
A General Constructive Form of Higman’s Lemma
Stefano Berardi #

Dipartimento di Informatica, Università di Torino, Italy

Gabriele Buriola #

Dipartimento di Informatica, Università di Verona, Italy

Peter Schuster #

Dipartimento di Informatica, Università di Verona, Italy

Abstract
In logic and computer science one often needs to constructivize a theorem ∀f∃g.P (f, g), stating
that for every infinite sequence f there is an infinite sequence g such that P (f, g). Here P is a
computable predicate but g is not necessarily computable from f . In this paper we propose the
following constructive version of ∀f∃g.P (f, g): for every f there is a “long enough” finite prefix g0

of g such that P (f, g0), where “long enough” is expressed by membership to a bar which is a free
parameter of the constructive version.

Our approach with bars generalises the approaches to Higman’s lemma undertaken by Coquand–
Fridlender, Murthy–Russell and Schwichtenberg–Seisenberger–Wiesnet. As a first test for our
bar technique, we sketch a constructive theory of well-quasi orders. This includes yet another
constructive version of Higman’s lemma: that every infinite sequence of words has an infinite
ascending subsequence. As compared with the previous constructive versions of Higman’s lemma,
our constructive proofs are closer to the original classical proofs.

2012 ACM Subject Classification Theory of computation → Constructive mathematics; Theory of
computation → Proof theory; Mathematics of computing → Discrete mathematics

Keywords and phrases intuitionistic logic, constructive mathematics, formal proof, inductive predic-
ate, bar induction, well quasi-order, Higman’s lemma

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.16

Acknowledgements The present study was started while the third author worked within the project
“Reducing complexity in algebra, logic, combinatorics – REDCOM” belonging to the programme
“Ricerca Scientifica di Eccellenza 2018” of the Fondazione Cariverona. The second and the third
author are members of the “Gruppo Nazionale per le Strutture Algebriche, Geometriche e le loro
Applicazioni” (GNSAGA) of the Istituto Nazionale di Alta Matematica (INdAM). The authors
wish to thank Daniel Fridlender for his interest and suggestions, and to express their gratitude to
Thierry Coquand, whose original idea set the basis for this work. Last but not least, the anonymous
reviewers’ meticulous reading and constructive critique have been extremely helpful.

1 Introduction: Higman’s Lemma in Constructive Mathematics

By “Higman’s lemma for sequences” we understand the following statement: “If Σ is a
finite alphabet, then for every infinite sequence σ = a0, a1, a2, . . . of words over Σ, there
exists an infinite subsequenceτ = ai0 , ai1 , ai2 . . . of σ such that ai0 ⊑ ai1 ⊑ ai2 , . . ., where
⊑ denotes the embedding order on words” (see later for more details). Given our focus on
finite alphabet, Σ will always denote such a set. Although Higman’s lemma for sequences
has a well-known classical proof, i.e. with classical logic, one can easily check that it has no
constructive proofs; the selection of the weakly increasing, w.i. for short, subsequence cannot
be made recursively in general.

By simply taking the first two elements of any infinite w.i. subsequence, Higman’s lemma
for sequences entails that every infinite sequence a0, a1, a2, . . . of words over a finite alphabet
has a w.i. subsequence of length 2, i.e. there are i0 < i1 for which ai0 ⊑ ai1 . This is

© Stefano Berardi, Gabriele Buriola, and Peter Schuster;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 16; pp. 16:1–16:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:stefano.berardi@unito.it
https://orcid.org/0000-0001-5427-0020
mailto:gabriele.buriola@univr.it
mailto:peter.schuster@univr.it
https://doi.org/10.4230/LIPIcs.CSL.2024.16
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 A General Constructive Form of Higman’s Lemma

one of the consequences of Higman’s lemma for sequences that are provable already with
intuitionistic logic: Murthy and Russell [15] applied combinatorial techniques over finite
sequences; Richman and Stolzenberg [22] proved it for decidable well quasi-orders using
hereditary (inductive) well-foundedness; Coquand and Fridlender [7] resorted to inductive
definitions for the binary case and Seisenberger [24] extended the same approach to the
general case; Schwichtenberg, Seisenberger and Wiesnet [23] extracted the computational
content of Higman’s lemma; and Powell [19] applied Gödel’s Dialectica interpretation.

There are more examples along the same lines. We can ask for a w.i. subsequence of
length k for any k ∈ N whatsoever, for which we take the first k elements of any w.i. infinite
subsequence. But we do not have to stop here; for example, we can construct a non-empty
w.i. subsequence of length len(ai0)+1. In this case we take the first element of the w.i. infinite
subsequence, compute its length n = len(ai0) as a word, and then take n more elements
from the w.i. infinite subsequence. More generally, for every functional F from infinite
sequences to N there is an infinite sequence σ having an infinite subsequence τ the first F (τ)
elements of which are in weakly increasing order. We will deduce all these statements from
an even stronger theorem, the Higman lemma for bars, which we will state and prove with
intuitionistic logic.

The constructive history of Higman’s lemma

The theory of well quasi-orders has found applications in many different fields, and so has
Higman’s lemma, one of this theory’s milestones. Given the concrete character of Higman’s
lemma especially in the case of a finite alphabet, and its applicability in computer science,
the search for a constructive and more perspicuous proof has started very early: not only to
make possible program extraction from proofs, but also for a better understanding both of
the original non-constructive proof of Higman’s lemma and the short and elegant but still
non-constructive proof by Nash-William [16]. To position the results of this paper in the
literature, we now briefly survey the existing constructive approaches to Higman’s lemma
and related results such as Kruskal’s theorem. For an historical survey of well quasi-order
broadly understood we refer to [13].

The presumably first constructive proof of Higman’s lemma was obtained by Murthy and
Russell [15] using a smart manipulation of finite strings. Richman and Stolzenberg [22] then
proved Higman’s lemma by induction on subsets. Coquand and Fridlender [7] instead used
structural induction over inductive definitions; their results were extended by Seisenberger [24].
Fridlender [9] gave a type-theoretic version of Higman’s lemma, and Veldman [28] an inductive
intuitionistic proof. Worthy of mention is Berger’s constructive proof [3] of the equivalence
between Dickson’s lemma and Higman’s lemma for a two-element alphabet.

The connection between Higman’s lemma and programs has been addressed several
times. Schwichtenberg, Seisenberger, and Wiesnet [23] analyzed the computational content
of Higman’s lemma. Powell has successfully applied Gödel’s Dialectica interpretation to
well quasi-orders [20] and Higman’s lemma [19]. Concerning computer-assisted theorem
proving, Berghofer [4], has formalized a constructive proof of Higman’s lemma in Isabelle,
starting from the article by Coquand and Fridlender; more recently, Sternagel [26] used open
induction to obtain a proof in Isabelle/HOL.

Finally, also Kruskal’s theorem [12], the natural extension of Higman’s lemma from strings
to finite trees, has been put under constructive scrutiny by Veldman [28] and Seisenberger [25],
whereas Goubault-Larrecq [10] gave a topological constructive version of Kruskal’s theorem.

S. Berardi, G. Buriola, and P. Schuster 16:3

A Constructive Form of Higman’s Lemma – Now for Bars

Classically, a bar B for lists is a set of finite lists such that every infinite chain of one-step
extensions meets B, i.e. has an element in B. Within intuitionistic logic we need and have a
more perspicuous definition of bar (see later). Higman’s lemma for bars now says: “for every
bar B, every infinite sequence σ of words on a finite alphabet Σ has an infinite subsequence τ

with a weakly increasing prefix τ0 in B”. Here we interpret τ0 ∈ B as that τ0 is “long enough
for our purposes”, with “our purposes” expressed by the choice of B.

E.g. if B is the set of lists of length 2 or more, then Higman’s lemma for bars entails that
every infinite sequence σ of words on Σ has an infinite subsequence τ with a weakly increasing
prefix τ0 in B, i.e. of two or more elements. This is the first of the desired consequences of
Higman’s lemma, all of which can be deduced from Higman’s lemma for bars.

We will prove Higman’s lemma for bars with intuitionistic logic. In fact, we prove a
stronger version in which the requirement “σ is infinite” is replaced by one about the bar B.
During our proof, we are able to constructively interpret several non-constructive classical
theorems of the following form: for every sequence f there is an infinite sequence g such that
P (f, g). Higman’s lemma for sequences is of course a typical case.

