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Abstract
The original Specker-Blatter Theorem (1983) was formulated for classes of structures C of one or
several binary relations definable in Monadic Second Order Logic MSOL. It states that the number of
such structures on the set [n] is modularly C-finite (MC-finite). In previous work we extended this to
structures definable in CMSOL, MSOL extended with modular counting quantifiers. The first author
also showed that the Specker-Blatter Theorem does not hold for one quaternary relation (2003).

If the vocabulary allows a constant symbol c, there are n possible interpretations on [n] for c.
We say that a constant c is hard-wired if c is always interpreted by the same element j ∈ [n]. In this
paper we show:

(i) The Specker-Blatter Theorem also holds for CMSOL when hard-wired constants are allowed.
The proof method of Specker and Blatter does not work in this case.

(ii) The Specker-Blatter Theorem does not hold already for C with one ternary relation definable
in First Order Logic FOL. This was left open since 1983.

Using hard-wired constants allows us to show MC-finiteness of counting functions of various
restricted partition functions which were not known to be MC-finite till now. Among them we
have the restricted Bell numbers Br,A, restricted Stirling numbers of the second kind Sr,A or
restricted Lah-numbers Lr,A. Here r is an non-negative integer and A is an ultimately periodic set
of non-negative integers.
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1 Introduction

A sequence of natural numbers s(n) is C-finite if it satisfies a linear recurrence relation with
constant coefficients. s(n) is MC-finite if it satisfies a linear recurrence relation with constant
coefficients modulo m for each m separately. A C-finite sequence s(n) must have limited
growth: s(n) ≤ 2cn for some constant c. No such bound exists for MC-finite sequences: for
every monotone increasing sequence s(n) the sequence s′(n) = n!s(n) is MC-finite.

A typical example of a C-finite sequence is the sequence f(n) of Fibonacci numbers. A
typical example of an MC-finite sequence which is not C-finite is the sequence B(n) of Bell
numbers. The Bell number B(n) counts the number of partitions of the set [n] of the numbers
{1, 2, . . . , n}. Let Eq(n) be number of equivalence relations over [n]. Clearly, B(n) = Eq(n).
Let Eq2(n) be the number of equivalence relations on [n] with exactly two equivalence classes
of the same size. Eq2(n) is not MC-finite since the value of Eq2(n) is odd iff n is an even
power of 2, see [3].
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26:2 Extensions and Limits

In [23] G. Pfeiffer discusses counting other transitive relations besides Eq(n), in particular,
partial orders PO(n), quasi-orders (aka preorders) QO(n) and just transitive relations Tr(n).
Using a growth argument one can see that none of these functions is C-finite. It follows
directly from the Specker-Blatter Theorem stated below, see Corollary 2, that PO(n), QO(n)
and Tr(n) are MC-finite. However, to the best of our knowledge, this has not been stated
in the literature. This may be due to the fact that no explicit formulas for these functions
are known. The Specker-Blatter Theorem establishes MC-finiteness even in the absence of
explicit formulas. It derives MC-finiteness solely from the assumption that C is definable
in Monadic Second Order Logic (MSOL), or in MSOL augmented by modular counting
quantifiers (CMSOL).

The present paper grew out of our study of modular recurrence relations for restricted
partition functions, [11]. We provide a short review of the Specker-Blatter Theorem, and show
how to extend its applicability by extending the allowed vocabulary to include constants with
a fixed interpretation (“hard-wired”). The reduction allowing this extension can be made
to work in the other direction. Using it we also close the gap between the Specker-Blatter
Theorem and its known limits, left open in [12], by constructing am FOL statement over a
single ternary relation for which the theorem does not hold.

Formal definitions with more examples and details about C-finite and MC-finite sequences
are given in Section 6.

2 Background in logic

We generally follow the notation of [8], and assume basic knowledge of model theory.
Standard texts for Finite Model Theory are [8, 21]. In the following, we always refer to a
set R̄ = {R1, . . . , RℓR̄

} of distinct binary relation symbols, a set ā = {a1, . . . , aℓā} of distinct
constant symbols, and so on. By a ∈ ā we mean that there exists 1 ≤ i ≤ ℓā for which a = ai.
We also use the shorthand [n] = {1, . . . , n}.

Let τ = R̄ ∪ ā be a vocabulary, i.e., a set of non-logical constants. We denote by FOL(τ)
the set of first order formulas with its non-logical constants in τ . If τ is clear from the context,
we omit it. We denote by MSOL(τ) the set of Monadic Second Order Logic, obtained from
FOL by allowing unary relation variables and quantification over them. The logic CMSOL
is obtained from MSOL by allowing also quantification of the form Cm,axϕ(x), which are
interpreted by

A |= Cm,axϕ(x) iff |{a ∈ A : ϕ(a)}| ≡ a mod m.

In the following we will be interested in the set of models of a logic sentence ϕ over a
vocabulary τ whose universe is [n] for any natural number n. We denote this set by

Cϕ = {M = ([n], A1, . . . , Am) : n ∈ N, Ai ∈ [n]ρi ,M |= ϕ}.

3 The original Specker-Blatter Theorem

Let ϕE be the formula in First Order Logic (FOL) which says that E(x, y) is an equivalence
relation. Eq(n) can be written as

Eq(n) = |{E ⊆ [n]2 : ([n], E) |= ϕE}|.

PO(n), QO(n) and Tr(n) can be written in a similar way.
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The original Specker-Blatter Theorem from 1981, [1, 2, 3, 26], gives a general criterion for
certain integer sequences to be MC-finite. Let R̄ = {R1, . . . , RℓR̄

} be a finite set of relation
symbols of arities ρ1, . . . , ρℓR̄

respectively, and ϕ be a formula of Monadic Second Order
Logic (MSOL) using relation symbols from R without free variables.

Let Spϕ(n) be the number of ways we can interpret the relation symbols in R on [n] such
that the resulting structures where Ai is the interpretation of Ri satisfies ϕ. Formally

Spϕ(n) = |{Ai ⊆ [n]ρi , i ≤ m : ([n], A1. . . . , Am) |= ϕ}|.

▶ Theorem 1 (Specker-Blatter). Let R̄ be a finite set of binary relations and ϕ be a formula
of MSOL(R̄) using relation symbols in R̄. Then the sequence Spϕ(n) is MC-finite.

▶ Corollary 2. The sequences counting the number of partial orders PO(n), quasi-orders
QO(n), and transitive relations Tr(n) on [n], are MC-finite.

The idea behind the proof of the Specker-Blatter theorem consists of two parts, both of
which use the assertion that τ = R̄ contains only binary relation symbols. Unary symbols
can also be incorporated, since these can be simulated with binary symbols in a way that
preserves the number of satisfying models.

The first part is combinatorial and applies to any family C of structures over the vocabulary
τ satisfying a property that we outline below. For such a family, we let SpC(n) be the number
of members of C whose universe is [n]. In particular, Spϕ(n) is just a shorthand for SpCϕ

(n).
A pointed R̄-structure is an R̄-structure A = ([n], A1, . . . , Aµ, a) with an additional

distinguished point a ∈ [n]. Given a pointed R̄-structure A1 with universe [n1] and an
R̄-structure A2 with universe [n2] we define A = Subst(A1, a,A2) as follows:

(i) The universe A of A is the disjoint union of A1 and A2 with the point a removed. It
can be assumed to be the set [n1 + n2 − 1].

(ii) The binary relations are defined such that A2 is a module in A, i.e., for u ∈ A1 \ {a}
and v ∈ A2 and R ∈ R̄, the relation R(u, v) holds in A = Subst(A1, a,A2) iff R(u, a)
holds in A1. For u, v ∈ A1 \ {a} (respectively u, v ∈ A2), R(u, v) holds in A iff it holds
in A1 (respectively A2).

By using an arbitrary enumeration of all possible pointed R̄-structures and all possible
(non-pointed) R̄-structures, we construct an N × N matrix MC over {0, 1}, by setting for
every i and j the value MC(i, j) to be the indicator as to whether the substitution of the j’th
structure in the i’th pointed structure results in a member of C. The main combinatorial
part is the following.

▶ Theorem 3 (Specker-Blatter, combinatorial version). Let R̄ be a finite set of binary relations
and C be a class of finite R̄-structures whose substitution rank is finite under Zpq for any
prime number p and q ∈ N. Then the sequence SpC(n) is MC-finite.

The above applies to an uncountable number of families C. Theorem 1 follows from it by
the following lemma, which forms the second part of the original proof:

▶ Lemma 4. Let R̄ be a finite set of binary relations and C be a finite class of R-structures
defined by an R-sentences ϕ in MSOL. Then the substitution rank of C is finite.

