walk puncturing
puncturings, subject to mild constraints on the parameter λ.

▶ Lemma 13 (Actual rate equals design rate with high probability). Let D ⊆ Fm
q be a linear

code of distance at least (1 − 1/q − η), and let C be a length n λ-expander-walk puncturing of
D, of design rate R ≤ 1 − logq(1 + ηq + λq) − ε. Then, with probability at least 1 − q−εn, the
rate of C is equal to its design rate.

Proof. The event that the rate is less than the design rate occurs if there is some nonzero
codeword u ∈ D such that φ(u) = 0. Fixing u ∈ D, let T ⊂ [m] be the coordinates on which
u is zero. We have |T |m ≤ 1

q + η by assumption on distance. Then

Pr[φ(u) = 0] = Pr[φ1 ∈ T ∧ . . . ∧ φn ∈ T ] ≤
(

1
q

+ η + λ

)n

= q−n(1−logq(1+qη+qλ))

where the first inequality comes from Theorem 10. Then a union bound over the qRn

codewords completes the proof. ◀
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2.3 Properties of Codes
As in [14] and [19], we will be proving a result that generalizes to a wide class of properties
of codes.

Our results will rely on the distance and bias of codes.

▶ Definition 14 (Bias and distance). Let D ⊆ Fm
q be a linear code.

1. We say that D has η-optimal distance if the weight of every codeword is bounded below
by (1 − 1/q)(1 − η). That is,

∀c ∈ D, wt(c) ≥ (1 − 1/q)(1 − η).

2. We say that D is η-biased if for every non-zero codeword c ∈ D, for every a ∈ F∗q :∣∣∣∣∣
m∑

i=1
ωtr(a·ci)

∣∣∣∣∣ ≤ mη.

Here, we use that ω = e2πi/p, (where q is a power of a prime p), and tr : Fq → Fp is
defined as

tr(x) =
r−1∑
i=0

xpi

,

where r = logp q.
We remark that Vazirani’s ZOR lemma implies that small bias implies the row distribution
is close to uniform:

▶ Lemma 15 (Vazirani’s XOR lemma [8,14]). Let σ be an η-biased distribution over Fb
q. Then,

σ is (qb · η)-close in total-variation distance to the uniform distribution over Fb
q.

▶ Remark 16. A code that is η-biased has η-optimal distance, and most of our analysis uses
only this property (though we use results of [14] which rely on the bias condition).

Now, we will first introduce a few specific examples of local properties, and then the more
general definition for which our result will ultimately apply.

We first define ρ-clustered. We note that wt(x) is the normalized Hamming weight of x,
and B(z, α) is the Hamming ball of weight α centered at z.

▶ Definition 17 (ρ-clustered [14]). Fix ρ ∈ [0, 1]. We say that a set of vectors W ⊆ Fn
q is

ρ-clustered if there exists a z ∈ Fn
q such that wt(w − z) ≤ ρ (equivalently, w ∈ B(z, ρn)) for

all w ∈ W .

We recall the folklore observation that this definition gives a clean characterization of list
decodability:

▶ Observation 18. A code C ⊆ Fn
q is (ρ, L)-list decodable if and only if it does not contain a

ρ-clustered set of codewords of size L + 1.

Both list-decodability and list-recoverability are special cases of properties of codes [14,19].

▶ Definition 19 (Properties of a code). A property P of length n linear codes over Fq is a
collection of linear codes in Fn

q . For such a code C, if C ∈ P, then we say that C satisfies
property P. A property P is said to be monotone-increasing if P is upwards closed with
respect to containment.

ITCS 2024
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▶ Definition 20 (Local and row-symmetric properties). Let P be a monotone-increasing
property of linear codes in Fn

q .
1. If, for a fixed b ∈ N, there exists a family BP of sets of words, such that every B ∈ BP is

a subset of Fn
q , |B| ≤ b, and

C satisfies P ⇐⇒ ∃B ∈ BP : B ⊆ C,

then we say P is a b-local property.
2. If, whenever a code C satisfies P and π is a permutation on {1, . . . n}, the code {πx|x ∈ C}

also satisfies P, then we say that P is row-symmetric. πx in this notation refers to
permuting the entries of a vector of length n according to the permutation π.

Note that the property of being not (ρ, L) list-decodable is a L-local row-symmetric
property. We will use this in our result.

▶ Definition 21 (Threshold of a property). For P over Fn
q , we will let

RLC(P) = min {R ∈ [0, 1]| Pr [RLC of length n, rate R, domain Fq satisfies P] ≥ 1/2} .

This definition is motivated by the following theorem which was proved in [19].