For instance, we rephrase the notion of wqo (well quasi-order), the main ingredient of the
classical proof of Higman’s lemma, by quantification on bars; and call “wqo(bar)” this novel
notion of wqo. We have short proofs with intuitionistic logic that the concept wqo(bar) is
closed by unions (provided that the union is a preorder), by products and by right-invertible
morphisms; these are all properties of wqo typically occurring in a classical proof of Higman’s
lemma. With the notion of wqo(bar) at hand, we consider possible to develop a constructive
version of the theory of wqo close to the classical one.

The structure of the article is as follows. In Section §2 we briefly recall the words and
sequences terminology; Section §3 is devoted to prove several properties of bars used in the
rest of the paper; in Section §4 we state Higman’s lemma for bars and prove the desired
corollaries; in Section §5, after some closure properties of the concept wqo(bar), we prove
Higman’s lemma for bars.

2 Lists, Words and Sequences

We start by recalling some well-known terminology about lists, sublists and labels (§2.1), as
well as notions related to alphabets and words (§2.2). This part is straighforward, and the
reader may want to jump to the subsection about the anticone of a word (§2.3).

2.1 Lists and Operations on Lists
Let N be the set of natural numbers and I a given set. We call a list l on I any map l such
that l : [0, n[→ I for some n ∈ N or l : N → I. We set dom(l) = [0, n[, range(l) = l([0, n[) in
the first case and dom(l) = N, range(l) = l(N) in the second case; moreover, we call dom(l)
the set of indexes of l and range(l) the set of elements of l, abbreviating i ∈ range(l) by
i ∈ l. The length of l, denoted len(l), is n ∈ N in the first case and is ∞ (infinite) in the
second case; in the first case we say that the list l is finite and in the second case that l is
infinite. We call each x ∈ range(l) an element of l and write Fin(I) for the set of finite lists
on I, Inf(I) for the set of infinite lists, and List(I) = Fin(I) ∪ Inf(I) for the set of all lists
on I.

We write a finite list l ∈ Fin(I) of length n = len(l) as ⟨l(0), . . . , l(n − 1)⟩, denoting by
Nil = ⟨⟩ the empty list, the unique list of length 0. For l, m ∈ List(I), we write l ⊑ m, or
“l is a sublist of m” for: there is a finite increasing list f : [0, len(l)[→ [0, len(m)[of natural

CSL 2024

16:4 A General Constructive Form of Higman’s Lemma

numbers such that l(i) = m(f(i)) for all i ∈ [0, len(a)[; we call such an f an embedding of
l in m. For instance, if I is the English alphabet, if l = ⟨w, o, r, d⟩, representing the word
“word”, and m = ⟨w, o, r, l, d⟩, representing the word “world”, then l ⊑ m. An embedding of
l in m is f : [0, 4[→ [0, 5[defined by f(0) = 0,f(1) = 1, f(2) = 2 and f(3) = 4. range(f)
does not include 3, the index of the symbol “l” in “world”. Another example: l : N → N
defined by a(i) = 2i is the list of all even numbers, m : N → N defined by m(i) = i is the list
of all natural numbers, and f(i) = 2i is an embedding from l to m. Roughly speaking, we
have l ⊑ m if and only if we can obtain l by skipping zero or more elements from m, without
changing the order of the elements of b.

If I, J are sets, then I × J = {⟨x, y⟩ | x ∈ I, y ∈ J} denotes their Cartesian product. A
binary relation R on I, J is given by a subset of I × J and we write R−1 for the inverse
binary relation {⟨y, x⟩∈J × I | ⟨x, y⟩ ∈ R}, using the notation R(x, y) or xRy for ⟨x, y⟩ ∈ R.
If X is a set, then the R-upward cone of X, denoted R(X), is the set of y ∈ J such that
∃x ∈ X.R(x, y); often abbreviating “upward cone” by “cone”. If x ∈ I, we write R(x) for
R({x}), and we call R(x) the R-cone of x in J ; moreover, we call J \ R(x) the anticone of x

in J : it is the cone of x with respect to the complement in I × J of the relation R.
We write ⊑I,J for the binary relation {⟨l, m⟩ ∈ Fin(I) × Fin(J) | l ⊑ m} defined by the

sublist predicate restricted to Fin(I) × Fin(J) and we write ⊑I for ⊑I,I and ⊒I,J for the
inverse binary relation {⟨l, m⟩ ∈ Fin(I) × Fin(J) | l ⊒ m}

For i ∈ N, we define the restriction l⌈i ∈ Fin(I) of l to [0, i[by (l⌈i)(j) = l(j) for all
j < len(l), j < i and len(l⌈i) = min(len(l), i). When l is a restriction of some (possibly
infinite) list m, then we say that l is a prefix of m and we write l ⩽ m.

We define the concatenation m = l⋆l′ of two lists l, l′ with l finite by: m(i) = l(i)
for all i < len(l) and m(len(l) + j) = l′(j) for all j < len(l′). By definition we have
⟨l(0), . . . , l(n−1)⟩⋆⟨l′(0), . . . , l′(m−1), . . .⟩ = ⟨l(0), . . . , l(n−1), l′(0), . . . , l′(n′ −1), . . .⟩. The
length of m is len(l) + len(l′) if l′ is finite and ∞ if l′ is infinite. If m = l⋆l′ for some
l, l′ ∈ Fin(I), then we say that l′ is a suffix of m.

Given l, m ∈ Fin(I), we write l <1 m if m = l⋆⟨i⟩ for some i ∈ I, i.e. m is obtained by
adding the element i to the end of l. We write < for the transitive closure of the relation <1.
Remark that the prefix relation ⩽ is the reflexive closure of <.

2.2 Alphabet, Words and Sequences
A finite alphabet Σ is any finite set Σ in bijection with [0, n[for some n and through some
map f . Equality on Σ is provably decidable with intuitionistic logic, because i = j in Σ if and
only if f(i) = f(j) in N. We call the elements of Σ “symbols” of the alphabet, and we denote
them with the letters a, b, c and their variants, a′, a1, . . . the basic example is Σ = {0, 1}. A
word on Σ is given by a finite list on Σ and we write Σ∗ = Fin(Σ) for the set of words on
Σ. We use nil for the empty word in Σ∗, this is just another name for Nil = ⟨⟩, and we
denote words with the letters v, w, z and their variants, v′, v1, . . .; moreover, with a slight and
harmless abuse of notation, we use the expression c∈w and c /∈w to denote respectively that
c is, or is not, one of the letters of w. A “symbol” could be anything, therefore we could use
“finite set” for “alphabet” and “finite list on a finite set” for word, but it is customary to use
“alphabet” and “word” in the context of Higman’s lemma, because the intended application
of the Lemma are the words of an alphabet. If v, w ∈ Σ∗, when v ⊑ w we say that v is a
subword of w and w a superword of v.

We introduce abbreviations used only for words. If c1, . . . , cn ∈ Σ, we abbreviate the
word w = ⟨c1, . . . , cn⟩ with w = c1 . . . cn, written without spaces inside. If v, w ∈ Σ∗, we
abbreviate v⋆w with the juxtaposition vw. If c ∈ Σ and w ∈ Σ∗, we abbreviate ⟨c⟩⋆w by cw,
and w⋆⟨c⟩ by wc.

S. Berardi, G. Buriola, and P. Schuster 16:5

We call a “sequence of words” on Σ, just a “sequence” for short, any list on Σ∗. A
sequence is finite if it is a finite list and it is infinite if it is an infinite list. Again, we could
use “list of words” as well, but it is customary to say “sequence”. Within this terminology,
Fin(Σ∗) and Inf(Σ∗) are the set of finite and infinite sequences on Σ∗. Finally, we adopt
the following notation rule: finite sequences are denoted by Latin letters, whereas infinite
sequences by Greek letters.

2.3 Anticone and Slice of a Word
In this subsection we characterize the words which are superwords of a given word and those
which are not. Let us fix v ∈ Σ∗. We recall that ̸⊑Σ(v) denotes the anticone of v, which is
the set of all w ∈ Σ∗ such that v ̸⊑ w. The first step in our proof of Higman’s lemma is to
characterize the words in the anticone of v. To this aim, we need one preliminary step. We
introduce a smaller set of words SliceΣ(v) ⊆ Σ∗, dubbed the slice of v, consisting of all
words w ∈ Σ∗ for which v is minimal among the words not embeddable in w.

▶ Definition 1 (Slice of v). For each word v ∈ Σ∗ we define SliceΣ(v) as the set of words
in Σ∗ which are superwords of all v′ < v, but are not superwords of v.

