
Going Deep and Going Wide: Counting Logic and
Homomorphism Indistinguishability over Graphs of
Bounded Treedepth and Treewidth
Eva Fluck #

RWTH Aachen University, Germany

Tim Seppelt #

RWTH Aachen University, Germany

Gian Luca Spitzer #

RWTH Aachen University, Germany
Abstract

We study the expressive power of first-order logic with counting quantifiers, especially the k-variable
and quantifier-rank-q fragment Ck

q , using homomorphism indistinguishability. Recently, Dawar,
Jakl, and Reggio (2021) proved that two graphs satisfy the same Ck

q -sentences if and only if they
are homomorphism indistinguishable over the class T k

q of graphs admitting a k-pebble forest cover
of depth q. Their proof builds on the categorical framework of game comonads developed by
Abramsky, Dawar, and Wang (2017). We reprove their result using elementary techniques inspired
by Dvořák (2010). Using these techniques we also give a characterisation of guarded counting
logic. Our main focus, however, is to provide a graph theoretic analysis of the graph class T k

q .
This allows us to separate T k

q from the intersection of the graph class T Wk−1, that is graphs of
treewidth less or equal k − 1, and T Dq, that is graphs of treedepth at most q if q is sufficiently
larger than k. We are able to lift this separation to the semantic separation of the respective
homomorphism indistinguishability relations. A part of this separation is to prove that the class
T Dq is homomorphism distinguishing closed, which was already conjectured by Roberson (2022).

2012 ACM Subject Classification Mathematics of computing → Graph theory; Theory of computa-
tion → Finite Model Theory

Keywords and phrases Treewidth, treedepth, homomorphism indistinguishability, counting first-order
logic

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.27

Related Version Full Version: https://arxiv.org/abs/2308.06044 [9]

Funding Tim Seppelt: German Research Foundation (DFG) via RTG 2236/2 (UnRAVeL), European
Union (ERC, SymSim, 101054974)
Gian Luca Spitzer : German Research Foundation (DFG) via RTG 2236/2 (UnRAVeL)

Acknowledgements We would like to thank Martin Grohe and Daniel Neuen for fruitful discussions.

1 Introduction

Since the 1980s, first-order logic with counting quantifiers C plays a decisive role in finite
model theory. In this extension of first-order logic with quantifiers ∃≥tx (“there exists at
least t many x”), properties which can be expressed in first-order logic only with formulae
of length depending on t can be expressed succinctly. Of particular interest are the k-
variable and quantifier-depth-q fragments Ck and Cq of C, which enjoy rich connections
to graph algorithms [8], algebraic graph theory [7, 16], optimisation [16, 27], graph neural
networks [21, 30, 15], and category theory [5, 1].

The intersection of these fragments, the fragment Ckq := Ck ∩ Cq of all C-formulae with
k-variables and quantifier-depth q, has received much less attention [25]. In this work, we
study the expressivity of Ckq using homomorphism indistinguishability.

© Eva Fluck, Tim Seppelt, and Gian Luca Spitzer;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 27; pp. 27:1–27:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fluck@cs.rwth-aachen.de
https://orcid.org/0000-0002-9643-6081
mailto:seppelt@cs.rwth-aachen.de
https://orcid.org/0000-0002-6447-0568
mailto:gian.luca.spitzer@rwth-aachen.de
https://orcid.org/0009-0008-0270-506X
https://doi.org/10.4230/LIPIcs.CSL.2024.27
https://arxiv.org/abs/2308.06044
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Going Deep and Going Wide

Homomorphism indistinguishability is an emerging framework for measuring the expressiv-
ity of equivalence relations comparing graphs. Two graphs G and H are homomorphism
indistinguishable over a graph class F if for all F ∈ F the number of homomorphisms from
F to G is equal to the number of homomorphisms from F to H. Many natural equivalence
relations between graphs including isomorphism [19], quantum isomorphism [20], cospectrality
[7], and feasibility of integer programming relaxations for graph isomorphism [16, 27] can
be characterised as homomorphism indistinguishability relations over certain graph classes.
Establishing such characterisations is intriguing since it allows to use tools from structural
graph theory to study equivalence relations between graphs [26, 28]. Furthermore, the
expressivity of homomorphism counts themselves is of practical interest [23, 14].

Equivalence with respect to Ck and Cq has been characterised by Dvořák [8] and Grohe [13]
as homomorphism indistinguishability over the classes T Wk−1 of graphs of treewidth ≤ k− 1
and T Dq of graphs of treedepth ≤ q, respectively. Recently, Dawar, Jakl, and Reggio [5]
proved that two graphs satisfy the same Ckq -sentences if and only if they are homomorphism
indistinguishable over the class T k

q of graphs admitting a k-pebble forest cover of depth q.
Their proof builds on the categorical framework of game comonads developed in [1].

As a first step, we reprove their result using elementary techniques inspired by Dvořák [8].
The general idea is to translate between sentences in C and graphs from which homomorphism
are counted in an inductive fashion. By carefully imposing structural constraints, we are
able to extend the original correspondence from [8] between Ck and graphs of treewidth at
most k − 1 to Cq and graphs of treedepth at most q, reproducing a result of [13], and finally
to Ckq and T k

q . This simple and uniform proof strategy also yields the following result on
guarded counting logic GCkq . Guarded counting logic plays a crucial role in the theory of
properties of higher arity expressible by graph neural networks [15]. Towards this goal we
introduce a new graph class called GT k

q , which is closely related to T k
q .

▶ Theorem 1. Let k, q ≥ 1. Two graphs G and H are GCkq -equivalent if and only if they are
homomorphism indistinguishable over GT k

q .

The main contribution of this work, however, concerns the relationship between the
graph classes T k

q and the class T Wk−1 ∩ T Dq of graphs which have treewidth at most k − 1
and treedepth at most q. Given the results of [8, 13], one might think that elementary
equivalence with respect to sentences in Ckq = Ck ∩ Cq is characterised by homomorphism
indistinguishability with respect to T Wk−1 ∩ T Dq. The central result of this paper asserts
that this intuition is wrong. As a fist step towards this, we prove that the graph class T k

q

and T Wk−1 ∩ T Dq are distinct if q is sufficiently larger than k. All logarithms in this work
are to the base 2.

▶ Theorem 2. For q ≥ 3, T 2
q ⊊ T W1 ∩ T Dq, and for 2 ≤ k − 1 ≤ q

3+log q , T k
q ⊊

T Wk−1 ∩ T Dq.

Towards Theorem 2, we give an equivalent characterisation of T k
q via a monotone cops-

and-robber game, which is essentially the standard game for treewidth where one additionally
counts the number of rounds the cops need to capture the robber. Here, “monotone” refers to
a restriction of Cops, who is only allowed to move cops that are not adjacent to the current
escape-space of the Robber. Building on [10], we then prove that T k

q is a proper subclass
of T Wk−1 ∩ T Dq, for q sufficiently larger than k. Additionally, we provide an analysis of
various notions designed to restrict both width and depth of a decomposition and show that
all of them are equivalent. Adding to the original definition of T k

q via k-pebble forest covers
of depth q, which can be interpreted as treedepth decompositions augmented by a width

E. Fluck, T. Seppelt, and G. L. Spitzer 27:3

measure, we introduce a way to measure the depth of tree decompositions. Finally, we define
k-construction trees of elimination depth q, another equivalent notion, which relates to the
machinery used by Dvořák [8].

