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Abstract
We prove the expected disturbance caused to a quantum system by a sequence of randomly ordered
two-outcome projective measurements is upper bounded by the square root of the probability that at
least one measurement in the sequence accepts. We call this bound the Gentle Random Measurement
Lemma.

We then extend the techniques used to prove this lemma to develop protocols for problems in
which we are given sample access to an unknown state ρ and asked to estimate properties of the
accepting probabilities Tr[Miρ] of a set of measurements {M1, M2, . . . , Mm}. We call these types of
problems Quantum Event Learning Problems. In particular, we show randomly ordering projective
measurements solves the Quantum OR problem, answering an open question of Aaronson. We also
give a Quantum OR protocol which works on non-projective measurements and which outperforms
both the random measurement protocol analyzed in this paper and the protocol of Harrow, Lin, and
Montanaro. However, this protocol requires a more complicated type of measurement, which we call
a Blended Measurement. Given additional guarantees on the set of measurements {M1, . . . , Mm}, we
show the random and blended measurement Quantum OR protocols developed in this paper can also
be used to find a measurement Mi such that Tr[Miρ] is large. We call the problem of finding such a
measurement Quantum Event Finding. We also show Blended Measurements give a sample-efficient
protocol for Quantum Mean Estimation: a problem in which the goal is to estimate the average
accepting probability of a set of measurements on an unknown state.

Finally we consider the Threshold Search Problem described by O’Donnell and Bădescu where,
given given a set of measurements {M1, . . . , Mm} along with sample access to an unknown state ρ

satisfying Tr[Miρ] ≥ 1/2 for some Mi, the goal is to find a measurement Mj such that Tr[Mjρ] ≥
1/2 − ϵ. By building on our Quantum Event Finding result we show that randomly ordered (or
blended) measurements can be used to solve this problem using O(log2(m)/ϵ2) copies of ρ. This
matches the performance of the algorithm given by O’Donnell and Bădescu, but does not require
injected noise in the measurements. Consequently, we obtain an algorithm for Shadow Tomography
which matches the current best known sample complexity (i.e. requires Õ(log2(m) log(d)/ϵ4) samples).
This algorithm does not require injected noise in the quantum measurements, but does require
measurements to be made in a random order, and so is no longer online.
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1 Introduction

Quantum measurements change the states that they act on, often in undesired ways. Col-
loquially called the “information-disturbance trade-off”, the Gentle Measurement Lemma
bounds the damage that a single measurement can cause to a quantum system by relating
the probability of a particular outcome to the disturbance when seeing that outcome [1, 13].
Notably, the Gentle Measurement Lemma only bounds the disturbance caused by a single
measurement. The Anti-Zeno Effect refers to a phenomenon in which a sequence of two-
outcome measurements can cause arbitrarily large damage to quantum system, despite the
probability of any measurement in the sequence accepting being arbitrary small [9].1

For sequential measurements, the closest analogue we know to the Gentle Measurement
Lemma is known as the Gentle Sequential Measurement Lemma [6] (closely related to the
Quantum Union Bound [6, 10]). Crucially, the Gentle Sequential Measurement Lemma
bounds the damage a sequence of measurements can cause to a system in terms of the
accepting probability of each measurement on the initial state of the system, not the
accepting probability of the measurements on the state on which they are applied.

The analysis of sequential measurements is closely related to a class of problems we
call Event Learning Problems. These problems involve an unknown state ρ and set of
measurements M1,M2, . . . ,Mm. The goal is to learn properties of the measurements’ accept-
ing probabilities Tr[M1ρ],Tr[M2ρ], . . . ,Tr[Mmρ], while using as few copies of the quantum
state ρ as possible. This class of problems includes the well studied Shadow Tomography
problem [3, 8, 4], but also “easier” problems where the goal is to learn fewer features of the
accepting probabilities. Another well studied Event Learning problem is the Quantum OR
problem. Here, the goal is to approximate the OR of the measurement accepting probabilities,
or, more formally, to distinguish between the following cases:
(1) There exists a measurement Mi which accepts on ρ with high probability.
(2) The total accepting probability of all measurements

∑
i Tr[Miρ] is small.

The Quantum OR problem serves as an illustrative example of how the Anti-Zeno
Effect, and in general the information-disturbance trade-off, represents substantial barrier to
obtaining algorithms for these kinds of tasks that have low sample complexity. In Ref. [2],
Aaronson proposed an algorithm for the Quantum OR problem in which a system was
prepared in state ρ and measurements M1, . . . ,Mm were applied to the system in an order
chosen uniformly at random. Ref. [7] pointed out a gap in Aaronson’s analysis that was closely
related to the Anti-Zeno Effect [9]: the original argument did not rule out the possibility
that in Case 1 it might be possible that with high probability over the random choice of
sequence, all of the measurements in the sequence could all reject with high probability while
still causing a large disturbance to the system initially state ρ. Ultimately, this disturbance
could cause measurement Mi to reject with high probability, despite it accepting with high
probability on the initial state.

1 Of course, one can apply the Gentle Measurement Lemma repeatedly to each measurement in a sequence
of measurements. The reason this approach does not rule out phenomenon such as the Anti-Zeno effect
comes from the square root in the original gentle measurement lemma – even when the sum over all
measurements’ accepting probabilities is small, the sum of the square roots of their accepting probabilities,
and hence the resulting bound coming from sequential applications of the gentle measurement lemma,
can be large.
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The authors of Ref. [7] gave alternate algorithms which solved the Quantum OR problem.
These algorithms still required only a single copy of ρ, but involve more complicated
measurements than Aaronson’s original proposal, and cast aside the idea of using randomly
ordered sequences of measurements to solve the problem. Despite the gap found in Aaronson’s
analysis, no counterexample or proof was given, and it remained open whether randomly
ordered measurements could solve the Quantum OR problem. In this paper, we create a
toolkit for analyzing the effects of randomly ordered measurements on unknown quantum
states. Using these tools, we are able to show that (a small modification to) the original
Aaronson Quantum OR algorithm does indeed work, and simplify algorithms that achieve
the best known sample complexity on other event learning tasks, most notably shadow
tomography, using random sequences of measurements.

1.1 Results
The first major result in this paper is a generalization of the Gentle Measurement Lemma
to the setting where a random sequence of measurements is applied to a state ρ. Like the
Gentle Measurement Lemma, this lemma gives an upper bound on the “damage” (in trace
distance) this sequence of measurements can cause to the state ρ in terms of the probability
that at least one measurement in the sequence accepts.

