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Abstract
Realizabilty is a branch of logic that aims at extracting the computational content of mathematical
proofs by establishing a correspondence between proofs and programs. Invented by S.C. Kleene in
the 1945 to develop a connection between intuitionism and Turing computable functions, realizability
has evolved to include not only classical logic but even set theory, thanks to the work of J-L. Krivine.
Krivine’s work made possible to build realizability models for Zermelo-Frænkel set theory, ZF,
assuming its consistency. Nevertheless, a large part of set theoretic research involves investigating
further axioms that are known as large cardinals axioms; in this paper we focus on four large cardinals
axioms: the axioms of (strongly) inaccessible cardinal, Mahlo cardinals, measurable cardinals and
Reinhardt cardinals. We show how to build realizability models for each of these four axioms
assuming their consistency relative to ZFC or ZF.

2012 ACM Subject Classification Theory of computation → Logic; Theory of computation → Proof
theory; Theory of computation → Type theory

Keywords and phrases Logic, Classical Realizability, Set Theory, Large Cardinals

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.28

Funding Richard Matthews: DIM RFSI 21R03101S.

Acknowledgements We would like to thank Jean-Louis Krivine for many fruitful discussions that
set the main ideas for this work.

1 Introduction

Realizability is an extension of the proofs-as-programs correspondence also known as the
Curry-Howard isomorphism. In realizability, a theory (or a logical system) is interpreted in a
model of computation by establishing a correspondence between formulae and programs in a
way that is compatible with the rules of deduction. For instance, a realizer of an implication
A → B is a program which, whenever applied to a realizer of A, returns a realizer of B.
The origins of realizability date back to S.C. Kleene’s work in constructive mathematics in
1945 [11]: Kleene’s realizability formalized the intuitionistic view that proofs are algorithms
(computable functions) by interpreting proofs in Heyting arithmetic as recursive functions.
In the 90’s, the work of T. Griffin [6] led to pass the barrier of intuitionistic logic and to
extend the Curry-Howard correspondence to classical logic by using the λc-calculus, an
extension of λ-calculus that formalizes computation in the programming language Scheme
(for a presentation of the λ-calculus we refer to Barendregt’s book [1], for a presentation
of the λc-calculus we refer to [3]). J.-L. Krivine developed a method for realizing not only
classical logic, but even Zermelo-Frænkel set theory, ZF (see [12] and [13]) using realizability
algebras which are generalizations of the notion of Boolean algebra involving programs and
stacks (realizability algebras will be presented in Section 2). Krivine’s technique combines
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28:2 Realizability Models for Large Cardinals

intuitionistic set theory, IZF, with a double negation translation of formulas. In this matter
the work of H. Friedman [4] on IZF was crucial as it showed that IZF is equiconsistent with
ZF and gave a natural way to interpret the classical theory within the intuitionistic one.

The method can also be seen as a generalization of the method of forcing in set theory.
This is because every Boolean-valued model can be naturally interpreted as a realizability
algebra; moreover, this interpretation is done in such a way that the two resulting models
prove the same statements in some precise sense (we refer to section 19 of [19] for the details
of this translation). Nevertheless, from a computational point of view, forcing models are not
very informative since all realizers are interpreted as the same element (the bottom element
of the boolean algebra).

For a long time it remained an open problem whether or not it was possible to realize the
Axiom of Choice, AC; recent work of Krivine [16] shows that it is indeed possible to build a
realizability model for AC (although, it remains unclear what would be an explicit realizer
for AC in this model). Research in contemporary set theory is not limited to the axioms
of ZF or ZFC (i.e. ZF plus AC), with an active area of research being the study of large
cardinals axioms. These are strong axioms of infinity that assert the existence of uncountable
cardinals with various closure properties. Large cardinals axioms can be ordered by their
consistency strength and they all entail the existence of a set which satisfies all of the axioms
of ZF. It follows by K. Gödel’s second incompleteness theorem that the existence of large
cardinals cannot be proven within ZF. Nevertheless, these axioms have many applications to
various areas of mathematics and computer science (for a more detailed presentation of large
cardinals we refer to A. Kanamori’s book [10])

We address the problem of whether or not large cardinals axioms can be realized, and we
focus on four major large cardinals notions: (strongly) inaccessible cardinals, Mahlo cardinals,
measurable cardinals and Reinhardt cardinals. Inaccessible cardinals are uncountable cardinals
that imply the existence of uncountable Grothendieck universes (see [24]). Mahlo cardinals
imply strong reflection properties which have been used in type theories, such as Agda, to
produce type universes which contain inductive-recursive types. The strongest known version
of type theory for which there exists a constructive justification is a system of Martin-Löf
type theory with a Mahlo universe, MLM, which was introduced by A. Setzer (see [22]).
M. Rathjen showed that constructive set theory plus the axiom that asserts the existence
of Mahlo cardinals has a canonical interpretation in Setzer’s type theory (see [21]). A
measurable cardinal is a cardinal κ for which there exists a non-trivial κ-additive, 0-1-valued
measure on the power set of κ. As proved by A. Blass in [2], the existence of measurable
cardinals is equivalent to the existence of an exact functor F : Set → Set that is not naturally
isomorphic to the identity. Reinhardt cardinals generalize the notion of measurable cardinal
and imply the existence of a non-trivial elementary embedding of the universe of sets into
itself. The existence of Reinhardt cardinals is inconsistent with ZFC by Kunen’s inconsistency
theorem [17], so they are defined only in the context of ZF.

In this paper we show that these four large cardinals axioms can be realized within
Krivine’s framework. We consider for each of these large cardinal axioms φ an equivalent
large cardinal axiom φ∗ in the context of ZF, then we build realizability models for the
theory “ZF plus φ∗” assuming its consistency. The work of H. Friedman and A. Ščedrov [5]
provided a suitable formulation of large cardinals in intuitionistic set theory which made it
possible to integrate these large cardinals notions into Krivine’s machinery. We shall point
out that not only do we build realizaiblity models for these large cardinals notions assuming
their consistency with ZFC or ZF, but we prove that any realizability algebra of size less
than the large cardinals considered preserves these large cardinals axioms.
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The paper is structured as follows. We first introduce the technique for building realizab-
ility models for ZF in Sections 2–4. In Section 5 we illustrate the method of reish names, or
recursive names, for transferring properties of sets and functions to realizability algebras. In
Section 6 we discuss some useful relativization properties for transitive sets. In Section 7
we show how to preserve the axiom of inaccessible cardinals by realizability algebras. In
Section 8, we show how to preserve the axiom of Mahlo cardinals by realizability algebras.
Section 9 is devoted to realizability models for the second ordered set theory, GB. Finally, in
Section 10 we show how to preserve by realizability algebras the axioms of measurable and
Reinhardt cardinals.

2 Realizability algebras

In this section, we present Realizability Algebras, which are the main building blocks for the
construction of realizability models for set theory. We shall being by briefly explaining the
main intuition behind this construction. We start with a model of set theory and we will
use programs and stacks to evaluate the potential truth and falsity values of set theoretic
statements. For computational reasons we work with a non extensional version of set theory,
called ZFε, that involve two membership relations: the usual one and a strict non-extensional
relation. We will use the terms of the λc-calculus (a variant of λ-calculus that include as a
term the operator call-with-current-continuation) to evaluate the truth value of formulas in
the language of ZFε. On the other hand, we will use stacks, namely sequences of λc-terms,
to evaluate the falsity values of such formulas. Truth values and falsity values will be related
to each other, so that a λc-term is in the truth value of a formula (we say that it “realizes
the formula”), if it is somehow “incompatible” with every stack in the falsity value of that
formula. These definitions will respect certain logical constraints such as no stack can be
in the falsity value of ⊤, and every stack is in the falsity value of ⊥. Then we choose some
privileged collection of λc-terms that we call realizers and we will show that the set of
formulas that are realized by some realizer forms a consistent theory which includes ZFε and
is closed under the rules of derivation of classical natural deduction. Finally, a realizability
model will be a model of such a theory. Since ZFε is a conservative extension of ZF, such a
model will induce a model of ZF.