However, the, let us say syntactical, separation of the graph classes T k
q and T Wk−1 ∩

T Dq from Theorem 2 does not suffice to separate their homomorphism indistinguishability
relations semantically. In fact, it could well be that all graphs which are homomorphism
indistinguishable over T k

q are also homomorphism indistinguishable over T Wk−1 ∩ T Dq.
That such phenomena do not arise under certain mild assumptions was recently con-

jectured by Roberson [26]. His conjecture asserts that every graph class which is closed
under taking minors and disjoint unions is homomorphism distinguishing closed. Here, a
graph class F is homomorphism distinguishing closed if it satisfies the following maximality
condition: For every graph F ̸∈ F , there exists two graphs G and H which are homomorphism
indistinguishable over F but have different numbers of homomorphism from F .

Since T k
q , T Wk−1, and T Dq are closed under disjoint unions and minors, the confirmation

of Roberson’s conjecture would readily imply the semantic counterpart of Theorem 2.
Unfortunately, Roberson’s conjecture is wide open and has been confirmed only for the class
of all planar graphs [26], T Wk−1 [22], and for graph classes which are essentially finite [28].
Guided by [22], we add to this short list of examples:

▶ Theorem 3. For q ≥ 1, the class T Dq is homomorphism distinguishing closed.

Combining this with the results of [22], we get that T Wk−1 ∩ T Dq is homomorphism
distinguishing closed as well. We then set out to separate homomorphism indistinguishability
over T k

q and T Wk−1 ∩ T Dq. Despite not being able to prove that T k
q is homomorphism

distinguishing closed, we prove that the homomorphism distinguishing closure of T k
q , i.e.

the smallest homomorphism distinguishing closed superclass of T k
q , is a proper subclass

of T Wk−1 ∩ T Dq, for q sufficiently larger than k. Written out, Theorem 4 asserts that
whenever q is sufficiently large in terms of k, then there exist graphs which are homomorphism
indistinguishable over T k

q but not over T Wk−1 ∩ T Dq.

▶ Theorem 4. For q ≥ 3, cl(T 2
q) ⊊ T W1 ∩ T Dq, and for 2 ≤ k − 1 ≤ q

3+log q , cl(T k
q) ⊊

T Wk−1 ∩ T Dq.

Besides obtaining Theorem 4, we distil the challenge of proving that T k
q is homomorphism

distinguishing closed to the question whether the monotone variant of the cops-and-robber
game is equivalent to the non-monotone variant. In general this equivalence between the
monotone and non-monotone variant of a graph searching game is a non-trivial property.
There are games where the two variants are equivalent, such as the games corresponding
to treewidth [29] and treedepth [11], as well as games where they are not, such as games
corresponding to directed treewidth [18] or hypertreewidth [12].

2 Preliminaries

Notation. By [k] we denote the set {1, . . . , k}. For a finite set X, we write 2X for the
power set of X. For a function f , we denote the domain of f by dom(f). The image of f is
the set img(f) := {f(x) | x ∈ dom(f)}. The restriction of a function f : A → C to some set
B ⊆ A is the function f |B : B → C with f |B(x) = f(x) for x ∈ B. For functions f : A → C,
g : B → C that agree on A∩B, we write f ⊔ g for the union of f and g, that is, the function
mapping x to f(x) if x ∈ A and to g(x) if x ∈ B.

We use bold letters to denote tuples. The tuple elements are denoted by the corresponding
regular letter together with an index. For example, a stands for the tuple (a1, . . . , an).

CSL 2024

27:4 Going Deep and Going Wide

Graphs and Labels. A graph G is a tuple (V (G), E(G)), where V (G) is a finite set of
vertices and E(G) ⊆

(
V (G)

2
)

is the set of edges. We usually write uv or vu to denote the edge
{u, v} ∈ E(G). Unless otherwise specified, all graphs are assumed to be simple: They are
undirected, unweighted and contain neither loops nor parallel edges. We denote the class of
all graphs by G.

A k-labelled graph G is a graph together with a partial function νG : [k] ⇀ V (G) that
assigns labels from the finite set [k] = {1, . . . , k} to vertices of G. A label thus occurs at
most once in a graph, a single vertex can have multiple labels, and not all labels have to be
assigned. By LG = img(νG) we denote the set of labelled vertices of G. A graph where every
vertex has at least one label is called fully labelled. We denote the class of all k-labelled
graphs by Gk.

For ℓ ∈ [k] and v ∈ V (G), we write G(ℓ → v) to denote the graph obtained from G by
setting νG(ℓ→v)(ℓ) = v. We can remove a label ℓ from a graph G, which yields a copy G′ of
G where νG′(ℓ) = ⊥ and νG′(ℓ′) = νG(ℓ′) for all ℓ′ ̸= ℓ. The product1 G1G2 of two labelled
graphs is the graph obtained by taking the disjoint union of G1 and G2, identifying vertices
with the same label, and suppressing any parallel edges that might be created.

We call H a subgraph of G if H can be obtained from G by removing vertices and edges.
H is a minor of G if it can be obtained from G by removing vertices, removing edges, and
contracting edges. We contract an edge uv by removing it and identifying u and v. For
labelled graphs, the new vertex is labelled by the union of labels of u and v.

A graph is connected if there exists a path between any two vertices. A tree is a graph
where any two vertices are connected by exactly one path. The disjoint union of one or
more trees is called a forest. A rooted tree (T, r) is a tree T together with some designated
vertex r ∈ V (T), the root of T . A rooted forest (F, r) is a disjoint union of rooted trees. The
height of a rooted tree is equal to the number of vertices on the longest path from the root
to the leaves. The height of a rooted forest is the maximum height over all its connected
components.

At times, the following alternative definition is more convenient. We can view a rooted
forest (F, r) as a pair (V (F),⪯), where ⪯ is a partial order on V (F) and for every v ∈ V (F)
the elements of the set {u ∈ V (F) | u ⪯ v} are pairwise comparable: The minimal elements
of ⪯ are precisely the roots of F , and for any rooted tree (T, r) that is part of F we let v ⪯ w

if v is on the unique path from r to w.
The height of a rooted forest (F, r) is then given by the length of the longest ⪯-chain. A

rooted tree (T ′, r′) is a subtree of a tree (T, r) if V (T ′) ⊆ V (T) and ⪯T ′ is the restriction of
⪯T to V (T ′). Note that the subgraph of T induced by V (T ′) might not be a tree, since the
vertices of T ′ can be interleaved with vertices that do not belong to T ′. We call a subtree T ′

of T connected if its induced subgraph on T is connected.

Homomorphisms. A homomorphism from a graph F to a graph G is a map h : V (F) → V (G)
satisfying uv ∈ E(F) =⇒ h(u)h(v) ∈ E(G). For k-labelled graphs, we additionally
require that h(νF (ℓ)) = νG(ℓ) for all ℓ ∈ dom(νF). We denote the set of homomorphisms
from F to G by Hom(F,G). The number of homomorphisms from F to G we denote by
hom(F,G) := |Hom(F,G)|. We write Hom(F,G; a1 7→ b1, . . . , an 7→ bn) to denote the set
of homomorphism h : F → G satisfying h(ai) = bi for i ∈ [n]. Two graphs G and H are
homomorphism indistinguishable over a graph class F if hom(F,G) = hom(F,H) for all
F ∈ F .

1 Categorically speaking, this is a coproduct of labelled graphs or a pushout of graphs.

E. Fluck, T. Seppelt, and G. L. Spitzer 27:5

Logic of Graphs. We will mainly consider counting first-order logic C. C extends regular
first-order logic FO by quantifiers ∃≥t, for t ∈ N. Consequently, we can build a C-formula in
the usual way from atomic formulae; variables x1, x2, . . . ; logical operators ∧,∨,→,¬; and
quantifiers ∀,∃,∃≥t. The atomic formulae in the language of graphs are Eαβ and α = β for
arbitrary variables α, β.