▶ Theorem 1 (Gentle Random Measurement Lemma). Let M = {M1,M2, . . . ,Mm} be a set
of two outcome projective measurements, and ρ be a density matrix. Consider the process
where a measurement from the set M is selected universally at random and applied to a
quantum system initially in state ρ(0) = ρ. Let ρ(k) be the state of the quantum system after
k repetitions of this process where no measurement accepts, so

ρ(k) = EX1,...,Xk∼M [(1 −Xk) . . . (1 −X1)ρ(1 −X1) . . . (1 −Xk)]
EX1,...,Xk∼M [Tr [(1 −Xk) . . . (1 −X1)ρ(1 −X1) . . . (1 −Xk)]] (1)

and let Accept(k) be the probability that at least one measurement accepts during k repetitions
of this process (equivalently, the probability that not all measurements reject), so

Accept(k) = 1 − EX1,...,Xk∼M [Tr[(1 −Xk) . . . (1 −X1)ρ(1 −X1) . . . (1 −Xk)]] (2)

Then∥∥∥ρ− ρ(k)
∥∥∥

1
≤ 4
√

Accept(⌈k/2⌉) ≤ 4
√

Accept(k) . (3)

This theorem shows that randomly ordered sequences of measurements are “gentle” in
expectation, provided the expectation is taken over all possible orderings. As a consequence,
we find that phenomenon similar to the Anti-Zeno Effect are not likely to occur in randomly
ordered measurements. Sections 3.1 and 3.2 of this paper develops some key ideas which are
used in the proof of Theorem 1. Section 3.3 proves this theorem.

In the later half of this paper we use the techniques used to prove Theorem 1 to study
several Event Learning problems. In Section 4 we consider the Quantum OR problem,
and prove correctness of Aaronson’s original Quantum OR algorithm, resolving the last
unanswered question from Ref. [2].

▶ Theorem 2 (Random Measurements Solve Quantum OR). Let M = {M1,M2, . . . ,Mm}
be a set of two outcome projective measurements. Let ρ be a state such that either there
exists an i ∈ [m] with Tr[Miρ] > 1 − ϵ (Case 1) or

∑
i Tr[Miρ] ≤ δ (Case 2). Then consider

the process where m measurements are chosen (with replacement) at random from M and

ITCS 2024
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applied in sequence to a quantum system initially in state ρ: in Case 1, some measurement
in the sequence accepts with probability at least (1 − ϵ)2/4.5; in Case 2, the probability of any
measurement accepting is at most 2δ.

We also give a Quantum OR procedure which performs better than the random measurement
procedure, and which can be used when the measurements M1, . . . ,Mm are not projec-
tive. However this procedure requires more complicated measurements than the random
measurement procedure above. Details of this test are given in Section 4.1.

In Section 5 we introduce the problem of Quantum Event Finding. This is a variant of
the Quantum OR problem where the goal is to accept or reject as in Quantum OR and
additionally, in the accepting case, to return a measurement Mi such that Tr[Miρ] is large.
We then show the Quantum OR procedure introduced in Section 4.1 can be extended to
solve Quantum Event Finding in the case when the total weight of undesirable events is
bounded by a constant. Combining this with techniques from Section 3.3, we also show that
an algorithm similar to Aaronson’s original Quantum OR algorithm halts on a desirable
measurement with constant probability (again provided the total weight of undesirable events
is bounded by a constant).

▶ Theorem 3 (Random Measurement Event Finding). Let M = {M1,M2, . . . ,Mm} be a set
of two outcome measurements. Let ρ be a state such that either there exists an i ∈ [m] with
Tr[Miρ] > 1 − ϵ (Case 1) or

∑
i Tr[Miρ] ≤ δ (Case 2), and let

β =
∑

i:Tr{Miρ}≤1−ϵ

Tr[Miρ] . (4)

Then if measurements are chosen uniformly at random (with replacement), in Case 1, with
probability at least (1 − ϵ)7/(1296(1 + β)3), at least one measurement accepts and the first
accepting measurement satisfies Tr[Miρ] ≥ 1 − ϵ. In Case 2, a measurement accepts with
probability at most 2δ.

In Section 6, we consider the similar problem of Quantum Threshold Search, introduced
in Ref. [5]. We begin by extending the event finding results to show that independent of β,
the distribution over measurements output by the procedure is correlated with the relative
magnitude of Tr[Miρ]. We leverage this to state a novel threshold search algorithm based
on blended (and random) measurements and prove that it requires O(log2 m) copies of the
unknown state ρ, matching the best known upper bound.

▶ Theorem 4 (Random Measurement Threshold Search). Let M = {M1,M2, . . . ,Mm} be a
set of two-outcome measurements and ρ be an unknown quantum state. Consider the process
where a uniformly random threshold θ ∈ [2/5, 3/5] is chosen, then m measurements are
chosen (with replacement) at random from M, and the corresponding binomial measurements
(with threshold θ) are applied in sequence to a quantum state initially in ρ⊗O(log2(m)), halting
if any measurement accepts. If there is a measurement in M satisfying Tr[Miρ] ≥ 3/4, then
this procedure halts on a measurement satisfying Tr[Miρ] ≥ 1/3 with constant probability.

We believe that while this algorithm is no longer online, as it requires measurements
to be made in random order, it represents a promising path towards improving the upper
bounds on shadow tomography.

The extended version of this paper also discusses an additional Event Learning problem
called Quantum Mean Estimation.
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2 Notation and Preliminaries

A quantum system R (as indicated by the font) is a named finite dimensional complex Hilbert
space. Given two quantum systems A and B, denote by AB the tensor product of the two
associated Hilbert spaces. For a linear operator L acting on system R, we sometimes use the
notation LR to indicate that L acts on system R, and we similarly use ρR to denote that ρ is
a state in the quantum system R. When clear from context, we drop the system subscript.
We write Tr[·] to mean the trace, and TrR[·] to mean the partial trace over system R.

Given a linear operator X, define ∥X∥1 = Tr(|X|) to be its trace norm. For two linear
operators X and Y acting on the same system, we say that X ≤ Y is Y −X is a positive semi-
definite operator. For two quantum states ρ and σ, we define the fidelity F (ρ, σ) =

∥∥√
σ

√
ρ
∥∥

1.
We denote by 1 the identity operator, where the system it acts on should be apparent from
context.

A quantum measurement is defined by a finite set of positive semi-definite operators
{
√
Mi}i acting on the same quantum system, satisfying

∑
i Mi = 1, where each

√
Mi is

associated with outcome i. When there are 2 outcomes in a measurement, described by
the matrices {

√
M,

√
1 −M}, we refer to the resulting measurement as “the two-outcome

measurement M”. For two-outcome measurements, we refer to the
√
M outcome as the

“accepting” outcome, and the
√

1 −M outcome as the “rejecting” outcome. We now state
the Gentle Measurement Lemma [12, Lemma 9.4.1] formally.

▶ Lemma 5 (Gentle Measurement Lemma). Let ρ be a quantum state and 0 ≤ M ≤ 1 be a
two-outcome measurement. Let ϵ := Tr[Mρ] be the accepting probability of the measurement
on a quantum system in state ρ and

ρ′ :=
√

1 −Mρ
√

1 −M

Tr[(1 −M)ρ] , (5)

be the post measurement state when the reject outcome is observed. Then

∥ρ− ρ′∥1 ≤ 2
√
ϵ . (6)

3 Gentle Measurement Lemmas

In this section, we prove that blended and random sequences of measurements obey a variant
of the gentle measurement lemma. These results will be core mathematical tools in showing
that algorithms presented in later sections work.

3.1 Technical Lemmas
Many of the results in this paper are derived from general statements about positive semi-
definite (PSD) matrices. In particular, the following lemma, along with the definition of
blended measurements, are the core ingredients in our quantum OR results.

