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Abstract
A recent line of work [5, 27, 12, 6, 28] has shown the unconditional advantage of constant-depth
quantum computation, or QNC0, over NC0, AC0, and related models of classical computation.
Problems exhibiting this advantage include search and sampling tasks related to the parity function,
and it is natural to ask whether QNC0 can be used to help compute parity itself. Namely, we study
AC0◦ QNC0 – a hybrid circuit model where AC0 operates on measurement outcomes of a QNC0

circuit – and we ask whether Par ∈ AC0◦ QNC0.
We believe the answer is negative. In fact, we conjecture AC0◦ QNC0 cannot even achieve Ω(1)

correlation with parity. As evidence for this conjecture, we prove:

When the QNC0 circuit is ancilla-free, this model can achieve only negligible correlation with
parity, even when AC0 is replaced with any function having LMN-like decay in its Fourier
spectrum.
For the general (non-ancilla-free) case, we show via a connection to nonlocal games that the
conjecture holds for any class of postprocessing functions that has approximate degree o(n) and
is closed under restrictions. Moreover, this is true even when the QNC0 circuit is given arbitrary
quantum advice. By known results [8], this confirms the conjecture for linear-size AC0 circuits.
Another approach to proving the conjecture is to show a switching lemma for AC0◦ QNC0.
Towards this goal, we study the effect of quantum preprocessing on the decision tree complexity
of Boolean functions. We find that from the point of view of decision tree complexity, nonlocal
channels are no better than randomness: a Boolean function f precomposed with an n-party
nonlocal channel is together equal to a randomized decision tree with worst-case depth at most
DTdepth[f ].

Taken together, our results suggest that while QNC0 is surprisingly powerful for search and
sampling tasks, that power is “locked away” in the global correlations of its output, inaccessible to
simple classical computation for solving decision problems.
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Introduction

In 2017, Bravyi, Gosset, and König [5] proved a breakthrough unconditional separation
between constant-depth quantum circuits, or QNC0, and constant-depth bounded fan-in
classical circuits, or NC0. The authors showed that for a certain relational problem solvable
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by QNC0 circuits, any randomized NC0 circuit solving the same problem with high probability
must have logarithmic depth. The realization that unconditional proofs of quantum advantage
were possible – albeit over weak models of classical computation – inspired an exciting series
of results strengthening and generalizing the work of Bravyi, Gosset, and König. There are
now separations against stronger classical circuit models such as constant depth circuits
with unbounded fan-in, or AC0 [27], average-case separations [10], separations between more
intricate interactive models [12], separations that remain even for quantum circuits subject
to noise (e.g., [6]), and separations for sampling problems with no input [28], among others.

Although these separations are for comparatively weak models of computation, they
are concrete non-oracle, non-query separations, and are free from complexity-theoretic
assumptions, making them important companions to the query complexity and conditional
separations studied since the founding of quantum computer science. One notable feature
of these QNC0 separations, however, is that they are all for search or sampling problems;
decision separations appear to be absent from this list.

On the surface, there is a somewhat trivial reason for this: QNC0 cannot solve interesting
decision problems alone. Indeed, any single output qubit in a constant-depth quantum circuit
can only depend on constantly-many input qubits, so any QNC0 circuit with one output bit
may be simulated by randomized NC0. However, this “lightcone barrier” may be removed by
instead measuring all qubits in the quantum circuit and then applying a classical Boolean
function f to the result. As long as f depends on all of its inputs, it might be possible for f
to leverage QNC0’s search and sampling prowess for decision-making ends. Given Bene Watts
et al.’s search separation between QNC0 and AC0 [27], a natural class of Boolean functions to
choose for this postprocessing is AC0 itself. This gives rise to the following definition, which
does not appear to have been studied before.

▶ Definition 1. Let AC0◦ QNC0 denote the model of computation composed of a QNC0 circuit
C, followed by a computational basis measurement, and then an AC0 function f applied to the
result. This process defines the randomized Boolean function f ◦ C : {0, 1}n → M({−1, 1})
from the hypercube to the set M({−1, 1}) of probability measures on {−1, 1}.

In this work we take a QNC0 circuit to be a polynomial-size constant-depth quantum circuit
composed of arbitrary 2-qubit unitary gates. Ancilla qubits are allowed and are initialized in
the state |0m⟩ for m ∈ poly(n). No geometric locality or clean computation constraints are
assumed. A formal definition appears later as Definition 12.

Certainly QNC0 ⊆ AC0◦ QNC0, so the search separation between QNC0 and AC0 in
Bene Watts et al. is also a search separation between AC0◦ QNC0 and AC0. Moreover, this
modification obviates the lightcone barrier mentioned above and allows us to ask meaningful
questions about decision separations between concrete models of quantum and classical
computation.

Specifically, Bene Watts et al. [27] show exponential advantage of QNC0 over AC0 for (a
variant of) the “parity halving problem”:

Parity halving. Given x ∈ {0, 1}n with the promise |x| ≡ 0 mod 2, output any even
string if |x| ≡ 0 mod 4 and any odd string otherwise.

Given the form of this problem, it is natural to ask whether parity is itself computable by a
hybrid model such as AC0◦ QNC0.
▶ Remark 2. Before summarizing our progress on the parity question, we pause to note
another reason to study AC0◦ QNC0 coming from the rich subject of quantum-classical
interactive proofs. A central project in this area is the classical verification of quantum
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computations [11]. In a landmark work, Mahadev gave a cryptographic protocol for this
task [17]; however, whether or not this task may be accomplished without cryptographic
hardness assumptions remains open despite many efforts [11]. It therefore makes sense to
consider the question in simpler contexts, such as where the prover and verifier are replaced
with QNC0 and AC0 respectively and interact for constantly-many rounds to establish the
correctness of a QNC0 computation. With this perspective we see that AC0◦ QNC0 models
the first round of interaction in such a proof system.

Parity vs. AC0◦ QNC0: Overview and organization
We conjecture that AC0◦ QNC0 cannot approximate parity (Par) on average, over both
choice of uniformly random input x ∼ U({0, 1}n) and the randomness in f ◦C. It is convenient
to take Par and f ◦ C to be (±1)-valued and phrase this in terms of the correlation

E
x

[(f ◦ C)(x) · Par(x)],

proportional to the advantage of f ◦ C over random guessing for computing parity.

▶ Conjecture 3. AC0◦ QNC0 cannot achieve correlation Ω(1) with the parity function. That
is, fix a polynomial size bound p(n) and constant depth d. Then for all sequences {(fn, Cn)}n

of circuits such that size(fn), size(Cn) ≤ p(n) and depth(fn),depth(Cn) ≤ d, we have

E
x

[(fn ◦ Cn)(x) · Parn(x)] → 0 as n → ∞ .

Although proving correlation bounds against AC0 is a well-understood topic with many
techniques (among them Håstad’s switching lemma [13] and Razborov-Smolensky [22, 25]),
when QNC0 precomputation is added these approaches cannot be used directly. The pursuit
of new techniques leads us to connections with many-player nonlocal games, approximate
degree bounds, and new directions for generalizing Håstad’s switching lemma. Evidence for
Conjecture 3 is laid out as follows.

