
Syntactically and Semantically Regular Languages
of λ-Terms Coincide Through Logical Relations
Vincent Moreau # Ñ

IRIF & Université Paris Cité & Inria Paris, France

Lê Thành Dũng (Tito) Nguyễn #Ñ

Laboratoire de l’informatique du parallélisme (LIP), École normale supérieure de Lyon, France

Abstract
A fundamental theme in automata theory is regular languages of words and trees, and their
many equivalent definitions. Salvati has proposed a generalization to regular languages of simply
typed λ-terms, defined using denotational semantics in finite sets.

We provide here some evidence for its robustness. First, we give an equivalent syntactic
characterization that naturally extends the seminal work of Hillebrand and Kanellakis connecting
regular languages of words and syntactic λ-definability. Second, we show that any finitary extensional
model of the simply typed λ-calculus, when used in Salvati’s definition, recognizes exactly the same
class of languages of λ-terms as the category of finite sets does.

The proofs of these two results rely on logical relations and can be seen as instances of a more
general construction of a categorical nature, inspired by previous categorical accounts of logical
relations using the gluing construction.

2012 ACM Subject Classification Theory of computation → Denotational semantics; Theory of
computation → Regular languages

Keywords and phrases regular languages, simple types, denotational semantics, logical relations

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.40

Related Version Full version with additional proofs: https://arxiv.org/abs/2308.00198

Funding Lê Thành Dũng (Tito) Nguyễn: Supported by the LABEX MILYON (ANR-10-LABX-0070)
of Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated
by the French National Research Agency (ANR).

Acknowledgements We would like to thank Amina Doumane, Sam van Gool, Paul-André Melliès
and Sylvain Salvati for in-depth discussions that significantly helped us refine our ideas. We are
also grateful to Sam and Paul-André for proof-reading drafts of this paper, and to the ReFL
discussion group https://www.engboris.fr/refl/ for hosting a reading group on logical relations
and normalization by evaluation. The first author would like to thank the Felicissimo family for
their support during the writing process of this article.

1 Introduction

Much work has been devoted to the study of regular languages of words and trees – also
called recognizable – and their equivalent characterizations, typically in terms of automata,
algebra, and logic. The remarkable robustness of this notion of regularity has led to attempts
to extend it to several other structures, such as infinite words/trees or graphs of bounded
treewidth – many examples can be found, for instance, in [4].

This paper focuses on a less studied extension: recognizable languages of simply typed
λ-terms, introduced by Salvati [27]. They are a conservative generalization [27, §3]:1 using the
Church encoding, finite words and trees can be represented in the simply typed λ-calculus,

1 Alternatively, see [34, Proposition 7.1] for the case of words.

© Vincent Moreau and Lê Thành Dũng Nguyễn;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 40; pp. 40:1–40:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:moreau@irif.fr
http://www.irif.fr/~moreau
https://orcid.org/0009-0005-0638-1363
mailto:nltd@nguyentito.eu
https://nguyentito.eu/
https://orcid.org/0000-0002-6900-5577
https://doi.org/10.4230/LIPIcs.CSL.2024.40
https://arxiv.org/abs/2308.00198
https://www.engboris.fr/refl/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2 Syntactically and Semantically Regular Languages of λ-Terms Coincide

and recognizability for Church encodings coincides with the usual notion of regularity.
Furthermore, as Salvati explains in his habilitation thesis [28], regular languages of λ-terms
can be used to shed light on several classical topics concerning the simply typed λ-calculus,
such as higher-order matching [27, §6.2] and higher-order grammars [17].

However, not many characterizations of the class of recognizable languages of simply
typed λ-terms are known, and it would be desirable to have more evidence that it is robust.
Moreover, if we know that this class of languages is a truly canonical object, then so is its
Stone dual, namely the recently introduced space of profinite λ-terms [34]. Currently, there
exist two definitions of recognizable languages of λ-terms, both provided in [27]:

The first one [27, Definition 1] uses denotational semantics into the finite standard
models of the simply typed λ-calculus. This may be understood as generalizing to higher
orders the computational aspects of deterministic finite automata. In the same vein, the
concrete construction of profinite λ-terms in [34] depends on specific properties of the
category FinSet of finite sets and functions between them.
The second one, grounded in intersection types [27, §4], turns out to admit an equivalent
presentation in terms of a denotational semantics in finite domains [28, Theorem 25].
Indeed, the connection between intersection types and semantics is standard, see e.g. [26].

Both definitions can be seen as an instance of the following pattern: the interpretation
of a simply typed λ-term in some denotational model with a finitary flavor should suffice
to know whether the term belongs to our language of interest. This is closely analogous
to the algebraic definition of regular word languages. Indeed, viewing the set Σ∗ of words
over a finite alphabet Σ as the free monoid generated by Σ, a language L ⊆ Σ∗ is regular if
and only if, for some homomorphism φ : Σ∗ → M to a finite monoid M , the “interpretation”
φ(w) determines2 whether w ∈ L for each w ∈ Σ∗. Asking for φ to be a homomorphism
parallels the compositionality property of denotational semantics.

We may therefore ask:
What kind of semantics yield the same notion of recognizable language? More precisely,
with a definition of C-recognizable language for any cartesian closed category (CCC) C,
i.e. any categorical model of the simply typed λ-calculus with products, the question
becomes: when do recognizability by C and by FinSet coincide?
Alternatively, is there any characterization of regular languages of λ-terms that does not
involve denotational semantics?

For the latter, we propose a positive answer inspired by the following result of Hillebrand
and Kanellakis [14, Theorem 3.4]: a language of words is regular if and only if it can be
decided by a simply typed λ-term operating on Church-encoded words. By replacing the
type of Church encodings with any simple type A, we get a natural notion of syntactically
regular language of λ-terms, defined by means purely internal to the simply typed λ-calculus.

Contributions and proof methods. The main results of this paper are as follows:
Theorem 3.2 any non-degenerate cartesian closed category can recognize at least every

language which is syntactically regular.
Theorem 5.9 every language recognized by a locally finite and well-pointed CCC – in other

words, a finitary extensional model of the simply typed λ-calculus – is recognized by
FinSet. This was first stated by Salvati without proof in [28, Lemma 20].

Theorem 6.5 every language recognized by FinSet is syntactically regular.

2 More formally, L = φ−1(P) for some P ⊆ M .

V. Moreau and L. T. D. Nguyễn 40:3

These three theorems, taken together, show that all non-degenerate, well-pointed and locally
finite CCCs yield the same notion of regular language of λ-terms, which is the same as the
syntactic one.

To achieve this goal, we introduce a construction on CCCs, which we call squeezing,
and combine it with the standard categorical account of logical relations based on sconing.
Indeed, Salvati claims in [28] that Theorem 5.9 can be established via logical relations, and
it turns out that this falls out directly from our squeezing construction; but its versatility
also allows us to apply it to prove the more diffcult Theorem 6.5 on syntactic recognizability.

Related work. Morally, the study of regular languages of λ-terms amounts to understanding
what information can be extracted by evaluating simply typed λ-terms in finitary models.
A seminal result in this spirit is Statman’s finite completeness theorem [30], which can be
rephrased as the regularity of all singleton languages of λ-terms – a perspective that has
led to a simplified proof [29]. The idea of using another CCC than FinSet, easier to use to
show Statman’s theorem, has been exploited in [17]. This shows the advantage to use an
appropriate CCC to recognize a given language, a possibility which is extended to a vast
class of CCCs in this paper (see Proposition 7.3 for an example of application).

Finitary semantics are powerful tools, in particular, for understanding the computational
power of the simply typed λ-calculus. For instance, in [14], Hillebrand and Kanellakis use
the finite set semantics to prove their aforementioned theorem on regular word languages; as
for finite Scott domains presented as intersection types, they have been applied by Terui [33]
to study the complexity of normalizing simply typed λ-terms.

As can be seen inter alia from rather surprising results of Statman [31] and Plotkin [25],
finitary models are also useful to tame the infinitary aspects of an extension of the simply typed
λ-calculus with a fixed-point operator, called the λY -calculus. Furthermore, the well-studied
higher-order model checking problem is about testing regular properties on infinite trees that
can be Church-encoded in the λY -calculus; it sits at the interface between automata and
programming languages, with applications to the formal verification of functional programs
(see e.g. [16]). Decidability of higher-order model checking, first established by Ong through
game semantics [23], now admits proofs based on intersection types [15, 24] and on finitary
semantics [35, 10]. Drawing on this line of work, higher-order parity automata [19] generalize
to λY -terms the recognizable languages of simply typed λ-terms.

The theme of syntactic recognizability à la Hillebrand and Kanellakis, for its part,
has been recently revived in Nguyễn and Pradic’s implicit3 automata theory. They use
substructural λ-calculi and Church encodings to characterize star-free languages [22] and
classes of string-to-string functions computed by transducers [21].

