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Abstract
We consider the problem of training a multi-layer over-parametrized neural network to minimize
the empirical risk induced by a loss function. In the typical setting of over-parametrization, the
network width m is much larger than the data dimension d and the number of training samples n

(m = poly(n, d)), which induces a prohibitive large weight matrix W ∈ Rm×m per layer. Naively,
one has to pay O(m2) time to read the weight matrix and evaluate the neural network function in
both forward and backward computation. In this work, we show how to reduce the training cost per
iteration. Specifically, we propose a framework that uses m2 cost only in the initialization phase and
achieves a truly subquadratic cost per iteration in terms of m, i.e., m2−Ω(1) per iteration. Our result
has implications beyond standard over-parametrization theory, as it can be viewed as designing
an efficient data structure on top of a pre-trained large model to further speed up the fine-tuning
process, a core procedure to deploy large language models (LLM).
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1 Introduction

Over-parameterized neural networks represent one of the most extensively researched and
widely utilized models in contemporary machine learning. These networks are among the
first to offer convergence guarantees for prevalent deep network training methodologies, as
indicated by numerous studies [47, 34, 26, 3, 4, 25]. Beyond the sound convergence theory,
the recent surge of large language models (LLMs) also raises the stakes of training such
networks efficiently. In particular, the over-parametrization setting aligns well with the
fine-tuning process of LLMs. To make it concrete, recall fine-tuning is the procedure of
adapting an LLM for a particular set of focused data so that it can be more specialized in
certain domains. Since the size of fine-tuning data is much smaller compared to the size
of actual training data of an LLM, fine-tuning can typically be implemented in an efficient
manner. Moreover, the over-parametrization theory requires the number of parameters of
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a network (expressed as the width of the network) to be orders of magnitude larger than
that of the input dataset, which is exactly the setup for fine-tuning as the size of an LLM is
much larger than the fine-tuning dataset. Speeding up the fine-tuning process is one of the
core algorithmic tasks for large language model applications, and many works attempt to
exploit the inherent over-parametrization structure of the process. The work [30] explicitly
utilizes the low-rank property of the gradient and derives a heuristic fine-tuning procedure
that greatly reduces the parameters required.

Meanwhile, developments in the department of convex optimization have led to break-
throughs in tasks such as linear programming [21, 38, 13, 12, 29], empirical risk mini-
mization [46, 54], the cutting plane method [36], semidefinite programming [35, 32, 29],
and sum-of-squares optimization [37]. However, the techniques developed in these works
are tailored for optimizing convex objectives, which are not applicable to the training of
over-parameterized networks. Furthermore, existing research on efficient training for over-
parameterized networks primarily focuses on two-layer networks [14, 62, 31, 5], which differs
substantially from the networks utilized in real-world applications.

In this work, we take the first step to develop a fast algorithm for training deep over-
parameterized networks. Specifically, given n data points of dimension d, we consider training
a fully connected neural network with width m = poly(n, d) and depth L ≥ 2, using a shifted
ReLU activation. To ensure the convergence of the training process, the network width m is
typically chosen to be a large polynomial in n and d. For deep neural networks, the current
best over-parameterization width is on the order of n4 [19]. The input layer is represented as
a matrix of size m× d, and all intermediate layers are of size m×m. The training typically
consists of a forward pass and a backward pass. The forward pass involves multiplying weight
matrices W ∈ Rm×m with vectors h ∈ Rm. Without any structure on W and h, this step
would take Θ(m2) time, which is prohibitively large. We hence ask the following question:

Is it possible to reduce the cost per iteration during the training to truly subquadratic in m?

