
Quantifiying the Robustness of Dynamical Systems.
Relating Time and Space to Length and Precision
Manon Blanc #

Institut Polytechnique de Paris, Ecole Polytechnique, LIX, Palaiseau, France
Université Paris-Saclay, LISN, Orsay, France

Olivier Bournez #

Institut Polytechnique de Paris, Ecole Polytechnique, LIX, Palaiseau, France

Abstract
Reasoning about dynamical systems evolving over the reals is well-known to lead to undecidability.
In particular, it is known that there cannot be reachability decision procedures for first-order theories
over the reals extended with even very basic functions, or for logical theories that reason about
real-valued functions, or decision procedures for state reachability. This mostly comes from the
fact that reachability for dynamical systems over the reals is fundamentally undecidable, as Turing
machines can be embedded into (even very simple) dynamical systems.

However, various results in the literature have shown that decision procedures exist when
restricting to robust systems, with a suitably-chosen notion of robustness. In particular, it has been
established in the field of verification that if the state reachability is not sensitive to infinitesimal
perturbations, then decision procedures for state reachability exist. In the context of logical theories
over the reals, it has been established that decision procedures exist if we focus on properties not
sensitive to arbitrarily small perturbations. For example by considering properties that are either
true or δ-far from being true, for some δ > 0.

In this article, we first propose a unified theory explaining in a uniform framework these
statements, that were established in different contexts.

More fundamentally, while all these statements are only about computability issues, we also
consider complexity theory aspects. We prove that robustness to some precision is inherently related
to the complexity of the decision procedure. When a system is robust, it makes sense to quantify at
which level of perturbation it is. We prove that assuming robustness to a polynomial perturbation on
precision leads to a characterisation of PSPACE. We prove that assuming robustness to polynomial
perturbation on time or length leads to similar statements for PTIME.

In other words, precision on computations is inherently related to space complexity, while length
or time of trajectories, is intrinsically related to time complexity. These statements can also be
interpreted in relation to several recent results about the computational power of analogue models
of computation.

2012 ACM Subject Classification Theory of computation → Models of computation; Theory of
computation → Computability; Theory of computation → Complexity classes; Theory of computation
→ Complexity theory and logic; Computer systems organization → Analog computers

Keywords and phrases Computability, Complexity theory, Computable analysis, Verification, De-
cision, Robustness, Dynamical Systems, Models of computation, Analogue Computations

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.17

Funding This work was partially supported by Labex Digicosme and ANR δIFFERENCE.

1 Introduction

The relations between dynamical systems over the reals and computations have been the
source of many works, with sometimes very different motivations [23, 22, 2, 4, 11]. Let us
focus on some of them.

© Manon Blanc and Olivier Bournez;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 17; pp. 17:1–17:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:manon.blanc@lix.polytechnique.fr
https://orcid.org/0000-0002-6961-089X
mailto:olivier.bournez@lix.polytechnique.fr
https://orcid.org/0000-0002-9218-1130
https://doi.org/10.4230/LIPIcs.CSL.2024.17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Quantifiying the Robustness of Dynamical Systems

The context of the verification of continuous and hybrid systems. As many systems in
our world are naturally modelled by dynamical systems over the reals (or by so-called hybrid
systems, mixing continuous and discrete aspects), verification of safety properties on these
systems is inherently related to state reachability for dynamical systems. Roughly speaking,
a system is safe if the subset of “bad states” (i.e. those not satisfying some property) cannot
be reached from the subset of the initial states of the system. Unfortunately, it is well-known
that such questions are undecidable, even for very simple dynamical systems. For example,
even for piecewise affine functions [22, 23] over the compact domain [0, 1]2.

Such a statement is proved by showing that a Turing machine, which is a particular
discrete-time dynamical system, evolving with time over configurations, can be embedded
into such systems. This requires mapping the infinite set of possible configurations of a
Turing machine into a real domain. Hence, it requires infinite precision encoding when the
system is defined over a compact domain. This establishes that verification is undecidable
for systems with infinite precisions. However this does not seem to prove that undecidability
holds for systems that would not be based on infinite precision computations.

In that spirit, while several undecidability results were stated for hybrid systems, such
as Linear Hybrid Automata [18], Piecewise Constant Derivative systems [2], an informal
conjecture (that we will call the “robustness conjecture”) appeared in the field of verification
of hybrid and continuous systems by various authors. It states that undecidability is due to
non-stability, non-robustness and sensitivity to the initial values of the systems. There were
several attempts to formalise and prove this, including [14, 1].

▶ Remark 1. Actually, the “robustness conjecture” is known to be an informal conjecture,
as it is related to the considered mathematical notion of robustness. It holds for some
mathematical concepts of robustness, such as the ones considered in this article. It is
provably false for some other mathematical concepts of robustness: see e.g. [19].

▶ Remark 2. The mathematical formalisation of robustness, or the question of the various
“natural” concepts of robustness, is related to philosophical questions about the limits of
mathematical models, or of computability theory. A Turing machine is an ideal model, as
well as dynamical systems over the reals are often idealisations of models. We do not aim at
going to these kinds of discussions1.

▶ Remark 3. Our point in this article is to understand how various notions of robustness
lead to decidability, namely the ones of [1, 15, 28]. We argue that the “robustness conjecture”
can be unified in a general theory, in these various approaches. Furthermore, we prove that
this holds at the decidability level and also at the complexity level: quantifying the accepted
level of robustness corresponds naturally to the complexity of the associated questions.

Here, we are starting from the approach of [1], where classes of dynamical systems are
considered. A notion of perturbed dynamics by a small ϵ is associated with each of them.
A perturbed reachability relation is defined as the intersection of all reachability relations
obtained by ϵ-perturbations. The authors of [1] showed that, for many models, the perturbed
reachability relation is co-computably enumerable (co-c.e., Π1) and any co-c.e. relation can
be defined as the perturbed reachability relation of such models. Consequently, it follows from
basic computability arguments, namely that a computably enumerable and co-computably
enumerable set is decidable that if robustness is defined as the stability of the reachability
relation under infinitesimal perturbation, then robust systems have a decidable reachability
relation and hence a decidable verification (i.e. the robusness conjecture holds).

1 Even if our results shed some light on these questions, such as the fact that complexity theory is
essentially quantifying the accepted level of robustness.

M. Blanc and O. Bournez 17:3

The context of the decision procedures for logical theories over the reals. In the context
of decision procedures for logic over the reals, the authors of [15] observed that it is well-known
that some logics, such as real arithmetic, are decidable. However, decidability does not hold
for simple extensions of real arithmetic. Indeed, even the set of Σ1-sentences in a language
extending real arithmetic with the sine function is already undecidable. But if a relaxed and
more “robust” notion of correctness is considered (one asks to answer true when a given
formula ϕ is true and to return false when it is δ-robustly wrong) the truth of a formula
becomes algorithmically solvable. In other words, undecidability intrinsically comes from
the fact that the truth of a sentence might depend on infinitesimally small variations of its
interpretation.

Recently, the author of [28] proposed a first-order predicate language for reasoning
about multi-dimensional smooth real-valued functions. They proved the specification of an
algorithm solving formulas robustly satisfiable with respect to some metrics. The proof of
decidability can also be interpreted using an argument similar to [1, 15].

Our contributions

We extend and relate these approaches to very general settings and provide a general
framework for explaining these observations.

Namely, using various arguments from computability and computable analysis, we estab-
lish the following:

We consider various classes of dynamical systems: in turn, Turing machines, then discrete-
time dynamical systems preserving the rationals, then general discrete-time dynamical
systems and eventually continuous-time dynamical systems. For all of them, we define
robustness as non-sensitivity to infinitesimal perturbations of the associated reachability
relation, in the spirit of [1].

We prove that for this natural concept of robustness, the “robustness conjecture”
holds: verification or reachability relation (and hence safety verification) is decidable
(Corollary 14, Corollary 25, Corollary 42, Corollary 49, Corollary 54) .
We characterise and relate robustness to the question of decidability by proving that
the converse holds if some property is added (Corollary 32). This means that there is
a form of completeness of the above statement: when decidability holds, establishing
the robustness of the corresponding system can be done, for a suitable perturbation or
metric.