In [15] it is shown that the lemma still holds if MSOL is replaced by CMSOL. On the
other hand, when considering relations of arity higher than 2, the substitution operation
is no longer well-defined as it is written here. As it later turned out, this is not a merely
technical limitation, but an essential one.

CSL 2024
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Also, it is not clear how to handle hard-wired constant in the definition of the substitution
operation. In this paper, instead of incorporating the hard-wired constants directly into the
original mechanism, we show a reduction from the question of the original count to a sum of
counts over other sentences that do not involve the constants. This approach turns out to be
useful also in the other direction, of proving a new limit on the Specker-Blatter theorem.

4 Previous limitations and extensions

Limitations and extensions of the Specker-Blatter Theorem have been previously discussed
in [15, 14].

It is well known that Eulerian graphs and regular graphs of even degree are not definable
in MSOL, but they are definable in CMSOL. In [15], the Specker-Blatter Theorem was shown
to hold also for CMSOL. It follows in particular that Eul(n), which counts the number
of Eulerian graphs over [n] (i.e. connected graphs all of whose degrees are even), is also
MC-finite.

In [13] the first author showed that the Specker-Blatter Theorem does not hold for
quaternary relations:

▶ Theorem 5 (E. Fischer, 2002). There is an FOL-sentence with only one quaternary relation
symbol ϕ, such that Spϕ(n) is not an MC-sequence.

The question of whether Specker-Blatter Theorem holds in the presence of ternary relation
symbols remained open.

5 Main new results

Due to space constraints, some proofs are deferred to the full version of this paper1 [17].
The Bell numbers B(n) and the Stirling numbers of the second kind Sk(n) for fixed k

can be shown to be MC-finite using the Specker-Blatter Theorem. A. Broder in 1984, [4],
introduced the restricted Bell numbers Br(n) and the restricted Stirling numbers of the
second kind Sk,r(n). Let r ∈ N+. Sk,r(n) is defined as the number of set partitions of [r+ n]
into k+ r blocks with the additional condition that the first r elements are in distinct blocks.
Br(n) is defined as

Br(n) =
∑

k

Sk,r(n).

The class of equivalence relations on [r + n] where the first r elements are in different
equivalence classes is definable in FOL with one binary relation and r hard-wired constants.
The Specker-Blatter Theorem does not directly apply to this case. In [11] it is shown how to
circumvent this obstacle in the case of one equivalence relation. It followed that both Sk,r(n)
and Br(n) are MC-finite.

In this paper we prove a more general theorem:

▶ Theorem 6 (Elimination of hard-wired constants).
(i) Let τ consist of a finite set of (hard-wired) constant symbols ā, unary relations symbols

Ū , and binary relation symbols R̄. For every class C of τ -structures there exist classes
C1, . . . , Cr of τ ′-structures, where τ ′-contains only a finite number r(ā, Ū , R̄) of binary
relation symbols, such that

1 The full version can be downloaded at https://arxiv.org/abs/2206.12135.

https://arxiv.org/abs/2206.12135
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SpC(n) =
r∑

i=1
SpCi

(n).

Equality here is not modular.
(ii) Furthermore, if C is FOL-definable (MSOL-definable, CMSOL-definable), so are the Ci.

▶ Corollary 7. Let τ consist of a finite set of (hard-wired) constant symbols ā, unary relations
symbols Ū , and binary relation symbols R̄, and let C be class of finite τ -structures definable
in CMSOL. Then the sequence SpC(n) is MC-finite.

The proof of Theorem 6 is given in Section 7. In Section 8 we state Theorem 19, which is an
extension of Theorem 6 that works for higher arities and other logics, and sketch its proof.
The full proof details of Theorem 19 are deferred to [17]. The extension to higher arities is
needed for proving Theorem 8 below.

We have seen in Theorem 5 that the Specker-Blatter Theorem does not hold for a single
quaternary relation. The question of whether Specker-Blatter Theorem holds in the presence
of a single ternary relation symbol remained open. Our second main result here answers this.

▶ Theorem 8 (Ternary Counter-Example). There is a FOL-sentence ϕ with only one ternary
relation symbol (and some lower arity relations), such that Spϕ(n) is not an MC-sequence.

The proof of Theorem 8 first produces a sentence ψ which also uses one symbol for a
hard-wired constant. This will be shown in Section 9. To construct ϕ without the hard-wired
constants, we deploy the aforementioned Theorem 19, which provides a sentence with one
ternary relation and several lower arity relations. We can then also eliminate all relations
except the ternary one, to arrive at Theorem 31 stated at Section 9, whose proof is deferred
to the full version [17]. A sketch thereof is still provided.

We conclude this paper with Section 10, containing a summary and open problems.

6 More details about C-finite and MC-finite sequences of integers

A sequence of integers s(n) is C-finite2 if there are constants p, q ∈ N and ci ∈ Z, 0 ≤ i ≤ p−1
such that for all n ≥ q the linear recurrence relation below holds for s(n).

s(n+ p) =
p−1∑
i=0

cis(n+ i).

A sequence of integers s(n) is modular C-finite, abbreviated as MC-finite, if for every
m ∈ N there are constants pm, qm ∈ N+ such that for every n ≥ qm there is a linear recurrence
relation

s(n+ pm) ≡
pm−1∑

i=0
ci,ms(n+ i) mod m

with constant coefficients ci,m ∈ Z.
We denote by sm(n) the sequence s(n) mod m. Note that the coefficients ci,m and both

pm and qm generally do depend on m.

2 These are also called constant-recursive sequences or linear-recursive sequences in the literature.
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▶ Proposition 9. The sequence s(n) is MC-finite iff sm(n) is ultimately periodic for every m.

Proof. MC-finiteness implies periodicity. The converse is from [24]. ◀

Clearly, if a sequence s(n) is C-finite then it is also MC-finite with rm = r and ci,m = ci

for all m. The converse is not true as there are uncountably many MC-finite sequences, but
only countably many C-finite sequences with integer coefficients, see Proposition 11 below.

▶ Example 10.
(i) The Fibonacci sequence is C-finite.
(ii) If s(n) is C-finite then it has at most simple exponential growth. There is c ∈ N+ such

that s(n) ≤ 2cn for all n ∈ N, see e.g. [9, 19].
(iii) The Bell numbers B(n) are not C-finite, but are MC-finite.
(iv) Let f(n) be any integer sequence. The sequence s1(n) = 2 · f(n) is ultimately periodic

modulo 2, but not necessarily MC-finite.
(v) Let g(n) be any integer sequence which is not almost everywhere zero. The sequence

s2(n) = n! · g(n) is MC-finite but not C-finite due to its growth.
(vi) The sequence s3(n) = 1

2
(2n

n

)
is not MC-finite: s3(n) is odd if and only if n is a power

of 2 (Lucas, 1878). A proof may be found in [18, Exercise 5.61] or in [26].
(vii) The Catalan numbers C(n) = 1

n+1
(2n

n

)
are not MC-finite, since C(n) is odd iff n is a

Mersenne number, i.e., n = 2m − 1 for some m, see [20, Chapter 13].
(viii) Let p be a prime and f(n) monotone increasing. The sequence s(n) = p · f(n) + z(n),

where z(n) is defined to equal 1 if n is a power of p and to equal 0 for any other n, is
monotone increasing but not ultimately periodic modulo p, hence not MC-finite.

▶ Proposition 11.
(i) There are uncountably many monotone increasing sequences which are MC-finite, and

uncountably many which are not MC-finite.
(ii) Almost all integer sequences (under a suitable measure) are not MC-finite.

Proof. (i) follows from Example 10 (v) and (viii). (ii) follows from almost all integer sequences
being being absolutely normal (see [9]); the full proof is deferred to [17]. ◀

7 Proving the reduction

7.1 Introduction
In the following we consider extending the language with “hard-wired” constants. Specifically,
assume that we have a class C that is defined by a sentence ϕ involving a set of constant
symbols ā, unary symbols Ū and binary symbols R̄. The function fC(n) is defined as the
number of models over the universe [n+ ℓā] which satisfy ϕ, for which ai is interpreted as
n+ i for all i ∈ [ℓā]. Note the distinction from the non-hard-wired setting, where we would
have had to also count the possible interpretations of the constants.

Our main result is an expression for the function fC(n) (when constants are allowed) that
is based on counting functions for classes that do not utilize constants. We first show this
reduction for languages using only unary and binary relations. The reduction preserves many
of the common logics, in particular an FOL expression would be reduced to functions involving
FOL expressions, and so on. This extends the Specker-Blatter theorem to languages involving
hard-wired constants, allowing modular ultimate periodicity proofs of new functions.