▶ Theorem 22 (Sharp threshold behavior [19]). Let C ⊆ Fn
q be a random linear code of rate

R and let P be a monotone-increasing, b-local, and row-symmetric property over Fn
q , where

n
logq n ≥ ωn→∞

(
q2b
)
. Then, for every ε > 0, the following hold:

1. If R ≤ RLC(P) − ε

Pr[C satisfies P] ≤ q−n(ε−on→∞(1)).

2. If R ≥ RLC(P) + ε

Pr[C satisfies P] ≥ 1 − q−n(ε−on→∞(1)).

Because of Theorem 22, it suffices to show that the local behavior of a pseudorandom
puncturing is similar to that of a random linear code. From there, we can invoke this result
about thresholds to conclude whether or not a property P is satisfied with high probability.

2.4 Empirical Distributions
In order to eventually prove a tight bound on list sizes, we will need the notion of empirical
distributions (types) from [5] [14].

▶ Definition 23 (Empirical Distribution). For a vector a ∈ Fn
q , the empirical distribution

Empa assigns probability ∀x ∈ Fq:

Empa(x) = number of instances of x in a

n
.

This extends to a matrix A ∈ Fn×b
q by defining ∀x ∈ Fb

q

EmpA(x) = number of instances of x in rows of A

n
.

Note in this second case, EmpA is a distribution over vectors ∈ Fb
q.

For convenience, we will also introduce the set of matrices for a distribution.
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▶ Definition 24 (Matrices of a distribution). Let τ be a distribution over Fb
q. For n ∈ N,

Mn,τ =
{

A ∈ Fn×b
q |EmpA = τ

}
.

Lastly, we will consider all sequences of samples that lead to a specific empirical distribu-
tion.

▶ Definition 25 (Type class). The type class of a distribution τ over Fb
q (denoted T (τ)) is

the set of all sequences (xi)n
i=1 in

(
Fb

q

)n such that for the matrix

X =

− x1 −
...

...
...

− xn −

 ,

we have that EmpX = τ .

Lastly, we define a full-rank distribution.

▶ Definition 26. For a distribution τ over Fb
q, we say τ is a full-rank distribution if for

every xi ∈ Fb
q in the support of τ , if we write these xi as the rows of a matrix:

− x1 −
− x2 −
...

...
...

− xm −

 ,

then this matrix is full rank.

▶ Theorem 27 ([5, 14]). Let X ∈ Fn×b
q have rows identically and indpendently sampled from

some distribution σ over Fb
q. Then, for any distribution τ over Fb

q,

Pr[EmpX = τ ] ≤ q−DKLq (τ∥σ)n.

3 List Decodability of Pseudorandom Linear Codes

In this section we give an outline of our main proof technique. For simplicity, we do not
attain optimal list-size, and consider only the regime of list-decoding (as opposed to more
general local properties). Our proof closely follows that of Theorem 7 of [14]. We state our
initial result:

▶ Theorem 28. Let ρ ∈ (0, 1/2). Then suppose the following bounds hold as L → ∞:

η(L) ≤ L−4, λ(L) ≤ L−2, ε ≥ 4/ log(L).

Let D ⊂ Fm
2 be an arbitrary linear η-biased code, and let C ⊂ Fn

2 be a λ-expander-walk
n-puncturing of D of design rate R ≤ 1 − h2(ρ) − ε. Then C is (ρ, L)-list-decodable and has
actual rate R with high probability as n → ∞ and requires O(n/ε) random bits to construct.

Proof. Let φ be an (m → n) λ-expander-walk puncturing, for λ to be chosen later, and let
C := φ(D). Let b := ⌈log(L + 1)⌉, and note that with this choice we have

η ≤ 2−2b, λ ≤ 2−b, ε ≥ 4/b.
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Recall that C fails to be list decodeable if there exist L + 1 codewords that are ρ-clustered
(Observation 18). Recalling an argument first used in [23], a necessary condition for this is
for C to contain b linearly independent (L.I.) ρ-clustered codewords. Thus:

Pr[C fails to be (ρ, L)-list decodable] ≤ Pr[∃v1, . . . , vb ∈ C that are L.I. and ρ-clustered]

≤
∑

u1,...,ub∈D
lin. indep.

Pr[φ(u1), . . . , φ(ub) are ρ-clustered].

Here, we have used the substitution that vi = φ(ui), where ui ∈ D. Because v1, . . . vb are
linearly independent, this means that u1, . . . ub must also be linearly independent. Note
that this sum is over at most |D|b ≤ 2bRn terms. Now fix arbitrary, linearly independent
u1, . . . , ub ∈ D and let

B :=

 | |
u1 . . . ub

| |

 ∈ Fm×b
2 , A :=

 | |
φ(u1) . . . φ(ub)

| |

 ∈ Fn×b
2

where A is a random matrix defined in terms of the puncturing φ. We now note

Pr[φ(u1), . . . , φ(ub) are ρ-clustered] = Pr[∃z, y1, . . . , yb ∈ B(z, ρn) s.t. ∀i, yi = φ(ui)]

≤
∑

z∈Fn
2

∑
y1,...,yb∈B(z,ρn)

Pr[∀i, φ(ui) = yi]

Now fix arbitrary z and y1, . . . , yb ∈ B(z, ρn) (of which there are at most 2n+bh2(ρ)n). Define
the matrix

Y :=

 | |
y1 . . . yb

| |

 .