The ancilla-free case
In Section 1 we prove Conjecture 3 when QNC0 is restricted to be ancilla-free. A key feature
of such QNC0 circuits is that they correspond to unitary transformations, and we find in
this case the correlation of f ◦ C with Par is controlled by the Fourier tail of f . Recall the
Fourier tail of a Boolean function f is given by

W≥t[f ] :=
∑
|S|≥t f̂(S)2 .

Appealing to the Linial-Mansour-Nisan-type (LMN-type) estimates of the Fourier tail of
AC0 [15], we obtain the following strong correlation bound.

▶ Theorem 4 (Ancilla-free QNC0, general AC0 case). If C is an ancilla-free QNC0 circuit and
f is an AC0 function then

E
x

[(f ◦ C)(x) · Parn(x)] ≤ 2−n/polylog(n) .

This is proved as Corollary 8 in Section 1. The full statement holds for any Boolean function
f with sufficient decay in the tail of the Fourier spectrum, including those outside of AC0.

However, as we explain in the end of Section 1, the proof technique of Theorem 4 cannot
extend to the case of general QNC0 and we must find a different approach.

ITCS 2024



92:4 Parity vs. AC0 with Simple Quantum Preprocessing

Reducing to nonlocal games
To move beyond ancilla-free QNC0, in Section 2 we reduce Conjecture 3 to a question about
the value of a certain class of nonlocal games, which we call n-player parity games and which
are parameterized by a postprocessing Boolean function f . Through a connection to the
notion of k-wise indistinguishability introduced in [4], we show the quantum value of a parity
game is controlled by the approximate degree of the associated f .

Recall for ε > 0 the ε-approximate degree of a (0, 1)-valued1 Boolean function f is given by

d̃egε[f ] = min{deg(g) | g : {0, 1}n → R a polynomial with ∥f − g∥∞ ≤ ε} .

Of course, d̃egε[f ] ≤ n for any n-variate f and ε > 0. By convention d̃eg[f ] := d̃eg1/3[f ]. A
function class F = (Fn)n≥1 is a sequence of sets Fn of n-variate Boolean functions, and we
extend approximate degree to function classes via d̃eg[F ](n) := maxf∈Fn d̃eg[f ]. With this
notation, we have the following theorem.

▶ Theorem 5 (Corollary 20, Section 2). Suppose function class F is closed under inverse-
polynomial-sized restrictions. Then if d̃eg[F ] ∈ o(n), F ◦ QNC0 cannot achieve Ω(1) correla-
tion with Parn, even if QNC0 is given arbitrary quantum advice.

It follows from Theorem 5 that Conjecture 1 would be confirmed in full generality if
d̃eg[AC0] ∈ o(n), a notorious open problem [9]. Such a bound is already known for large
subclasses of AC0, however: for example, for AC0 circuits of size O(n) (termed LC0), we may
appeal to the recent bounds of [8] to conclude:

▶ Theorem 6 (General QNC0, linear-size AC0 case). Suppose f ∈ AC0 has size O(n). Then
f ◦ QNC0 achieves correlation at most 1/ poly(n) with Parn. This holds even if QNC0 is
given arbitrary quantum advice. That is,

E[(LC0 ◦ QNC0/qpoly) · Parn] ∈ negl(n) .

(This is proved as Corollary 21 in Section 2).
Is the difficulty of proving approximate degree bounds for AC0 a barrier for resolving

Conjecture 3? It seems unlikely: the reduction to approximate degree bounds is via a series
of substantial relaxations and it would be surprising if all the required converses held. In
fact, we conclude Section 2 with a self-contained approximation theory question (Question
1) concerning a notion of blockwise approximate degree which may be easier to solve than
d̃eg[AC0] but would still imply Conjecture 3.

Towards an AC0◦ QNC0 switching lemma
In Section 3 we chart a different route to resolving Conjecture 3, aiming to prove a switching
lemma for our hybrid AC0◦ QNC0 circuits. Recall that Håstad’s original switching lemma is
used to argue that (very roughly) randomly fixing a large fraction of inputs to an AC0 circuit
with high probability yields a function that can be computed by a shallow decision tree. At
the same time, Par retains maximum decision tree complexity under the same restrictions,
so this leads to AC0 correlation bounds.

In comparison to Håstad’s switching lemma and its descendants, a challenge with
AC0◦ QNC0 circuits is that QNC0 can correlate, spread out, and bias random restrictions
before they reach the bottom layer of DNFs or CNFs in the AC0 circuit. If QNC0 were

1 For (±1)-valued f , we use the same definition after making the standard identification +1 7→ 0, −1 7→ 1.
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replaced with randomized NC0 this problem could be readily addressed by considering each
deterministic circuit in the distribution, applying standard arguments there, and computing
the expected correlation with parity across circuits in the distribution. But unlike randomized
computation, and as discussed e.g., in [1], a recurring theme in quantum complexity theory
is the impossibility of “pulling out the quantumness” from a quantum circuit.

Contrary to this theme, however, we show that when QNC0 is replaced by an n-party
nonlocal channel N , it is possible to pull out the quantumness in a particular sense:

▶ Theorem (Theorem 25, restated). Let f : {0, 1}m → {0, 1} be any Boolean function and
consider an n-party nonlocal channel N , where the ith party receives one bit and responds
with mi ≥ 0 bits, such that

∑
i mi = m. Then the random function f ◦ N is equal to a

randomized decision tree Γ such that depth(T ) ≤ DTdepth[f ] for all T ∈ Supp(Γ).

(This theorem is proved in Section 3 as Theorem 25.) By an n-party nonlocal channel we
mean the channel corresponding to a quantum strategy in an n-player nonlocal game: parties
receiving one bit of input each may measure disjoint systems of a shared quantum state as
part of their responses but are not allowed to communicate. A formal definition appears as
Definition 13. In fact, Theorem 25 is true not only for nonlocal channels, but for any channel
where parties obey the no-signaling property; that is, the output of any subset S ⊂ [n] of
the parties is a function only of the inputs to those parties in S. A formal definition of
no-signaling channels appears as Definition 24.

The regime where Theorem 25 is truly interesting is when DTdepth[f ] ≥ log(n). Then f

may depend on all the input coordinates and (potentially) make great use of the processing
power afforded by no-signaling channels. Theorem 25 says that to the contrary, precomposition
of f by any no-signaling channel has no effect on the (randomized) decision tree complexity
of f .

How does Theorem 25 connect to Conjecture 3? As we detail in Section 2, the replacement
of QNC0 by the channel N is essentially without loss of generality from the point of view of
Conjecture 3. Unfortunately, however, AC0 circuits can easily have maximum decision tree
complexity, so Theorem 25 cannot be immediately applied. Instead, we believe Theorem
25 stands as a striking example of the inability of classical postprocessing to make use of
the search and sampling power of quantum and super-quantum models of computation.
Additionally, we hope that this theorem’s proof technique, which involves tracking the
interplay between a decision tree for f and the no-signaling channel N , represents the style
of argument that could eventually lead to a switching lemma for AC0◦ QNC0.

Outlook
Taken together, these results suggest QNC0 cannot render its power in a way AC0 or other
simple models of classical computation can access for the purpose of making decisions. Several
questions for further research are posed in Section 4.

Related work
Unlike the quantum-classical separations surveyed in the introduction, which show quantum
upper bounds and classical lower bounds, this paper aims to prove a lower bound against
a concrete model of quantum computation. The pursuit of lower bounds against quantum
circuits for computational problems is a nascent area and very little is known.