▶ Lemma 6. Let X and Y be PSD matrices a A = {A1, A2, . . . , Am} be an arbitrary set of
matrices and {p1, p2 . . . , pm} be a set of real numbers with pi ≥ 0 for all i and

∑
i pi = 1.

Then∑
i,j∈[m]

pipj Tr
[
XAiY A

†
j

]
≤
∑

i∈[m]

pi Tr
[
XAiY A

†
i

]
. (7)

ITCS 2024
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Proof. The result follows from Cauchy-Schwarz applied to the Hilbert-Schmidt inner product.∑
i,j∈[m]

pipj Tr
[
XAiY A

†
j

]
(8)

=
∑

i,j∈[m]

pipj

〈√
Y A†

i

√
X
∣∣∣√Y A†

j

√
X
〉

(9)

≤
∑

i,j∈[m]

pipj

√〈√
Y A†

i

√
X
∣∣∣√Y A†

i

√
X
〉〈√

Y A†
j

√
X
∣∣∣√Y A†

j

√
X
〉

(10)

≤
∑

i,j∈[m]

pipj

2

(〈√
Y A†

i

√
X
∣∣∣√Y A†

i

√
X
〉

+
〈√

Y A†
j

√
X
∣∣∣√Y A†

j

√
X
〉)

(11)

=
∑

i

pi

〈√
Y A†

i

√
X
∣∣∣√Y A†

i

√
X
〉

(12)

=
∑

i

pi Tr
[
XAiY A

†
i

]
, (13)

where we used Cauchy-Schwarz on the second line, the arithmatic-geometric mean inequality
on the third, and the fact that

∑
i pi = 1 on the fourth. ◀

We can apply this to prove a corollary more suited to the randomized measurement
setting. Before this, we introduce some notation useful for keeping track of the matrix
products that appear when analyzing random and blended measurements.

▶ Definition 7. Given a set of matrices A = {A1, A2, . . . , Am} define the set of matrix
products

T (k)
A =

{
k∏

α=1
Aiα

}
i⃗∈[m]k

. (14)

where use the notation i⃗ = (i1, i2, . . . , ik) to label components of a vector i⃗. T (k)
A contains

possible length k products of matrices drawn with replacement from the set A.

▶ Corollary 8. Let ρ be a state, X be a PSD matrix and M be a set of m self-adjoint
matrices. Define T (k)

M as in Definition 7. Then

m−k
∑

T ∈T (k)
M

Tr
[
XTρT †] ≥ m−2k

∑
T,S∈T (k)

M

Tr
[
XTρS†] = m−2k

∑
T,S∈T (k)

M

Tr[XTρS] . (15)

Proof. The first inequality is immediate from Lemma 6 with Y = ρ, A = T (k)
M and p1 =

p2 = . . . = pmk = m−k. The second equality holds because

(
T (k)

M

)†
=


(

k∏
α=1

Miα

)†
i⃗∈[m]k

=
{

k∏
α=1

Mi′
α

}
i⃗′∈[m]k

= T (k)
M . (16)

◀

3.2 Gentle Blended Measurements
In this section we prove a number of results about repeated blended measurements. We
begin by defining blended measurements.
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▶ Definition 9 (Blended Measurement). Given a set of two outcome measurements M =
{M1,M2, . . . ,Mm} the blended measurement B(M) is defined to be the m + 1 outcome
measurement with measurement operators

E0 =

√√√√1 −
m∑

i=1

Mi

m
and Ei =

√
Mi

m
for i ∈ {1, . . . ,m} . (17)

We refer to outcome E0 as the “reject” outcome, and E1, . . . , Em as “accepting” outcomes.

We will be particularly interested in the analyzing what happens when k blended measure-
ments are applied in sequence to a quantum system initially in state ρ. In preparation for this,
we define the state ρ(k)

B(M) and probability AcceptB(M)(k) to be the blended measurement
analogues of the state ρ(k) and probability Accept(k) introduced in Section 1.

▶ Definition 10. Given a state ρ and set of two outcome measurements M let the state
ρ

(k)
B(M) be the resulting state when the measurement B(M) is applied k times in sequence to a

quantum system initially in state ρ and the reject outcome is observed each time, so

ρ
(k)
B(M) = Ek

0ρE
k
0

Tr
[
Ek

0ρE
k
0
] . (18)

Let AcceptB(M)(k) be the probability that at least one accepting outcome is observed when
the measurement B(M) is applied k times in sequence to a quantum system in state ρ

(equivalently, the probability that not all outcomes observed are reject), so

AcceptB(M)(k) = 1 − Tr
[
Ek

0ρE
k
0
]
. (19)

When the set of measurements M is clear from context we will refer to these objects using
the simplified notation ρ

(k)
B and AcceptB(k).

▶ Remark 11. We can also write AcceptB(k) as

AcceptB(k) =
k−1∑
i=0

(1 − AcceptB(i)) Tr
[
(1 − E2

0)ρ(i)
B

]
. (20)

We note that (unlike in the random measurements case) the states ρ and ρ(k)
B are related

in a very simple way – via conditioning on the single PSD matrix Ek
0 . We can use this

observation to prove some basic results about ρ(k)
B and AcceptB(k).

▶ Lemma 12 (Gentle Blended Measurements). Let ρ be a state, M be a set of two outcome
measurements and define ρ(k)

B and AcceptB(k) as in Definition 10. Then,∥∥∥ρ(k)
B − ρ

∥∥∥
1

≤ 2
√

AcceptB(k) . (21)

Proof. Immediate from the gentle measurement lemma. ◀

▶ Lemma 13. For any blended measurement B(M) and states ρ(k)
B defined as in Lemma 12

we have

Tr
[
E2

0ρ
(k)
B

]
≥ Tr

[
E2

0ρ
(k−1)
B

]
(22)

where k ≥ 1 and ρ(0)
B = ρ.

Proof. Immediate since conditioning on a measurement outcome can only increase the
probability of that measurement outcome occurring again. See extended version for details.

◀

ITCS 2024
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3.3 Gentle Random Measurements
In this section we apply the tools from Section 3.1, and Section 3.2 to attain bounds on the
disturbance caused by and accepting probability of repeated random measurements. First,
we show how the notation introduced in Definition 7 can be used to describe the quantities
Accept(k) and ρ(k) defined in Section 1.
▶ Remark 14. Let M = {M1,M2, . . . ,Mm} be a set of two outcome projective measurements
and ρ be a state. Define the set of matrices M = {1 −M1, 1 −M2, . . . , 1 −Mm}. Then we
can restate Accept(k) and ρ(k) from Theorem 1 as

Accept(k) = 1 − 1
mk

∑
T ∈T (k)

M

Tr
[
TρT †] and (23)

ρ(k) = 1
mk(1 − Accept(k))

∑
T ∈T (k)

M

TρT † . (24)

▶ Lemma 15. Given a state ρ and set of two outcome projective measurements M, define
ρ(k) as in Section 1 (so ρ(k) gives the state of the system initially in state ρ after k random
measurements reject) and AcceptB(k) as in Section 3.2 (so AcceptB(k) gives the probability
that at least one of k repeated blended measurements applied to ρ accepts). Then

F
(
ρ(k), ρ

)
≥ 1 − AcceptB(k) . (25)

Proof. We first prove the result when ρ = |ψ⟩⟨ψ| is a pure state. In that case, we find

F
(
ρ, ρ(k)

)2
= ⟨ψ|ρ(k)|ψ⟩ (26)

= 1
mk

∑
T ∈T (k)

M

Tr
[
|ψ⟩⟨ψ|T |ψ⟩⟨ψ|T †](1 − Accept(k))−1 (27)

≥ 1
m2k

∑
T,S∈T (k)

M

Tr[|ψ⟩⟨ψ|T |ψ⟩⟨ψ|S](1 − Accept(k))−1 (28)

=

 1
mk

∑
T ∈T (k)

M

Tr[T |ψ⟩⟨ψ|]


2

(1 − Accept(k))−1 (29)

= (1 − AcceptB(k))2 (1 − Accept(k))−1 ≥ (1 − AcceptB(k))2
. (30)

In the derivation above we used Remark 14 (Equation (24)) to go from the first line to the
second, Corollary 8 to go from the second line to the third. Then we replace the definition of
AcceptB(k) from Definition 10 (Equation (19)) to get the desired result.