Plan of the paper. We start by recalling in Section 2 the semantics of the simply typed
λ-calculus, the notion of language recognized by a CCC as defined in [27] for finite sets,
and by introducing the notion of syntactically regular language, generalizing recognition
as defined in [14]. In Theorem 3.2 of Section 3, we show that every non-degenerate CCC
recognizes all syntactically regular languages. In Section 4, we recall the definition of logical
relations and introduce the squeezing construction Sqz(−) which will be a crucial tool for

3 The name is a nod to implicit computational complexity, a field concerned with alternative definitions
of complexity classes that avoid low-level machine models and explicit resource bounds. As an example,
in addition to their result on regular word languages in the simply typed λ-calculus, Hillebrand and
Kanellakis’s paper [14] also contains characterizations of the k-EXPTIME and k-EXPSPACE hierarchies
based on λ-terms, that are again proved by evaluation in finite sets.

CSL 2024

40:4 Syntactically and Semantically Regular Languages of λ-Terms Coincide

the two next sections. In Section 5, we recall the definition of locally finite and well-pointed
CCCs, and show in Theorem 5.9 that CCCs enjoying both conditions do not recognize more
languages than finite sets do. In Theorem 6.5 of Section 6, we show that languages recognized
by finite sets are syntactically regular. We finish this paper by giving some consequences of
the equivalence established by these three theorems in Section 7.

2 Languages of λ-terms

Syntax and semantics

We first specify the syntax we are working with. The grammars of types and preterms are

A, B ::= o | A ⇒ B | A × B | 1 and t, u ::= x | λ(x : A). t | t u | ⟨t, u⟩ | ti for i = 1, 2

and we consider the usual typing rules and βη-conversion rules, see e.g. [2, §4.1]. We extend
the notation of ti, for the projection to the ith coordinate, to the case where t is of type
A1 × · · · × An and i is between 1 and n. As the λ-abstractions are annotated, a closed λ-term
has at most one type derivation. For any simple type A, we write Λ(A) for the set of closed
simply typed λ-terms of type A, taken modulo βη-conversion.

We recall the semantics of the simply typed λ-calculus into cartesian closed categories,
abbreviated as CCC, see [2, Chapter 4] for more details. For any CCC C, object c of C and
simple type A, we define an object JAKc of C by induction on A as follows:

JoKc := c JA ⇒ BKc := JAKc ⇒ JBKc JA × BKc := JAKc × JBKc J1Kc := 1

Using the CCC structure of C, one can define a family of set-theoretic functions

J−Kc : Λ(A) −→ C(1, JAKc) for every simple type A

called semantic brackets, sending closed λ-terms to points of the objects JAKc.
These assignments can be described in another way. Let Lam be the category whose

objects are simple types and whose set of morphisms from A to B is Λ(A ⇒ B), with the
expected composition. This category is the free CCC on one object, i.e., for every CCC C
and object c of C, there exists a unique CCC functor J−Kc : Lam → C such that JoKc = c.
This can be represented by the commutativity of the following diagram:

Lam

1 Cc

o

J−Kc (1)

In this paper, the CCCs come with specified terminal object, cartesian products, and
exponentials, and CCC functors are required to respect these structures strictly, on the nose.
In that way, the unicity in the universal property of Lam depicted in Equation (1) holds up
to equality, and not merely isomorphism.

We write FinSet for the cartesian closed category of finite sets. The semantics of the
simply typed λ-calculus in this CCC corresponds to its naive set-theoretic interpretation.
For ease of notation, we identify the finite set Q with the set of functions FinSet(1, Q).

Recognizable languages of λ-terms, semantically

We now define the notion of C-recognizable language of λ-terms, for any CCC C. The
case C = FinSet corresponds to the notion of regular language of simply typed λ-terms
introduced in [27, Definition 1].

V. Moreau and L. T. D. Nguyễn 40:5

▶ Definition 2.1. Let C be a CCC and c be an object of C. For every simple type A and
subset F ⊆ C(1, JAKc), the language LF of λ-terms of type A is defined as

LF := {t ∈ Λ(A) | JtKc ∈ F} .

We define the set Recc(A) of languages of λ-terms of type A recognized by c as

Recc(A) := {LF : F ⊆ C(1, JAKc)} .

Finally, a language L of λ-terms of type A is C-recognizable if there exists an object c of C
such that L belongs to the set Recc(A).

▶ Example 2.2. For any natural number n, we define the associated simple type

Churchn := (o ⇒ o)n ⇒ o ⇒ o .

There is a bijection between the sets Λ(Churchn) and {1, . . . , n}∗, the set of finite words over
an alphabet with n letters, called the Church encoding. For example, the word 12212 over
the two letter-alphabet {1, 2} is encoded as the λ-term

λ(a : (o ⇒ o)2). λ(e : o). a2 (a1 (a2 (a2 (a1 e)))) ∈ Λ(Church2) .

Under this bijection, a language of λ-terms of type Churchn is FinSet-recognizable, in the
sense of Definition 2.1, if and only if the language of words associated by the Church encoding
is a regular language of finite words, see [34, Proposition 7.1].

▶ Example 2.3. We give a detailed example using the Church encoding. We show that the
language L of λ-terms of type Church2 which are encodings of words in {1, 2}∗ that contain
an even number of 1s and an odd number of 2s, is FinSet-recognizable.

Let Q be the finite set {q⊤, q⊥} and F be the subset of JChurch2KQ defined as

F := {f ∈ (Q ⇒ Q) × (Q ⇒ Q) ⇒ Q ⇒ Q | f(not, IdQ)(q⊤) = f(IdQ, not)(q⊥) = q⊤}

where not : Q → Q is the function defined as not(q⊤) = q⊥ and not(q⊥) = q⊤. The language
L is equal to LF which belongs to RecQ(Church2), so L is FinSet-recognizable.

The idea is that, given the semantic interpretation f ∈ JChurch2KQ of the encoding of
a word w ∈ {1, 2}∗, the states f(not, IdQ)(q⊤) and f(IdQ, not)(q⊥) are the states reached
respectively, after reading w, in the two following deterministic finite automata:

q⊤start q⊥

1

1

2 2

q⊤ q⊥ start

2

2

1 1

The language L is the intersection of the two languages recognized by these automata.

▶ Example 2.4. We consider the simple type

UntypedTerms := ((o ⇒ o) ⇒ o) ⇒ (o ⇒ o ⇒ o) ⇒ o .

There is a canonical bijection – which is classical, see e.g. [3] for an in-depth treatment –
between Λ(UntypedTerms) and the set of closed untyped λ-terms modulo α-renaming, i.e.

CSL 2024

40:6 Syntactically and Semantically Regular Languages of λ-Terms Coincide

syntax trees with binders, without β-conversion. Here are examples of encodings of the latter
into the former (for the general definition, see Appendix A):

λx. x x ⇝ λ(ℓ : (o ⇒ o) ⇒ o). λ(a : o ⇒ o ⇒ o).
ℓ (λ(x : o). a x x)

(λx. x x) (λx. x x) ⇝ λ(ℓ : (o ⇒ o) ⇒ o). λ(a : o ⇒ o ⇒ o).
a (ℓ (λ(x : o). a x x)) (ℓ (λ(x : o). a x x))

λf. (λx. x x) (λx. f (x x)) ⇝ λ(ℓ : (o ⇒ o) ⇒ o). λ(a : o ⇒ o ⇒ o).
ℓ (λ(f : o). a (ℓ (λ(x : o). a x x))

(ℓ (λ(x : o). a f (a x x))))

This can be seen as an extension of Church encodings to higher-order abstract syntax: indeed,
the variable ℓ plays the role of a constructor and introduces a bound variable.

A closed untyped term is affine if and only if every bound variable occurs at most
once. We now give the outline of the proof, detailed in Appendix A, that the encodings in
Λ(UntypedTerms) of closed untyped affine terms form a FinSet-recognizable language.

Let Q be the finite set {0, 1, ∞} × {⊤, ⊥}, where {0, 1, ∞} is seen as the additive
monoid N truncated to 2 = 3 = · · · = ∞. We consider the two set-theoretic functions
fapp : Q → (Q ⇒ Q) and fabs : (Q ⇒ Q) → Q defined as

fapp(k, b)(k′, b′) := (k +k′, b∧ b′) and fabs(g) := (g1(0, ⊤), g2(0, ⊤)∧ (g1(1, ⊤) ≤ 1))

where g1 : Q → {0, 1, ∞} and g2 : Q → {⊤, ⊥} are the compositions of g : Q → Q with the
two projections. We verify that, for any closed untyped term t, we have

JtKQ (fabs)(fapp) = (0, b) where b is ⊤ if and only if t is affine.

Therefore, if F is the subset of JUntypedTermsKQ defined as

F := {s ∈ ((Q ⇒ Q) ⇒ Q) ⇒ (Q ⇒ Q ⇒ Q) ⇒ Q | s(fabs)(fapp) = (0, ⊤)}

then the FinSet-recognizable language LF of terms of type UntypedTerms is the language of
affine terms.

To the best of our knowledge, this regularity result is original. It also strongly suggests
that the notion of FinSet-recognizable language, when applied to the type UntypedTerms of
syntax trees with binders, differs from the recognizability of these syntax trees by the nominal
tree automata of [13, §3.1]. Indeed, nominal automata cannot recognize the language of data
words whose letters are all different [5, Proof of Lemma 5.4].

