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Abstract
We describe two algorithms for multiplying n × n matrices using time and energy Õ(n2) under basic
models of classical physics. The first algorithm is for multiplying integer-valued matrices, and the
second, quite different algorithm, is for Boolean matrix multiplication. We hope this work inspires a
deeper consideration of physically plausible/realizable models of computing that might allow for
algorithms which improve upon the runtimes and energy usages suggested by the parallel RAM
model in which each operation requires one unit of time and one unit of energy.
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1 Introduction

Suppose you were presented with a black-box that could multiply any n × n matrices in
quadratic time. Would you be surprised? Not necessarily – the box might simply be able
to leverage an amount of parallelism that scales with n. Specifically, you could trivially
parallelize the multiplication across n machines, and run each machine for O(n2) time,
resulting in O(n3) energy usage but only O(n2) time. But what if both the runtime and
energy usage of the black-box scaled quadratically? Such a black-box would be surprising
if it operated within a computational model where each arithmetic operation requires one
unit of energy. But are there physically realizable models that do not have this property?
And if so, what is the algorithmic landscape for such models, and what physical gadgets or
properties do they leverage? Should we expect to be able to obtain significant polynomial
improvements simultaneously for runtime and energy usage for fundamental algorithmic
primitives like matrix multiplication?

There are several motivations for considering these questions. First, energy is one of the
most important computational resources, along with time, and space. Despite this, there is
embarrassingly little theoretical work on low-energy computing, and few theoretical models
of computation that explicitly consider energy. Of course, on the practical side there is a
frenzy of effort to design highly parallel and energy-efficient hardware and algorithms – and
a proliferation of analog computing components due to their low energy-usage. Still, a more
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principled effort to understand how different physical systems and assumptions could be
algorithmically leveraged for low-energy computation might serve to guide the development
of alternative hardware and architectures.

From a more conceptual angle, these questions ask whether the conventional wisdom
regarding the time and energy complexity of problems is inherent, or simply due to our
RAM-centric view of computing, modeled on computers in the von Neumann architecture.
In light of the extended Church-Turing thesis, we do not expect natural or physics-driven
computational processes to obtain super-polynomial improvements in terms of time and
energy – quantum computing aside. In terms of the structure of problems within P, however,
we do know that different computational models give rise to different polynomial runtimes.
Despite this, there seems to be little investigation of realistic and physically plausible models
of computation that result in significant (polynomial) savings in resources over the standard
RAM or parallel-RAM models:

What is a “fine-grained” analog of the extended Church-Turing thesis that takes into
account both runtime and energy? Do plausible non-quantum models of computing
admit polynomial savings in terms of time and energy over the RAM or parallel-
RAM models where each operation takes a unit of energy? If so, how large can
these polynomial factors be, and what are the fundamental lower-bounds for natural
problems?

2 Related work

The earliest analog computers were mechanical in nature and were later replaced with
electronic analog computers. A good example of an early analog computer was the differential
analyser [5] which was used to solve differential equations. Later there were theoretical
models developed for studying the power of analog computation that uses a set of elementary
operations such as constants, adders, multipliers and integrators [14, 13, 7]. The focus in
these works is on computability, as opposed to runtime or energy usage.

Early theoretical work in the study of energy efficient computation was done in the
context of reversible computing, initiated by Landauer and Bennet [12, 3, 4]. Landauer’s
principle [12] states that erasing a single bit of information requires kBT log 2 energy, where
kB is Boltzmann’s constant and T is the temperature of the surroundings. The motivation
for reversible computing is the stipulation that, from a thermodynamic perspective, such
erasures are the only aspect of computation that inherently requires energy, and hence if a
computation is reversible, there is no theoretical lower bound to the energy required. More
recent work in this vein by Demaine et al. [6] studies this in a more algorithmic context and
revists many common algorithmic primitives (including sorting, graph algorithms and data
structures) with the goal of implementing them entirely, or mostly, with reversible operations.