For training two-layer over-parameterized neural networks, two interesting results have
been obtained by van den Brand, Peng, Song, and Weinstein [14] and Song, Yang, and
Zhang [62]. However, we note that the settings both of these papers studied differ from ours,
specifically:

In the two-layer case, they only need to train a weight matrix of size m × d. Since
evaluating one data point in d-dimensional space for neural network functions takes
O(md) time, the cost per iteration bound they aim to match [14] or beat [62] is O(md).
In the multi-layer case, instead of having only a weight matrix of size m× d, we will have
at least one weight matrix of size m×m. Since evaluating one data point in m-dimensional
space for neural network functions takes O(m2) time, the cost per iteration bound we are
trying to beat in this work is O(m2).

In [14], they provide an algorithm that can adaptively choose the step size for different
gradient directions associated with different data points, which is one of the goals we want
to achieve. However, their method involves forming a Jacobian matrix of the data, which is
of size n×md in the two-layer case, but of size n×m2 in our case. Hence, their algorithm
can only imply an O(nm2) cost per iteration, which cannot match our subquadratic goal.

In [62], they surpass the nmd barrier by leveraging two key ideas: using a shifted ReLU
activation and, through a sparsity analysis, showing that only o(m) number of neurons are
fired up1. They further use a data structure to preprocess both data points and training

1 Such a phenomenon has been observed in practice as in [18, 17, 50].
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weights. However, their algorithm only works for small d due to the exponential dependence
on d in the preprocessing phase. In a multiple-layer neural network, instead of having only
a weight matrix of size m× d, we will have at least one weight matrix of size m×m; this
directly translates to a high dependence on m in the preprocessing phase. As our hope is for
an algorithm with ideally O(nm2) time to preprocess, their data structure is infeasible for
any practical application.

We also note two more recent works [31, 5] that particularly focus on developing efficient
algorithms for training two-layer over-parameterized networks. Both of them make use of
tree-based data structures to find activated neurons in sublinear time. These approaches,
unfortunately, do not scale well to multi-layer settings, as they rely on the input dimension
being much smaller than the network width, while in multi-layer settings, the weight matrix
is square.

Our method overcomes the shortcomings of these prior approaches, as it can not only
choose the step size adaptively but also achieve a per iteration cost of o(m2). It can be
interpreted as a design guideline for efficient fine-tuning of LLMs. As we will see later, our
algorithm also leverages the low-rank property of the gradient but in a provable fashion.
Moreover, our approach goes beyond the standard first-order methods, such as gradient
descent or stochastic gradient descent, as we provide a highly efficient implementation of
the Gauss-Newton method. One can treat our result as a data structure with a manual
for LLM fine-tuning. Although our convergence argument works for over-parameterized,
shifted ReLU-based networks, we believe it will serve as a foundation for designing even
faster practical algorithms for fine-tuning.

1.1 Our Results
Our main results can be summarized in the following theorems: the first analyzes the
convergence behavior of a general Gram-based optimization framework and the second
designs an efficient algorithm to achieve subquadratic cost per iteration.

Throughout this paper, we use n to denote the number of training data points, d to
represent the dimension of input data points, m for the width of the network, and L for the
number of layers in the network. We denote the smallest eigenvalue of the neural tangent
kernel induced by our neural network as λL and the prediction of the neural network at time
t as ft ∈ Rn.

Our first theorem demonstrates the fast convergence rate of our algorithm.

▶ Theorem 1 (Convergence). Suppose the width of the neural network satisfies m =
poly(n, λ−1

L , L). Then, there exists an algorithm (Algorithm 1) such that, over the random-
ness of initialization of the network and the algorithm, with probability at least 1− 1/poly(n),
we have

∥ft+1 − y∥2 ≤
1
3∥ft − y∥2.

The above theorem establishes the linear convergence rate of our method. However,
compared to the one-hidden layer case, our analysis is more sophisticated as we must control
the probability so it does not exponentially blow up with respect to the number of layers.

Our convergence argument follows a novel and systematic approach to analyze the
dynamics of multi-layer neural tangent kernels. Previous works either depend exponentially
on the number of layers L in network width [25] or directly analyze training dynamics,
requiring a data-separable assumption [3]. Our analysis builds upon these works, providing
a comprehensive theory of multi-layer NTKs under first- or second-order perturbations,
thus greatly extending the landscape of NTK-based convergence theory. The framework we
developed is also compatible with sparser, shifted ReLU activations.