We characterize the words in SliceΣ(v). We have SliceΣ(nil) = ∅, because all words
are superlists of nil. Assume that v = c0 . . . ck−1 is not empty, that is, that k ⩾ 1. Then by
definition unfolding we have:

SliceΣ(v) = {w ∈ Σ∗ | (c0 . . . ck−2 ⊑ w) ∧ (c0 . . . ck−1 ̸⊑ w)}

To say otherwise, SliceΣ(v) = ⊑Σ(c0 . . . ck−2) ∩ ̸⊑Σ(c0 . . . ck−1), which is the set of
words in Σ∗ which are superwords of c0 . . . ck−2 but not of c0 . . . ck−1. We provide a detailed
description of words in SliceΣ(v). Let us abbreviate Σi = Σ \ {ci}: then Σ∗

i is the set of
w ∈ Σ∗ such that ci ̸∈ w. We will prove that the words in SliceΣ(v) are exactly all words of
the form w = w0c0w1c1 . . . ck−2wk−1, such that ci ̸∈ wi, that is, such that wi ∈ Σ∗

i , for all
i < k. Such a decomposition will be unique and, for all i < k, it will define a map αi such
that wi = αi(w). We first prove that we have a slightly different decomposition for the words
of the cone of v, then we prove the required decomposition for the words of SliceΣ(v).

▶ Lemma 2 (Characterization of cone and of slice). Let v = c0 . . . ck−1, w ∈ Σ∗.
1. Cone. If v is embedded in w through f , then there is a unique decomposition w =

w0c0w1c1 . . . wk−1ck−1wk, such that ci ̸∈ wi, for all i < k. We have no requirement for
wk. Furthermore, if

g(i) = len(w0c0w1c1 . . . ci−1wi)

for all i < k, then g is the minimum embedding of v in w in the point-wise ordering:
g(i) ⩽ f(i) for all i < k.

2. Slice. If k ⩾ 1, then SliceΣ(v) is the set of all words w such that w =
w0c0 . . . wk−2ck−2wk−1 and ci ̸∈ wi for all i < k. The decomposition of w if it exists it is
unique.

From the uniqueness of the decomposition of w ∈ SliceΣ(v) we define the maps αi(w)
for i < len(v).

▶ Definition 3 (The maps αi). Assume that v = c0 . . . ck−1, k ⩾ 1 and i ∈ N, i < k. Let us
abbreviate Σi = Σ \ {ci}. Assume that w = w0c0 . . . wk−2ck−2wk−1 and ci ̸∈ wi for all i < k.
We define αi : SliceΣ(v) → Σ∗

i by αi(w) = wi.

CSL 2024

16:6 A General Constructive Form of Higman’s Lemma

If X and Y are sets with binary relations R and S, respectively, then by a morphism
f : (X, R) → (Y, S) we understand a map f : X → Y such that if xRx′, then f(x)Sf(x′).

The “product” α of the αi in Def. 3 defines a bijection, whose inverse is a morphism for
⊑; the map α plays a crucial role in the proof of Higman’s lemma.

▶ Lemma 4 (Product map and Slices). The product map α = α1 × . . . × αk : SliceΣ(v) →
Σ∗

0 × . . . × Σ∗
k−1, defined as α(w) = (α0(w), . . . , αk−1(w)), is a bijection. Its inverse α−1 is

a morphism from (Σ∗
0 × . . . × Σ∗

k−1, ⊑ × . . . × ⊑) to (SliceΣ(v), ⊑).

Now we can characterize the anticone ̸⊑Σ(v) as a finite union of slices SliceΣ(v′).

▶ Lemma 5 (Anticone). ̸⊑Σ(v) is the union of all SliceΣ(v′) for v′ ⩽ v.

These are all the properties we need about words, for what concerns bars we refer to the
next section.

3 Bars: Definition and Properties

In this section we define bars and their related notions, proving with intuitionistic logic the
properties required in the rest of the paper. The strongest property says that the Cartesian
product of barred sets is barred by the union of the inverse image of the two projections. It
is worth noticing that if we consider the empty bar, then from each result in this section
about bars (except for “monotonicity”, which only makes sense for bars) we obtain some
well-known result about well-founded sets.

3.1 Quasi-orders, Labels, Well-founded Relations and Bars
A quasi-order (P,⩽) is a set P with a transitive and reflexive relation ⩽; a quasi-order (P,⩽)
is a partial order if ⩽ is antisymmetric. A sequence (pk)k, finite or infinite, over (P,⩽) is
weakly increasing, for short w.i., if, for every indices i ⩽ j, we have pi ⩽ pj .

A labelling of I on P is a map φ : I → P . A length n list l = ⟨l(0), . . . , l(n − 1)⟩ ∈ Fin(I)
can be turned into a list φl = ⟨φl(0), . . . , φl(n − 1)⟩ ∈ Fin(P) on P , by composing with the
labelling φ of I. When I = P , we also consider the identical label φ = id, in which the list
of labels of a list is the list itself. We write Incr(⩽, φ, I) for the set of finite lists l ∈ Fin(I)
such that φl is a weakly increasing list in P with respect to ⩽.

We say that B ⊆ Fin(I) is <1-closed, or closed by one-step extension, if for all l ∈ B,
la <1 m we have m ∈ B. Being closed by one-step extension is the same than being closed
by ⩽ (by extension).

We define now the notions of a (hereditarily) well-founded set (see for instance [14,17,18])
and of a barred set, both given with respect to a given binary relation R. Our definitions are
classically equivalent to the definition “all R-decreasing sequences intersect the bar” but in
intuitionistic logic they allow to derive more results. Our bars generalize Troelstra’s definition
of bar ([27], page 77, Def. 1.9.20).

We notice that the word inductive is often used as a synonimous of hereditary.

▶ Definition 6 (Well-founded and Barred Sets). Let P , X, B be sets and R be a binary
relation.
1. P is X, R-hereditary whenever, for all x ∈ X, if for all x′ ∈ X with x′Rx we have x′ ∈ P ,

then x ∈ P .
2. X is R-well-founded if for all P X, R-hereditary such that P ⊆ X we have P = X.
3. B bars X, R if for all P X, R-hereditary such that B ∩ X ⊆ P ⊆ X we have P = X.
4. B bars x in X, R if for all P X, R-hereditary such that B ∩ X ⊆ P ⊆ X we have x ∈ P .

S. Berardi, G. Buriola, and P. Schuster 16:7

Some comments on these definitions are in order. We already stressed that “X, R-
hereditary” is exactly “X, R-inductive”. This is the word chosen for instance in [2]. Next, we
remark that B bars X, R if and only if B bars x in X, R for every x ∈ X.

In general, the subset consisting of the x ∈ X such that B bars x in X, R is defined as
the intersection of all X, R-hereditary P ⊆ X such that B ∩ X ⊆ P ; and one can easily
check that this intersection itself is X, R-hereditary. Hence “B bars x in X, R” coincides
with the predicate B ∩ X | x from [7,8]: that is, the least X, R-hereditary predicate on X

which contains B ∩ X. B is often called the inductively defined predicate from X, R.
So “B bars x in X, R” can be interpreted as “x is accessible from B in X, R”: for B = ∅

this is nothing but the accessibility predicate from [5]. Accordingly, X is R-well-founded if
and only if X, R is barred by B = ∅, or barred by any B such that B ∩ X = ∅.

In Troelstra ([27], page 77, Def. 1.9.20) the definition of bar is given with X = the set
of all lists of natural numbers and R = the one-step extension; it is also assumed that B is
either decidable or closed by extensions. But the main difference is that the definition of bar
is given as in classical mathematics, B is a bar if all infinite lists of natural numbers have
some prefix in B. Instead, we defined B as the intersection of all X, R-hereditary properties,
since we find this version more suitable for constructive proofs; this is the typical definition
in the context of generalized inductive definitions [1, 21].

In the case we do not mention it, by R we mean >1, the reverse of the one-step extension
relation. In this case we say that B bars l in X, respectively that B bars X, meaning that
B bars l in X, >1, respectively that B bars X, >1.

A subset B of X is said to be R-downward-closed if, for all x ∈ B, if yRx, then y ∈ B.
We have a puzzling point to stress here, if R =>1, then R-downward-closed in fact means
that for all x ∈ B if y >1 x , then y ∈ B. That is, “R-downward-closed” in this case means
“closed by one-step extensions”. The reason is that in the literature, set of lists are often
used to represent trees, and in the case of trees, it is customary to consider “smaller” a
one-step-extension of a node of a tree, i.e. downward trees. We will still use the word
“downward-closed” in this case, because it is a well-established terminology for inductive
reasoning, but we will point out that “downward-closed” in this case means “closed by
one-step extensions”.