There has also been a line of theoretical work on a different notion of energy complexity
(e.g. [17]). In that work, the energy complexity of a circuit is defined as the maximum over all
inputs, of the number of gates that output 1 (as opposed to a 0). This definition corresponds
to the energy expended in a natural implementation of such a circuit. The key questions
are how the energy complexity can be related to traditional parameters of circuits, such as
width or depth.

Our algorithms leverage only classical physics. Of course, quantum algorithms such as
Shor’s algorithm [16] may yield super-polynomial improvements over classical algorithms,
both in terms of runtime and energy. There is also a significant line of work investigating
the extent to which restricted models of quantum computation – such as “linear optics” [1] –
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can yield super-polynomial speedups. There are also several interesting quantum algorithms,
such as Grover’s search [8] and recent work on quantum “spatial search” [2], which yield only
quadratic speedups over their classical analogs. Given this interest in polynomial speedups,
it is certainly worth understanding whether certain types of non-quantum physical systems
can give similar sorts of surprising speedups. We also note that the challenges to realizing
quantum computing in a practical sense appear orthogonal to the challenges of realizing the
sort of “physical” algorithms we present here.

On the practical side, energy is one of the most important metrics of computational
efficiency. On mobile devices (phones, watches etc), battery life is a paramount concern. For
training deep neural networks and large-scale scientific computing, energy costs are often
significant in comparison to the hardware costs and the salaries of the people involved. This
has sparked a large industry of custom hardware, and renewed interest in analog computing.
Particularly in settings that allow for low-precision, analog circuits seem to offer significant
energy savings for certain problems (see, e.g. the very brief survey [11]). For specific
computational primitives, in particular, matrix vector multiplication, there have been a series
of empirical papers exploring analog implementations via memristor crossbar circuits [9, 10].
Additionally, there is a promising wave of work on optical/“photonic” circuits (e.g. [15]),
which seem to offer both increased speed and lower energy for tasks such as forward passes
on a deep neural network. The emphasis in these works is on the empirical behaviour, not
asymptotic or theoretical properties.

3 Potential Advantages of Physical Algorithms

Our algorithms will leverage concrete physical systems that evolve under the laws of classical
physics. Before describing these algorithms, we outline three properties of physical systems
that could plausibly be employed to yield time and/or energy improvements over the RAM
model:

Free Parallelism: The physical world allows for some level of parallelism “for free”, as
multiple physical systems can evolve in parallel. The initialization/setup of these systems
may need to be done serially, but their evolution according to the laws of physics occurs
in parallel.
Can Tradeoff Time and Energy: Under Newtonian mechanics, suppose it takes one
unit of energy to move a unit-mass object one unit distance, with the object beginning
and ending at rest. In a frictionless setting, to move the same object one unit distance in t

units of time, the total energy is 1/t2, since the object needs to be accelerated to velocity
1/t, and kinetic energy scales with the square of the velocity. This ability to tradeoff
between time and energy is exploited in the Boolean Matrix Multiplication algorithm of
Section 6. It is worth noting that a similar scaling is observed with over/under-clocking
CPUs (though there is only a narrow range of flexibility in clock-speed of current CPUs),
though this scaling is due both to increasing the voltage and increased fan speed required
to dissipate the heat.
Sublinear Time/Energy Aggregation: Physical systems allow for many means for
adding or computing the OR of n numbers using a sublinear amount of time and/or
energy. 1) Diffusion: If the n quantities to be aggregated are presented as n heat sources,
arranged on a

√
n ×

√
n two dimensional grid of thermally conducting material (thermally

insulated from the outside world), then with no additional energy and time O(n log(1/ϵ)),
the heat equation will drive the conducting plate to a uniform temperature to within ±ϵ.
If the n quantities to be aggregated were presented as n heat sources, arranged within
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a n1/3 × n1/3 × n1/3 cube, then the time for diffusion is sublinear: O(n2/3 log(1/ϵ)). 2)
Newtonian mechanics: given n bits, let the ith bit be represented as the presence or
absence of a unit mass block at location i along a length n friction-less track. The OR of
these bits can be computed by sliding a unit-mass block along the track with some initial
velocity, and measuring whether that block is the first block to reach location n+ 1. If the
initial block has velocity v (and hence energy O(v2)), then if the OR is 0 that block will
reach the end at time n/v. Provided v <

√
n, this provides a smooth tradeoff between

sublinear time and sublinear energy.