As in the proof of the Gentle Measurement Lemma, when ρ is a mixed state we can
recover the same bound by applying the previous proof to a purification of ρ. The result
follows from Uhlmann’s theorem [11]. See extended version for details. ◀

With this we can bound the damage caused by random measurements by the accepting
probability of a blended measurement procedure.

▶ Corollary 16. Given a state ρ and set of two outcome projective measurements M, define
ρ(k) as in Section 1 and AcceptB(k) as in Section 3.2. Then∥∥∥ρ− ρ(k)

∥∥∥
1

≤ 2
√

2 AcceptB(k) . (31)
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Proof. Immediate from the Fuchs-Van de Graaf Inequalities. See extended version for
details. ◀

Now we relate the acceptance probability of the random measurement procedure to the
accept probability of the blended measurement procedure. We begin with a slight restatement
of Corollary 8 which gives a relationship between the probability of measurement outcomes
being observed on states ρ(k) and ρ

(2k)
B .

▶ Remark 17. We can expand out the definition of ρ(2k)
B in Definition 10 to get the following

formulation:

ρ
(2k)
B = m−2k

1 − AcceptB(2k)

 ∑
T,S∈T (k)

M

TρS

 . (32)

▶ Corollary 18. For any state ρ and set of two outcome projective measurements M define
states ρ(k), ρ(k)

B and probabilities Accept(k) and AcceptB(k) as in Section 1 and Section 3.2.
Also, let X be an arbitrary PSD matrix. Then

(1 − Accept(k)) Tr
[
Xρ(k)

]
≥ (1 − AcceptB(2k)) Tr

[
Xρ

(2k)
B

]
. (33)

Proof. Immediate from Remark 14 (Equation (24)), Corollary 8, and Remark 17. See
extended version for details. ◀

Next, we show that Corollary 18 gives an easy upper bound Accept(k) in terms of
AcceptB(k). This bound is not required for the proof of Theorem 1, but does give a useful
relationship between the random and blended measurement procedures which we will use in
future sections.

▶ Theorem 19. For any state ρ and set of two outcome projective measurements M define
Accept(k), AcceptB(k) as in Section 1 and Section 3.2. Then we have

1 − Accept(k) ≥ 1 − AcceptB(2k) ≥ (1 − AcceptB(k))2 . (34)

Proof. Omitted as it is not necessary for Theorem 1. See extended version of details. ◀

We can also use Corollary 18 to lower bound of Accept(k) in terms of AcceptB(k). This is
the direction required for the proof of Theorem 1.

▶ Theorem 20. For any state ρ and set of two outcome projective measurements M define
Accept(k), AcceptB(k) as in Section 1 and Section 3.2. We have

Accept(k) ≥ 1
2 AcceptB(2k) (35)

Proof. Define M = 1 − E2
0 . Note that for any state σ, Tr[Mσ] gives the probability that

the blended measurement B(M) results in an accepting outcome, which is equal to the
probability that a measurement chosen uniformly at random from M accepts on σ. We
calculate
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Accept(k) =
k−1∑
i=0

(1 − Accept(i)) Tr
(

Mρ(i)
)

(36)

≥
k−1∑
i=0

(1 − AcceptB(2i)) Tr
(

Mρ
(2i)
B

)
(37)

≥ 1
2

2k−1∑
j=0

(1 − AcceptB(j)) Tr
(

Mρ
(j)
B

)
(38)

= 1
2 AcceptB(2k) . (39)

The first and last lines follows from a telescoping sums argument for both blended and
randomized measurements. The second line is a direct application of Corollary 18, and the
final line follows from Lemma 13. ◀

Finally, we are in a position to prove Theorem 1. We begin by repeating the theorem.

▶ Theorem 1. Let M = {M1,M2, . . . ,Mm} be a set of two outcome projective measurements,
and ρ be a pure state. Consider the process where a measurement from the set M is selected
universally at random and applied to a quantum system initially in state ρ. Let Accept(k) be
the probability that at least one measurement accepts after k repetitions of this process, and
let ρ(k) be the state of this quantum system after k repetitions where no measurement accepts.
Then∥∥∥ρ− ρ(k)

∥∥∥
1

≤ 4
√

Accept(⌈k/2⌉) ≤ 4
√

Accept(k) . (40)

Proof. Immediate from Corollary 16 and Theorem 20. See extended version for details. ◀

4 Algorithms for Quantum OR

In our first application of the results from Section 3.2 and Section 3.3, we give two different
procedures for Quantum OR. We call a procedure a “Quantum OR” if it has properties
similar to Corollary 11 from Ref. [7], which we restate here.

▶ Theorem 21 (Corollary 11 From Ref. [7]). Let Λ1,Λ2, . . . ,Λm be a sequence of projectors
and fix ϵ > 1/2, δ. Let ρ be a state such that either there exists an i ∈ [m] with Tr[Λiρ] > 1−ϵ

(Case 1) or Ej [Tr[Λjρ]] ≤ δ (Case 2). Then there exists a test that uses one copy of ρ and:
in Case 1, accepts with probability (1 − ϵ)2/7; in Case 2, accepts with probability at most
4δm.

4.1 Repeated Blended Measurements

We first show that repeated application of the blended measurement defined in Section 3.2
yields a Quantum OR protocol. We define the protocol next.

The following result shows that Algorithm 1 solves the Quantum OR problem and obtains
better parameters than the protocol given in Ref. [7].
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Algorithm 1 Blended Measurement Quantum OR.

Input: A classical description of a set of two outcome measurements M = {M1,M2, . . . ,Mm}
and a single copy of a state ρ.

Output: accept or reject.
1. Prepare a quantum system in state ρ.
2. Repeat m times:

a. Perform the blended measurement B(M) on the state. If the measurement accepts,
return accept.