Furthermore, we relate this approach, inspired by [1], in the context of verification, to the
concept of δ-decision of [15], in the context of decision procedures in logic2. A system is
robust iff its reachability relation is either true or ϵ-far from being true (Proposition 27).
We also prove that robustness can be seen as having a reachability relation that can be
represented as a pixelated image. It is a simple and elegant geometric property (Corollary
51 and 52).
More fundamentally, while the above results are about decidability, we also discuss
complexity issues. Indeed, when a system is robust, it is natural to quantify the allowed
level of perturbation.

2 We mix the notation δ and ϵ when talking about precision. They are indeed the same. Our problem is
that the framework considered in [15] uses the terminology δ-decidability, whereas [1] is in a context of
real-analysis and uses ϵ to quantify error bounds. We decided to keep both δ and ϵ. Otherwise, this
would conflict with their usual meaning in the two contexts.

CSL 2024

17:4 Quantifiying the Robustness of Dynamical Systems

We show that considering a perturbation polynomially small relates to a very intuitive
way to the complexity of the associated verification or decision problem (Theorem 18,
Theorem 36).
More precisely, polynomial space computability is related to precision (Theorem 18,
Theorem 36) while polynomial time computability is related to the time or length of
the trajectory (Theorem 64).

More on related work. The approach of considering dynamical systems with respect to
infinitesimal perturbations of dynamics is an old idea, sometimes with concepts reinvented
later with other names. We can mention the concept of “chain reachability” studied by Conley
in the 1970’s. In the field of verification, the idea of infinitely perturbed dynamics has been
considered to provide alternative semantics of some models: see e.g. [27] for timed automata.
The approaches considered in [1] and [15] belong to the line of investigation considering
general dynamical systems and aiming at studying the frontier between decidability and
undecidability.

Up to our knowledge, such a unifying framework has never been established. For the
computability aspects, with respect to some of the existing works: Compared to [1], we
allow more general discrete-time and continuous-time dynamical systems, such as those
with unbounded domains. Some generalisations have also been obtained in [9], but focusing
on dynamical systems as language recognisers and mainly focusing on generalisations of
[1, Theorem 4]. The logic considered in [15] allows to talk about finite-time reachability
properties, but not reachable sets. As far as we know, complexity aspects have never been
discussed.

Motivation and interpretation related to models of computation. An orthogonal field
of research is about understanding how analogue (possibly continuous-time) models of
computation behave compared to more classical discrete models such as Turing machines.
This includes models based on ordinary differential equations like the GPAC [29], or algebraic
models based on ordinary differential equations inspired from computability theory [10],
or from computer algebra [6]. A long-standing open problem was how to measure time
complexity in continuous time models. It was recently proved [8] that the length of the
solution curves provides a measure equivalent to time for digital models. The question of a
natural measure for space complexity remains open, despite some very recent characterisations
of (F)PSPACE using ODEs [7].
▶ Remark 4. The theory developed in the current article comes from an attempt to get to a
simpler characterisation of (F)PSPACE, with continuous ODEs. We obtained this theory
initially with the idea that getting to (F)PSPACE requires a way to forbid undecidability.
This led us to develop this theory based on these notions of robustness, guaranteeing
computability.
The theory developed here provides arguments to state that, over a compact domain, space
corresponds to the precision of the computations, while it corresponds to the logarithm of the
size of some graphs for systems over more general domains. Meanwhile, this idea has been
used to provide a simple characterisation of FPSPACE with discrete ordinary differential
equations in [3]. The question of whether a simple characterisation with continuous ODEs
can be obtained remains open.

Preliminaries. d(·, ·) is norm-sup (also called uniform) distance. An (open) (resp. close)
rational ball is a subset of real numbers of the form B(x, δ) = {y ∈ Rd : d(x, y) < δ} (resp.
B(x, δ) = {y ∈ Rd : d(x, y) ≤ δ}) for some rational x and δ, and some integer d. We could

M. Blanc and O. Bournez 17:5

use the Euclidean distance, but this distance has the advantage that its balls correspond
directly to rounding at a precision. A set of reals of the form

∏d
i=1[ai, bi], for rational (ai),

(bi), will be called a rational closed box. An open rational box is obtained by considering
open intervals in the previous definition. The least closed set containing X is denoted by
cls(X). We write ℓ(·) for the function that measures the binary size of its argument. We say
that a function f : Qd → Qd or f : Rd → Rd is Lipschitz when there exists some constant K

such that d(f(x), f(y)) ≤ Kd(x, y). We basically have in mind in all this article, dynamical
systems over Rd, even if in some of the subsections we consider that they might preserve
rationals.

2 On graphs reachability and perturbated TMs

Our theory relies on some well-known observations from complexity theory. We start by
recalling some facts and a few basic concepts.

2.1 Some considerations from complexity theory
First, we recall some complexity results about the following decision problem PATH(G, u, v):
Given a directed graph G = (V, →) and some vertices u, v ∈ V , determine whether there is
some path between u and v in G, denoted by u

∗→ v.

▶ Lemma 5 (Reachability for graphs, [30]). PATH(G, u, v) ∈ NLOGSPACE.

▶ Lemma 6 (Immerman–Szelepcsényi’s theorem [20, 31]). NLOGSPACE = coNLOGSPACE.

We mainly focus on its complement:

▶ Corollary 7. Consider the following decision problem NOPATH(G, u, v): given a directed
graph G = (V, →) and some vertices u, v ∈ V , determine whether there is no path between u

and v in G.
Then NOPATH(G, u, v) ∈ NLOGSPACE.

▶ Theorem 8 (Savitch’s theorem, [30]). For any function f : N → N with f(n) ≥ log n, we
have NSPACE(f(n)) ⊆ SPACE(f2(n)).

▶ Corollary 9. PATH(G, u, v) ∈ SPACE(log2(n)) and NOPATH(G, u, v) ∈ SPACE(log2(n)).

▶ Remark 10. Notice that detecting whether there is no path between u and v is equivalent
to determining whether all paths starting from u “loop”, i.e. remain disjoint from v. The
above statement is established using a more subtle method than a simple depth-of-width
search of the graph. One uses the trick of the proof of Savitch’s theorem, i.e. a recursive
procedure (expressing reachability in less than 2t steps, called CANYIELD(C1, C2, t) in [30])
guaranteeing the wanted space complexity.

A (general) discrete-time dynamical system P is given by a set X, called domain and
some (possibly partial) function f from X to X. A trajectory of P is a sequence (xt) evolving
according to f : that is ∀t, xt+1 = f (xt). We say x∗ (or a set X∗) is reachable from x if there
is a trajectory with x0 = x and xt = x∗ (respectively xt ∈ X∗) for some t.

▶ Remark 11. In other words, any discrete-time dynamical system P can be seen as a
particular (deterministic) directed graph G = (V, →), where V is not necessarily finite: G

corresponds to V = X and → to the graph of the function f .

CSL 2024

17:6 Quantifiying the Robustness of Dynamical Systems

In particular, the following is a classical result (not following from the most obvious
algorithm, but from Savitch theorem, i.e. from sometimes so-called arithmetisation tech-
niques).

▶ Lemma 12 (Reachability for finite graphs). Let s(n) ≥ log(n). Assume the vertices of
G = (V, →) can be encoded in binary using words of length s(n). Assume the relation → is
decidable using a space polynomial in s(n). Then, given the encoding of u ∈ V and of v ∈ V ,
we can decide whether there is some path from u to v, in a space polynomial in s(n).

Our theory covers various dynamical systems. In particular, as a Turing machine is
a particular type of discrete-time dynamical system, we think this helps, for pedagogical
reasons, to discuss first the case of Turing machines. We follow, on this aspect, what was
done in [1].

2.2 The case of Turing machines
We focus on the framework of Turing Machines (TMs). Let Σ be a finite alphabet and let
B ̸∈ Σ be the blank symbol. A TM over Σ is a tuple (Q, q0, F, R, Γ) where Q is a finite set
of control states, q0 ∈ Q is the initial control state, F ⊆ Q (respectively R ⊆ Q) is a set of
accepting (respectively rejecting) states, with F ∩ R = ∅ and Γ is a set of transitions of the
form (q, a) → (q′, b, δ) where q, q′ ∈ Q, a, b ∈ Σ ∪ {B} and δ ∈ {−1, 0, 1}. When the machine
has accepted or rejected, the decision remains unchanged: when q ∈ F , then q′ ∈ F and
when q ∈ R then q′ ∈ R.

We write CM for the set of the configurations of a TM and write a configuration as a
triple (q, · · · a−2a−1, a0a1a2 · · ·): q gives the internal state and a0 the position of the head.