A last warning. In our definition, bars for set of lists do not have to be closed by extensions.
For instance, the set B of all finite lists on I having odd length is a bar for the set of all lists
on I and >1, because each list is either odd and barred by B, or has all one-step extensions
odd and barred B, and in this case is barred because being barred is an hereditary predicate.
Yet, each one-step extension of a list in B is some even length list, which is not in B. Closure
of a bar for a set of lists by list extension is an useful feature in some proofs, nevertheless it
is not strictly required in most cases.

3.2 Basic Properties of Bars
In this subsection, we derive some basic properties for bars, requiring little more than
definition unfolding.

An R-descending chain in X is a finite or infinite list x0R−1x1R−1x2R−1 . . . of elements of
X. For instance, a <-descending chain in N is any (necessarily finite) list x0 > x1 > x2 > . . .

of natural numbers. We will prove that if B bars X, R, then every infinite R-descending chain
in X intersects B. Using classical Logic, and some choice, the two properties are equivalent;
but within intuitionistic logic, we only have the implication from the former to the latter.1

1 We sketch a folk-lore proof. There is a model of Intuitionistic Logic in which all chain are recursive, while
some order < on some X has all infinite recursive <-descending chain finite and some non-recursive

CSL 2024

16:8 A General Constructive Form of Higman’s Lemma

▶ Proposition 7 (Infinite R-descending chains). Let X, B be sets and R be a binary relation.
1. X is X, R-hereditary.
2. The intersection ∩F of any inhabited family F of X, R-hereditary sets is X, R-hereditary.
3. the predicate “B bars x in X, R” on x ∈ X is between B ∩ X and X and it is itself

X, R-hereditary.
4. If B bars X, R, then every infinite R-descending chain in X intersects B in an infinite

set of indexes.

If B bars X, R, then we can prove that a property P ⊆ X holds for all x ∈ X by bar-
induction on B, X, R. Bar-induction is the following principle. Assume that P ⊆ X and:
(i. base case) for all x ∈ B ∩ X we have x ∈ P ; (ii. inductive case) if for all yRx, y ∈ X we
have y ∈ P , then x ∈ P . Then we conclude that P = X. As an example, Proposition 7.4 is
proved by bar-induction on B, X, R.

We give an interpretation of a proof by bar-induction of some property P on X. We have
to think of B ∩ X as the set of elements for which we can prove the property P directly.
The one-step extension yRx of a sequence x are all elements “smaller” than x and in the
inductive step of bar-induction, we have proved that if all elements “smaller” than an element
x are in P , then x is in P . Eventually, if B bars X, R, then we conclude that P = X.

A tool for proving that B bars X, R is the notion of “simulation”. We say that x′ is an
R-predecessor of x if x′Rx. Roughly speaking, V ⊆ X × Y is a simulation between X, R and
Y, S if whenever two elements are related by V , then any R-predecessor of the first element
is V -related with some S-predecessor of the second element.

▶ Definition 8. We say that V ⊆ X × Y simulates X, R in Y, S if for all x, x′ ∈ X, y ∈ Y ,
if x′Rx and xV y, then there is some y′ ∈ Y , y′Sy such that x′V y′.

We will prove that a simulation V , when V is everywhere defined, moves bars backwards
from Y to X. By this we mean: if B bars Y, S, then V −1(B) bars X, R. In particular,
simulation moves well-foundedness backwards: if we take B = ∅, we obtain that if Y is
S-well-founded then X is R-well-founded. We will prove the same result for morphisms; that
is, if f : X → Y maps pairs related by R into pairs related by S, then f−1 maps bars for
Y, S into bars for X, R.

▶ Lemma 9 (Simulation Lemma). Let X, Y, B, C be sets and R, S be binary relations.
1. (simulation) Assume that V ⊆ X × Y simulates X, R in Y, S, that V is everywhere

defined, i.e., for every x∈X there exists y ∈Y such that xV y, and that C bars Y, S; then
B = V −1(C) bars X.

2. (morphism) Assume that f : X, R → Y, S is a morphism and C bars Y; then f−1(C)
bars X.

Now we prove that, if we extend a bar and we reduce the barred set and the relation, then
the fact of being a bar is preserved. Choosing the empty bar, we obtain a well-known result
for well-founded relations, namely well-foundedness is preserved by moving to a subrelation.
To say otherwise: if X is R-well-founded, with Y ⊆ X and S ⊆ R, then Y is S-well-founded.

▶ Lemma 10 (Monotonicity and Antimonotonicity). Let X, Y, B, C be sets, and R, S binary
relations.
1. (monotonicity) If B bars X, R and B ∩ X ⊆ C ∩ X, then C bars X, R.
2. (antimonotonicity) If B bars X, R and Y ⊆ X, S ⊆ R, then B bars Y, S.

infinite <-descending chain infinite, with set of elements C. In this model all infinite <-descending
chain in X intersects ∅, because no infinite <-descending chain exists. Yet, the set P = X \ C is
X, <-hereditary while P ̸= X. Thus, it is not true that ∅ bars X, R.

S. Berardi, G. Buriola, and P. Schuster 16:9

For every family of sets Yx indexed by x∈X we write Σx∈XYx for the set of pairs (x, y)
such that x∈X and y ∈Yx.

Now let R be a binary relation, and S = {Sx}x∈X an indexed family of binary relations
on Y . We can think of S as a ternary relation such that S(x, y′, y) ⇔ Sx(y′, y) for all x∈X

and y′, y ∈ Y . The lexicographic product R × S is the relation comparing (x′, y′) with (x, y)
according to xRx′, or, if x = x′, according to ySxy′. Formally:

(x′, y′)(R × S)(x, y) ⇔ x′Rx ∨ (x′ =x ∧ y′Sxy).

R × S is a partial order if R and all Sx are partial orders, in this case R × S is called the
lexicographic order on pairs.

Assume that the dependency on x ∈ X is trivial, that is, for some Z, T and for all x ∈ X

we have Yx = Z, Sx = T . In this case we write R×T for R×S. By definition unfolding, R×T

is a relation on Σx∈XYx = X × Z defined by (x′, y′)(R × T)(x, y) ⇔ x′Rx ∨ (x′ = x ∧ y′Ty).
With the next lemma we define a bar D for Σx∈XYx, R × S. When the dependency on

x ∈ X is trivial, D is a bar for X × Z, R × T . Our result generalises [14, Chapter I, Theorem
6.3], which is, in our terminology, the special case when D is the empty bar.

▶ Lemma 11 (Lexicographic Product). Let X, Y, B and Cx for x ∈ X be sets, R a binary
relation and S a ternary relation. Suppose that B bars X, R, and that Cx bars Yx, Sx for all
x ∈ X. Let D be the set of all pairs (x, y) ∈ Σx∈XYx such that x ∈ B or y ∈ Cx.
1. D bars Σx∈XYx with R × S, the lexicographic product of R, S.
2. If for some Z, T and for all x ∈ X we have Yx = Z, Sx = T , then D bars X × Z, R × T .

4 Higman’s Lemma for Bars

In this section, we state Higman’s lemma for bars, which is a constructive version of Higman’s
lemma for subsequences, and we argue why this version is stronger with intuitionistic logic
than the versions proposed until now.

Let (P,⩽) be a partial order. For a given labelling φ : I → P , we recall that we write
Fin(I) for the set of finite lists in I and Incr(φ, I) for the subset Incr(⩽, φ, I) of Fin(I)
consisting of the finite lists ℓ in I such that φℓ is a weakly increasing list on P for the order ⩽.
We can now introduce the constructive version wqo(bar) of the notion of wqo.2 A quasi-order
(P,⩽) is wqo(bar) if for every set X ⊆ Fin(I), a bar B for the subset of X consisting of
all w.i. lists (those in Incr(φ, I)) is a bar for the whole of X, provided that X is closed by
sublists and B by superlists.

▶ Definition 12 (Well quasi-order with bars). A quasi-order (P,⩽) is called wqo(bar) if

B bars X ∩ Incr(φ, I) =⇒ B bars X (1)

for all labellings φ : I → P of I by P , for every subset X ⊆ Fin(I) closed by I-sublists and
for every subset B ⊆ Fin(I) closed by I-superlists.