An occurrence of a variable x is called free if it is not in the scope of any quantifier.
The free variables free(φ) of a formula φ are precisely those that have a free occurrence
in φ. A formula without free variables is called a sentence. We often write φ(x1, . . . , xn)
to denote that the free variables of φ are among x1, . . . , xn. For a graph G, it usually
depends on the interpretation of the free variables whether G |= φ(x1, . . . , xn). We write
G, v1, . . . , vn |= φ(x1, . . . , xn) or G |= φ(v1, . . . , vn) if G satisfies φ when xi is interpreted
by vi. We might also give an explicit interpretation function I : free(φ) → V (G), writing
G, I |= φ.

We generalise the notion of C-equivalence, writing G, v1, . . . , vn ≡C H,w1, . . . , wn to
denote that for all formulae φ(x1, . . . , xn) ∈ C it holds that G |= φ(v1, . . . , vn) ⇔ H |=
φ(w1, . . . , wn). Note that for labelled graphs, such an interpretation function is implicit: If
the indices of free(φ) are a subset of the labels of G, then we can interpret the variables xi
by the vertex with the label i, that is, I(xi) = ν(i). The semantics of C can then be stated
succinctly in terms of label assignments.

▶ Definition 5 (C semantics of labelled graphs). Let φ ∈ C and let G be a labelled graph, such
that ν(i) ∈ V (G) for all xi ∈ free(φ). Then G |= φ if

φ = (xi = xj) and ν(i) = ν(j),
φ = Exixj and ν(i)ν(j) ∈ E(G),
φ = ¬ψ and G ̸|= ψ,
φ = ψ ∨ ϑ and G |= ψ or G |= ϑ, or
φ = ∃≥txℓψ(xℓ) and there exist distinct v1, . . . , vt, such that G(ℓ → vi) |= ψ for all i ∈ [t].

Note that for labelled graphs this is equivalent to extending the standard semantics of
FO by the following rule: It is G, v1, . . . , vn |= ∃≥tyψ(x1, . . . , xn, y) if there exist distinct
elements u1, . . . , ut ∈ V (G) such that G |= ψ(v1, . . . , vn, ui) for all i ∈ [t].

We sometimes write ∃=txφ(x) for ∃≥txφ(x)∧¬∃≥t+1xφ(x). We also write ⊤ for ∀x(x = x)
and ⊥ for ¬⊤. As we already did above, we will often restrict ourselves to the connectives
¬,∨ and the quantifier ∃≥t. This set of symbols is indeed equally expressive by De Morgan’s
laws and observing that ∃xφ(x) ≡ ∃≥1xφ(x) and ∀xφ(x) ≡ ¬∃x¬φ(x).

The quantifier rank qr(·) of a formula is defined inductively as follows. It is qr(φ) = 0
for atomic formulae φ, qr(¬φ) = qr(φ), qr(φ ∨ ψ) = max{qr(φ), qr(ψ)} and qr(∃≥txφ) =
1 + qr(φ). The quantifier-rank-q fragment Cq of counting first order logic consists of all
formulae of quantifier rank at most q.

Instead of restricting the quantifer rank, we can also restrict the number of distinct
variables that are allowed to occur in a formula. By Ck we denote the k-variable fragment
of C, consisting of all formulae using at most k different variables. Similarly, the k-variable
quantifier-rank-q fragment is defined as Ckq := Ck ∩ Cq. Note that these are purely syntactic
definitions.

Treewidth and Treedepth. Treewidth is a structural graph parameter that measures how
close a graph is to being a tree. It is usually defined in terms of tree decompositions.

CSL 2024

27:6 Going Deep and Going Wide

(1, 3)
(2, 3)

(1, 3)
(2, 3)(2, 2)

(1, 3)
(2, 3)(2, 4)

(1, 3)(1, 2)
(2, 2)

(1, 3)(1, 4)
(2, 4)

(1, 2)
(2, 2)(2, 1)

(1, 4)
(2, 4)(2, 5)

(1, 2)(1, 1)
(2, 1)

(1, 4)(1, 5)
(2, 5)

(a) Tree decomposition of the grid G2×5 of width 3. (b) A forest cover of the grid G2×7 of height 6.
The edges of the original grid are dashed.

Figure 1 Tree decomposition and forest cover of grids.

▶ Definition 6. A tree decomposition (T, β) of a graph G is a tree T together with a function
β : V (T) → 2V (G) satisfying⋃

t∈V (T) β(t) = V (G),
for all uv ∈ E(G) there is a t ∈ V (T) with u, v ∈ β(t),
for all v ∈ V (G) the set β−1(v) = {t ∈ V (T) | v ∈ β(t)} is connected in T .

The sets β(t) are called bags. The width of a tree decomposition is maxt∈V (T) |β(t)| − 1.
The treewidth tw(G) of a graph G is the minimum width over all tree decompositions of G.
We denote the class of graphs of treewidth at most k by T Wk. For an example of a tree
decomposition, see Figure 1a.

Treedepth, on the other hand, can be thought of as measuring how close a graph is to
being a star. Alternatively, we may think of it as extending the notion of height beyond
rooted forests. It is defined for a graph G as the minimum height of a forest F over the
vertices of G, such that all edges in G have an ancestor-descendant relationship in F .

▶ Definition 7. A forest cover of a graph G is a rooted forest (F, r) with V (F) = V (G),
such that for every edge uv ∈ E(G) it holds that either u ⪯ v or v ⪯ u.

The treedepth td(G) of G is the minimum height of a forest cover of G. We denote the
class of all graphs of treedepth at most q by T Dq. For an example of a forest cover, see
Figure 1b.

It is possible to construct a tree decomposition from a forest cover (F, r). This is achieved
by considering a path of bags, each containing the vertices on a path from r to the leaves
of F . It is not hard to see that there is an ordering of these bags that satisfies the conditions
of Definition 6. This yields the following relation between treedepth and treewidth.

▶ Fact 8. For every graph G, it holds that tw(G) ≤ td(G) − 1.

Both treewidth and treedepth enjoy characterisations in terms of node searching games,
the so called cops-and-robber games. The general cops-and-robber game is played on a
graph G by Cops, controlling a number of cops; and Robber, controlling a single robber. The
cops and the robber are positioned on vertices of G. The goal of Cops is to place a cop on
the robber’s position, while the robber tries to avoid capture by moving along paths free
from cops. The players play in rounds where first Cops announces the next position(s) of
the cops (with possible restriction on how many cops may be moved and where they may
be positioned) and then Robber moves the robber along some path avoiding all vertices
where before and after his move there is a cop. Treewidth can be characterised by the
minimum number of cops needed to capture the robber where neither the movement of Cops
nor Robber is restricted (see e.g. [29]). A well-known characterisation of treedepth is the
minimum number of cops needed if Cops is not allowed to move a cop after it is positioned
on the graph (see e.g. [11]). It is equivalent to count the number of rounds the game is
played, without restricting the number of cops that can be used by Cops, as long as only one
cop can be moved per round. Therefore we use the following unified definition.

E. Fluck, T. Seppelt, and G. L. Spitzer 27:7

▶ Definition 9 (q-round k-cops-and-robber game). Let G be a graph and let k, q ≥ 1. The
monotone q-round k-cops-and-robber game mon-CRk

q (G) is defined as follows:
We play the game on G′ which is constructed from G by adding a disjoint k-vertex

clique K. The cop positions are sets X ∈
(
V (G′)
k

)
, the robber position is a vertex v ∈ G. The

game is initiated with all cops positioned on K and the robber on any vertex in V (G) of his
choice. If the cops are at positions X and robber at vertex v we write (X, v) for the position
of the game. For X ⊆ V (G′) and v ∈ G, we call the connected component γXv of the graph
G \X, with v ∈ γXv , the robber escape space. If the cop strategy only depends on γXv and
not the precise vertex that the robber occupies, we write (X, γXv) for the position of the game.