▶ Remark 2.5. Let C and D be CCCs and G : C → D be a CCC functor. By the universal
property of Lam, see Equation (1), for every object c of C, the following diagram commutes:

Lam

1 C D

o

c G

J−Kc

J−KG(c)

In particular, this means that for every simple type A, the objects JAKG(c) and G(JAKc) are
equal, and that for every simply typed λ-terms t and t′ of type A,

if JtKc = Jt′Kc then JtKG(c) = Jt′KG(c) .

V. Moreau and L. T. D. Nguyễn 40:7

This means that interpreting the simply typed λ-calculus at the object c will always be at
least as fine as interpreting it at G(c). In particular, this entails that RecG(c)(A) ⊆ Recc(A).
If G is moreover faithful, we then have that RecG(c)(A) = Recc(A) for any object c of C.
Therefore, all languages which are C-recognizable are D-recognizable.

Recognizable languages of λ-terms, syntactically

A syntactic approach to recognition is described in [14]. This syntactic approach uses the
type substitution, also called cast, whose definition we now recall.

▶ Definition 2.6. If A and B are simple types, we define a simple type A[B] = A{o := B}
by replacing every occurence of o in A by B. We extend this to λ-terms by induction:

x[B] := x (λ(x : A). t)[B] := λ(x : A[B]). t[B] (t u)[B] := t[B] u[B]
⟨t, u⟩[B] := ⟨t[B], u[B]⟩ ti[B] := (t[B])i

▷ Claim 2.7. For every simple types A and B and t ∈ Λ(A), we have t[B] ∈ Λ(A[B]).

▶ Remark 2.8. A more categorical way to understand casting is to see it as the unique CCC
functor (−)[B] : Lam → Lam such that the following diagram commutes:

Lam

1 Lam
B

o

(−)[B]

As such, it is the semantic bracket functor J−KB : Lam → Lam.
Finally, we recall the encoding of Booleans into the simply typed λ-calculus.

▶ Definition 2.9. Let Bool be the simple type o
2 ⇒ o. Its two inhabitants are the λ-terms

true := λ(x : o2). x1 and false := λ(x : o2). x2 .

The following definition naturally generalizes the one given in [14] for A = Churchn.

▶ Definition 2.10. For any simple type A, a language L ⊆ Λ(A) is syntactically regular if
there exists a simple type B and a λ-term r of type A[B] ⇒ Bool such that

L = {t ∈ Λ(A) | r t[B] =βη true} .

▶ Theorem 2.11 (Hillebrand & Kanellakis, [14, Theorem 3.4]). A language of λ-terms of type
Churchn is syntactically regular if and only if the associated language of finite words by the
Church encoding is regular in the usual sense.

▶ Example 2.12. The Church encodings of words in {1, 2}∗ with an even number of 1s and
an odd number of 2s is syntactically regular. Indeed, we consider the following λ-terms

and := λ(p : Bool × Bool). λ(x : o × o). p1 ⟨p2 x, x2⟩
id := λ(b : Bool). b

not := λ(b : Bool). λ(x : o × o). b ⟨x2, x1⟩

and choose, as in Definition 2.10, the type B to be Bool and the simply typed λ-term r to be

λ(w : Church2[Bool]). and ⟨w not id true, w id not false⟩ : Church2[Bool] ⇒ Bool .

Just as in Example 2.3, this term can be seen as running two DFAs, both having two states,
over the encoding of an input word.

CSL 2024

40:8 Syntactically and Semantically Regular Languages of λ-Terms Coincide

When restricted to types Churchn for any natural number n, the notion of FinSet-
recognizable and syntactically regular languages coincide, as they both boil down to the
usual notion of regular language of finite words, as seen in Example 2.2 and Theorem 2.11
respectively. One of the contributions of the present paper is to show that these two notions
coincide at every simple type.

3 Syntactic recognition implies semantic recognition

In this section, we state Theorem 3.2 and prove it by extending the semantic evaluation
argument, described by Hillebrand and Kanellakis in their proof of Theorem 2.11 for the
case of languages of words, to the more general case of languages of any type.

▶ Definition 3.1. A CCC C is said to be non-degenerate if there exist two objects c′, c of C
such that there exist two distinct morphisms f, g : c′ → c.

▶ Theorem 3.2. If C is a non-degenerate CCC, then any language of λ-terms which is
syntactically regular is C-recognizable.

Proof. We observe first that the non-degeneracy assumption means that the two projections
π1, π2 : c × c → c are not equal, since they yield different results when pre-composed with
the morphism c′ → c × c obtained by pairing f and g.

Let A be a simple type and L be a language of λ-terms of type A which is syntactically
regular. There exists a simple type B together with a λ-term r ∈ Λ(A[B] ⇒ Bool) such that

L = {t ∈ Λ(A) | r t[B] =βη true} .

In order to show that L belongs to RecJBKc
(A), we work with the interpretation of the simply

typed λ-calculus at the object JBKc of C. By the universal property of the CCC Lam, the
following diagram commutes

Lam

1 Lam CB

J−KJBKc

o

(−)[B]

J−Kc

.

More concretely, this states that, for every simply typed λ-term t, the two morphisms Jt[B]Kc

and JtKJBKc
are equal. By viewing r as a morphism from A[B] to Bool in the category Lam,

the compositionality of the semantic interpretation gives us that

Jr t[B]Kc = JrKc ◦ Jt[B]Kc = JrKc ◦ JtKJBKc
.

By non-degeneracy, the semantic interpretation J−Kc : Λ(Bool) → C(1, JBoolKc) is injective:
indeed, JtrueKc = π1 ̸= π2 = JfalseKc. Therefore, we get the following equivalences

t ∈ L ⇐⇒ r t[B] =βη true ⇐⇒ Jr t[B]Kc = JtrueKc ⇐⇒ JtKJBKc
∈ F

where F is the subset of C(1, JAKJBKc
) defined as {q ∈ C(1, JAKJBKc

) | JrKc ◦ q = JtrueKc}.
This shows that L belongs to RecJBKc

(A), hence that it is a C-recognizable language. ◀

4 Logical relations and the squeezing construction

Sconing in a nutshell

In this paragraph, we recall the construction of a CCC of logical relations from one CCC to
another. We first recall the construction of logical predicates, also called sconing, which will

V. Moreau and L. T. D. Nguyễn 40:9

be general enough to give logical relations as a special case. This method is well-known, see
for instance [20] for an introductory account.

▶ Definition 4.1. Let C be a CCC. The category of logical predicates over C, that we denote
by P(C), is defined as follows:

its objects are the pairs (c, S) of an object c of C together with a subset S ⊆ C(1, c),
its morphisms from (c, S) to (c′, S′) are the morphisms f : c → c′ of C such that f ◦ (−)
restricts to a set-theoretic function S → S′.

▷ Claim 4.2. This category P(C) is a CCC, with exponentiation given by

(c, S) ⇒ (c′, S′) = (c ⇒ c′, {f ∈ C(1, c ⇒ c′) | ∀s ∈ S, evc,c′ ◦⟨f, s⟩ ∈ S′})

The forgetful functor (c, S) 7→ c is a CCC functor.

Proof. See [20, p. 5], where the notation C̃ is used for the category P(C). ◁

▶ Definition 4.3. Let C1 and C2 be two CCCs. The CCC of logical relations from C1 to C2
is the CCC P(C1 × C2), which admits a CCC functor P(C1 × C2) → C1 × C2.

▶ Remark 4.4. We have defined the CCC of logical relations in terms of the logical predicate
construction P(−) of Definition 4.1. More concretely, this construction gives a category that
can be described in the following way:

its objects are triples (c1, c2,⊩) where ci is an object of Ci for i = 1, 2 and ⊩ is a subset
of C1(1, c1) × C2(1, c2), and is thus a relation between the points of c1 and of c2,
its morphisms from (c1, c2,⊩) to (c′

1, c′
2,⊩′) are pairs (f1, f2) ∈ C1(c1, c′

1) × C2(c2, c′
2)

such that for every pair (x1, x2) ∈ C1(1, c1) × C2(1, c2),

if x1 ⊩ x2 , then f1 ◦ x1 ⊩
′ f2 ◦ x2 .

For the proof that this category is a CCC, see [20, Proposition 4.3].
▶ Remark 4.5. The CCC of logical relations from C1 to C2 comes with two projections to C1
and to C2 which are CCC functors. By Remark 2.5, we get that for any relation (c1, c2,⊩),

JAK(c1,c2,⊩) = (JAKc1 , JAKc2 ,⊩A) for some ⊩A ⊆ C1(1, JAKc1) × C2(1, JAKc2).

The interpretation of a λ-term t ∈ Λ(A) at an object (c1, c2,⊩) is a morphism of the form

(JtKc1
, JtKc2

) : 1 −→ JAK(c1,c2,⊩) which means that (JtKc1
, JtKc2

) ∈⊩A .

This is the fundamental lemma of logical relations, see e.g. [2, Lemma 4.5.3].
▶ Remark 4.6. At this stage, the categories C1 and C2 play a symmetric role. However, this
will not always be the case in the rest of the paper, and we therefore say CCC of logical
relations from C1 to C2 to emphasize the order.