As before, “B bars . . . ” is meant for the converse >1 of the one-step extension order <1 on
Fin(I).

Classically, (1) means that every infinite <1-increasing chain σ : N → X meets B if this
is the case already for any such σ for which in addition we have φσ(0) ⊑ φσ(1) ⊑ . . . Within
classical logic, condition (1) is equivalent to the more commonly used notion of wqo(set): for
every infinite list σ : N → Σ∗ there is a an infinite ⊑-weakly increasing sublist τ : N → Σ∗.

2 For a constructive comparison of the customary concepts of wqo we refer to [6].

CSL 2024

16:10 A General Constructive Form of Higman’s Lemma

We focus on partial orders P = Σ∗, given by the set of words for a finite alphabet Σ,
with the subword order ⊑ as ⩽, and we prove that:

▶ Theorem 13 (Higman’s lemma for bars). If Σ is a finite alphabet, then Σ∗ is a wqo(bar).

We postpone the proof of Theorem 13 to §5. In the rest of this section we derive with
intuitionistic logic some corollaries of Theorem 13, in order to show the interest from an
constructive viewpoint of stating the result in this form.

Our corollaries are about functionals. We add a bottom element ⊥ to N, then we consider
partial and total continuous functional F : Inf(Σ∗) → N∪ {⊥} on infinite sequences of words.
We take the canonical topology on Inf(Σ∗) → N∪ {⊥}.3 F maps infinite sequences of words
in N∪ {⊥}. F continuous means that F , when convergent, uses only a finite part of its input.
Informally, a partial functional F explores larger and larger finite prefixes of an infinite
sequence of words, until F finds a prefix long enough to compute some n ∈ N. Formally, we
define F as a map on finite lists, which can return the bottom element ⊥, and if it returns
n ∈ N on a finite list l then returns the same n on all extensions of l. If σ is infinite, then
F (σ) = n if and only if F (l) = n for some finite prefix l of σ. Classically, F is called “total” if
F returns some n ∈ N on all infinite lists. In order to make possible proofs with intuitionistic
logic, we define totality through a bar instead.

▶ Definition 14.
1. The strict order ≺ on N ∪ {⊥} is defined by ⊥ ≺ n for all n ∈ N and no comparison

between two natural numbers. ⪯ is the associated weak order.
2. A partial continuous functional is a map F : Fin(Σ∗) → N ∪ {⊥} which is monotone with

respect to the prefix order ⩽ and ⪯.
3. A partial continuous functional F is (bar-)total if F −1(N) bars Fin(Σ∗).
4. If F is a total continuous functional, then its canonical extension to all σ ∈ Inf(Σ) is

given by F (σ) = n if for some finite prefix l of σ, we have F (l) = n.4

▶ Proposition 15. If F is bar-total and σ ∈ Inf(Σ), then F (σ) exists, it is in N and it is
unique.

Proof. . From F −1(N) bar of Fin(Σ∗) and Lemma 7.4, every infinite list σ has some finite
prefix l in the bar F −1(N), therefore F (σ) = F (l) = n ∈ N for some n ∈ N. The value n is
unique: if F (σ) = F (l′) = n′ ∈ N for another finite prefix of σ, then either l ⩽ l′ or l′ ⩽ l,
therefore F (l) ⪯ F (l′) or F (l′) ⪯ F (l), that is, n ⪯ n′ or n′ ⪯ n. In both cases we conclude
n = n′. ◀

Thus, if F is bar-total, then F is “total” with the usual classical definition: F returns some
n ∈ N on all infinite lists. Classically, the reverse implication holds, but with intuitionistic
logic bar-total is a stronger property.5 From now on, by “total” we will always mean bar-total.

3 For any l ∈ Inf(Σ∗), we define Ol = {m ∈ Inf(Σ∗) | l ⩽ m}; we then take on N the discrete topology,
on Inf(Σ∗) the topology generated by the sets Ol with l ∈ Inf(Σ∗) and the function topology on
Inf(Σ∗) → N ∪ {⊥}.

4 The idea is that we can approximate an element of Inf(Σ) considering all its initial segments which are
elements of Fin(Σ∗).

5 We claim that there is some recursive functional F which is defined on all recursive sequences, but
returning ⊥ on some non-recursive sequence. The proof uses the folk-lore result there is some recursive
tree, whose recursive branches are all finite, but having some infinite non-recursive branch.

S. Berardi, G. Buriola, and P. Schuster 16:11

Let us fix a total functional F and a finite alphabet Σ. Higman’s lemma for subsequences
implies that for every infinite list σ over Σ∗, there is an infinite sublist τ ⊑ σ whose first
F (τ) elements are in w.i. order. Classically, it is enough to take any infinite w.i. sub-list
τ of σ and then a finite prefix l of F (τ) elements. We call “F -long” the prefix of τ with
F (τ)-elements.

Informally speaking, this result means that we can provide infinite sublists τ having a
w.i. prefix of any given length, with the length F (τ) we require described by some bar-total
continuous functional F applied to the very sublist τ we are defining. We can provide a proof
with intuitionistic logic of this result as an immediate corollary of Higman’s lemma for bars.

▶ Corollary 16 (sublists with an F -long w.i. prefix). Let Σ be a finite alphabet and F :
Fin(Σ∗) → N ∪ {⊥} a bar-total continuous functional. Then every infinite sequence of words
σ ∈ Inf(Σ∗) has an infinite subsequence τ with the first F (τ) elements in w.i. order, i.e. such
that τ has an F -long w.i. prefix.

Proof. Let φ = idI where I = Σ∗. Set X0 = Incr(φ, I) and X = Fin(I). Let B0 = {ρ ∈
X |F (ρ) ∈ N}. By the hypotheses on F , this B0 bars X, and is upwards closed in X for the
prefix order ⩽. By the antimonotonicity of bars (Lemma 10.2), B0 also bars X0 ⊆ X.

Let B1 = {ρ ∈ B0 ∩ X0 | len(ρ) ⩾ F (ρ)}. Claim: B1 bars X0. To prove this, set
P = {ρ ∈ X0 | B1 bars ρ}. Then the Claim means P = X0, which we show by bar induction
with the bar B0 for X0. Since P is hereditary (Proposition 7), which is the induction step, we
only need to verify the base case B0 ∩X0 ⊆ P . To this end we show ρ ∈ P for all ρ ∈ B0 ∩X0
by induction on f(ρ) = max(0, F (ρ) − len(ρ)).

Case f(ρ) = 0: Then F (ρ) ⩽ len(ρ) and thus ρ ∈ B1 ⊆ P .
Case f(ρ) = n + 1: For every ρ′ ∈ X0 with ρ <1 ρ′ we have len(ρ′) = len(ρ) + 1, and

F (ρ) = F (ρ′) by continuity, so f(ρ′) = n. In addition, ρ′ ∈ B0 (because ρ ∈ B0 and B0 is
upwards closed for ⩽ ⊇ <1); whence ρ′ ∈ P by induction. As P is hereditary, ρ ∈ P follows.

This ends the proof of the Claim.
Now let B = {ρ ∈ X | ∃η ⊑ ρ (η ∈ B1)}. Then B is upwards closed for ⊑, i.e. closed by

superlists; trivially, X is closed by sublists; and B bars X0 = X ∩ Incr(φ, I). The latter
holds by the monotonicity of bars (Lemma 10.1); in fact B1 bars X0 by the Claim, and
B1 ⊆ B. In all, Higman’s lemma for bars (Theorem 13) applies, and yields that B bars X.

Now let σ ∈ Inf(I). Since B bars X, the infinite list σ has a finite prefix σ0 ∈ B. By
definition of B, there is τ0 ⊑ σ0 such that τ0 ∈ B1, which is to say that τ0 ∈ X0 = Incr(φ, I),
F (τ0) ∈ N and len(τ0) ⩾ F (τ0). We extend τ0 to an infinite sublist τ of σ. From F (τ0) ∈ N
we get F (τ) = F (τ0) ⩽ len(τ0). Hence the first F (τ) entries of τ form a prefix of τ0 and
thus are in w.i. order. ◀

▶ Example 17. Let σ ∈ Inf(Σ∗) be an infinite sequence of words over a finite alphabet Σ.
1. For all k ∈ N there is some w.i. length k subsequence of σ.
2. There are w.i. subsequences τ1, τ2, τ3 of σ which have length len(τ1(0))+1, len(τ2(0))2 +1

and 2len(τ3(0)).