In round i ≤ q,
Cops can move from the set Xi to a set Xi+1 if |Xi ∩Xi+1| = k− 1 and γXi

v ⊇ γ
Xi∩Xi+1
v ,

Robber moves along some (possibly empty) path viPvi+1, where no (inner) vertex is in
Xi ∩Xi+1.
Cops wins if vi+1 ∈ Xi+1.

Robber wins if Cops has not won after q rounds.
If we drop the condition γXi

v ⊇ γ
Xi∩Xi+1
v in the movement of the cop, we call this the

non-monotone variant of the game and write CRk
q (G).

We write CRq(G) instead of CRq
q(G) and CRk(G) instead of CRk

|V (G)|(G). Treewidth
and treedepth can be characterised in terms of winning strategies for these games.

▶ Lemma 10 ([29, Theorem 1.4] and [11, Theorem 4]). Let G be a graph. Let k, q ≥ 1.
1. G has treewidth at most k iff Cops has a winning strategy for CRk+1(G) iff Cops has a

winning strategy for mon-CRk+1(G).
2. G has treedepth at most q iff Cops player has a winning strategy for CRq(G) iff Cops has

a winning strategy for mon-CRq(G).

3 Graph Decompositions Accounting for Treewidth and Treedepth
Simultaneously

In this section, we reconcile treewidth and treedepth by introducing graph decompositions
which account simultaneously for depth and width. These efforts yield various equivalent
characterisations of the graph class T k

q , a subclass both of T Wk−1 and T Dq, the classes of
graphs of treewidth ≤ k − 1 and treedepth ≤ q, respectively. By introducing a variant of the
standard cops-and-robber game which captures T k

q and adapting a result from [10], we show
that T k

q is a proper subclass of T Wk−1 ∩ T Dq if q is sufficiently larger than k.

3.1 Four Characterisations for T k
q

We start with the original definition of the class T k
q , which incorporates width into forest

covers from treedepth. This definition has first been introduced as k-traversal in [1].

▶ Definition 11. Let G be graph and k ≥ 1. A k-pebble forest cover of G is a tuple (F, r, p),
where (F, r) is a rooted forest over the vertices V (G) and a pebbling function p : V (G) → [k]
such that:

If uv ∈ E(G), then u ⪯ v or v ⪯ u in (F, r).
If uv ∈ E(G) and u ≺ v in (F, r), then for every w ∈ V (G) with u ≺ w ⪯ v in (F, r) it
holds that p(u) ̸= p(w).

(F, r, p) has depth q ≥ 1 if (F, r) has height q. We write T k
q for the class of all graphs G

admitting a k-pebble forest cover of depth q.

CSL 2024

27:8 Going Deep and Going Wide

1 1

2

1

2

3
1

3

1

2

1

2

3

2

1

3

1

3

2

1

2

3

4

2

3

3

2

2

3

1

3

1

2

2

3

1

3

2

1

2

3

1

4

3

1

2

4

2

1

3

1

3

1

2

2

3

1

2

14

3

14

3

1

2

4

2

3

1

4

Figure 2 A 4-construction tree for the grid G2×7 of elimination depth 6. Edges entering elimination
nodes are dashed.

The class T k
q can also be defined by measuring the depth of a tree decomposition (T, β).

Crucially, it does not suffice to take the height of T into account since this notion is not
robust. For example, it is well known that one can alter a tree decomposition by subdividing
any edge multiple times and copying the bag of the child node. This transformation does
neither change the width of the decomposition, nor does it affect the information how to
decompose the graph. However, the height of the tree will change drastically under this
transformation. It turns out that the following is the right definition:

▶ Definition 12. Let G be a graph. A tuple (T, r, β) is a rooted tree decomposition of G if
(T, β) is a tree decomposition of G and r ∈ V (T). The depth of (T, β) is

dp(T, β) := min
r∈V (T)

dp(T, r, β) where dp(T, r, β) := max
v∈V (T)

∣∣∣∣∣∣
⋃
t⪯v

β(t)

∣∣∣∣∣∣ .
Lastly we define a construction inspired by Dvořák [8], that enables us to use their proof

technique to study the expressive power of first-order logic with counting quantifiers using
homomorphism indistinguishability (see Figure 2).

▶ Definition 13. Let G be a (possibly labelled) graph. A k-construction tree for G is a tuple
(T, λ, r), where T is a tree rooted at r and λ : V (T) → Gk is a function assigning k-labelled
graphs to the nodes of T such that:
1. λ(r) = G,
2. all leaves ℓ ∈ V (T) are assigned fully labelled graphs,
3. all internal nodes t ∈ V (T) with exactly one child t′ are elimination nodes, that is λ(t)

can be obtained from λ(t′) by removing one label, and
4. all internal nodes t ∈ V (T) with more than one child are product nodes, that is λ(t) is

the product of its children.
The elimination depth of a construction tree (T, λ, r) is the maximum number of elimination
nodes on any path from the root r to a leaf. If G has a k-construction tree of elimination
depth ≤ q, we say that G is (k, q)-constructible. We write Lkq for the class of all k-labelled
(k, q)-constructible graphs.

It turns out that all three notions coincide.

▶ Theorem 14. Let k, q ≥ 1. For every graph G, the following are equivalent:
1. G is (k, q)-constructible,
2. G has a tree decomposition of width k − 1 and depth q,
3. G ∈ T k

q , that is G admits a k-pebble forest cover of depth q.

E. Fluck, T. Seppelt, and G. L. Spitzer 27:9

The equivalence of Items 1 and 2 is proven by a carefully choosing a tree decomposition
such tha the bags are identified with the labelled vertices of the construction tree. For the
equivalence of Items 2 and 3, we follow the proof of [3, Theorem 19] and observe that their
construction preserves depth. Details can be found in the full version [9].

▶ Corollary 15. Let k, q ≥ 1. The class T k
q is minor-closed, closed under taking disjoint

unions, and a subclass of T Wk−1 ∩ T Dq.

Given Theorem 14, Corollary 15 is immediate. Dawar, Jakl, and Reggio reduced the
proofs of the results of Grohe and Dvořák [13, 8] to a “combinatorial core” [5, Remark 17],
which amounts to showing that the classes T Wk and T Dq are closed under contracting
edges. To that end, Corollary 15 illustrates the benefits of characterising T k

q in terms of tree
decompositions (Definition 12): Proving that pebble forest covers are preserved under edge
contractions requires a non-trivial amount of bookkeeping while the analogous statement for
tree decomposition is straightforward.

We conclude with a characterisation of T k
q in terms of a cops-and-robber game.

▶ Lemma 16. The Cops win the game mon-CRk
q (G) if and only if G ∈ T k

q .

The proof of this lemma follows the same strategies as the proof for the monotone version
of the cops-and-robber game for treewidth (see for example [24]). Details can be found in
the full version [9].

3.2 Separating T k
q from T Wk ∩ T Dq Syntactically

We aim to show that the graph class T k
q is a proper subclass of T Wk ∩ T Dq. Since

T q
q = T Dq = T Wq−1 ∩ T Dq, one can only hope to separate the classes if q is larger than k.

Using the characterisations of T k
q via a cops-and-robber game, we show that there are indeed

graphs which do not admit a decomposition where the width is bounded by the treewidth and
simultaneously the depth bounded by the treedepth. The graph we consider is the (h× ℓ)-
grid Gh×ℓ with h < ℓ. It is well known that tw(Gh×ℓ) = h and td(Gh×ℓ) ≤ h⌈log(ℓ+ 1)⌉, cf.
Figure 1. We give a lower bound to the number of rounds q that the robber can survive in a,
possibly non-monotone, game CRh+1

q (Gh×ℓ), which is linear in both ℓ and h.

▶ Lemma 17. For 1 < h < ℓ− 2 and q ≤ h(ℓ−h+2)
4 , Robber wins the game CRh+1

q (Gh×ℓ).