ITCS 2024
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We note that since we are essentially learning an NTK, the generalization guarantee of
our approach is at least as good as that of an NTK [6]. The generalization bound of the
shifted ReLU has also been carefully examined in [69].

The next theorem concerns the cost per iteration of our algorithm.

▶ Theorem 2 (Runtime). There exists a randomized algorithm (Algorithm 1) that trains a
multi-layer neural network of width m with the cost per training iteration being Õ(nm2−Ω(1)).
Furthermore, if m ≥ n4, then the cost per iteration is

Õ(m2.25−α),

where α ≥ 0.32 is the dual matrix multiplication exponent [66, 41].

We improve the overall training time of multi-layer over-parametrized networks from
Tinit + T · Õ(nm2) to Tinit + T · o(nm2), where Tinit is the initialization time of training,
typically taking O(nm2). As previously argued, multi-layer over-parametrized networks
require m to be on the order of n4, hence improving the cost per iteration from quadratic
to subquadratic is a significant gain in speeding up training. Our algorithmic result can be
interpreted as a data structure for fine-tuning LLMs: given a large, pre-trained language
model whose weights are “frozen” during fine-tuning, we only need to initialize the data
structure once. The data structure can then be queried in a highly-efficient manner to
implement fine-tuning steps.

To achieve subquadratic time, we cannot afford to perform matrix-vector products
between the weight matrices and any dense vectors. However, matrix-vector product seems
unavoidable, as any algorithm requiring first- or second-order information needs to evaluate
the network prediction. When implementing the Gauss-Newton method, we also have a
Jacobian matrix of size n × m2, so forming it exactly would already take Θ(nm2) time.
Moreover, note that the update is also an m×m matrix, meaning that explicitly applying
the update would also cost Θ(m2) time. To circumvent these problems, we exploit the fact
that the gradient is low-rank (rank n). Thus, one can compute a rank-n factorization and
use it to support fast matrix-vector products. We also observe that each row of the Jacobian
matrix can be formulated as a tensor product of two vectors. Therefore, we can use fast
randomized linear algebra to approximate the tensor product efficiently.

1.2 Related Work
Convex and Non-Convex Optimization

In convex optimization problems, such as linear programming [65, 22, 44, 21, 71, 64, 38],
empirical risk minimization [46, 54], the cutting plane method [36], maximum bipartite
matching and maxflow [48, 8], and semidefinite programming [45, 35, 32, 29], one typically
uses an algorithm that can dynamically adjust the search direction and step size to reduce
the iteration count. Due to the prohibitively high cost of implementing one step of these
methods, most of these works focus on improving the cost per iteration.

In the non-convex setting, there is a vast body of ongoing works [49, 10, 53, 1, 9, 15, 72,
14, 70] that try to improve the iteration count and cost per iteration, especially in the setting
of training deep neural networks. As shown in [15], it is possible to exploit the equivalence
between over-parametrized networks and neural tangent kernels to optimize an n× n matrix
instead of an m2 ×m2 matrix, which is an important breakthrough in gaining speedup for
such methods. Sketching and sampling-based methods can also be used to accelerate the
computation of inverses of the Hessian matrix [53]. In spirit, our work most resembles [15]
and [14], in the sense that our optimization also works on an n × n Gram matrix. Our
algorithm also makes use of sketching and sampling, as in [53].
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Over-Parametrized Neural Networks

In the deep learning community, understanding the geometry and convergence behavior
of various optimization algorithms on over-parametrized neural networks has received a
lot of attention [47, 34, 26, 3, 4, 25, 63, 14, 73, 74, 16, 42, 43, 52, 19, 33, 62, 5, 31, 28].
The seminal work of [34] initiates the study of the neural tangent kernel (NTK), which is
a very useful analytical model to prove the convergence of training on over-parametrized
networks. By over-parametrizing the neural network so that the network width is relatively
large (m ≥ Ω(n4)), one can show that the training dynamics on a neural network are almost
the same as those on an NTK.

