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Abstract
Ehrenfeucht–Fraïssé games provide a fundamental method for proving elementary equivalence (and
equivalence up to a certain quantifier rank) of relational structures. We investigate the soundness
and completeness of this method in the more general context of semiring semantics. Motivated
originally by provenance analysis of database queries, semiring semantics evaluates logical statements
not just by true or false, but by values in some commutative semiring; this can provide much more
detailed information, for instance concerning the combinations of atomic facts that imply the truth
of a statement, or practical information about evaluation costs, confidence scores, access levels or
the number of successful evaluation strategies. There is a wide variety of different semirings that
are relevant for provenance analysis, and the applicability of classical logical methods in semiring
semantics may strongly depend on the algebraic properties of the underlying semiring.

While Ehrenfeucht–Fraïssé games are sound and complete for logical equivalences in classical
semantics, and thus on the Boolean semiring, this is in general not the case for other semirings.
We provide a detailed analysis of the soundness and completeness of model comparison games on
specific semirings, not just for classical Ehrenfeucht–Fraïssé games but also for other variants based
on bijections or counting.

Finally we propose a new kind of games, called homomorphism games, based on the fact that
there exist locally very different semiring interpretations that can be proved to be elementarily
equivalent via separating sets of homomorphisms. We prove that these homomorphism games
provide a sound and complete method for logical equivalences on finite lattice semirings.
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1 Introduction

Semiring provenance was proposed in 2007 in a seminal paper by Green, Karvounarakis, and
Tannen [15]. It is based on the idea to annotate the atomic facts in a database by values
in some commutative semiring, and to propagate these values through a database query,
keeping track whether information is used alternatively (as in disjunctions or existential
quantifications) or jointly (as in conjunctions or universal quantifications). Depending on
the chosen semiring, the provenance valuation then gives practical information about a
query, beyond its truth or falsity, for instance concerning the confidence that we may have
in its truth, the cost of its evaluation, the number of successful evaluation strategies, and
so on. Beyond such provenance evaluations in specific application semirings, more precise
information is obtained by evaluations in provenance semirings of polynomials, which permit
us to track which atomic facts are used (and how often) to compute the answer to the query.
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19:2 Ehrenfeucht–Fraïssé Games in Semiring Semantics

In databases, semiring provenance has been successfully applied to a number of different
scenarios, such as conjunctive queries, positive relational algebra, datalog, nested relations,
XML, SQL-aggregates, graph databases (see, e.g., the surveys [9, 16]), but for a long time, it
had essentially been restricted to negation-free query languages; there has been no systematic
tracking of negative or absent information, and for quite some time, this has been an obstacle
for extending semiring provenance to other branches of logic in computer science.

A new approach to provenance analysis for languages with negation has been proposed
in 2017 by Grädel and Tannen [13], based on transformations into negation normal form,
quotient semirings of polynomials with dual indeterminates, and a close relationship to
semiring valuations of games [14]. Since then, semiring provenance has been extended to a
systematic investigation of semiring semantics for many logical systems, including first-order
logic, modal logic, description logics, guarded logic and fixed-point logic [3, 5, 6, 7, 13] and
also to a general method for strategy analysis in games [11, 14].

In classical semantics, a model A of a formula assigns a Boolean value to each literal.
S-interpretations π, for a suitable semiring S, generalise this by assigning a semiring value
from S to each literal. We interpret a value of 0 as false and all other semiring values as
nuances of true, or true with additional information. In this context, classical semantics
corresponds to semiring semantics on the Boolean semiring B = ({0, 1},∨,∧, 0, 1), the
Viterbi semiring V = ([0, 1],max, ·, 0, 1) can model confidence scores, the tropical semiring
T = (R∞

+ ,min,+,∞, 0) is used for cost analysis, and min-max-semirings (A,max,min, a, b)
for a totally ordered set (A,<) can model different access levels. Other interesting semirings
are the Łukasiewicz semiring L, used in many-valued logic, and its dual D, which we call the
semiring of doubt. Provenance semirings of polynomials, such as N[X], track certain literals by
mapping them to different indeterminates. The overall value of a formula is then a polynomial
that describes precisely what combinations of literals imply the truth of the formula. There are
other provenance semirings, obtained from N[X] by dropping coefficients and/or exponents
or by absorption, to get semirings B[X],Trio[X],W[X],S[X] and PosBool[X]. They are
less informative than N[X] (which is the free semiring generated by X), but have specific
algebraic properties and admit simpler evaluation procedures. For applications to infinite
universes, and for stronger logics than first-order logic, provenance semirings with more
general objects than polynomials are needed, such as N∞[[X]], the semirings of formal power
series, and S∞[X|, the semirings of generalised absorptive polynomials with potentially
infinite exponents, which are fundamental for semiring semantics of fixed-point logics [7, 14].

The development of semiring semantics raises the question to what extent classical
techniques and results of logic extend to semiring semantics, and how this depends on
the algebraic properties of the underlying semiring, and this paper is part of a general
research programme that explores such questions. In previous investigations, we have studied,
for instance, the relationship between elementary equivalence and isomorphism for finite
semiring interpretations and their definability up to isomorphism [12], 0-1 laws [10], and
locality properties as given by the theorems of Gaifman and Hanf [2]. In all these studies, it
has turned out that classical methods of mathematical logic can be extended to semiring
semantics for certain semirings, but that they fail for others. Further, these questions are
often surprisingly difficult: even quite simple facts of logic in the standard Boolean semantics
become interesting research problems for semirings, and they often require completely new
methods.

The objective of this paper is to study the applicability of Ehrenfeucht–Fraïssé games
– and related model comparison games – as a method for proving elementary equivalence
(i.e. indistinguishability by first-order sentences, denoted ≡) and m-equivalence (i.e. indis-
tinguishability by sentences of quantifier rank up to m, denoted ≡m) in semiring semantics.
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Let us recall the classical Ehrenfeucht–Fraïssé Theorem1 (see e.g. [8]).

▶ Theorem 1 (Ehrenfeucht–Fraïssé). Let τ be a finite relational vocabulary. For any two
τ -structures A and B, and for all m ∈ N, the following statements are equivalent:
(1) A ≡m B;
(2) Player II (Duplicator) has a winning strategy for the game Gm(A,B);
(3) There exists an m-back-and-forth system (Ij)j≤m for A and B;
(4) B |= χm

A , where χm
A is the characteristic sentence of quantifier rank m for A.

In semiring semantics, the structures A and B are generalised to (model-defining) semiring
interpretations πA and πB mapping instantiated τ -literals into a semiring S. The notions of
m-equivalence, local isomorphisms, Ehrenfeucht–Fraïssé games, and back-and-forth systems
all generalise in a straightforward way to S-interpretations, for any semiring S (see Section 2).
Also the observation that m-back-and-forth systems can be viewed as algebraic descriptions
of winning strategies of Player II in m-turn Ehrenfeucht–Fraïssé games holds for arbitrary
semiring interpretations, i.e. the equivalence (2) ⇔ (3) holds for any semiring. The notion
of characteristic sentences will be discussed later in Section 5. Our main concern is the
relationship between (1) and (2), or equivalently (1) and (3). We shall have to consider both
directions separately.

▶ Definition 2. Let S be an arbitrary commutative semiring. We say that
(1) Gm is sound for ≡m on S if for any pair πA, πB of model-defining S-interpretations, the

existence of a winning strategy of Player II for Gm(πA, πB) implies that πA ≡m πB ;
(2) Gm is complete for ≡m on S if for any pair πA, πB of model-defining S-interpretations

such that πA ≡m πB , Player II has a winning strategy for Gm(πA, πB).

In this terminology, the Ehrenfeucht–Fraïssé Theorem says that for every m, Gm is both
sound and complete for ≡m on the Boolean semiring. However, we shall prove that the
Boolean semiring is the only semiring with this property, and for general semirings, the
games Gm need be neither sound nor complete. But there are also positive results, and the
detailed study of soundness and completeness of Ehrenfeucht–Fraïssé games on semirings
is quite interesting and diverse. For instance, we shall prove that Gm is sound for ≡m

precisely on fully idempotent semirings (where both semiring operations are idempotent).
Examples of fully idempotent semirings include all min-max semirings, lattice semirings, and
the semirings PosBool[X] of irredundant positive Boolean DNF-formulae. We shall then
turn to more powerful games, which are more difficult to win for Duplicator, but if she
wins, stronger results follow. In particular, we study the general Ehrenfeucht–Fraïssé game
G(πA, πB) where Spoiler can choose a number m, and then the game Gm(πA, πB) is played.
If, on a semiring S, Gm is sound for ≡m for all m, then a winning strategy for Duplicator
for G(πA, πB) implies that πA ≡m πB for all m, and hence πA ≡ πB . Thus, soundness of all
games Gm implies soundness of G. The converse is not true; there are semirings on which
G is sound for ≡, although the games Gm are unsound for ≡m. Trivially, G is sound on
semirings that do not admit interpretations with infinite universes due to the impossibility
of infinite sums or products, such as N or the provenance semirings B[X],S[X] and N[X].
More interesting cases include semirings that are not idempotent, but where adding or
multiplying any element repeatedly with itself stabilises after at most n steps, or the semiring
N∞ = N ∪ {∞}. But there also exist a number of semirings on which the unrestricted

1 Detailed definitions of all notions will be given in Section 2.
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19:4 Ehrenfeucht–Fraïssé Games in Semiring Semantics

Ehrenfeucht–Fraïssé game G is unsound for elementary equivalence, including the semirings
T,V,L and D. Further we shall consider bijection and counting games, which are variants of
pebble games for bounded-variable logics with counting from [17, 18]. Actually the m-move
bijection games BGm and counting games CGm are equivalent, and they turn out to be
sound for ≡m on every semiring. However, with few exceptions, such as the semirings N
and N[X], they are not complete. We also study parametrised versions CGn

m of counting
games.