4 Physical Assumptions

In this section, we briefly discuss the assumptions underlying the correctness and runtimes/en-
ergy usages of our algorithms. As with any such assumptions, they become unrealistic at
some problem scale. This is similar to the sense in which the RAM model becomes unrealistic
at the problem scales for which the time to communicate a bit of information across the
memory footprint is non-negligible.

4.1 Precision and Measurement Accuracy
Our algorithms leverage the assumption that physical quantities (e.g. mass, length) of value
b can be measured to accuracy ±ϵ, using a time and energy cost of log(max(1, b)) + log 1

ϵ .
Additionally, the time and energy cost of fabricating a component with desired mass or
length b ± ϵ is O(b + log(1/ϵ)). These assumptions are reasonable in the parameter regime in
which classical physics applies, where one can perform a binary-search type approach using
a set of reference mass/lengths of value 1, 1/2, 1/4, 1/8, . . .. These assumptions necessarily
break down near atomic scales where a polynomial relationship between desired accuracy
and required energy is more appropriate.

4.2 Divisibility of Material
Both of the matrix multiplication constructions presented below involve some property of the
system scaling inversely with the size of the instance. For the integer matrix multiplication
algorithm of Section 5, we assume that some material can be divided into quantities of
size 1/n. In the Boolean matrix multiplication construction of Section 6, we assume that
the velocity of some components of the system can be 1/n. This inverse scaling breaks
down at atomic scales, which is the main limit on the size of the instances for which such
systems could be practically realized. Though, as discussed at the end of Section 5, in an
optical implementation of our integer multiplication algorithm, we would expect the roughly
quadratic time and energy scaling to hold up until impressively large problem instances.1

The specific assumption we require for our integer multiplication algorithm is that with
time and energy O(n polylog n), one can construct a “device” with the property that if
one “pours in” one unit of “material” (e.g. water, sand, light) at one end, after time O(n),
1/n ± o(1/n2) material will exit each of n equally-spaced “endpoints”. Additionally, the
amount of energy required by this system to perform such a division is either negligible, or at

1 We note that, at least for multiplying square matrices, allowing properties to scale with o(1/n) does not
seem to help. For other problems, such as k-sum, allowing material to be divisible into quantities of
size 1/nk can likely be leveraged. That said, such an assumption quickly becomes unrealistic – even for
modest values of k this assumption becomes practically unreasonable for quite modest values of n.
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most polylog n. A plausible construction of such a gadget would be a binary tree of “tubing”
through which material can flow under the force of gravity, with n leaves and “splitters” at
each of the internal nodes/junctions that divide the material flow (nearly) equally along the
two downstream paths. The construction of Section 5 is described in terms of such a gadget.

4.3 Classical Mechanics
Both algorithms assume that objects operate under Newtonian mechanics: it requires a unit
of energy to raise a unit mass to a height of 1 unit, and a unit mass can be moved a unit
distance in a unit time, beginning and ending at rest, requiring a unit of energy. We also
assume the force of gravity acts in the usual sense. For example, a mass at rest at the top of
a length n frictionless track that is at an incline of 1/n, will take time O(n) to reach the
bottom. None of our algorithms require perfectly elastic collisions, though the algorithm of
Section 6 assumes that kinetic energy can be transferred from one object to another, losing a
constant fraction (bounded below 1) of the energy. This algorithm additionally leverages
that kinetic energy scales quadratically with velocity: accelerating a unit mass object to
velocity v requires O(v2) energy.