Sketching

Using randomized linear algebra to reduce the dimension of problems and speed up algorithms
for various problems has been a growing trend in the machine learning community [56, 20,
67] due to its wide range of applications, especially the efficient approximation of kernel
matrices [7, 2, 68, 59]. The standard “Sketch-and-Solve” paradigm [20] involves reducing the
dimension of the problem via sketching and then using a black box for the original problem to
gain computational efficiency. Another line of work uses sketching as a preconditioner [67, 14]
to obtain high-precision solutions. Sketching has also been successful in solving symmetric
norm regression [58], clustering and coverage [27], low-rank approximation [60, 61], and in
distributed settings [11].

Roadmap

In Section 2, we give a preliminary overview of the training setup considered in this paper. In
Section 2.1, we introduce the notations that will be used throughout the paper. In Section 2.2,
we consider the training setting more specifically. In Section 3, we provide an overview of the
techniques employed in this paper. In Section 3.1, we examine the algorithmic tools utilized
in this work to achieve subquadratic cost per iteration. In Section 3.2, we demonstrate
various techniques to prove the convergence of our second-order method. Finally, in Section 4,
we summarize the results of this paper and point out some potential future directions.

2 Preliminaries

2.1 Notations
For any integer n > 0, let [n] denote the set {1, 2, · · · , n}. Let Pr[·] denote probability and
E[·] denote expectation. We use ∥x∥2 to denote the ℓ2 norm of a vector x. We use ∥A∥ and
∥A∥F to denote the spectral norm and the Frobenius norm of matrix A, respectively. We
use A⊤ to denote the transpose of matrix A. We use Im to denote the identity matrix of
size m×m. For α being a vector or matrix, we use ∥α∥0 to denote the number of nonzero
entries of α. Given a real square matrix A, we use λmax(A) and λmin(A) to denote its
largest and smallest eigenvalues respectively. Given a real matrix A, we use σmax(A) and
σmin(A) to denote its largest and smallest singular values respectively. We use N (µ, σ2) to
denote the Gaussian distribution with mean µ and variance σ2. We use Õ(f(n)) to denote
O(f(n) · poly log(f(n)). We use ⟨·, ·⟩ to denote the inner product, when applying to two
vectors, this denotes the standard dot product between two vectors, and when applying to
two matrices, this means ⟨A, B⟩ = tr[A⊤B], i.e., the trace of A⊤B. For a vector x ∈ Rn, we
use diag(x) to denote an n× n diagonal matrix where diagonal entries are from x. Given
two vectors x, y, we use x⊗ y to denote their tensor product and given two matrices A, B,
we use A⊗B to denote their Kronecker product.

ITCS 2024



93:6 Training Multi-Layer Over-Parametrized Neural Network in Subquadratic Time

2.2 Problem Setup
Architecture

We first describe our network architecture. The network consists of L hidden layers, each
represented by a weight matrix Wℓ ∈ Rm×m for any ℓ ∈ [L]. The output layer consists of
a vector a ∈ Rm. We define the evaluation of the neural network as a prediction function
f : Rd → R

f(W, x) = a⊤ϕ(WL(ϕ(· · ·ϕ(W1x)))),

where ϕ : R → R is the shifted ReLU activation function (σb(x) = max{x− b, 0}) applied
coordinate-wise to a vector.

We measure the loss via the squared-loss function:

L(W ) = 1
2

n∑
i=1

(yi − f(W, xi))2.

This is also the objective function for our training.
The prediction function ft : Rd×n → Rn is defined as

ft(X) =
[
f(W (t), x1) f(W (t), x2) · · · f(W (t), xn)

]⊤
.