The squeezing construction

We describe here a construction, which we call squeezing, which produces a CCC Sqz(C)
from a CCC C equipped with an additional structure that we call a squeezing structure.
Intuitively, the objects of Sqz(C) are objects of C coming with bounds induced by the
structure, inspired by the squeeze theorem of calculus. This construction can be seen as the
proof-irrelevant counterpart to the twisted gluing construction described in [1, Definition 5].

CSL 2024

40:10 Syntactically and Semantically Regular Languages of λ-Terms Coincide

The notion of squeezing structure that is used is related to the hypotheses of [8, Lemma 6];
this pattern also occurs in the older proof theory tradition, see for instance [9, §8.A].

Throughout this paragraph, we fix any CCC C. We recall that a wide subcategory is
a subcategory containing all objects, and can hence be seen as a predicate on morphisms,
closed under finite compositions.

▶ Definition 4.7. A squeezing structure on C is the data of

two wide subcategories Cleft and Cright of C with associated notations l−→ and r−→ for
morphisms, which are stable under finite cartesian products and such that for all u : cl

l−→ c′
l

and v : cr
r−→ c′

r,

v ⇒ u : c′
r ⇒ cl

l−→ cr ⇒ c′
l and u ⇒ v : c′

l ⇒ cr
r−→ cl ⇒ c′

r .

for every object c of C, two objects Lc and Rc of C such that there exists morphisms:

L1
l−→ 1 Lc×c′

l−→ Lc × Lc′ Lc⇒c′
l−→ Rc ⇒ Lc′

1 r−→ R1 Rc × Rc′
r−→ Rc×c′ Lc ⇒ Rc′

r−→ Rc⇒c′ .
(2)

▶ Remark 4.8. As we work in a proof-irrelevant setting, we are merely interested in the
existence of these morphisms. Nonetheless, knowing that they belong to Cleft or Cright gets
us back some precious information, as we will see in Lemma 4.11 and Section 6.

▶ Definition 4.9. Given a squeezing structure on C, the category Sqz(C) is the full subcat-
egory of C whose objects are the objects c of C for which there exist both a left morphism
Lc

l−→ c and a right morphism c
r−→ Rc.

Notice that we write Sqz(C) even though this construction depends both on the CCC C
and on a squeezing structure on C.

▶ Theorem 4.10. For a squeezing structure on C, the category Sqz(C) is a sub-CCC of C.

Partial surjections

Logical relations which are partial surjections, i.e. both functional and surjective relations,
can be a useful tool to obtain partial equivalence relations and to prove semantic results,
see [6, §3], [7, §1.4.2] and [34, Theorem A]. We now show that the squeezing construction
can be applied to get partial surjections for free.

▶ Lemma 4.11. Let C1 and C2 be two CCCs and R be the CCC of logical relations from C1
to C2, whose objects are triples containing relations. Suppose that we are given a squeezing
structure on R such that

the relations in the objects Lc are surjective,
the relations in the objects Rc are functional,
the morphisms (u1, u2) in Rleft are such that C2(1, u2) is a surjective function,
the morphisms (v1, v2) in Rright are such that C2(1, v2) is an injective function,

where, for u ∈ C(a, b), the function C(1, u) : C(1, a) → C(1, b) is the composition u ◦ (−).
Then, the relation of any object belonging to Sqz(R) is a partial surjection.

We end this section by giving a definition which will appear in squeezing structures in
Proposition 6.4 and in the proof of Proposition 5.8.

V. Moreau and L. T. D. Nguyễn 40:11

▶ Definition 4.12. Let R be the CCC of logical relations from C1 to C2. We say that a
morphism (f1, f2) : (c1, c2,⊩) → (c′

1, c′
2,⊩′) is a target-identity if c2 and c′

2 are the same
object and if f2 is the identity morphism.

▶ Remark 4.13. We remark that the target-identities form a wide subcategory and are stable
under products and exponentiation.

5 From well-pointed locally finite CCCs to finite sets

We now recall the definition of the class of CCCs C for which we will show that C-recognizable
languages coincide with our other definitions of regular languages of λ-terms. Recall that in
a CCC C, a point of an object c is a morphism 1 → c from the terminal object to c.

▶ Definition 5.1. A CCC is said to be:
well-pointed if every morphism is determined by its action on points of its domain;
locally finite if all its hom-sets are finite sets.

We start by introducing the following constructions, which will help us to use partial
surjections.

▶ Definition 5.2. Let C be a category with a terminal object. We define the following full
subcategories of C:

C≥1 containing the objects c that have at least one point; we call these objects inhabited,
C≤1 containing the objects c that have at most one point,
C=1 containing the objects c that have exactly one point.

When instantiated to the CCC Lam of simple types and λ-terms, the notion of inhabited
object coincides with the usual notion of inhabited simple type.

▶ Proposition 5.3. If C is a CCC, then the category C≥1 is a sub-CCC of C.

▶ Proposition 5.4. If E is a well-pointed CCC, then the category E≤1 is a sub-CCC of E.
Moreover, the category E=1 is equivalent to the terminal category.

We now prove the interesting fact that inhabited objects characterize the recognized
languages of λ-terms in a well-pointed CCC.

▶ Proposition 5.5. If E is a well-pointed CCC, then a language of λ-terms is E-recognizable
if and only if it is E≥1-recognizable.

Proof. Let E be a well-pointed CCC. By Proposition 5.3, E≥1 is a sub-CCC of E so any
language which is E≥1-recognizable is E-recognizable, as explained in Remark 2.5.

We now show that the only language recognized by E≤1 is the empty and full languages.
Let A be a simple type and c be an object of E≤1. As E is well-pointed and by Proposition 5.4,
we know that JAKc belongs to E≤1, which means that C(1, JAKc) is empty or a singleton,
so Recc(A) contains at most the empty and full languages, which are the same when A is
not inhabited.

The empty and full languages are recognized by any CCC, so in particular by E≥1.
Therefore, all E-recognizable languages are E≥1-recognizable. ◀

▶ Example 5.6. The category FinSet≥1 is the CCC of non-empty finite sets.

CSL 2024

40:12 Syntactically and Semantically Regular Languages of λ-Terms Coincide

An implicative semilattice is a meet-semilattice such that each meet operation has an
upper adjoint. Implicative semilattices are CCCs, however, they are degenerate and so
never distinguish different λ-terms of the same type.
Another way to understand this fact is to remark that their full subcategory of inhabited
objects is the terminal category.

Next, we introduce the basic partial relations at which we will interpret the λ-calculus.

▶ Definition 5.7. Let E be a well-pointed locally finite CCC and R be the CCC of logical
relations from FinSet to E. For any object e of E, we consider the triple

Te := (E(1, e), e, ∼e) where ∼e is the identity relation of E(1, e).

which extends to a functor T : E → R.

We now prove a converse to Lemma 4.11 in the present case.

▶ Proposition 5.8. Let E be a well-pointed locally finite CCC whose objects are all inhabited
and R be the CCC of logical relations from FinSet to E. Then, the full subcategory of partial
surjections is a sub-CCC of R.

The proof is in Appendix B and uses a squeezing structure.

▶ Theorem 5.9 (claimed in [28, Lemma 20]). For every well-pointed locally finite CCC E,
any E-recognizable language is FinSet-recognizable.

Proof. Let A be a simple type and L be a language of λ-terms of type A which is E-
recognizable. By Proposition 5.5, it is E≥1-recognizable. Let e be an object of E≥1 such
that L ∈ Rece(A). We consider the object Te = (E(1, e), e, ∼e) from Definition 5.7, whose
relation is a partial surjection. The object JAKTe is of the form (JAKE(1,e), JAKe, ∼A

e), where
the relation ∼A

e is a partial surjection, as explained in Remark 2.5.
Let F be a subset of E(1, JAKe) such that L is LF . We consider the subset F ′ of JAKE(1,e)

defined as the inverse image

F ′ := {q ∈ JAKE(1,e) | ∃q′ ∈ F s.t. q ∼A
e q′}

By the fundamental lemma of logical relations, for λ-term t of type A, we have

JtKE(1,e) ∼A
e JtKe .

which proves that LF ⊆ LF ′ . Moreover, as ∼A
e is a functional relation, we get the converse

inclusion. This proves that L is FinSet-recognizable. ◀

6 From finite sets to λ-terms

In this section, we apply the squeezing construction of Definition 4.9 on a CCC of logical
relations to show that every FinSet-recognizable language is syntactically regular, through
an encoding of finite sets into the simply typed λ-calculus. To achieve that, we need to
change slightly of setting, by moving from finite sets to finite ordinals. This will make it
possible to define the functor Fin(−) without ambiguity.

Therefore, we consider the category FinOrd whose objects are natural numbers and whose
morphisms are the set-theoretic maps between the associated finite cardinals ⟨n⟩ := {1, . . . , n}.
The inclusion of FinOrd in FinSet is a fully faithful functor that is essentially surjective,
henceforth we get an equivalence between FinOrd and FinSet using the axiom of choice.
In particular, FinOrd is a CCC that recognizes the same languages as FinSet.