The main ingredients of realizability algebras are λc-terms, stacks and processes which we
define next. We will give the definition in full generality, in particular allowing for non-empty
sets of special instructions and stack bottoms. These are customisable constants which can
be added to our realizability algebras to ensure the models satisfies additional principles. For
example, if the algebra is countable and contains the special instruction quote then one can
prove Dependent Choice holds in the model. However, all the statements in this paper will
be realized by terms of the λc-calculus. Therefore we will not need any special instructions
but the arguments will still go through if they are present.

▶ Definition 1. Let V be a model of ZF and let A,B be two sets in V:
We let Λopen

A,B and ΠA,B denote the elements of V defined by the following grammars,
modulo α-equivalence. Their elements are called respectively λc-terms and stacks:

Λopen
A,B (λc-terms) :
t, u ::= x (variable; we choose a set of variables that is countable in V)

| tu (application)
| λx.t (abstraction; x is a variable and t is a λc-term)
| cc (call-with-current-continuation)
| kπ (continuation constants; π is a stack)
| ξα (special instructions; α ∈ A)

CSL 2024
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ΠA,B (Stacks) :
π ::= ωβ (stack bottoms; β ∈ B)

| t.π (t is a closed λc-term and π is a stack)
ΛA,B ∈ V denotes the set of all closed λc-terms,
RA,B ∈ V denotes the set of all closed λc-terms that contain no occurrence of a continu-
ation constant. Such terms are called realizers.
ΛA,B ⋆ ΠA,B ∈ V denotes the cartesian product ΛA,B × ΠA,B. Its elements are called
processes. We will write t ⋆ π for (t, π) ∈ ΛA,B ⋆ΠA,B.

Application on λc-terms is left associative (tu1u2 · · ·un means (· · · ((tu1)u2) · · · )un) and
has higher priority than abstraction (λx.tu means λx.(tu)). We define some rules of reduction
on the set of processes through the notion of evaluation.

▶ Definition 2. Let V be a model of ZF and let A,B be two sets in V.
≺A,B ∈ V is called the evaluation preorder and denotes the smallest preorder on
ΛA,B ⋆ΠA,B such that:

tu ⋆ π ≻A,B t ⋆ u.π (push)
λx.t ⋆ u.π ≻A,B t[x := u] ⋆ π (grab)

cc ⋆ t.π ≻A,B t ⋆ kπ.π (save)
kπ′ ⋆ t.π ≻A,B t ⋆ π′ (restore).

Note that there is no evaluation rule for the special instructions, thus ≺A,B treats
the special instructions as inert constants; depending on the context we may define other
evaluation relations with specific evaluation rules for the special instructions. If A and B

can be well-ordered (which is always the case if V satisfies the Axiom of Choice), then the
cardinality (from the point of view of V) of ΛA,B, ΠA,B, RA,B and ΛA,B ⋆ ΠA,B is the
maximum of the cardinality of A, the cardinality of B and ℵ0.

▶ Definition 3. Let V be a model of ZF. A realizability algebra in V is a tuple A = (A,B,⊥⊥)
such that:

A ∈ V (i.e. A ∈ V, B ∈ V and ⊥⊥ ∈ V);
⊥⊥ is a subset of ΛA,B ⋆ΠA,B that is a final segment for ≻A,B, i.e. if t ⋆ π ≻A,B t′ ⋆ π′

and t′ ⋆ π′ ∈ ⊥⊥, then t ⋆ π ∈ ⊥⊥. It is called the pole of the realizability algebra.

Given a model V of ZF, recall that the Von Neumann hierarchy is a collection of sets
Vα indexed by ordinals and defined by transfinite recursion as follows: Vα =

⋃
β<α P(Vβ).

The Axiom of Foundation implies that V =
⋃

α∈Ord Vα; thus every set belongs to some Vα

and the rank ordinal of a set a, denoted rk(a), is the least ordinal α such that a ∈ Vα. We
call the footprint of A the ordinal fp(A) := rkV(A) + ωV

1 where ωV
1 is the least uncountable

ordinal in V. We assume that the sets Λopen
A,B and ΠA,B were constructed in such a way that

their ranks are strictly less than fp(A). When there is no ambiguity, we will drop the indices
A,B and simply write Λ, Π, R, etc.

3 The theory ZFε

In order to define a realizability model for classical set theory, we consider a non-extensional
conservative extension of the usual set theory. This theory was originally formulated by
Friedman in [4] in his proof that ZF is equiconsistent with IZF and notably contains two
distinct membership relations: ∈ which behaves like the standard membership relation, and
ε which is a form of “strong membership”.
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Throughout this paper, we will work in first-order logic without equality: individuals
languages may contain a symbol that happens to be written “=”, but such a symbol has no
special status. In particular, models are not required to interpret it by “meta” equality. In
addition, we will assume that the only primitive logical constructions are →, ⊤, ⊥, and ∀;
for ∨, ∧, and ∃, we will use De Morgan’s encoding. Thus:

φ ∧ ψ means (φ → ψ →⊥) →⊥,
φ ∨ ψ means (φ →⊥) → (ψ →⊥) →⊥,
∃x φ(x) means (∀x (φ(x) →⊥)) →⊥.

We will denote by L∈ the first-order language over the signature {∈,≃} where ∈ and
≃ are binary relation symbols. The language of ZFε requires two distinct symbols for the
membership relation, ∈ and ε (the former will refer to the usual extensional membership
relation, the latter will correspond to a strict non-extensional membership relation); however,
for computational reasons it is better to take as primitives the negative versions of those
symbols, thus the language of ZFε which is denoted Lε, is the first-order language over the
signature {/∈,⊆, ε/, ̸=}, where all 4 symbols are binary relation symbols. It can be proven
that ̸= is definable from ε/ via the Leibniz equality and is therefore not necessary in the
signature, however we include it here for practical purposes. Fml∈ and Fmlε denote the
collection of all formulas in L∈ and Lε respectively. In the language Lε, we will use the
following abbreviations:

Abreviation Meaning Abreviation Meaning
a ε b a ε/ b →⊥ a ≃ b (a ⊆ b) ∧ (b ⊆ a)

a ∈ b a ̸∈ b →⊥ ∀x ε a φ(x) ∀x (x ε a → φ(x))
a = b a ̸= b →⊥ ∃x ε a φ(x) (∀x (φ(x) → x ε/ a)) → ⊥

In particular, by a slight abuse of notation, we will consider Fml∈ to be a subset of Fmlε.
ZF denotes the usual set theory, written in the language L∈, i.e. ZF is a subset of Fml∈,
while ZFε denotes non-extensional set theory, as defined by Krivine, written in the language
Lε (i.e. ZFε is a subset of Fmlε). In a nutshell, the axioms of ZFε state that:

An equivalent presentation of the axioms of ZF minus the Axiom of Extensionality
(essentially the double negation) are satisfied over the signature {ε/, ̸=} (rather than
{∈,≃}).
∈ is the extensional collapse of ε: x ∈ y iff there is x′ ε y such that x ≃ x′;
⊆ is the extensional inclusion: x ⊆ y iff for every z ε x, we have z ∈ y;
≃ is extensional equivalence: two sets are ≃-equal iff they have the same ∈-elements.