3. Return reject.

▶ Theorem 22 (Blended Quantum OR). Let M = {M1,M2, . . . ,Mm} be a set of two outcome
measurements and let ρ be a quantum state. Define

p↓ = max
i

{Tr[Miρ]} , p↑ =
∑

i

Tr[Miρ] , and (41)

paccept = P (Algorithm 1 accepts with input M and ρ) . (42)

Then the following inequalities hold:

p2
↓/4 < paccept < p↑ . (43)

Proof. We first prove the upper bound. Let preject = 1 − paccept be the probability the
algorithm rejects, and let preject(k) be the probability that the algorithm does not accept
on the kth measurement, conditioned on the algorithm not accepting any of the i − 1
measurements prior. We note

preject(1) = 1
m

∑
i

(1 − Tr[Miρ]) = 1 − p↑

m
and preject(k) ≥ preject(1) . (44)

Plugging these into the definition of paccept

paccept = 1 − preject = 1 −
m∏

k=1
preject(k) ≤ 1 −

(
1 − p↑

m

)m

≤ 1 − e−p↑ ≤ p↑ . (45)

We first apply Lemma 13, then the definition of ex and the inequality 1 + x ≤ ex.
We now prove the lower bound. First, for ease of notation, we relabel the measurements

in M so that p↓ = Tr[M1ρ]. Then let RejectB(k) be the probability that the first k
measurements of Algorithm 1 reject (with RejectB(0) = 1), and ρ

(k)
B be the state of the

quantum system initially in state ρ conditioned on the first k measurements of Algorithm 1
rejecting (with ρ(0)

B = ρ). By definition, the probability of accepting is at least the sum over
all rounds of the probability the algorithm accepts for the first time on a given round with
measurement M1, so

paccept ≥ 1
m

m−1∑
k=0

RejectB(k) Tr
[
M1ρ

(k)
B

]
. (46)

In order to return reject the algorithm must at least reject on the first k measurements, so

RejectB(k) ≥ preject = 1 − paccept . (47)
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Then applying Lemma 12 and the operational definition of the trace distance to Equation (46)
along with the previous two facts gives

paccept ≥ 1
m

m−1∑
k=0

RejectB(k)
(

Tr[M1ρ] −
√

1 − RejectB(k)
)

(48)

≥ (1 − paccept)
(
p↓ − √

paccept

)
, (49)

where the last two lines simply apply Equation (47). Rearranging terms we arrive at the
following

p↓ ≤ paccept

1 − paccept
+ √

paccept . (50)

We note that x
1−x ≤

√
x whenever x ≤ 1

2 (3 −
√

5) ≈ 0.38 (take x to be paccept). Therefore,
if paccept ≤ 0.38, we have paccept ≥ p2

↓/4. If paccept is greater than 0.38 then it is still larger
than min(p2

↓/4, 0.38) = p2
↓/4, which completes the lower bound. ◀

▶ Corollary 23. In the same setting as Theorem 21, but with Λ1, . . . ,Λm arbitrary (i.e. not
necessarily projective) two outcome measurements, there exists a test that uses one copy of ρ
and accepts with probability at least (1 − ϵ)2/4 in case 1 and at most δn in case 2.

Proof. Theorem 22 shows that Algorithm 1 satisfies the required bounds. ◀

4.2 Repeated Random Measurements
Motivated by the original Quantum OR claimed in Ref. [2], we show that repeated random
measurements still yield a (weaker) Quantum OR. The Random Measurement Quantum OR
protocol is described in Algorithm 2.

Algorithm 2 Random Measurement Quantum OR.

Input: A black-box implementation of each measurement in a set of two outcome measure-
ments M = {M1,M2, . . . ,Mm} and a single copy of a state ρ.

Output: accept or reject.
1. Prepare a quantum system in state ρ.
2. Repeat m times:

a. Pick a random measurement Mi ∈ M.
b. Perform the measurement Mi on the current state. If the measurement accepts, return

accept.
3. Return reject.

▶ Theorem 24 (Random Quantum OR). Let M = {M1,M2, . . . ,Mm} be a set of two outcome
projective measurements, and ρ be a state. Then using the same definitions for p↓ and p↑
as in Theorem 22 and letting paccept = P(Algorithm 2 accepts with inputs M and ρ), the
following inequalities hold:

min
(
p2

↓/4.5,
3 −

√
5

4

)
≤ paccept ≤ 2p↑ . (51)

Proof. We omit the proof of Theorem 24, as it mirrors the proof of Theorem 22 closely. See
extended version for details. ◀
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We note that the Random Quantum OR performs worse than the Blended Quantum OR
on both the accept and reject case, but performs better in both cases than the test from
Ref. [7]. The Random Quantum OR has additional advantages over both protocols, in that
it does not require knowledge of a circuit decomposition of the measurements Mi and can
even apply the measurements Mi as a black box.

▶ Corollary 25. In the same setting as Theorem 21, there exists a test that uses one copy
of ρ, does not require an efficient representation of the measurements Λi, and accepts with
probability at least 3−

√
5

4 (1 − ϵ)2 in case 1 and at most 2δn in case 2.

Proof. Theorem 24 shows that Algorithm 2 satisfies the required bounds. ◀

5 Quantum Event Finding

In this section we consider a variant of the quantum OR task in which the goal, given a set
of two outcome measurements M and sample access to a state ρ, is not just to decide if there
exists a measurement Mi ∈ M with Tr[Miρ] large, but also to find such a measurement if
one exists. We show that the blended measurement procedure described in the previous
section solves with problem if certain conditions are met.

▶ Theorem 26. Let M = {M1,M2, . . . ,Mm} be a set of two outcome measurements. Let
ρ be a state such that either there exists an i ∈ [m] with Tr[Miρ] > 1 − ϵ (Case 1) or∑

i Tr[Miρ] ≤ δ (Case 2). Also define

β =
∑

i: Tr[Miρ]<1−ϵ

Tr[Miρ] . (52)

Then if the blended measurement B(M) is applied m times in sequence to a quantum system
initially in state ρ: in Case 1, with probability at least

(1 − ϵ)3

12(1 + β) , (53)

at least one accepting outcome is observed and the first accepting outcome observed corresponds
to a measurement Mi with Tr[Miρ] > 1 − ϵ; in Case 2, an accepting outcome is observed with
probability at most δ.

By relating blended and random measurements as in the proof of Theorem 24, we can
also show that the random measurement procedure solves this problem in the same regime
as before, but with worse constants and scaling in both ϵ and β.

▶ Theorem 27. Let M = {M1,M2, . . . ,Mm} be a set of two outcome projective measure-
ments, and define ρ, β, ϵ and δ as above. Then, if measurements are chosen at random
(with replacement) from M and applied to a quantum system initially in state ρ: in Case 1,
with probability at least (1 − ϵ)7/(1296(1 + β)3), at least one measurement accepts and the
first accepting measurement is a measurement Mi ∈ M with Tr[Miρ] > 1 − ϵ; in Case 2, a
measurement accepts with probability at most 2δ.

We begin by proving Theorem 26.