V. Moreau and L. T. D. Nguyễn 40:13

The encoding of finite sets and its squeezing structure

We take R to be the CCC of logical relations from Lam to FinOrd. We recall that the
objects of R are therefore triples R = (B, n,⊩) where B is a simple type, n is a natural
number and ⊩ is a subset of the product Λ(B)×⟨n⟩. A morphism of R is a pair of morphisms
of Lam and FinOrd which respect the relations.

▶ Definition 6.1. We define the functor Fin(−) : FinOrd → Lam as Fin(n) := o
n ⇒ o

and, for every f : n → n′, the λ-term Fin(f) : Fin(n) → Fin(n′) is

λ(p : Fin(n)). λ(x : on′
). p ⟨xf(1), . . . , xf(n)⟩ .

▶ Remark 6.2. As FinOrd is equivalent to the free cocartesian category and Lamop is
cocartesian, we get a functor n 7→ o

n. The composition of the two functors

FinOrd Lamop Lamn7→o
n (−)⇒o

is precisely the functor Fin(−).

Our goal is now to exhibit a squeezing structure on R in order to show Theorem 6.5. We
consider the target-identities for the two wide subcategories of the structure. We now define
the following family of objects.

▶ Definition 6.3. For any natural number n, we define the object Bijn as

Bijn := (Fin(n), n,⊩n)

where ⊩n is the bijection between the sets Λ(Fin(n)) and ⟨n⟩ defined as

⊩n := {(πi, i) : 1 ≤ i ≤ n} with πi the λ-term λ(x : on). xi .

This assignment extends to a functor Bij(−) : FinOrd → R.

▶ Proposition 6.4. There is a squeezing structure on the CCC R such that:
the left and right morphisms are the target-identities of R,
for any object c = (B, n,⊩) of R, the objects Lc and Rc are both equal to Bijn.

The proof is in Appendix B. Proposition 6.4 shows that we have a sub-CCC Sqz(C) of
the CCC of logical relations from Lam to FinOrd, whose objects are tuples (B, n,⊩) such
that there exists λ-terms u : Fin(n) → B and v : B → Fin(n) lifting to the two following
target-identities:

(Fin(n), n,⊩n) (B, n,⊩)(u,Idn) and (B, n,⊩) (Fin(n), n,⊩n)(v,Idn)
.

Encoding recognizability by finite sets

We have shown in Proposition 6.4 that we have a squeezing structure on the CCC of logical
relations R from Lam to FinOrd. We now show how to use this structure, culminating in
the link established in Theorem 6.5 between FinOrd-recognizable and syntactically regular
languages.

▶ Theorem 6.5. If a language is FinSet-recognizable, then it is syntactically regular.

CSL 2024

40:14 Syntactically and Semantically Regular Languages of λ-Terms Coincide

Proof. Let A be a simple type and L ⊆ Λ(A) be any FinSet-recognizable language. There
exists a finite set Q and a subset F ⊆ ⟨JAKn⟩ such that

L = {t ∈ Λ(A) | JtKn ∈ F} .

We take n to be the cardinality of Q and note χ : JAKn → 2 the characteristic function
associated to the subset F . By applying the functor Bij(−), we get a morphism of relations

Bijχ := (Fin(χ) , χ) :
(

Fin(JAKn), JAKn,⊩JAKn

)
−→ (Fin(2), 2,⊩2) .

The interpretation JAKBijn
is of the form (A[Fin(n)], JAKn,⊩A

n) as explained in Remark 2.5.
As it is an object of Sqz(R), it has a target-identity into BijJAKn

. By composing this
morphism with Bijχ, we obtain a morphism

(r , χ) : (A[Fin(n)], JAKn,⊩A
n) −→ (Fin(2), 2,⊩2) .

By the fundamental lemma of logical relations, we get that, for every λ-term t of type A,

t[Fin(n)] ⊩A
n JtKn on which we apply (r, χ) to get r t[Fin(n)] ⊩2 χ(JtKn)

which states that r t[Fin(n)] =βη true if and only if χ(JtKn) is 1. This proves that r recognizes
the language LF given by F ⊆ ⟨JAKn⟩, and so that L is syntactically regular. ◀

7 Regular languages

In this section, we want to point out a few consequences of the equivalence previously proved
through Theorem 3.2, Theorem 5.9 and Theorem 6.5. Using these theorems, the following
definition of regular languages is well-defined.

▶ Definition 7.1. Let A be a simple type. A regular language of λ-terms of type A is a
subset L ⊆ Λ(A) such that one of the following equivalent propositions holds:

L is syntactically regular;
L is C-recognizable, for some non-degenerate, well-pointed and locally finite CCC C;
L is FinSet-recognizable.

We denote by Reg(A) the set of regular languages of λ-terms of type A.

▶ Remark 7.2. Note that FinSet recognizes all the regular languages of λ-terms. In that
sense, it plays the same role as the monoid

M := {f : N → N | ∃N ∈ N, ∀n ≥ N, f(n) = n} with the composition of functions

which recognizes all the regular languages of finite words as all finite monoids can be embedded
into M . Such a monoid cannot be finite; however, M is a locally finite monoid, i.e. all its
finitely generated submonoids are finite (this is a standard notion, see e.g. [11, §V.5]).

In the case of finite words, recognizability by finite monoids and locally finite monoids
are equivalent when the alphabet is finite. In the case of λ-terms however, finite CCCs are
all degenerate whereas the locally finite case yields regular languages of λ-terms, with some
additional conditions.

▶ Proposition 7.3. The set Reg(A) of regular languages of λ-terms of some simple type A

is a Boolean algebra.

V. Moreau and L. T. D. Nguyễn 40:15

This fact boils down to stability by union or intersection. It is proved in [27, Theorem 8]
using intersection types and in [34, Proposition 2.5] using logical relations. We provide
another proof, showing that it is a direct consequence of our results.

Proof. Using any of the three conditions of Definition 7.1, it is clear that regular languages
are closed under complement.

The product CCC FinSet × FinSet is non-degenerate, well-pointed and locally finite.
It comes with two projections which are both CCC functors FinSet × FinSet → FinSet.
Let Q and Q′ be two finite sets; we consider the object (c, c′) of FinSet × FinSet. As
explained in Remark 2.5, for any simple type A, we get that RecQ(A) ⊆ Rec(Q,Q′)(A) and
RecQ′(A) ⊆ Rec(Q,Q′)(A).

Moreover, Rec(Q,Q′)(A) is a Boolean algebra. This shows that the intersection of a
language in RecQ(A) with another in RecQ′(A) can be taken in Rec(Q,Q′)(A), so it is still a
regular language. Therefore, Reg(A) is a Boolean algebra. ◀

We now point out two other consequences of the equivalence in Definition 7.1.
As stated in the introduction, Statman’s finite completeness theorem tells us that singleton
languages of λ-terms, taken modulo βη-conversion, are regular languages. It has multiple
proofs, see [32] for proof directly in the finite standard model, [27] using intersection
types, [17] in the model of complete lattices and [29] using Böhm trees.
These results are usually proved in one CCC. Using Theorem 3.2, Theorem 5.9 and
Theorem 6.5, we get that the singleton languages are recognized by any non-degenerate,
well-pointed and locally finite CCC and are also syntactically regular.
Some CCCs satisfying these three conditions are the coKleisli categories of a model of linear
logic, see [18]. In [19], a notion of higher-order automaton is presented, which recognizes
a language of λ-terms of a given simple type. The run-trees for these non-deterministic
automata are defined using an intersection type system, which is an equivalent way
of presenting the semantic interpretation J−K of the simply typed λ-calculus in the
coKleisli category ScottL! of the Scott model of linear logic. Using the equivalence
proved in the present article, a language is recognized by a higher-order automaton, i.e.
ScottL!-recognizable, if and only if it satisfies one of the conditions of Definition 7.1.

8 Conclusion and future perspectives

In this article, we have shown that every non-degenerate, well-pointed and locally finite
CCCs recognizes exactly Salvati’s regular languages of λ-terms [27], and that those also
coincide with syntactically regular languages. This is evidence for the robustness of this
notion, and therefore of the dual notion of profinite λ-term introduced in [34].

Among the aforementioned conditions, non-degeneracy is needed to recognize non-trivial
languages, and local finiteness is clearly crucial: in the case of finite words and trees, regularity
is closely related to recognition by finitary structures. What about well-pointedness? In other
words, one question that remains open is the following: is there a locally finite CCC that
recognizes languages of λ-terms that are not regular, i.e. not recognizable by FinSet? For
example, sequential algorithms famously form a locally finite CCC which is not well-pointed,
cf. [2, Chapter 14]; we would like to understand its recognition power.

As explained in Example 2.2, the regular languages of λ-terms of type Churchn for some
natural number n are exactly the usual regular languages of the finite words associated by the
Church encoding. It is possible to encode words in other calculi, like the non-commutative
affine λ-calculus in which case a syntactic approach analogous to Definition 2.10 yields the

CSL 2024

40:16 Syntactically and Semantically Regular Languages of λ-Terms Coincide

star-free languages, see [22]. Moreover, gluing techniques have been studied for other calculi,
see [12] for the linear case. One can therefore wonder whether it is possible to develop a
semantic approach à la Salvati, analogous to Definition 2.1, for other calculi.