Finally, for σ ∈ Fb
2 let Tσ ⊆ [m] be defined as

Tσ := {j ∈ [m] : Bj = σ},

where Bj is the jth row of the matrix B. In words, each set Tσ is the set of indices j such
that the jth row of B equals σ.

We now argue that τσ ≈ 2−b for every σ. Note that this would hold exactly if the rows
of Bj were uniformly distributed over {0, 1}b. We first claim that the row distribution is
low-bias. For every y ∈ {0, 1}b, observe that

Pr
j←Um

[⟨Bj , y⟩ = 1] = wt(By).

As the ui are linearly independent codewords, we have that By is a nonzero codeword, and
hence wt(By) ∈ 1/2 ± η. Then applying Lemma 15 and our choice of η we obtain

τσ ≤ 2−b + 2bη ≤ 2−b+1

Then we have

Pr[∀i, φ(ui) = yi] = Pr[φ1 ∈ TY1 , . . . , φn ∈ TYn
]

≤
(

max
σ

τσ + λ
)n−1

(Theorem 10)

≤
(
2−b+2)n · 2b−2,
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where the first equality follows from the fact that enforcing the columns of A to be the same
as the columns of Y is the same as requiring the rows of A to be the same as the rows of Y .
Now, for each row, the probability that these rows are equal is the probability that the ith
coordinate selected in the expander random walk puncturing (denoted by φi) corresponds
to a row from the matrix B which equals Yi, i.e., that φi is in TYi

. The final line follows
from λ ≤ 2−b and τi ≤ 2−b+1 and changing the product to be over n terms. Thus the entire
expression is bounded as

Pr[C fails to be (ρ, L)-list decodable] ≤ 2bRn · 2n · 2bh2(ρ)n · (2−b+2)n · 2b−2

≤ 2b(1−h2(ρ)−4/b)n+3n+bh2(ρ)n−bn+b−2

= 2−n+b−2 → 0,

where in the second line we use ε ≥ 4/b.
Randomness Complexity. Note that this construction only requires O(log m + n log d)
random bits, where d is the degree of the expander graph. As our expansion constraint is
λ ≤ 2−b, and by Theorem 8, this can be done such that O(log m + n log d) = O(nb). Finally,
because the expanders we are using are strongly explicit, we can perform this random walk
in time poly(n, log(2Rn)) = poly(n).
Rate. Note that the design rate of C is bounded by 1 − h2(ρ) − ε. Applying Lemma 13 to
D with ε = ε, we have that the actual rate of C is equal to this design rate as long as

1 − h2(ρ) − ε ≤ 1 − log(1 + 2−b+1) − ε

i.e. log(1 + 2−b+1) ≤ h2(ρ), which occurs for sufficiently large L as ρ is constant. ◀

In the simplest case, we can take the mother code to the Hadamard code mapping messages
of length Rn to codewords of length 2Rn. The generator matrix for this Hadamard code is
∈ F2Rn×Rn

2 . Choosing the starting vertex for the expander random walk in this case takes
Rn bits of randomness, and for every subsequent step, the amount of randomness required
depends only on the degree of the expander. Ultimately, the pseudorandom puncturing
results in a generator matrix of size n × Rn. For a desired rate 1 − H(ρ) − ε, we take b = 4/ε.
Correspondingly, we need λ ≤ 2−4/ε, which forces log d = Ω(1/ε). Thus, we pay for the
randomness linearly in 1/ε.

However, because we set ε = 4
b , we get that b = 4

ε , meaning that the list size L = 2Ω(1/ε),
which is far from optimal. In the next section, we give a more careful argument that achieves
optimal list sizes.

4 Pseudorandom Puncturings Preserve Local Properties

In this section, we give an analogue of the more detailed analysis presented in [14] for our
instantiation of a pseudorandom puncturings.