One quantum circuit model where lower bounds have received some concerted study
is QAC0 [18, 14, 21, 23, 19]. A superset of QNC0 circuits, QAC0 additionally allows for
arbitrarily-large Toffoli gates,

|x1, . . . , xk, xk+1⟩ 7→
∣∣x1, . . . , xk, xk+1 ⊕ (∧k

i=1xi)
〉
,

ITCS 2024



92:6 Parity vs. AC0 with Simple Quantum Preprocessing

which are quantum analogues of classical AND gates with unbounded fan-in. In this setting
correlation with parity is also a central open question, and there is growing evidence that
QAC0 cannot achieve Ω(1) correlation with parity either. Recent work has shown negligible
correlation bounds between QAC0 and parity when a) the QAC0 circuit is restricted to depth
2 [23], and b) when the QAC0 circuit is of any depth d and is restricted to O(n1/d)-many
ancillas [19]. In fact, the second result is a corollary to a Pauli-basis analogue of the LMN
theorem for the same subclass of QAC0 [19].

The relationship between QAC0 and AC0◦ QNC0 is rather unclear, and they are likely
incomparable as decision classes. In fact, as far as we know, it is even open whether
AC0 ⊆ QAC0, let alone whether AC0◦ QNC0 ⊆ QAC0 (noting the trivial containment AC0 ⊆
AC0◦ QNC0).

The difficulty in comparing these models stems from a subtlety concerning the difference
between unbounded fan-in and unbounded fan-out when implemented coherently. AC0 circuits
have no restriction on the fan-out of their gates, while the definition of QAC0 appears to
strongly limit outward propagation of information. If one augments QAC0 with the so-called
fan-out gate – which is a CNOT gate with any number of target qubits,

|x1, . . . , xk⟩ 7→ |x1, x1 ⊕ x2, . . . , x1 ⊕ xk⟩ ,

one obtains the circuit model QAC0
f , and it is known QAC0

f can compute parity exactly in
depth 3 [18]. In view of existing lower bounds against QAC0, it is expected that QAC0 is
strictly contained in QAC0

f , and assuming this holds we immediately would have that the
function version of AC0◦ QNC0 is not in the function version of QAC0. This follows, for
example, from the fact that multi-output AC0 circuits easily implement the classical reversible
fan-out gate, (x1, . . . , xk) 7→ (x1, x1 ⊕ x2, . . . , x1 ⊕ xk). It is safe to say the interaction of
nonlocal gates with QNC0 – whether that interaction is coherent as in QAC0 and QAC0

f , or
preceded by measurement as in AC0◦ QNC0 – is only beginning to be understood.

A separate area where quantum circuit lower bounds have been very successfully developed
is for state preparation problems. We do not attempt a survey here, but just mention they
were crucial to the resolution of the NLTS conjecture [2] and make use of ideas from error
correction, which partially originate in sampling lower bounds from classical complexity [16].
However, it is not clear how to transfer these methods to quantum circuit lower bounds for
computational problems in the AC0◦ QNC0 model.

1 Lower bounds when QNC0 is ancilla-free

Here we show any Boolean function f with small Fourier tail retains a small top-degree
coefficient when composed with ancilla-free QNC0. By the celebrated work of Håstad [13]
and Linial, Mansour, and Nisan [15], any f ∈ AC0 is an example – but this theorem addresses
a broader set of functions. On the other hand, as we discuss at the end of the section, once
ancillas are allowed, the theorem no longer holds for such a general class of functions.

Recall a function f : {−1, 1}n → R admits a unique Fourier decomposition

f =
∑

S⊆[n]

f̂(S)χS ,

where χS(x) :=
∏

i∈S xi is the Sth Fourier character (see e.g., [20] for more). We will later
make use of the familiar Plancherel theorem, which states for any f, g : {−1, 1}n → R that

E
x
[f(x)g(x)] =

∑
S⊆[n]

f̂(S)ĝ(S) .
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Let us briefly connect this perspective to quantum observables. Given a Boolean function
f : {±1}n → R we define its Von Neumann observable as

Mf :=
∑

x

f(x) |x⟩⟨x| .

An identity we will use is

MχS
= ZS ,

where the operator Z here is the Pauli operator
( 1 0

0 −1
)
, and generally for any 1-qubit operator

A we use the notation

AS :=
⊗

i

{
A if i ∈ S

1 otherwise.

Any Von Neumann observable M (that is, any Hermitian operator) has expectation value
on state ρ given by

⟨M⟩ρ := tr[Mρ] ,

and when M = Mf and x ∈ {0, 1}n we note the identity

⟨Mf ⟩x := ⟨Mf ⟩|x⟩⟨x| = f(x) .

With this notation, we prove the following.

▶ Theorem 7 (Correlation bound for ancilla-free QNC0). Let f : {±1}n → R and U an
ancilla-free QNC0 circuit of depth t. Then the correlation of f ◦ U and Par is bounded as

E
x

[⟨U†MfU⟩x · Parn(x)] ≤
(

W≥2−tn[f ]
)1/2

.

For example, when f is an AC0 circuit, we may use an LMN-type Fourier concentration
bound, such as from [26], to a obtain:

▶ Corollary 8. If U is an ancilla-free QNC0 n-qubit circuit of depth t, and f : {±1}n → {±1}
is implemented by an AC0 circuit of depth d and size s, we have

E
x

[⟨U†MfU⟩x · Parn(x)] ≤
√

2 · exp
(

−n
2t+1O(log s)d−1

)
.

The proof of Theorem 7 relies on two brief lemmas. The first says that when measuring
correlations, we could just as well have compared the correlation of f alone to the random
function Parn ◦ U†, defined by applying Parn to the output of U† |x⟩.

▶ Lemma 9 (Symmetry of correlation). Let f, g : {±1}n → {±1} and U any n-qubit unitary.
Then

E
x

[⟨U†MfU⟩x · g(x)] = E
x

[f(x) · ⟨UMgU
†⟩x]

= 2−n tr[MfUMgU
†] .

ITCS 2024
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Proof. Expanding the trace we have

tr[MfUMgU
†] =

∑
z

⟨z|
( ∑

y f(y)|y⟩⟨y|
)
U

( ∑
x g(x)|x⟩⟨x|

)
U† |z⟩

=
∑
x,y,z

f(y)g(x) ⟨z|y⟩ ⟨y|U† |x⟩ ⟨x|U |z⟩

=
∑
x,y

f(y)g(x) ⟨y|U |x⟩ ⟨x|U† |y⟩ , (1)

while expanding the expectations we see

E
x

[⟨U†MfU⟩x · g(x)] = 1
2n

∑
x,y

f(y)g(x) ⟨x|U† |y⟩ ⟨y|U |x⟩ = E
y
[f(y) · ⟨UMgU

†⟩y] .

Identifying the center expression with (a multiple of) (1) and changing variables completes
the lemma. ◀

The second lemma roughly says when Fourier characters ZS and ZT correspond to sets
S, T of very different cardinality, they remain orthogonal (with respect to the inner product
⟨A,B⟩ = tr[A†B]) after an application of U .