References
1 Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. Categorical reconstruction of

a reduction free normalization proof. In David H. Pitt, David E. Rydeheard, and Peter T.
Johnstone, editors, Category Theory and Computer Science, 6th International Conference,
CTCS ’95, Cambridge, UK, August 7-11, 1995, Proceedings, volume 953 of Lecture Notes in
Computer Science, pages 182–199. Springer, 1995. doi:10.1007/3-540-60164-3_27.

2 Roberto M. Amadio and Pierre-Louis Curien. Domains and Lambda-Calculi, volume 46
of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 1998.
doi:10.1017/CBO9780511983504.

3 Robert Atkey. Syntax for free: Representing syntax with binding using parametricity. In Pierre-
Louis Curien, editor, Typed Lambda Calculi and Applications, 9th International Conference,
TLCA 2009, Brasilia, Brazil, July 1-3, 2009. Proceedings, volume 5608 of Lecture Notes in
Computer Science, pages 35–49. Springer, 2009. doi:10.1007/978-3-642-02273-9_5.

4 Mikołaj Bojańczyk. Languages recognised by finite semigroups, and their generalisations to
objects such as trees and graphs, with an emphasis on definability in monadic second-order
logic. CoRR, abs/2008.11635, 2020. arXiv:2008.11635.

5 Mikołaj Bojańczyk, Bartek Klin, and Sławomir Lasota. Automata theory in nominal sets.
Logical Methods in Computer Science, 10(3), 2014. doi:10.2168/LMCS-10(3:4)2014.

6 Antonio Bucciarelli. Logical relations and lambda theories. In Advances in Theory and Formal
Methods of Computing, proceedings of the 3rd Imperial College Workshop, pages 37–48, 1996.

7 Thomas Ehrhard. The Scott model of linear logic is the extensional collapse of its relational
model. Theoretical Computer Science, 424:20–45, 2012. doi:10.1016/j.tcs.2011.11.027.

8 Marcelo Fiore. Semantic analysis of normalisation by evaluation for typed lambda calcu-
lus. Mathematical Structures in Computer Science, 32(8):1028–1065, 2022. doi:10.1017/
S0960129522000263.

9 Jean-Yves Girard. The Blind Spot: Lectures on logic. European Mathematical Society,
September 2011. doi:10.4171/088.

10 Charles Grellois. Semantics of linear logic and higher-order model-checking. PhD thesis,
Université Paris 7, April 2016. URL: https://hal.science/tel-01311150.

11 Pierre A. Grillet. Semigroups. An introduction to the structure theory. Chapman & Hall/CRC
Pure and Applied Mathematics. Dekker, 1995. doi:10.4324/9780203739938.

12 Masahito Hasegawa. Logical predicates for intuitionistic linear type theories. In Jean-
Yves Girard, editor, Typed Lambda Calculi and Applications, 4th International Conference,
TLCA’99, L’Aquila, Italy, April 7-9, 1999, Proceedings, volume 1581 of Lecture Notes in
Computer Science, pages 198–212. Springer, 1999. doi:10.1007/3-540-48959-2_15.

13 Gerco van Heerdt, Tobias Kappé, Jurriaan Rot, Matteo Sammartino, and Alexandra Silva.
Tree Automata as Algebras: Minimisation and Determinisation. In Markus Roggenbach
and Ana Sokolova, editors, 8th Conference on Algebra and Coalgebra in Computer Science
(CALCO 2019), volume 139 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 6:1–6:22, Dagstuhl, Germany, 2019. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.CALCO.2019.6.

14 Gerd G. Hillebrand and Paris C. Kanellakis. On the expressive power of simply typed and
let-polymorphic lambda calculi. In Proceedings, 11th Annual IEEE Symposium on Logic in
Computer Science, New Brunswick, New Jersey, USA, July 27-30, 1996, pages 253–263. IEEE
Computer Society, 1996. doi:10.1109/LICS.1996.561337.

15 Naoki Kobayashi. Model checking higher-order programs. Journal of the ACM, 60(3):20:1–20:62,
2013. doi:10.1145/2487241.2487246.

https://doi.org/10.1007/3-540-60164-3_27
https://doi.org/10.1017/CBO9780511983504
https://doi.org/10.1007/978-3-642-02273-9_5
https://arxiv.org/abs/2008.11635
https://doi.org/10.2168/LMCS-10(3:4)2014
https://doi.org/10.1016/j.tcs.2011.11.027
https://doi.org/10.1017/S0960129522000263
https://doi.org/10.1017/S0960129522000263
https://doi.org/10.4171/088
https://hal.science/tel-01311150
https://doi.org/10.4324/9780203739938
https://doi.org/10.1007/3-540-48959-2_15
https://doi.org/10.4230/LIPIcs.CALCO.2019.6
https://doi.org/10.1109/LICS.1996.561337
https://doi.org/10.1145/2487241.2487246

V. Moreau and L. T. D. Nguyễn 40:17

16 Naoki Kobayashi. 10 years of the higher-order model checking project (extended abstract).
In Ekaterina Komendantskaya, editor, Proceedings of the 21st International Symposium on
Principles and Practice of Programming Languages, PPDP 2019, Porto, Portugal, October
7-9, 2019, pages 2:1–2:2. ACM, 2019. doi:10.1145/3354166.3354167.

17 Gregory M. Kobele and Sylvain Salvati. The IO and OI hierarchies revisited. Information and
Computation, 243:205–221, 2015. doi:10.1016/j.ic.2014.12.015.

18 Paul-André Melliès. Categorical Semantics of Linear Logic. In P.-L. Curien, H. Herbelin, J.-L.
Krivine, and P.-A. Melliès, editors, Interactive models of computation and program behaviour,
volume 27 of Panoramas et Synthèses. Société Mathématique de France, 2009. URL: https:
//smf.emath.fr/publications/semantique-categorielle-de-la-logique-lineaire.

19 Paul-André Melliès. Higher-order parity automata. In 2017 32nd Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), pages 1–12, Reykjavik, Iceland, June 2017.
IEEE. doi:10.1109/LICS.2017.8005077.

20 John C. Mitchell and Andre Scedrov. Notes on sconing and relators. In Egon Börger, Gerhard
Jäger, Hans Kleine Büning, Simone Martini, and Michael M. Richter, editors, Computer
Science Logic, 6th Workshop, CSL ’92, San Miniato, Italy, September 28 - October 2, 1992,
Selected Papers, volume 702 of Lecture Notes in Computer Science, pages 352–378. Springer,
1992. doi:10.1007/3-540-56992-8_21.

21 Lê Thành Dũng Nguyễn. Implicit automata in linear logic and categorical transducer theory.
PhD thesis, Université Paris XIII, 2021. URL: https://hal.science/tel-04132636.

22 Lê Thành Dũng Nguyễn and Cécilia Pradic. Implicit automata in typed λ-calculi I: aperiodicity
in a non-commutative logic. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors,
47th International Colloquium on Automata, Languages, and Programming, ICALP 2020,
July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages
135:1–135:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.
ICALP.2020.135.

23 C.-H. Luke Ong. On model-checking trees generated by higher-order recursion schemes. In 21th
IEEE Symposium on Logic in Computer Science (LICS 2006), 12-15 August 2006, Seattle, WA,
USA, Proceedings, pages 81–90. IEEE Computer Society, 2006. doi:10.1109/LICS.2006.38.

24 C.-H. Luke Ong. Higher-order model checking: An overview. In 30th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan, July 6-10, 2015, pages
1–15. IEEE Computer Society, 2015. doi:10.1109/LICS.2015.9.

25 Gordon D. Plotkin. Recursion does not always help. In Fairouz Kamareddine, editor, A
Century since Principia’s Substitution Bedazzled Haskell Curry. In Honour of Jonathan Seldin’s
80th Anniversary. College Publications, 2023. arXiv:2206.08413.

26 Simona Ronchi Della Rocca. Intersection Types and Denotational Semantics: An Extended
Abstract (Invited Paper). In Silvia Ghilezan, Herman Geuvers, and Jelena Ivetić, editors,
22nd International Conference on Types for Proofs and Programs (TYPES 2016), volume 97 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 2:1–2:7, Dagstuhl, Germany,
2018. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.TYPES.2016.
2.

27 Sylvain Salvati. Recognizability in the simply typed lambda-calculus. In Hiroakira Ono,
Makoto Kanazawa, and Ruy J. G. B. de Queiroz, editors, Logic, Language, Information and
Computation, 16th International Workshop, WoLLIC 2009, Tokyo, Japan, June 21-24, 2009.
Proceedings, volume 5514 of Lecture Notes in Computer Science, pages 48–60. Springer, 2009.
doi:10.1007/978-3-642-02261-6_5.

28 Sylvain Salvati. Lambda-calculus and formal language theory. Habilitation à diriger des
recherches, Université de Bordeaux, 2015. URL: https://hal.science/tel-01253426.