5 Integer Matrix Multiplication

In this section, we consider multiplying matrices of integers. Given an n×n matrix A, we will
construct an O(n2 polylog n) sized physical system, taking time and energy O(n2 polylog n),
such that given a vector b, the matrix-vector product Ab = c can be computed in time and
energy O(n polylog n). Without loss of generality, we will assume that A ∈ {0, 1}n×n and
b ∈ {0, 1}n, as the multiplication of matrices with r-bit entries can trivially be reduced to r2

multiplications of {0, 1} matrices.
The physical system will be constructed as a simple network of “tubing” and “channels”,

through which a divisible “material” (e.g. sand, water, light) flows under the influence
of gravity without friction. We will have an array of n “channels”, with the ith channel
corresponding to the ith index of the output, ci. One end of each channel will be held at one
unit elevation, and the other will be held at elevation 0. The total amount of “material” that
collects at the end of the ith channel will be measured, to accuracy ≪ 1/n2, which will be
the value of ci after rounding to the nearest multiple of 1/n. Between each of these channels,
we will also have “garbage” channels, whose material is never measured.

For each j ∈ {1, . . . , n}, we will construct a binary tree of tubing, with n “leaves”, and
height log n, such that when a unit of “material” is input at the root, after time O(n log n),
1/n±1/poly(n) material has come out at each “leaf”. This can be accomplished via “splitters”
at each of the O(n) internal nodes/junctions in the tree, each of which splits the material
equally between the two downstream paths, up to ≪ 1/n2 accuracy. We assume that each
splitter is an inert device that has been constructed/calibrated in time and energy O(log n).
(We discuss the practical feasibility of such splitters more below.) The jth binary tree will
be positioned j units along the array of channels, such that the tubing at the ith leaf flows
into channel i if Ai,j = 1. If Ai,j = 0, then the tubing at leaf i of binary tree j is directed
towards a “garbage” channel. The total size of this construction is O(n2 log n), corresponding
to 2n channels of length n (n corresponding to the outputs, and n interspersed “garbage”
channels), and n binary trees each of size O(n log n).

Given this system representing matrix A, to multiply vector b ∈ {0, 1}n, for each
j ∈ {1, . . . , n}, we input 1 unit (up to error ≪ 1/n2) of material into the jth binary tree of
tubing if, and only if, bj = 1, and measure the amount of material that collects at each of the
channels after time O(n log n); the amount of material that exits the ith channel, rounded to
the nearest multiple of 1/n will be ci/n.

ITCS 2024
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Figure 1 Integer matrix multiplication: Given an n × n binary matrix, A, the above construction
enables multiplication with a length n binary vector, b using time and energy O(n polylog (n)).
The construction consists of n binary trees of “tubing” through which “material” can flow under
the influence of gravity, with the material split evenly at each node/junction. Material from the
ith leaf of the jth binary tree is directed into the ith channel or a “garbage” channel according to
whether Ai,j = 1 or 0. Given the vector b ∈ {0, 1}n, one unit of material is poured into the jth
binary tree of tubing if bj = 1. The material from the ith channel is aggregated/measured, with the
total corresponding to (1/n) times the ith entry of the output, ci =

∑n

j=1 Ai,jbj . Each channel has
an incline of 1/n, and the binary trees have height O(log n), sufficient for material to flow/slide in
time O(n) under the influence of gravity.

The correctness of the implementation is clear by construction: the amount of material
entering the ith channel from the jth binary tree of tubing is Ai,jbj/n, and hence up to the
scaling factor of n, the amount of material collected at the bottom of the ith channel is∑n

j=1 Ai,jbj = ci. The total energy required to perform this matrix-vector multiplication is
O(n log n), corresponding to 1) lifting the ≤ n amount of material the O(log n) distance to
reach the top of the binary trees of tubing, 2) measuring each of the ≤ n unit quantities of
material to accuracy ≤ 1/n2 to input into each of the binary trees, 3) measuring each of the
n outputs c1, . . . , cn to accuracy ≤ 1/n2. The total runtime is also O(n log n), consisting of
1) raising the ≤ n units of material to height O(log n, 2) the time to sequentially measure
out each of the ≤ n units of material, 3) the O(n) time for the material to flow through the
length n tubing path and length ≤ n channel, each of which has an incline of at least 1/n,
and 4) sequentially measuring the material emitted at each of the n channels to accuracy
≪ 1/n2.