In this section we prove Theorem 6. For convenience we state it again as Theorem 12.
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▶ Theorem 12 (Reducing model counts to the case without constants). For any class C defined
by an FOL (resp. MSOL, CMSOL) sentence involving a set of constant symbols ā, unary
symbols Ū and binary symbols R̄, there exist classes C1, . . . , Cr (where r depends on the
original language), definable by FOL (resp. MSOL, CMSOL) sentences involving Ū ′ (which
contains Ū), R̄ and no constants, satisfying fC(n) =

∑r
i=1 fCi

(n) for all n ∈ N.

The following is the immediate corollary it produces for the Specker-Blatter Theorem,
which is a restatement of Corollary 2.

▶ Corollary 13 (Extended Specker-Blatter Theorem). For a class C definable in CMSOL with
(hard-wired) constants, unary and binary relation symbols only, the function fC is MC-finite.

Theorem 12 is proved by induction over the number of constants. The basis, ℓā = 0, is
trivial (with Ū ′ = Ū , r = 1 and C1 = C). The induction step is provided by the following.

▶ Lemma 14 (Removing a single constant). For any class C defined by an FOL (resp. MSOL,
CMSOL) sentence involving a set of constant symbols ā with ℓā > 0, unary symbols Ū and
binary symbols R̄, there exist classes C1, . . . , Cr (where r depends on the original language),
definable by FOL (resp. MSOL, CMSOL) sentences over the language (ā′, Ū ′, R̄′), where
ā′ = ā\{aℓā

}, Ū ′ = Ū∪Ī∪Ō where ℓĪ = ℓŌ = ℓR̄, and R̄′ = R̄, satisfying fC(n) =
∑r

i=1 fCi
(n)

for all n ∈ N.

The main idea in the proof of this lemma is to encode the “interaction” of the constant
aℓā with the rest of the universe using the additional unary relations. For every i ∈ [ℓR̄], we
will use the new relation Ii to hold every x ̸= aℓā

for which (x, a) was in Ri, and the relation
Oi to hold every x ̸= aℓā for which (a, x) was in Ri.

We cannot directly keep track whether (a, a) was in Ri, or whether a was in Ui for i ∈ [ℓŪ ],
so we count the number of models for each of these options separately. This sets r = 2ℓŪ +ℓR̄ .
Instead of a running index, we index each such option with a set U ⊆ [ℓŪ ] denoting which of
the relations in Ū include the constant to be removed a = aℓā

, and a set R ⊆ [ℓR̄] denoting
which of the relations in R̄ include (a, a). Using these we can define the case where a model
N over the language (ā′, Ū ′, R̄) with universe [n+ ℓā − 1] corresponds (along with U and R)
to an “original model” M with universe [n+ ℓā] over the original language.

▶ Definition 15. Given a model M over the language (ā, Ū , R̄) with universe [n + ℓā], a
model N over the language (ā′, Ū ′, R̄) with universe [n + ℓā − 1], and sets U ⊆ [ℓŪ ] and
R ⊆ [ℓR̄], where (as always) in both models every constant ai is interpreted to be n+ i, we
say that (N,U,R) correspond to M if the following hold.

For every U ∈ Ū and x ∈ [n+ ℓā − 1], we have N |= U(x) if and only if M |= U(x).
For every i ∈ [ℓŪ ], we have i ∈ U if and only if M |= Ui(a).
For every R ∈ R̄ and x, y ∈ [n+ ℓā − 1], we have N |= R(x, y) if and only if M |= R(x, y).
For every i ∈ [ℓR̄] and x ∈ [n+ ℓā − 1], we have N |= Ii(x) if and only if M |= Ri(x, a).
For every i ∈ [ℓR̄] and x ∈ [n+ ℓā − 1], we have N |= Oi(x) if and only if M |= Ri(a, x).
For every i ∈ [ℓR̄], we have i ∈ R if and only if M |= Ri(a, a).

It is important to note, for the purpose of counting, the following observation.

▶ Observation 16. Definition 15 provides a bijection between the set of possible models M

over the universe [n+ ℓā] (where the constants are interpreted as in Definition 15), and the
set of possible triples (N,U,R) where N is a model over [n+ ℓā − 1] (where the constants are
interpreted as in Definition 15) and U ⊆ [ℓŪ ] and R ⊆ [ℓR̄].
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26:8 Extensions and Limits

Suppose we are given an expression ϕ(x̄) where x̄ = {x1, . . . , xℓx̄} is a set of variable
symbols over the language (ā, Ū , R̄), as well as a set U ⊆ [ℓŪ ] and a set R ⊆ [ℓR̄]. We will
construct, by induction over the structure of ϕ, several expressions, where one of which is an
expression ϕ′

U,R(x̄) over the language (ā′, Ū ′, R̄). It will be constructed so that for any M over
the language (ā, Ū , R̄) with universe [n+ℓā] and N over the language (ā′, Ū ′, R̄) with universe
[n+ ℓā − 1], where (N,U,R) correspond to M, and any fixing of x1, . . . , xℓx̄ ∈ [n+ ℓā − 1],
we will have M |= ϕ(x̄) if and only if N |= ϕ′

U,R(x̄).
Lemma 14 then immediately follows from the case ℓx̄ = 0 (i.e. where ϕ is a sentence).

To be precise, for a class C defined by a sentence ϕ over the language (ā, Ū , R̄), we obtain
fC(n) =

∑
U⊆[ℓŪ ],R⊆[ℓR̄] fCU,R

(n), where CU,R is the class respectively defined by ϕ′
U,R(x̄)

over the language (ā′, Ū ′, R̄).
To sustain the induction, the above will not be enough. This is because we need to account

under the model N also for the case where some variables are “assigned the value a = aℓā”,
a value which does not exist in its universe (it exists only in that of M). We henceforth
consider also a set X ⊆ [ℓx̄], and denote the set of variable symbols xX = {xi : i ∈ X}. In
our induction we will construct the expressions ϕ′

X,U,R(x̄ \ xX), where ϕ′
U,R(x̄) is just the

special case ϕ′
∅,U,R(x̄). With models M and N as above and a fixing of the variables in x̄\xX,

denote by x̄X→a the completion of this fixing to all of x̄ that is obtained by fixing xi to be
equal to a for all i ∈ X. We will then have M |= ϕ(x̄X→a) if and only if N |= ϕ′

X,U,R(x̄ \ xX).
The rest of this section is concerned with the recursive definition of ϕ′

X,U,R(x̄\xX). There
is a subsection for the base cases, a subsection for Boolean connectives, and a subsection for
each class of quantifiers (first order quantifiers, counting quantifiers, and monadic second
order quantifiers). In every construction we argue (at times trivially) that we keep the
correspondence invariant, namely that M |= ϕ(x̄X→a) if and only if N |= ϕ′

X,U,R(x̄ \ xX)
whenever M and (N,U,R) satisfy the correspondence condition of Definition 15.

7.2 The base constructions

We use the Boolean “true” and “false” statements in the following, so for formality’s sake they
are also considered as atomic statements here. Clearly, if ϕ(x̄) is simply the “true” statement
⊤ (respectively the “false” statement ⊥), then setting ϕ′

X,U,R(x̄ \ xX) to ⊤ (respectively ⊥)
gives us the equivalent statement satisfying the correspondence invariant.

For i ∈ [ℓŪ ] and j ∈ [ℓx̄], let us now consider the expression ϕ(x̄) = Ui(xj). To produce
ϕ′
X,U,R(x̄\xX), we partition to cases according to whether j ∈ X. In the case where j /∈ X, we

simply set ϕ′
X,U,R(x̄ \ xX) = Ui(xj) as well, which clearly satisfies the invariant for (N,U,R)

correlated with M (recall that the “if and only if” condition in this case should hold when
the value of xi is in [n+ ℓā − 1]).

Similarly, for i ∈ [ℓŪ ] and j ∈ [ℓā − 1], for the expression ϕ(x̄) = Ui(aj), we produce
ϕ′
X,U,R(x̄ \ xX) = Ui(aj), noting that in our setting the value of aj is guaranteed to be equal

to n+ j ∈ [n+ ℓā − 1].
Now consider the expression ϕ(x̄) = Ui(xj) for the case where xj ∈ X. Recall that in

this case ϕ′
X,U,R(x̄ \ xX) should not depend on xj . Moreover, to preserve the invariant for

corresponding sets and models, ϕ′
X,U,R(x̄ \ xX) should hold if and only if Uj(a) holds (recall

that we use the shorthand a = aℓā
throughout). We hence define ϕ′

X,U,R(x̄ \ xX) to be ⊤
(“true”) if i ∈ U, and define it to be ⊥ (“false”) if i /∈ U.