In particular, we will show the following, and use it to conclude Theorem 1:

▶ Theorem 29. Let q be a prime power, and let P be a monotone-increasing, row-symmetric
and b-local property over Fn

q , where n
log n ≥ ωn→∞(q2b). Let D ⊆ Fm

q be a linear code. Let
C be a λ = ε ln q

8qb -expander-walk puncturing of D of design rate R ≤ RLC(P) − ε for some
ε > 0. Suppose that D is η = εb ln q

4q2b+1 -biased. Then,

Pr[C satisfies P] ≤ q(−ε+on→∞(1))n.
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At a high level, our proof has the following form:
1. First, fix an η-biased code D, a distribution τ over Fb

q, and a set of b linearly independent
columns in D, which we denote (D)res. We show that if we sample rows of (D)res via
an expander-walk puncturing, we can upper bound the probability of our sampled rows
having the same marginal probabilities as τ . This bound will be in terms of q, the KL
divergence between τ and the distribution produced by a truly random puncturing, and
some error terms. That is, we will show (for specific conditions):

Pr[EmpX = τ ] ≤ q
n

(
−DKLq (τ∥σ)+logq

(
1+ λqb

(1−q2bη)

)
+on(1)

)
,

where EmpX is the empirical distribution (under the pseudorandom puncturing) of the
rows sampled from (D)res, and σ is the empirical distribution of the rows of (D)res.

2. Next, we invoke results from [14] which characterize codes satisfying local properties
in terms of the number of submatrices contained in the code that have a specific row
distribution. This result is independent of the puncturing procedure, and shows that it
suffices to prove

EC [|{X ⊆ C|X ∈ Mn,τ }|] ≤ q(Hq(τ)−a(1−R)+aε)n,

where Mn,τ is from Definition 24, and a is the “rank” of the distribution τ (i.e. the rank
of the matrix whose rows are from the support of τ).

3. Finally, we use item (1) to prove the bound from item (2) and conclude our proof. That
is, we will use the fact that a matrix X ⊆ C is in Mn,τ only if EmpX = τ . As we have
strong bounds on this event from item (1), we can invoke a union bound and prove the
desired result.

As in [14] we can then invoke Theorem 22. Because we will show that the local behavior
of our instantiation of a pseudorandom puncturing is similar to that of a random linear code,
we can use the tight characterization of the local behavior of RLCs to conclude our result.

4.1 Analysis
First, we prove the following lemma (which is a modification of a statement from [5]):

▶ Lemma 30. Let D ∈ Fm×b
q be b linearly independent codewords from an η-biased code of

length m, where η < q−2b/4. Further, let σ be EmpD. Suppose that we sample rows of D in
accordance with a length n λ-expander random walk over vertex set [m], and place these as
the rows in a matrix X ∈ Fn×b

q . Then for every distribution τ over Fb
q,

Pr[EmpX = τ ] ≤ q
n

(
−DKLq (τ∥σ)+logq

(
1+ λqb

(1−q2bη)

)
+on(1)

)
.

Proof. We let T (τ) denote the type class of τ (see Definition 25). In this context, we will let
P ∈ T (τ) denote a specific sequence of samples in

(
Fb

q

)n, such that the marginals are τ . We
will let Pi be an element in Fb

q corresponding to the ith sample of this sequence. From the
perspective of the expander random walk, we will let Bi denote the set of all vertices of the
expander (i.e. indices from [m]) such that the corresponding sample (corresponding row of
D) is Pi. We will let βi denote the density of Bi. We will let X1, . . . Xn denote the random
walk over [m], the rows of the mother code.
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Then we have:

Pr[EmpX = τ ] =
∑

P∈T (τ)

Pr[∧n
i=1Xi ∈ Bi]

=
∑

P∈T (τ)

n∏
i=1

Pr[Xi ∈ Bi|∀j < i, Xj ∈ Bj ]

≤
∑

P∈T (τ)

n−1∏
i=1

(√
βiβi+1 + λ

)

≤
∑

P∈T (τ)

n−1∏
i=1

(
βi · q

logq

(
1+ λqb

(1−q2bη)

))

=
∑

P∈T (τ)

n−1∏
i=1

q
logq

(
1+ λqb

(1−q2bη)

)
σ(Pi)

where the last inequality comes from the fact that (letting β = mini βi):

∏
i

(
√

βiβi+1 + λ) ≤
∏

i

βi(1 + β−1λ) ≤

(∏
i

βi · qlogq(1+β−1λ)

)
.

Then, because the mother code is η-biased and we have a selection of linearly independent
codewords, we get that β ≥ q−b ·

(
1 − q2b · η)

)
by Vazirani’s XOR Lemma [8]. So, β−1λ ≤

λqb

(1−q2bη) . Now we can bound Pr[EmpX = τ ]. We see that

Pr[EmpX = τ ] ≤
∑

P∈T (τ)

n−1∏
i=1

q
logq

(
1+ λqb

(1−q2bη)

)
σ(Pi)

≤ qb

1 − q2bη

∑
P∈T (τ)

n∏
i=1

q
logq

(
1+ λqb

(1−q2bη)

)
σ(Pi)

= qb

1 − q2bη
q

n logq

(
1+ λqb

(1−q2bη)

)
·
∑

P∈T (τ)

n∏
i=1

σ(Pi)

= qb

1 − q2bη
q

n logq

(
1+ λqb

(1−q2bη)

