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Abstract
Two particularly active branches of research in constraint satisfaction are the study of promise
constraint satisfaction problems (PCSPs) with finite templates and the study of infinite-domain
constraint satisfaction problems with ω-categorical templates. In this paper, we explore some
connections between these two hitherto unrelated fields and describe a general approach to studying
the complexity of PCSPs by constructing suitable infinite CSP templates. As a result, we obtain
new characterizations of the power of various classes of algorithms for PCSPs, such as first-order
logic, arc consistency reductions, and obtain new proofs of the characterizations of the power of the
classical linear and affine relaxations for PCSPs.
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1 Introduction

Promise constraint satisfaction problems (PCSPs) are problems of the following form: given
a set of constraints on some variables, each of which coming as a pair of strong/weak
constraints, determine whether the set of strong constraints is satisfiable or not even the set
of weak constraints is satisfiable. Formally, such problems are parametrized by a pair (A,B)
of relational structures such that A admits a homomorphism to B. Typically, both structures
are assumed to be finite. An instance of PCSP(A,B) is a structure X, whose domain are
understood as variables, and whose tuples in relations correspond to constraints in the same
signature as A and B. The problem is to decide whether there exists a homomorphism
X → A, representing a solution to a system of strong constraints, or no homomorphism
X → B, representing the absence of a solution to a weakening of the constraints. When
A = B, one recovers the classical framework of constraint satisfaction problems, for which it
is known that if A is finite, then the associated CSP is either solvable in polynomial time
or is NP-hard [44, 43, 21]. Other refined classifications are known, for instance it is known
which CSPs are definable by a first-order sentence [2, 41], or by a sentence in fixpoint logic
with counting [3], or solvable by Datalog programs [9], or by the basic linear relaxation [35].

The study of PCSPs started recently in the works of [6] and [18], whose motivation was to
define a structurally rich framework dedicated to the study of the complexity of approximation
problems such as approximate graph coloring. These problems form a framework suitable to
the study of a combinatorial, or qualitative, form of approximation, compared to the usual
quantitative form. This combinatorial viewpoint allows for conceptually simpler proofs of
inapproximability results, such as a combinatorial version of the PCP theorem [10].

A powerful algebraic approach to the study of the complexity of PCSPs was given by [8],
building on the existing algebraic tools developed in the context of constraint satisfac-
tion. A plethora of results ensued, providing new polynomial-time algorithms solving such
problems [23, 19, 27] and new tools for proving hardness [42, 34].
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Another active branch of research in constraint satisfaction is the study of CSPs where
the template is an infinite structure. Here, no dichotomy similar to the Bulatov-Zhuk
theorem is possible, as every computational problem is equivalent to the CSP of an infinite
structure [11, 30]. Nonetheless, a similar algebraic approach has been developed for a class
of infinite structures (so called ω-categorical structures) that is suitable for the study the
complexity of the associated CSPs. We refer to [39] and the introduction of [37] for a
description of the state of the art in the area.

There is until now little to no interplay between these two directions of research. While
the tractability of some PCSPs with a finite template has been shown by a reduction to
infinite-domain CSPs (typically through the use of a linear relaxation or systems of linear
equations over the integers), the infinite templates that arise here are not ω-categorical and
are not subject to the aforementioned algebraic approach. We note that Barto [7] and Barto
and Asimi [1] proved that there are finite PCSP templates (A,B) such that for every finite
structure C such that PCSP(A,B) reduces to CSP(C) by a trivial reduction, then CSP(C) is
NP-hard. Thus, in a sense, the use of infinite-domain CSPs is sometimes necessary.

1.1 Contributions
In this work, we show how the by-now classical tools used to study CSPs with ω-categorical
templates can also be used essentially as black boxes to tackle some questions arising in the
study of PCSPs with finite templates.