For full details, including the list of the axioms of Lε, we refer the reader to [14]; see also
Friedman’s earlier account in [4]. As proven in [4], ZFε is a conservative extension of ZF:

▶ Theorem 4. Let φ be a closed formula in L∈: φ is a consequence of ZF if and only if it
is a consequence of ZFε.

A proof of this fact can be found in [12]. For further details we refer to [19].
Whenever L is a first-order language that contains Lε, we will denote by ZFL

ε the theory
obtained by taking ZFε and enriching all the axiom schemas to include the formulas of L.

4 Construction of realizability models

Our construction of realizability models follows the presentation in [19]. Let V be a model
of Zermelo-Frænkel set theory, ZF, and let A = (Λ,Π,⊥⊥) be a realizability algebra in V.

CSL 2024



28:6 Realizability Models for Large Cardinals

We define NA,V ⊆ V as follows: for any ordinal α ∈ V, let NA,V
α :=

⋃
β<α P(NA,V

β × Π),
then let NA,V :=

⋃
α∈Ord NA,V

α , where Ord denotes the class of ordinals in V. The elements
of NA,V are called (A,V)-names. Note that for all α, NA,V

α ∈ V, but NA,V /∈ V (NA,V is a
proper class in V). We will generally drop the exponents and simply write Nα and N. Given
an element a ∈ N we let dom(a) := {b | ∃π ∈ Π (b, π) ∈ a} ∈ V.

A function f : Nn → N is said to be A-definable if there is a formula φ(z, x1, . . . , xn, y) ∈
Fmlε and c ∈ Vfp(A) such that, for any a1, . . . , an ∈ N and b ∈ V, V |= φ(c, a1, . . . , an, b) if
and only if b = f(a1, . . . , an). Let LA

ε be the language obtained from Lε by adding for each
A-definable function f : Nn → N an n-ary function symbol “f”.

The realizability interpretation of LA
ε in A consists of the following.

▶ Definition 5. To each closed formula φ in LA
ε with parameters in N, we associate a truth

value |φ| ⊆ Λ and a falsity value ∥φ∥ ⊆ Π, they are defined jointly by induction on the
complexity of φ:

|φ| := {t ∈ Λ | ∀π ∈ ∥φ∥, t ⋆ π ∈ ⊥⊥};
∥⊤∥ := ∅ and ∥⊥∥ := Π;
∥a ε/ b∥ := {π ∈ Π | (a, π) ∈ b};
∥a ̸= b∥ := ∥⊤∥ if a ̸= b, ∥⊥∥ otherwise;
∥a ̸∈ b∥ :=

⋃
c∈dom(b)

{t.t′.π | (c, π) ∈ b, t ∈ |a ⊆ c|, t′ ∈ |c ⊆ a|};

∥a ⊆ b∥ :=
⋃

c∈dom(a)
{t.π | (c, π) ∈ a, t ∈ |c ̸∈ b|};

∥ψ → θ∥ := {t.π | t ∈ |ψ|, π ∈ ∥θ∥};
∥∀x φ(x)∥ :=

⋃
a∈N

∥φ[a/x]∥.

For atomic formulas, we identify the closed terms a and b with their valuations in N.
Formally, ∥a ̸∈ b∥ and ∥a ⊆ b∥ are defined by induction on the pair (max(rkN(a), rkN(b)),
min(rkN(a), rkN(b))) under the product order, where rkN(c) := min {α | c ∈ Nα+1}.

We say that a closed λc-term t realizes a closed formula φ with parameters in N and
write t ⊩ φ, whenever t ∈ |φ|.

By standard set-theoretic arguments, for each formula φ(x⃗) in LA
ε (without parameters),

there exist formulas φΠ(p, x⃗) and φΛ(p, x⃗) in L∈ with parameters in Vfp(A) such that for all
sequences of sets a⃗ ∈ V, for all π ∈ Π and t ∈ Λ,

π ∈ ∥φ(⃗a)∥ ⇔ V |= φΠ(π, a⃗), and t ∈ |φ(⃗a)| ⇔ V |= φΛ(t, a⃗).

Now, we would like to associate to A a “realizability theory” consisting of all closed
formulas which are realized. However, for all t ⋆ π ∈ ⊥⊥, the λc-term kπ t realizes the formula
⊥. Therefore, in order to obtain a realizability theory that is not automatically inconsistent,
we will need to exclude terms of this shape; this is where the set R of realizers comes into
play (i.e. the closed λc terms containing no continuation constant):

▶ Definition 6. The realizability theory of (A,V), denoted by TA,V, is the set of all closed
formulas, φ, of LA

ε with parameters in N such that there exists t ∈ R such that t realizes φ.

The following facts are standard (see e.g. [14]):
the realizability theory of (A,V) is closed under classical deduction, (i.e. if φ ∈ TA,V and
φ entails ψ in classical logic, then ψ ∈ TA,V);
this theory is consistent if and only if for every t ∈ R there is a stack π such that t⋆π ̸∈ ⊥⊥;
this theory is generally not complete.
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▶ Theorem 7. Let V be a model of ZF and A a realizability algebra in V. The realizability
theory of (A,V) contains ZFLA

ε
ε . In particular, it contains ZFε, and therefore ZF).

We refer to [14] for a proof of this, or [19] for an alternative proof using the setup given.
This justifies the following definition:

▶ Definition 8. A realizability model of ZFε is a pair N = (V,A), with V a model of ZF
and A a realizability algebra in V. We write N ⊩ φ for “TA,V contains φ”.

Sometimes, we will argue within models of the realizability theory TA,V and by abuse of
language we will call realizability model any model of TA,V.

5 Reish Names and Pairing

In this section we present the method of reish names, or recursive names, which is used for
transferring properties of sets of the ground model to sets in a realizability model. Given a
ground model set a, the gimel of a, ,(a)ג! is defined as (a)ג! := a× Π, but (a)ר! shall instead
apply this process recursively to all elements of a. This will have the benefit that ,(a)ר! and
each one of its elements, is always an element of N.

▶ Definition 9. For x ∈ V we define (x)ר! := {( ,(y)ר! π) | y ∈ x, π ∈ Π}.

This method will not in general give a straightforward interpretation of the ground model
elements. For example, it is unclear if (ω)ר! is an extensional name for the first limit ordinal
in the ZF structure. However, it is a useful tool to transfer certain properties of sets of the
ground model into the realizability model.

▶ Proposition 10. If a ⊆ b then N ⊩ (a)ר! ⊆ .(b)ר!

Proof. Let v0 be a realizer such that v0 ⊩ ∀x(x ⊆ x) and set v1 := λf .(f(v0))(v0). It is easy
to see that v1 ⊩ (a)ר! ⊆ .(b)ר! ◀

▶ Observation 11. If a ∈ b then I ⊩ (a)ר! ε ,(b)ר! where I = λf .f is the identity term. Thus,
if a ∈ b then N ⊩ (a)ר! ̸≃ .(b)ר!

This construction then allows us to define a proper class of ordinals in a realizability
model. For this we use the definition of ordinals as transitive sets of transitive sets, which
can easily be seen to be equivalent to a transitive set well-ordered by the ∈-relation.

▶ Definition 12. ( ZFε) We say that a set a is a ε-ordinal if it is a ε-transitive set of
ε-transitive sets. That is, ∀x ε a∀y ε x (y ε a) and ∀z ε a∀x ε z ∀y ε x (y ε z).