On many semirings S, the methods established in [12] permit us to construct elementarily
equivalent S-interpretations πA ≡ πB, although locally some elements of πA look different
from all elements of πB , so that Spoiler wins Gm(πA, πB) for some small m. The game Gm

is then incomplete for ≡m, and the game G is incomplete for ≡. Since the games CGn
m and

BGm are more difficult to win for Player II than Gm, they are incomplete as well. This
approach successfully works for the semirings V,T,L,D,N∞,W[X],S[X],B[X], and S∞[X].

The soundness and completeness results of these games are summarised in Figure 1.

Application semirings: S ≁= B fully
idempotent T ∼= V L ∼= D N N∞

So
un

dn
es

s Gm for ≡m ✓ ✗ ✗ ✗ ✗

CGn
m for ≡m ✓ ✗ ✗ ✗ ✗

BGm for ≡m ✓ ✓ ✓ ✓ ✓

G for ≡ ✓ ✗ ✗ ✓ ✓

C
om

pl
et

en
es

s Gm for ≡m ✗ ✗ ✗ ✓ ✗

CGn
m for ≡m ✗ ✗ ✗ ✓ ✗

BGm for ≡m ✗ ✗ ✗ ✓ ✗

G for ≡ ✗ ✗ ✗ ✓ ✗

Provenance semirings: PosBool[X] W[X] S[X],B[X] N[X] S∞[X]

So
un

dn
es

s Gm for ≡m ✓ ✗ ✗ ✗ ✗

CGn
m for ≡m ✓ ✓ ✗ ✗ ✗

BGm for ≡m ✓ ✓ ✓ ✓ ✓

G for ≡ ✓ ✓ ✓ ✓ ✓

C
om

pl
et

en
es

s Gm for ≡m ✗ ✗ ✗ ✓ ✗

CGn
m for ≡m ✗ ✗ ✗ ✓ ✗

BGm for ≡m ✗ ✗ ✗ ✓ ✗

G for ≡ ✗ ✗ ✗ ✓ ✗

Figure 1 Due to full idempotence. Due to n-idempotence. Holds for any semiring. Follows from
the finiteness of the universes. Cannot hold since elementary equivalence of finite interpretations
does not imply isomorphism.

The proof that locally different S-interpretations are nevertheless elementarily equivalent
often proceeds via separating sets of homomorphisms. We use this method to propose a
new kind of games, called homomorphism games, involving the selection of a homomorphism
into the Boolean semiring, and a one-sided winning condition, due to the property that
homomorphisms may transfer model-defining S-interpretations into B-interpretations that
are no longer model-defining. We prove that these homomorphism games provide a sound
and complete method for proving logical equivalences on finite lattice semirings.
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2 Semiring semantics

We briefly summarise semiring semantics for first-order logic, as introduced in [13], and the
resulting generalised notions of isomorphism and equivalence.

▶ Definition 3 (Semiring). A commutative semiring is an algebraic structure S = (S,+, ·, 0, 1)
with 0 ̸= 1, such that (S,+, 0) and (S, ·, 1) are commutative monoids, · distributes over +,
and 0 · s = s · 0 = 0.

A commutative semiring is naturally ordered (by addition) if s ≤ t :⇔ ∃r(s + r = t)
defines a partial order. In particular, this excludes rings. We only consider commutative
and naturally ordered semirings and simply refer to them as semirings. A semiring S is
idempotent if s+ s = s for each s ∈ S and multiplicatively idempotent if s · s = s for all s ∈ S.
If both properties are satisfied, we say that S is fully idempotent. Finally, S is absorptive if
s+ st = s for all s, t ∈ S or, equivalently, if multiplication is decreasing in S, i.e. st ≤ s for
s, t ∈ S (equivalence is shown in [7]). Every absorptive semiring is idempotent.

Application semirings. There are several applications which can be modelled by semirings
and provide useful practical information about the evaluation of a formula.

A totally ordered set (S,≤) with least element s and greatest element t induces the
min-max semiring (S,max,min, s, t). It can be used to reason about access levels.
The tropical semiring T = (R∞

+ ,min,+,∞, 0) provides the opportunity to annotate basic
facts with a cost which has to be paid for accessing them and realise a cost analysis.
The Viterbi semiring V = ([0, 1]R,max, ·, 0, 1), which is in fact isomorphic to T via
y 7→ − ln y, can be used for reasoning about confidence.
An alternative semiring for this is the Łukasiewicz semiring L = ([0, 1]R,max,⊙, 0, 1),
where multiplication is given by s⊙ t = max(s+ t− 1, 0). It is isomorphic to the semiring
of doubt D = ([0, 1]R,min,⊕, 1, 0) with s⊕ t = min(s+ t, 1).
The natural semiring N = (N,+, ·, 0, 1) is used to count the number of evaluation strategies
proving that a sentence is satisfied. It is also important for bag semantics in databases.

Provenance semirings. Provenance semirings of polynomials provide information on which
combinations of literals imply the truth of a formula. The universal provenance semiring is
the semiring N[X] of multivariate polynomials with indeterminates from X and coefficients
from N. Other provenance semirings are obtained as quotient semirings of N[X] induced by
congruences for (full) idempotence and absorption. The resulting provenance values are less
informative, but their computation is more efficient.

By dropping coefficients from N[X], we get the free idempotent semiring B[X] whose
elements are finite sets of monomials. It is the quotient induced by x+ x ∼ x.
If, in addition, exponents are dropped, we obtain the Why-semiring W[X] of finite sums
of monomials that are linear in each argument.
The free absorptive semiring S[X] consists of 0, 1 and all antichains of monomials with
respect to the absorption order ≽. A monomial m1 absorbs m2, denoted m1 ≽ m2, if it
has smaller exponents, i.e. m2 = m ·m1 for some monomial m.
Finally, the lattice semiring PosBool[X] freely generated by the set X arises from S[X]
by collapsing exponents.

For a given finite relational vocabulary τ , we denote by Litn(τ) the set of literals Rx̄ and
¬Rx̄ where R ∈ τ and x̄ is a tuple of variables from {x1, . . . , xn}. The set LitA(τ) refers to
literals Rā and ¬Rā that are instantiated with elements from a universe A.

CSL 2024



19:6 Ehrenfeucht–Fraïssé Games in Semiring Semantics

▶ Definition 4 (S-interpretation). Given a semiring S, a mapping π : LitA(τ) → S is an
S-interpretation (of vocabulary τ and universe A). We say that S is model-defining if exactly
one of the values π(L) and π(L) is zero for any pair of complementary literals L,L ∈ LitA(τ).

An S-interpretation π : LitA(τ) → S inductively extends to valuations πJφ(ā)K of in-
stantiated first-order formulae φ(x̄) in negation normal form. Equalities are interpreted
by their truth value, that is πJa = aK := 1 and πJa = bK := 0 for a ̸= b (and analogously
for inequalities). Based on that, the semantics of disjunctions and existential quantifiers is
defined via sums, while conjunctions and universal quantifiers are interpreted as products.

πJψ(ā) ∨ ϑ(ā)K := πJψ(ā)K + πJϑ(ā)K πJψ(ā) ∧ ϑ(ā)K := πJψ(ā)K · πJϑ(ā)K

πJ∃xψ(ā, x)K :=
∑
a∈A

πJψ(ā, a)K πJ∀xψ(ā, x)K :=
∏
a∈A

πJψ(ā, a)K

▶ Lemma 5 (Fundamental Property). Let π : LitA(τ) → S be an S-interpretation and
h : S → T be a semiring homomorphism. Then, (h ◦ π) is a T -interpretation and it holds
that h(πJφ(ā)K) = (h ◦ π)Jφ(ā)K for all φ(x̄) ∈ FO(τ) and instantiations ā ⊆ A.

Basic model theoretic concepts such as equivalence and isomorphism naturally generalise
to semiring semantics and yield more fine-grained notions. Given a mapping σ : A → B and
some L ∈ LitA(τ), we denote by σ(L) the τ -literal over B which arises from L by replacing
each occurrence of a ∈ A with σ(a) ∈ B.

▶ Definition 6 (Isomorphism). S-interpretations πA : LitA(τ) → S and πB : LitB(τ) → S are
isomorphic, denoted as πA

∼= πB , if there is a bijection σ : A → B such that πA(L) = πB(σ(L))
for all L ∈ LitA(τ). A mapping σ : ā 7→ b̄ is a local isomorphism between πA and πB if it is
an isomorphism between the subinterpretations πA|Litā(τ) and πB |Litb̄(τ).