Initialization

Our neural networks are initialized as follows:
For each ℓ ∈ [L], the layer-ℓ’s weight parameter Wℓ(0) ∈ Rm×m is initialized such that
each entry is sampled from N (0, 2

m ).
Each entry of a is an i.i.d. sample from {−1, +1} uniformly at random.

Gradient

In order to write the gradient in an elegant way, we define some artificial variables: for all
i ∈ [n]

gi,1 = W1xi, hi,1 = ϕ(W1xi),
gi,ℓ = Wℓhi,ℓ−1, hi,ℓ = ϕ(Wℓhi,ℓ−1), ∀ℓ ∈ [L]\{1}

and

Di,1 = diag
(
ϕ′(W1xi)

)
, ∀i ∈ [n]

Di,ℓ = diag
(
ϕ′(Wℓhi,ℓ−1)

)
, ∀i ∈ [n],∀ℓ ∈ [L]\{1}

Using the definitions of f and h, we have

f(W, xi) = a⊤hi,L, ∈ R, ∀i ∈ [n]

We can compute the gradient of L in terms of Wℓ ∈ Rm×m, for all ℓ ≥ 2

∂L(W )
∂Wℓ

=
n∑

i=1
(f(W, xi)− yi)Di,ℓ ·

(
L∏

k=ℓ+1
W ⊤

k Di,k

)
ah⊤

i,ℓ−1 (1)
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Note that the gradient for W1 ∈ Rm×d is slightly different and cannot be written in general
form. By the chain rule, the gradient of the variables in W1 can be expressed as:

∂L(W )
∂W1

=
n∑

i=1
(f(W, xi)− yi)Di,1

(
L∏

k=2
W ⊤

k Di,k

)
ax⊤

i

It is worth noting that the gradient matrix is rank n, since it’s a sum of n rank-1 matrices.

Jacobian

For each layer ℓ ∈ [L] and time t ∈ [T ], we define the Jacobian matrix Jℓ,t ∈ Rn×m2 via the
following formulation:

Jℓ,t =


vec( ∂f(W (t),x1)

∂Wℓ(t) )⊤

vec( ∂f(W (t),x2)
∂Wℓ(t) )⊤

...
vec( ∂f(W (t),xn)

∂Wℓ(t) )⊤

 .

The Gram matrix at layer ℓ and time t is then defined as Gℓ,t = Jℓ,tJ
⊤
ℓ,t ∈ Rn×n whose

(i, j)-th entry is〈∂f(W (t), xi)
∂Wℓ

,
∂f(W (t), xj)

∂Wℓ

〉
.

3 Technique Overview

In this section, we give an overview of the techniques employed in this paper. In Section 3.1,
we showcase our algorithm and explain various techniques being used to obtain a subquadratic
cost per iteration. In Section 3.2, we give an overview of the proof to show the convergence
of our algorithm.

3.1 Subquadratic Time
In this section, we study the different techniques being used to achieve the subquadratic cost
per iteration.

Our algorithm can be summarized as follows: we use the shifted ReLU activation to ensure
that with high probability, only a sublinear number of neurons in m are activated. We then
maintain and update the gradient through a lazy, low-rank data structure. When computing
the Gauss-Newton direction, we form the Jacobian matrix implicitly and approximately, then
use the inexact Jacobian to approximately form Gram and invert it.

Sparsify via a Sparser Activation

We first consider the forward computation phase, in which we need to compute the matrix-
vector product

(WL(0) + ∆WL)hi,L−1.

As we will show later, via a carefully-designed low-rank maintenance data structure, the
product ∆WLhi,L−1 can be performed in o(m2) time. However, this does not hold for the
product WL(0)hi,L−1; the main reason being WL(0) is initialized as a dense matrix with 0

ITCS 2024
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Algorithm 1 Informal version of our algorithm.