)
· q−DKLq (τ∥σ)n

where the last equality holds from the fact that
∑

P∈T (τ)
∏n

i=1 σ(Pi) = q−DKLq (τ∥σ)n (The-
orem 27). The second inequality comes from upper bounding 1

σ(Pi) , so we can extend the
product to n terms. By our choice of η, the leading term qb

1−q2bη
is O(qb), and is thus

qn·on(1). ◀

Using Lemma 30, we can now prove the following key lemma:

▶ Lemma 31. Fix a distribution τ over Fb
q. Let B ∈ F m×b

q have rank B = b and its column
span be η-biased. Let φ : Fm

q → Fn
q be a λ-expander-walk puncturing. Then,

Pr[φ(B) ∈ Mn,τ ] ≤ q
n

(
logq Ex∼EmpB

[τ(x)]+Hq(τ)+logq

(
1+ λqb

(1−q2bη)

)
+on(1)

)
.
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Proof. We have that

Pr[φ(B) ∈ Mn,τ ] = Pr[Empφ(B) = τ ] ≤ q
n·
(
−DKLq (τ∥σ)+logq

(
1+ λqb

(1−q2bη)

)
+on(1)

)
,

by Lemma 30, where σ = EmpB . From here, as in [14], we attain the stated bound by using
the concavity of log and the definition of DKLq

. ◀

We then recall two lemmas from [14], with no modification, which we use in the proof:

▶ Lemma 32 (Lemma 5.9 [14]). Let B ∈ Fm×b
q have rank B = b, and let f : Fb

q → R be a
non-negative function. Suppose that the column span of B is η-biased, for some η ≥ 0. Then,

Ex∼EmpB
[f(x)] ≤

(
1 + qbη

)
· Ex∼U(Fb

q)[f(x)].

▶ Lemma 33 (Lemma 6.12 [14]). Let n ∈ N, q a prime power and b ∈ N such that
n

logq n ≥ ωn→∞(q2b). Let C ⊆ Fn
q be a linear code of rate R ∈ [0, 1], sampled at random from

some ensemble. Suppose that, for every 1 ≤ a ≤ b, every distribution τ over Fa
q and every

matrix A ∈ Fn×a
q with rank A = a, we have

EC [|{A ∈ Mn,τ |A ⊆ C}|] ≤ q(Hq(τ)−a(1−R)+aε)n,

for some fixed ε > 0. Then, for every row-symmetric and b-local property P over Fn
q such

that R ≤ RLC(P) − 2ε, it holds that

Pr
C

[C satisfies P] ≤ q−n(ε−on→∞(1)).

Lastly, we require one final lemma before we can conclude the final result:

▶ Lemma 34. Fix b ∈ N, and a full-rank distribution τ over Fb
q. Let D ⊆ Fm

q be a η-biased
linear code. Let φ be a λ-pseudorandom (m → n) puncturing map. Let R = logq |D|

n . Then,

EC [|{A ∈ Mn,τ |A ⊆ C}|] ≤ q
n

(
Hq(τ)−(1−R)b+logq

[
(1+ηqb)

(
1+ λqb

(1−q2bη)

)]
+on(1)

)
.

Proof. Let τ be a full-rank distribution over Fb
q. From Lemma 32, we have that

Ex∼EmpB
[τ(x)] ≤ q−b

(
1 + ηqb

)
,

for all B ∈ Fm×b
q such that rank B = b and B ⊆ D. From Lemma 31,

Pr[φ(B) ∈ Mn,τ ] ≤ q
n

(
logq Ex∼EmpB

[τ(x)]+Hq(τ)+logq

(
1+ λqb

(1−q2bη)

)
+on(1)

)
.

Plugging in for Ex∼EmpB
[τ(x)], we get that

Pr[φ(B) ∈ Mn,τ ] ≤ q
n

(
logq(q−b·(1+ηqb))+Hq(τ)+logq

(
1+ λqb

(1−q2bη)

)
+on(1)

)
= q

n

(
−b+Hq(τ)+logq

[
(1+ηqb)

(
1+ λqb

(1−q2bη)

)]
+on(1)

)
.

Now, by taking a union bound over the at most qRnb choices of B, we get that

EC [|{A ∈ Mn,τ |A ⊆ C}|] ≤ q
n

(
Hq(τ)−(1−R)b+logq

[
(1+ηqb)

(
1+ λqb

(1−q2bη)

)]
+on(1)

)
. ◀
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Now, we can prove the main theorem of this section, by showing that for specific choices
of λ, η, the bound from the previous lemma satisfies the conditions of Lemma 33.