The proof of Lemma 17 builds upon [10]. The winning strategy of Robber is to always
stay in the component with the most vertices. We find a lower bound on the size of this
component in terms of the number of rounds played and prove that Cops can only force this
bound to shrink by two vertices each round, for the majority of the rounds. We additionally
show that for h > 3 Cops can indeed force the component to shrink by two vertices each
round and thus in this case the bound given in Lemma 17 is tight up to an additive term
depending only on h.

For h = 1, the proof idea of Lemma 17 is not applicable as on a path there are separators
of size two that separate the path into three components of roughly equal size. Despite that,
one may observe that such a separator does not benefit Cops as from such a position he
would always have to combine two of these components into a larger one. Thus Cops can
only move along the path and shrink the escape space of Robber by one vertex. This case is
covered in the original proof of [10].

▶ Lemma 18 ([10, Theorems 5 and 7]). Let ℓ ≥ 1. Robber wins the game CR2
q(G1×ℓ) if and

only if q ≤ ⌈ ℓ−1
2 ⌉.

CSL 2024

27:10 Going Deep and Going Wide

With an appropriate choice of ℓ and a small alteration to the graph Gk−1×ℓ that ensures
that the treedepth of the graph is exactly q, we can prove the following:

▶ Theorem 2. For q ≥ 3, T 2
q ⊊ T W1 ∩ T Dq, and for 2 ≤ k − 1 ≤ q

3+log q , T k
q ⊊

T Wk−1 ∩ T Dq.

Detailed proofs can be found in the full version [9]. The reader should note that the proof
of the lower bound on the number of rounds even holds for the non-monotone game, which in
turn allows us to lift this result to the semantic level of homomorphism indistinguishability.

4 Homomorphism Indistinguishability

In this section, we turn to investigating T k
q in terms of homomorphism indistinguishability. It

turns out that the representation of T k
q in terms of construction trees offers a great framework

for obtaining characterisations of logical equivalence. The general idea will be to use these
trees to inductively construct C-formulae that capture homomorphism counts. Not only does
this approach generalise results from [8, 13], it also yields an intuitive characterisation of
Ckq -equivalence. This provides a more elementary proof of a result from [5].

Moreover, the constructive nature of our proof strategy proves fruitful in obtaining
additional characterisations of fragments of C. The general idea is to impose natural
restrictions on the construction trees, such that a fragment L ⊊ C already suffices to capture
homomorphism counts. By choosing these restrictions carefully, the resulting subclass of
T k
q is then still large enough to capture L-equivalence. We illustrate this point by giving a

characterisation of guarded counting logic GC.
We conclude by semantically separating T k

q and T Wk−1 ∩ T Dq. More formally, we show
that, for q sufficiently larger than k, there exist graphs G and H which are homomorphism
indistinguishable over T k

q but have different numbers of homomorphisms from some graph in
T Wk−1 ∩ T Dq.

4.1 Homomorphism Indistinguishability over T k
q is Ck

q-Equivalence

In his 2010 paper [8], Dvořák showed that Ck-equivalence is equivalent to homomorphism
indistinguishability over T Wk. It turns out that his techniques generalise remarkably well
to construction trees. To begin with, we make a few observations on how the operations that
make up construction trees interact with homomorphism counts.

First, observe that when a graph F is fully labelled there can be at most one homomorph-
ism h : F → G, which is entirely determined by the label positions in G.

▶ Observation 19. Let F be a fully labelled graph and let LF denote the set of labels. Then
there exists a unique homomorphism h : F → G if for all labels i, j ∈ LF

νF (i) = νF (j) =⇒ νG(i) = νG(j),
νF (i)νF (j) ∈ E(F) =⇒ νG(i)νG(j) ∈ E(G).

Further, for h ∈ Hom(F1F2, G) the restrictions h|V (F1) and h|V (F2) are homomorphisms,
and since two homomorphisms g : F1 → G and h : F2 → G must agree on vertices with the
same label, g ⊔ h is well-defined and a homomorphism from F1F2 to G. This implies the
following for products.

▶ Observation 20. For labelled graphs F1, F2, G, it holds that hom(F1F2, G) = hom(F1, G) ·
hom(F2, G).

E. Fluck, T. Seppelt, and G. L. Spitzer 27:11

Finally, we can also relate the homomorphism counts from graphs F and F ′, whenever F ′

is obtained from F by removing some label ℓ. Then in any homomorphism h : F ′ → G the
image of νF (ℓ) is no longer necessarily νG(ℓ). Hence, we can obtain hom(F,G) by moving
the label ℓ to different vertices in G and tallying up the homomorphisms from F to those
graphs. We may write this succinctly as

hom(F ′, G) =
∑

v∈V (G)

hom(F,G(ℓ → v)),

or slightly more verbose as follows.

▶ Observation 21. Let F ′ be the graph obtained from F by removing a single label ℓ. Then
hom(F ′, G) = m if and only if there exists a decomposition m =

∑
i cimi with ci,mi ∈ N,

such that:
There exist exactly ci vertices v with hom(F,G(ℓ → v)) = mi.
There exist exactly c :=

∑
i ci vertices v with hom(F,G(ℓ → v)) ̸= 0.

The crucial insight is that the conditions above are all definable in C. In particular, the
condition for fully labelled graphs can be expressed as a conjunction of atomic formulae using
at most |LF | different variables. This allows us to prove the following lemma by induction
over a construction tree. The proofs of the lemmas in this section can be found in the full
version [9].

▶ Lemma 22. Let F ∈ Lkq be a k-labelled graph, and let m ≥ 0. Then there exists a formula
φm ∈ Ckq such that for each k-labelled graph G with LF ⊆ LG, G |= φm if and only if
hom(F,G) = m.

Ideally, we would like to prove the converse in a similar manner. Given some Ckq -formula ψ
that distinguishes two graphs G and H, construct a graph F ∈ Lkq with hom(F,G) ̸=
hom(F,H) by induction over the structure of ψ. While graphs are too rigid in this regard,
such a construction will be possible using linear combinations of graphs.2

For a class of (labelled) graphs F , we let RF be the class of finite formal linear combinations
with real coefficients of graphs F ∈ F . We linearly extend the function hom to RG by defining

hom(F, G) = hom(
∑
i

ciFi, G) :=
∑
i

ci · hom(Fi, G),

for F =
∑
i ciFi.

The following observation shows that homomorphism indistinguishability over F and
over RF is essentially the same. This allows us to reason about linear combinations instead
of graphs.

▶ Observation 23. Let G,H be graphs and let F ∈ RF . If hom(F, G) ̸= hom(F, H), then
there is already an F ∈ F with hom(F,G) ̸= hom(F,H).

The product of two linear combinations is defined in the natural way, where the graph
products distribute over the sum. We also remove any graphs with loops that might have
been created from the resulting linear combination. This definition preserves the property
that hom(F1F2, H) = hom(F1, H) hom(F2, H) and admits the following interpolation lemma.

2 These linear combinations are called “quantum graphs” in [8].

CSL 2024

27:12 Going Deep and Going Wide

▶ Lemma 24 ([8, Lemma 5]). Let F be a class of graphs and let F ∈ RF . If S−, S+ are
disjoint finite sets of real numbers, then there exists a linear combination F[S−;S+] ∈ RG,
such that for any graph G

hom(F[S−;S+], G) = 1 if hom(F, G) ∈ S+, and
hom(F[S−;S+], G) = 0 if hom(F, G) ∈ S−.

Moreover, if F is closed under taking products then F[S−;S+] ∈ RF .

With this result, we may construct for a formula ψ ∈ Ckq and n ∈ N a linear combina-
tion Fψ,n such that for all graphs G of size n it holds that hom(Fψ,n, G) = 1 if G |= ψ and
hom(Fψ,n, G) = 0 otherwise. We say that Fψ,n models ψ for graphs of size n.