▶ Definition 7 (Elementary equivalence). Two S-interpretations πA : LitA(τ) → S and
πB : LitB(τ) → S with elements ā ∈ An and b̄ ∈ Bn are elementarily equivalent, denoted
(πA, ā) ≡ (πB , b̄), if πAJφ(ā)K = πBJφ(b̄)K for all φ(x̄) ∈ FO(τ). They are m-equivalent,
denoted (πA, ā) ≡m (πB , b̄), if the above holds for all φ(x̄) with qr(φ(x̄)) ≤ m where qr(φ(x̄))
refers to the quantifier rank of φ(x̄).

As in classical semantics, isomorphic S-interpretations are elementarily equivalent. The
converse concerning finite S-interpretations, however, marks an important difference to
Boolean semantics; it fails for a number of semirings, including all min-max semirings with
at least three elements, while it still holds on other semirings such as T,V,N and N[X]
(see [12]).

3 m-turn Ehrenfeucht–Fraïssé games

Given that the notion of local isomorphisms extends in a straightforward way from structures
to semiring interpretations, we also obtain Ehrenfeucht–Fraïssé games Gm(πA, πB) played
on S-interpretations πA, πB: In the i-th turn, Spoiler chooses some element ai ∈ A or
bi ∈ B, and Duplicator answers with an element in the other S-interpretation; the play
then continues with the subgame Gm−i(πA, a1, . . . , ai, πB , b1, . . . , bi). After m moves, tuples
ā = (a1, . . . , am) in A and b̄ = (b1, . . . , bm) in B have been selected, and Duplicator wins the
play if σ : ā 7→ b̄ is a local isomorphism.
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However, while classical structures A and B are separated by a formula ∃xψ(x) or ∀xψ(x)
if, and only if, there is some a ∈ A (or b ∈ B) such that for all b ∈ B (or a ∈ A, respectively)
the formula ψ(x) separates (A, a) from (B, b), neither of the implications translates to
semiring semantics. This is illustrated by very simple semiring interpretations2 and causes
both soundness and completeness of Gm(πA, πB) for ≡m to fail in general.

(N, +, ·, 0, 1)

πA :

A R ¬R

a1 1 0
a2 1 0
a3 2 0

πB :

B R ¬R

b1 1 0
b2 2 0
b3 2 0

πAJ∃xRxK = 4 ̸= 5 = πBJ∃xRxK

({0, 1, 2, 3, 4}, max, min, 0, 4)

πA :

A R ¬R

a1 1 0
a2 2 0
a3 4 0

πB :

B R ¬R

b1 1 0
b2 3 0
b3 4 0

πAJ∃xRxK = 4 = πBJ∃xRxK
πAJ∀xRxK = 1 = πBJ∀xRxK

This suggests that the direct adaptation of the game rules poses problems and raises the
question on which semirings the game Gm is sound, and on which it is complete for ≡m. In
particular, we aim to relate this to the algebraic properties of the underlying semiring.

3.1 Soundness of the games and counting in semirings
The fact that quantifiers in classical semantics do not capture counting is one of the central
limitations of the expressive power of first-order logic. However, in semiring semantics, this
is more complicated: Given a formula ψ(x) and some s ∈ S, the number of a ∈ A such that
πJψ(a)K = s may affect both πJ∃xψ(x)K and πJ∀xψ(x)K. Only in fully idempotent semirings
unequal sums or products can be attributed to differing sets of summands or factors, which
causes full idempotence to be a necessary and sufficient condition for the soundness of Gm.

▶ Theorem 8. The games Gm are sound for ≡m on a semiring S and all m ∈ N if, and
only if, S is fully idempotent.

Proof. (⇐): Suppose that S is fully idempotent. Based on a separating formula φ(x̄) ∈ FO(τ)
with πAJφ(ā)K ≠ πBJφ(b̄)K and qr(φ(x̄)) ≤ m where ā ∈ An and b̄ ∈ Bn, we construct a
winning strategy for Spoiler in the game Gm(πA, ā, πB , b̄) by induction. We only consider
the cases φ(x̄) = Qxψ(x̄, x) with Q ∈ {∃,∀} where qr(φ(x̄)) ≤ m. It holds that

πAJ∃xψ(ā, x)K =
∑
a∈A

πAJψ(ā, a)K ̸=
∑
b∈B

πBJψ(b̄, b)K = πBJ∃xψ(b̄, x)K or

πAJ∀xψ(ā, x)K =
∏
a∈A

πAJψ(ā, a)K ̸=
∏
b∈B

πBJψ(b̄, b)K = πBJ∀xψ(b̄, x)K.

Both cases imply {πAJψ(ā, a)K : a ∈ A} ̸= {πBJψ(b̄, b)K : b ∈ B} due to full idempotence.
Spoiler wins the game Gm(πA, ā, πB , b̄) by choosing some element a ∈ A or b ∈ B witness-
ing this inequality. For all possible answers b ∈ B or a ∈ A, respectively, it holds that
πAJψ(ā, a)K ̸= πBJψ(b̄, b)K. Applying the induction hypothesis yields that Spoiler has a
winning strategy for the remaining game Gm−1(πA, ā, a, πB , b̄, b) as qr(ψ(x̄, x)) ≤ m− 1.

2 We describe semiring interpretations over a monadic vocabulary by tables, whose rows are indexed by
elements of the universe, and columns by the predicate symbols and their negations, such that the entry
for row a and column P has the semiring value of the literal P a.

CSL 2024



19:8 Ehrenfeucht–Fraïssé Games in Semiring Semantics

(⇒): If S is not fully idempotent, there is some s ∈ S such that s+ s ̸= s or s · s ̸= s.

Clearly, Duplicator wins G1(πA, πB) on the following S-interpretations, while πA ̸≡1 πB due
to πAJ∃xRxK = s+ s ̸= s = πBJ∃xRxK or πAJ∀xRxK = s · s ̸= s = πBJ∀xRxK.

πA :
A R ¬R
a1 s 0
a2 s 0

πB :
B R ¬R
b s 0

◀

This result motivates the consideration of more powerful games such as m-turn bijection
games, a variant of the pebble games which, on finite classical structures, characterise
m-equivalence in FO with counting quantifiers [17].

▶ Definition 9. The game BGm(πA, ā, πB , b̄) uses the same positions and winning condition
as Gm(πA, ā, πB , b̄), but in each round Duplicator has to provide a bijection h : A → B. If
such a bijection does not exist, i.e. |A| ≠ |B|, Spoiler wins immediately. Otherwise, Spoiler
chooses some a ∈ A and the pair (a, h(a)) is added to the current position.

In contrast to the classical Ehrenfeucht–Fraïssé game, this modification ensures soundness
without requiring full idempotence of the underlying semiring.

▶ Theorem 10. For every m ∈ N, the game BGm is sound for ≡m on every semiring S.

Proof. Suppose that φ(x̄) = Qxψ(x̄, x) with Q ∈ {∃,∀} and qr(φ(x̄)) = m separates
(πA, ā) from (πB , b̄). For any bijection h : A → B Duplicator may choose in the game
BGm(πA, ā, πB , b̄), there must be some ah ∈ A such that πAJψ(ā, ah)K ̸= πBJψ(b̄, h(ah))K
since otherwise

∑
a∈A πAJψ(ā, a)K =

∑
a∈A πBJψ(b̄, h(a))K =

∑
b∈B πBJψ(b̄, b)K and analog-

ously for products. By choosing ah, Spoiler wins the game by induction. ◀

While demanding a bijection from Duplicator does ensure the soundness of BGm, it is
often at the expense of completeness. This is due to the fact that different multiplicities of a
semiring value in two interpretations do not necessarily imply separability by a first-order
sentence. In particular, this is the case for fully idempotent semirings, on which the games Gm

are already sound, but the resulting issues concern other semirings as well. We illustrate this
on the semiring W[x, y], where the precise numbers of occurrences of single semiring values
may differ in their effect on the separability of the resulting interpretations, as shown below.

A R ¬R
a1 x+ y 0

̸≡1

B R ¬R
b1 x+ y 0
b2 x+ y 0

≡1

C R ¬R
c1 x+ y 0
c2 x+ y 0
c3 x+ y 0

We observe that the semirings W[X], while not being fully idempotent, for instance due
to (x+ y)(x+ y) = x+ xy + y, satisfy a weaker idempotence condition.

▶ Definition 11. Let n ∈ N. A semiring S is n-idempotent if
∑

i∈I s =
∑

j∈J s and∏
i∈I s =

∏
j∈J s for all s ∈ S and all index sets I, J such that |I| ≥ n and |J | ≥ n.