Given a transition (q, a) → (q′, b, δ) in Γ, if the control state is q and the symbol pointed
by the head of the machine is equal to a, then the machine can change its configuration C to
the configuration C ′ in the following manner: the control state is now q′, the symbol pointed
by the head is replaced by b and then the head is moved to the left or the right, or it stays at
the same position according to whether δ is −1, 1, or 0, respectively. We write C ⊢ C ′ when
this holds, i.e. C ′ is the one-step next configuration of the configuration C. Then (CM, ⊢)
corresponds to a particular dynamical system.

Word w = a1 · · · an ∈ Σ∗ is accepted by M if, starting from the initial configuration C0 =
C0[w] = (q0, · · · BBB, a1a2 · · · anBBB · · ·) the machine eventually stops in an accepting
control state: that is, if we write F for the configurations where q ∈ F , iff C0⊢∗C∗ for
some C∗ ∈ F . Let L(M) denote the set of such words, i.e., the computably enumerable
(c.e) language semi-recognised by M. We say that w is rejected by M if, starting from the
configuration C0 the machine M eventually stops in a rejecting state. M is said to always
halt if for all w, either w is accepted or w is rejected.

Article [1] introduces the concept of space-perturbed TM: given n > 0, the idea is that the
n-perturbed version of the machine M is unable to remain correct at a distance more than n

from the head of the machine. Formally, the n-perturbed version Mn of M is defined exactly
as M except before any transition, all the symbols at a distance n or more from the head can
be altered at every step. Hence Mn is nondeterministic. A word w is accepted by Mn iff there
exists a run of this machine which stops in an accepting state. Let Ln(M) be the n-perturbed
language of M. From definitions, if a word is accepted by M, then it is also recognised by all
the Mn’s: perturbed machines have more behaviours. Moreover, Ln+1(M) ⊆ Ln(M). Let
Lω(M) =

⋂
n Ln(M): this is the set of words accepted by M when subject to arbitrarily

“small” perturbations. We have L(M) ⊆ Lω(M) ⊆ · · · ⊆ L2(M) ⊆ L1(M).

M. Blanc and O. Bournez 17:7

Here is a key observation: The ω-perturbed language of a TM is co-computably enumer-
able:

▶ Theorem 13 (Perturbed reachability is co-c.e. [1]). Lω(M) ∈ Π0
1.

Since a set that is c.e. and co-c.e. is decidable, following [1], if we define robustness
as Lω(M) = L(M), then robust languages are necessarily decidable (i.e. the “robustness
conjecture” holds).

▶ Corollary 14 (Robust ≈ decidable [1]). If Lω(M) = L(M) then L(M) is decidable. If M
always halts, then L(M) is decidable and Lω(M) = L(M).

A simple point, but a key observation for coming discussions, is the following: one can
talk about complexity and not only computability. Indeed, when a language is robust, it
makes sense to measure what level of perturbation s can be tolerated. This is the purpose of
Definition 16.
▶ Remark 15. Assume L = L(M) is robust. By definition, L = L(M) = Lω(M). This means
that for any word w, there must exist some n (depending possibly on w) such that w ∈ L(M)
and w ∈ Ln(w) have the same truth value. This n can be read as the associated tolerated
level of perturbation. It quantifies the tolerated level of robustness. Now, we can always
consider that this function that associates n to w depends only on its length (as there are
finitely many words of a given length, and as we can always replace n by a bigger n).

Formally: assuming a language L = L(M) is robust means L = L(M) = Lω(M). Let us
consider some length ℓ, and reason about words of length ℓ (i.e. about words of Σℓ where Σ is
the alphabet of the Turing machine). We must have L∩Σℓ = L(M)∩Σℓ = Lω(M)∩Σℓ. Now,
by definition of Lω(M), Lω(M) ∩ Σℓ is necessarily Ln(M) ∩ Σℓ for some n. Consequently,
we must have L(M) ∩ Σℓ = Ln(M) ∩ Σℓ for some n = s(ℓ) for a robust language.

In other words, for a robust language, we have necessarily

L = L(M) = L{s}(M)

for some function s, for the coming definition. This function n = s(ℓ) quantifies the tolerated
level of robustness. If one prefers, a robust language is necessarily s-robust for some s,
according to Definition 17.

▶ Definition 16 (Level of robustness n given by s). Given a function s : N → N, we write
L{s}(M) for the set of words accepted by M with space perturbation s: L{s}(M) = {w| w ∈
Ls(ℓ(w))(M)}.

▶ Definition 17 (s-robust language). We say that a robust language is s-robust, when
L = L(M) = L{s}(M).

It is natural to consider the case where the function s is a polynomial. It turns out that
this corresponds to (and is even a characterisation of) PSPACE:

▶ Theorem 18 (Polynomial robustness ⇔ PSPACE). L ∈ PSPACE iff for some M and some
polynomial p, L = L(M) = L{p}(M).

Proof. (⇒) If M always terminates and works in polynomial space, then there exists a
polynomial q(·) that bounds the size of the used part of the tape of M . Considering a
polynomial p ≥ q + 2, we have for n ∈ N Lp(ℓ(w))(M) ⊆ L(M). We always have the other
inclusion.

(⇐) Lp(n)(M) ∈ PSPACE is direct from the definitions. ◀

CSL 2024

17:8 Quantifiying the Robustness of Dynamical Systems

3 Embedding TMs into dynamical systems

Many authors have embedded TMs in various classes of dynamical systems to get undecidab-
ility or various hardness results. We present in this section how this is usually done, to point
out where (intuitive) (non-)robustness issues appear.

Generally speaking, the trick is the following. If we forget about blanks, assuming
alphabet Σ = {0, 1}, we can consider that CM ⊆ C = N × Σ∗ × Σ∗. Fix some encoding
function of configurations into a vector of real numbers: Υ : C → Rd, with d ∈ N. For
example, Υ(q, w1, w2) = (q, γ(w1), γ(w2)) with γ : Σ∗ → R taken as:

the encoding γN mapping the word w = a1 . . . an to the integer whose binary expression
is w,
or γ[0,1] mapping w to the real number of [0, 1] whose binary expansion is w,
or more generally, γk

[0,1] or γk
N, using base k instead of base 2 for k ≥ 2,

or γ
′k
[0,1] mapping w to (γk

[0,1](w), ℓ(w)).

Consider a function f : X ⊆ Rd → X such that for any configuration C, denoting by C ′

the next configuration, f(Υ(C)) = Υ(C ′): one step of the TM corresponds to one step in the
dynamical system (X, f) with respect to γ. Then, the diagram of the execution commutes
for any number of steps:

C

Υ(C)

C ′

Υ(C ′)

C ′′

Υ(C ′′)

C ′′′

Υ(C ′′′)

Υ

⊢

f
Υ

⊢

f
Υ

⊢

f
Υ

⊢

f

The questions related to the existence of trajectories in the dynamical system (X, f)
associated with the TM correspond then to the questions about the existence of trajectories
over (X, f). Specifically, it provides c.e.-hardness of reachability for various classes of
dynamical systems, as it is for TM. Call such a situation a step-by-step emulation. However,
encodings such as γ[0,1], whose image is compact, map intrinsically distinct configurations to
points arbitrarily close to each other (a sequence over a compact must have some accumulation
point). Encodings like γN do not have a compact image but involve emulations with arbitrarily
large integers, which is another issue. These observations led to the already mentioned
(informal) conjecture that undecidabilty/hardness may hold only for non-robustness systems.
This leads to discussing now formally robustness issues for general dynamical systems over
Rd for some d ∈ N.

4 Discrete-Time Dynamical Systems

We now study the case of general discrete-time systems. We aim at focusing on discrete-time
systems of type f : Rd → Rd.

4.1 The case of rational systems
For clarity, as this general case requires to talk about computability issues on the reals (we
do so later in Section 4.2) we first focus on the case of systems of type f : Rd → Rd such that
f(Q) ⊆ Q. In other words, we first focus on the case of rational systems, i.e. f : Qd → Qd

(possibly obtained as the restriction to the rationals of a function over the reals).

M. Blanc and O. Bournez 17:9

A rational discrete-time dynamical system will be called Q-computable when the function
(hence from the rationals to the rationals) is. A rational discrete-time dynamical system
will be called Lipschitz when the function is: there exists some constant K such that
d(f(x), f(y)) ≤ Kd(x, y), for all x, y. It will be called locally Lipschitz when for any z and
ϵ > 0 there exists some constant K such that d(f(x), f(y)) ≤ Kd(x, y), for all x, y in B(z, ϵ).