▶ Lemma 25. Let k, q ≥ 1 and let φ be a Ckq -formula. Then for every n ≥ 1 there exists an
F ∈ RLkq modelling φ for graphs of size n.

The proof is by structural induction on φ and exploits how homomorphism counts change
under label deletions and taking products. Interpolation is used to define negation and to
renormalise homomorphism counts to 0 or 1. The construction has the property that labels
in the components of F correspond to free variables of φ. This correspondence yields the
following corollary.

▶ Corollary 26. Let k, q ≥ 1 and let φ be a Ckq -sentence. Then for every n ≥ 1 there exists
an F ∈ RT k

q modelling φ for graphs of size n.

We can now prove the main result of this section.

▶ Theorem 27. Let k, q ≥ 1. Two graphs G and H are Ckq -equivalent if and only if they are
homomorphism indistinguishable over T k

q .

Proof. Suppose there exists a graph F ∈ T k
q ⊆ Lkq with hom(F,G) ̸= hom(F,H). Then by

Lemma 22 there exist Ckq -sentences φFm for m ≥ 0 such that G |= φFm iff hom(F,G) = m.
Consequently, there exists an m with G |= φFm and H ̸|= φFm, so G and H cannot satisfy the
same Ckq -sentences.

Suppose now that there exists a sentence φ ∈ Ckq with G |= φ and H ̸|= φ. Without loss
of generality, we may assume |G| = |H| =: n. Then, by Corollary 26, there is an F ∈ RT k

q

that models φ for graphs of size n, that is, hom(F, G) ̸= hom(F, H). By Observation 23, this
already implies the existence of an F ∈ T k

q with hom(F,G) ̸= hom(F,H). ◀

By dropping the restriction on one of the two parameters in Theorem 27, we recover the
original results of Dvořák [8] and Grohe [13]:

▶ Corollary 28. Let k, q ≥ 1. Let G and H be graphs.
1. G and H are Ck-equivalent iff they are homomorphism indistinguishable over T Wk−1.
2. G and H are Cq-equivalent iff they are homomorphism indistinguishable over T Dq.

4.2 Guarded Fragments
Given the constructive nature of the arguments in Section 4.1, it is interesting to investigate
whether the same strategy can be used to obtain results for different fragments of C by
restricting construction trees in some way. An example where this works well is guarded
counting logic GC.

In the guarded fragment GC, quantifiers are restricted to range over the neighbours
of a vertex. Formally, we require that quantifiers only occur in the form ∃≥ty(Exy ∧
ψ(z1, . . . , zn, y)), where x and y are distinct variables.

E. Fluck, T. Seppelt, and G. L. Spitzer 27:13

1 1 2

1 2

1 2

1 2

3

1 2

3

1

3

1 2 3

1 2 3

1

3

1

2 3

1

2 3

2 3

1 2 3

1 2 3

2 3

1

2 3

1

2 3

1 2

3

1 2

3

1 2 3

1 2 3

1 3

1 3

1 2 3

1 2 3

. . .

. . .

Figure 3 A guarded 3-construction tree of elimination depth 7 for the grid G2×7 with one labelled
vertex. Edges entering elimination nodes are dashed. At every labelled graph, those labels that may
be removed are marked blue, those that may not be removed are marked red. The dotted omitted
part of the construction tree follows the same pattern.

Since GC-formulae necessarily have a free variable, it is not immediately obvious how to
define GC-equivalence on graphs. One option is to consider GC-equivalence of graphs together
with a distinguished vertex. This works, and we will, in fact, obtain a characterisation for
precisely this relation. However, we would prefer to study the landscape of homomorphism
indistinguishability relations on graphs without additional structure. The following natural
definition of GC-equivalence allows us to lift our result to graphs without a dinstinguished
vertex.

▶ Definition 29 (GC-equivalence). Let G and H be unlabelled graphs. We say that G and H
are GC-equivalent, in symbols G ≡GC H, if there exists a bijection f : V (G) → V (H) such
that G, v |= φ(x) ⇐⇒ H, f(v) |= φ(x) for all v ∈ V (G) and φ ∈ GC.

To apply our proof strategy to GC, we need to restrict the construction trees such that
guarded quantifiers suffice to express homomorphism counts. Observe that the quantifiers
are only needed to describe how the number of homomorphisms F → G changes by removing
a label from F . More precisely, we make use of the fact that removing a label ℓ from F is
the same as moving it around in G and tallying up the resulting homomorphisms. Now if ℓ
is adjacent to some other label ℓ′, then the only positions of ℓ in G that contribute to the
final homomorphism count are adjacent to ℓ′. Consequently, it will suffice to quantify over
the neighbours of ℓ′.

▶ Definition 30. Let k, q ≥ 1. By GLkq we denote the class of k-labelled graphs that admit a
k-construction tree of elimination-depth q with the additional restriction that labels can only
be removed if they have a labelled neighbour.

We observe that in Figure 2 there are nodes where labels without labelled neighbors are
removed. In Figure 3, we depict a construction tree without such nodes of the same graph.
We remark that all graphs in GLkq are labelled, as a single label can never be removed. Under
these restrictions, the argument from Lemma 22 goes through using only guarded quantifiers.

▶ Lemma 31. Let F ∈ GLkq . Then for each m ≥ 0 there is a formula φm ∈ GCkq such that
for appropriately labelled graphs G it holds that hom(F,G) = m iff G |= φm.

The proof of the converse – showing that there exists for each ψ ∈ GCkq an F ∈ RGLkq
modelling ψ – also goes through nearly unchanged.

▶ Lemma 32. Let φ ∈ GCkq . Then there is an F ∈ RGLkq modelling φ for graphs of size n.

CSL 2024

27:14 Going Deep and Going Wide

The analogues of these two lemmas already sufficed to prove Theorem 27. Here, however,
we still need to be mindful of any remaining labels. Concretely, Lemma 31 and Lemma 32
imply the following for GC sentences.

▶ Corollary 33. Let G, v and H,w be graphs together with a single labelled vertex. Then the
following are equivalent.
1. For all ψ(x) ∈ GCkq , it holds G, v |= ψ(x) ⇐⇒ H,w |= ψ(x).
2. hom(F,G) = hom(F,H) for all F ∈ GLkq .

While this is already a nice result, ideally we would like to make a statement about
general, unlabelled, graphs. Fortunately, simply removing all labels from F ∈ GLkq turns out
to induce the equivalence relation described in Definition 29.

Let us denote by GT k
q the class of graphs in GLkq with all labels removed. Then we

can state the following theorem, characterising GCkq -equivalence in terms of homomorphism
indistinguishability. The details can be found in the full version [9].

▶ Theorem 1. Let k, q ≥ 1. Two graphs G and H are GCkq -equivalent if and only if they are
homomorphism indistinguishable over GT k

q .

We remark that in [2] the logic GC was studied with comonadic means. In this work,
winning strategies for Duplicator in guarded bisimulation games were characterised as coKleisli
morphisms with respect to a suitably defined comonad. This is in contrast to the comonadic
Lovász-type theorem of [5] which applies to logical equivalences which can be characterised
as coKleisli isomorphisms. Thus, Theorem 1 does not seem to be immediate from [2, 5].

4.3 Separating T k
q from T Wk−1 ∩ T Dq Semantically

By Theorem 2, the graph class T k
q is a proper subclass of T Wk−1 ∩ T Dq. Despite that,

it could well be that the homomorphism indistinguishability relations of the two graph
classes (and via Theorem 27 also Ckq -equivalence) coincide, i.e. G ≡T k

q
H if and only if

G ≡T Wk−1∩T Dq
H for all graphs G and H. It turns out that this is not the case.