Descriptive Complexity of PCSPs

While algorithmic and algebraic questions concerning PCSPs have received much attention in
the past years, the logical aspects pertaining to these problems, and in particular questions
about their descriptive complexity, remain mostly unexplored. Here, one of the questions of
interest is to determine criteria for the existence of a sentence Φ in a given logic L whose
class of finite models separates the yes-instances from the no-instances of a PCSP. More
specifically, we say that PCSP(A,B) is solvable by a sentence Φ if the following holds:

For every finite structure X such that X admits a homomorphism to A, then X |= Φ,
For every finite structure X such that X does not admit a homomorphism to B, then
X ̸|= Φ.

▶ Problem 1 (Separability problem for L). For which promise constraint satisfaction problems
PCSP(A,B) does there exist a sentence Φ ∈ L such that PCSP(A,B) is solvable by Φ?

In the context of finite-domain CSPs, i.e., when A = B, questions of this type have been
answered for several logics including first-order logic [2, 41] and some fixpoint logics [3, 9],
while some important cases remain open, e.g., for the case of CSPs definable in linear
Datalog or in fixpoint logics with a rank operator. Atserias and Dalmau [4] have given
necessary algebraic conditions for a given PCSP to be solvable by a Datalog program, but
no characterization is known at the moment.

We give an answer to Problem 1 in the case that L is first-order logic.

▶ Theorem 2. Let (A,B) be a finite PCSP template. The following are equivalent:
1. PCSP(A,B) is solvable in first-order logic;
2. (A,B) has finite duality;
3. There exists a finite structure C with finite duality and such that A → C → B.
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Interestingly, although Theorem 2 is a statement purely about finite structures, our proof
uses a combination of techniques coming from the study of CSPs with infinite structures. We
first construct an infinite structure C with the same properties as in Item 3 of Theorem 2,
and using a Ramsey argument we prove that a finite factor of C also satisfies the required
properties. This method appears to be quite flexible and underlies the proofs of the main
results of this paper.

Application to the Search PCSP

Arguably, the variant of the PCSP that is most interesting from an application point of view
is the following: given a structure X with the promise that there exists a homomorphism
X → A, compute a homomorphism X → B. For CSPs, the search version can be solved in
polynomial time, given an oracle deciding the decision version; this is not known to hold for
promise CSPs.

Very little is known in general concerning the search version of promise CSPs: the
tractability of the search version of PCSP(A,B) is currently only known when there exists a
structure C such that A → C → B, such that CSP(C) can be solved in polynomial-time, and
such that a homomorphism C → B can be computed in polynomial time. So far, this is only
used when C is a finite structure.

A straightforward consequence of Theorem 2 is that if PCSP(A,B) is solvable in first-order
logic, then its search version is tractable. We are in the advantageous situation where C can
be taken finite, but in fact the result would already follow from the existence of a suitable
infinite C. Thus, we anticipate that our methods can prove the tractability of the search
version of PCSPs in much more general settings than first-order solvability.

Revisiting Arc Consistency and the Arc Consistency Reduction

Arc consistency is a common heuristic employed in constraint solvers to reduce the search
space and potentially speed up the process of finding a solution to a CSP instance (or to
prove that no solution exists). In this heuristic, one stores for every variable of the instance a
set of possible values that this variable can take in a homomorphism X → A, and one makes
gradual refinements until a fixed point is reached.

Some PCSPs, known as width-1 PCSPs, are in fact completely solved by this heuristic:
whenever the heuristic does not yield conclude the absence of a homomorphism X → A, then
there does actually exist a homomorphism X → B. A characterization of finite width-1 CSPs
was given by Feder and Vardi [29] in their seminal paper, and generalized to the case of
PCSPs [8]. We reprove in Section 4 this characterization by a straightforward adaptation of
the method used to characterize the power of first-order logic for PCSPs. Using the same
methods, we also give in Section 4 an alternative description of the recent arc consistency
reduction proposed in [28].

A current open problem in the theory of PCSPs is to characterize those templates whose
PCSP is solved by a strengthening of the arc consistency heuristic, where information about
tuples of variables of bounded length can be stored. This corresponds to solving Problem 1
in the case of Datalog, or the existential positive fragment of least fixpoint logic. While we
do not solve this problem here, we argue in Section 4 that our method could shed some light
on this problem.