Practical Feasibility

The most natural mapping of this matrix-multiplication scheme into a practically feasible
construction that would have runtime and energy usage scaling nearly quadratically up to
large values of n, would likely leverage light, rather than a material like water, or sand. The
accurate construction of the binary trees of tubing seems practically feasible given the high
quality of optical beam splitters currently available. For this application, the fact that beam
splitters typically absorb (as opposed to transmit or reflect) a small constant fraction of
light does not matter. It is crucial to the construction that the beam splitters transmit and
reflect nearly equal amount of light, up to error ≪ 1/n2 – or at least that the amount of
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light reaching each of the n leaves of each binary is equal, to this accuracy. This property
seems achievable via various O(log n) length sequences of measuring and modifying a given
splitter, or the addition of filters at each of the leaves. As with any construction based on
classical physics, this scheme is doomed to fail once 1/n becomes on the same scale as a
single photon. Still, this would seem to offer impressively fast and energy-efficient matrix
mutiplication at large scales.

6 Boolean Matrix Multiplication

In this section, we consider Boolean matrix multiplication – matrix multiplication of binary
matrices where the elementwise product is replaced by AND, and the summation is replaced
by OR: Given two n × n binary matrices, A, B, let the n × n binary matrix C be defined
with entry Ci,j = ∨n

k=1(Ai,k ∧ Bk,j). Currently, the fastest known algorithms for Boolean
matrix multiplication are no better than for integer matrix multiplication. Our main reason
for describing this rather different sort of algorithm is to impress the point that it is not all
that difficult to come up with physical algorithms that seem to achieve surprising runtimes
and energy usages. The algorithm of the previous section certainly seems more amenable to
practical implementations than what will be described in this section.

As in Section 5, we will construct an O(n2 polylog n) sized physical system that represents
matrix A. This construction will take O(n2 polylog n) time and energy. Given this system,
we will then be able to evaluate Ab for any vector, b, in near linear time and energy. To
motivate our algorithm, we begin with a naive approach to designing an efficient RAM
algorithm for this problem:

Represent each column of A via a linked list storing the indices of the entries that are 1.
Let Li denote the list corresponding to the ith column.
For j = 1, . . . , n we compute the (boolean) product between matrix A and the jth column
of B:

initialize C1,j , . . . , Cn,j to zero.
For k = 1 . . . n,
∗ If Bk,j = 1, step through Lk and for each entry i (corresponding to Ai,k = 1) do

the following:
1. Set Ci,j = 1.

2. Remove value i from all lists Lk′ for k′ > k.
Reset the lists L1, . . . , Ln so that Lk represents the nonzero indices of the kth column
of A. (i.e., undo the “removals” of Step 2.)

The above algorithm is trivially correct. Furthermore, when processing each column of B,
steps 1 and 2 are only ever executed once per nonzero entry of column C∗,j . Hence each of
the n steps of the FOR loop would take time O(n), yielding a total runtime for the matrix
multiplication of O(n2), if the following held: 1) Step 2 could be accomplished in constant
time (as opposed to near linear time that would be yielded by doing a binary search within
each of the lists Lk′), and 2) the final step of the algorithm that resets all lists after each
matrix-vector product, could be accomplished in O(n) time per reset, as opposed to the
O(n2) time it would take to naively rebuild all the lists.

We now describe a physical implementation of this algorithm that can be implemented in
Õ(n2) time and energy. The crux of the construction is that we will perform Step 2 using
O(log n) energy in such a way that removing value i from the k′th list will take O(k′ − k)
time, and will only be completed as we begin to process the k′th entry of B∗,j . Phrased
differently, in Step 2, we need to remove i from all subsequent lists k′ > k. However, in

ITCS 2024
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our implementation we will have O(k′ − k) time before i must be removed from list Lk′ ,

and hence we will be able to clear it very slowly over ≈ k′ − k timesteps. Although we
have not yet described how this will be implemented, based on the kinetic energy scaling
with the square of velocity it should now be plausible that the energy required would be
only O(1/(k′ − k)2). Summing this energy over all k′ > k is a most

∑
i≥1 1/i2 = π2/6, as

opposed to the linear energy that would be required in a RAM implementation. We note
that even if the energy required to clear a single entry in time t scaled as 1/t instead of the
optimistic 1/t2 scaling suggested by kinetic energy, one could still plausibly implement this
high-level strategy with an energy cost of at most

∑n
i=1

1
i = log n to clear a value from all

lists, affecting the total energy cost by at most logarithmic factors.