29 B. Srivathsan and Igor Walukiewicz. An alternate proof of Statman’s finite completeness
theorem. Information Processing Letters, 112(14-15):612–616, 2012. doi:10.1016/j.ipl.
2012.04.014.

CSL 2024

https://doi.org/10.1145/3354166.3354167
https://doi.org/10.1016/j.ic.2014.12.015
https://smf.emath.fr/publications/semantique-categorielle-de-la-logique-lineaire
https://smf.emath.fr/publications/semantique-categorielle-de-la-logique-lineaire
https://doi.org/10.1109/LICS.2017.8005077
https://doi.org/10.1007/3-540-56992-8_21
https://hal.science/tel-04132636
https://doi.org/10.4230/LIPIcs.ICALP.2020.135
https://doi.org/10.4230/LIPIcs.ICALP.2020.135
https://doi.org/10.1109/LICS.2006.38
https://doi.org/10.1109/LICS.2015.9
https://arxiv.org/abs/2206.08413
https://doi.org/10.4230/LIPIcs.TYPES.2016.2
https://doi.org/10.4230/LIPIcs.TYPES.2016.2
https://doi.org/10.1007/978-3-642-02261-6_5
https://hal.science/tel-01253426
https://doi.org/10.1016/j.ipl.2012.04.014
https://doi.org/10.1016/j.ipl.2012.04.014

40:18 Syntactically and Semantically Regular Languages of λ-Terms Coincide

30 Richard Statman. Completeness, invariance and lambda-definability. Journal of Symbolic
Logic, 47(1):17–26, 1982. doi:10.2307/2273377.

31 Richard Statman. On the λY calculus. Annals of Pure and Applied Logic, 130(1-3):325–337,
2004. doi:10.1016/j.apal.2004.04.004.

32 Richard Statman and Gilles Dowek. On Statman’s finite completeness theorem, 1992. arXiv:
2309.03602.

33 Kazushige Terui. Semantic Evaluation, Intersection Types and Complexity of Simply Typed
Lambda Calculus. In 23rd International Conference on Rewriting Techniques and Applications
(RTA’12), pages 323–338, 2012. doi:10.4230/LIPIcs.RTA.2012.323.

34 Sam van Gool, Paul-André Melliès, and Vincent Moreau. Profinite lambda-terms and para-
metricity. Electronic Notes in Theoretical Informatics and Computer Science, Volume 3 –
Proceedings of MFPS XXXIX, November 2023. doi:10.46298/entics.12280.

35 Igor Walukiewicz. Automata theory and higher-order model-checking. ACM SIGLOG News,
3(4):13–31, 2016. doi:10.1145/3026744.3026745.

A The regular language of affine untyped terms

The goal of this appendix is to provide a detailed explaination of Example 2.4. We first
introduce a grammar for the simply typed λ-terms of type UntypedTerms through the following
notion of scoped term.

▶ Definition A.1. We consider untyped terms with de Bruijn indices, given by the grammar

u, v ::= vari for i ∈ N∗ | abs(u) | app(u, v)

where we write abs(−) for the abstraction to distinguish it from the simply typed λ-abstraction.
For any natural number n and untyped term u, we define the judgment n ⊢ u by induction

with the rules

1 ≤ i ≤ n
n ⊢ vari

n + 1 ⊢ u

n ⊢ abs(u)
n ⊢ u n ⊢ v

n ⊢ app(u, v) .

The judgment n ⊢ u has at most one derivation. We call a scoped term any pair of n and u

such that n ⊢ u is derivable.

In the rest of the appendix, we will simply say that n ⊢ u is a scoped term whenever
this judgment is derivable. We now give the encoding of scoped terms into the simply typed
λ-calculus.

▶ Definition A.2. Let us consider a fixed sequence of simply typed variables xk : o for k ∈ N.
We define the context Γn as ℓ : (o ⇒ o) ⇒ o, a : o ⇒ o ⇒ o, x1 : o, . . . , xn : o.

For any natural number n and untyped term u, we consider the encoding n ⊢ u of a scoped
term defined by induction as

n ⊢ vari := xn+1−i

n ⊢ abs(u) := ℓ (λ(xn+1 : o). n + 1 ⊢ u)
n ⊢ app(u, v) := a (n ⊢ u) (n ⊢ v)

which is such that Γn ⊢ n ⊢ u : o.

Using normalization for the simply typed λ-calculus, we can claim the following fact.

https://doi.org/10.2307/2273377
https://doi.org/10.1016/j.apal.2004.04.004
https://arxiv.org/abs/2309.03602
https://arxiv.org/abs/2309.03602
https://doi.org/10.4230/LIPIcs.RTA.2012.323
https://doi.org/10.46298/entics.12280
https://doi.org/10.1145/3026744.3026745

V. Moreau and L. T. D. Nguyễn 40:19

▷ Claim A.3. For every natural number n, the encoding of scoped terms n ⊢ u into the open
λ-terms n ⊢ u of type o in context Γn, taken modulo βη-conversion, is bijective.

In particular, the encoding induces a bijection between the set Λ(UntypedTerms) and the
set of closed untyped terms, i.e. the u such that 0 ⊢ u is a scoped term.

▶ Definition A.4. For any scoped term n ⊢ u and 1 ≤ i ≤ n, we define the natural number
occi(n ⊢ u), the number of occurences of the ith variable, by induction as:

occi(n ⊢ varj) := 1 if i = j otherwise 0
occi(n ⊢ abs(u)) := occi+1(n + 1 ⊢ u)

occi(n ⊢ app(u, v)) := occi(n ⊢ u) + occi(n ⊢ v) .

When the scoped term n ⊢ u is clear from context, we will simply write occi.

▶ Definition A.5. For any finite set Q and functions fabs : (Q ⇒ Q) → Q and fapp : Q →
Q ⇒ Q, we interpret any scoped term n ⊢ u as its semantics

n ⊢ u ⇝ Ln ⊢ uM : Qn −→ Q

which is the set-theoretic function defined, for q1, . . . , qn ∈ Q, by induction as:

Ln ⊢ vari M[q1, . . . , qn] := qi

Ln ⊢ abs(u)M[q1, . . . , qn] := fabs(q 7→ Ln + 1 ⊢ uM[q, q1, . . . , qn])
Ln ⊢ app(u, v)M[q1, . . . , qn] := fapp(Ln ⊢ uM[q1, . . . , qn])(Ln ⊢ v M[q1, . . . , qn]) .

We write the arguments of the function Ln ⊢ uM between square brackets [and].

▶ Remark A.6. The semantics of Definition A.5 factor through the encoding of Definition A.2
in the simply typed λ-calculus and its semantic interpretation as for all q1, . . . , qn ∈ Q,

Ln ⊢ uM(q1, . . . , qn) =
q

n ⊢ u
y

Q
(fabs)(fapp)(qn, . . . , q1) .

We now instantiate Definition A.5 with the following values of Q, fabs and fapp:
Q is the set {0, 1, ∞} × {⊥, ⊤}, with its product monoid structure. For any q ∈ Q, we
write q1 ∈ {0, 1, ∞} and q2 ∈ {⊥, ⊤} for its two components.
fabs is the function (Q ⇒ Q) → Q defined as

g 7−→ (g(0, ⊤)1 , g(0, ⊤)2 ∧ (g(1, ⊤)1 ̸= ∞))

fapp is the curried monoid product of Q, i.e. the function Q → (Q ⇒ Q) defined as

(n, b) 7−→ (n′, b′) 7→ (n + n′, b ∧ b′) .

▶ Proposition A.7 (Left part of the tuple). For any scoped term n ⊢ u and any elements
k1, . . . kn of {0, 1, ∞}, we have

Ln ⊢ uM[(k1, ⊤) , . . . , (kn, ⊤)]1 = occ1 · k1 + · · · + occn · kn

where the product · : N× {0, 1, ∞} → {0, 1, ∞} comes from the monoid structure of {0, 1, ∞}.

CSL 2024

40:20 Syntactically and Semantically Regular Languages of λ-Terms Coincide

Proof. We verify this by induction on the scoped term n ⊢ u.

Ln ⊢ vari M[(k1, ⊤) , . . . , (kn, ⊤)]1
:= ki

= occ1 · k1 + · · · + occn · kn

Ln ⊢ abs(u)M[(k1, ⊤) , . . . , (kn, ⊤)]1
:= fabs ((k, b) 7→ Ln + 1 ⊢ uM[(k, b) , (k1, ⊤) , . . . , (kn, ⊤)])1

= Ln + 1 ⊢ uM[(0, ⊤) , (k1, ⊤) , . . . , (kn, ⊤)]1
= occ1 · k1 + · · · + occn · kn

Ln ⊢ app(u, v)M[(k1, ⊤) , . . . , (kn, ⊤)]1
:= fapp(Ln ⊢ uM[(k1, ⊤) , . . . , (kn, ⊤)])(Ln ⊢ v M[(k1, ⊤) , . . . , (kn, ⊤)])1

= Ln ⊢ uM[(k1, ⊤) , . . . , (kn, ⊤)]1 + Ln ⊢ v M[(k1, ⊤) , . . . , (kn, ⊤)]1
= occ1 · k1 + · · · + occn · kn

In the abs case, the last equality is obtained by remarking that occ1(n + 1 ⊢ u) is multiplied
by 0 and that occi+1(n + 1 ⊢ u) = occi(n ⊢ abs(u)) for i ≥ 1. ◀

We introduce the following definition.