Proof (Theorem 26). The upper bound on the accepting probability in Case 2 follows
immediately from the upper bound on the accepting probability in Case 2 of the blended
measurement quantum OR procedure stated in Theorem 22.
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To prove the lower bound in Case 1 we follow a procedure similar to the one used in the
proof of Theorem 22. First, for ease of notation, relabel measurements so that Tr[Mjρ] > 1−ϵ
if and only if j ≤ k for some constant k. Similar to before, let RejectB(i) be the probability
that the blended measurement B(M) is applied i times in sequence to a quantum system
initially in state ρ and no measurement accepts, let AcceptB(i) = 1 − RejectB(i), and let
ρ

(i)
B be the state of the quantum system after i blended measurements all reject. Also let

ReturnB(i) be the event that the blended measurement procedure accepts for the first
time on the i’th measurement and SuccessB(i) be the event that the blended measurement
procedure accepts for the first time on the ith measurement on a outcome corresponding
to a measurement Mj with Tr[Mjρ] > 1 − ϵ. Then we can lower bound the probability of
success on a measurement conditioned on no previous measurement accepting

P

SuccessB(i)
∣∣∣ ∧

j<i

¬ ReturnB(j)

 ≥ k

m

(
1 − ϵ−

√
AcceptB(i− 1)

)
(54)

where the inequality follows from Lemma 12. Additionally, Lemma 13 tells us that

P[ReturnB(i)] ≤ (k + β)/m . (55)

Combining these two bounds gives

P[SuccessB(i)| ReturnB(i)] ≥
1 − ϵ−

√
AcceptB(i− 1)
1 + β

. (56)

But we also have that

P[ReturnB(i)] = AcceptB(i) − AcceptB(i− 1) . (57)

Then we can bound the overall fraction of the first accepting events in which the accepting
outcome corresponds to a measurement Mi with Tr[Miρ] > 1 − ϵ as∑m

i=1 P[SuccessB(i)]∑m
i=1 P[ReturnB(i)]

=
∑m

i=1 P[ReturnB(i)]P[SuccessB(i)| ReturnB(i)]∑m
i=1 P[ReturnB(i)]

(58)

≥ 1 − ϵ

3(1 + β) . (59)

Where the inequalities come from the observation that the quantity being summed is a
increasing function of AcceptB(i). Combining this bound with the lower bound on the
accepting probability of the repeated blended measurement given in Theorem 22 we see
that, in Case 1, the probability that the repeated blended measurement accepts at least once
and the first outcome it accepts corresponds on a measurement Mi with Tr[Miρ] > 1 − ϵ is
bounded below by

(1 − ϵ)
3(1 + β)

(1 − ϵ)2

4 ≥ (1 − ϵ)3

12(1 + β) , (60)

as claimed. ◀

Proof of Theorem 27. We omit the proof of Theorem 27 for brevity, as it mirrors closely
the proof of Theorem 26. See extended version for details. ◀
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6 Quantum Threshold Search

In Section 5, we were able to show that in certain cases performing repeated blended or
random measurements solves event finding which we defined to be the problem of identifying
an event that has a high probability of accepting on an unknown state, assuming such a
measurement exists. In this section we present a finer-grained version of that analysis. We
show that the average accepting probability of the measurement returned by the blended
(or random) measurement procedure is related to the average accepting probability of the
measurement returned by repeatedly applying (random selected) measurements to fresh
copies of the unknown state and returning the first measurement that accepts. In the later
part of this section, we show we can use this stronger event finding lemma to improve our
blended measurement protocol to a threshold search protocol which uses O(log2(m)) copies
of the unknown state.

6.1 A Stronger Event Finding Lemma
We will state the stronger event finding lemma in terms of averages γ, and γ̃B

j , which we now
define. Fix a set M = {Mi}i∈[m] of measurements that one wants to perform event finding
over, and let ρ ∈ Cd×d be an unknown quantum state. Then define the following quantity
(that depends implicitly on M).

γ =
∑

i∈[m] Tr[Miρ]2∑
i∈[m] Tr[Miρ] . (61)

To gain some intuition for γ, consider the following two-step procedure: (1) select a measure-
ment Mi at random from M and apply it to ρ; (2) return Mi and success if the measurement
accepts and return failure otherwise. The quantity γ is the average accepting probability of
the measurement returned by this procedure conditioning on success.

We are interested in the average accepting probability of the measurement returned
by the m round blended event finding procedure (in the event the blended event finding
procedure does not return a measurement we say it has returned a measurement with
accepting probability zero). Denoting this quantity by γ̃B we see we can write it as.

γ̃B =
m∑

i=1

m−1∑
j=0

(1 − AcceptB(j))
Tr
[
Miρ

(j)
B

]
Tr[Miρ]

m
. (62)

We now show that this quantity is lower bounded by a polynomial function of γ.

▶ Lemma 28. Let M be a set of measurements, and ρ be an unknown quantum state. Let
γ and γ̃B be defined as in Equation (61) and Equation (62). Then the following inequality
holds: γ̃B ≥ γ3

8 (1 − γ2/4)

Proof. Fix a value of j and consider the following equation:

m∑
i=1

(1 − AcceptB(j))
Tr
[
Miρ

(j)
B

]
Tr[Miρ]

m
(63)

≥
m∑

i=1
(1 − AcceptB(j))Tr[Miρ]

m

(
Tr[Miρ] −

√
AcceptB(j)

)
(64)

= AcceptB(0)(1 − AcceptB(j))
(
γ −

√
AcceptB(j)

)
. (65)
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In going from the first to second line, we apply the gentle blended measurement lemma
(Lemma 12) and the operational definition of the trace distance. We then use the definition
of AcceptB(0), which is the denominator in the definition of γ. Since we are trying to lower
bound the sum, let m∗ be the smallest index such that AcceptB(m∗) ≥ γ2/4. By Theorem 22,
this index is guaranteed to exist. Then taking the sum up to m∗, we get

γ̃B ≥
m∗−1∑
j=0

m∑
i=1

(1 − AcceptB(j))
Tr
[
Miρ

(j)
B

]
Tr[Miρ]

m

≥
m∗−1∑
j=0

AcceptB(0)
(
γ −

√
AcceptB(j)

)
(1 − AcceptB(j))

= γ3

8 (1 − γ2/4) .

We first substitute the lower bound for each individual j. Then we use the fact that for all
j < m∗, AcceptB(j) < γ2/4 to turn γ −

√
AcceptB(j) into γ/2. Finally we use the fact that

every AcceptB(i) ≤ iAcceptB(0) to go from m∗ AcceptB(0) down to AcceptB(m∗), and then
the assumption that AcceptB(m∗) ≥ γ2/4. This completes the proof. Note that γ ≤ 1, so we
could take (1 − γ2/4) ≥ 3/4 ≥ 1/2 to get a cleaner looking lower bound of γ3/16. ◀

Similar to the blended case, we can prove a strong event finding lemma for sequences of
random measurements. Recall that ρ(j) is the post-measurement state after applying j many
random measurements from M and only seeing rejects. We similarly define γ̃, the average
accepting probability of the measurement returned by m rounds of random measurements.

γ̃ =
m−1∑
j=0

(1 − Accept(j))
(∑m

i=1 Tr[Miρ] Tr
[
Miρ

(j)]
m

)
. (66)

▶ Lemma 29. Let M be a set of projective measurements and ρ be an unknown state. Let γ
and γ̃ be as defined in Equation (61) and Equation (66). Then the following inequality holds:
γ̃ ≥ γ3

16 (1 − γ2/4).