6.1 Physical implementation
We will make an n × n physical system representing matrix A on an n × n friction-less grid.
Each of the n2 cells of the grid will correspond to the analogous entries of matrix A: we
represent Ai,j = 0 versus Ai,j = 1 via a unit mass block being on the left size of the cell
versus on the right size of the cell. We will furthermore assume that each cell is set up in
such a way that given c ≤ 1 units of energy, it transitions from the “1” state to the “0” state
in time O(1/c). This could be physically realized by imparting Θ(c) kinetic energy to the
unit mass block, corresponding to velocity Θ(

√
c), which would allow the block to traverse

the unit length in time O(1/
√

c) ≤ O(1/c), and then coming to rest via a perfectly inelastic
collision or any other way of losing its kinetic energy and reaching a configuration from where
it can go back to state “1” when necessary.

To multiply by the jth column of B, B∗,j , for each k for which Bk,j = 1, we will have a
unit-mass “agent” which will move at unit velocity along the right side of the kth column
corresponding to A. This is analogous to traversing a linked list representing the location of
the ones in the kth column of A, in the sense that the agent will only expend energy when
it collides with a unit mass – namely when it arrives at an entry Ai,k = 1 – otherwise it
continues its frictionless motion unimpeded.

Upon colliding with a unit mass at the ith location while traversing the kth column
the agent will expend polylog n energy to accomplish the following steps, corresponding to
Steps 1 and 2 of the naive RAM approach:
1. Set the corresponding entry of the answer Ci,j = 1. (This could be accomplished

via Newtonian mechanics by having a special frictionless track along each row of the
construction, with the track of the ith row leading to the ith answer register. An agent
will send a unit mass block at unit velocity along this track, and the answer register will
update from 0 to 1 upon receiving such a unit of energy.)

2. Clear the remainder of the ith row, that is, for each k′ > k, set the entry corresponding to
Ai,k′ to zero. To accomplish this, the agent will use O(log n) energy (which can be stored
at the cell itself), transferring ≈ 1/(k′ − k) energy to the cell corresponding to Ai,k′ in
time O(k′ −k), for all k′ > k. We discuss how this can be implemented below. If Ai,k′ = 1,
the corresponding cell will use the ≈ 1/(k′ − k) energy to set the entry to 0 in time
< k′ − k; hence the entry will be in the 0 position by the time the agent corresponding to
column k′ visits the ith row. Note that this energy 1/(k′ − k) is quadratically more than
would be sufficient to zero the entry, as energy 1/(k′ − k)2 would be sufficient to move
the unit mass block a unit distance in time k′ − k.

3. Finally, the agent will use constant energy to adjust its velocity (to compensate for any
slowdown required to initiate the previous two steps) so that it enters row i + 1 at velocity
1, one timestep after it entered row i. [This step is important, as we must maintain the
invariant that the agents in column i′ > i reaches row k at least i′ − i timesteps after the
ith agent reached that row, to allow for Step 2 to be completed.]
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Transferring Energy to Clear a Row

There are a number of ways to implement Step 2. One approach would be to have log n

frictionless tracks associated with each row. To clear the remainder of a row, the agent
will send a unit mass block at constant speed along each track. The ℓth such block will
travel distance O(2ℓ) and then partition its kinetic energy (roughly) uniformly among the 2ℓ

cells of the ith row in columns k + 2ℓ, . . . , k + 2ℓ+1. There are a number constructions to
accomplish this partitioning (all resembling Rube Goldberg machines at some level). Rather
than describing one, we instead sketch a more plausible practical instantiation that leverages
light. Suppose we have log n optical channels running along each row, with the ℓth channel
having opacity 1/2ℓ – namely each cell in the ℓth channel absorbs a 1/2ℓ fraction of the light
that enters, and allows the remaining 1 − 1/2ℓ fraction to pass through. Suppose the agent at
the kth column sends one unit of energy along each of the log n optical channels associated to
the given row, and consider the energy absorbed by the cell at column k′ = k + d. Defining
ℓ = ⌈log d⌉, the energy absorbed by this cell due to just this ℓth channel will be at least
1
2ℓ (1 − 1

2ℓ )d−1 ≥ 1
2d (1 − 1

2ℓ )2ℓ ≥ 1
8d , since (1 − 1/c)c is monotonically increasing in c, and

ℓ ≥ 1.