Proof. Apply Corollary 16 to the functionals defined by F0(ρ) = k, F1(ρ) = len(ρ(0)) + 1,
F2(ρ) = len(ρ(0))2 + 1 and F3(ρ) = 2len(ρ(0)) where ρ ∈ Fin(Σ∗), which are bar-total
continuous. In fact, F −1

0 (N) = Fin(Σ∗) and F −1
ν (N) = Fin(Σ∗) \ {nil} for ν ∈ {1, 2, 3};

whence F −1
ν (N) bars Fin(Σ∗) in all cases. ◀

The particular case k = 2 of Example 17 means that there are i < j for which σ(i) ⊑ σ(j).
This is Higman’s lemma in its usual form.

CSL 2024

16:12 A General Constructive Form of Higman’s Lemma

5 A Constructive Proof of Higman’s Lemma for Bars

In this section we first prove some basic properties of wqo(bar): closure under finite product,
finite union and right-invertible morphism. All these properties are classically true for the
classically equivalent notion of wqo, see for example the original article by Higman [11].
Subsequently, we prove Higman’s lemma for bars by induction on the finite alphabet Σ. We
assume that all ∆∗ are wqo(bar), for all ∆ smaller than Σ, in order to prove that Σ∗ is a
wqo(bar). The crucial step will be proving that the anticone of every v ∈ Σ∗ is a wqo(bar).

5.1 Essential Properties of Wqo (bar)
We start by giving two immediate examples, of a quasi-order which is wqo(bar) and a
quasi-order which is no wqo(bar). For every set I, (I, =) is a quasi-order. Assume that Σ is
a finite set, we can prove with intuitionistic logic that (Σ, =) is a wqo(bar); whereas (N, =)
is not.

▶ Proposition 18 (wqo(bar)). Assume that Σ is a finite set. Then
1. (Σ, =) is wqo(bar).
2. (N, =) is not wqo(bar).

Proof.
1. We assume that X ⊆ Fin(I) is closed by I-sublist, that B is closed by I-superlists, and

that B bars X ∩Incr(=, φ, I), in order to prove that B bars X. We argue by induction on
Σ. Assume that Σ = ∅, {x}. Then all labelling (if any) are constantly equal to x, therefore
are weakly increasing. We deduce that X ∩ Incr(=, φ, I) = X and we conclude that B

bars X. Assume that Σ has two or more elements. Then Σ = Σ1 ∪Σ2 for some Σ1, Σ2 ⊂ Σ.
Let I1 = φ−1(Σ1) and I2 = φ−1(Σ2). Then I = I1 ∪ I2, and by antimonotonicity B bars
X ∩ Incr(=, φ, I1) and B bars X ∩ Incr(=, φ, I2). By X ⊆ Fin(I) closed by I-sublist,
B is closed by I-superlists and Lemma 19 we conclude that B bars X.

2. N, = is a partial order. In order to prove that it is not a wqo(bar), we will provide
some X ⊆ Fin(I) closed by I-sublist, some B is closed by I-superlists, such that B bars
X ∩Incr(=, φ, I) and B does not bars X. We choose X = the set of non-repeating lists of
length 1 words. X is closed by I-sublists and all its length ⩾ 2 sublists are not increasing,
because if i ̸= j, then ⟨i⟩ ̸⊑ ⟨j⟩. Then X ∩ Incr(=, φ, I) consists of all lists with 1 word of
length 1. These lists are not comparable by >1, therefore this set is trivially well-founded
by >1, and it is barred by B = ∅. However, B does not bar X, because the infinite list
σ = ⟨0⟩, ⟨1⟩, ⟨2⟩, . . . in N does not intersect ∅. ◀

For comparison, if we use the notion of wqo(set), then point 1 above say that all infinite
lists on a finite set Σ have an infinite constant sublist, while point 2 says there is an infinite
list on N with no infinite constant sublist. Point 1 requires classical logic (this is why we
avoid using the notion of wqo(set)). Point 2 follows by taking the infinite list 0, 1, 2, 3,

In order to derive more basic properties of wqo(bar), we have first to find a constructive
counterpart of the following classical property. In classical logic, given an infinite list σ in
List(I1 ∪ I2), if σ1 is the sublist obtained by restricting σ to the elements in I1, and σ2 is
the sublist obtained by restricting σ to the elements in I2, then either σ1 is infinite or σ2
is infinite. We propose to call this property the Riffling Property for infinite lists, because
if I1, I2 are disjoint, then σ can obtained from σ1, σ2 as when we riffle two decks of card
in order to obtain a single deck of cards, while preserving the order we have in each deck.
Riffling is not provable with intuitionistic logic, because we cannot decide whether we have

S. Berardi, G. Buriola, and P. Schuster 16:13

an infinite sublist in Fin(I1) or in Fin(I2). In order to constructivise riffling, we prove a
kind of contrapositive: if X is a set of lists and we bar with B the infinite I1-lists in X

and the infinite I2-lists in X, then we bar with B the infinite I1 ∪ I2-lists in X. When we
state Riffling, we move from lists in X to sublists in X, and from sublists in the bar B to
lists in the same B. Therefore Riffling requires two new assumptions, that B is closed by
I-superlists and that X is closed by I-sublist. These are the same assumptions we have in
the definition of wqo(bar).

▶ Lemma 19 (Riffling for Bars). Assume that the set X is closed by I1 ∪ I2-sublists and the
set B is closed by I1 ∪ I2-superlists, then:

B bars X ∩ Fin(I1) ∧ B bars X ∩ Fin(I2) =⇒ B bars X ∩ Fin(I1 ∪ I2)

From the Riffling Property for Bars we deduce with intuitionistic logic that wqo(bar) are
closed under binary compatible union.

▶ Lemma 20 (Compatible union of wqo’s). If (P,⩽P) and (Q,⩽Q) are wqo(bar), (P ∪ Q,⩽)
is a quasi-order and ⩽P , ⩽Q ⊆ ⩽, then (P ∪ Q,⩽) is a wqo(bar).

The next step is to prove with intuitionistic logic that wqo(bar) are closed by component-
wise product.

▶ Lemma 21 (Componentwise product of wqo(bar)). Assume that (P,⩽P) and (Q,⩽Q) are
wqo(bar). Then (P ×Q,⩽P ×⩽Q) with the componentwise order is a wqo(bar).

The last preliminary step is to prove with intuitionistic logic that wqo(bar)’s are closed by
right-invertible morphisms. Again, this property is easily proved for the classical definition
of wqo. Assume that we have a morphism f : P → Q with right inverse g : Q → P (i.e.,
fg = idQ) and (P,⩽P) is a wqo, then every infinite list σ : N → Q is mapped by g into an
infinite list gσ : N → P , which has an infinite w.i. sublist τ : N → P , which is mapped by f

into an infinite w.i. list fτ : N → Q. From τ sublist of gσ we deduce that fτ is a sublist of
fgσ. From fgσ = σ we conclude that fτ is an infinite w.i. sublist of σ. If we use the notion
of wqo (bar), we can provide a proof with intuitionistic logic for the same result.

▶ Lemma 22 (right-invertible morphism on a wqo(bar)). Assume that (P,⩽P) is a wqo(bar),
(Q,⩽Q) is a quasi-order and f : P → Q is a morphism with right inverse g.6 Then (Q,⩽Q)
is a wqo(bar).

5.2 The Anticone of a Word is a Wqo (bar)
In this subsection, we fix a labelling φ : I → Σ∗, and we assume that ∆∗ is a wqo(bar) for
all ∆ ⊂ Σ; then we prove that the anticone of every v ∈ Σ∗ is a wqo(bar). This is a crucial
step in the proof of Higman’s lemma for bars.

▶ Lemma 23 (Slices and Anticones of a Word). Assume that Σ is a finite alphabet and for all
∆ ⊂ Σ the partial order ∆∗ a wqo(bar). Let v = c1 . . . ck ∈ Σ∗, then:
1. SliceΣ(v), the slice of v, is a wqo(bar).
2. ̸⊑Σ(v), the anticone of v, is a wqo(bar).