Note that, over ZFε, this definition is not equivalent to the definition of ordinals as
transitive sets well-ordered by the ε-relation. As an example, consider the realizability model
constructed at the end of [15] in which (2)ר! has size 4. In this case there are two ordinals,
a, b ε ,(2)ר! such that a ε/ b, b ε/ a. However, (a ∪ {a}) ∪ (b ∪ {b}) is an ε-ordinal on which the
ε-relation does not linearly order the set.

▶ Proposition 13. Suppose that N = (N, ε/, ̸∈,⊆) is a model of ZFε. Then for any a ∈ N:
1. If a is a ε-transitive set, then it is a ∈-transitive set,
2. If a is a ε-ordinal, then it is a ∈-ordinal.

CSL 2024



28:8 Realizability Models for Large Cardinals

Proof. Suppose that a is a ε-transitive set and take c ∈ b ∈ a. Then there exists some
x ε a such that x ≃ b and there exists some y ε x such that y ≃ c. Since a is assumed to be
ε-transitive, y ε a. Therefore x ∈ a by definition of ∈.

Next, suppose that a is a ε-ordinal. We have already shown that a is ∈-transitive so it
suffices to prove that every b ∈ a is ∈-transitive. So let d ∈ c ∈ b ∈ a. Then we can find
z ε y ε x ε a such that x ≃ b, y ≃ c and z ≃ d. Since a is a ε-ordinal, z ε x and therefore d ∈ x.
Finally, d ∈ x and x ≃ b gives us d ∈ b, as required. ◀

▶ Proposition 14. If δ is an ordinal in V then N ⊩ (δ)ר! is a ε -ordinal.

Proof. Let δ be an ordinal in V. We show that (δ)ר! is a ε-transitive set; the fact that it
consists of ε-transitive sets will follow by a similar argument. To do this, we show that
I ⊩ ∀x y(y∀(δ)ר! ε/ (δ)ר! → y ε/ x). Fix β ∈ δ, c ∈ N, t ⊩ c ε/ (δ)ר! and π ∈ ∥c ε/ .∥(β)ר! Now
∥c ε/ ∥(β)ר! = {σ | (c, σ) ∈ .{(β)ר! Since this set is non-empty, it must be the case that
∥c ε/ ∥(β)ר! = Π and c = (γ)ר! for some γ ∈ β. Therefore, ∥c ε/ ∥(δ)ר! = (γ)ר!∥ ε/ ∥(δ)ר! = Π
hence t ⋆ π ∈ ⊥⊥, from which the result follows. ◀

We need a method to encode ordered pairs in the realizability structure; for this we
introduce a function op satisfying N ⊩ “op(a, b) is the ordered pair of a and b” for any a, b ∈
N. This definition is based on the Wiener pairing function which is (a, b) = {{{a}, ∅}, {{b}}}.
Here 0 denotes the λ-term λx.λy.y and 1 the λ-term λx.λy.xy.

▶ Definition 15. For a, b ∈ N, we define
the singleton of a as the set sng(a) := {a} × Π,
the unordered pair of a and b as the set up(a, b) := {(a, 0.π) | π ∈ Π} ∪ {(b, 1.π) | π ∈ Π},
the ordered pair of a and b as the set op(a, b) := up(up(sng(a), ,((0)ר! sng(sng(b))).

Note that the three functions sng : N → N, up, op : N2 → N are A-definable.

▶ Theorem 16 ([19]). The following are realizable in N :
∀x1∀x2∀y1∀y2 (op(x1, y1) ≃ op(x2, y2) → (x1 ≃ x2 ∧ y1 ≃ y2)).
∀x1∀x2∀y1∀y2 (x1 ≃ x2 → (y1 ≃ y2 → op(x1, y1) ≃ op(x2, y2))).

While we do not include a proof of this fact, we refer to [19] for all necessary details.

6 Relativization over transitive sets

In this setion we introduce a method to relativize formulas to certain objects in a realizability
model. Relativization is a simple, but power, technique which provides a way to interpret
a formula internally in a given transitive set or class. Given a formula φ and set M , the
relativised formula φM is essentially constructed by replacing all unbounded quantifiers with
quantifiers bounded by M , that is ∀x becomes ∀x ∈ M .

Let A be a realizability algebra and construct the class of names, N. Given a transitive
set M containing A, we set MA := {(a, π) | a ∈ M ∩ N, π ∈ Π}. Namely, MA is a name for
the set of names that are in M and dom(MA) = M ∩ N. We can then relativize to M any
formula φ in the language of LA

ε , which we denote by φM, by replacing universal quantifiers
∀x by bounded quantifiers ∀xMA defined in the usual way.

▶ Definition 17. Suppose that M is a transitive set containing A and φ is a formula in
Fmlε. We define ∥∀xMA

φ(x)∥ =
⋃

c∈dom(MA)∥φ(c)∥.

It is easy to see that this restricted quantifier ∀xMA corresponds to ∀x εMA.
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▶ Proposition 18. Suppose that M is a transitive set which contains A. Then
1. λf .λg.gf ⊩ ∀xMA

φ(x) → ∀x(¬φ(x) → x ε/ MA),
2. λf .cc(λk.fk) ⊩ ∀x(¬φ(x) → x ε/ MA) → ∀xMA

φ(x).

Proof. First, suppose that t ⊩ ∀xMA
φ(x), s ⊩ ¬φ(b) for some b ∈ N and π ∈ ∥b ε/ MA∥.

Since (π, b) ∈ MA and M is transitive, we must have b ∈ M ∩ N and therefore t ⋆ σ ∈ ⊥⊥ for
any σ ∈ ∥φ(b)∥. It follows that t ⊩ φ(b), hence λf .λg.gf ⋆ t.s.π ≻ s ⋆ t.π ∈ ⊥⊥, as required.

For the second claim, suppose that t ⊩ ∀x(¬φ(x) → x ε/ a) and π ∈ ∥∀xMA
φ(x)∥. Fix

b ∈ M ∩ N such that π ∈ ∥φ(b)∥. We have

∥∀x(¬φ(x) → x ε/ MA)∥ =
⋃
c∈N

∥¬φ(c) → c ε/ MA∥ =
⋃
c∈N

{s.σ | s ⊩ ¬φ(c), σ ∈ ∥c ε/ MA∥}.

Since π ∈ ∥φ(b)∥, kπ ⊩ ¬φ(b). Moreover, (b, π) ∈ MA thus kπ.π ∈ ∥∀x(¬φ(x) → x ε/ MA)∥.
It follows that λf .cc(λk.fk) ⋆ t.π ≻ cc ⋆ (λk.tk).π ≻ λk.tk ⋆ kπ.π ≻ t ⋆ kπ.π ∈ ⊥⊥. ◀

One can easily observe that if M is a transitive set containing A, then MA is realized to
be a ε-transitive set, and thus also a transitive set by Proposition 13.

▶ Proposition 19. For every transitive set M which contains A, I ⊩ ∀xMA∀y(y ε/ MA →
y ε/ x). Thus N realizes that MA is a ε-transitive set.

▶ Theorem 20. Let M be a transitive class which contains A, then for all sets a1, . . . , an in
M ∩ N, and for every formula φ ∈ Fmlε, ∥φMA(a1, . . . , an)∥ = ∥φ(a1, . . . , an)∥M.

Proof. We procede by induction on the formula, ignoring the parameters to simplify notation.
Let φ(x, y) ≡ x ε/ y and fix a, b ∈ M ∩ N. Then we have ∥(a ε/ b)MA∥ = ∥a ε/ b∥V =

{π ∈ Π | (a, π) ∈ b} = ∥a ε/ b∥M, since M is a transitive class containing Π.
We will prove the cases φ(x, y) ≡ x /∈ y and φ(x, y) ≡ x ⊆ y by simultaneous induction

on the lexicographical order of the pair of ranks of a and b. So, fix a, b ∈ M ∩ N. Then
we have ∥(a /∈ b)MA∥ = ∥a /∈ b∥V =

⋃
c∈dom(b){t.t′.π | (c, π) ∈ b, t ⊩ a ⊆ c, t′ ⊩ c ⊆ a}.