Resetting Before Next Matrix-Vector Product

One final step of the algorithm will be to reset each of the O(n2) cells that were “cleared” in
Step 2, and also for each of the ≤ n cells that triggered a collision, refreshing the O(log n)
energy stored at that cell. Both of these can be accomplished in O(n polylog n) time, using
O(n polylog n) energy. For the resetting, each cleared entry can reset in time O(n) (in
parallel), and hence the energy required per cell could be as low as 1/n2 to accelerate the
unit mass to velocity 1/n. There are various implementations, including one in which there is
a weak, restorative force for each cell representing an entry Ai,k = 1. (For example, the cell
could be at a slight incline allowing a gravitational restorative force favoring the 1 position).
Such a force would be sufficient to restore the cells to their original values at a timescale
of n log n, but would not have a significant effect at the timescales of each matrix-vector
product.

7 Abstracting Physical Models of Computing

To simplify the design of physical algorithms, and facilitate a rigorous study of lower bounds,
it would be useful to formalize an abstraction of the key computational primitives. And
ideally, this abstraction would allow the algorithm designer to work at a level removed from
the minutia of exactly how and where each data element is stored and accessed. Such an
effort may be premature without a more complete catalog of the sorts of gadgets that can be
fruitfully leveraged by physical algorithms. Still, we introduce, and briefly discuss one such
model.

Abstracting Clock-speed/Energy Tradeoffs

We define the following computational model parameterized by a real number α ∈ [0, 2]. The
model allows for arbitrary parallelism, with processes able to create new processes, subject
to the following:

For a problem instance of size n, each process, P is defined via an O(log n) size program
which may include calls to create additional processes. Process P has its own rate rP ≥ 1
which corresponds to the amount of time each basic operation or memory read/write
takes process P . Rate rP = 1 corresponds to each operation taking unit time and unit
energy. A rate of rP = c corresponds to time c per operation and energy usage 1/cα.
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Figure 2 Boolean matrix multiplication: Each entry of matrix A is encoded via an n × n grid of
cells in a frictionless surface, with a unit mass in either the left or right side of cell (i, k) according
to Ai,k = 0 or 1. To compute the matrix vector product Ab, unit mass “agents” (denoted as green
arrows) are sent at unit velocity down each column for which bj = 1. Upon colliding with a unit
mass (an entry Ai,k = 1), O(log n) energy will be expended to 1) update the corresponding entry
of the answer, 2) “clear” the rest of the ith row by transferring energy ≈ 1/d to cell (i, k + d) so
that the entry in cell (i, k + d) can be set to 0 in time ≈ d, before the agent in column k + d arrives
at cell (i, k + d). Hence each of the at most n row clearing operations requires energy at most∑n

i=1
1
i

≤ log n. All entries will be reset to their original positions over the course of O(n log n)
timesteps using energy O(n log n) before the next matrix vector product is performed.

Each process requires one unit of energy to initialize.
No two processes can access (read or write) the same memory location at the same time.
For example, if a process is writing a memory location at rate r = 100, then that memory
location cannot be accessed by other processes during the 100 timesteps in which it is
being written to.

Setting α = 2 corresponds to the time/energy tradeoff in frictionless classical mechanical
systems, due to kinetic energy scaling quadratically with velocity. α = 1 is a more modest
assumption (and is presumably easier to instantiate in hardware over a larger range of
problem sizes), though still yields interesting time/energy tradeoffs.

The following examples illustrate time/energy tradeoffs for this model. In both cases, the
algorithms are trivial – essentially naively parallelizing the task over a number of processes,
all with identical rates, where the rate and level of parallelism are jointly optimized. The
only component that requires some care is in ensuring that no two processes are reading
from the same memory location at the same time.