With each rational discrete-time dynamical system P is associated its reachability relation
RP(·, ·) on Qd × Qd. Namely, for two rational points x and y, RP(x, y) holds iff there exists
a trajectory of P from x to y. The reachability relation of a Q-computable system is
computably enumerable: to enumerate, a Turing machine can just simulate the dynamics.

▶ Remark 19. Article [1] considers only the special case of Piecewise affine (PAM) maps, as
representative of discrete-time systems, which are particular Q-computable Lipschitz systems.

▶ Remark 20. Here is an example of Q-computable Lipschitz systems. Take some recurrent
neural network, with d neurons, with the ReLU activation function, defined as ReLU(x) =
max(0, x). Its dynamic can be written as xt+1 = ReLU(Ax + B) where A is some d × d

matrix with rational entries and B is some vector of dimension d with rational entries, where
the ReLU function is applied componentwise.

Reachability for Q-computable systems is undecidable and c.e.-complete:

▶ Theorem 21 (Computational power of PAMs [23, 22, 1]). Any c.e. language is reducible to
the reachability relation of a PAM.

Let us discuss whether undecidability still holds for “robust systems”.
We apply the paradigm of small perturbations: consider a discrete-time dynamical system

P with a function f . For any ϵ > 0 we consider the ϵ-perturbed system Pϵ. Its trajectories are
defined as sequences xt satisfying d(xt+1, f (xt)) < ϵ for all t. This non-deterministic system
is considered as P submitted to a noise of magnitude ϵ. For convenience, we write y ∈ fϵ(x)
as a synonym for d(f(x), y) < ϵ. We denote reachability in the system Pϵ by RP

ϵ (·, ·).
All trajectories of a non-perturbed system P are also trajectories of the ϵ-perturbed

system Pϵ. If ϵ1 < ϵ2 then any trajectory of the ϵ1-perturbed system is also a trajectory of the
ϵ2-perturbed PAM. Define RP

ω (x, y) iff ∀ϵ > 0 RP
ϵ (x, y): this relation encodes reachability

with arbitrarily small perturbing noise. From definitions:

▶ Lemma 22 ([1]). For any 0 < ϵ2 < ϵ1 and any x and y the following implications hold:
RP(x, y) ⇒ RP

ω (x, y) ⇒ RP
ϵ2

(x, y) ⇒ RP
ϵ1

(x, y).

▶ Theorem 23 (Perturbed reachability is co-c.e.). Consider a locally Lipschitz Q-computable
system whose domain X ⊆ Rd is a closed rational box3. Then the relation RP

ω (x, y) ⊆ Qd×Qd

is in the class Π1.

Proof. This extends [1, Theorem 5], using an alternative proof. As f is locally Lipschitz and
X is compact, we know that f is Lipschitz: there exists some L > 0 so that d(f(x), f(y)) ≤
L · d(x, y). For every δ = 2−m, m ∈ N, we associate some graph Gm = (Vδ, →δ): its vertices,
denoted by (Vi)i, correspond to some finite discretisation and covering of compact X by
rational open balls Vi = B(xi, δi) of radius δi < δ. There is an edge from Vi to Vj in this
graph, that is to say Vi →δ Vj , iff B(f(xi), (L + 1)δ) ∩ Vj ̸= ∅. With our hypothesis on the
domain, such a graph can be effectively obtained from m, considering a suitable discretisation
of the rational box X.

3 Recall that a rational box X is a subset of real numbers, not of rational numbers. Consequently, such
an X is compact.

CSL 2024

17:10 Quantifiying the Robustness of Dynamical Systems

▷ Claim 1. assume RP
ϵ (x, y) with x ∈ Vi for ϵ = 2−n. Then Vi

∗→ϵ Vj for all Vj with y ∈ Vj .
This holds as the graph for δ = ϵ is made to always have more trajectories/behaviours than
RP

ϵ .

▷ Claim 2. for any ϵ = 2−n, there is some δ = 2−m so that if we have Vi
∗→δ Vj then

RP
ϵ (x, y) whenever x ∈ Vi, y ∈ Vj .

Claim 2 says that ¬RP
ϵ (x, y) implies ¬(Vi

∗→δ Vj) whenever x ∈ Vi, y ∈ Vj , for the
corresponding δ.

From the two above items, ¬RP
ω (x, y) holds iff for some δ = 2−m, ¬(Vi

∗→δ Vj) for some
Vi, Vj with x ∈ Vi, y ∈ Vj . This holds iff for some integer m, NOPATH(Gm, Vi, Vj) for some
Vi, Vj with x ∈ Vi, y ∈ Vj . The latter property is c.e., as it is a union of decidable sets
(uniform in m), as NOPATH(Gm, Vi, Vj) is a decidable property over finite graph Gm. ◀

▶ Definition 24 (Robust reachability relation). We say that the reachability relation is robust
when RP = RP

ω .

We get the “robustness conjecture” :

▶ Corollary 25 (Robust ⇒ decidable, [1, Corollary 5]). Assume the hypotheses of Theorem 23.
If the relation RP is robust then it is decidable.

4.1.1 Robustness versus decidability and δ-decidability
We now discuss how far the above statement is to a characterisation of decidability.

There is indeed a converse property if some condition is added. Before stating this
in Corollary 32, we relate robustness to the concept of δ-decidability in [15] and also the
existence of some witness of non-reachability.

Given x, RP(x) denotes the set of the points y reachable from x: RP(x) = {y|RP(x, y)}.

This is also the smallest set such that x ∈ RP(x) and f(RP(x)) ⊆ RP(x).

▶ Definition 26. RP(x, y) is said to be ϵ-far from being true if there is R∗ ⊆ X so that
1. x ∈ R∗,
2. fϵ(R∗) ⊆ R∗,
3. y ̸∈ R∗.
When this holds, we have ¬RP(x, y). Indeed, for all ϵ > 0, RP

ϵ (x) = {y|RP
ϵ (x, y)} is the

smallest set satisfying x ∈ RP
ϵ (x) and fϵ(RP

ϵ (x)) ⊆ RP
ϵ (x). Thus, as R∗ also satisfies these

properties by the first two conditions, RP
ϵ (x) ⊆ R∗ and hence y ̸∈ RP(x) as RP(x) ⊆

RP
ϵ (x) ⊆ R∗. Then y ̸∈ R∗ from the third condition.

In other words, R∗ is a witness of the non-reachability of y from x. We will say that it is
at level ϵ. This provides a relation to δ-decidability considered in [15]:

▶ Proposition 27 (Robust ⇔ Reachability relation is true or ϵ-far from being true). We have
RP

ω = RP if and only if for all x, y ∈ Qd, either
1. RP(x, y) is true
2. or RP(x, y) is false and there exists ϵ > 0 such that it is ϵ-far from being true.

Proof.
(⇒): For all ϵ > 0, RP

ϵ (x) satisfies x ∈ RP
ϵ (x) and fϵ(RP

ϵ (x)) ⊆ RP
ϵ (x) (this is even the

smallest set such that this holds). Let y ∈ Qd, let us assume that RP(x, y) = RP
ω (x, y) is not

true. Then, there exists ϵ such that RP
ϵ (x, y) is false, i.e. y ̸∈ RP

ϵ (x). Consider R∗ = RP
ϵ (x).

Then, x ∈ R∗ and from the first paragraph fϵ(R∗) ⊆ R∗ and y ̸∈ R∗.

M. Blanc and O. Bournez 17:11

(⇐): When RP(x, y) is true, for all ϵ > 0, RP
ϵ (x, y) is true, so RP

ω (x, y) is. When
RP(x, y) is false, by hypothesis, RP(x, y) is ϵ-far from being true for some ϵ > 0: there
exists a set R∗ satisfying x ∈ R∗ and fϵ(R∗) ⊆ R∗. As RP

ϵ (x) is the smallest such set,
RP

ϵ (x) ⊆ R∗. As y ̸∈ R∗, y ̸∈ RP
ϵ (x). Hence RP

ω (x, y) is false. ◀

We say that a subset R∗ of X is ϵ-rejecting (with respect to y) if it satisfies 2. and 3. of
Definition 26: that is to say, fϵ(R∗) ⊆ R∗, and y ̸∈ R∗. A trajectory reaching such a R∗ will
never leave it.