Now, t ⊩ c ⊆ a means ∀σ ∈ ∥c ⊆ a∥(t ⋆ σ ∈ ⊥⊥), by the induction hypothesis this is
equivalent to ∀σ ∈ ∥c ⊆ a∥M(t ⋆ σ ∈ ⊥⊥) which corresponds to (t ⊩ c ⊆ a)M. Thus we have
∥(a /∈ b)MA∥ =

⋃
c∈dom(b){t.t′.π | (c, π) ∈ b, (t ⊩ a ⊆ c)M, (t′ ⊩ c ⊆ a)M} = ∥a /∈ b∥M.

Similarly for the second case, by applying the induction hypothesis we have ∥(a ⊆ b)MA∥ =⋃
c∈dom(a){t.π | (c, π) ∈ a, (t ⊩ c ̸∈ b)M} = ∥a ⊆ b∥M.

The cases φ ≡ ψ → χ and φ ≡ ∀xψ(x) follow easily from the induction hypothesis. ◀

We will apply these results in particular to the transitive sets of the Von Neumann
hierarchy. We end this section by showing that if A is an element of Vγ then VA

γ is simply
the construction of the names internally in Vγ .

▶ Lemma 21. Let γ be a limit ordinal such that A ∈ Vγ . Then VA
γ =

⋃
Nγ and Nγ = (N)Vγ .

Proof. First, observe that for every a ∈ N, rkN(a) ≤ rkV(a) ≤ max{rkN(a), rkV(Π)} + 2
where rkN(a) is the minimal α for which a ∈ Nα and rkV(a), the minimal α for which a ∈ Vα,
is the standard rank of a in V. From this it follows that Vγ ∩ N = Nγ since γ is a limit
ordinal and A ∈ Vγ , therefore VA

γ = {(a, π) | a ∈ Nγ , π ∈ Π} =
⋃

Nγ .
We now prove inductively that Nα = (Nα)Vγ for all α ≤ γ, starting with N0 = ∅ = (N0)Vγ .

So fix α ≤ γ and suppose that the claim holds for all β < α. Then

Nα =
⋃

β<α

P(Nβ × Π) =
⋃

β<α

PVγ ((Nβ)Vγ × Π) = (Nα)Vγ . ◀
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7 Realizing Inaccessibles

In this section, we assume the consistency of the theory “ZFC plus there is an inaccessible
cardinal” and, from that, we show how to build a realizability model for the equiconsistent
theory “ZF plus there is an inaccessible set”.

We recall that over ZFC an uncountable cardinal κ is (strongly) inaccessible if it is a
regular cardinal which is a strong limit, namely whenever α < κ, 2α < κ. However, in models
where the Axiom of Choice fails this is no longer a satisfactory definition, for example if 2ω

is not well-ordered then no such (well-orderable) cardinals can possibly exist. Therefore, it is
preferable to take an alternative definition.

From a structural point of view, the defining property of an inaccessible cardinal is that
it provides a very robust model of set theory. Namely, if κ is inaccessible then Vκ is a
Grothendieck Universe which contains ω. For our purposes we will take a slightly different,
but equivalent, definition which is that a set will be inaccessible if it is a transitive model of
full second-order ZF; this definition is motivated by [5, Definition 1].

▶ Definition 22. We call a set z inaccessible if it satisfies the following:
Transitivity: ∀u ∈ z ∀v ∈ u(v ∈ z).
Empty Set: ∃u ∈ z ∀v(v /∈ u).
Pairing: ∀u ∈ z ∀v ∈ z ∃w ∈ z (u ∈ w ∧ v ∈ w).
Unions: ∀u ∈ z ∃v ∈ z ∀w (w ∈ v ↔ ∃x ∈ u(w ∈ x)).
Infinity: ∀a ∈ z ∃u ∈ z (a ∈ u ∧ ∀v ∈ u∃w ∈ u(v ∈ w)).
Weak Power Set: ∀u ∈ z ∃v ∈ z ∀w ∃x ∈ v ∀y (y ∈ x ↔ (y ∈ u ∧ y ∈ w)).
Second-order Collection:

∀a ∈ z∀f(∀x ∈ a∃y ∈ z ((x, y) ∈ f) → ∃b ∈ z ∀x ∈ a ∃y ∈ b ((x, y) ∈ f)).

The proof of the following proposition is standard and justifies calling such sets inaccessible.

▶ Proposition 23. Over ZFC the following are equivalent:
z is inaccessible,
z is a Grothendieck Universe containing ω,
z = Vκ for some inaccessible cardinal κ.

Moreover, it is known that if V is a model of ZF with an inaccessible set z, then z ∩ L
is an inaccessible set in the constructible universe L, which is a model of ZFC. In fact,
z ∩ L = Lκ where κ is an inaccessible cardinal in L. Therefore ZF with an inaccessible set is
equiconsistent with ZFC plus an inaccessible cardinal.

We now consider any realizability algebra A in a model V of ZF (the ground model) with
an inaccessible set z such that A ∈ z. We shall give an appropriate translation of inaccessible
sets to the language of ZFε, which we call ε-inaccessible sets. We shall then show that in
any realizability model N , zA is a ε-inaccessible set and in the corresponding ZF structure
(N,∈,≃), zA is an inaccessible set.

▶ Definition 24. In a model of TA,V, we call a set z ε-inaccessible if it satisfies the following:
ε-Transitivity: ∀u ε z ∀v ε u(v ε z).
ε-Empty Set: ∃u ε z ∀v(v ε/ u).
ε-Pairing: ∀u ε z ∀v ε z ∃w ε z (u εw ∧ v εw).
ε-Unions: ∀u ε z ∃v ε z ∀w (w ε v ↔ ∃x ε u(w εx)).
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ε-Infinity: ∀a ε z ∃u ε z (a ε u ∧ ∀v ε u∃w εu(v εw)).
ε-Weak Power Set: ∀u ε z ∃v ε z ∀w ∃x ε v ∀y (y ε x ↔ (y ε u ∧ y εw)).
ε-Second-order Collection:

∀a ε z∀f(∀x ε a∃y ε z (op(x, y) ε f) → ∃b ε z ∀x ε a∃y ε b (op(x, y) ε f)).

▶ Lemma 25. If z is an inaccessible set in V and A ∈ z is a realizability algebra, then for
the corresponding realizability model N = (V,A) we have N ⊩ zA is a ε-inaccessible set.

Proof. Firstly, by Proposition 19 we have that zA is a ε-transitive set. For all of the axioms
except for Second-order Collection it suffices to verify that dom(zA) is closed by certain
relevant names. For this, we observe that since z is a transitive set which is closed under
Weak Power Set and Second-order Collection, we have that z = Vrank(z). Therefore, z is also
closed under Separation and, by Lemma 21, zA = (N)z.

For Empty Set the relevant name is ∅ which is in z ∩ N be definition. Given a, b ∈ z ∩ N
the name for the pair is {a, b} × Π ∈ z ∩ N. Given a ∈ z ∩ N the name for the union is
{(c, σ) | ∃(x, π) ∈ a (c, σ) ∈ x} ∈ z ∩ N. Given a ∈ z ∩ N the name for the infinite set
containing a is {(an, π) | n ∈ ω, π ∈ Π} where a0 := a and an+1 := {an} × Π. It is clear that
all of these names are in z ∩ N. Finally, given a ∈ z ∩ N the name for the Weak Power Set of
a is P(dom(a) × Π) × Π.