The remaining case for a unary relation is the expression ϕ(x̄) = Ui(a). Again, we define
ϕ′
X,U,R(x̄ \ xX) to be ⊤ if i ∈ U, and define it to be ⊥ if i /∈ U.
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We now move on to handle the atomic expressions involving a binary relation Ri where
i ∈ [ℓR̄]. The first case here is the one analogous to the first case we discussed involving a
unary relation. Namely, it is the case where ϕ(x̄) = Ri(xj , xk) where both j /∈ X and k /∈ X.
In this case we set ϕ′

X,U,R(x̄\xX) = Ri(xj , xk), and argue the same argument as above about
satisfying the correspondence invariant.

The next four cases we discuss resemble the last two cases we discussed about a unary
relation. Namely, these are the cases where ϕ(x̄) = Ri(xj , xk) with j, k ∈ X, ϕ(x̄) = Ri(xj , a)
or ϕ(x̄) = Ri(a, xj) with j ∈ X, and ϕ(x̄) = Ri(a, a). In all these cases the resulting
expression should reflect on whether M |= Ri(a, a), which for the corresponding (N,U,R) is
handled by the set R. We hence set ϕ′

X,U,R(x̄ \xX) = ⊤ if i ∈ R, and set ϕ′
X,U,R(x̄ \xX) = ⊥

if i /∈ R.
Next we handle the cases where ϕ(x̄) = Ri(xj , xk) with j /∈ X and k ∈ X, and ϕ(x̄) =

Ri(xj , a) with j /∈ X. For both this cases, for the correspondence invariant to follow we
need to look at whether M |= Ri(xj , a), where the value of xj is in [n + ℓā − 1]. For the
corresponding (N,U,R) this occurs if and only if N |= Ii(xj), where we recall that Ii is
a relation from Ū ′ \ Ū . We therefor set ϕ′

X,U,R(x̄ \ xX) = Ii(xj) in these cases. Similarly,
for the cases ϕ(x̄) = Ri(aj , xk) and ϕ(x̄) = Ri(aj , a), where j ∈ [ℓā − 1] and k ∈ X, we set
ϕ′
X,U,R(x̄ \ xX) = Ii(aj).

Moving on to the remaining cases for a binary relation, we consider ϕ(x̄) = Ri(xk, xj) with
j /∈ X and k ∈ X, and ϕ(x̄) = Ri(a, xj) with j /∈ X. These are analogous to the cases handled
in the last paragraph, only here we use Oi instead of Ii. We set ϕ′

X,U,R(x̄ \ xX) = Oi(xj)
in these two cases. Finally, for the cases ϕ(x̄) = Ri(xk, aj) and ϕ(x̄) = Ri(a, aj), where
j ∈ [ℓā − 1] and k ∈ X, we set ϕ′

X,U,R(x̄ \ xX) = Oi(aj).
The final atomic formula to consider is the “builtin relation” of equality. We skip all cases

involving only constants (e.g. ai = aj), since these are equivalent to ⊤ or ⊥. We also skip
cases that are equivalent by the symmetry of the equality relation to those that we discuss.

First, if ϕ(x̄) is xi = xj or xi = ak for i, j /∈ X and k ∈ [ℓā − 1], then since we are dealing
with values that are guaranteed to be in [n+ ℓā −1] (the universe of N), we set ϕ′

X,U,R(x̄\xX)
respectively to xi = xj or xi = ak as well (so it is “unaltered” from ϕ(x̄)).

On the other hand, if ϕ(x̄) is xi = xj or xi = a for i, j ∈ X, then for the correspondence
principle to hold, we need N |= ϕ′

X,U,R(x̄ \ xX) to hold if M |= (a = a). In other words, we
have to set ϕ′

X,U,R(x̄ \ xX) = ⊤ here.
The final cases are those where ϕ(x̄) is xi = xj or xi = a for i /∈ X and j ∈ X. For

the correspondence principle to hold, we need N |= ϕ′
X,U,R(x̄ \ xX) to hold if and only if

M |= (xi = a). However, we make here the subtle yet important observation that this
should occur for any value that xi can take from the universe of N, which does not include a.
Therefor, we can (and should) set ϕ′

X,U,R(x̄ \ xX) = ⊥ in these cases.

7.3 Boolean connectives

Handling Boolean connectives is the most straightforward part of this construction. For
example, suppose that we have ϕ(x̄) = ¬ψ(x̄) for some expression ψ(x̄), for which we
have already established (by the induction hypothesis) that M |= ψ(x̄X→a) if and only
if N |= ψ′

X,U,R(x̄ \ xX) whenever M and (N,U,R) correspond. Here we can clearly set
ϕ′
X,U,R(x̄ \ xX) = ¬ψ′

X,U,R(x̄ \ xX), and obtain that M |= ϕ(x̄X→a) if and only if N |=
ϕ′
X,U,R(x̄ \ xX) whenever M and (N,U,R) correspond.

The same idea and analysis follow for all other Boolean connectives. For example, for the
expression ϕ(x̄) = ψ1(x̄) ∧ψ2(x̄), we set ϕ′

X,U,R(x̄ \xX) = ψ′
1,X,U,R(x̄ \xX) ∧ψ′

2,X,U,R(x̄ \xX).
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7.4 First order quantifiers
To deal with quantifiers over variables, we make some assumptions on the structure of our
expressions that can easily be justified by the appropriate variable substitutions. Namely, we
require that every quantified variable is quantified only once in the expression, and is not
used at all outside the scope of the quantification. In particular, this means that the set X

that appears in the subscript of our expression cannot contain a reference to the quantified
variable.

For notational convenience, when ϕ(x̄) is our formula, we denote by x = xℓx̄+1 the
quantified variable. So the two cases that we consider in this subsection are the existential
quantification ϕ(x̄) = ∃xψ(x̄∪{x}) and the universal quantification ϕ(x̄) = ∀xψ(x̄∪{x}), and
for both of them we would like to construct a corresponding ϕ′

X,U,R(x̄ \ xX) where X ⊆ [ℓx̄].
In the existential case, we want N |= ϕ′

X,U,R(x̄\xX) to occur whenever there is at least one
value of x for which M |= ψ(x̄∪ {x}). For the values of x within [n+ ℓā − 1], by the induction
hypothesis, this is covered by the expression ∃xψ

′
X,U,R(x̄ ∪ {x} \ xX). However, there is one

possible value of x not covered in this way, and that is the value n+ ℓā, which we identify
with the constant a. But by the induction hypothesis, M |= ψ(x̄ ∪ {x}) for x = a if and only
if N |= ψ′

X∪{ℓx̄+1},U,R(x̄ \ xX). The combined expression that satisfies the correspondence
invariant is hence ϕ′

X,U,R(x̄ \ xX) = ∃xψ
′
X,U,R(x̄ ∪ {x} \ xX) ∨ ψ′

X∪{ℓx̄+1},U,R(x̄ \ xX).
The universal case follows an analogous argument, only here M |= ψ(x̄ ∪ {x}) needs

to hold for all values of x, those in [n + ℓā − 1] as well as the value of a. The combined
expression is ϕ′

X,U,R(x̄ \ xX) = ∀xψ
′
X,U,R(x̄ ∪ {x} \ xX) ∧ ψ′

X∪{ℓx̄+1},U,R(x̄ \ xX).

7.5 Modular counting quantifiers
We briefly recall the definition of a modular counting quantifier. Given ϕ(x̄) = Cr,m

x ψ(x̄∪{x}),
this expression is said to hold in M for a specific assignment to the variable of x̄, if the size of
the set {x : M |= ψ(x̄ ∪ {x})} is congruent to r modulo m. As with the previous subsection,
we assume that the quantified variable is not used outside the quantification scope, and that
no variable is quantified more than once. We again denote for notational convenience the
quantified variable by x = xℓx̄+1, and note that X ⊆ [ℓx̄] cannot include a reference to x.

When working with (N,U,R) that corresponds to M, to obtain the original modular count,
we have to count the set (satisfying the induction hypothesis) {x : N |= ψ′

X,U,R(x̄∪{x}\xX)},
as well as check whether N |= ψ′

X∪{ℓx̄+1},U,R(x̄ \ xX) (which if true adds 1 to the count).
This gives (Cr−1,m

x ψ′
X,U,R(x̄∪ {x}\xX) ∧ψ′

X∪{ℓx̄+1},U,R(x̄ \xX)) ∨ (Cr,m
x ψ′

X,U,R(x̄∪ {x}\xX) ∧
¬ψ′

X∪{ℓx̄+1},U,R(x̄ \xX)) as the combined expression for ϕ′
X,U,R(x̄ \ xX).