▶ Definition 28. A system is eventually decisional if for all x, y, there is some R∗ ϵ-rejecting
(with respect to y) so that either the trajectory starting from x reaches y or, when not, it
reaches R∗.

We come back to the converse of Corollary 25: from Proposition 27, a robust dynamical
system (i.e. RP

ω = RP) is eventually decisional, by considering R∗ = R∗ for the R∗ given by
item 2) there. Conversely:

▶ Lemma 29. Take x and y with RP
ω (x, y) but not RP(x, y). For f Lipschitz, the trajectory

starting from x ∈ Qd can not reach any ϵ-rejecting subset.

Proof. By contradiction, assume the trajectory starting from x reaches an ϵ-rejecting R∗. By
considering one more step, we can assume that it reaches the interior of R∗ for the first time
at t, since, if it reaches the frontier at x∗, B(f(x∗), ϵ) ⊆ R∗ and f(x∗) is in the interior of
that ball. From x the position at time t remains at a positive distance of y. As f is Lipschitz,
the t-th iteration of f is. So, there exists 0 < ϵ′ < ϵ taken sufficiently small so that RP

ϵ′

intersects the interior of R∗ and remains at a positive distance of y. Once in R∗, ϵ′-perturbed
trajectories stay in it (ϵ′ < ϵ). We get y ̸∈ RP

ϵ′ . Thus ¬RP
ω (x, y): contradiction. ◀

▶ Corollary 30. Consider a Lipschitz rational dynamical system. It is robust iff it is eventually
decisional.

We can even compute the witnesses under the hypotheses of Theorem 23. A dynamical
system is effectively eventually decisional when there is an algorithm such that, given x and
y, it outputs an R∗ in the form of the union of rational balls. We can reinforce Corollary 25:

▶ Proposition 31. Assume the hypotheses of Theorem 23. If RP
ω = RP then RP is computable

and the system is effectively eventually decisional.

Proof. The proof of Theorem 23 shows that when RP
ω (x, y) is false, then RP

ϵ (x, y) is false
for some ϵ = 2−n and there is a δ = 2−m and some graph Gm with vertices Vi and Vj , x ∈ Vi,
y ∈ Vj and ¬(Vi

∗→δ Vj). Denote by RGm the union of the vertices Vk such that Vi
∗→δ Vk,

x ∈ Vi in Gm. Consider R∗ = RGm : this is a witness at level δ = 2−m from the properties of
the construction. Then m can be found by testing increasing m until a proper graph is found.
The corresponding R∗ = RGm of the first graph found will be a witness at level δ = 2−m. ◀

The reachability relation of an effectively eventually decisional system is necessarily
decidable (given x and y, compute the path until it reaches y (then accept), or R∗ (then
reject)):

▶ Corollary 32 (Decidable ⇔ Robust, for eventually decisional systems). Under the hypotheses
of Theorem 23, RP is robust iff RP is decidable and RP is effectively eventually decisional
iff RP

ω is effectively eventually decisional.

CSL 2024

17:12 Quantifiying the Robustness of Dynamical Systems

4.1.2 Complexity issues
Assume the dynamical system is robust. Hence, for all x, y ∈ Q, there exists ϵ (depending
on x, y) such that RP(x, y) and RP

ϵ (x, y) have the same truth value (unchanged by smaller
ϵ). It is then natural to quantify the level of required robustness according to x and y, i.e.
on the value ϵ. As we may always assume ϵ = 2−n for some n ∈ N, we write RP

n for RP
ϵ=2−n

and we introduce:

▶ Definition 33 (Level of robustness ϵ given by s). Given a function s : N → N, we write
RP

{s} for the relation defined as: for any rational points x and y the relation holds iff
RP

s(ℓ(x)+ℓ(y))(x, y).

A robust dynamical system is necessarily s-robust for some function s, according to
the next definition: this follows from exactly the same arguments as the ones we used for
the related concepts for Turing machines. This function s quantifies the tolerated level of
robustness.

▶ Definition 34 (s-robust language). We say that a dynamical system is s-robust, when
RP = RP

{s}.

We can then naturally consider the case where s is a polynomial: considering robustness
to polynomial perturbations corresponds to PSPACE:

▶ Theorem 35. Consider a locally Lipschitz Q-computable system, with f : Q → Q computable
in polynomial time, whose domain X is a closed rational box. Given some polynomial p,
RP

{p} ∈ PSPACE.

Proof. From Theorem 23, for all n there exists some m (depending on n), such that RP
n (x, y)

and RGm(x, y) have the same truth value, where RGm denotes reachability in the graph Gm.
With the hypotheses, given x and y, we can determine whether RP

{p}(x, y), by determining
the truth value of RP

n (x, y), taking n polynomial in ℓ(x) + ℓ(y). From Theorem 23, the
corresponding m is linearly related to n. The analysis of Corollary 12 shows that the truth
value of RGm(x, y) can be determined in space polynomial in m. ◀

▶ Theorem 36 (Polynomially robust to precision ⇒ PSPACE). With the same hypotheses, if
RP = RP

{p} for some polynomial p, then RP ∈ PSPACE.

This is even a characterisation of PSPACE:

▶ Theorem 37 (Polynomially robust to precision ⇔ PSPACE). Any PSPACE language is
reducible to PAM’s reachability relation: RP = RP

{p}, for some polynomial p.

Assuming the hypotheses of Theorem 36, when RP = RP
{p} for some polynomial p, we

also see that we can determine a witness of ¬RP(x, y) in polynomial space (using a suitable
representation of it).

4.2 The case of computable systems
We now consider the case of general discrete-time dynamical systems. Then f may take some
non-rational values and we need the notion of computability of functions over the reals: this
requires the model of computable analysis: see e.g. [32] or [12] for full presentations.

We review the most basic ideas of computable analysis in the next subsection.

M. Blanc and O. Bournez 17:13

4.2.1 Some basics of computable analysis

The idea behind classical computability and complexity is to fix some representations of
objects (such as graphs, integers, etc, . . .) using finite words over some finite alphabet, say
Σ = {0, 1} and to say that such an object is computable when such a representation can be
produced using a Turing machine. The computable analysis is designed to be able to also
talk about objects such as real numbers, functions over the reals, closed subsets, compacts
subsets, . . . , which cannot be represented by finite words over Σ (a clear reason for it is
that such words are countable while the set R, for example, is not). However, they can be
represented by some infinite words over Σ and the idea is to fix such representations for these
various objects, called names, with suitable computable properties. In particular, in all the
following proposed representations, it can be proved that an object is computable iff it has
some computable representation.

▶ Remark 38. Here the notion of computability involved is one of Type 2 Turing machines,
that is to say, computability over possibly infinite words: the idea is that such a machine has
some read-only input tape(s), that contains the input(s), which can correspond to either a
finite or infinite word(s), a read-write working tape and one (or several) write-only output
tape(s). It evolves as a classical Turing machine, the only difference being that we consider
it outputs an infinite word when it writes forever the symbols of that word on its (or one of
its) write-only infinite output tape(s): see [32] for details.

A name for a point x ∈ Rd is a sequence (In) of nested open rational balls with In+1 ⊆ In

for all n ∈ N and {x} =
⋂

n∈N In. Such a name can be encoded as an infinite sequence of
symbols.

We call a real function f :⊆ R → R computable, iff some (Type 2 Turing) machine maps
any name of any x ∈ dom(f) to a name of f(x). For real functions f :⊆ Rn → R we consider
machines reading n names in parallel.

It can be proved that a computable function is necessarily continuous. A name for a
function f is a list of all pairs of open rational balls (I, J) such that f(cls(I)) ⊆ J . Following
the above remark, one can prove that a real function is computable iff it has some computable
name.

A name for a closed set F is a sequence (In) of all open rational balls such that cls(In)∩F =
∅ and a sequence (Jn) of all open rational balls such that Jn ∩ F ̸= ∅.

Given some closed set F , the distance function dF : Rn → R is defined by dF (x) :=
infy∈F d(x, y). Closed subset F ⊆ Rn is computable iff its distance function dA : Rn → R
is ([32, Corollary 5.1.8]). A name for a compact K is a name of F as a closed set and an
integer L such that K ⊆ B(0, L).