It can easily be verified that W[X] is |X|-idempotent as monomials can be seen as sets
of variables, and multiplication corresponds to their union. For such semirings, we want to
replace the requirement for Duplicator to provide a bijection by a weaker requirement that
still maintains soundness. For this, we use counting games, introduced by Immermann and
Lander [18], which are equivalent to bijection games, but admit a parametrisation by the
size of the sets that are picked in each turn.
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▶ Definition 12. Let n ∈ N. In each turn of the game CGn
m(πA, ā, πB , b̄), Spoiler chooses

a set X ⊆ A or X ⊆ B with |X| ≤ n and Duplicator has to react with a subset Y of the
other universe such that |X| = |Y |. Afterwards, Spoiler picks some y ∈ Y , Duplicator must
respond with some element x ∈ X and the pair (x, y), or (y, x), is added to the current
position. As before, the winning condition is given by local isomorphism.

Note that the game CG1
m corresponds to the classical Ehrenfeucht–Fraïssé game Gm and

1-idempotence coincides with full idempotence. Theorem 8 can be generalised as follows.

▶ Theorem 13. The game CGn
m is sound for ≡m exactly on n-idempotent semirings S.

3.2 Completeness and incompleteness
As opposed to a Boolean quantifier or a move in an Ehrenfeucht–Fraïssé game, a quantifier in
semiring semantics does not pick out a specific element of the universe. Instead, it induces a
sum or product over all elements. As a consequence, completeness of the m-turn Ehrenfeucht–
Fraïssé game, and thus also completeness of other variants of model comparison games, fail
in general. In particular, this applies to semirings on which elementary equivalence of finite
interpretations does not imply isomorphism. Indeed, on any pair of finite non-isomorphic
semiring interpretations, Spoiler wins Gm for sufficiently large m by picking all elements
in the larger universe, or in any universe if both have the same cardinality. A particular
example, presented in [12], of non-isomorphic but elementarily equivalent S-interpretations
πs,t

A and πs,t
B for arbitrary elements s, t of a fully idempotent semiring S is the following:

πs,t
A :

A R1 R2 ¬R1 ¬R2

a1 0 t s 0
a2 s 0 0 t

a3 t s 0 0
a4 0 0 t s

πs,t
B :

B R1 R2 ¬R1 ¬R2

b1 t 0 0 s

b2 0 s t 0
b3 s t 0 0
b4 0 0 s t

For any s, t ∈ S, we have that πs,t
A ≡ πs,t

B [12, Theorem 13], but obviously, Spoiler even
wins the game G1(πs,t

A , πs,t
B ) for distinct and non-zero values s, t ∈ S. Thus, completeness

of Gm for ≡m and full idempotence are mutually exclusive on semirings with at least three
elements, while soundness requires full idempotence, which entails the following result.

▶ Theorem 14. If, for all m ∈ N, the game Gm is sound and complete for ≡m on S, then S
is isomorphic to B.

Several further semirings, such as L,W[X],S[X] or B[X], admit pairs of finite interpret-
ations that are non-isomorphic but elementarily equivalent, which immediately disproves
completeness of Gm for ≡m on those semirings (see Figure 1). Moreover, even on semirings
such as T, N and N[X], where it is known that elementary equivalence does coincide with iso-
morphism on finite interpretations [12], Gm is not necessarily complete. As a counterexample
on the tropical semiring T = (R∞

+ ,min,+,∞, 0), consider the following T-interpretations.

πA :

A R ¬R
a0 0 ∞
a1 1 ∞
a2 1 ∞

πB :
B R ¬R
b0 0 ∞
b1 2 ∞

Clearly, Spoiler already wins G1(πA, πB), but we can show that πA ≡1 πB, thus the
game G1 is incomplete for ≡1 on T. The 1-equivalence immediately follows from the following
criterion.
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▶ Proposition 15. Two T-interpretations πA, πB over vocabulary τ = {R} consisting of a
single unary relation symbol are 1-equivalent if
(1) πA(¬Ra) = πB(¬Rb) = ∞ for all a ∈ A and b ∈ B,
(2) mina∈A πA(Ra) = minb∈B πB(Rb) and
(3)

∑
a∈A πA(Ra) =

∑
b∈B πB(Rb).

On the other side, in contrast to the classical m-turn Ehrenfeucht–Fraïssé game, there
are semirings other than B on which the m-turn bijection game is both sound and complete.

▶ Theorem 16. For every m ∈ N, the bijection game BGm is sound and complete for ≡m

on N and N[X].

4 Characterising elementary equivalence

The Ehrenfeucht–Fraïssé theorem also provides a game-theoretic characterisation of element-
ary equivalence via the game G(A,B), where Spoiler chooses the number of turns at the
beginning of each play. We now discuss soundness and completeness of G for ≡ on semirings.
For classical structures, soundness and completeness of G for ≡ is equivalent to soundness
and completeness of Gm for ≡m, for all m, but this is in general not the case on semirings.

For the study of the game G, interpretations on infinite universes are of particular interest.
This especially applies to soundness, which is trivial in the finite case since a winning strategy
for Duplicator already implies isomorphism on finite interpretations. Semiring semantics for
infinite interpretations requires sum and product operators on infinite families (si)i∈I ⊆ S

of semiring elements. There are certain semirings such as N,N[X],B[X] and S[X] which do
not admit a reasonable definition of such infinitary operations, and we thus have to restrict
ourselves to finite universes. Otherwise, we make use of the natural order and interpret
infinite sums according to

∑
i∈I si := sup{

∑
i∈I′ si|I ′ ⊆ I finite}. For infinitary products we

distinguish the case of absorptive semirings, where multiplication is decreasing and we thus
interpret the product as the infimum of the finite subproducts, and the cases, such as N∞

or W[X], where multiplication is increasing and we replace infima by suprema. Previous
results such as the soundness of Gm on fully idempotent semirings straightforwardly extend
to infinite interpretations by transferring semiring properties such as full idempotence to the
infinitary operations.

Soundness of G for ≡ holds whenever Spoiler wins G(πA, πB) for all first-order separable
interpretations πA and πB. Thus, the following question is essential: Given πA, πB and a
separating sentence ψ, is the required number of turns for Spoiler to win G(πA, πB) bounded
in advance? On fully idempotent semirings, m := qr(ψ) turns suffice for Spoiler to win
G(πA, πB) since Gm is sound for ≡m, which immediately implies soundness of G on all fully
idempotent semirings. However, full idempotence is not a necessary condition, soundness
of G is still preserved on many semirings that admit a weaker bound than m. For instance,
on any n-idempotent semiring for some n ∈ N, n ·m turns suffice to ensure Spoiler’s victory.

▶ Proposition 17. Let S be n-idempotent for some n ∈ N. For any S-interpretations πA

and πB it holds that πA ≡m πB if Duplicator wins the game Gnm(πA, πB). In particular, the
game G is sound for ≡ on S.

This follows from soundness of n-counting games as stated in Theorem 13. If πA ̸≡m πB ,
Spoiler wins Gnm(πA, πB) by adapting his winning strategy for CGn

m(πA, πB): Instead of
drawing n-element sets, he draws n elements one by one. Note that the bound n ·m does
not depend on πA and πB at all but only on the quantifier rank m and the semiring.
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However, other semirings, such as N∞, may not admit an inherent bound t(m) ∈ N
such that a winning strategy of Duplicator for Gt(m)(πA, πB) always implies πA ≡m πB.
To demonstrate this, consider a pair of sets (N∞-interpretations with empty vocabulary)
with t(m) and t(m) + 1 elements, respectively. Clearly, Duplicator wins on those sets for up
to t(m) turns, but the sentence ∃x(x = x) with quantifier rank 1 suffices to separate them.

In order to prove that the game G is still sound for ≡ on N∞, it is crucial to observe that
two separable interpretations πA, πB with πAJψK ̸= πBJψK admit a parameter k that induces
an upper bound on the number of moves required by Spoiler to win G(πA, πB). On N∞, this
parameter is easily obtained by observing that πAJψK or πBJψK is finite (see [4] for a proof).

▶ Theorem 18. Let πA and πB be N∞-interpretations with elements ā ∈ An, b̄ ∈ Bn and
k ≥ 1. If there is a separating formula φ(x̄) with qr(φ(x̄)) ≤ m such that πAJφ(ā)K < k or
πBJφ(b̄)K < k, then Spoiler wins Gkm(πA, ā, πB , b̄).

It turns out that a similar approach is applicable to the semiring S∞[X], which extends
the semiring S[X] of absorptive polynomials to allow infinite exponents (and thus infinite
products), albeit the derivation of a suitable parameter is more involved. Recall that a
monomial m absorbs a monomial m′ if the exponents for all x ∈ X, denoted by m(x)
and m′(x) respectively, satisfy m(x) ≤ m′(x), and that absorptive polynomials only retain
absorption-dominant monomials. We say that a monomial m separates polynomials p and q
if m ∈ p and m is not absorbed by any monomial from q.

These concepts can be extended to any subset Y ⊆ X: m Y -absorbs m′ iff m(x) ≤ m′(x)
for x ∈ Y , and it is Y -separating for p and q if it is contained in one of the polynomials but not
Y -absorbed by any of the monomials from the other polynomial. Finally, we can parametrise
monomials m by adding their exponents eY (m) :=

∑
x∈Y m(x) for all the variables x ∈ Y .