6 Observe that g does not need to be a morphism.

CSL 2024

16:14 A General Constructive Form of Higman’s Lemma

5.3 A Decomposition of Finite Lists of Words over a Finite Language
In this subsection, where φ : I → P = Σ∗ labels an arbitrary set I with words over a finite
alphabet Σ, we introduce the last ingredient needed in the proof of the Higman lemma for
bars. We extract from each finite list l with labels ⟨w0, . . . , wp−1⟩ two disjoint sublists:
1. some φ-w.i.sub-list Lex(l, φ) of l, with labels wi0 ⊑ . . . ⊑ win−1 . Lex(l, φ) is the sub-list

obtained by selecting each time as next element the first element making the sub-list
φ-w.i.;

2. the suffix Suff(l, φ) of l, with labels ⟨wm, . . . , wp−1⟩ of l, such that m = in−1 + 1, and
that win−1 ̸⊑ wm, . . . , wp−1. If this is not possible, then Suff(l, φ) is the empty list.

In our terminology, the elements of Suff(l, φ) are in the anticone of win−1 , where win−1 is
the last element of Lex(l, φ). We will prove the Higman lemma for bars by bar induction on
such pair of lists. The formal definition of the two sub-lists Lex, Suff runs as follows. We
have to define first two integer lists lex, suff, with low case l, s, consisting of the list of
indexes of Lex, Suff in φl.

▶ Definition 24 (Decomposition of a list). Assume l is any finite list on I, labeled by a map
φ : I → P = Σ∗. Suppose φl = ⟨w0, . . . , wp−1⟩ is the list of labels of l. By induction on l, we
define lex(l, φ), suff(l, φ).
1. We define lex(Nil, φ) = suff(Nil, φ) = Nil and lex(⟨i⟩, φ) = ⟨0⟩, suff(⟨i⟩, φ) = Nil.
2. Suppose len(l) = p ⩾ 1, lex(l, φ) = ⟨i0 . . . , in−1⟩ (an integer list) and x ∈ I. We define

the clause for l⋆⟨x⟩ by cases on the condition: “win−1 ⊑ φ(x)”.
a. Assume win−1 ⊑ φ(x). Then we set lex(l⋆⟨x⟩, φ) = lex(l, φ)⋆⟨p⟩ (we add the index p

of x to lex) and suff(l⋆⟨x⟩, φ) = Nil (we reset suff to nil).
b. Assume win−1 ̸⊑ φ(x). Then we set lex(l⋆⟨x⟩, φ) = lex(l, φ) (lex stays the same)

and suff(l⋆⟨x⟩, φ) = suff(l, φ)⋆⟨p⟩ (we add the index p of x to suff).

Finally, we define Lex, Suff, the maps with capital L, S, by: Lex(l, φ) = llex(l, φ) and
Suff(l, φ) = lsuff(l, φ).

A (crucial) example: let I = Σ∗, φ = id (labelling φl and list l coincide), and l =
⟨w0, w1, w2, w3, w4⟩, with

w0 = a, w1 = ab, w2 = abb, and w3 = bb, w4 = bbb

According to Def.24 we obtain:

1. for m = nil: lex(m, φ) = nil.
2. for m = ⟨w0⟩: lex(m, φ) = the index 0 of w0
3. for m = ⟨w0, w1⟩: lex(m, φ) = the indexes 0, 1 of w0, w1
4. for m = ⟨w0, w1, w2⟩: lex(m, φ) = the indexes 0, 1, 2 of w0, w1, w2

When m increases to m = ⟨w0, w1, w2, w3⟩, the new word w3 added to m is discarded in
lex(m, φ). Indeed, we have w2 ̸⊑ w3, w4, therefore if m = ⟨w0, w1, w2, w3⟩ then lex(m, φ)
is again equal to the indexes 0, 1, 2 of w0, w1, w2. The same when m = ⟨w0, w1, w2, w3, w4⟩:
the new word w4 added to m is again discarded, and we still have lex(m, φ) = the integer
list 0, 1, 2.

The indexes of the discarded words are piled up in suff. The first three values of
suff(m, φ) are: nil, nil, nil. From w2 ̸⊑ w3, w4, we deduce the following values for suff:
suff(m, φ) = the integer list whose only element is 3, and suff(m, φ) = the integer list 3, 4.

S. Berardi, G. Buriola, and P. Schuster 16:15

The outputs of Lex(m, φ) and Suff(m, φ) (with capital L, S) are the same, except that
we take words instead of indexes of words. For the same values of m we obtain for Lex(m, φ):
nil, ⟨w0⟩, ⟨w0, w1⟩, ⟨w0, w1, w2⟩, then again ⟨w0, w1, w2⟩ and again ⟨w0, w1, w2⟩.

The words w3, w4 discarded from Lex(m, φ) are piled up in Suff(m, φ). Indeed, according
to Def.24 we obtain for Suff(m, φ): nil, nil, nil, then ⟨w3⟩ and ⟨w3, w4⟩.

A last example. Suppose we add w5 = abb to m. In this case w2 ⊑ w5, then w5 is
added to Lex(l, φ) and we obtain Lex(l⋆⟨w5⟩, φ) = w0w1w2w5. Instead, Suff is reset to nil:
according to Def. 24, we obtain Suff(l⋆⟨w5⟩, φ) = nil.

The name we choose for the map lex comes from the fact that f = lex(l, φ) is the
minimum in the lexicographic ordering of all integer lists such that lf is a φ-w.i. sublist of l.
In this paper, however, we do not need a proof of this feature of f and we do not include
further details.

The following properties of f = lex(l, φ) and g = suff(l, φ) are immediate from the
definition. First, that lf ∈ Incr(φ, I) for all l ∈ Fin(I). Second, if l > Nil, g = suff(l, φ),
then lg is equal to the suffix of l after the last element of lf , and that lg is in the anticone of
the last element of lf . Both properties can be proved by induction on l.

5.4 Proof of the Main Theorem
▶ Theorem 25 (Higman’s lemma for bars). If Σ is a finite alphabet, then Σ∗ is a wqo(bar).

Proof. We argue by principal induction on Σ. If Σ = ∅ then Σ∗ = Nil and Σ∗ is a wqo
by Lemma 18. Assume Σ has some element. We assume that for all ∆ ⊂ Σ the partial
order ∆∗ is a wqo(bar), in order to prove that Σ∗ is a wqo(bar). We assume that I is a set,
φ : I → Σ∗ any labelling of elements of I by words, X ⊆ Fin(I) is a set of finite I-lists closed
by I-sublists, B is a set of finite I-lists closed by I-superlists, and B bars X ∩ Incr(φ, I);
our goal is to prove that B bars X.

Let Lex, Suff as in Def. 24, and σ, l ∈ X. We define a map f(σ) = Lex(σ) × Suff(σ)
proving that f : X → Y is a morphism, where Y := Σl∈X∩Incr(φ,I)Yl, for a family of sets
{Yl | l ∈ X ∩ Incr(φ, I)} we are going to define. We will prove that Y is barred by some D

such that f−1(D) ⊆ B; “B bars X” follows from the Simulation Lemma (9) and monotonicity.
If l = Nil, we set YNil = {Nil}. If l ̸= Nil, we define each set Yl as the set of all I-lists

in X φ-labeled by words which are not super-words of (which are in the anticone of) the last
word of φl. We formally define Yl as follows. Let v be the last element of φl: then we set
Yl := Fin(φ−1(̸⊑Σ(v))) ∩ X.

By definition of Lex, Suff and the closure of X by I-sublists, we have Lex(σ) ∈ X ∩
Incr(φ, I) and Suff(σ) ∈ Yl. Moreover, by definition of Lex and Suff, whenever we add
one element i to l, either we add the same i to Lex(σ, φ), or Lex(σ, φ) stays the same
and we add i to Suff(σ, φ). Thus, f is a morphism from (X, >1) to Σl∈X∩Incr(φ,I)Yl

with relation the lexicographic product >1 × >1. By Lemma 23.2 (Slices and Anticones),
̸⊑Σ(v) is a wqo(bar). B bars X ∩ Incr(φ, I) by assumption. Then B bars the subset
Fin(φ−1(̸⊑Σ(v))) ∩ X ∩ Incr(φ, I) by antimonotonicity. ̸⊑Σ(v) is a wqo(bar), therefore B

bars Fin(φ−1(̸⊑Σ(v))) ∩ X, which is Yl. Let D be the set of pairs (l, m) such that l ∈ B or
m ∈ B. By Lemma 11 (Lexicographic Product), D bars Y = Σl∈X∩Incr(φ,I)Yl, >1 × >1. By
Simulation Lemma (9) we deduce that f−1(D) bars X. In order to prove that B bars X, by
monotonicity it is enough to prove that f−1(D) ⊆ B.