1: procedure OurAlgorithm(f, {xi, yi}i∈[n]) ▷ Theorem 1,2
2: /*Initialization*/
3: Initialize Wℓ(0), ∀ℓ ∈ [L]
4: Store hi,L−1 in memory, ∀i ∈ [n] ▷ Takes O(nm2) time
5: for t = 0→ T do
6: /*Forward computation*/
7: vi,L ← hi,L−1,∀i ∈ [n]
8: hi,L ← ϕ((WL(0) + ∆WL)hi,L−1),∀i ∈ [n] ▷ Takes o(nm2) time
9: Di,L ← diag(hi,L),∀i ∈ [n]

10: ft ← [a⊤h1,L, . . . , a⊤hn,L]⊤ ▷ Takes O(nm) time
11: /*Backward computation*/
12: ui,L ← a⊤Di,L

13: Form J̃L,t that approximates JL,t using {ui,L}n
i=1, {vi,L}n

i=1
14: ▷ Takes Õ(mn) time, J̃L,t ∈ Rn×s where s = Õ(n)
15: Compute gL that approximates (J̃L,tJ̃

⊤
L,t)−1(ft − y)

16: Form J⊤
L,tgℓ via low rank factorization

∑n
i=1 gL,iui,Lv⊤

i,L

17: Implicitly update

∆WL ← ∆WL +
n∑

i=1
gL,iui,Lv⊤

i,L

18: end for
19: end procedure

mean Gaussian entries and does not exhibit any particular low-rank structures as ∆WL. To
address this issue, we use a shifted ReLU activation to make sure that the vector hi,L−1 is
sparse. Note that a coordinate of hi,L−1 is nonzero if and only if the corresponding coordinate
in Wℓhi,ℓ−1 is at least b. We show that, by choosing b as

√
2α log m for a parameter α ∈ [0, 1),

we can ensure that the sparsity of hi,ℓ is at most m1−α with high probability for all ℓ ∈ [L−1].
We also show that using our shifted ReLU activation, the induced distribution on the initial
weight matrix W (0) is a truncated Gaussian distribution, and it does not affect convergence
behavior except for a slightly worse success probability.

Low-Rank Structure of the Gradient

Consider ∂f(W,xi)
∂WL

∈ Rm×m, it can be written as (for simplicity, we use hi,0 to denote xi):

∂f(W, xi)
∂WL

= hi,L−1 · (a⊤Di,L)⊤.

This means the gradient is essentially an outer product of two vectors, and hence has rank
one. This has several interesting consequences: for over-parametrized networks, the gradient
is merely of rank n instead of m. The low-rank structure of the gradient can be further
utilized, by representing and maintaining the change of the weight matrix, ∆W in an implicit
fashion so that the matrix-vector product against ∆W can be quickly computed. More
specifically, suppose we are given the vectors {hi,L−1}n

i=1 and {Di,L−1a}n
i=1, the gradient

can be compactly expressed as ∂f
∂WL

= UV ⊤.
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Gauss-Newton Method, Gram Regression and How to Sketch the Jacobian

We start by recalling the update rule of the Gauss-Newton method for our algorithm:

WL(t + 1)←WL(t)− J⊤
L,t(JL,tJ

⊤
L,t)−1(ft − y),

where JL,t ∈ Rn×m2 is the Jacobian matrix. Note that we cannot even afford to form the
Jacobian – as it’s an n×m2 matrix, writing it down would already take O(nm2) time. On
the other hand, JL,t has a structure that can be exploited, as each row of the matrix is in the
form of ui ⊗ vi where ⊗ is the tensor product. While exactly forming these tensor products
would take O(nm2) time, one can approximately compute them using tensor-based sketching
techniques in time nearly linear in m. Given this much smaller, approximate Jacobian, we
can perform subsequent operations much faster.

The next obstacle is to form the Gram matrix and compute the inversion. While the
inversion can be computed relatively fast as the Gram matrix is n× n, computing the Gram
itself comes at a prohibitively high cost. We utilize our sketched Jacobian and instead perform
the multiplication in time roughly O(n3.3), which is sublinear in m. Inverting the Gram
matrix then only takes O(nω) time, which is efficient. One could interpret our method as an
inexact solver for Gram regression where the Jacobian matrices can only be approximated.
Nevertheless, we show that tensor-based sketching enables us to solve this problem quickly.