7.6 Monadic second order quantifiers
Here we deal with quantifiers over unary relations. The cases we cover are the existential
quantification ϕ(x̄) = ∃Uψ(x̄) and the universal quantification ϕ(x̄) = ∀Uψ(x̄), where U is
a new unary relation that does not appear in the language (ā, Ū , R̄) of ϕ(x̄), while being
part of the language of ψ(x̄). As before, we assume that the quantified relation symbol U
appears only in the scope of this quantification, and is not quantified anywhere else, and
again denote for convenience U = UℓŪ +1. In particular, when analyzing expressions of the
type ψ′

X,U′,R(x̄ \ xX), we may allow U′ to contain [ℓŪ + 1] (the same is not allowed for the
expression ϕ′

X,U,R(x̄ \ xX), whose language does not contain U).
Consider now the family of possible models M′ that extend M with an interpretation of

the relation U . Now consider (N′,U′,R′) which correspond to M′, in relation to (N,U,R)
which correspond to M. Referring to Definition 15, every relation already appearing in Ū will
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have the same interpretation in N and N′. Also, R′ = R, since the binary relations are the
same in the languages of both models. Additionally, from the definition, the interpretation
of U = UℓŪ +1 in N′ is the restriction of its interpretation in M′ to [n+ ℓā − 1]. As for the
final ingredient U′, for every i ∈ [ℓŪ ], the condition on whether it is in U or in U′ is the same.
However, U′ may also include ℓŪ + 1 according to whether M′ |= U(a). So considering all
possible models M′, we have two possibilities. Either U′ = U, or U′ = U ∪ {ℓŪ + 1}.

We can now construct our expression that corresponds to all models extending M. For the
existential case we have ϕ′

X,U,R(x̄ \ xX) = ∃Uψ
′
X,U,R(x̄ \ xX) ∨ ∃Uψ

′
X,U∪{ℓŪ +1},R(x̄ \ xX), and

for the universal one we have ϕ′
X,U,R(x̄ \ xX) = ∀Uψ

′
X,U,R(x̄ \ xX) ∧ ∀Uψ

′
X,U∪{ℓŪ +1},R(x̄ \ xX).

8 Handling relations of other arities

8.1 Nullary relations and a many-one version of the reduction
Before we consider relations of higher arities, let us show how incorporating nullary (“arity
zero”) relations can replace the reduction of Theorem 6 into a many-one reduction. That is,
instead of a reduction into of the original Spϕ(n) into a finite sum

∑r
i=1 Spϕi

(n), we will
have a reduction into a single Spϕ′(n) where ϕ′ may also involve nullary relations. Later,
when we consider higher arity relations, nullary relations add much needed consistency to
the notation.

Formally, for a nullary relation Z, the corresponding atomic formula is Z(), and a model
M over a language that includes Z interprets this formula as either true or false, that is,
either M |= Z() or M |= ¬Z().

Note that nullary relations can be simulated using higher arity relations. To replace a
nullary relation Z in the language with a unary relation U (while preserving the model count),
the logical expression under discussion should be conjuncted with “∀x∀y(U(x) ↔ U(y))”,
and then every instance of “Z()” in the formula should be replaced with “∃xU(x)”.

The corresponding reduction theorem is the following.

▶ Theorem 17 (Many-one reduction to the case without constants). For any class C defined
by an FOL (resp. MSOL, CMSOL) sentence involving a set of constant symbols ā, nullary
symbols Z̄, unary symbols Ū and binary symbols R̄, there exists a class C′ definable by an
FOL (resp. MSOL, CMSOL) sentence involving Z̄ ′, Ū ′ (which contain Z̄ and Ū respectively),
R̄ and no constants, satisfying fC(n) = fC′(n) for all n ∈ N.

Also here, the theorem follows from a single constant removal lemma, which is used for
an inductive argument over ℓā.

▶ Lemma 18 (Removing a single constant in a many-one manner). For any class C defined
by an FOL (resp. MSOL, CMSOL) sentence involving a set of constant symbols ā with
ℓā > 0, nullary symbols Z̄, unary symbols Ū and binary symbols R̄, there exists a class
C′, definable by an FOL (resp. MSOL, CMSOL) sentence over the language (ā′, Z̄ ′, Ū ′, R̄′),
where ā′ = ā \ {aℓā

}, Z̄ ′ = Z̄ ∪ S̄ ∪ D̄ where ℓS = ℓU and ℓD = ℓR, Ū ′ = Ū ∪ Ī ∪ Ō where
ℓĪ = ℓŌ = ℓR̄, and R̄′ = R̄, satisfying fC(n) = fC′(n) for all n ∈ N.

The proofs are deferred to the full version of this paper [17]. We provide here a “sketch
by example” on how this is done.

Adding nullary relations essentially allows us to get rid of the role of U and R, so we will
only inductively construct the expressions ϕ′

X and let nullary relations “hold the information”
as to whether some relations hold with a substituted to all their variables.
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If for instance we consider a binary relation R(x, y) in the original vocabulary of ϕ, then
the new vocabulary will include R(x, y) (holding the information about the contents of R
that does not involve the constant a), the unary relations I(x) (holding the information
about R(x, a) for all x ̸= a) and O(y) (holding the information about R(y, a)), and the
nullary relation Z() that holds the information whether R(a, a) holds.

In the inductive construction, ϕ′
X(x̄ \ xX) will tell us whether ϕ holds where all variables

enumerated by X are assigned the constant a, while all other variables are guaranteed to be
different from a.

As an example, for the expression ϕ(x) = ∃yR(x, y), we will have ϕ′
∅(x) = (∃yR(x, y)) ∨

I(x), which goes over the two options for the existence of y for which R(x, y) holds: the
first option being y ̸= a, and the second one being y = a. Similarly we will have ϕ′

{1}() =
(∃yO(y)) ∨Z(), which goes over the two options for the existence of y for which R(a, y) holds.

For a universal quantifier the reduction would similarly go over the two cases, but use a
conjunction this time. Thus for ψ(x) = ∀yR(x, y) we will have ψ′

∅(x) = (∀yR(x, y)) ∧ I(x),
and ψ′

{1}() = (∀yO(y)) ∧ Z().

8.2 Handling higher arity relations and extended logics
The mechanism behind the proof of Theorem 17 can be extended higher arity relations, as
well as more expressive logics, such as Second Order Logic (SOL) and Guarded Second Order
Logic (GSOL)3.

▶ Theorem 19 (Many-one reduction allowing higher arity). For any class C defined by an
FOL (resp. MSOL, CMSOL, GSOL, SOL) sentence involving a set of constant symbols
ā, and relation symbols R̄ of arbitrary arities, there exists a class C′ definable by an FOL
(resp. MSOL, CMSOL, GSOL, SOL) sentence involving R̄′, which contains R̄, has the same
maximum arity as R̄, and has no new relations of maximum arity, satisfying fC(n) = fC′(n)
for all n ∈ N.

Also here, this follows by induction using a corresponding extension of Lemma 18, which
allows us to eliminate hard-wired constants one at a time. As a way of demonstrating the
proof of this theorem (deferred to [17]), we explain how the single elimination lemma works
when considering a ternary relation R(x, y, z).

As before, for eliminating a hard-wired constant a we need to add lower arity relations to
R. Namely, since after the reduction R(x, y, z) itself would refer only to values different from
a, we add a lower arity relation for every option of substituting the value a in any of these
variables. This would add

(3
1
)

= 3 binary relations which we will denote here by R1(y, z),
R2(x, z) and R3(x, y), in addition to

(3
2
)

= 3 unary relations which we will denote by R12(z),
R13(y) and R23(x), and a single nullary relation which we will denote by R123().

Thus, given for example the expression ϕ(x, y) = ∃zR(x, y, z), we would have for example
ϕ′

∅(x, y) = (∃zR(x, y, z))∨R3(x, y), ϕ′
{1}(y) = (∃zR1(y, z))∨R13(y), ϕ′

{2}(x) = (∃zR2(x, z))∨
R23(x) and ϕ′

{1,2}() = (∃zR12(z)) ∨R123().
Going another recursion level, for ψ(x) = ∃y,zR(x, y, z) = ∃yϕ(x), we would cor-

respondingly have ψ′
∅(x) = (∃y,zR(x, y, z)) ∨ (∃zR2(x, z)) ∨ (∃yR3(x, y)) ∨ R23(x), and

ψ′
{1}() = (∃y,zR1(y, z)) ∨ (∃zR12(z)) ∨ (∃yR13(y)) ∨R123().

3 All discussion of these logics is deferred to [17], since the limit to the Specker-Blatter theorem discussed
here only uses FOL.
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9 An FOL-definable class C where fC(n) is not MC-finite

In this section we negatively settle the question of whether the Specker-Blatter theorem
holds for classes whose language contains only ternary and lower-arity relations.