It remains to prove the axiom of Second-order Collection. Fix a ∈ z∩N and f ∈ N. Since
z is an inaccessible set, by Second-order Collection in z we can find a set Y ∈ z such that

∀(x, π) ∈ a∀t ∈ Λ∃y ∈ z∩N(t ⊩ op(x, y) ε f) → ∀(x, π) ∈ a∀t ∈ Λ∃y ∈ Y (t ⊩ op(x, y) ε f).

Let b := {(y, π) | ∃t ∈ Λ ∃x ((x, π) ∈ a, t ⊩ op(x, y) ε f, y ∈ Y )} ∈ z ∩ N. It will suffice
to prove that for any x ∈ N, ∥∀y(op(x, y) ε f → x ε/ a)∥ ⊆ ∥∀y(op(x, y) ε f → x ε/ b)∥.
For this, fix t.π ∈ ∥∀y(op(x, y) ε f → x ε/ a)∥. Then we can fix some c ∈ N such that
t ⊩ op(x, c) ε f and (x, π) ∈ a. By the definition of Y , this means that there exists a
c′ ∈ Y such that t ⊩ op(x, c′) ε f and (x, π) ∈ a from which it follows that (c′, π) ∈ b. Thus
t.π ∈ ∥∀y(op(x, y) ε f → x ε/ b)∥. ◀

▶ Theorem 26. Let N = (V,A) be a realizability model, then
N ⊩ ∀z(z is an ε-inaccessible set → z is an inaccessible set)

Proof. We argue within a realizability model N = (N, ε/, /∈,⊆). Suppose that z is a ε-
inaccessible set. We want to show that z is an inaccessible set in (N,∈,≃). It is easy to see
that z satisfies every condition except for possibly Second-order Collection. In order to prove
this axiom, note that Second-order Collection is equivalent to the statement

∀a ∈ z ∀f ∃b ∈ z ∀x ∈ a (∃y ∈ z ((x, y) ∈ f) → ∃y ∈ b ((x, y) ∈ f)).

So fix a ε z and f , we define f ′ = {op(x, y) | x ε a, y ε z, op(x, y) ∈ f}. Since z satisfies
ε-Second-order Collection, we can find some b ε z such that ∀x ε a(∃y ε z op(x, y) ε f ′ →
∃y ε b op(x, y) ε f ′). We shall show that this same set b witnesses Second-order Collection for f
in ZF. By Theorem 16, we know that for every x, y in the realizability model, op(x, y) ≃ (x, y).
Fix x ∈ a and suppose that ∃y ∈ z((x, y) ∈ f). Then, we can find x′ ε a and y′ ε z such
that x ≃ x′ and y ≃ y′. Therefore (x, y) ≃ op(x′, y′), hence op(x′, y′) ε f ′. By definition of b,
we can find some y′′ ε b such that op(x′, y′′) ε f ′, thus (x′, y′′) ∈ f by definition of f ′. Since
x ≃ x′, we have (x, y′′) ≃ (x′, y′′), thus (x, y′′) ∈ f as required. ◀

▶ Corollary 27. Let N = (V,A) be a realizability model. Assume that there is an inaccessible
set z in V such that A ∈ z. Then N ⊩ ZF + there exists an inaccessible set.
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▶ Remark 28. One should observe that the statement zA is a ε-inaccessible set can be expressed
by a single sentence. Therefore, given a realizability algebra A, there exists a single realizer
θ such that whenever z is an inaccessible set with A ∈ z, θ ⊩ “zA is a ε -inaccessible set”.

8 Realizing Mahlo cardinals

In this section, we show that from the consistency of the theory “ZFC plus there is a Mahlo
cardinal” we can build a realizability model for the equiconsistent theory “ZF plus there
is a Mahlo set”. Recall that κ is a Mahlo cardinal if {α ∈ κ | α is strongly inaccessible} is
stationary in κ. However, as in the inaccessible case, it is beneficial to use the following, more
structural, definition which was first formulated by Lévy in [18] and which is the version
used by Friedman and Ščedrov [5, Definition 2].

▶ Definition 29. A Mahlo set is an inaccessible set z such that for every u ∈ z and for every
binary relation R, there is an inaccessible set v ∈ z such that
1. u ∈ v,
2. R reflects to v, which means that ∀x ∈ v(∃y ∈ z (x, y) ∈ R → ∃y ∈ v (x, y) ∈ R).

The proof of the following proposition is standard and justifies calling such sets Mahlo.

▶ Proposition 30 (Lévy, [18, Theorem 3]). Over ZFC, z is a Mahlo set iff z = Vκ for some
Mahlo cardinal κ.

Moreover, as with the inaccessible case, if V is a model of ZF with a Mahlo set z, then
z ∩ L remains a Mahlo set in L. Therefore ZF with a Mahlo set is equiconsistent with ZFC
plus a Mahlo cardinal.

▶ Definition 31. In a model of TA,V, we say that z is a ε-Mahlo set if z is a ε-inaccessible
set and for every u ε z and every binary relation R, there is a ε-inaccessible set v ε z such that
1. u ε v,
2. ∀x ε v(∃y ε z op(x, y) εR → ∃y ε v op(x, y) εR).

▶ Lemma 32. Let N = (V,A) be a realizability model and suppose that z is a Mahlo set in
V such that A ∈ z, then N ⊩ zA is a ε -Mahlo set.

Proof. By Remark 28 we know that whenever v is an inaccessible set such that A ∈ v, vA is
realized to be a ε-inaccessible set by a realizer that does not depend on v. In particular, this
means that zA is realized to be a ε-inaccessible set. To realize that zA is a ε-Mahlo set, we
fix a ∈ z ∩ N and R ∈ N. First, we define R′ := {((x, π), y) | (op(x, y), π) ∈ R, y ∈ N}. Since
z is a Mahlo set in the ground model, we can find an inaccessible set v such that a,A ∈ v

and R′ reflects to v. The following hold:
1. I ⊩ vA ε zA and I ⊩ a ε vA,
2. vA is realized to be a ε-inaccessible set by a realizer that does not depend on v.
We want to realize that, in N , R reflects to vA. To do this, it suffices to show that

I ⊩ ∀xvA
(∀yvA

op(x, y) ε/ R → ∀yzA
op(x, y) ε/ R).

Fix t, π such that t ⊩ ∀yvA
op(x, y) ε/ R and π ∈ ∥∀yzA

op(x, y) ε/ R∥. There is y ∈ z ∩ N
such that (op(x, y), π) ∈ R, thus ((x, π), y) ∈ R′. Since R′ reflects to v there is y′ ∈ v such
that (op(x, π), y′) ∈ R′. This means that (op(x, y′), π) ∈ R and y′ ∈ N. So y′ ∈ v ∩ N, hence
π ∈ ∥∀yvA

op(x, y) ε/ R∥ and t ⋆ π ∈ ⊥⊥. ◀
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▶ Theorem 33. Let N = (V,A) be a realizability model, then
N ⊩ ∀z(z is a ε-Mahlo set → z is a Mahlo set)

Proof. We work within a realizability model. Suppose that z is a ε-Mahlo set. By Theorem 26
we know that z is an inaccessible set. Fix u ∈ z and let R be a binary relation. Let
Rε := {op(x, y) | x, y ε z, op(x, y) ∈ R}. Since z is a ε-Mahlo set we can fix a ε-inaccessible
(and hence inaccessible) set v ε z such that u ε v and Rε reflects to v. By Theorem 16, we
know that for every x, y in the realizability model, op(x, y) ≃ (x, y). Since u ε v ε z we have
u ∈ v ∈ z. For the final property, fix x ∈ v and suppose that (x, y) ∈ R for some y ∈ z.
Next, take x′ ε v and y′ ε z such that x ≃ x′ and y ≃ y′. Then, by definition, op(x′, y′) εRε

so, since Rε reflects to v, we can find some y′′ ε v for which op(x′, y′′) εRε. Unpacking the
definition of Rε this means that (x′, y′′) ∈ R. Therefore, since x ≃ x′ we have that there
exists some y′′ ∈ v for which (x, y′′) ∈ R, as required. ◀

▶ Corollary 34. Let N = (V,A) be a realizability model. Assume that there is a Mahlo set z
in V such that A ∈ z. Then N ⊩ ZF + there exists a Mahlo set.