Now, we can extract a finite parameter from any pair of distinct polynomials p, q as follows.

▶ Lemma 19. For any two distinct polynomials p, q ∈ S∞[X], there is a set Y ⊆ X and a
Y -separating monomial m such that the parameter eY (m) is finite.

Proof. It is known that p ≤ q holds if, and only if, every monomial in p is absorbed by some
monomial from q (see [7]). Thus, there is a monomial m in either p or q that is not absorbed
by any monomial from the other polynomial. Otherwise, p and q would absorb each other,
which would imply p = q. Pick Y := {x ∈ X | m(x) ̸= ∞}. It follows that eY (m) is finite
and that m is not Y -absorbed by any monomial from the other polynomial since any m′ that
Y -absorbs m would also absorb m entirely. ◀

For example, xny∞ and x∞y∞ are {x}-separated by m := xny∞ with e{x}(xny∞) = n.
This property can be exploited to limit the number of turns required by Spoiler to win
G(πA, πB) on separable S∞[X]-interpretations.

▶ Theorem 20. Let k ≥ 1 and πA, πB be S∞[X]-interpretations with elements ā = (a1, . . . , an)
and b̄ = (b1, . . . , bn). If there is a separating formula φ(x̄) with qr(φ(x̄)) ≤ m, a set Y ⊆ X

and a Y -separating monomial m for πAJφ(ā)K and πBJφ(b̄)K such that eY (m) < k, then
Spoiler wins Gkm(πA, ā, πB , b̄).

Proof. We show the claim by structural induction on the separating formula φ(x̄). Since πA

and πB are interchangeable, we may assume w.l.o.g. that the Y -separating monomial m is
part of πAJφ(ā)K. If φ(x̄) is a literal, Spoiler wins immediately.
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If φ(x̄) = φ1(x̄) ∨ φ2(x̄), the Y -separating monomial m must be part of πAJφi(ā)K for
some i ∈ {1, 2}, but by definition, it cannot be Y -absorbed by any monomial in πBJφi(b̄)K.
Thus, m Y -separates πAJφi(ā)K from πBJφi(b̄)K and the claim follows by induction.
If φ(x̄) = ∃xψ(x̄, x), then πAJφ(ā)K =

∑
a∈A πAJψ(ā, a)K, and analogous to the previous

case, we observe that m is part of πAJψ(ā, a)K for some a ∈ A, but not Y -absorbed by
any πBJψ(b̄, b)K for b ∈ B. Thus, Spoiler can pick such an element a ∈ A and win the
remaining subgame by induction hypothesis.
If φ(x̄) = φ1(x̄) ∧ φ2(x̄), the Y -separating monomial m = m1 · m2 is obtained by
multiplying two monomials with mi ∈ πAJφi(ā)K for i ∈ {1, 2}. There is at least one
i ∈ {1, 2} such that mi Y -separates πAJφi(ā)K from πBJφi(b̄)K. Otherwise, each mi

would be Y -absorbed by some m′
i ∈ πBJφi(b̄)K, which would yield a contradiction since

m′ = m′
1 · m′

2 ∈ πBJφ(b̄)K would Y -absorb m. Clearly, eY (mi) ≤ eY (m) < k, hence
Spoiler wins by invoking the induction hypothesis on the suitable subformula.
If φ(x̄) = ∀xψ(x̄, x), then πAJφ(ā)K =

∏
a∈A πAJψ(ā, a)K. Decompose the monomial m

into m =
∏

a∈A ma such that ma ∈ πAJψ(ā, a)K holds for all a ∈ A. It follows that
eY (m) =

∑
a∈A eY (ma) < k, thus eY (ma) is nonzero for ℓ < k elements a1, . . . , aℓ ∈ A

and zero otherwise. Spoiler picks those elements and Duplicator replies with b1, . . . , bℓ.
If there is any 1 ≤ i ≤ ℓ such that mai

is not Y -absorbed by any monomial in
πBJψ(b̄, bi)K, then mai

Y -separates πAJψ(ā, ai)K from πBJψ(b̄, bi)K, and together with
eY (mai

) ≤ eY (m) < k, we can apply the induction hypothesis.
Otherwise, each mai

is Y -absorbed by some mbi
∈ πBJψ(b̄, bi)K. Since

∏ℓ
i=1 mbi

Y -
absorbs m, it is impossible that each πBJψ(b̄, b)K for b ∈ B \ {b1, . . . , bℓ} contains some
monomial m′ with eY (m′) = 0. Otherwise, those monomials would not contribute any-
thing to the exponents of variables x ∈ Y , and their product together with mb1 , . . . ,mbℓ

would result in a monomial m′′ ∈ πBJφ(b̄)K that Y -absorbs m, contradicting the defini-
tion of m. Now, it only remains for Spoiler to pick some b ∈ B \ {b1, . . . , bℓ} such that
πBJψ(b̄, b)K only contains monomials m′ with eY (m′) > 0. Duplicator must answer
a ∈ A \ {a1, . . . , aℓ}, but then eY (ma) = 0, hence ma Y -separates πAJψ(ā, a)K from
πBJψ(b̄, b)K and we can apply the induction hypothesis. ◀

▶ Corollary 21. The game G is sound for ≡ on the semirings W[X],N∞ and S∞[X].

However, G is unsound for some important semirings. We construct a counterexample
for the soundness of G on ≡ in the tropical semiring (which is isomorphic to the Viterbi
semiring V) and transfer it to the isomorphic variant D of L by making sure that the valuations
are in the interval [0, 1], and that the separating formula does not evaluate to a semiring
element greater than 1 in both interpretations. The main idea behind the construction is
that, given a sequence (si)≥1 of edge labels, Spoiler cannot distinguish an infinite star with
exactly i edges labelled with si ∈ T for each i ∈ N from an infinite star where min(i,m)
edges are labelled with si (see Figure 2). However, for an appropriate sequence of edge labels
such star graphs with distinguished centre nodes can be separated in FO by summing up all
edge labels using the formula ψ(x) = ∀y(x = y ∨ Exy).

▶ Lemma 22. There is a sequence (si)i≥1 of real numbers in [0, 1] such that for each m ∈ N>0

1 >
∑
i≥1

i · si >
∑
i≥1

min(i,m) · si.
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πm:

vm

vm
1,1

vm
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. . .
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πω:
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2,1 vω

2,2

vω
m,1 vω

m,m

vω
m+1,1 vω

m+1,m+1

...
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. . .

. . .

s1

s2
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Figure 2 Infinite star graphs used to construct a counterexample against the soundness of
the game G with respect to T- and D-interpretations. The grey boxes are meant to indicate
πmJEvmvm

i,jK = πωJEvmvm
i,jK = si for each j. Non-edges are assigned their Boolean truth value.

Proof. We prove the claim for (si)i≥1 where si := 1
i·2i+1 . Due to convergence of the

geometrical series we obtain that
∑

i≥1 i · si = 0.5. Further,∑
i≥1

i · si =
∑
i≥1

min(i,m) · si +
∑
i>m

(m− i) · si︸ ︷︷ ︸
>0

>
∑
i≥1

min(i,m) · si,

which implies the claim. ◀

In order to ensure that Duplicator wins the game Gm for each m ∈ N on single semiring
interpretations π and π′, we combine the star graphs πm for arbitrarily large m. The idea is
to include in both π and π′ the star graphs πm for each m ∈ N as disjoint subgraphs, and
to add an additional copy of πω to π′ only. Using the sequence of edge labels satisfying∑

i≥1 i · si >
∑

i≥1 min(i,m) · si for each m ∈ N>0 yields πωJψ(vω)K > πmJψ(vm)K, so
the additional subgraph πω in π′ would not contribute to the valuation of the sentence
∃xψ(x). Hence, we add additional vertices to the star graphs πm in both π and π′ which
increase the sum over all outgoing edges and cause ∃xψ(x) to separate the resulting semiring
interpretations.

▶ Theorem 23. The game G is not sound for ≡ on T,D,V and L.

Proof. Let S ∈ {T,D} and (si)i≥1 be defined by si := 1
i·2i+1 . Further, let sm

∞ denote∑
i≥1 min(i,m) · si for each m ≥ 1. We inductively define a function f : N \ {0} → N \ {0}

which determines the number of additional nodes that are added to the star graphs. Let f(1)
be the smallest number such that s1

∞ + f(1) · s1 > 0.5. For m > 1, we define f(m) as the
minimum number yielding sm

∞ + f(m) · sm ≥ sm−1
∞ + f(m− 1) · sm−1. Since 0 < si < 1 for all

i ≥ 1, f is well-defined. Hence, we obtain a chain s1
∞ + f(1) · s1 ≤ s2

∞ + f(2) · s2 ≤ . . . which
is strictly upper bounded by 0.5. Based on f and (si)i≥1, we construct S-interpretations π
and π′ over the vocabulary τ = {E} consisting of a binary relation symbol. The universes V
and V ′ are composed as follows.