A closed set is called computably-enumerable closed if one can effectively enumerate
the rational open balls intersecting it: {(q, ϵ) ∈ Qn × Q+ | B(q, ϵ) ∩ A ̸= ∅} is computably
enumerable ([12, Definition 5.13],[32, Definition 5.1.1]). A closed set is called co-computably-
enumerable closed if one can effectively enumerate the rational closed balls in its complement:
the set

{
(q, ϵ) ∈ Qn × Q+ | B(q, ϵ) ⊆ U

}
is computably enumerable ([12, Definition 5.10],[32,

Definition 5.1.1]).
We need also the concept of polynomial time computable function in computable analysis:

see [21]. In short, a quickly converging name of x ∈ Rd is a name of x, with In of radius
< 2−n. A function f : Rd → Rd′ is said to be computable in polynomial time, if there is some
oracle TM M , such that, for all x, given any fast converging name of x as an oracle, given n,
M produces some open rational ball of radius < 2−n containing f(x), in a time polynomial
in n.

CSL 2024

17:14 Quantifiying the Robustness of Dynamical Systems

4.2.2 Computable systems
A system is said computable if the function f : Rd → Rd is. From the model of computable
analysis, given the name of f , x, y ∈ Q, it is impossible in general to tell effectively if f(x) = y.
Thus, given some rational ball B(y, δ), we have to forbid “frontier reachability”: B(y, δ)
would not be reachable, but its frontier B(y, δ) − B(y, δ) would. A natural question arises:
given some rational ball with the promise that either B(y, δ) is reachable (that case implies
that B(y, δ) is), or that B(y, δ) is not, decide which possibility holds. We call this the
ball (decision) problem. From definitions from CA, when RP(x) is a closed set, RP(x) is a
computable closed set iff its associated ball problem is algorithmically solvable.

For computable systems, the ball decision problem is c.e: we mean, there is a Turing
machine whose halting set intersected with the rational balls satisfying the promise is the
set of positive instances. Indeed, just simulate the system’s evolution, starting from x until
step T , with increasing precision and T , until one finds the guarantee that xT at time T

remains in B(y, δ′) for some δ′ < δ. If the ball is reachable, it will terminate by computing a
sufficient approximation of the corresponding xT . It cannot terminate without guaranteeing
reachability. It is not co-c.e. in general.
▶ Remark 39. Our framework for discussing the computability of sets is similar to the concept
of a maximally partially decidable set, formalised in [24, 25]. Similar ideas have also been
implicitly used in many other articles considering various real problems, using computable
analysis. A similar formalisation is also considered in [5].

To a discrete-time system, we can also associate its reachability relation RP(·, ·, ·) over
Qd × Qd × N. For two points x, y ∈ Q, η = 2−p, encoded by p ∈ N, RP(x, y, p) iff there
exists a trajectory of P from x to B(y, η). We define RP

ϵ similarly and RP
ω =

⋂
ϵ RP

ϵ . This
relation encodes reachability with arbitrarily small perturbing noise to some closed ball.

▶ Lemma 40. For any 0 < ϵ2 < ϵ1 and any x and y, η, the following implications hold:
RP(x, y, p) ⇒ RP

ω (x, y, p) ⇒ RP
ϵ2

(x, y, p) ⇒ RP
ϵ1

(x, y, p).

Given x and 0 < ϵ2 < ϵ1, RP(x) ⊆ RP
ϵ2

(x) ⊆ cls(RP
ϵ2

(x)) ⊆ RP
ϵ1

(x) ⊆ cls(RP
ϵ1

(x)). Hence,
RP

ω (x) =
⋂

ϵ>0 RP
ϵ (x) =

⋂
ϵ>0 cls(RP

ϵ (x)) is a closed set.

▶ Theorem 41 (Perturbed reachability is co-r.e.). Consider a locally Lipschitz computable
system whose domain X is a computable compact. RP

ω (x, y, p) ⊆ Qd × Qd × N is in Π1.

This can be considered as extending [9, Theorem 13], established in a very simpler
framework.

▶ Corollary 42 (Robust ⇒ decidable). Assume Theorem 41’s hypotheses and that for all
rational x, RP(x) is closed and RP(x) = RP

ω (x). Then, the ball decision problem is decidable.

Proof. Given some instance B(y, δ) of the ball problem, run in parallel the c.e. algorithm
for it (and when its termination is detected, accepts) and the c.e. algorithm for

(
RP(x)

)c =(
RP

ω (x)
)c (and when its termination is detected, rejects). ◀

4.2.3 Complexity issues
▶ Definition 43 (Level of robustness ϵ given by s). Given some function s : N → N, we write
RP

{s} as: for two rational points x and y and p, the relation holds iff RP
s(ℓ(x)+ℓ(y)+p)(x, y, p).

As before, a robust dynamical system is necessarily s-robust for some function s, according
to the next definition. The function s quantifies the tolerated level of robustness.

M. Blanc and O. Bournez 17:15

▶ Definition 44 (s-robust language). We say that a dynamical system is s-robust, when
RP = RP

{s}.

▶ Theorem 45. Take a locally Lipschitz system, with f polynomial time computable, whose
domain X is a closed rational box. Then RP

{p} ⊆ Qd × Qd × N ∈ PSPACE, when p is a
polynomial.

Proof. The proof of Theorem 41 (like for Theorem 23) shows that when RP
ω (x, y, p) is false,

then RP
ϵ (x, y, p) is false for some ϵ = 2−n. With the hypotheses, given x, y and p, we take n

polynomial in ℓ(x) + ℓ(y) + p. The corresponding m is polynomially related to n (linear in n).
An analysis similar to Theorem 35, shows the truth value of RGm(x, y, p) can be determined
in space polynomial in m. ◀

Then, once again:

▶ Theorem 46 (Polynomially robust to precision ⇒ PSPACE). Assuming Theorem 45’s
hypotheses, and that for all rational x, RP(x) is closed and RP(x) = RP

{p} for a polynomial
p. Then the ball decision problem is in PSPACE.

5 Relating robustness to drawability

We can go further and prove geometric properties: in the previous sections, we associated
with every discrete-time dynamical system a reachability relation over the rationals. But we
could also see it as a relation over the reals and use the framework of computable analysis,
regarding subsets of Rd × Rd. From the statements of [32], the following holds:

▶ Theorem 47. Consider a computable discrete-time system P whose domain is a computable
compact. For all computable x, cls(RP(x)) ⊆ Rd is a c.e. closed subset.

A closed set is called co-c.e. closed if we can effectively enumerate the rational closed
balls in its complement. Using proofs similar to Theorems 41 and 23:

▶ Theorem 48. Consider a computable locally Lipschitz discrete-time system whose domain
X is a computable compact. For all computable x, cls(RP

ω (x)) ⊆ Rd is a co-c.e. closed
subset.

▶ Corollary 49 (Robust ⇒ computable)). Assume the Theorem 48’s hypotheses. If RP is
robust then for all computable x, cls(RP(x)) ⊆ Rd is computable.

For closed sets, the notion of computability can be interpreted as the possibility of being
plotted with an arbitrarily chosen precision: z/2n corresponds to a pixel at precision 2−n, 1
is black (the pixel is plotted black), 0 is white (the pixel is plotted white).

▶ Theorem 50 ([12]). For a closed set A ⊆ Rk, A is computable iff it can be plotted: there
exists a computable function f : N × Zk → N with range(f) ⊆ {0, 1} and such that for all
n ∈ N and z ∈ Zk

f(n, z) =

1 if B(z

2n , 2−n) ∩ A ̸= ∅,

0 if B(z
2n , 2.2−n) ∩ A = ∅,

0 or 1 otherwise.

▶ Corollary 51 (Robust ⇒ drawable)). Assume Theorem 48’s hypotheses. If RP is robust
then for all computable x, cls(RP(x)) ⊆ Rd can be plotted.

CSL 2024

17:16 Quantifiying the Robustness of Dynamical Systems

This is even effective in the name of x and f . The converse holds with additional
topological properties.

▶ Theorem 52. Assume RP is closed and can be plotted effectively in the name of x and f .
Then the system is robust, i.e. RP

ω = RP .

We prove a stronger statement: if cls(RP) can be plotted effectively in a name of x and
f , then RP

ω (x, y) = RP(x, y) except maybe for (x, y) ∈ cls(RP) − RP .