▶ Lemma 10 (Lightcone lemma). Suppose U is a depth-t ancilla-free quantum circuit and
|S|2t < n. Then

tr[Z[n]UZSU
†] = 0

Proof. The number of qubits on which ZS acts nontrivially at most doubles upon conjugation
by each layer in U . Therefore the number of non-identity coordinates in UZSU

† is at most
|S|2t. Now if |S|2t < n, then there is at least one coordinate j such that UZSU

† = V[n]\j ⊗1j

for some (n− 1)-qubit unitary V[n]\j , so

tr[Z[n]UZSU
†] = tr[Z[n](V[n]\j ⊗ 1j)] = tr[Z[n]\jV[n]\j ] · tr[Z] = 0

because Z is traceless. ◀

With these lemmas in hand, we can give the proof of Theorem 1 in a single display:

Proof of Theorem 7.

E
x
[⟨U†MfU⟩x ·χ[n](x)] = E

x
[f(x) · ⟨UZ[n]U

†⟩x] (Lemma 9)

=
∑

S⊆[n]

f̂(S) · ̂⟨UZ[n]U†⟩(S) (Plancherel)

=
∑

S⊆[n]

f̂(S)E
x

[⟨UZ[n]U
†⟩x ·χS(x)]︸ ︷︷ ︸

= 2−n tr[Z[n]U
†ZSU ] (Lemma 9)

= 0 if |S|2t < n (Lemma 10)

=
∑

S⊆[n]
|S|≥2−tn

f̂(S) · ̂⟨U†Z[n]U⟩(S)
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≤

 ∑
|S|≥2−tn

f̂(S)2

1/2  ∑
|S|≥2−tn

̂⟨U†Z[n]U⟩(S)2

1/2

(Cauchy-Schwarz)

≤
(

W≥2−tn[f ]
)1/2

. ◀

One may ask whether this proof approach extends to QNC0 circuits with ancillas. Although
it might be possible to prove slight generalizations, we present an example demonstrating
that any proof approach using an LMN-type theorem as a black box will fail for general
QNC0 circuits. This is essentially because functions with Fourier decay are not closed under
composition.

▶ Example 11. Consider the following “Trojan horse” function on an even number of bits
n = 2m:

h : {±1}2m → {±1}

x 7→

{
χ[m](x) if x[m+1,2m] = 11 · · · 1
1 otherwise .

By direct computation one finds the Fourier coefficients of h are given by

ĥ(S) =


1 − 2−m S = ∅,
−2−m S ⊆ [m], S ̸= ∅
2−m [m+ 1, 2m] ⊆ S

0 otherwise .

This means for any t ≥ 1, the tth Fourier tail of h is W≥t[h] ∈ O(2−n/2). Thus by Theorem
7, for any ancilla-free QNC0 circuit C, h ◦ C has negligible correlation with parity.

On the other hand, consider the (deterministic) function C : {±1}m → {±1}2m given by
x 7→ x11 · · · 1. Certainly C can be implemented in QNC0, and we have h ◦C = χ[m] = Parm.

This example shows that exponential Fourier decay of f is not sufficient to entail Conjec-
ture 3 for general AC0◦ QNC0 circuits. We must take a different approach that exploits finer
structural properties of AC0 and QNC0.

2 Lower bounds against AC0◦ QNC0 via nonlocal games

Here we pass from QNC0 to nonlocal games to make an argument that works for general
QNC0. First let us fix ideas about QNC0.

▶ Definition 12 (QNC0). An n-input, depth-d QNC0 circuit C is a quantum circuit composed
of d layers of arbitrary 2-qubit gates, acting on an input register of n qubits and an ancilla
register of m ∈ poly(n) qubits initialized to |0m⟩. Via measurement of the entire output of C
in the computational basis, the circuit C effects a randomized mapping from n bits of input to
n+m ∈ poly(n) bits of output. A QNC0 circuit with v qubits of quantum advice, has v out
of m ancilla qubits initialized to a v-qubit state, not necessarily a product state. For general
v ∈ poly(n), this is denoted by the class QNC0/qpoly.

We will show a reduction from QNC0 circuits to nonlocal channels.

ITCS 2024



92:10 Parity vs. AC0 with Simple Quantum Preprocessing

▶ Definition 13 (Nonlocal channel). Let n, k ≥ 1 and m ≥ 0. An (n, k,m) nonlocal channel
is the randomized mapping defined by a quantum strategy in a nonlocal game where n parties
receive one bit of input each and respond with k bits each, along with a referee response of m
bits.

Concretely, each party i ∈ [n] is assigned a local Hilbert space Hi and for each b ∈ {0, 1}n,
a POVM

M(i,b) =
{
My

(i,b) : y ∈ {0, 1}k
}

on Hi. There is also a referee Hilbert space Href with a fixed POVM

Mref =
{
My

ref : y ∈ {0, 1}m
}
.

The definition of the nonlocal channel is completed by a choice of shared state |ψ⟩ ∈( ⊗n
i=1 Hi

)
⊗ Href and works as follows. Upon receipt of an input string x ∈ {0, 1}n,

the n players and one referee perform the joint measurement
(
M(1,x1), . . . ,M(n,xn),Mref

)
on |ψ⟩, resulting in the outcomes y1, . . . , yn, and yref . The output of the channel is the
(nk +m)-long string y = y1|| · · · ||yn||yref .

▶ Definition 14 (No-signaling channel). An (n, k,m) no-signaling channel is defined analog-
ously, except the correlations among parties may be general no-signaling correlations. (A
very detailed definition of such channels is given in Definition 24)

▶ Definition 15 (Parity games). Let n, k,m be fixed and consider f : {0, 1}kn+m → {0, 1}.
The (n, k, f) parity game is played by n entangled and non-communicating players, with
the ith player receiving input bit xi from x drawn uniformly from {0, 1}n. A (quantum)
parity game strategy is an (n, k,m) nonlocal channel with output string y. Players win when
f(y) = Par(x). We say a parity game strategy has advantage ε if its winning probability is
at least 1/2 + ε.

As a final piece of notation, for Boolean f let ¬f denote its negation. We are prepared
to give our reduction to parity games.

▶ Lemma 16. Fix n ≥ 1,m ∈ poly(n), let C be a n-qubit, depth-d QNC0 circuit with m

ancilla and arbitrary quantum advice, and let f : {0, 1}n+m → {0, 1} be any Boolean function.
Suppose f ◦C has correlation ε with Parn. Then for some n′ ≥ n/(2d +1) there is a quantum
strategy for the (n′, 2d, f) or (n′, 2d,¬f) parity game with advantage ε/2.

Proof. Suppose f ◦ C has correlation ε with Par. For each input qubit j denote by Lj the
set of output qubits in the forward lightcone of j. Consider the graph with vertices the
input qubits [n] and edges drawn between qubits j and k when Lj and Lk have nonempty
intersection. Then G has degree at most 2d, so there exists an independent set S ⊆ [n] of
size at least n/(2d + 1).

For each y ∈ {0, 1}Sc , define the circuit Cy to be C but where for j ∈ Sc, the jth input is
hardcoded to yj . Then Cy is a circuit on at least n/(2d + 1) variables such that the forward
lightcones of input qubits are pairwise disjoint. Such a circuit defines an (n′, 2d,m′) nonlocal
channel for some n′ ≥ 2−d + 1 and m′ = n + m − n′2d. (Note this m′ is without loss of
generality because we may freely assign a player some output bits of the referee if their
lightcone is smaller than 2d.)