CSL 2024
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Revisiting Linear and Affine Relaxations

Another heuristic to solve PCSPs is to consider linear relaxations of CSP instances, where
a CSP instance is mapped to a linear program (known as the basic linear programming
relaxation) or to a system of linear equations over the integers (known as the affine integer
programming relaxation). The class of PCSPs that are correctly solved by these heuristic
have been characterized in [8]. With the methods used in the previous sections, we give
another viewpoint on these classes and reprove those characterizations.

2 Definitions

A signature σ is a set of relation symbols, each of which having an arity. A σ-structure A
consists of a set A, called its domain, together with an interpretation RA ⊆ Ar for each
relation symbol R ∈ σ of arity r ≥ 1. A σ-structure B with B ⊆ A is a substructure of A if
for every R in σ of arity r, we have RB = RA ∩ Br.1 If τ ⊆ σ and A is a σ-structure, the
τ -reduct of A is the τ -structure obtained by forgetting the interpretation of the symbols in
σ \ τ . An expansion of a structure A is a structure in a larger signature obtained by adding
new relations to A. All relational structures in this paper are at most countable and have a
finite signature unless specified otherwise.

A homomorphism h : A → B between two σ-structures is a map A → B such that for
all R ∈ σ of arity r and (a1, . . . , ar) ∈ RA, we have (h(a1), . . . , h(ar)) ∈ RB. We use the
notation A → B to denote the existence of a homomorphism from A to B.

A cycle in a structure A is a set of tuples a1, . . . , ak of length r1, . . . , rk, each of which
appearing in a relation of A, such that the set consisting of all entries of the tuples has size
at most

∑
i(ri − 1). The smallest k for which there exists such a cycle in A is called the girth

of A. A tree is a structure with no cycles.

2.1 Promise Constraint Satisfaction Problems
For every two structures A,B such that there exists a homomorphism A → B, we define
PCSP(A,B) as the problem of deciding, given a finite structure X, if there exists a homo-
morphism X → A or no homomorphism X → B; the promise is that at least one of these
cases holds, and the existence of a homomorphism A → B ensures that at most one case
holds. The pair of structures (A,B) is called the template of the PCSP. The search version
of PCSP(A,B) asks to compute a homomorphism X → B, given a finite structure X that is
promised to admit a homomorphism to A (although a homomorphism X → A is of course
not given). We define CSP(A) as PCSP(A,A). Every tuple (x1, . . . , xk) ∈ RX in an instance
X of PCSP(A,B) is called a constraint.

We say that PCSP(A,B) is first-order solvable if there exists a first-order sentence Φ such
that the following items hold for every finite structure X:

if X has a homomorphism to A, then X |= Φ,
if X |= Φ, then X admits a homomorphism to B.

Thus, the set of finite models of Φ separates the yes-instances of PCSP(A,B) from the
no-instances. If PCSP(A,B) is first-order solvable, one trivially gets a logspace algorithm
solving PCSP(A,B).2

1 As usual in model theory, all substructures are necessarily induced substructures.
2 The truth of a first-order formula with k quantifiers can be checked by iterating over all elements of the

input structure and storing k logarithmically-sized pointers.
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Let F be a family of finite structures. A structure X is F-free if there does not exist any
F ∈ F such that F admits a homomorphism to X. We say that a PCSP template (A,B) has
duality F if the following hold for every finite X:

if X admits a homomorphism to A, then X is F-free,
if X is F-free, then X admits a homomorphism to B.

We say that (A,B) has finite duality if it has duality F for a finite set F . A structure has
finite tree duality if it has a finite duality consisting only of trees.

An operation f : An → A is a polymorphism of A if it is a homomorphism from An to A,
where An is the structure with domain An, the same signature as A, and with relations

RAn

:=
{

(a1, . . . , ar) | ∀j, (a1
j , . . . , ar

j) ∈ RA}
.

In other words, f is a polymorphism if, whenever a1, . . . , an are in a relation R of A, then
f(a1, . . . , an) is in R, where f is applied componentwise to every tuple ai. We define a
polymorphism of a PCSP template (A,B) similarly, as a homomorphism An → B.