Proof of Theorem 29. Let ε be given. Let τ be a distribution over Fa
q with a ≤ b. Note

that WLOG we can assume that τ is full-rank, as otherwise, we can project τ to a full-rank
distribution τ ′ over Fr

q for r ≤ a ≤ b. That is, there exists a matrix P ∈ Fr×a
q such that

Pτ = τ ′. From Lemma 34, we have that

EC [|{A ∈ Mn,τ |A ⊆ C}|] ≤ q
n
(

Hq(τ)−(1−R)a+logq

[
(1+ηqa)

(
1+ λqa

(1−q2aη)

)]
+on(1)

)
≤ q

n

(
Hq(τ)−(1−R)a+ ηqa

ln q + λqa

ln q·(1−q2aη)
+ ηλq2a

(1−q2aη) ln q
+on(1)

)
.

Now, note that by our substitutions η = ε ln q
4q2b+1 and λ = ε ln q

8qb ,

ηqa

ln q
= εb ln q

4q2b−a · q · ln q

≤ εb

4q2b−a · q

≤ εa/4.

Additionally,

λqa

ln q · (1 − q2aη) = ε

8qb−a · (1 − q2a · ε ln q
4q2b+1 )

= ε

8qb−a · (1 − ε ln q
4q2b−2a+1 )

≤ ε

8qb−a · (1 − ε
4q2b−2a )

≤ ε

8qb−a(1 − ε/4) ≤ ε

4 .

Lastly, by combining the above two results,

ηλq2a

(1 − q2aη) ln q
≤ ln q · εb

4q2b−a · q
· ε

4 ≤ ε2b

16q2b−a
,

where we have taken advantage of the fact that our expression is ln q multiplied by the two
terms we have already bounded before. Thus, all three expressions are bounded by a · ε

4 . As
a result,

EC [|{A ∈ Mn,τ |A ⊆ C}|] ≤ qn(Hq(τ)−(1−R)a+ 3
4 ·aε+on(1)).

We can then invoke Lemma 33 to conclude our result for sufficiently large n. ◀

Now, by noting that list-decoding is a O(1/ε)-local property in our specific setting, we
can conclude Theorem 1 by using Theorem 29 and [11]. That is:

Proof of Theorem 1. Suppose we fix ρ ∈ (0, 1/2). Then, there exists a constant α > 0 such
that the threshold for an RLC being (ρ, α/ε) list-decodable is 1 − H(ρ) − ε [11]. We let P
denote the property of being (ρ, α/ε)-list decodable. This means that b = O(1/ε). Now,
let D be a mother-code over Fm

q which is η = εb ln q
4q2b+1 -biased (and note that the Hadamard

code satisfies this property). From Theorem 29, we know that for a λ = ε ln q
8qb -expander-walk

puncturing of design rate R ≤ RLC(P) − ε of D, for every ε > 0:
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Pr[C satisfies P] ≤ q(−ε+on→∞(1))n.

Thus, we can choose the design rate of the code to be RLC(P) − ε = 1 − H(ρ) − 2ε, and
with high probability, our code will still be (ρ, α/ε) list-decodable.

By our choice in parameters for λ, we require the degree of the graph to be O
(

q2b

ε2(ln q)2

)
.

This means that every step will require O(b log q + log 1/ε) random bits. Using the fact that
b = O(1/ε), this means that every step in the expander random walk requires O((log q) /ε)
random bits. Because q will be chosen to be a constant, this requires O(1/ε) random bits
per step. Initializing the random walk requires log m random bits, where m is the length
of the mother code D. Fortunately, m ≤ qn, so log m ≤ n log q (every generating matrix of
length longer than qn will have duplicate rows). As such the total amount of randomness
required is O(n + n · 1/ε) = O(n/ε), as we desire. ◀

We can conclude the statement of Theorem 2 almost identically, where we instead treat b

as a parameter, instead of substituting O(1/ε).

5 Random Noise Tolerance of PRLCs

We show pseudorandom linear codes achieve capacity against the memoryless additive channel.
Our proof follows directly from the argument of [14], except we argue that a pseudorandom
puncturing approximately preserves the probability that a random vector lies in the code. In
the context of this channel, we use the MLDU (maximum likelihood decoder under uniform
prior). Upon receiving a corrupted codeword z ∈ Fn

q , this decoder returns the codeword x

that maximizes

Pr[receive z|original codeword was x].

▶ Theorem 35. Given a prime power q and a distribution X over Fq and ε ∈ (0, 1), let
D ⊆ Fm

q be an ε/8q-biased linear code and let C ⊆ Fn
q be a ε/8q-expander-walk puncturing

of D with design rate R ≤ 1 − Hq(X) − ε. Then there is a constant cX > 0 such that with
probability 1 − qcX ·εn, for every x ∈ C we have

Pr
z←Xn

[MLDU decodes x + z to x] ≥ 1 − 2qcX ·ε2n.

Inspecting the proof of [14, Theorem 6] gives the following:

▶ Remark 36. Let q be a prime power, ν a distribution over Fq, ε ∈ (0, 1), and C ⊆ Fn
q be a

probabilistically constructed linear code of design rate R ≤ 1 − Hq(ν) − ε such that for every
non-zero x ∈ Fn

q

Pr
C

[x ∈ C] ≤ qn·(−1+R+ε/4).