As a result, this restriction represents a strategy for the (n′, 2d, f) parity game. Moreover,
we have
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E
x

[(f ◦ C)(x) · Par(x)] = E
y∼{0,1}Sc

E
z∼{0,1}S

[f ◦ Cy(z) · Par(y||z)]

= E
y∼{0,1}Sc

Par(y) E
z∼{0,1}S

[f ◦ Cy(z) · Par(z)] .

Therefore since f ◦ C has ε correlation with parity on n bits, for at least one y, f ◦ Cy or
¬f ◦ Cy must have at least ε correlation (in magnitude) with parity on n/d bits. This is
exactly half the advantage of the strategy defined by Cy. ◀

Lemma 16 shows that bounds on the value of parity games translate into correlation
bounds for AC0◦ QNC0 with Par. How might we analyze parity games? They are in some
sense “flipped” versions of XOR games, where parity is computed on the inputs to the players,
rather than the outputs. However, it is not clear whether the rich collection of techniques
developed to analyze XOR games is applicable here. Instead, we bound the no-signaling
value of the game by taking the perspective of distinguishability.

For any (n, k, 0) no-signaling channel N , begin by rewriting the correlation as

E[(f ◦ N )(x) · Par(x)] = E[(f ◦ N )(x) | x even] − E[(f ◦ N )(x) | x odd]
2 .

Let Ueven and Uodd denote the uniform distribution on even and odd bitstrings of length n

respectively, and consider the pushforwards of Ueven and Uodd through N :

µ := N
(
Ueven

)
and ν := N

(
Uodd

)
.

So µ and ν are distributions on strings of length N := nk, and

E[(f ◦ N )(x) · Par(x)] = E[f(µ)] − E[f(ν)]
2 = Pr[f(µ) = 1] − Pr[f(ν) = 1] .

Therefore the correlation of f ◦ N with parity can be phrased in terms of f ’s ability to
distinguish the distributions µ and ν.

What can be said about µ and ν? We claim that on every set S ⊂ [N ] of size at most
N/k − 1 = n− 1, we must have

µS = νS . (2)

Here the notation µS denotes the marginal distribution of µ on the coordinates in S. To
see (2), let T ⊂ [n] be the set of players whose outputs overlap S. Then by the no-signaling
property of N , the marginal µS (resp. νS) is entirely determined by the marginal input
distribution on T ; that is, (Ueven)T (resp. (Uodd)T ). And for any T a strict subset of [n],
(Ueven)T = (Uodd)T = U({0, 1}|T |), so we must have µS = νS .

So all small marginals of µ and ν are information-theoretically indistinguishable. This is
exactly k-wise indistinguishability, a generalization of k-wise independence introduced by
Bogdanov et al. [4] and first used in the context of secret sharing.

▶ Definition 17 (k-wise indistinguishability [4]). Two distributions µ and ν on {±1}N are
k-wise indistinguishable if for all S ⊂ [N ] with |S| ≤ k, µS = νS.

Additionally, for f : {0, 1}n → {0, 1}, we say f is ε-fooled by k-wise indistinguishability
if for any pair µ, ν of k-wise indistinguishable distributions,

| Pr[f(µ) = 1] − Pr[f(ν) = 1]| ≤ ε .

It turns out k-wise indistinguishability over the hypercube is intimately connected to
approximate degree. By a linear programming duality argument, Bogdanov et al. proved the
following.
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▶ Theorem 18 ([4, Theorem 1.2]). Let f : {0, 1}n → {0, 1} and ε > 0. Then f is ε-fooled by
k-wise indistinguishability if and only if d̃egε/2[f ] ≤ k .

With this fact, Lemma 16, and the above discussion, we are ready prove the main theorem
in this section.

We say a class of Boolean functions F = (Fn)n≥1 is closed under inverse-polynomial
restrictions if for all f ∈ Fn and all S ⊆ [n] with n ∈ poly(|S|), fixing the bits in Sc yields a
function still in F :

f↾Sc←x ∈ F|S| ∀x ∈ {0, 1}|S
c| .

Note that AC0 is closed under inverse-polynomial restrictions.

▶ Theorem 19. Suppose F is a class of Boolean functions closed under negations and inverse-
polynomial restrictions. Let m be fixed and suppose there is an f ∈ F on N = poly(m)
variables and an m-input QNC0 circuit C of depth d, with N −m ancilla qubits, and receiving
arbitrary quantum advice, such that f ◦ C achieves correlation ε with Parm. Then there is a
g ∈ F on n ≥ m/2 variables with d̃egε/2[g] ≥ n/2d − 1.

Proof. By Lemma 16, there is an m′ ≥ m/(2d + 1) and an (m′, 2d, N − 2dm′) nonlocal
channel N such that f ◦ N or ¬f ◦ N achieves correlation ε with Parm′ .

Suppose the referee measures their system and obtains outcome string r. This event
leads to an updated state shared among the parties in N and thereby defines an (m′, 2d, 0)
nonlocal channel N R←r. By a similar averaging argument to the one used in Lemma 16,
there is at least one outcome r of the referee register such that N R←r still yields correlation
ε with Par. Define g := f↾R←r or g := ¬f↾R←r as appropriate and put E := N R←r. Then
g ∈ F is a function on n := 2dm′ bits and

E
x
[(g ◦ E)(x) · Par(x)] ≥ ε .

Therefore, by the discussion above, we see g can ε-distinguish (n/2d−1)-wise indistinguishable
distributions. Applying Theorem 18 we conclude that

d̃egε/2[g] ≥ n

2d
− 1 . ◀

▶ Corollary 20. Suppose function class F is closed under inverse-polynomial-sized restrictions.
Then if d̃eg[F ] ∈ o(n), F ◦ QNC0 cannot achieve Ω(1) correlation with Par.

The burning question, then, is whether d̃eg[AC0] ∈ o(n). In fact, the approximate degree
of AC0 is a longstanding open problem and its resolution would lead to several consequences
in complexity theory [9]. To get a sense of the difficulty of this question, consider that on
one hand, a sublinear upper bound is known for a large subclass of AC0.

▶ Theorem ([8, Theorem 5]). Let p(n) ∈ poly(n). Then the class of AC0 circuits of linear
size, denoted by LC0, has

d̃eg1/p(n)[LC0] ∈ o(n).

Yet on the other hand, a series of works, most recently [24], show the following:

▶ Theorem. For any δ > 0, there is a function f ∈ AC0 with d̃eg[f ] ∈ Ω(n1−δ).
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The lower bound of Ω(n1−δ)-for-any-δ is tantalizingly close to the trivial upper bound of
n for the approximate degree of any Boolean function, but as it stands it is not unreasonable
to guess that d̃eg[AC0] ∈ Θ(n/ logn) either. Several questions – including now Conjecture 3 –
could be settled if the gap between Ω(n1−δ)-for-any-δ and n for d̃eg[AC0] were closed.

We may combine the sublinear lower bound on LC0 from [8] with Theorem 19 to obtain:

▶ Corollary 21. Let C be an n-input, m-ancilla QNC0 circuit with arbitrary advice. Suppose
f : {0, 1}n+m → {−1, 1} is defined by an AC0 circuit of size O(n). Then f ◦ C achieves
negligible correlation with Parn.

2.1 Blockwise approximate degree
We conclude this section by laying out a self-contained question concerning the approximate
degree of AC0 with respect to a modified, “blockwise” notion of approximate degree. This
question is sufficient to imply Conjecture 3 in full generality and may be easier to resolve
than d̃eg[AC0].