3.2 Convergence Analysis
To prove that our algorithm indeed converges, we need to develop a variety of new machinery
beyond the standard NTK [25] and over-parametrization [3] analysis. Specifically, we have
to handle the shifted ReLU activation, which induces a different distribution than the more
standard Gaussian distribution induced by the ReLU activation. Our algorithm is also based
on the Gauss-Newton method, in contrast to the first-order gradient descent or stochastic
gradient descent. Prior treatments of this method [15, 14] focus only on analyzing two-layer
over-parametrized networks, whose analysis is much simpler and standard. Below, we provide
an overview of our convergence analysis in phases.

Initialization

Let W (0) be the random initialization. We first show that for any data point xi, the
initial neural network output f(W (0), xi) = Õ(1). The analysis draws inspiration from [3].
The general idea is that given a fixed unit length vector x, multiplying it with a random
Gaussian matrix W will ensure ∥Wx∥2

2 ≈ 2 with high probability. Since W is a random
Gaussian matrix, applying shifted ReLU activation gives a random vector with a truncated
Gaussian distribution conditioned on a binomial random variable indicating which neurons
are activated. We will end up with ∥ϕ(Wx)∥2 ≈ 1 as well as ϕ(Wx) being sparse. Inductively
applying this idea to each layer and carefully controlling the error occurring at each layer,
we can show that with good probability, ∥hi,L∥2 is a constant. We conclude the argument
by exploiting the fact that a is a Rademacher random vector so the inner product ⟨a, hi,L⟩
concentrates around ∥hi,L∥2, and hence with good probability, we have f(W (0), xi) = Õ(1).

Furthermore, we show that the Gram matrix for the multi-layer over-parametrized neural
network, defined as Jℓ,0J⊤

ℓ,0, has a nontrivial minimum eigenvalue after initialization. In
particular, we adapt the neural tangent kernel (NTK) for multi-layer neural networks defined
by [25] into our setting by analyzing the corresponding Gaussian process with shifted ReLU
activation function. Then, we can prove that with high probability, the smallest eigenvalue
of the initial Gram matrix is lower bounded by the smallest eigenvalue of the neural tangent
kernel matrix.

ITCS 2024
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Small Perturbation

The next step is to show that if all weight matrices undergo a small perturbation from
initialization (in terms of the spectral norm), then the corresponding Jacobian matrix has
not changed too much. As long as the perturbation is small enough, it is possible to show
that the change of the h vector (in terms of ℓ2 norm) and the consecutive product (in terms
of the spectral norm) is also small. Finally, we use the concentration property of Rademacher
random variables and truncated Gaussian random variables to conclude that the change of
the Jacobian has a relatively small spectral norm and Frobenius norm.

For learning the NTK of two-layer over-parametrized networks [26], the above argument
is rather straightforward. However, this is no longer the case for the NTK of multi-layer
networks. Our strategy is to focus on the training of the last layer, a common approach
for transfer learning and spurious correlations [39], and our analysis can be viewed as a
theoretical explanation of last-layer training.

Connect Everything via a Double Induction

We use a double induction argument, where we assume the perturbation of the weight matrix
is small and the gap between ft and y is at most 1/3 of the gap between ft−1 and y. By
carefully bounding various terms and exploiting the fact that the Jacobian matrix always
has a relatively small spectral norm of Õ(

√
n), we first show that the weights are not moving

too far from the initialization, then use this fact to derive a final convergence bound for
∥ft − y∥2.