9 Extending Realizability to Classes

Gödel-Bernays set theory (GB) is an extension of Zermelo-Frænkel set theory (ZF) with
a built-in notion of classes – arbitrary collections of sets that may be too big to be sets
themselves. In the section, we will show how to similarly extend ZFε to a theory GBε that
supports classes, and we will show how to construct realizability models of GBε.

We will work in two-sorted first-order logic (without equality): one sort will represent
sets, and the other, classes. We will use lowercase letters for set variables, and uppercase
letters for class variables. Quantification over sets will be denoted by “∀0” and “∃0”, and
quantification over classes by “∀1” and “∃1” (though we may drop the exponents when there
is no ambiguity).

Let L2
∈ denote the first-order language over the signature {∈0,∈1,≃}, where ∈0 and ≃

are relation symbols of arity Set × Set, and ∈1 is a relation symbol of arity Set × Class. The
reason why we need two versions of ∈ is that both sets and classes can contain sets. Likewise,
let L2

ε denote the first-order language over the signature {/∈0
, /∈1

,⊆, ε/0, ε/1, ̸=0, ̸=1}, where /∈0,
⊆, ε/0 and ̸=0 are relation symbols of arity Set × Set, ε/1 and ̸∈1 are relation symbols of arity
Set × Class, and ̸=1 is a relation symbol of arity Class × Class. Since the context always
makes it clear which “version” of a given relation symbol is being used, we will systematically
drop these exponents and simply write ̸∈ and ε/.

The theory GBε is the theory over L2
ε generated by the following axioms:

1. The axioms of ZFε, with the axioms schemas extended to all formulas of the language
L2

ε that contain no quantifications over classes.
2. Class Separation: ∀1A ∀0b ∃0a ∀0x (x ε a ↔ x εA ∧ x ε b).
3. Class Induction: ∀1A

(
(∀0x ((∀0y ε x y εA) → x εA)) → ∀0z (z εA)

)
.

4. Elementary Class Comprehension: ∀1A ∀0u ∃1B ∀0x (x εB ↔ φ(x, u,A)) for every
formula φ(x, u,A) with no quantifications over classes.

5. Class Collection: ∀1A ∀0u ∀0a ∃0b ∀0x ε a
(

(∃0y φ(x, y, u,A)) → (∃0y ε b φ(x, y, u,A))
)
,

for every formula φ(x, y, u,A) with no quantifications over classes.
6. Definition of ∈1: ∀1A ∀0x

(
x ∈ A ↔ ∃0y (y εA ∧ y ≃ x)

)
.
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We refer the read to the end of Chapter 6 of [9] and Chapter 4 of [20] for more details on
GB and second-order set theories in general. By a simple generalisation of the ZF case, we
can see that the theory GBε is a conservative extension of the standard theory GB.

▶ Theorem 35. Let φ be a closed formula in L2
∈, then GB ⊢ φ if and only if GBε ⊢ φ.

Whenever L2 is a first-order language that contains L2
ε, we will denote by GBL2

ε the
theory obtained by taking GBε and enriching all the axiom schemas to include all the
formulas of L2 with no quantifications over classes.

Realizability Models with Classes
Let (V, C) be a model of GB and let A = (Λ,Π,⊥⊥) be a realizability algebra in V. Let:

N :=
⋃

α∈Ord Nα ∈ C, where Nα :=
⋃

β<α P(Nβ × Π) ∈ V as before,
D := {X ∈ C | X ⊆ N} ⊆ C.

As in Section 4, we let LA,2
ε denote the language obtained by adding a function symbol f

for each A-definable function f : Nn → N.

▶ Definition 36. We extend Definition 5 to all formulas in LA,2
ε with parameters in (N,D):

∥a ε/1 B∥ := {π ∈ Π | (a, π) ∈1 B};
∥A ̸=1 B∥ := ∥⊤∥ if A ̸= B, ∥⊥∥ otherwise;
∥a ̸∈1 B∥ :=

⋃
c∈dom(B)

{t.t′.π | (c, π) ∈1 B, t ∈ |a ⊆ c|, t′ ∈ |c ⊆ a|};

∥∀1X φ(X)∥ :=
⋃

A∈D
∥φ[A/X]∥.

▶ Remark 37. By standard set-theoretic arguments, for each formula φ(x1, . . . , xm, Y1, . . . Yn)
in L2

ε, there are formulas φΠ(p, x1, . . . , xm, Y1, . . . Yn) and φΛ(p, x1, . . . , xm, Y1, . . . Yn) in L2
∈

with parameters in Vfp(A) such that for all a1, . . . , am ∈ V, all B1, . . . , Bn ∈ D, all π ∈ Π,
and all t ∈ Λ, we have

π ∈ ∥φ(a1, . . . , am, B1, . . . , Bn)∥ iff V |= φΠ(π, a1, . . . , am, B1, . . . , Bn)
and t ∈ |φ(a1, . . . , am, B1, . . . , Bn)| iff V |= φΛ(t, a1, . . . , am, B1, . . . , Bn).

▶ Definition 38. The realizability theory of (A,V, C), denoted by TA,V,C, is the set of all
closed formulas φ of LA,2

ε with parameters in (N,D) such that there exists t ∈ R such that t
realizes φ.

▶ Proposition 39. Let (V, C) be a model of GB and let A ∈ V be a realizability algebra.
The realizability theory of (A,V, C) is closed under classical deduction and contains GBε.

This justifies the following definition:

▶ Definition 40. A realizability model of GBε is a tuple N = (V, C,A), with (V, C) a model
of GB and A a realizability algebra in V. We write N ⊩ φ for “TA,V,C contains φ”.

10 Realizing measurable and Reinhardt cardinals

In this section, we work with the theory GB and we build realizability models for measurable
and Reinhardt cardinals. First, we will consider a model V of GB with Choice that contains
a measurable cardinal and show how to realize the existence of a measurable cardinal. A
cardinal κ is said to be measurable if there exists a non-principal, κ-complete ultrafilter over
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κ. The reason we work with Choice in the ground model is to use the Łoś Theorem to define
from the ultrafilter a class function j : V → M where M is a transitive inner model of ZFC,
j is not the identity and for every formula φ(x1, . . . , xn) and sets a1, . . . , an one has

φ(a1, . . . , an) if and only if M |= φ(j(a1), . . . , j(an)).

We call δ the critical point of an embedding j if ∀α ∈ δ, j(α) = α and j(δ) > δ, that is to
say δ is the first ordinal moved by j. It is well-known that κ is a measurable cardinal if and
only if it is the critical point of such an elementary embedding.

What we shall realize is that the existence of such an embedding transfers nicely to
realizability models and their corresponding extensional models of GB. The reason we work
in a second-order theory is that formally the embedding j : V → M is a class function over our
model. It is known that without Choice the Łoś Theorem need no longer hold and therefore
the existence of an embedding might not be definable in a first-order way. On the other hand,
it is easy to see that under ZF, if j is a non-trivial elementary embedding with critical point
κ then there is a non-trivial κ-complete ultrafilter on κ defined by U = {X ⊆ κ | κ ∈ j(X)}.
We refer the reader to [8] for more details on measurable cardinals without Choice.