Fix k ≥ 1 (assuming k divides n for simplicity) and let P be the partition of [n] into
“blocks” of size k:

P :=
{

{1, . . . , k}, {k + 1, . . . , 2k}, . . . , {n− k + 1, n}
}
.

For a monomial χS =
∏

i∈S xi define the (k-)block degree bdegk[χS ] to be the number of
distinct blocks B ∈ P having nonempty intersection with S. This definition extends naturally
to the k-block degree bdegk[f ] of a Boolean function f : {0, 1}n → {−1, 1} and to the
approximate k-block degree b̃degk[f ] of f :

b̃degk[f ] = min{bdegk[g] | g : {0, 1}n → R a polynomial with ∥f − g∥∞ ≤ 1/3} .

Of course b̃degk[f ] ≤ n/k for any function.

▶ Question 1. For all constants k, does the following hold?

b̃degk[AC0]
?
≤ n/k − 1 .

As we explain below, this would be enough to prove Conjecture 3. Note the following,
which are immediate and hold for all f :

d̃eg[f ] < n

k
=⇒ b̃degk[f ] < n

k
=⇒ d̃eg[f ] < n− k .

Moreover, these implications are sharp in that each one cannot generically imply anything
stronger, as witnessed by a parity function on an appropriate subset of [n]. Regarding
f ∈ AC0, the left-hand side holding for arbitrary constant k is equivalent to d̃eg[AC0] ∈ o(n),
while the far right-hand side follows directly from LMN-type Fourier tail bounds for AC0.

▶ Proposition 22. If the resolution to Question 1 is “yes”, then Conjecture 3 is true.

Proof sketch. Consider the referee-free nonlocal channel E from the proof of Theorem 19,
with n/k players responding with k bits each. Defining µ and ν as the pushforwards of
uniform distributions over even and odd bitstrings as before, it is true that µ and ν are
(n/k− 1)-wise indistinguishable when viewed as distributions on {0, 1}n. However, they may
also be viewed as distributions on the hypergrid [2k]m for m = n/k.

With this perspective, µ and ν are m− 1 indistinguishable. Repeating the proof of [4,
Theorem 1.2] over this larger alphabet, we recover exactly the notion of blockwise degree.
The rest of the argument is as before. ◀
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▶ Remark 23. It is unclear to us whether Question 1 is any easier than d̃eg[AC0]
?
∈ o(n). We

can compare the two questions head-to-head as follows. Let Pk be all the relabelings of P :

Pk :=
{{

{π(1), . . . , π(k)}, {π(k + 1), . . . , π(2k)}, . . . , {π(n− k + 1), . . . , π(n)}
}}

π∈Sn

.

For any P ∈ Pk, let bdegP [f ] be the maximum number of blocks in P overlapped by some
monomial in f . Then we have the following characterization, where g ranges over real-valued
multilinear polynomials on the hypercube as usual:

d̃eg[AC0] < n/k ⇐⇒ ∀f ∈ AC0,∃g,∀P ∈ Pk,bdegP [g] ≤ n/k and ∥f − g∥∞ ≤ 1/3

b̃degk[AC0] < n/k ⇐⇒ ∀f ∈ AC0,∀P ∈ Pk,∃g,bdegP [g] ≤ n/k and ∥f − g∥∞ ≤ 1/3 .

3 Towards a switching lemma for AC0◦ QNC0

Recall that our approach in Section 1 fails because circuits with LMN-style Fourier decay
are not suitably closed under precomposition by QNC0. In fact this is true even under
precomposition by NC0, and the proof of the LMN theorem elegantly avoids an induction
assumption phrased in terms of Fourier decay. Instead, the proof relies on a structural
theorem about the effect of random restrictions on DNFs and CNFs – Håstad’s celebrated
switching lemma:

▶ Theorem (Håstad [13]). Suppose f is a width-w DNF. Then for any 0 ≤ δ ≤ 1,

Pr
ρ∼Rδ

[DTdepth(f↾ρ) > t] ≤ (Cδw)t ,

where C is a universal constant.

Here Rδ is the distribution of random restrictions with star probability δ (see e.g., [20,
§4.3] for more). This theorem has received several proofs over time, but each rely on the
well-controlled structure of random restrictions. To naively repeat the switching lemma
argument directly on AC0◦ QNC0 would mean to track the passage of random restrictions
through QNC0 – a tall order given that QNC0 can destroy the independence and unbiasedness
of random restrictions that switching arguments tend to rely on.

The situation may be slightly improved by instead considering a switching lemma for the
model studied in Section 2. Recalling that f ◦ N is a randomized function, we may hope for
a switching lemma of the following form:

An imagined switching lemma for nonlocal channels. Let m ≥ 0 and k,w, n ≥ 1 and
suppose f : {0, 1}kn+m → {0, 1} is a DNF of width w and N is an (n, k,m) nonlocal
channel. Then for each restriction ρ there exists a distribution Γρ over decision trees
such that (f ◦ N )↾ρ = {T}T∼Γρ

and

Pr
ρ∼Rδ

Pr
T∼Γρ

[depth(T ) > t] ≤ (Cδw)t .

By Lemma 16 such a switching lemma would be sufficient to show correlations bounds
between f ◦ QNC0 and parity for any DNF (or CNF) f , which in turn are direct prerequisites
to proving Conjecture 3. While this imagined switching lemma is currently out of reach, we
contend it presents a useful challenge to existing switching lemma proof techniques. As a first
step in this direction, we devote this section to a proof of a simpler but related structural
result.
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▶ Theorem (Informal). Any no-signaling channel N composed with a decision tree τ is
equal to a probability distribution Γ of decision trees with depth(τ ′) ≤ depth(τ) for all
τ ′ ∈ Supp(Γ).

Let us fix some notation. For a finite set X let M(X) denote the set of probability
measures on X. The set M(X) is convex, so for ν a probability measure on M(X) we may
define the expected distribution

E
µ∼ν

[µ] :=
{
x w.p. Pr

µ∼ν
Pr

z∼µ
[z = x]

}
x∈X

(3)

Here we study Boolean channels, or functions of the form

N : {±1}n → M({±1}N ).

For a probability measure µ on the set of channels from n to N bits, we use EN∼µ N to
denote the channel defined pointwise as:(

E
N∼µ

N
)

(x) := E
N∼µ

[N (x)]. (4)

To be clear, N (x) is a probability measure on {±1}N , so in the right-hand side of (4) we are
computing the expected distribution according to (3). Also, for T ⊆ [N ] define the reduced
channel

N T (x) :=
{
y w.p.

∑
z∈{±1}N

zT =y

Pr[N (x) = z]
}

y∈{±1}|T |
.

▶ Definition 24 (No-signaling channel). Consider a map N : {±1}n → M({±1}N ) and a
“backwards lightcone” function B : [N ] → [n]∪{⊥}. The pair (N , B) is a no-signaling channel
(NSC) if for all S ⊆ [n], for all x, x′ ∈ {±1}n with xS = x′S, we have N B−1(S∪⊥)(x) =
N B−1(S∪⊥)(x′).

That is, a channel is an NSC if for any collection of output indices T , N T (x) is a function
of xB(T )\{⊥} only. Note also N B−1(⊥) is oblivious to the value of x entirely – the outputs
B−1(⊥) could be called the referee outputs.