4 Discussion and Future Directions

In this work, we propose and analyze a variant of the Gauss-Newton method to train
multi-layer over-parametrized neural networks. Our algorithm achieves a linear convergence
rate in terms of training loss and a subquadratic (o(m2)) cost per training iteration. From
an analytical perspective, we greatly extend the analysis of [3] to our method, coupled
with the use of the equivalence between multi-layer over-parametrized networks and neural
tangent kernels [25]. From an algorithmic perspective, we achieve a subquadratic cost per
iteration, a significant improvement from O(m2) time per iteration due to the prohibitively
large network width m. Our algorithm combines various techniques, such as training with
the Gram matrix, solving the Gram regression via sketching-based preconditioning, fast
tensor computation and dimensionality reduction, and low-rank decomposition of weight
updates. These techniques are general and can be easily modified into a gradient descent
algorithm that runs in time o(nm2) by using a pre-set scalar value as step size instead of
solving a Gram regression at each iteration. Our algorithm is particularly valuable when
adapted for a prolonged chain of fine-tuning, and hence, when the number of iterations
is large. It can also be viewed as using data structures to speed up the iterative process,
a popular trend in recent years [21, 46, 38, 32, 37, 57, 23]. Though our work is mainly
theoretical, our techniques draw inspiration from practice, such as sparse activations [15, 17]
and last layer training [39]. The algorithm we develop is essentially a data structure for
deep, over-parametrized neural networks that fits well for large pre-trained language models
as it provides significant speedups for fine-tuning the model. Below, we pose several open
problems related to our result.
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Nearly-Linear Time Algorithm for Multi-Layer Over-parametrized Network

The first question one might wonder is whether achieving a per iteration cost of Õ(m)
is possible. In particular, can this runtime be achieved under the current best width of
multi-layer over-parametrized networks (m ≥ n4)? We note that the major limitation in our
method is the sparsity of the change of the diagonal matrices (∆D) is directly related to the
magnitude of the change of weights (∥∆W∥). In our analysis of convergence, we go through
a careful double induction argument, which, in fact, imposes a lower bound on ∥∆W∥. It
seems that, in order to achieve a nearly linear runtime, one has to adapt a different analytical
framework or approach the problem from a different perspective.

Maintain Change of Weights Beyond Low-Rank

In this work, we achieve speedup in the neural network training process by observing that the
changes of the weights are small in each iteration. A similar phenomenon also appears in some
classical optimization problems (e.g., solving linear program [21, 38] and solving semidefinite
program [35, 32]), and they achieve further speedup by using lazy update and amortization
techniques to compute the weight changes or using a more complicated data structure to
maintain the changes of the weight changes. Can we adapt their techniques to neural network
training? However, these dynamic maintenance methods can only approximately compute
the weight changes. Therefore, a deeper understanding of the robustness of the training
algorithms is required in order to apply these techniques to neural network training. An
orthogonal direction to maintain the change is to design an initialization setup such that
while we still have enough randomness to obtain provable guarantees, the matrix-vector
product with the initial weight matrix can be performed faster than O(m2) by sparsifying the
Gaussian matrix as in [24] or imposing extra structural assumption such as using circulant
Gaussian [55, 51, 40].

Extension to Other Activations

In this paper, we consider the shifted ReLU activation and design our algorithm and analysis
around its properties. Is it possible to generalize our algorithm and analysis to various other
activation functions, such as sigmoid, tanh, leaky ReLU, or GeLU? If one chooses a smooth
activation, can we get a better result in terms of convergence rate? Can we leverage this
structure to design faster algorithms?

Network Architecture Beyond Feedforward

Finally, the network architecture considered in this paper is the standard feedforward network.
Is it possible to extend our analysis and algorithm to other architectures, such as recurrent
neural networks (RNN) or transformers? For RNN, the weight matrices for each layer are
the same. Hence, it is trickier to analyze the training dynamics on such networks. Though
the convergence of the first-order method on over-parametrized multi-layer RNN has been
established, it is unclear whether such analysis can be extended to our method. More
generally, can we improve the efficiency of the training process of neural networks even
beyond the NTK regime, e.g., in the feature learning regime? We believe new techniques
are needed to achieve theoretical time complexity improvements as well as the convergence
guarantee.
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