Then, with probability 1 − q−Ων (εn), it holds for all x ∈ C that

Pr
z∼νn

[the MLDU outputs x on input x + z] ≥ 1 − 2q−cν ε2n.

We will prove the following lemma, from which we can then immediately conclude
Theorem 35 by using Remark 36.
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▶ Lemma 37. Let C ⊂ Fn
q be a λ-expander-walk puncturing of a η-biased linear code D ⊂ Fm

q .
For every x ∈ Fn

q \ {0}, we have

Pr[x ∈ C] ≤ qn(R+ηq+λq−1).

Proof. Fix an arbitrary nonzero x and fix arbitrary u ∈ D. For i ∈ [q] let

Ti := {j ∈ [m] : uj = i}.

and let τi := Ti/m. By the bias of D, we have τi ≤ 1
q + q−1

q η for every i.
Thus we have

Pr[x ∈ C] = Pr[φ1 ∈ Tx1 ∧ . . . ∧ φn ∈ Txn
]

≤
(

max
i

τi + λ
)n

(Theorem 10)

≤ qn(ηq+λq−1)

and then a union bound over the qRn codewords completes the proof. ◀

Proof of Theorem 35. Let λ = η = ε
8q . The bound from the previous lemma then states

that

Pr[x ∈ C] ≤ qn(R+ε/8+ε/8−1) = qn(R+ε/4−1).

We can then invoke Remark 36. ◀

6 Pseudorandom Puncturings of Large Distance Codes

We next show that our instantiation of pseudorandom puncturings of large distance codes are
list recoverable beyond the Johnson Bound. We show this for the specific case of zero-error
list-recovery, as it simplifies the exposition.

▶ Theorem 38. Fix α ∈ (0, 1]. Let D ⊂ Fm
q be a linear code with distance at least

m(1 − q−1 − ε2). Let φ be a 1/4-expander walk (m → n) puncturing with n = O(log |D|/ε).
Then φ(D) has rate Ω

(
ε

log q

)
and is (ℓ, ℓ(1+α))-zero error list recoverable with high probability,

assuming:

1/
√

q ≤ ε ≤ min(c, α/4), ℓ ≤ α/4ε2.

We state the main theorem that allows us to establish this, which is analogous to
Theorem 3.1 of [18].

▶ Theorem 39. Given α ∈ (0, 1), let q, m, d, ℓ, n ∈ N. Given a code D ⊂ Fm
q of distance at

least 1 − mq−1 − d. Suppose that

d ≥ mq−1, 4α−1 ≤ ℓ ≤ αm/1600d, n = Ω
(√

ℓ/α log |D|
)

, m > n.

Then the probability that C := φ(D) (where φ is a 1/4-expander-walk puncturing) is (ℓ, (1 +
α)ℓ)-zero error list recoverable is at least 1 − exp(−σn/100).

Our proof differs from that of [18] in two ways: our puncturing is pseudorandom, rather than
truly random, and we argue about puncturings produced with replacement (which is natural
in the setting of expander random walks which may revisit vertices).

We first introduce some notation that will be used in the proof.
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▶ Definition 40. For an arbitrary code C ⊂ Fm
q , let

T (C) = {i ∈ [m] | ∃c1 ̸= c2 ∈ C, c1[i] = c2[i]}.

We first argue that, given an index set φ ∈ [m]n such that φ(D) is not list recoverable with
the claimed parameters, there is a small subcode that fails to be.

▶ Lemma 41. Let φ ∈ [m]n be such that φ(D) fails to be (ℓ, ℓ(1+α))-zero error list recoverable.
Then there is a subcode C′ ⊂ D such that:

|C′| ≤ 10
√

ℓ/γ

|{i ∈ [n] : φi ∈ T (C′)}| ≥ n/8
The proof of this lemma closely follows Theorem 3.1 in [18], and as such we defer it to the
appendix. We furthermore require a concentration bound for the number of bad indices
selected by the puncturing map, which is a simple consequence of the expander Chernoff
bound.

▶ Lemma 42. Let B ⊂ [m] be a bad set of indices satisfying β := |B|/m ≤ 1/16, and let φ

be a 1/4-expander-walk puncturing. Then

Pr
[
|{i ∈ [n] : φi ∈ B}| ≥ n

8

]
≤ exp(−Ω(n)).

This follows from the expander Chernoff bound, as stated in Theorem 11. We can then prove
Theorem 39.