When we are working in GBε it no longer needs to be the case that there is a unique
critical point because we may have sets a, b ∈ N such that N believes a and b are ordinals
with a ≃ b, the embedding will fix every element of both a and b while being non-trivial on
them and yet a ̸= b. Therefore, we shall instead refer to a critical point of some embedding.
We shall show that there exists an embedding j⋆ and see that (κ)ר! is a critical point of j⋆.
Then, when we restrict ourselves to the model of GB, the extensionality of ∈ will give us the
required uniqueness.

So let us fix such an embedding j : V → M and denote its critical point by κ. Let A be
any realizability algebra such that A ∈ Vκ (which implies fp(A) < κ). Then j will induce a
non-trivial elementary embedding j∗ of the realizability model into a transitive subclass of
the realizability model that satisfies GBε where j∗ is defined as

j∗ = {(op(x, j(x)), π) | π ∈ Π}. (⋆)

▶ Definition 41. In a model of TA,V,C, we say that an ordinal a is a critical point of j∗ if
∀x ε a(op(x, x) ε j⋆) and there exists some set b such that op(a, b) ε j⋆ and a ε b.

An important fact we will use is that the elementarity of j implies that t ⊩ φ(a) if and
only if t ⊩ φ(j(a)) (by Remark 37). In addition, since A ∈ Vκ, we have P(Π) ∈ M so
∥φ∥M = ∥φ∥.

▶ Proposition 42. For all formulas φ in LA
ε and all a1, . . . , an ∈ N, ∥φ(a1, . . . , an)∥ =

∥φ(j(a1), . . . , j(an))∥. Hence N ⊩ φ(a1, . . . , an) ↔ φ(j(a1), . . . , j(an)).

From this it is easy to see that j⋆ is realized to be a class elementary embedding.

▶ Theorem 43. Suppose that (V, C) is a model of GB and A ∈ Vκ where κ is the critical
point of a non-trivial elementary embedding j : V → M for some class function j and
transitive class M. Then N realizes every axiom of GBε plus:
1. N ⊩ j⋆ is a class function compatible with ≃, namely

N ⊩ ∀x1∀x2∀y1∀y2((x1 ≃ x2 ∧ op(x1, y1) ε j⋆ ∧ op(x2, y2) ε j⋆) → y1 ≃ y2).

2. N ⊩ ∀x∀y(op(x, y) ε j⋆ → y εMA,
3. N ⊩ ∀α ,op(α(κ)ר! α) ε j⋆ ∧ ∃b( (κ)ר! ε b ∧ op( ,(κ)ר! b) ε j⋆ (i.e.!ר(κ) is a critical point of j⋆),
4. For every formula φ(x1, . . . , xn) in Fmlε we have

N ⊩ ∀a1, . . . , an∃b1, . . . , bn(op(a1, b1) ε j⋆ ∧ · · · ∧ op(a1, b1) ε j⋆ ∧ (φ(⃗a) ↔ φMA
(⃗b))).
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▶ Theorem 44. Suppose that (V, C) is a model of GB plus Choice with a measurable cardinal
κ, and A ∈ Vκ is a realizability algebra. Let N = (V,A) be the corresponding realizability
model. Then, N ⊩ GB + there exists a measurable cardinal.

Proof. Let j : V → M be an elementary embedding with critical point κ witnessing that κ is
a measurable cardinal and define j⋆ as in (⋆). By Theorem 35 and Proposition 39, we have
N ⊩ GB. Theorem 43(1) proves that j⋆ is a function compatible with the extensional equality.
Theorem 43(3) implies that j⋆ is non-trivial and (κ)ר! is a critical point. Theorem 43(4)
implies that j⋆ is elementary for formulas in the language of Lε (and hence L∈). Therefore,
we can realize that there is an elementary embedding j⋆ : N → MA with critical point .(κ)ר!
Finally, from this it follows that there is a non-principal complete-(κ)ר! ultrafilter on (κ)ר! so
(κ)ר! is indeed a measurable cardinal. ◀

We end this section by showing that the above analysis naturally generalizes to larger
cardinal notions involving the notion of elementary embedding, in particular Reinhardt
cardinals. So suppose that (V, C) is a model of GB that contains a Reinhardt cardinal κ,
this means that κ is the critical point of a non-trivial elementary embedding j of the universe
into itself. It is important here that we work over GB because if we only consider Reinhardt
cardinals in a purely first-order setting then any proper class must be definable by some
formula. It is then possible to show that there are no definable elementary embedding of
the universe into itself by work of Suzuki [23] or see [7] for an extended discussion on the
metamathematics of dealing with Reinhardt cardinals.

▶ Theorem 45. Suppose that (V, C) is a model of GB with a Reinhardt cardinal κ, and
A ∈ Vκ is a realizability algebra. Let N = (V,A) be the corresponding realizability model,
then N |= GB + there exists a Reinhardt cardinal.

Proof. Let j : V → V be an elementary embedding witnessing that κ is a Reinhardt cardinal,
with j∗ defined as in (⋆). By Theorem 35 and Proposition 39, we have N ⊩ GB. As before,
from Theorem 43 one can realize that j⋆ is a non trivial function which is compatible with the
extensional equality and has (κ)ר! as a critical point. An easy generalization of Theorem 43(4)
implies that j∗ is elementary for GB formulas. Therefore, the existence of a Reinhardt
cardinal is realized. ◀

11 Conclusion

We have shown how to realize the axioms of inaccessible, Mahlo, measurable and Reinhardt
cardinals assuming their consistency relative to ZFC or ZF. We have reformulated each of
these axioms in the context of ZF or GB and we have proven that the corresponding notions
are preserved by any realizability algebra whose size is smaller than the large cardinals
considered, in particular by any countable realizability algebra. Note that in each one of
these four scenarios, no special instructions were needed, the axioms considered are realized
by pure terms of the λc-calculus. This may be counterintuitive since large cardinals axioms
are very strong axioms which entail the consistency of ZFC, yet our results show that despite
their strength, large cardinals axioms do not add a computational content to the realizability
machinery whenever the algebra is small enough (namely countable or of size smaller than
the large cardinal considered). On the other hand, it remains an open problem to determine
what would happen for a larger realizability algebra (equipotent with the large cardinal
considered or larger). For example, in the case of forcing, if the forcing has size κ then it
may collapse κ to be bijective with a smaller cardinal. Hence special instructions may be
needed in order to prevent the large cardinal from collapsing and to preserve its properties.
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There is opportunity for future work involving realizability models for large cardinals.
The method presented to realize measurable and Reinhardt cardinals focused on preservation
of non trivial elementary embeddings; this could be easily adapted to realize rank-into-rank
embeddings, which correspond to some of the strongest known large cardinals axioms not
known to be inconsistent in ZFC. Preservation of other large cardinal notions could be
investigated such as Ramsey cardinals, weakly compact, strongly compact, supercompact
cardinals and many others. Clearly, assuming larger cardinals we can get realizability models
for those large cardinals notions: for instance if we assume the consistency of ZFC with a
measurable cardinal, we can realize the existence of a measurable cardinal and in particular
of a Ramsey cardinal, but it remains an open problem whether Ramsey cardinals can be
preserved by realizability algebras, namely whether starting from a model of ZFC with a
Ramsey cardinal κ such that |A| < κ, one can realize the existence of a Ramsey cardinal in
the corresponding realizability model.
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