V = {vm : m ≥ 1} ∪ {vm
i,j : j ≤ min(i,m)} ∪ {vm

m,m+j : j ≤ f(m)}
V ′ = V ∪ {vω} ∪ {vω

i,j : j ≤ i}

The valuations in π and π′ are defined according to the following rules, which apply to all
m,n, i, j ∈ N>0 with m ̸= n such that the respective nodes are contained in V or V ′.
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π(Evmvm
i,j) = π′(Evmvm

i,j) = π′(Evωvω
i,j) = si

π(Evmvn
i,j) = π′(Evmvn

i,j) = π′(Evωvm
i,j) = π′(Evmvω

i,j) = 1
π(Evmvn) = π′(Evmvn) = π′(Evωvm) = π′(Evmvω) = 1

Further, the negations of the instantiated τ -literals defined above are valuated with 0. All
remaining unnegated τ -literals over V and V ′ are valuated with 0 and their negations with 1.
In both T and D, we obtain the following valuations of the formula ψ(x) = ∀y(x = y ∨Exy).

πJψ(vm
i,j)K = π′Jψ(vm

i,j)K = π′Jψ(vω
i,j)K = 0

πJψ(vm)K = π′Jψ(vm)K = sm
∞ + f(m) · sm

π′Jψ(vω)K = 0.5
By construction of f , this implies πAJ∃xψ(x)K = s1

∞ + f(1) · s1 > 0.5 = πBJ∃xψ(x)K, hence
πA ̸≡2 πB. In order to construct a winning strategy for Duplicator in the game G(π, π′),
let V n

0 = {vn} and V n
i for i ≥ 1 contain all elements vn

i,j in V . We consider the partition
P := {V n

i : n ≥ 1, i ≥ 0} of V and P ′ := P ∪ {V ω
i : i ≥ 0} of V ′. Based on the number of

turns m Spoiler chooses in the game G(πA, πB), we define a bijection gm : P → P ′ as follows.

gm(V n
i ) :=


V n

i , n < m

V ω
i , n = m

V n−1
i , n > m

Duplicator wins the game Gm(π, π′) by responding to any element in V n
i ⊆ V with an

arbitrary element in gm(V n
i ) and every element in V n

i ⊆ V ′ with any element in g−1
m (V n

i ),
merely making sure that (in)equalities with regard to the elements that have already been
chosen are respected. This is possible because for each V n

i we have that |V n
i | = |gm(V n

i )| or
that |V n

i | ≥ m and |gm(V n
i )| ≥ m. ◀

We now turn to the study of completeness. Analogous to m-turn Ehrenfeucht–Fraïssé
games, the game G cannot be complete for semirings where elementary equivalence and
isomorphism of finite interpretations do not coincide since Duplicator clearly loses G on
non-isomorphic finite interpretations. In the remaining cases, G must be complete with
respect to finite interpretations because Spoiler winning the game implies non-isomorphism,
but on finite interpretations, this already implies separability by a first-order formula.

▶ Proposition 24. Let S ∈ {T,V,N,N[X]}. If Spoiler wins G(πA, πB) and πA, πB are finite
S-interpretations, then πA ̸≡ πB. Thus, G is complete for ≡ on finite S-interpretations.

The question arises whether this completeness result can be lifted to infinite semiring
interpretations. For the tropical semiring T we describe a counterexample which proves that
G is incomplete for ≡ on T (and hence also on V due to V ∼= T).

▶ Theorem 25. There are T-interpretations πA, πB such that Spoiler wins G1(πA, πB)
although πA ≡ πB. In particular, G is incomplete for ≡ on T.

Proof. Let πA and πB be T-interpretations with just one unary predicate R and universes
A := {ai : i ∈ N} and B := {bi : i ∈ N}, whose valuations are πA(Rai) = πB(Rbi) = 0 if i is
even, while πA(Rai) = 1 and πB(Rbi) = 2 for all odd i; since the interpretations are assumed
to be model-defining this implies that πA(¬Rai) = πB(¬Rbi) = ∞ for all i ∈ N.

Clearly, Spoiler wins G1(πA, πB). To prove that πA ≡ πB, we first show that for each
formula φ(x̄) the valuations πAJφ(ā)K and πBJφ(b̄)K can only take the values 0 and ∞ if the
tuples ā and b̄ only consist of even elements a2ℓ and b2ℓ. The reasoning is identical for both
interpretations, so we just consider πA, and proceed by induction on φ(x̄). For literals the
claim holds by definition and for conjunctions and disjunctions it follows since {0,∞} is
closed under the operations min and +.
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Consider φ(x̄) = ∃yψ(x̄, y). For all a ∈ A with πA(Ra) = 0, it follows by the induction
hypothesis that πAJψ(ā, a)K ∈ {0,∞}. If there is some a ∈ A such that πAJψ(ā, a)K = 0, it
immediately follows that πAJφ(ā)K = infa∈A πAJψ(ā, a)K = 0. Hence, it remains to show the
claim for the case πAJψ(ā, a)K = ∞ for all a ∈ A with πA(Ra) = 0. Fix some c ∈ A that
is not contained in ā such that πA(Rc) = 0. For each a ∈ A with πA(Ra) = 1 it holds, by
monotonicity of the semiring operations, that πAJψ(ā, a)K ≥ πAJψ(ā, c)K with respect to the
usual order on R∞

+ (which is the inverse of the natural order on T) and since πAJψ(ā, c)K = ∞,
we have that πAJφ(ā)K = infa∈A πAJψ(ā, a)K = ∞.

Finally, let φ(x̄) = ∀yψ(x̄, y). Again, for all a ∈ A with πA(Ra) = 0 it holds that
πAJψ(ā, a)K ∈ {0,∞} by induction hypothesis. If there is an a ∈ A such that πAJψ(ā, a)K = ∞,
it immediately follows that πAJφ(ā)K =

∑
a∈A πAJψ(ā, a)K = ∞. Therefore it remains to

show the claim for the case that πAJψ(ā, a)K = 0 for all a ∈ A with πA(Ra) = 0. We
observe that for all a, a′ ∈ A that do not occur in ā with πA(Ra) = πA(Ra′), it holds
that (πA, ā, a) ∼= (πA, ā, a

′). Hence, if there was some a ∈ A with πA(Ra) = 1 such that
πAJψ(ā, a)K = s for some s > 0, then πAJψ(ā, a)K = s would hold for all a ∈ A with
πA(Ra) = 1, which implies πAJφ(ā)K =

∑
a∈A πAJψ(ā, a)K = ∞. Otherwise, we have that

πAJψ(ā, a)K = 0 for all a ∈ A, thus πAJφ(ā)K = 0, which completes the induction.
In particular we have for every sentence φ ∈ FO({R}) that πAJφK, πBJφK ∈ {0,∞}. We

claim that πAJφK = πBJφK. The function h : T → T defined by s 7→ 2s is an endomorphism
on T that is compatible with the infinitary operations, and obviously, (h ◦ πA) ∼= πB. If
πAJφK = 0, then πBJφK = 2 · 0 = 0 due to the fundamental property. Otherwise, we have
that πAJφK = ∞ = 2 · ∞ = πBJφK. Hence πA ≡ πB . ◀

The natural semiring does not admit infinitary operations, so we consider its extension
N∞ instead. But on N∞, counterexamples disproving completeness also exist, see [4].

▶ Theorem 26. There are N∞-interpretations πA and πB such that Spoiler wins G1(πA, πB)
although πA ≡ πB. In particular, the game G is incomplete for ≡ on N∞.

Consequently, completeness of G for ≡ also fails on any semiring which extends N[X]
and admits infinitary operations if it contains N∞ as a subsemiring.

5 The homomorphism game

Finally, we propose a new kind of model comparison games referred to as homomorphism
games. The idea is to reduce a given pair of S-interpretations to B-interpretations via
homomorphisms. In general, the resulting B-interpretations are no longer model-defining,
which is why their m-equivalence is not captured by Gm. While soundness of Gm for ≡m on
fully idempotent semirings S does not rely on the assumption that the S-interpretations are
model-defining, completeness for ≡m even fails on B because a priori there is no connection
between literals and their negations. This is illustrated by the B-interpretations πA and πB .

πA :

A R1 R2 ¬R1 ¬R2

a0 1 0 0 0
a1 0 0 0 0
a2 1 1 0 0
a3 0 0 0 0
a4 1 1 0 0
...

...
...

...
...

πB :

B R1 R2 ¬R1 ¬R2

b0 0 0 0 0
b1 1 1 0 0
b2 0 0 0 0
b3 1 1 0 0
b4 0 0 0 0
...

...
...

...
...
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▶ Proposition 27. On B-interpretations that are not model-defining, the game G is incomplete
for ≡ and the m-turn game Gm is incomplete for ≡m for any m > 0.

Proof. Consider the interpretations πA and πB. We can construct a bijection σ≤ : A → B

such that πB(σ≤(L)) ≤ πA(L) for all L ∈ LitA(τ) by mapping a0 to some bi with even i.
Similarly, we can construct a bijection σ≥ : A → B with πA(L) ≤ πB(σ≥(L)) for all L by
mapping a0 to some bi with odd i.