Recall that for a Boolean function f : {±1}N → {±1}, f ◦ N denotes the channel

f ◦ N (x) =
{
b w.p. Pr

y∼N (x)
[f(y) = b]

}
b∈{±1}.

The restriction structure on NSCs interacts nicely with decision trees:

▶ Theorem 25. Given f : {±1}N → {±1} and N : {±1}n → M({±1}N ) an NSC, there
exists a distribution Γ over decision trees such that

(i) For all x the composition f ◦ N (x) = {τ(x)}τ∼Γ, so E[f ◦ N (x)] = Eτ∼Γ[τ(x)]; and
(ii) For all τ ∈ Supp(Γ), DTdepth(τ) ≤ DTdepth(f).

Recall that f ◦ N is an M({±1})-valued function on the hypercube, so x 7→ E[f ◦ N (x)] is a
[−1, 1]-valued function on the hypercube, and accordingly has a multilinear Fourier expansion

E[f ◦ N ] =
∑

S⊂[n]

aSχS with aS := E
x

[
E[f ◦ N ] ·χS(x)]

We pause to note the related fact that in terms of the expected output E[f ◦ N ], the degree
of any function f does not increase under composition with an NSC: deg(f) ≥ deg(E[f ◦ N ]).
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This claim has a very simple direct proof2 and we emphasize that it is not equivalent
to Theorem 25. For example, there are Boolean functions g with deg(g) = n2/3 but
DTdepth(g) = n (see Example 3 in [7]). One could imagine a Boolean function h with
deg(h) ≈ DTdepth(h) ∈ o(n) but where E[h ◦ N ] is “g-like”: any decision tree decomposition
of E[h ◦ N ] contains a tree of depth n despite having deg(E[h ◦ N ]) ∈ o(n). Theorem 25 says
such an h,N pair does not exist; precomposition by an NSC cannot increase the decision
tree complexity of a function.

The proof of Theorem 25 requiries some bookkeeping. The idea is to begin with τ ’s
root vertex variable yi and locally decompose the univariate channel N {i}(x) 7⇝ yi into a
distribution of deterministic functions {yi,ω(xi)}ω∼µ. This decomposition of the root vertex
induces a probabilistic decomposition {τ ′ω ◦ N ′ω}ω∼µ of the entire hybrid computation where
the root variable yi in τ ′ has been replaced with an xB(i) and the left and right subtrees of τ
become compositions not with N , but with conditional versions of N where xB(i) and yi

have been fixed to certain values. This conditioning preserves the NSC-ness of the new N ′s,
and the decomposition recurses down the tree.

We now introduce a notion of conditioning. For any n-to-N bit Boolean channel N ,
x ∈ {±1}n, J ⊆ [N ] and Y ∈ Supp(N J(x)) define the conditional channel as

N (x | yJ = Y ) :=
{
y w.p. Pr[N (x) = y | yJ = Y ]

}
y∈{±1}N ,

and for T ⊆ [N ] the reduced conditional channel

N T (x | yJ = Y ) :=
{
y w.p.

∑
z∈{±1}N

zT =y

Pr[N (x) = z | zJ = Y ]
}

y∈{±1}|T |
.

Note that T -reduced conditional no-signaling channels can depend on inputs outside
B(T ). Consider for example the n-to-n-bit NSC

G(x) =
{

U{even strings} x even
U{odd strings} x odd.

Now G{i}(x) is identically a Rademacher random variable (oblivious to x entirely), but

G{i}(x | y[n]\i = 00 · · · 0) =
{ ∏

j

xj w.p. 1
}
,

the parity of all n bits of x. All the same, some structure remains after conditioning:

▶ Proposition 26. For T, J ⊆ [N ], let x, x′ ∈ {±1}n be such that xB(J∪T ) = x′B(J∪T ). Then
for all Y ∈ Supp(N J(x)),

N T (x | yJ = Y ) = N T (x′ | yJ = Y ).

Proof. Let x, x′ be as in the proposition statement. We have from the definition of NSCs that
N J∪T (x) = N J∪T (x′). Certainly then N J∪T (x | yJ = Y ) = N J∪T (x′ | yJ = Y ) (we have
taken the marginal of two equal distributions). The conclusion then follows from noticing
that for any U ⊆ V , N U = (N V )U . ◀

2 Consider the Fourier expansion f =
∑

S⊆[N ] f̂(S)χS . Then E[(f ◦ N )(x)] = E
[ ∑

S⊆[N ] f̂(S)χS ◦

N (x)
]

=
∑

S
f̂(S)E[χS ◦ N (x)] =

∑
S

f̂(S)E[χS ◦ N S(x)], a linear combination of functions of at
most |S| variables each for |S| ≤ deg(f).
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This proposition says N T (x | yJ = Y ) is a function of xB(J∪T ) only. Thus if we fix variables
xB(J) we recover a smaller NSC:

▶ Corollary 27. Consider an n-to-N NSC (N , B), an i ∈ [N ], and X,Y ∈ {±1}. If B(i) =⊥
let N ′ be the n-to-(N − 1) NSC

N ′ = N [N ]\{i}(x | yi = Y )

and otherwise let N ′ be the (n− 1)-to-(N − 1) NSC

N ′ = N [N ]\{i}(x{B(i)}c | xB(i) = X, yi = Y ).

Define a new lightcone function B′ from B as follows. Put B(j) =⊥ for all j ∈ B−1(B(i))
and then remove i from the domain of B. Then (N ′, B′) is an NSC.

Finally we introduce an object used internally in the proof of Theorem 25.

▶ Definition 28 (Hybrid Decision Tree). A hybrid decision tree T on n variables with ℓ leaves
consists of the data (τ,G1, . . . ,Gℓ), where

(i) The first argument τ is a rooted binary tree with ℓ leaves labeled as follows. Each
internal node is assigned xi for some i ∈ [n], the edge to its left child is labeled 1, and
the edge to its right child is labeled −1.

(ii) Each leaf ι of τ is associated with an n-to-1 channel Gι : {±1}n → M{±1}.
A hybrid tree defines a channel Tτ (G1, . . . ,Gℓ) : {±1}n → M{±1} as follows. Computation
on input x ∈ {±1}n proceeds just as with standard decision trees until a leaf ι is reached, at
which point the distribution Gι(x) is returned.

Theorem 25 follows from these three claims. Proofs of the first two are immediate from
the definitions.

▷ Claim 29. For any hybrid decision tree T ,

T
(
G1, . . . ,Gι−1, E

ω∼µ
[Gω], Gι+1, . . . ,Gℓ

)
= E

ω∼µ

[
T (G1, . . . ,Gι−1,Gω,Gι+1, . . . ,Gℓ)

]
▷ Claim 30. For any hybrid decision trees Tτ (G1, . . . ,Gℓ) and Tτ ′(Gι1, . . . ,Gιℓ′),

Tτ

(
G1, . . . ,Gι−1, Tτ ′(Gι1, . . . ,Gιℓ′), Gι+1, . . . ,Gℓ

)
= Tτ◦ιτ ′(G1, . . . ,Gι−1,Gι1, . . . ,Gιℓ′ ,Gι+1, . . . ,Gℓ),

where τ ◦ι τ
′ is τ with the ιth leaf replaced with τ ′.