Assume that σ ∈ f−1(D), then f(σ) = Lex(σ) × Suff(σ) ∈ D, and by definition of D,
we deduce that Lex(σ) ∈ B or Suff(σ) ∈ B. From Lex(σ), Suff(σ) ⊑ σ and closure of B by
I-superlists, we conclude that σ ∈ B, as wished. ◀

CSL 2024

16:16 A General Constructive Form of Higman’s Lemma

Conclusion

Higman’s lemma for sequences says that over a finite alphabet every infinite sequence of
words has an infinite weakly increasing subsequence, and is inherently nonconstructive. As a
constructive alternative we now have put forward what we call Higman’s lemma for bars:
over a finite alphabet, every bar for the weakly increasing finite lists of words which is closed
by super-lists is already a bar for all finite lists. In particular, for every total continuous
functional, every infinite sequence of such words has a weakly increasing finite sublist of
length bounded below by the functional. We also proved the common form of Higman’s
lemma: the words over a finite alphabet form a well quasi-order, for our notion of well
quasi-order. As we work as much as possible in settings more abstract than the one of words
over a finite alphabet, we prepare for a constructive theory of well (quasi-)order, and, more
in general, for a constructive version of classical theories dealing with Π1

2-statements.

References
1 P. Aczel. An introduction to inductive definitions, volume 90 of Stud. Logic Found. Math.,

pages 739–782. North-Holland, 1977.
2 S. Berardi and S. Steila. Ramsey’s Theorem for Pairs and k Colors as a sub-Classical Principle

of Arithmetic. J. Symbolic Logic, 82(2):737–753, 2017.
3 J. Berger. Dickson’s Lemma and Higman’s Lemma are Equivalent. South American Journal

of Logic, 2(1):35–39, 2016.
4 S. Berghofer. A Constructive Proof of Higman’s Lemma in Isabelle. In Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), volume 3085 of Lecture Notes in Computer Science, pages 66–82,
Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

5 Yves Bertot and Ekaterina Komendantskaya. Inductive and coinductive components of
corecursive functions in coq. Electronic Notes in Theoretical Computer Science, 203(5):25–47,
2008. Proceedings of the Ninth Workshop on Coalgebraic Methods in Computer Science
(CMCS 2008). doi:10.1016/j.entcs.2008.05.018.

6 G. Buriola, P. Schuster, and I. Blechschmidt. A Constructive Picture of Noetherian Conditions
and Well Quasi-orders. In Gianluca Della Vedova, Besik Dundua, Steffen Lempp, and Florin
Manea, editors, Unity of Logic and Computation, pages 50–62, Cham, 2023. Springer Nature
Switzerland.

7 T. Coquand and D. Fridlender. A proof of Higman’s lemma by structural induction. Unpub-
lished Manuscript. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.47.486,
November 1993.

8 Thierry Coquand and Henrik Persson. Gröbner bases in type theory. In T. Altenkirch,
W. Naraschewski, and B. Reus, editors, Types for Proofs and Programs (Irsee, 1998), volume
1657 of Lecture Notes in Comput. Sci., pages 33–46. Springer, Berlin, 1999.

9 D. Fridlender. Higman’s Lemma in Type Theory. PhD thesis, Chalmers University of
Technology, Göteborg, 1997.

10 J. Goubault-Larrecq. A Constructive Proof of the Topological Kruskal Theorem. In Krishnendu
Chatterjee and Jirí Sgall, editors, Mathematical Foundations of Computer Science 2013, pages
22–41, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

11 G. Higman. Ordering by Divisibility in Abstract Algebras. Proceedings of the London
Mathematical Society, s3-2(1):326–336, 1952.

12 J.B. Kruskal. Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture. Trans. Amer.
Math. Soc., 95:210–225, 1960.

13 J.B. Kruskal. The theory of well-quasi-ordering: A frequently discovered concept. J. Comb.
Theory A, 13:297–305, 1972.

https://doi.org/10.1016/j.entcs.2008.05.018
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.47.486

S. Berardi, G. Buriola, and P. Schuster 16:17

14 Ray Mines, Fred Richman, and Wim Ruitenburg. A Course in Constructive Algebra. Springer,
New York, 1988. Universitext.

15 C.R. Murthy and J.R. Russell. A constructive proof of Higman’s lemma. 5th Annual Symposium
on Logic in Computer Science, Philadelphia PA, pages 257–267, 1992.

16 C.St.J.A. Nash-William. On well-quasi-ordering finite trees. Proc. Cambridge Phil. Soc.,
59:833–835, 1963.

17 Hervé Perdry. Strongly Noetherian rings and constructive ideal theory. J. Symb. Comput.,
37(4):511–535, 2004.

18 Hervé Perdry and Peter Schuster. Noetherian orders. Math. Structures Comput. Sci., 21:111–
124, 2011.

19 T. Powell. Applying Gödel’s Dialectica interpretation to obtain a constructive proof of
Higman’s lemma. Proceedings of Classical Logic and Computation (CLAC’12), volume 97 of
EPTCS :49–62, 2012.

20 T. Powell. Well Quasi-orders and the Functional Interpretation. In Peter M. Schuster, Monika
Seisenberger, and Andreas Weiermann, editors, Well-Quasi Orders in Computation, Logic,
Language and Reasoning: A Unifying Concept of Proof Theory, Automata Theory, Formal
Languages and Descriptive Set Theory, pages 221–269, Cham, 2020. Springer International
Publishing. doi:10.1007/978-3-030-30229-0_9.

21 Michael Rathjen. Generalized inductive definitions in constructive set theory. In Laura
Crosilla and Peter Schuster, editors, From Sets and Types to Topology and Analysis: Towards
Practicable Foundations for Constructive Mathematics, volume 48 of Oxford Logic Guides,
chapter 16. Clarendon Press, Oxford, 2005.

22 F. Richman and G. Stolzenberg. Well quasi-ordered sets. Advances in Mathematics, 97:145–153,
1993.

23 H. Schwichtenberg, M. Seisenberger, and F. Wiesnet. Higman’s Lemma and Its Computational
Content. In R. Kahle, T. Strahm, and T. Studer, editors, Advances in Proof Theory, pages 353–
375, Cham, 2016. Springer International Publishing. doi:10.1007/978-3-319-29198-7_11.

24 M. Seisenberger. An Inductive Version of Nash-Williams’ Minimal-Bad-Sequence Argument
for Higman’s Lemma. Types for Proofs and Programs, LNCS Vol. 2277, 2001.

25 Monika Seisenberger. Kruskal’s tree theorem in a constructive theory of inductive definitions.
In P. Schuster, U. Berger, and H. Osswald, editors, Reuniting the antipodes—constructive and
nonstandard views of the continuum (Venice, 1999), volume 306 of Synthese Library, pages
241–255. Kluwer, Dordrecht, 2001.

26 C. Sternagel. A Mechanized Proof of Higman’s Lemma by Open Induction. In Peter M.
Schuster, Monika Seisenberger, and Andreas Weiermann, editors, Well-Quasi Orders in
Computation, Logic, Language and Reasoning: A Unifying Concept of Proof Theory, Automata
Theory, Formal Languages and Descriptive Set Theory, pages 339–350, Cham, 2020. Springer
International Publishing. doi:10.1007/978-3-030-30229-0_12.

27 A.S. Troelstra. Metamathematica Investigation of Intuitionistic Arithmetic and Analysis.
ILLC pre-publication series, pages X–93–05, 1993.

28 W. Veldman. An Intuitionistic Proof of Kruskal’s Theorem. Archive for Mathematical Logic,
43(2):215–264, 2004.

CSL 2024

https://doi.org/10.1007/978-3-030-30229-0_9
https://doi.org/10.1007/978-3-319-29198-7_11
https://doi.org/10.1007/978-3-030-30229-0_12

	1 Introduction: Higman's Lemma in Constructive Mathematics
	2 Lists, Words and Sequences
	2.1 Lists and Operations on Lists
	2.2 Alphabet, Words and Sequences
	2.3 Anticone and Slice of a Word

	3 Bars: Definition and Properties
	3.1 Quasi-orders, Labels, Well-founded Relations and Bars
	3.2 Basic Properties of Bars

	4 Higman's Lemma for Bars
	5 A Constructive Proof of Higman's Lemma for Bars
	5.1 Essential Properties of Wqo (bar)
	5.2 The Anticone of a Word is a Wqo (bar)
	5.3 A Decomposition of Finite Lists of Words over a Finite Language
	5.4 Proof of the Main Theorem