Proof. By Theorem 50, cls(RP) is computable which is equivalent to the computability
of the distance function d(·, cls(RP)) [32, Corollary 5.1.8]. It means that given a rational
ball, a name for x and y, with ¬RP(x, y), the following procedure terminates when (x, y) ̸∈
cls(RP) − RP : compute a name of d((x, y), cls(RP(x))) until a strictly positive proof is
found: d((x, y), cls(RP(x))) = 0 would mean (x, y) ∈ cls(RP), but not in RP .

It answers by reading m ∈ N cells of the names of x, y and f . It returns the same if the
names are altered after m symbols. Thus, there exists a precision ϵ (related to m, usually
2−m for exponentially fast convergence) so ¬RP(x, y) remains true for an ϵ-neighborhood of
x and y and unchanged by a small variation of f . Hence, for all x, y, when ¬RP(x, y), there
exists some ϵ such that ¬RP

ϵ (x, y) (¬RP
ω (x, y)). When RP(x, y) holds, RP

ω (x, y) holds. ◀

6 Continuous-time systems

The previous ideas can be extended to continuous-time or hybrid systems.

▶ Definition 53. A continuous-time dynamical system P is given by a set X ⊆ Rd and some
Ordinary Differential Equation of the form ẋ = f(x) on X.

The maximal interval of existence of solutions can be non-computable, even for computable
Ordinary Differential Equations (ODEs) [16]. To simplify, we assume the ODEs have
solutions4 defined over all R. A trajectory of P starting at x0 ∈ X is a solution of the
differential equation with initial condition x(0) = x0, defined as a continuous right-derivable
function ξ : R+ → X such that ξ(0) = f(x0) and for every t, f(ξ(t)) is equal to the right-
derivative of ξ(t). To each continuous-time dynamical system P we associate its reachability
relation RP as before.

For any ϵ > 0, the ϵ-perturbed system Pϵ is described by the differential inclusion
d(ẋ, f(x)) < ϵ. This non-deterministic system can be seen as P submitted to a noise of
magnitude ϵ. We denote reachability in the system Pϵ by RP

ϵ . The limit reachability relation
RP

ω is introduced as before.

▶ Theorem 54 (Perturbed reachability is co-r.e.). Consider a continuous-time dynamical
system, with f locally Lipschitz, computable, whose domain is a computable compact, then,
for all computable x, cls(RP

ω (x)) ⊆ Rd is a co-c.e. closed subset.

Proof. Its proof can be considered as the main technical result established in [26]. An
alternative proof is similar to Theorems 41 and 23: adapt the construction of the involved
graph Gm to cover the flow of the trajectory. With our hypotheses, the solutions are
defined over all R. It is proved in [16] that Lipschitz (and even effectively locally Lipschitz)
homogeneous computable ODEs have computable solutions over their maximal domain. ◀

4 A non-total solution must necessarily leave any compact, see e.g. [17], so X is compact is not a
restriction.

M. Blanc and O. Bournez 17:17

▶ Corollary 55 (Robust ⇒ decidable). Assume the hypotheses of Theorem 54. If RP is robust
then for all computable x, cls(RP(x)) ⊆ Rd is computable.

7 Other perturbations

Inspired by analogue computations [8], when time has been related to the length of trajectories,
we can also consider time or length-perturbations.

Time-perturbation. We can start by considering time-perturbed TM . The idea is that
given n > 0, the n-perturbed version of M is unable to remain correct after a time n.
Given n > 0, the n-perturbed version of M, is defined exactly likewise, except after a time
greater than n, its internal state q can change in a non-deterministic manner. The associated
language is Ln(M). From definitions: L(M) ⊆ Lω(M) ⊆ · · · ⊆ L2(M) ⊆ L1(M).

▶ Theorem 56 (Length robust ⇒ decidable). Lω(M) is in the class Π1. Consequently,
whenever Lω(M) = L(M), L(M) is decidable.

▶ Theorem 57. When M always stops, Lω(M) = L(M).

▶ Definition 58 (Level of robustness n given by t). Given t : N → N, we write L{t}(M) for
the set of words accepted by M with time perturbation t: L{t}(M) = {w| w ∈ Lt(ℓ(w))(M)}.

A robust dynamical system is necessarily t-robust for some function t, according to the
next definition:

▶ Definition 59 (t-robust to time language). We say that a robust language is t-robust to
time, when L = L(M) = L{t}(M).

▶ Theorem 60 (Polynomially robust to time ⇔ PTIME). A language L is in PTIME iff for
some M and some polynomial p, L = L(M) = L{p}(M).

Furthermore, any PTIME language is reducible to PAM’s reachability: RP = L{p}(P)
for some polynomial p.

Length-perturbation. As we said, inspired by analogue computations [8], we can also
consider length perturbations: Fix a distance δ(·, ·) over the domain X. A finite trajectory
of a discrete-time dynamical system P is a finite sequence (xt)t∈0...T such that xt+1 = f (xt)
for all 0 ≤ t < T . Its associated length is defined as L =

∑T −1
i=0 δ(xi, xi+1). We consider a

length-perturbed discrete-time dynamical system: given L > 0, the L-perturbed version of
the system is unable to remain correct after a length L. We define RP,L(x, y) as there exists
a finite trajectory of P from x to y of length L ≤ L. When considering TMs as dynamical
systems, δ(·, ·) is a distance over configurations of TMs. Word w is said to be accepted in
length d if the trajectory starting from C0[w] to the accepting configuration has length ≤ d.

▶ Definition 61. Distance δ(C, C ′) is called time-metric iff whenever C ′ is the configuration
following configuration C, we have δ(C, C ′) ≤ p(ℓ(C)), and δ(C, C ′) ≥ 1

p(ℓ(C)) for some
polynomial p.

Write L(M, t) for the set of words accepted by M in length less than t.

▶ Definition 62 (Tolerating some level of robustness L given by f). Given f : N → N, we
write L(f)(M) for L(f)(M) = {w| w ∈ L(M, f(ℓ(w))}.

CSL 2024

17:18 Quantifiying the Robustness of Dynamical Systems

▶ Theorem 63 (Length robust for some time-metric distance ⇔ PTIME). Assume δ(·, ·) is
time metric. Then, a language L is in PTIME iff for some TM M and some polynomial
p(n), L = L(M) = L(f)(M).

One way to obtain a distance δ(C, C ′) is to take the Euclidean distance between Υ(C)
and Υ(C ′) for γ = γ[0,1], where γ[0,1] and Υ are the functions considered in Section 3. The
obtained distance is time metric. Given f : N → N, we write RP,(f) for the set of words
accepted by M with length perturbation f : RM,(f) = {w| w ∈ RM,f(ℓ(w)}.

▶ Theorem 64 (Polynomially length robust ⇔ PTIME). Assume distance d is time metric
and RP = RP,(p) for some polynomial p. Then RP ∈ PTIME.

8 Conclusion and future work

In this article, we have proposed a unified theory explaining in a uniform framework various
statements relating robustness, defined as being non-sensitive to infinitesimal perturbations,
to decidability. Most of the statements in the spirit of the “robustness conjecture” have been
established using arguments from computability over the rationals or the reals, playing with
variations on the statement that a semi-computable and co-semi-computable set is decidable.

More importantly, while existing statements of this form were only at the level of
decidability, we showed that it is possible to also talk about complexity: robustness to
polynomial perturbations on precision corresponds to PSPACE, robustness to polynomial
perturbations on time or length corresponds to PTIME.

We also related the approach of [1] to the concept of δ-decidability of [15], as well as the
drawability of the associated dynamics.

Notice that the proposed approach can also cover the so-called hybrid systems without
difficulties. Various models have been considered in the literature for such systems, but one
common point is that they all correspond to continuous-time dynamical systems, where the
dynamics might be discontinuous, so not computable. In a very general view, a hybrid system
P is given by a set X ⊆ Rd, a semi-group T and a flow function ϕ : X × T → X satisfying
ϕ(x, 0) = x and ϕ(ϕ(x, t), t′) = ϕ(x, t + t′). Previous proofs use the fact that reachability
RP is c.e. and perturbed reachability is co-c.e. The former is usually obvious in any of the
considered models, as we expect to be able to simulate the model. The latter is usually
less trivial. If we look at our proof methods, we only need to construct some computable
abstraction satisfying Claims 1 and 2. One key remark is that we need these properties not
about the function f but its graph. Assuming a function such that the closure of its graph is
computable, is more general than assuming computability. For example, the characteristic
function χ[0,∞) is not computable, as it is not continuous. But its graph, as well as its closure,
is easy to draw: see discussions e.g. in [13]. In particular, this allowed us to talk about
discontinuous functions in the current article.