▷ Claim 31. Suppose τ is a decision tree and (N , B) is an NSC. Then either:
(i) τ ◦ N = Eω∼µ[τω ◦ Nω] where depth(τω) ≤ depth(τ) − 1, |Supp(µ)| ≤ 2, and each Nω

is an NSC, or
(ii) τ ◦ N = Eω∼µ

[
Tτ∗

(
τωL

◦ NωL
, τωR

◦ NωR

)]
, where |Supp(µ)| ≤ 3, τ∗ has one internal

node, depth(τωL
),depth(τωR

) ≤ depth(τ) − 1, and each NωL
,NωR

is an NSC; or
(iii) (Base case) τ ◦ N (x) = {b w.p. 1} for all x, for some fixed b ∈ {±1}.

Proof. If τ is the trivial decision tree with no internal nodes, clearly we satisfy case iii.
Otherwise, let yi be the variable at the root of τ . There are two cases depending on the
value of B(i).
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Case i), B(i) = ⊥. Observe that N {i}(x) is the same distribution µ over {±1}, independent
of x. For ω ∈ {±1} let τω be the subtree of τ attached to the ω-valued edge of yi. Put
Nω = N T\{i}(x | yi = ω). Then we have for z ∈ {±1},

Pr[τ ◦ N (x) = z] =
∑

ω∈{±1} Pr[τ ◦ N (x) = z | Di(x) = ω] Pr[N i(x) = ω]

=
∑

ω∈{±1} Pr[τω ◦ N (x | yi = ω) = z] Pr[N i(x) = ω]

=
∑

ω∈{±1} Pr[τω ◦ Nω(x) = z] Pr[N i(x) = ω]

= Pr
[

E
ω∼µ

[τω ◦ Nω](x) = z
]

as desired. Clearly τω is strictly shorter than τ , and Nω is an NSC by Corollary 27.
Case ii), B(i) ̸= ⊥. Let τ∗ be the one-vertex tree consisting of the root vertex of τ relabeled

with xB(i) and let τ1, τ−1 be the left and right subtrees of τ respectively. Observe that
N {i}(x) = N {i}(xB(i)) is a univariate channel. Hence it can be decomposed as a convex
combination

N {i}(xB(i)) = a(1,1)

[
1 1
0 0

]
+ a(−1,−1)

[
0 0
1 1

]
+ a(1,−1)

[
1 0
0 1

]
+ a(−1,1)

[
0 1
1 0

]
.

where only three of a(L,R) are nonzero. Let µ = {(L,R) w.p. a(L,R)}. Then we claim

τ ◦ N = E
(L,R)∼µ

[
Tτ∗

(
τL ◦ N (1)

L , τR ◦ N (−1)
R

)]
(5)

where for b, c ∈ {±1}2,

N (b)
c (x) = N (x|xB(i) = b, yi = c).

We check Eq. (5) pointwise. First consider an x with xB(i) = 1. We condition on the
value of yi, rearrange, and then “complete the tree”:

Pr[τ ◦ N (x) = z] =
∑

L∈{±1}

Pr[τ ◦ N (x) = z | Ni(x) = L] Pr[Ni(x) = L]

=
∑

L∈{±1}

Pr[τ ◦ N (x | yi = L) = z](a(L,1) + a(L,−1))

=
∑

L∈{±1}

Pr[τL ◦ N (x | xB(i) = 1, yi = L) = z]
( ∑

R∈{±1} a(L,R)
)

=
∑

L,R∈{±1}

a(L,R) Pr[τL ◦ N (1)
L (x) = z]

=
∑

L,R∈{±1}

a(L,R) Pr[Tτ∗(τL ◦ N (1)
L , τR ◦ N (−1)

R )(x) = z]

= Pr
[

E
(L,R)∼µ

[Tτ∗(τL ◦ N (1)
L , τR ◦ N (−1)

R )](x) = z
]
,

as desired. A similar argument goes through for xB(i) = −1 by expanding over R instead
of L. ◁

Proof of Theorem 25. Let τ be a depth-optimal decision tree for f . Construct the trivial
hybrid tree T with no internal nodes and a single leaf with label τ ◦ N . Put Γ = {T w.p. 1}.
We will recursively break apart leaves of T into distributions of hybrid trees, which are then
combined with the parent tree to become distributions over hybrid trees of greater depth.
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This is done by repeated application of the following sequence of steps. Suppose
Tτ (G1, . . . ,Gℓ) is some hybrid tree and Gι = τ ′ ◦ N for some nontrivial DT τ ′ and (po-
tentially conditioned) NSC N . Then depending on the case in Claim 3 we either have

Tτ (. . . , τ ◦ N︸ ︷︷ ︸
index ι

, . . .) = Tτ (. . . ,E(L,R)∼µ[Tτ∗(τωL
◦ NωL

, τωR
◦ NωR

)], . . .) (Claim 31.i)

= E
(ωL,ωR)∼µ

[
Tτ (. . . , Tτ∗(τωL

◦ NωL
, τωR

◦ NωR
), . . .)

]
(Claim 29)

= E
(ωL,ωR)∼µ

[
Tτ◦ιτ∗(. . . , τωL

◦ NωL
, τωR

◦ NωR
, . . .)

]
, (Claim 30)

where τ∗ has depth 1 and depth(τωL
),depth(τωR

) ≤ depth(τ ′) − 1, or we have

Tτ (. . . , τ ◦ N︸ ︷︷ ︸
index ι

, . . .) = Tτ (. . . ,Eω∼µ[τω ◦ Nω], . . .) (Claim 31.ii)

= E
ω∼µ

[
Tτ (. . . , τω ◦ Nω, . . .)

]
, (Claim 29)

where depth(τω) ≤ depth(τ ′) − 1.
If we repeatedly make these transformations on the elements of Γ, we will eventually be

left with a distribution over hybrid decision trees (τ,G, . . .) where each channel G = τ ′ ◦ N is
in the base case of Claim 31. Such a hybrid tree is equal to a deterministic channel. Hence
we are left with a distribution over deterministic channels that is trivially equivalent to a
distribution of standard, deterministic decision trees.

Further, it’s easy to see that once done, the longest path in any tree of Supp(Γ) is bounded
by the longest path in the original tree τ . ◀

4 Discussion

We have seen several pieces of evidence for Conjecture 3, as well as highlighted new connections
between quantum complexity theory, nonlocal games, and approximate degree.

If Conjecture 1 is ultimately proved true, we may wish to reach for a stronger no-advantage
theorem closer to that of Beals et al. [3] from query complexity. A natural expression of
AC0◦ QNC0 non-advantage might use the language of Fourier decay.

▶ Question 2. Does AC0◦ QNC0 exhibit LMN-like Fourier decay? To make this precise for
the randomized function f ◦ C, consider the expectation over the randomness in C to get a
function F : {0, 1}n → [−1, 1]. Then we ask, is W≥t[F ] ∈ O(exp(−t))?

As mentioned in the introduction, a similar result is known depth-d QAC0 circuits with at
most O(n1/d) ancillas [19].

Finally, one may consider any number of variations on the theme of precomposing a
Boolean function with QNC0. It is natural to ask:

▶ Question 3. View a QNC0 circuit C as a map from (randomized) Boolean functions to
randomized Boolean functions:

f
C7−→ f ◦ C .

By how much can this map increase influence, sensitivity, or other complexity measures of f?

Theorem 25 gives the answer “not at all” to a variant Question 3 where QNC0 is replaced by
nonlocal channels, and the complexity measure is randomized decision tree complexity.
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