Proof. Omitted as the proof mirrors closely the proof of Lemma 28, but with Corollary 16
instead of Lemma 12. See extended version for details. ◀

6.2 Threshold Search via Repeated Blended Measurements
In the previous section, we strengthened the quantum event finding lemma A related problem
to quantum event finding is threshold search [5]. In threshold search, one is asked to output
a measurement satisfying Tr[Miρ] ≥ 1/3 with constant probability, given the fact that there
exists a measurement with Tr[Miρ] ≥ 3/4. Ref [5] show that if this problem can be solved
for projective measurements using k copies of the unknown state, then there is an algorithm
for Shadow Tomography [3] that uses O

(
log(d)L(k+L)

ϵ4

)
copies of the unknown state, where

L = log
(

log d
δϵ

)
. In this section, we show that the repeatedly applying blended or random

measurements, while “boosting” around a uniformly random threshold, solves threshold
search using O(log2(m)) copies of the unknown state, matching the best known shadow
tomography upper bounds from Ref. [5].

We first introduce the binomial measurement, which boosts the sensitivity of a measure-
ments to values far from a threshold θ.



A. B. Watts and J. Bostanci 97:17

▶ Lemma 30. Let ρ ∈ Cd×d be a quantum state and A be a quantum event. Let n ∈ N
and θ ∈ [0, 1] be an arbitrary threshold, and let S ∼ Binom(n,Tr[Aρ]). Then there exists a
quantum event B(A,n, θ) ∈ (Cd×d)⊗n such that

Tr
[
B(A,n, θ)ρ⊗n

]
= P[S ≥ θn] . (67)

We call the measurement B(A,n, θ) the binomial measurement of A over n registers with
threshold θ. If A is projective then so is B(A,n, θ).

Given a set of measurement M for threshold search and a threshold θ, we define the set of
binomial measurements with threshold θ using n copies, B(M, n, θ) = {B(Mi, n, θ) : i ∈ [m]}.
We can similarly define the blended measurement corresponding to B(M, n, θ). Consider the
following algorithm for threshold search.

Algorithm 3 Blended Measurement Threshold Search.

Input: A classical description of a set of two outcome measurements M = {M1,M2, . . . ,Mm}
and n = 100 log2 m copies of an unknown state ρ.

Output: Measurement Mi or reject.
1. Select a random θ ∈ [2/5, 3/5].
2. Repeat m times:

a. Perform the blended measurement B(B(M, n, θ)) on n copies of the state. If the
measurement accepts, return the accepting outcome.

3. Return reject.

In order to show that the algorithm works, we first show that if there is a measurement
satisfying Tr[Miρ] ≥ 3/4 and γ̃B ≥ c (for any constant c) for a fixed choice of θ, the algorithm
outputs a measurement satisfying Tr[Miρ] ≥ 1/3 with probability at least c− 1/m. Then,
we show that with constant probability (over the choice of the threshold θ), γ ≥ 1/8, which
implies a constant lower bound for γ̃B by Lemma 28.

▶ Lemma 31. Fix a choice of threshold θ, let γ̃B be defined as in Equation (62) with respect
to B(M, 100 log2(m), θ). Then if there exists a constant c satisfying γ̃B ≥ c, then Algorithm 3
outputs a measurement satisfying Tr[Miρ] ≥ 1/3 with probability at least c− 1/m.

Proof. γ̃B is the average value of Tr[B(Mi, n, θ)ρ⊗n] over the output distribution of the
blended measurement threshold search algorithm. For all measurements satisfying Tr[Miρ] <
1/3, we know that the binomial measurement satisfies Tr[B(Mi, n, θ)ρ⊗n] < 1/m. Let pb

be the probability of outputting a measurement satisfying Tr[Miρ] < 1/3, and pg be the
probability of outputting a measurement satisfying Tr[Miρ] ≥ 1/3. Then we have

pg ≥ c− pb/m ≥ c− 1/m . (68)

Thus the probability of outputting a measurement satisfying Tr[Miρ] ≥ 1/3 is at least
c− 1/m. ◀

Up to this point, we have shown γ̃B is lower bounded by a function of γ, and that having
a constant lower bound for γ̃B implies a constant success probability for the algorithm. All
that remains to be seen is that γ is constant for most choices of the threshold θ. In order to
show that most thresholds θ are “good”, we define some functions and sets that are going to
be used in heavily. Given two numbers, α and β, define the set M[α, β] to be as follows

M[α, β] = {i : α ≤ Tr[Miρ] ≤ β} . (69)
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Define n(α, β) to be the size of M[α, β]. We say that a value of θ is “bad” if the following
holds∑

i∈M[0,θ]

exp
(
−100 log2 m(θ − Tr[Miρ])2) ≥ 4n(θ, 1) . (70)

The left hand side is related to the probability that a measurement with accepting probability
below θ will be chose and accepted by the binomial measurement (using k = 100 log2 m

copies of the state), and the right side is related to the probability that a measurement with
accepting probability higher than θ will be chosen. “Good” threshold values are those that
are not bad.

The following claims show that the set of bad measurements has measure bounded by a
constant.

▶ Lemma 32. Assume that for the set of measurements M, n(θ, 1) ≥ 1. Let θ be a bad
threshold, then there exists a number βθ ≤ θ such that

n(βθ, θ) ≥ exp
(
50 log2 m(θ − βθ)2)n(θ, 1) . (71)

Proof. Assume for the sake of contradiction that for all β ≤ θ,

n(β, θ) ≤ exp
(
50 log2 m(β − θ)2) . (72)

We want to arrive at the contradiction with the fact that θ is a bad threshold. To do so, we
can evaluate the left hand side of Equation (70). For ease of notation, let η(x) = n(θ − x, θ),
f(x) = exp

(
−100 log2(m)x2), and f ′(x) = d

dxf(x). Also let L = n(0, θ), and denote by
(yi)L

i=1 the list of Tr[Miρ] for i ∈ M[0, θ], in increasing order. Let xi = θ− yi. Then we have
that ∑

i∈n(0,θ)

exp(−100 log2 m(θ − Tr[Miρ])2) = −
∫ ∞

0
η(x)f ′(x)dx . (73)

Note that for all x > 0 we have f ′(x) = −200 log2(m)x exp
(
−100 log2(m)(x)2) ≤ 0. We can

plug in the assumed upper bound on n(β, θ) = η(θ − β) to obtain∑
i∈n(0,θ)

exp(−100 log2 m(θ − Tr[Miρ])2)

≤ −4 exp
(
−50 log2 mx2)∣∣∣∣∞

0
(74)

= 4 (75)
≤ 4n(θ, 1) . (76)

Here the last line uses the assumption that n(θ, 1) ≥ 1. This contradicts Equation (70),
which proves that a suitable choice of βθ exists. ◀

Now we know that for every bad choice of threshold θ, there is an interval below θ in
which the number of measurements that have accepting probabilities lying in the interval is
exponentially large, compared to the size of the interval. We recursively define the following
sets of intervals, which contain all of the bad thresholds. Let θ0 = max{θ ≤ 2/3 : θ bad}.

θi = max{θ ≤ βθi−1 : θ bad} . (77)

For convenience, define βi = βθi
, and let di = θi − βi. Let N be the total number of θi.

First, we show that the total size of the intervals (squared) lower bounds the number of
measurements contained in intervals.
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▶ Lemma 33. Assume that n(2/3, 1) ≥ 1, then the following bound holds on the number of
measurements contained in the intervals.