9.1 Using one hard-wired constant
We first construct a class whose language includes a single ternary relation and a single
hard-wired constant. Our counterexample builds on ideas used in [13].

▶ Theorem 20 (Ternary relation counterexample with a constant). There exists an FOL
sentence ϕM over the language (a,R), where a is a single (hard-wired) constant and R is a
single relation of arity 3, so that the corresponding class C satisfies fC(n− 1) = 0 for any
n that is not a power of 2, and fC(n − 1) ≡ 1 (mod 2) for n = 2m for every m ∈ N. In
particular, fC is not ultimately periodic modulo 2.

The statement uses fC(n − 1) instead of fC(n), but recalling the definition of fC, this
refers to the universe [n− 1] ∪ {a} whose size is n. We explain later how to modify this class
to produce a counterexample modulo other prime numbers p instead of 2.

By Theorem 19, we have the following immediate corollary that does away with the
constant, at the price of adding some additional smaller arity relations. This corollary is
effectively a restatement of Theorem 8.

▶ Corollary 21 (Ternary counterexample without constants). There exists an FOL sentence
ϕ′

M over the language (R̄), where R̄ includes one relation of arity 3 and other relations of
lower arities, so that the corresponding class C satisfies fC(n) = 0 for every n for which n+ 1
is not a power of 2, and fC(n) ≡ 1 (mod 2) for n = 2m − 1 for every m ∈ N. In particular,
fC is not ultimately periodic modulo 2.

At the end of this section we sketch how to further reduce the language so that it includes
only one ternary relation and no lower arity relations. The full details are deferred to [17].

9.2 The first construction
The starting point of the construction is a structure that is defined over a non-constant
length sequence (and hence not yet expressible in FOL) of unordered graphs. This definition
follows the streamlining by Specker [25] of the original construction from [13].

▶ Definition 22 (Iterated matching sequence). Given a set V of vertices, An iterated matching
sequence is a sequence of graphs over V , identified by their edge sets Ē = E1, . . . , EℓĒ

,
satisfying the following for every 1 ≤ i ≤ ℓĒ.

The connected components of Ei are (vertex-disjoint) complete bipartite graphs.
The two vertex classes of every complete bipartite graph in Ei as above are two connected
components of

⋃i−1
j=1 Ej (for i = 1 this means that E1 is a matching).

Every connected component of
⋃i−1

j=1 Ej is a vertex class of some bipartite graph of Ei (so
in particular E1 is a perfect matching).

An iterated matching sequence Ē is full if every vertex pair u, v ∈ V (where u ̸= v) appears
in some Ei.

The following properties of iterated matching sequences are easily provable by induction.
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▶ Observation 23. For an iterated matching Ē, every Ei corresponds to a perfect matching
over the set of connected components of

⋃i−1
j=1 Ej. Additionally, every connected component

of
⋃i

j=1 Ej is a clique with exactly 2i vertices.

The above implies that there can be a full iterated matching sequence over [n] if and
only if n is a power of 2, in which case ℓĒ = log2(n). Denoting the number of possible full
iterated matching sequences over [n] by fM(n), note the following lemma.

▶ Lemma 24 (see [25]). For every n which is not a power of 2 we have fM(n) = 0, while
fM(n) ≡ 1 (mod 2) for n = 2m for every m ∈ N.

The rest of this section concerns the construction of a sentence ϕM over a language
with one constant and one ternary relation, so that the corresponding class C satisfies
fC(n− 1) = fM(n). In the original construction utilizing a quaternary relation Q, essentially
we had (u, v, x, y) ∈ Q if (u, v) ∈ Ei and (x, y) ∈ Ei−1 for some 1 < i ≤ ℓĒ , or (u, v) ∈ E1
and x = y. For the construction here, we only have a ternary relation R, and we encode
the placement of (u, v) within Ē by the set {w : (u, v, w) ∈ R}. We will have to utilize the
hard-wired constant a to make sure that there is exactly one way to encode every full iterated
matching sequence.

9.3 Setting up and referring to an order over the vertex pairs
We simulate the structure of a full iterated matching sequence over [n] (where n ∈ [n] is
identified with the constant a) by assigning “ranks” to pairs of members of [n], which we
consider as vertices, where each pair (x, y) is assigned the set rx,y = {z : (x, y, z) ∈ R}. First
we need to make sure that “graphness” is satisfied, which means that rx,y is symmetric and
is empty for loops.

ϕgraph = ∀x,y,z(R(x, y, z) → (x ̸= y ∧R(y, x, z)))

Next we make sure that every two vertex pairs have ranks that are comparable by containment.
This means that for every (x1, y1) and (x2, y2) either rx1,y1 ⊆ rx2,y2 or rx2,y2 ⊆ rx1,y1 .

ϕcomp = ∀x1,y1,x2,y2¬∃z1,z2(R(x1, y1, z1) ∧ ¬R(x2, y2, z1) ∧R(x2, y2, z2) ∧ ¬R(x1, y1, z2))

Finally, we want every non-loop vertex pair to have a non-empty rank, and moreover for
it to include the constant a. This is crucial, because a will eventually serve as an “anchor”
making sure that there is only one way to assign ranks when encoding a full iterated matching
sequence using the ternary relation R.

ϕfull = ∀x,y((x ̸= y) → R(x, y, a))

It is a good time to sum up the full statement that sets up our pair ranks.

ϕrank = ϕgraph ∧ ϕcomp ∧ ϕfull

Whenever this statement is satisfied, we can use it to construct expressions that compare
ranks. We will use the following expressions, which compare the ranks of (x1, y1) and (x2, y2),
when we formulate further conditions on R that will eventually force it to conform to a full
iterated matching sequence. Note that conveniently, these comparison expression also work
against loops (whose “rank”, the empty set, is considered to be the lowest).

ϕ=(x1, y1, x2, y2) = ∀z(R(x1, y1, z) ↔ R(x2, y2, z))
ϕ≤(x1, y1, x2, y2) = ∀z(R(x1, y1, z) → R(x2, y2, z))
ϕ<(x1, y1, x2, y2) = ϕ≤(x1, y1, x2, y2) ∧ ¬ϕ=(x1, y1, x2, y2)
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9.4 Making the ordered pairs correspond to an iterated matching
In this subsection we consider a ternary relation R that is known to satisfy ϕrank as defined in
Subsection 9.3, and impose further conditions that will force it to correspond to an iterated
matching sequence (which will also be full by virtue of every pair having a rank).

For every rank appearing in R, that is for every set A which is equal to rx,y for some
x, y ∈ [n], we refer to the set of vertex pairs having this rank as Ei, where i is the number
of ranks that appear in R (including the empty set, which is the “rank” of loops) and are
strictly contained in A. So in particular E0 = {(x, x) : x ∈ [n]}, and E1 for example would
be the set of vertex pairs that have the smallest non-empty set as their ranks.

We first impose the restriction that for any i, the graph defined by
⋃i

j=1 Ej is a transitive
graph, that is a disjoint union of cliques. By Observation 23 this is a necessary condition for
Ē to be an iterated matching sequence (note that allowing also the 0-ranked loops does not
change the condition). This is the same as saying that for any three vertices x, y, z, it cannot
be the case that the rank of (x, z) is larger than the maximum ranks of (x, y) and (y, z).

ϕtrans = ∀x,y,z(ϕ≤(x, z, x, y) ∨ ϕ≤(x, z, y, z))

Whenever R satisfies the above, it is not hard to add the restriction that Ei consists of
disjoint complete bipartite graphs such that each of them connects exactly two components
of

⋃i−1
j=1 Ej , with all such components being covered. First we state that if some rank A

exists, that is, there exists some (x, y) for which A = rx,y, then every vertex z is a part of an
edge with such rank.

ϕcover = ∀x,y∀z∃wϕ=(x, y, z, w)

Then, using the prior knowledge that all connected components of both
⋃i−1

j=1 Ej and
⋃i

j=1 Ej

are cliques, to make sure that every connected component of Ei is exactly a bipartite graph
encompassing two components of

⋃i−1
j=1 Ej , it is enough to state that it contains no triangles,

excluding of course “triangles” of the type (x, x, x).

ϕpart = ∀x,y,z((x ̸= y) → ¬(ϕ=(x, y, y, z) ∧ ϕ=(x, y, x, z)))

All of the above is sufficient to guarantee that the relation R corresponds to a full iterated
matching sequence. However, as things stand now there can be many relations that correspond
to the same iterated matching. This occurs because we still have unwanted freedom in choosing
the sets that correspond to the possible ranks. To remove this freedom, we now require that
the rank of every pair (x, y) for x ̸= y consists of exactly one connected component of the
union of the lower ranked pairs. This will be sufficient, because by ϕfull the only option for
the rank would be the connected component that contains the constant a.