Regarding analogue models of computation, a variation on our concept of robustness
has already been used to provide a characterisation of PSPACE for discrete-time ordinary
differential equations in [3].

We believe that the theory developed here might be used to prove formally that space
complexity corresponds to precision for continuous-time models of computation, over some
compact domains, providing a more natural measure than the conditions considered in [7].

M. Blanc and O. Bournez 17:19

References

1 Eugene Asarin and Ahmed Bouajjani. Perturbed Turing machines and hybrid systems. In
Proceedings of the 16th Annual IEEE Symposium on Logic in Computer Science (LICS-01),
pages 269–278, Los Alamitos, CA, June 16–19 2001. IEEE Computer Society Press.

2 Eugene Asarin, Oded Maler, and Amir Pnueli. Reachability analysis of dynamical systems
having piecewise-constant derivatives. Theoretical Computer Science, 138(1):35–65, February
1995.

3 Manon Blanc and Olivier Bournez. A characterisation of functions computable in polynomial
time and space over the reals with discrete ordinary differential equations: Simulation of Turing
machines with analytic discrete odes. In Mathematical Foundations of Computer Science
(MFCS’2023), 2023.

4 Vincent Blondel and John Tsitsiklis. A survey of computational complexity results in systems
and control. Automatica, 36(9):1249–1274, 2000.

5 Olivier Bournez, Johanne Cohen, and Valentin Dardilhac. On the δ-decidability of decision
problems for neural network questions. In Computability, Continuity, Constructivity - from
Logic to Algorithms CCC’23, 2023.

6 Olivier Bournez, Felipe Cucker, Paulin Jacobé de Naurois, and Jean-Yves Marion. Computabil-
ity over an arbitrary structure. sequential and parallel polynomial time. In Andrew D. Gordon,
editor, Foundations of Software Science and Computational Structures, 6th International
Conference (FOSSACS’2003), volume 2620 of Lecture Notes in Computer Science, pages
185–199, Warsaw, 2003. Springer.

7 Olivier Bournez, Riccardo Gozzi, Daniel S Graça, and Amaury Pouly. A continuous character-
ization of PSPACE using polynomial ordinary differential equations. Journal of Complexity,
77:101755, August 2023. URL: https://www.sciencedirect.com/science/article/pii/
S0885064X23000249?dgcid)=author.

8 Olivier Bournez, Daniel S. Graça, and Amaury Pouly. Polynomial Time corresponds to
Solutions of Polynomial Ordinary Differential Equations of Polynomial Length. Journal of the
ACM, 64(6):38:1–38:76, 2017. doi:10.1145/3127496.

9 Olivier Bournez, Daniel S. Graça, and Emmanuel Hainry. Robust computations with dy-
namical systems. In Mathematical Foundations of Computer Science, MFCS’2010, volume
6281 of Lecture Notes in Computer Science, pages 198–208. Springer, 2010. doi:10.1007/
978-3-642-15155-2_19.

10 Olivier Bournez and Emmanuel Hainry. An analog characterization of elementary computable
functions over the real numbers. In Josep Díaz, Juhani Karhumäki, Arto Lepistö, and
Donald Sannella, editors, International Colloquium on Automata, Languages and Programming
(ICALP 2004), volume 3142 of Lecture Notes in Computer Science, pages 269–280, 2004.

11 Olivier Bournez and Amaury Pouly. A survey on analog models of computation. In Handbook
of Computability and Complexity in Analysis, pages 173–226. Springer, 2021.

12 Vasco Brattka, Peter Hertling, and Klaus Weihrauch. A tutorial on computable analysis. In
New computational paradigms, pages 425–491. Springer, 2008.

13 Mark Braverman. Computational complexity of Euclidean sets: Hyperbolic Julia sets are
poly-time computable. Master’s thesis, University of Toronto, 2004.

14 Martin Fränzle. Analysis of hybrid systems: An ounce of realism can save an infinity of
states. In Jörg Flum and Mario Rodríguez-Artalejo, editors, Computer Science Logic, 13th
International Workshop, CSL ’99, 8th Annual Conference of the EACSL, Madrid, Spain,
September 20-25, 1999, Proceedings, volume 1683 of Lecture Notes in Computer Science, pages
126–140. Springer, 1999.

15 Sicun Gao, Jeremy Avigad, and Edmund M Clarke. Delta-decidability over the reals. In Logic
in Computer Science (LICS), 2012 27th Annual IEEE Symposium on, pages 305–314. IEEE,
2012.

CSL 2024

https://www.sciencedirect.com/science/article/pii/S0885064X23000249?dgcid)=author
https://www.sciencedirect.com/science/article/pii/S0885064X23000249?dgcid)=author
https://doi.org/10.1145/3127496
https://doi.org/10.1007/978-3-642-15155-2_19
https://doi.org/10.1007/978-3-642-15155-2_19

17:20 Quantifiying the Robustness of Dynamical Systems

16 Daniel S. Graça, N. Zhong, and J. Buescu. Computability, noncomputability and undecidability
of maximal intervals of IVPs. Transactions of the American Mathematical Society, 2006. To
appear.

17 Philip Hartman. Ordinary Differential Equations. John Wiley and Sons, 1964.
18 Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya. What’s decidable

about hybrid automata? Journal of Computer and System Sciences, 57(1):94–124, August
1998.

19 Thomas A. Henzinger and Jean-François Raskin. Robust undecidability of timed and hybrid
systems. In Nancy A. Lynch and Bruce H. Krogh, editors, Hybrid Systems: Computation and
Control, Third International Workshop, HSCC 2000, Pittsburgh, PA, USA, March 23-25, 2000,
Proceedings, volume 1790 of Lecture Notes in Computer Science, pages 145–159. Springer,
2000.

20 N. Immerman. Nondeterministic space is closed under complementation. In Structure in
Complexity Theory Conference, 1988. Proceedings., Third Annual, pages 112–115. IEEE, 1988.

21 Ker-I Ko. Complexity Theory of Real Functions. Progress in Theoretical Computer Science.
Birkhaüser, Boston, 1991.

22 Pascal Koiran, Michel Cosnard, and Max Garzon. Computability with low-dimensional
dynamical systems. Theoretical Computer Science, 132(1-2):113–128, September 1994.

23 Cristopher Moore. Generalized shifts: unpredictability and undecidability in dynamical
systems. Nonlinearity, 4(3):199–230, 1991.

24 Eike Neumann. Decision problems for linear recurrences involving arbitrary real numbers.
Logical Methods in Computer Science, 17, 2021.

25 Eike Neumann. On the complexity of robust eventual inequality testing for C-finite functions.
In International Conference on Reachability Problems, pages 98–112. Springer, 2023.

26 A. Puri, V. Borkar, and P. Varaiya. Epsilon-approximation of differential inclusions. In
Proceedings of the 34th IEEE Conference on Decision and Control, pages 2892–2897, 1995.

27 Anuj Puri. Dynamical properties of timed automata. Discrete Event Dynamic Systems,
10:87–113, 2000.

28 Stefan Ratschan. Deciding predicate logical theories of real-valued functions. In Symposium
on Mathematical Foundations of Computer Science (MFCS’2023), 2023.

29 Claude E. Shannon. Mathematical theory of the differential analyser. Journal of Mathematics
and Physics MIT, 20:337–354, 1941.

30 Michael Sipser. Introduction to the Theory of Computation. PWS Publishing Company, 1997.
31 R. Szelepcsényi. The method of forced enumeration for nondeterministic automata. Acta

informatica, 26(3):279–284, November 1988. doi:10.1007/BF00299636.
32 Klaus Weihrauch. Computable Analysis: an Introduction. Springer, 2000.

https://doi.org/10.1007/BF00299636

	1 Introduction
	2 On graphs reachability and perturbated TMs
	2.1 Some considerations from complexity theory
	2.2 The case of Turing machines

	3 Embedding TMs into dynamical systems
	4 Discrete-Time Dynamical Systems
	4.1 The case of rational systems
	4.1.1 Robustness versus decidability and delta-decidability
	4.1.2 Complexity issues

	4.2 The case of computable systems
	4.2.1 Some basics of computable analysis
	4.2.2 Computable systems
	4.2.3 Complexity issues

	5 Relating robustness to drawability
	6 Continuous-time systems
	7 Other perturbations
	8 Conclusion and future work