By structural induction, it follows that πBJφ(σ≤(ā))K ≤ πAJφ(ā)K ≤ πBJφ(σ≥(ā))K holds
for all first-order formulae φ(x̄) with k free variables x̄ and ā ∈ Ak. For sentences ψ, this
yields πAJψK = πBJψK, hence we have πA ≡ πB. However, Spoiler already wins G1(πA, πB)
by picking a0, which proves the claim. ◀

Additionally, finite counterexamples showing the unsoundness of Gm exist as well and
can be constructed based on πA and πB by considering suitable subinterpretations of size
2m or 2m + 1, respectively (see [4]). Due to Proposition 27, we consider a one-sided
variant of the Ehrenfeucht–Fraïssé game which yields a characterisation of m-equivalence for
B-interpretations without requiring them to be model-defining.

Let S be naturally ordered by ≤ and πA, πB be two S-interpretations. We say that
(πA, ā) ≤ (πB , b̄) if for every literal L(x̄) we have that πA(L(ā)) ≤ πB(L(b̄)). Further, we
say that (πA, ā) ⪯m (πB , b̄) if it holds that πAJφ(ā)K ≤ πBJφ(b̄)K for any formula φ(x̄) of
quantifier rank at most m.

▶ Definition 28. The one-sided game G≤
m(πA, πB) is played in the same way as Gm(πA, πB),

but the winning condition for Duplicator, assuming that the tuples ā, b̄ were chosen after m
moves, is (πA, ā) ≤ (πB , b̄) instead of (πA, ā) ≡0 (πB , b̄).

Using monotonicity of both semiring operations with respect to the natural order, we
obtain the following soundness result, which can be proved analogously to Theorem 8.

▶ Proposition 29. Let S be any fully idempotent semiring. Then G≤
m is sound for ⪯m on S.

On B, the one-sided game G≤
m is also complete for ⪯m even for B-interpretations that are

not model-defining. To prove this, we inductively construct characteristic formulae χm
πA,ā(x̄)

analogous to the classical Ehrenfeucht–Fraïssé theorem, but we omit literals ¬Rx̄ in χ0
πA,ā(x̄)

if πA(Rā) = 0. Let φ=
ā (x̄) define the equalities and inequalities of the elements in ā.

χ0
πA,ā(x̄) := φ=

ā (x̄) ∧
∧

{L(x̄) ∈ Litn(τ) : πA(L(ā)) = 1}

χm+1
πA,ā(x̄) :=

∧
a∈A

∃x χm
πA,ā,a(x̄, x) ∧ ∀x

∨
a∈A

χm
πA,ā,a(x̄, x)

▶ Theorem 30. For any two B-interpretations πA and πB with elements ā ∈ An and b̄ ∈ Bn

and any m ∈ N, the following are equivalent:
(1) Duplicator wins G≤

m(πA, ā, πB , b̄);
(2) πBJχm

πA,ā(b̄)K = 1;
(3) (πA, ā) ⪯m (πB , b̄).

To construct homomorphism games based on the one-sided games G≤
m on B-interpretations,

we make use of separating sets of homomorphisms, which were introduced in [12].

▶ Definition 31. Given semirings S and S ′, a set H of homomorphisms from S to S ′ is
called separating if for all s, t ∈ S with s ̸= t there is some h ∈ H with h(s) ̸= h(t).
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For two given S-interpretations πA and πB which are separable by some sentence ψ, we can
think of the valuations s ̸= t of ψ in πA and πB , respectively, as witnesses for the separability
of πA and πB. Further, whenever there is a homomorphism h such that h(s) ̸= h(t) and
(h ◦ πA) ≡m (h ◦ πB), we can exclude the pair (s, t) as a candidate for witnessing πA ̸≡m πB

due to the fundamental property. Thus, separating sets of homomorphisms yield the following
reduction technique.

▶ Lemma 32. Let S and S ′ be semirings and H a separating set of homomorphisms from
S to S ′. Moreover let πA, πB be S-interpretations, ā ∈ An and b̄ ∈ Bn. It holds that
(h ◦ πA, ā) ≡m (h ◦ πB , b̄) for all h ∈ H if, and only if, (πA, ā) ≡m (πB , b̄).

Based on a separating set H of homomorphisms h : S → B, the homomorphism game
HGm(H,πA, πB) can be defined as follows. Spoiler first chooses some h ∈ H and puts either
π0 = h ◦ πA and π1 = h ◦ πB, or the other way around, i.e. π0 = h ◦ πB and π1 = h ◦ πA.
Then the game G≤

m(π0, π1) is played. Using the fact that G≤
m is sound and complete for ⪯m

even on B-interpretations which are not model-defining, soundness and completeness of HGm

for ≡m can be stated as follows.

▶ Theorem 33. Let S be a semiring with a separating set H of homomorphisms into B.
Given S-interpretations πA, πB and ā ∈ An, b̄ ∈ Bn, the following are equivalent for m ∈ N:
(1) Duplicator wins HGm(H,πA, ā, πB , b̄);
(2) h(πBJχm

h◦πA,ā(b̄)K) = h(πAJχm
h◦πB ,b̄

(ā)K) = 1 for each h ∈ H;
(3) (πA, ā) ≡m (πB , b̄).

Motivated by Birkhoff’s representation theorem [1], we can explicitly construct a separating
set of homomorphisms from any finite lattice semiring (i.e. fully idempotent and absorptive
semiring) into B, and embed it into the rules of the homomorphism game. Indeed, every
semiring for which there is a separating set of homomorphisms to B must be a lattice semiring
since for every homomorphism h : S → B and s, t ∈ S, we have h(s · s) = h(s) ∧ h(s) = h(s)
and h(s+ st) = h(s) ∨ (h(s) ∧ h(t)) = h(s). Due to absorption, we assume that the infinitary
operations of a lattice semiring are given by

∑
i∈I si := sup{

∑
i∈I′ si|I ′ ⊆ I finite} and∏

i∈I si := inf{
∏

i∈I′ si|I ′ ⊆ I finite}.

▶ Definition 34. Let S be a finite lattice semiring. A non-zero element s ∈ S is said to be
+-indecomposable if for all r, t ∈ S with r ̸= s and t ̸= s it holds that r + t ̸= s. We denote
the set of non-zero +-indecomposable of elements in S as idc(S).

In a min-max semiring, for instance, every non-zero element is +-indecomposable. By
contrast, the +-indecomposable elements in PosBool[X] correspond to the monomials.

▶ Lemma 35. For each s ∈ idc(S) the mapping hs : S → B defined by

hs(t) =
{

1, t+ s = t

0, otherwise

is a homomorphism from S into B.

Proof. Let s ∈ idc(S) be non-zero and +-indecomposable.
(1) Since 0 + s = s ̸= 0, it holds that hs(0) = 0. Further, we have that 1 + s = 1 + 1 · s = 1

due to absorption, hence hs(1) = 1.
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(2) In order to prove that hs(r + t) = hs(r) + hs(t) for all r, t ∈ S, it remains to show that
s+ (r+ t) = r+ t is equivalent to s+ r = r or s+ t = t. If s+ (r+ t) = r+ t, then with
absorption and distributivity sr + st = s(r + t) = s(s+ r + t) = s+ s(r + t) = s. Since
s is +-indecomposable by assumption, this implies sr = s or st = s. Suppose w.l.o.g.
that sr = s which yields r = r + sr = r + s. For the converse implication, assume that
r + s = r or t+ s = t. Clearly, both implications immediately yield s+ (r + t) = r + t.

(3) To prove hs(r · t) = hs(r) · hs(t), we show that s+ rt = rt is equivalent to s+ r = r and
s+ t = t. If s+ rt = rt, we can infer that s+ r = s+ (r+ rt) = (s+ rt) + r = rt+ r = r

and an analogous result for t. Conversely, suppose that s+ r = r and s+ t = t. Then
rt = (s+ r)(s+ t) = s+ (r · t) follows by distributivity.

(4) Pertaining to the compatibility of hs with infinitary operations in S, note that any infinite
sum or product can be transformed into a finite sum or product due to full idempotence
and the assumption that S is finite. Thus, the proof is already complete. ◀

Although we only consider the mappings hs for +-indecomposable s to ensure that hs is
a homomorphism, any two elements in S can be separated by some hs.

▶ Lemma 36. The set {hs : s ∈ idc(S)} is a separating set of homomorphisms from S to B.

Proof. For t ∈ S let St = {s ∈ idc(S) : s + t = t}. Due to idempotence, we have that
t+

∑
s∈St

s = t. Since S is assumed to be finite, there must be a tuple t1, . . . , tn ∈ idc(S)
with t1 + · · · + tn = t. With idempotence, this implies t+ ti = t, which yields ti ∈ St for each
1 ≤ i ≤ n. Hence, we have that t+

∑
s∈St

s =
∑

1≤i≤n ti +
∑

s∈St
s =

∑
s∈St

s. Overall, we
obtain t = t+

∑
s∈St

s =
∑

s∈St
s.