Noting that by ϕtrans these components are cliques, it is enough to require that every
member of rx,y is connected via a lower rank edge to a, while every vertex that is connected
to a member of rx,y via a lower rank edge is also a member of rx,y. We obtain the following
statement.

ϕanchor = ∀x,y,z(R(x, y, z) → (ϕ<(z, a, x, y) ∧ ∀w(ϕ<(z, w, x, y) → R(x, y, w))))

The final statement that counts the number of full iterated matching sequences, and hence
provides the example proving Theorem 20 is the following.

ϕM = ϕrank ∧ ϕtrans ∧ ϕcover ∧ ϕpart ∧ ϕanchor
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9.5 Adapting the example to other primes
We show here how to adapt the FOL sentence from Theorem 20 to provide a sequence that
is not ultimately periodic modulo p for any prime number p ≥ 2. The analogous corollary
about removing the constant also follows.

▶ Theorem 25 (Ternary relation counterexample for p ≥ 2). For any prime number p, there
exists an FOL sentence ϕMp

over the language (a,R), where a is a (hard-wired) constant
and R is a relation of arity 3, so that the corresponding class Cp satisfies fCp(n− 1) = 0 for
every n that is not a power of p, and fCp

(n− 1) ≡ 1 (mod p) for n = pm for every m ∈ N.
In particular, fCp is not ultimately periodic modulo p.

The construction follows the same lines as the extension from p = 2 to p ≥ 2 in previous
works. For completeness we give some details on how it works with respect to the version
of [25]. The basic idea is to use a “matching” of p-tuples instead of pairs.

▶ Definition 26. A p-matching over the vertex set [n] is a spanning graph, each of whose
connected components is either a clique with p vertices or a single vertex. A perfect p-
matching is a p-matching in which there are no single vertex components (in other words, it
is a partition of [n] into sets of size p).

The following is not hard to prove.

▶ Lemma 27. There are no perfect p-matchings over [n] unless n is a multiple of p, in which
case their number is congruent to 1 modulo p.

Proof. The case where n is not a multiple of p is trivial. Otherwise, consider the number of
possible partitions of the set [p] to a sequence of subsets of sizes i1, . . . , ir, where

∑r
k=1 ik = p.

Note that unless i1 = p (and hence r = 1), the number of such partitions is divisible by
(

p
i1

)
,

which is divisible by p (since p is a prime).
Denoting by fMp(n) the number of perfect p-matchings over [n], We consider for any

p-matching its restriction to [p] (which corresponds to a partition of [p] – the reason we
need to consider the partitions as sequences rather than as unordered families of sets is that
we need to consider which sets in the restriction of the p-matching over [n] \ [p] they are
“attached” to). This implies that fMp

(n) ≡ fMp
(n− p) (mod p) for every n > p, allowing us

to prove by induction that fMp(n) ≡ 1 (mod p) if p divides n. ◀

The definition of an iterated p-matching sequence is what one would expect.

▶ Definition 28 (Iterated p-matching sequence). Given a set V of vertices, An iterated p-
matching sequence is a sequence graphs over V , identified by their edge sets Ē = E1, . . . , EℓĒ

,
satisfying the following for every 1 ≤ i ≤ ℓĒ.

The connected components of Ei are (vertex-disjoint) complete p-partite graphs.
The p vertex classes of every complete p-partite graph in Ei as above are p connected
components of

⋃i−1
j=1 Ej (for i = 1 this means that E1 is a p-matching).

Every connected component of
⋃i−1

j=1 Ej is a vertex class of some p-partite graph of Ei

(so in particular E1 is a perfect p-matching).
An iterated matching sequence Ē is full if every vertex pair u, v ∈ V (where u ≠ v) appears
in some Ei.

Again we have the following properties, analogous to those of iterated matching sequences.
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▶ Observation 29. For an iterated p-matching Ē, every Ei corresponds to a perfect p-
matching over the set of connected components of

⋃i−1
j=1 Ej. Additionally, every connected

component of
⋃i

j=1 Ej is a clique with exactly pi vertices.

The above implies that there can be a full iterated matching sequence over [n] if and
only if n is a power of p, in which case ℓĒ = logp(n). Denoting the number of possible full
iterated matching sequences over [n] by fMp

(n), note the following lemma.

▶ Lemma 30. For every n that is not a power of p we have fM(n) = 0, while for n = pm

for every m ∈ N we have fMp(n) ≡ 1 (mod p).

Proof. The case where n is not a power of p was already discussed above. The case n = pm

is proved by induction over m using Lemma 27. ◀

From here on the construction of ϕMp
is identical to that of ϕM in Subsection 9.3 and

Subsection 9.4, with the only exceptions being the replacements for ϕcover and ϕpart.
To construct ϕcoverp , we need to state that for every existing rank, each vertex is a part

of a size p clique consisting of edges from this rank.

ϕcoverp = ∀x,y∀z1∃z2,...,zp

∧
1≤i<j≤p

ϕ=(x, y, zi, zj)

To construct ϕpartp
, we need to state that no Ei may contain a clique with p+ 1 vertices.

ϕpartp
= ∀z1,...,zp+1((z1 ̸= z2) → ¬(

∧
1≤i<j≤p+1

ϕ=(z1, z2, zi, zj))

The final expression is the following.

ϕMp = ϕrank ∧ ϕtrans ∧ ϕcoverp ∧ ϕpartp
∧ ϕanchor

9.6 Reducing the example further to have a single relation
We provide here a sketch on how to produce, starting with Theorem 8, a sentence with a
single relation that provides a class that is not MC-finite.

▶ Theorem 31 (A sentence with a single relation). For every prime number p ≥ 1 there exists
an FOL-sentence ϕp over a language consisting of a single relation of arity 3, so that for the
class C corresponding to ϕp, its counting function fC(n) is not ultimately periodic modulo p.

Starting with an expression ϕ that results from invoking Theorem 25 over ϕMp
, we

explain how to reduce it further to an expression that involves a single ternary relation.
This transformation is ad-hoc and uses certain specific features and symmetries of models
satisfying ϕMp , and their reflection in the corresponding models satisfying ϕ. The full details
require delving into the specifics of the proof of Theorem 19, and are deferred to [17].

As ϕMp
involves a single ternary relation R and a single constant a, the resulting ϕ involves

a corresponding ternary relation, as well as three binary relations, three unary relations,
and a single nullary relation. Since the lower order relations result from substituting the
constant at some of the places of the relation R (while restricting the other places to hold
values different from a), looking at the working of ϕMp

allows us to immediately rule out
most options for the lower arity relations.

For example, the nullary relation would correspond to whether R(a, a, a) holds, so it must
evaluate to ⊥ (“false”) for all models of ϕ (since ϕMp

implies ¬R(x, x, y) for all x and y,
equal or unequal to a). Thus we may just remove it and replace its occurrences in ϕ with
the ⊥ symbol.
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Similar considerations allow us to eliminate the unary relation corresponding to R(a, a, x)
for x ̸= a (always false), and the unary relations corresponding to R(a, x, a) and R(x, a, a)
(always true by ϕfull since x ̸= a).

Next, the binary relation corresponding to R(x, y, a) for x, y ≠ a, while not constant, can
be “fully deduced” and replaced with x ̸= y by ϕfull and ϕgraph.

This leaves us with the two relations corresponding to R(x, a, y) and R(a, x, y). By first
noting that for satisfying models they are equal to each other (by ϕgraph), we can reduce
them to a single relation. In the final step, we “fold” this relation into the ternary relation,
after noting that R has to satisfy ¬R(x, x, y) for all x, y. The last operation requires first
replacing the occurrences of R(x, y, z) in the sentence with “(x ̸= y) ∧R(x, y, z)”, which now
“frees” this part of R to be used instead of the binary relation. This does not change the
number of satisfying models, since we make sure that this “region” of R is completely used
through a bijection for the role of the binary relation that it replaces.

10 Conclusions and open problems

In this work we have extended the Specker-Blatter Theorem to classes of τ -structures definable
in CMSOL for vocabularies τ which contain a finite number of hard-wired constants, unary
and binary relation symbols, Corollary 7. We have also shown that it does not hold already
when τ consists of only one ternary relation symbol, Theorem 31. We note that in [15, 16]
we have shown that for C definable in CMSOL such that all structures have degree bounded
by a constant d, SC(n) is always MC-finite. The degree of a structure A is defined via the
Gaifman graph of A. With this the MC-finiteness of SC(n) for CMSOL-definable classes of
τ -structures as a function of τ is completely understood. Applications of our results in this
paper to restricted Bell numbers and various restricted partition functions are given in [11].