In general, establishing that the homomorphism indistinguishability relations ≡F1 and
≡F2 of two graph classes F1 ≠ F2 are distinct is a notoriously hard task. Pivotal tools
for accomplishing this were introduced by Roberson in [26]. He defines the homomorphism
distinguishing closure cl(F) of a graph class F as the graph class

cl(F) := {F graph | ∀G,H. G ≡F H =⇒ hom(F,G) = hom(F,H)}.

A graph class F is homomorphism distinguishing closed if F = cl(F). This is the case
if and only if for every F ̸∈ F there exist two graphs G and H homomorphism indistin-
guishable over F and satisfying that hom(F,G) ̸= hom(F,H). Therefore, homomorphism
distinguishing closed graph classes may be thought of as maximal in terms of homomorphism
indistinguishability.

Roberson conjectures that every graph class which is closed under taking minors and
disjoint unions is homomorphism distinguishing closed. A confirmation of this conjecture
would aid separating homomorphism indistinguishability relations and in turn all equivalence
relations between graphs which have such characterisations, cf. [27]. In particular, it would
readily imply that ≡T k

q
and ≡T Wk−1∩T Dq

are distinct, cf. Corollary 15. Unfortunately,
the conjecture’s assertion is only known to be true for the class of planar graphs [26],
T Wk [22] and graph classes arising from finite graph classes [28]. Towards separating ≡T k

q

and ≡T Wk−1∩T Dq
, we first add to this list by proving the following:

E. Fluck, T. Seppelt, and G. L. Spitzer 27:15

▶ Theorem 3. For q ≥ 1, the class T Dq is homomorphism distinguishing closed.
The proof of Theorem 3 follows the proof in [22] of the assertion that the class T Wk

is homomorphism distinguishing closed for all k ≥ 0. Central to it is a construction of
highly similar graphs from [26] which is reminiscent of the CFI-construction [4]. With
these ingredients, it suffices to prove that Duplicator wins the model comparison game
characterising Cq-equivalence on these CFI-like graphs constructed over a graph of high
treedepth. To that end, we build a Duplicator strategy from a Robber strategy for the game
from Definition 9. The connection between model comparison and node searching games via
CFI-constructions is well-known [17, 6].

Crucial for the aforementioned argument is that Robber wins the non-monotone node
searching game characterising bounded treedepth. Indeed, it cannot be assumed that Cops
plays monotonously since he must shadow Spoiler’s moves. Since we are unable to establish
a non-monotone node searching game characterising T k

q , we cannot conclude along the same
lines that T k

q is homomorphism distinguishing closed. Nevertheless, we separate ≡T k
q

and
≡T Wk−1∩T Dq . The details are deferred to the full version [9].
▶ Theorem 4. For q ≥ 3, cl(T 2

q) ⊊ T W1 ∩ T Dq, and for 2 ≤ k − 1 ≤ q
3+log q , cl(T k

q) ⊊
T Wk−1 ∩ T Dq.

Proving that T k
q is characterised by Robber winning the (non-monotone) game CRk

q , c.f.
Lemma 16, would immediately imply that T k

q is homomorphism distinguishing closed.
In the introduction, we mentioned that it is tempting to assume that Ckq -equivalence

coincides with homomorphism indistinguishability over T Wk−1 ∩ T Dq because Ckq = Ck ∩ Cq.
However, our results imply that there are properties definable in both Ck and Cq that are
not definable in Ckq .
▶ Corollary 34. For 2 ≤ k − 1 ≤ q

3+log q , there exist sentences φ ∈ Ck and ψ ∈ Cq such that
φ ≡ ψ, but for all sentences ϑ ∈ Ckq it holds that ϑ ̸≡ φ.
Proof. By Theorem 4, for suitable k, q, there exist graphs G and H such that G ≡T k

q
H

and there exists F ∈ T Wk−1 ∩ T Dq such that m := hom(F,G) ̸= hom(F,H). By Lemma 22
and Theorem 14, there exist sentences φ ∈ Ck and ψ ∈ Cq such that hom(F,K) = m ⇐⇒
K |= φ ⇐⇒ K |= ψ for every graph K. However, this property cannot be defined in Ckq
since G and H satisfy the same Ckq -sentences by Theorem 27. ◀

5 Outlook

We studied the expressive power of the counting logic fragment Ckq with tools from homo-
morphism indistinguishability. After giving an elementary and uniform proof of theorems
from [8, 13, 5], we showed that the graph class T k

q , whose homomorphism indistinguishability
relation characterises Ckq -equivalence, is a proper subclass of T Wk−1 ∩ T Dq. Finally, we
showed that homomorphism indistinguishability over T k

q is not the same as homomorphism
indistinguishability over T Wk−1 ∩ T Dq.

The main problem remaining open is to tighten Theorem 4 by proving that the graph
class T k

q is homomorphism distinguishing closed, as predicted by Roberson’s conjecture. Our
contribution in this direction is a reduction to a purely graph theoretic problem: Proving
that the class T k

q is characterised by a non-monotone cops-and-robber game, cf. Lemma 16,
would be sufficient to yield this claim. Exploring whether intertwining node searching and
model comparison games can help to verify Roberson’s conjecture in other cases seems a
tempting direction for future research.

With slight reformulations, our results might yield insights into the ability of the Weisfeiler–
Leman algorithm to determine subgraph counts after a fixed number of rounds [25, 22].

CSL 2024

27:16 Going Deep and Going Wide

References
1 Samson Abramsky, Anuj Dawar, and Pengming Wang. The pebbling comonad in Finite

Model Theory. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2017, Reykjavík, Iceland, June 20-23, 2017, pages 1–12. IEEE Computer Society, 2017.
doi:10.1109/LICS.2017.8005129.

2 Samson Abramsky and Dan Marsden. Comonadic Semantics for Guarded Fragments. In
Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
’21. IEEE Press, 2021. doi:10.1109/LICS52264.2021.9470594.

3 Samson Abramsky and Nihil Shah. Relating structure and power: Comonadic semantics for
computational resources. Journal of Logic and Computation, 31(6):1390–1428, September
2021. doi:10.1093/logcom/exab048.

4 Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number
of variables for graph identification. Combinatorica, 12(4):389–410, December 1992. doi:
10.1007/BF01305232.

5 Anuj Dawar, Tomáš Jakl, and Luca Reggio. Lovász-Type Theorems and Game Comonads. In
2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–13,
June 2021. doi:10.1109/LICS52264.2021.9470609.

6 Anuj Dawar and David Richerby. The power of counting logics on restricted classes of finite
structures. In Jacques Duparc and Thomas A. Henzinger, editors, Computer Science Logic,
pages 84–98. Springer Berlin Heidelberg, 2007. doi:10.1007/978-3-540-74915-8_10.

7 Holger Dell, Martin Grohe, and Gaurav Rattan. Lovász Meets Weisfeiler and Leman. 45th
International Colloquium on Automata, Languages, and Programming (ICALP 2018), pages
40:1–40:14, 2018. doi:10.4230/LIPICS.ICALP.2018.40.

8 Zdeněk Dvořák. On recognizing graphs by numbers of homomorphisms. Journal of Graph
Theory, 64(4):330–342, August 2010. doi:10.1002/jgt.20461.

9 Eva Fluck, Tim Seppelt, and Gian Luca Spitzer. Going Deep and Going Wide: Counting Logic
and Homomorphism Indistinguishability over Graphs of Bounded Treedepth and Treewidth,
2023. doi:10.48550/arXiv.2308.06044.

10 Martin Fürer. Weisfeiler-Lehman Refinement Requires at Least a Linear Number of Iterations.
In Fernando Orejas, Paul G. Spirakis, and Jan van Leeuwen, editors, Automata, Languages
and Programming, 28th International Colloquium, ICALP 2001, Crete, Greece, July 8-12,
2001, Proceedings, volume 2076 of Lecture Notes in Computer Science, pages 322–333. Springer,
2001. doi:10.1007/3-540-48224-5_27.