N∑
i=0

n(βi, θi) ≥ exp
(

50 log2(m)
∑

i

d2
i

)
. (78)

Proof. We begin by induction. By Lemma 32 and the assumption that n(2/3, 1) ≥ 1 (and
therefore n(θ0, 1) ≥ 1, we have that

n(β0, θ0) ≥ exp
(
50 log2(m)d2

0
)
. (79)

Now assume that the claim holds for the sum from 0 to j − 1, we evaluate the sum up to j
as follows

j∑
i=0

n(βi, θi) = n(βj , θj) +
j−1∑
i=0

n(βi, θi) (80)

≥ exp
(
50 log2(m)d2

j

)
n(θj , 1) +

j−1∑
i=0

n(βi, θi) (81)

≥ exp
(

50 log2(m)
∑

i

d2
i

)
. (82)

Going to the second line we use Lemma 32, and to get to the third line we use the fact that
the interval from θj to 1 contains all of the previous intervals, and the definition of n. ◀

▶ Lemma 34. If n(2/3, 1) ≥ 1, then N ≤ log(m).

Proof. In order to prove the claim, we show by induction that for all j,
∑j

i=0 n(βi, θi) ≥ 2j .
By assumption the assumption that n(2/3, 1) ≥ 1 and Lemma 32, we have that n(β0, θ0) ≥ 1.
Now assume that

∑j−1
i=0 n(βi, θi) ≥ 2j−1. By Lemma 32, for every j, n(βj , θj) ≥ n(θj , 1) ≥∑j−1

i=0 n(βi, θi). So, we have that

j∑
i=0

n(βi, θi) ≥ 2
j−1∑
i=0

n(βi, θi) ≥ 2j . (83)

Because we have m measurements in total, we must have that N ≤ log(m). ◀

▶ Lemma 35. Assume that n(θ, 1) ≥ 1. Then the set of bad thresholds has measure less than
1/6.

Proof. By definition, every bad threshold is contained in some interval [βi, θi], so to upper
bound the measure of bad thresholds, it suffices to upper bound

∑N
i di, given that the sum

of their squares is upper bounded by 1/50 log(m) (from Lemma 33) and N ≤ log(m) (from
Lemma 34). The best value one can achieve for this optimization problem occurs when
N = log(m) and d1 = d2 = . . . = dN =

√
1/50 log2(m). Computing the sum of di, we get

that the measure of bad thresholds is upper bounded by
∑N

i di ≤ log(m)
√

1/50 log2(m) =√
1/50 ≤ 1/6 This completes the proof. ◀

Before proving that the theorem works, we show that a measurement not being bad implies
a lower bound for the value of γ. This implies that if the algorithm chooses a good threshold,
it has a constant success probability for the threshold search problem.
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▷ Claim 36. If γθ < 1/32, then θ is bad.

Proof. Letting n = 100 log2 m, the following is a lower bound for γ by definition∑
i∈M[θ,1] Tr[B(Mi, n, θ)ρ⊗n]2∑

i Tr[B(Mi, n, θ)ρ⊗n] ≤ γ ≤ 1/32 .

The denominator can be re-written as the sum over M[θ, 1] and M[0, θ]. Doing this and
rearranging terms, we get that

1
32

∑
i∈M[0,θ]

Tr
[
B(Mi, n, θ)ρ⊗n

]
≥

∑
i∈M[θ,1]

Tr
[
B(Mi, n, θ)ρ⊗n

]2 − 1
32

∑
i∈M[θ,1]

Tr
[
B(Mi, n, θ)ρ⊗n

]
. (84)

Using the fact that for all indices i ∈ M[θ, 1], we have that 1/2 ≤ Tr
[
B(Mi, n, θ)ρ⊗k

]
≤ 1,

so the first term on the right side is greater than n(θ, 1)/4, and the second term is less than
n(θ, 1)/32, we get the following

1
32

∑
i∈M[0,θ]

Tr
[
B(Mi, n, θ)ρ⊗n

]
≥ 7

32n(θ, 1) . (85)

Finally, by the Chernoff bound on the binomial distribution, setting k = 100 log2 m this is a
lower bound the left hand side of Equation (70), showing that θ is bad. ◁

Note that the contrapositive of the previous claim is that if θ is good, then it must be that
γθ ≥ 1/32. Now we prove that the blended measurement threshold search solves threshold
search.

▶ Theorem 37 (Blended Measurement Threshold Search). Let M be a set of measurements
and ρ be an unknown quantum state. Assume that there is a measurement in M satisfy-
ing Tr[Miρ] ≥ 3/4. Then blended measurement threshold search (Algorithm 3) returns a
measurement satisfying Tr[Miρ] ≥ 1/3 with constant probability.

Proof. By assumption, there exists at least one measurement satisfying Tr[Miρ] ≥ 3/4, so by
Lemma 35, the algorithm selects a good threshold with probability at least 1/5 − 1/6 = 1/30.
If a good threshold is chosen, then γθ ≥ 1/32 from the previous claim. By the strong event
finding lemma (Lemma 28), and Lemma 31, the probability that the algorithm outputs a
measurement satisfying Tr[Miρ] ≥ 1/3, conditioned on selecting a good threshold, is lower
bounded by γ3

16 − 1
m ≥ 1

32000 , for a suitably large choice of m. Putting these two together,
blended measurement threshold search succeeds in finding a measurement with high accepting
probability with probability at least 10−6, which is a constant in m. ◀

6.3 Threshold Search via Repeated Random Measurements
In Section 6.2, we showed that picking a threshold value to boost around uniformly at random
is “good” with constant probability. Leveraging those results, we can prove a sequence of
random measurements also succeeds in performing threshold search. Consider the following
random measurement version of Algorithm 3:

The lower bound on γ and the strong event finding lemma for repeated random measure-
ments hold, so all that remains to be seen is that a constant lower bound on γ̃ implies a
constant success probability.
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Algorithm 4 Random Measurement Threshold Search.

Input: A classical description of a set of two outcome measurements M = {M1,M2, . . . ,Mm}
and n = 100 log2 m copies of an unknown state ρ.

Output: Measurement Mi or reject.
1. Select a random θ ∈ [2/5, 3/5].
2. Repeat m times:

a. Pick a random measurement Mi ∈ M.
b. Perform the measurement B(Mi, n, θ) on the current state. If the measurement accepts,

output Mi.
3. Return reject.

▶ Lemma 38. Fix a choice of threshold θ, let γ̃ be defined as in Equation (66) with respect
to B(M, n, θ). Then if there exists a constant c satisfying γ̃ ≥ c, then Algorithm 4 outputs a
measurement satisfying Tr[Miρ] ≥ 1/3 with probability at least c− 1/m.

Proof. Omitted as it follows closely the proof of Lemma 31. See extended version for
details. ◀

▶ Theorem 39 (Random Measurement Threshold Search). Let M be a set of projective
measurements and ρ be an unknown quantum state. Assume that there is a measurement
in M satisfying Tr[Miρ] ≥ 3/4. Then random measurement threshold search (Algorithm 4)
returns a measurement satisfying Tr[Miρ] ≥ 1/3 with constant probability.

Proof. Follows from Lemma 38 and Lemma 35, mirroring Theorem 37. ◀
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