A sequence of integers s(n) is MC-finite if for every m ∈ N+ there are constants
r(m), p(m) ∈ N+ and coefficients α1(m), . . . , αp(m) ∈ N+, such that for all n ≥ r(m)
we have

s(n+ p(m) + 1) ≡
p(m)∑
i=0

αis(i) mod m.

The Specker-Blatter Theorem gives little information on the constants r(m), p(m) or the
coefficients α1(m), . . . , αp(m). These in particular depend on the substitution rank of the class
C. In fact Theorem 3 gives a very bad estimate of the substitution rank in the case of binary
relation symbols. The constants are computable, but it is not known whether they are always
computable in feasible time or whether their size is bounded by an elementary function. In
the presence of constants the substitution rank is not defined. Our main Theorem 12 allows
to eliminate the constants, and therefore gives a formula for which the substitution rank is
defined. However, due to the increased complexity of the resulting formula, the estimate of
the substitution rank will be even worse.

▶ Problem 32. Given a sentence ϕ in CMSOL(τ) where τ consists only of constants, unary
and binary relation symbols,

(i) what is the time complexity of computing the constants r(m), p(m) and the coefficients
α1(m), . . . , αp(m)?

(ii) what can we say about the size of these constants?

The proof of Theorem 3 depends on the Feferman-Vaught Theorem which also holds for
CMSOL(τ) for any finite relational τ , [10, 22]. In our context, the Feferman-Vaught Theorem
allows to check whether a formula of CMSOL(τ) holds in Subst(A1, a,A2) by checking a
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sequence of CMSOL(τ)-formulas in A1 and A2 independently. This sequence is called a
reduction sequence, cf. [14]. In [6] it is shown that even for FOL(τ) the size of the reduction
sequences for the Feferman-Vaught Theorem cannot, in general, be bounded by an elementary
function.

▶ Problem 33. Does there exist an elementary function f(k), so that for any sentence ϕ in
CMSOL(τ) where τ consists only of constants, unary and binary relation symbols, the size
of the constants r(m) and p(m) is bounded by f(max{|ϕ|,m})?

The Specker-Blatter Theorem also applies to hereditary, monotone and minor-closed
graph classes, provided they are definable using a finite set of forbidden (induced) subgraphs
or minors. In the first two cases such a class is FOL-definable. In the case of a minor-closed
class, B. Courcelle showed that it is MSOL-definable, see [5]. By the celebrated theorem of
N. Robertson and P. Seymour, [7], every minor-closed class of graphs is definable by a finite
set of forbidden minors. However, there are monotone (hereditary) classes of graphs where a
finite set of forbidden (induced) subgraphs does not suffice.

▶ Problem 34. Are there hereditary or monotone classes of graphs C such that SpC(n) is
not MC-finite?

An analogue question arises when we replace graphs by finite relational τ -structures. In
this case one speaks of classes of τ -structures closed under substructures. Every class of
finite τ -structures C closed under substructures can be characterized by a set of forbidden
substructures. If this set is finite, C is again FOL-definable, and the Specker-Blatter Theorem
applies.

▶ Problem 35.
(i) Let τ be a relational vocabulary. Are there substructure closed classes C of τ -structures

such that SpC(n) is not MC-finite?
(ii) Same question when all the relations are at most binary?

References
1 C. Blatter and E. Specker. Le nombre de structures finies d’une théorie à charactère fini.

Sciences Mathématiques, Fonds Nationale de la recherche Scientifique, Bruxelles, pages 41–44,
1981.

2 C. Blatter and E. Specker. Modular periodicity of combinatorial sequences. Abstracts of the
AMS, 4:313, 1983.

3 C. Blatter and E. Specker. Recurrence relations for the number of labeled structures on a
finite set. In E. Börger, G. Hasenjaeger, and D. Rödding, editors, In Logic and Machines:
Decision Problems and Complexity, volume 171 of Lecture Notes in Computer Science, pages
43–61. Springer, 1984.

4 Andrei Z Broder. The r-stirling numbers. Discrete Mathematics, 49(3):241–259, 1984.
5 B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-order Logic, a Language

Theoretic Approach. Cambridge University Press, 2012.
6 Anuj Dawar, Martin Grohe, Stephan Kreutzer, and Nicole Schweikardt. Model theory makes

formulas large. In International Colloquium on Automata, Languages, and Programming, pages
913–924. Springer, 2007.

7 R. Diestel. Graph Theory. Graduate Texts in Mathematics. Springer, 3 edition, 2005.
8 H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer Verlag, 1995.
9 Graham Everest, Alfred J van der Poorten, Igor Shparlinski, Thomas Ward, et al. Recurrence

sequences, volume 104. American Mathematical Society Providence, RI, 2003.

CSL 2024



26:20 Extensions and Limits

10 S. Feferman and R. Vaught. The first order properties of algebraic systems. Fundamenta
Mathematicae, 47:57–103, 1959.

11 Yuval Filmus, Eldar Fischer, Johann A. Makowsky, and Vsevolod Rakita. MC-finiteness of
restricted set partitions, 2023. arXiv:2302.08265.

12 E. Fischer. The Specker-Blatter theorem does not hold for quaternary relations. Journal of
Combinatorial Theory, Series A, 103:121–136, 2003.

13 E. Fischer. The Specker-Blatter theorem does not hold for quaternary relations. Journal of
Combinatorial Theory, Series A, 103:121–136, 2003.

14 E. Fischer, T. Kotek, and J.A. Makowsky. Application of logic to combinatorial sequences and
their recurrence relations. In M. Grohe and J.A. Makowsky, editors, Model Theoretic Methods
in Finite Combinatorics, volume 558 of Contemporary Mathematics, pages 1–42. American
Mathematical Society, 2011.

15 E. Fischer and J. A. Makowsky. The Specker-Blatter theorem revisited. In COCOON, volume
2697 of Lecture Notes in Computer Science, pages 90–101. Springer, 2003.

16 Eldar Fischer, Tomer Kotek, and Johann A Makowsky. Application of logic to combinatorial
sequences and their recurrence relations. Model Theoretic Methods in Finite Combinatorics,
558:1–42, 2011.

17 Eldar Fischer and Johann A. Makowsky. Extensions and limits of the specker-blatter theorem,
2022. arXiv:2206.12135.

18 Ronald L Graham, Donald E Knuth, and Oren Patashnik. Concrete mathematics: a foundation
for computer science. Addison-Wesley, 1989.

19 Manuel Kauers and Paule. The Concrete Tetrahedron: Symbolic Sums, Recurrence Equations,
Generating Functions, Asymptotic Estimates. Springer, 2011.

20 Thomas Koshy. Catalan numbers with applications. Oxford University Press, 2008.
21 L. Libkin. Elements of Finite Model Theory. Springer, 2004.
22 J.A. Makowsky. Algorithmic uses of the Feferman-Vaught theorem. Annals of Pure and

Applied Logic, 126.1-3:159–213, 2004.
23 Götz Pfeiffer. Counting transitive relations. Journal of Integer Sequences, 7(2):3, 2004.
24 James A Reeds and Neil JA Sloane. Shift register synthesis (modulo m). SIAM Journal on

Computing, 14(3):505–513, 1985.
25 E. Specker. Modular counting and substitution of structures. Combinatorics, Probability and

Computing, 14:203–210, 2005.
26 Ernst Specker. Application of logic and combinatorics to enumeration problems. In Ernst

Specker Selecta, pages 324–350. Springer, 1990.

https://arxiv.org/abs/2302.08265
https://arxiv.org/abs/2206.12135

	1 Introduction
	2 Background in logic
	3 The original Specker-Blatter Theorem
	4 Previous limitations and extensions
	5 Main new results
	6 More details about C-finite and MC-finite sequences of integers
	7 Proving the reduction
	7.1 Introduction
	7.2 The base constructions
	7.3 Boolean connectives
	7.4 First order quantifiers
	7.5 Modular counting quantifiers
	7.6 Monadic second order quantifiers

	8 Handling relations of other arities
	8.1 Nullary relations and a many-one version of the reduction
	8.2 Handling higher arity relations and extended logics

	9 An FOL-definable class C where f_{C}(n) is not MC-finite
	9.1 Using one hard-wired constant
	9.2 The first construction
	9.3 Setting up and referring to an order over the vertex pairs
	9.4 Making the ordered pairs correspond to an iterated matching
	9.5 Adapting the example to other primes
	9.6 Reducing the example further to have a single relation

	10 Conclusions and open problems