Let r, t ∈ S with r ̸= t. Since r =
∑

s∈Sr
s and t =

∑
s∈St

s, it must hold that Sr ≠ St.
Let s be a witness for the inequality and assume w.l.o.g that s ∈ Sr. By definition of Sr,
it holds that s + r = r, hence hs(r) = 1. By contrast, s ̸∈ St yields s + t ̸= t and thus
hs(t) = 0. ◀

Now that we have an explicit construction a separating set of homomorphisms to B
which applies to any finite lattice semiring, we can reformulate the homomorphism game as
HGm(πA, πB) corresponding to HGm(Hidc, πA, πB) for finite lattice semirings as follows.

▶ Definition 37. At the beginning of each play in HGm(πA, πB), Spoiler chooses either
π0 = πA and π1 = πB or vice versa, and some s ∈ idc(S). In the i-th of m rounds, Spoiler
chooses some ai ∈ A or bi ∈ B and Duplicator has to respond with an element ai or bi in the
other structure. Duplicator wins the play if for the chosen tuples c̄, d̄ and each L(x̄) ∈ Litm(τ)
π0(L(c̄)) + s = π0(L(c̄)) implies π1(L(d̄)) + s = π1(L(d̄)).

The direct construction of the separating set of homomorphisms also allows an explicit
formulation of characteristic formulae χm,s

πA,ā(x̄) for each s ∈ idc(S) corresponding to the
B-interpretations hs ◦ πA. Again φ=

ā (x̄) characterises the equalities and inequalities of the
elements in ā.

χ0,s
πA,ā(x1, . . . , xn) := φ=

ā (x̄) ∧
∧

{L(x̄) ∈ Litn(τ) | πA(ā) + s = πA(L(ā))}

χm+1,s
πA,ā (x1, . . . , xn) :=

∧
a∈A

∃x χm,s
πA,ā,a(x̄, x) ∧ ∀x

∨
a∈A

χm,s
πA,ā,a(x̄, x)

In terms of the set Hidc = {hs : s ∈ idc(S)}, the correctness of the game HGm for finite
lattice semirings can be stated as follows.
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▶ Theorem 38. The game HGm is sound and complete for ≡m on every finite lattice
semiring S. More precisely, given any S-interpretations πA, πB and ā ∈ An, b̄ ∈ Bn the
following are equivalent for each m ∈ N:
(1) Duplicator wins HGm(πA, ā, πB , b̄);
(2) For each s ∈ idc(S), it holds that

πBJχm,s
πA,ā(b̄)K + s = πBJχm,s

πA,ā(b̄)K and πAJχm,s

πB ,b̄
(ā)K + s = πAJχm,s

πB ,b̄
(ā)K;

(3) (πA, ā) ≡m (πB , b̄).

While applying to arbitrary finite lattice semirings, the set Hidc of homomorphisms is
in general not sufficient to separate any two elements of an infinite lattice semiring. As
an example, consider S = (Z,+S , ·S , 0, 1) with s +S t = gcd(s, t) if s ̸= 0 or t ̸= 0, while
0 +S 0 = 0 and s ·S t = lcm(s, t) for s, t ∈ Z. For each s ∈ Z, it holds that gcd(2s, 3s) = s,
so for s ̸= 0 there are distinct r and t such that s = r +S t. By contrast, gcd(s, t) ̸= 0 for
all s, t ∈ Z \ {0}, hence idc(S) = {0}, but {h0} is not a separating set of homomorphisms.
Nevertheless, separating sets of homomorphisms into B also exist for infinite lattice semirings
and can be constructed based on the prime ideals in S. But in general, there does not have
to be a separating set of continuous homomorphisms, which respect infinitary summation
and multiplication in S. Thus, the prime ideals in S yield a homomorphism game on finite
S-interpretations, while S itself might be infinite (see [4] for details).

▶ Example 39. We can use the homomorphism game to show that first-order logic with
semiring semantics cannot express the following property on min-max-semirings with the
monadic signature {Q,R}: “For the majority of elements e in the universe, Qe has a
greater value than Re.” To prove this, we use the following two S4-interpretations on the
min-max-semiring S4 with four elements {0, 1, 2, 3}.

πA :

A Q R ¬Q ¬R
a1 1 3 0 0
a2 2 1 0 0
a3 3 2 0 0

πB :

B Q R ¬Q ¬R
b1 3 1 0 0
b2 1 2 0 0
b3 2 3 0 0

Clearly, πA has the desired property while πB does not. However, we can show with the
homomorphism game HGm(πA, πB) that πA ≡ πB. First, we observe that every non-zero
s ∈ S4 is +-indecomposable. The set idc(S4) induces homomorphisms h≥i : S4 → B for
i ∈ {1, 2, 3} such that h≥i(j) = 1 iff j ≥ i. Hence, we essentially play the homomorphism
game HGm(H,πA, πB) with the separating set of homomorphisms H = {h≥1, h≥2, h≥3}.
Now, it only remains to observe that applying any of these homomorphisms to πA and πB

makes them isomorphic to each other, thus, Duplicator clearly has a winning strategy. This
demonstrates the viability of homomorphism games as a proof method for inexpressibility
results in semiring semantics.

6 Conclusion

We have provided a rather detailed study of soundness and completeness of Ehrenfeucht–
Fraïssé games, and related model comparison games, for proving elementary equivalence
and m-equivalence in semiring semantics. The general picture that emerges is quite diverse.
While the m-move games Gm are sound and complete for ≡m only on the Boolean semiring,
the games still provide a sound method on fully idempotent semirings, such as min-max
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semirings, lattice semirings, and the provenance semirings PosBool[X]. This permits to
generalise certain classical results in logic, proved via Ehrenfeucht–Fraïssé games or back-
and-forth systems, from Boolean structures to semiring interpretations in fully idempotent
semirings. A particular example is the proof of a Hanf locality theorem for such semirings in [2].
For proving elementary equivalence, without restriction of the quantifier rank, Ehrenfeucht–
Fraïssé games without a fixed number of moves provide a more powerful method, in the sense
that it is sound on more semirings, including not only N and N∞ but also the provenance
semirings W[X], B[X],S[X], N[X], and S∞[X]. While in classical semantics, a separating
sentence of quantifier rank m leads to a winning strategy of Spoiler in at most m moves,
the situation in semirings may be more complicated, in the sense that a winning strategy
of Spoiler which “simulates” a separating sentence may still exist, but may require a larger
number of moves than given by the quantifier rank; as a consequence the unrestricted game G
may still provide a sound method for proving elementary equivalence, although the m-move
games are unsound for ≡m.

The most straightforward application of Ehrenfeucht–Fraïssé games and other model
comparison games are inexpressibility results, showing that a property P is not expressible
in a logic L. Classically, this is accomplished by constructing two structures, precisely one
of which satisfies the property P , and then providing a winning strategy for Duplicator
in an appropriate model comparison game on the two structures. This method only relies
on the soundness of the model comparison game without requiring completeness. Hence,
our soundness results enable us to lift inexpressibility results to semiring semantics for a
significant class of semirings. Consider, for instance, a min-max-semiring S modelling access
levels and S-interpretations π that annotate every edge of a graph with a required access
level. Then there is no first-order formula φ(x, y) such that πJφ(v, w)K evaluates to the
minimal access level required to go from v to w.

We have also studied bijection and counting games, and we have shown in particular, that
m-move bijection games are sound for ≡m on all semirings. We remark that these games have
originally been invented in the form of k-pebble games for logics with counting. This means
that rather than just selecting, in m turns, two m-tuples, the games proceed by moving a
fixed number of k pairs of pebbles through the two structures in an a priori unrestricted
number of moves. These games capture equivalences for formulae that may use at most
k variables which can, however, be quantified again and again. We have chosen here the
simplified variants of m-move games rather than k-pebble games, to study the relationship
with the classical Ehrenfeucht–Fraïssé games for ≡m. However, also the definition of k-pebble
bijection and counting games extends in a straightforward way from classical structures
to semiring interpretations and their soundness properties for k-variable equivalences are
analogous to those of the m-move variants for m-equivalence. But clearly, the k-pebble
variants of these games deserve further study, and this will be part of our future work on the
subject. We conjecture that by lifting the well-known CFI-construction to semirings one can
show that there is no semiring where first-order logic, and even fixed point logic, is strong
enough to express all properties that are decidable in PTIME.

On the other side, it has turned out that all these model comparison games are incomplete
for elementary equivalence and m-equivalence on most semirings, with the exceptions of N
and N[X]. Most of these incompleteness results rely on the construction of logically equivalent
semiring interpretations on which, however, Spoiler wins the games in few moves. The proof
of elementarily equivalence for such interpretations in general relies on separating sets of
homomorphisms. Based on this technique, we have proposed a new kind of model comparison
games, homomorphism games, which in fact are sound and complete for m-equivalence
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on finite lattice semirings. This also raises the question whether it is possible to develop
further games that are sound and complete for more, or even all, semirings. An essential
part of the homomorphism game is a one-sided version of the classical Ehrenfeucht–Fraïssé
game, with a winning condition that is based on (weak) local homomorphisms rather than
local isomorphisms, and which capture the notion that one interpretation never evaluates
to strictly larger values than the other. This game itself is interesting also in many other
contexts and will be further studied in future work.
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