▶ Definition A.8. We define the property of a scoped term to be affine in its bound variables
by induction as follows:

n ⊢ vari is always affine in its bound variables,
n ⊢ abs(u) is affine in its bound variables if and only if

occ1(n + 1 ⊢ u) ≤ 1 and n + 1 ⊢ u is affine in its bound variables

n ⊢ app(u, v) is affine in its bound variables if and only if

n ⊢ u and n ⊢ v are both affine in their bound variables.

A λ-term t ∈ Λ(UntypedTerms) will said to be affine when the closed untyped term 0 ⊢ u

bijectively associated to t by Claim A.3 is affine in its bound variables.

▶ Proposition A.9 (Right part of the tuple). For any scoped term n ⊢ u, we have

Ln ⊢ uM[(0, ⊤) , . . . , (0, ⊤)]2 = b

where b is ⊤ if and only if the scoped term n ⊢ u is affine in its bound variables.

Proof. We prove this by induction on the scoped term n ⊢ u.
For any 1 ≤ i ≤ n, n ⊢ vari is always affine in its bound variables, and we always have

Ln ⊢ vari M[(0, ⊤) , . . . , (0, ⊤)]2 = ⊤ .

For any scoped term n + 1 ⊢ u, we have

Ln ⊢ abs(u)M[(0, ⊤) , . . . , (0, ⊤)]2
:= fabs((k, b) 7→ Ln + 1 ⊢ uM[(k, b) , (0, ⊤) , . . . , (0, ⊤)])2

= Ln + 1 ⊢ uM[(0, ⊤) , (0, ⊤) , . . . , (0, ⊤)]2
∧ Ln + 1 ⊢ uM[(1, ⊤) , (0, ⊤) , . . . , (0, ⊤)]1 ̸= ∞

= Ln + 1 ⊢ uM[(0, ⊤) , (0, ⊤) , . . . , (0, ⊤)]2
∧ occ1(n + 1 ⊢ u) ≤ 1 .

V. Moreau and L. T. D. Nguyễn 40:21

where the last step comes from Proposition A.7. By the induction hypothesis on the
scoped term n + 1 ⊢ u, we get that n ⊢ abs(u) is affine in its bound variables if and only
if Ln ⊢ abs(u)M[(0, ⊤) , . . . , (0, ⊤)]2 is ⊤.
For any scoped terms n ⊢ u and n ⊢ v, we have

Ln ⊢ app(u, v)M[(0, ⊤) , . . . , (0, ⊤)]2
:= fapp(Ln ⊢ uM[(0, ⊤) , . . . , (0, ⊤)])(Ln ⊢ v M[(0, ⊤) , . . . , (0, ⊤)])2

= Ln ⊢ uM[(0, ⊤) , . . . , (0, ⊤)]2 ∧ Ln ⊢ v M[(0, ⊤) , . . . , (0, ⊤)]2

which shows, by the induction hypotheses on n ⊢ u and n ⊢ v, that n ⊢ app(u, v) is affine
in its bound variables if and only if Ln ⊢ app(u, v)M[(0, ⊤) , . . . , (0, ⊤)]2 is ⊤. ◀

▶ Theorem A.10. The language of closed affine untyped terms is regular in FinSet.

Proof. We consider the language

L := {t ∈ Λ(UntypedTerms) | t is affine} .

By definition, t ∈ Λ(UntypedTerms) is affine if and only if 0 ⊢ u is affine in its bound variables,
where 0 ⊢ u is the unique scoped term such that t = 0 ⊢ u, given by Claim A.3. Moreover,
by Proposition A.9, we have that 0 ⊢ u is affine in its bound variables if and only if

L0 ⊢ uM2 = ⊤

and, by Remark A.6, L0 ⊢ uM2 = JtKQ (fabs)(fapp). Therefore, if we define the subset F of
JUntypedTermsKQ as

F := {s ∈ JUntypedTermsKQ | s(fabs)(fapp)2 = ⊤}

we get that L = LF and therefore that L is FinSet-recognizable. ◀

B Squeezing structures

Proof of Proposition 5.8. There exists a squeezing structure such that
for any object R = (Q, e,⊩) of R, the objects LR and RR are both equal to Te;
the two wide subcategories Rleft and Rright are both taken to be the wide subcategory of
target-identities.

The fact that the point functor T is product-preserving gives us all the target-identities of
the squeezing structure, except for the case of the morphism

(E(1, e), e, ∼e) ⇒ (E(1, e′), e′, ∼e′) −→ (E(1, e ⇒ e′), e ⇒ e′, ∼e⇒e′) .

For this morphism, we will crucially use the fact that we relate FinSet and E, which is
well-pointed. We have a set-theoretic function

i : E(1, e ⇒ e′) −→ E(1, e) ⇒ E(1, e′)

which is injective as E is well-pointed and lifts to a target-identity. As the object e ⇒ e′ of
E is inhabited, the set E(1, e ⇒ e′) is non-empty and the set-theoretic function i admits a
retraction

r : E(1, e) ⇒ E(1, e′) −→ E(1, e ⇒ e′)

which lifts to a target-identity Te ⇒ Te′ → Te⇒e′ . By Lemma 4.11, we know that the objects
of Sqz(R) are partial surjections. Conversely, suppose that R = (Q, e,⊩) is such that ⊩ is a
partial surjection. We the two following target-identities:

CSL 2024

40:22 Syntactically and Semantically Regular Languages of λ-Terms Coincide

The fact that the relation ⊩ is surjective yields a set-theoretic function E(1, e) → Q which
lifts to a target-identity Te → R.
As the relation ⊩ is functional and E(1, e) is non-empty as e is inhabited, there exists a
set-theoretic function Q → E(1, e) extending ⊩, and any such set-theoretic function lifts
to a target-identity R → Te.

This shows that the objects of Sqz(R) are exactly the partial surjections, which then form a
sub-CCC of R by Theorem 4.10. ◀

Proof of Proposition 6.4. It is clear that target-identities are composable and stable under
finite products and exponentials, which is what is asked given that left and right morphisms
are the same in the present case.

We are left with the task to show the existence of the morphisms as described in
Equation (2) in our particular setting. As there exists at most one target-identity whose
Lam component is a given λ-term, we give these λ-terms.

Case Bij1 → 1: The unique morphism Bij1 → 1 is a target-identity.
Case 1 → Bij1: The λ-term λ(y : 1). λ(x : o). x lifts to a target-identity

1 −→ (Fin(1), 1,⊩1) .

Case Bijn×n′ → Bijn × Bijn′ : the fact that Bij(−) is a functor gives us directly such a
morphism which can be verified to be a target-identity.
Case Bijn × Bijn′ → Bijn×n′ : The morphism is given by the λ-term

λ(p : Fin(n) × Fin(n′)). λ(x : on×n′
). p1 ⟨ Fin(1 × Id) p2 x, . . . , Fin(n × Id) p2 x⟩

where i × Id is the function n′ → n × n′ sending j on (i, j), from which we get the λ-
term Fin(i × Id) of simple type Fin(n′) ⇒ Fin(n × n′).
This λ-term lifts to a target-identity

Bijn × Bijn′ −→ Bijn×n′ .

Case Bijn⇒n′ → Bijn ⇒ Bijn′ : We have the target-identity

Bijn⇒n′ × Bijn −→ Bij(n⇒n′)×n

which, when composed with the morphism Bijevn,n′ which has the evaluation mor-
phism evn,n′ as target-component, yields a morphism

Bijn⇒n′ × Bijn −→ Bijn′

which, after curryfication, gets us a target-identity Bijn⇒n′ → Bijn ⇒ Bijn′ .
Case Bijn ⇒ Bijn′ → Bijn⇒n′ : Notice that the equality

n ⇒ n′ = n′ × · · · × n′︸ ︷︷ ︸
n times

shows that the λ-term of type Fin(n) ⇒ Fin(n′) → (Fin(n′))n

λ(F : Fin(n) ⇒ Fin(n′)). ⟨F π1, . . . , F πn⟩

lifts to a target-identity Bijn ⇒ Bijn′ → Bijn′ n. By postcomposing this target-identity
with an iteration of the target-identities Bijm × Bijm′ → Bijm×m′ , we obtain the target-
identity

Bijn ⇒ Bijn′ −→ Bijn⇒n′ .

This finishes the proof that there is a squeezing structure as described in the statement of
the proposition. ◀

	1 Introduction
	2 Languages of λ-terms
	3 Syntactic recognition implies semantic recognition
	4 Logical relations and the squeezing construction
	5 From well-pointed locally finite CCCs to finite sets
	6 From finite sets to λ-terms
	7 Regular languages
	8 Conclusion and future perspectives
	A The regular language of affine untyped terms
	B Squeezing structures