11 Archontia C. Giannopoulou, Paul Hunter, and Dimitrios M. Thilikos. LIFO-search: A min–max
theorem and a searching game for cycle-rank and tree-depth. Discrete Applied Mathematics,
160(15):2089–2097, October 2012. doi:10.1016/j.dam.2012.03.015.

12 Georg Gottlob, Nicola Leone, and Francesco Scarcello. Robbers, marshals, and guards: game
theoretic and logical characterizations of hypertree width. Journal of Computer and System
Sciences, 66(4):775–808, 2003. Special Issue on PODS 2001. doi:10.1016/S0022-0000(03)
00030-8.

13 Martin Grohe. Counting Bounded Tree Depth Homomorphisms. In Proceedings of the 35th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’20, pages 507–520,
New York, NY, USA, 2020. Association for Computing Machinery. event-place: Saarbrücken,
Germany. doi:10.1145/3373718.3394739.

14 Martin Grohe. word2vec, node2vec, graph2vec, X2vec: Towards a Theory of Vector Embeddings
of Structured Data. In Dan Suciu, Yufei Tao, and Zhewei Wei, editors, Proceedings of the
39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS
2020, Portland, OR, USA, June 14-19, 2020, pages 1–16. ACM, 2020. doi:10.1145/3375395.
3387641.

15 Martin Grohe. The Logic of Graph Neural Networks. In 36th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1–17.
IEEE, 2021. doi:10.1109/LICS52264.2021.9470677.

https://doi.org/10.1109/LICS.2017.8005129
https://doi.org/10.1109/LICS52264.2021.9470594
https://doi.org/10.1093/logcom/exab048
https://doi.org/10.1007/BF01305232
https://doi.org/10.1007/BF01305232
https://doi.org/10.1109/LICS52264.2021.9470609
https://doi.org/10.1007/978-3-540-74915-8_10
https://doi.org/10.4230/LIPICS.ICALP.2018.40
https://doi.org/10.1002/jgt.20461
https://doi.org/10.48550/arXiv.2308.06044
https://doi.org/10.1007/3-540-48224-5_27
https://doi.org/10.1016/j.dam.2012.03.015
https://doi.org/10.1016/S0022-0000(03)00030-8
https://doi.org/10.1016/S0022-0000(03)00030-8
https://doi.org/10.1145/3373718.3394739
https://doi.org/10.1145/3375395.3387641
https://doi.org/10.1145/3375395.3387641
https://doi.org/10.1109/LICS52264.2021.9470677

E. Fluck, T. Seppelt, and G. L. Spitzer 27:17

16 Martin Grohe, Gaurav Rattan, and Tim Seppelt. Homomorphism Tensors and Linear Equations.
In Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff, editors, 49th International
Colloquium on Automata, Languages, and Programming (ICALP 2022), volume 229 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 70:1–70:20, Dagstuhl, Germany, 2022.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ICALP.2022.70.

17 Lauri Hella. Logical Hierarchies in PTIME. Information and Computation, 129(1):1–19,
August 1996. doi:10.1006/inco.1996.0070.

18 Stephan Kreutzer and Sebastian Ordyniak. Digraph decompositions and monotonicity in
digraph searching. Theor. Comput. Sci., 412(35):4688–4703, 2011. doi:10.1016/j.tcs.2011.
05.003.

19 László Lovász. Operations with structures. Acta Mathematica Academiae Scientiarum
Hungarica, 18(3):321–328, September 1967. doi:10.1007/BF02280291.

20 Laura Mančinska and David E. Roberson. Quantum isomorphism is equivalent to equality
of homomorphism counts from planar graphs. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), pages 661–672, 2020. doi:10.1109/FOCS46700.
2020.00067.

21 Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and Leman Go Neural: Higher-Order Graph
Neural Networks. AAAI, 33:4602–4609, July 2019. doi:10.1609/aaai.v33i01.33014602.

22 Daniel Neuen. Homomorphism-Distinguishing Closedness for Graphs of Bounded Tree-Width,
April 2023. doi:10.48550/arXiv.2304.07011.

23 Hoang Nguyen and Takanori Maehara. Graph homomorphism convolution. In Hal Daumé
III and Aarti Singh, editors, Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pages 7306–7316. PMLR,
13–18 July 2020. URL: https://proceedings.mlr.press/v119/nguyen20c.html.

24 Roman Rabinovich. Graph complexity measures and monotonicity. PhD thesis, RWTH Aachen
University, 2013. URL: https://publications.rwth-aachen.de/record/230227.

25 Gaurav Rattan and Tim Seppelt. Weisfeiler–Leman and Graph Spectra. In Proceedings of
the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2268–2285.
Society for Industrial and Applied Mathematics, 2023. doi:10.1137/1.9781611977554.ch87.

26 David E. Roberson. Oddomorphisms and homomorphism indistinguishability over graphs of
bounded degree, June 2022. doi:10.48550/arXiv.2206.10321.

27 David E. Roberson and Tim Seppelt. Lasserre Hierarchy for Graph Isomorphism and Ho-
momorphism Indistinguishability. In Kousha Etessami, Uriel Feige, and Gabriele Puppis,
editors, 50th International Colloquium on Automata, Languages, and Programming (IC-
ALP 2023), volume 261 of Leibniz International Proceedings in Informatics (LIPIcs), pages
101:1–101:18, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.ICALP.2023.101.

28 Tim Seppelt. Logical Equivalences, Homomorphism Indistinguishability, and Forbidden Minors.
In Jérôme Leroux, Sylvain Lombardy, and David Peleg, editors, 48th International Symposium
on Mathematical Foundations of Computer Science (MFCS 2023), volume 272 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 82:1–82:15, Dagstuhl, Germany, 2023.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.MFCS.2023.82.

29 Paul D. Seymour and Robin Thomas. Graph Searching and a Min-Max Theorem for Tree-
Width. J. Comb. Theory, Ser. B, 58(1):22–33, 1993. doi:10.1006/jctb.1993.1027.

30 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph
Neural Networks? In International Conference on Learning Representations, 2019. URL:
https://openreview.net/forum?id=ryGs6iA5Km.

CSL 2024

https://doi.org/10.4230/LIPIcs.ICALP.2022.70
https://doi.org/10.1006/inco.1996.0070
https://doi.org/10.1016/j.tcs.2011.05.003
https://doi.org/10.1016/j.tcs.2011.05.003
https://doi.org/10.1007/BF02280291
https://doi.org/10.1109/FOCS46700.2020.00067
https://doi.org/10.1109/FOCS46700.2020.00067
https://doi.org/10.1609/aaai.v33i01.33014602
https://doi.org/10.48550/arXiv.2304.07011
https://proceedings.mlr.press/v119/nguyen20c.html
https://publications.rwth-aachen.de/record/230227
https://doi.org/10.1137/1.9781611977554.ch87
https://doi.org/10.48550/arXiv.2206.10321
https://doi.org/10.4230/LIPIcs.ICALP.2023.101
https://doi.org/10.4230/LIPIcs.MFCS.2023.82
https://doi.org/10.1006/jctb.1993.1027
https://openreview.net/forum?id=ryGs6iA5Km

	1 Introduction
	2 Preliminaries
	3 Graph Decompositions Accounting for Treewidth and Treedepth Simultaneously
	3.1 Four Characterisations for {T_{q}^{k}}
	3.2 Separating T_{q}^{k} from TW_k cap TD_q Syntactically

	4 Homomorphism Indistinguishability
	4.1 Homomorphism Indistinguishability over T_{q}^{k} is C^k_q-Equivalence
	4.2 Guarded Fragments
	4.3 Separating T_{q}^{k} from TW_{k-1} cap TD_q Semantically

	5 Outlook