▶ Example 1 (Copying a List). Given a list of n numbers to be copied, suppose we have nq

processes, each running at rate ns. Each process will need to copy n1−q numbers, which
will take time n1−q+s. The total energy will be the product of the number of processors and
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energy per processor: nq(1 + n1−q/(ns)α), where α ∈ [0, 2] is the parameter governing the
tradeoff between slowdown and energy usage. For α = 1, this yields that for any s ∈ [0, 1]
by setting q = 1 − s one can achieve time O(n2s) and energy O(n1−s) – for example with
s = 1/3, both time and energy are O(n2/3). For α = 2, the analogous calculations give a
tradeoff of time O(n3s) and energy O(n1−2s). With s = 1/5 both the time and energy are
O(n3/5).

▶ Example 2 (Matrix Multiplication). Consider multiplying two n × n matrices, A, B. First
suppose we use n2 processes, each with rate O(n), where process Pi,j is responsible for
computing the i, jth entry of the product,

∑
k Ai,kBk,j . Since each entry of A (and B)

will be read by n processes, we need to ensure that no pair of processes tries to access the
same entry at the same time. This is not difficult, and does not require any additional
overhead: consider dividing time into length n blocks, [0, n], [n, 2n], . . . . During the tth block
of time, let process Pi,j read entry Ai,(i+j+t) mod n and B(i+j+t) mod n,j . To see that no two
processes are trying to access the same entry at the same time, note that the only potential
collisions with process Pi,j involve processes Pi′,j or Pi,j′ . In the case of Pi′,j , a collision at
time block t would involve B(i+j+t) mod n,j and B(i′+j+t) mod n,j but these are distinct, as
i ̸= i′. Given this lack of collisions, the runtime would be O(n2), and the energy usage would
be O

(
n2(1 + n

nα )
)

= O(n2) as long as α ≥ 1. Note that in the case of α = 2, consistent
with Newtonian mechanics, the energy overhead for initializing each process dominates the
energy used in the actual computation, suggesting that subquadratic time and energy are
simultaneously achievable in the α = 2 case by using a subquadratic amount of parallelism.
Indeed, time and energy O(n9/5) can be achieved in the α = 2 case by using n9/5 processes,
each computing n1/5 of the entries of the product AB, with each process running at rate
n3/5.

This model suffers from some of the same drawbacks as the RAM model. By abstracting
away the details of where each bit of data is stored, for large-scale problems, the model
cannot hope to realistically model the additional time/energy that must be expended by a
process that needs to perform operations on bits of memory stored in “distant” locations.
Still, in the same way that the RAM model accurately models computations that fit on
a single laptop, there is hope that future hardware could be developed that reflects the
properties of the above model, at least at modest problem scales for some α > 0.

A more conceptual shortcoming of the above model is that it does not seem to be complete
in any sense. There are properties of physical systems that can be computationally leveraged
beyond the ability to reduce the energy use by slowing down a process. In particular this
model lacks the ability to aggregate values as in the algorithm for integer matrix multiplication
of Section 5, or the ability to average values via diffusion. Electromagnetic and optical
phenomena are also completely absent. Still, even within this simple and incomplete model,
there might be some surprising and elegant algorithms; and there is some hope that such
algorithms might be relevant to current computing settings where there is a suite of available
hardware with varying speeds and energy (or monetary) costs. Lower bounds within this
restricted model might also be of interest.

8 Concluding Thoughts

We hope this work inspires a broader consideration of the potential landscape of time and
energy requirements for problems within P, from both theoretical and practical perspectives.
Here, we focused on matrix multiplication, leveraging Newtonian mechanics. There are, of
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course, many other computational problems worth considering, and many other physical
systems and forces that could be exploited for energy efficiency and parallelism, including
optical phenomena, biological processes, and gravity. As Moore’s Law wanes and alternate
computing architectures are empirically investigated more fully, it may be worth developing
a more complete theory of the energy or runtime gains that might be accessible via different
sorts of physical systems and accompanying assumptions.
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