Proof of Theorem 39. Let X be the indicator that φ(D) fails to be (ℓ, ℓ(1 + α))-zero error
list recoverable. Then

E[X] ≤
∑

C′⊂φ(D):|C′|≤10
√

ℓ/γ

Pr[|{i : φi ∈ T (C′)}| ≥ σn/4] (Lemma 41)

≤
∑

C′⊂φ(D):|C′|≤10
√

ℓ/γ

exp(−Ω(n)) (Lemma 42)

≤ exp
(

10
√

ℓ/γ log |D| − Ω(n)
)

≤ exp(−Ω(n))

where the second line follows by observing

|T (C′)| ≤ d|C′|2 ≤ 100dℓ/γ ≤ m

16
where the first inequality follows from the distance of the code and the third follows from
our bound on ℓ, and so T (C′) ⊂ [m] satisfies the properties of Lemma 42. ◀

Proof of Theorem 38. Let n := ⌈c′ε−1 log |D|⌉ for come constant c′ > 0 such that the
construct of Theorem 39 is satisfied (for parameters to be chosen later). We first show that
the actual rate of φ(D) is equal to the design rate with high probability. Analogously to
the proof of Lemma 13, note that this event is equivalent to there existing u ∈ D such that
φ(u) = 0. Fixing arbitrary u ∈ D, let T ⊂ [m] be the coordinates on which u is zero. Then
|T |/m ≤ 1/q + ε2 ≤ .6 by the absolute constraint on ε and that q ≥ 2. Then

Pr[φ(u) = 0] = (.6 + λ)n = 2−Ω(n)

Thus the probability that all such codewords are not mapped to all zero indices is |D|2−n ≤
exp(−Ω(n)), so with high probability the rate of φ(D) is equal to the design rate of Ω(ε/ log q).
Finally, choose ℓ = α/4ε2 and d = ⌊mε2⌋ and applying Theorem 39 completes the proof. ◀
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A Omitted Proofs

Proof of Lemma 41. By assumption, for i ∈ [n] there are subsets Ai ⊆ [q] such that |Ai| ≤ ℓ

and, letting

BAD := {c ∈ D : φ(c) ∈
∏

i∈[n]

Ai},

we have |BAD| ≥ ℓ(1 + α). Let C′ ⊂ BAD be defined by randomly including each element
of BAD with probability

p =

√
2ℓ

γ
· (1 + α)

|BAD|
.

Note that

E[|C′|] = p|BAD| ≤
√

8ℓ/γ.

Now note that for every i, there are at least αℓ/2 pairs {c1, c2} ∈ BAD with c1[φi] = c2[φi],
which holds as |Ai| ≤ ℓ and |BAD| ≥ (1 + α)ℓ. Thus, for every i ∈ [n],

Pr[φi /∈ T (C′)] = (1 − p2)αℓ/2 < 1/2

Thus,

E[|{i : φi ∈ T (C′)}|] ≥ n/4.
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Finally, define the random variable

Y =
∑
i∈[n]

I[φi ∈ T (C′)] − n

8
|C′|

E[|C′|] .

We have E[Y ] ≥ n/4, and hence there exists C′ such that Y achieves its expectation, which
can only occur when

|{i : φi ∈ T (C′)}| ≥ n/4

and |C′| ≤ 10
√

ℓ/γ, so we conclude. ◀

B Relationship of Zero-Error List-Recoverability Bounds to
Unbalanced Expanders

We will require the definition of an unbalanced expander.

▶ Definition 43 (Unbalanced Expander). A (k, d, ε)-regular unbalanced expander is a bipartite
graph on vertex set V = L ∪ R, |L| ≥ |R|, where the degree of every vertex in L is d, and for
every S ⊆ L such that |S| = k, we have that |N(S)| ≥ D|S|(1 − ε).

Further, we will require a procedure that turns a code into a graph.

▶ Definition 44 (Bipartite Graph of a Code). For a code C ⊆ [q]n, we denote by G(C) the
bipartite graph with vertex set C ∪([n]× [q]). For an arbitrary c = (c1, . . . cn) ∈ C, we associate
it with the neighbors {(1, c1), . . . , (n, cn)}.

In [18], the authors show the following result, by relating zero-error list-recoverability to
expansion of a graph G:

▶ Theorem 45 ([18]). Let q, n be sufficiently large integers and α ∈ (0, 1), ε > q−1/2 be real
numbers. For every code D ⊆ [q]m with relative distance 1−1/q−ε2, there is a subset S ⊆ [m]
such that |S| = O(εm log q) such that G(DS) is a

(
αε−2, |S|, α

)
-unbalanced expander.

[18] instantiate this result for degree d Reed-Solomon codes, with m = q, ε = (d/q)−1/2.
Thus, n = Õ(√q). Note that in this setting, we are only guaranteed the existence among(

n2

n

)
= 2O(n log n) possible choices for the punctured set. With our construction, we can again

use degree d Reed-Solomon Codes, and recover that there exists such an unbalanced-expander
among only 2O(n) possible choices for the punctured set.
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