A polymorphism f of a structure A is 1-tolerant if it satisfies that f(a1, . . . , an) is in RA,
whenever all but at most one of a1, . . . , an is in RA. For finite-domain or ω-categorical CSPs,
the following characterization of first-order solvability is known.

▶ Theorem 3 ([36, 2, 41, 12]). Let A be a finite or ω-categorical structure. The following
are equivalent:

A has finite duality,
A has finite tree duality,
CSP(A) is solvable in first-order logic,
A has a 1-tolerant polymorphism.

It is proven in [36] that it is possible to decide, for a finite structure A, whether A has
finite duality.

2.2 ω-categorical structures
An embedding e : A → B is an injective homomorphism such that for every relation R of arity
r and every a1, . . . , ar ∈ A, one has (e(a1), . . . , e(ar)) ∈ RB if, and only if, (a1, . . . , ar) ∈ RA.
An automorphism of a structure A is an embedding α : A → A that is surjective. In other
words, both α and its inverse are homomorphisms A → A.

A structure A if ω-categorical is for all n ≥ 1, the equivalence relation ∼A
n on An defined

by x ∼A
n y iff there exists an automorphism α ∈ Aut(A) with α(x) = y has finitely many

equivalence classes, . These equivalence classes are called orbits under Aut(A). Typical
examples of ω-categorical structures are the “structure with no structure” (N; =), for which
the classes of the equivalence relation ∼n are in 1-to-1 correspondence with partitions of
{1, . . . , n}, and (Q; <), for which the classes of the equivalence relation ∼n correspond to
weak linear orders on {1, . . . , n}.

A structure A is homogeneous if every isomorphism f : B → C between finite substructures
of A extends to an automorphism of A. Thus, in a homogeneous structure, the orbits under
Aut(A) are completely determined by the isomorphism types of n-element substructures of
A, or equivalently by the quantifier-free formulas with n variables up to equivalence over A.

A countable set C of finite structures is said to have the amalgamation property if for
all structures X,Y1,Y2 ∈ C and embeddings fi : X → Yi, there exist a structure Z ∈ C and
embeddings ei : Yi → Z such that e1 ◦ f1 = e2 ◦ f2. We say that Z is an amalgam over
Y1,Y2 over X. We say that Z is a strong amalgam if e1(Y1) ∩ e2(Y2) = e1(f1(X)), and we

CSL 2024
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say C has the strong amalgamation property when Z can always be chosen to be a strong
amalgam, regardless of X,Y1,Y2. We say that Z is a free amalgam if it is strong and no tuple
containing entries from both e1(Y1 \ f1(X)) and e2(Y2 \ f2(X)) belongs to a relation of Z. By
a classical result of Fraïssé, for every countable class of finite structures C that is closed under
substructures, there exists a countable homogeneous structure C whose finite substructures
are exactly those structures that are isomorphic to a member of C. The structure C is called
the Fraïssé limit of C.

2.3 Ramsey expansions and canonical polymorphisms
An operation f : An → B is canonical from A to B if it is a homomorphism from the nth
power of (A; ∼A

1 , ∼A
2 , . . . ) to (B; ∼B

1 , ∼B
2 , . . . ). In other words, f is canonical from A to B if,

and only if, for all m-tuples a1, . . . , an, and all α1, . . . , αn automorphisms of A, the tuples
f(a1, . . . , am) and f(α1(a1), . . . , αn(an)) are in the same orbit under Aut(B). Canonical
functions typically arise by an application of the following result. This result uses the
Ramsey property of some homogeneous structures; we will only use the Ramsey property as
a blackbox in this paper and therefore omit the definition.

▶ Theorem 4 ([16, 40]). Let A be a homogeneous structure with the Ramsey property, let B
be an ω-categorical structure, and let f : An → B be an arbitrary function. Then there exists
g : An → B that is canonical from A to B and such that for every finite subset S of Am, there
exist α1, . . . , αn ∈ Aut(A), β ∈ Aut(B) such that g(a1, . . . , an) = βf(α1(a1), . . . , αn(an))
holds for all a1, . . . , an in S.

In case A = B in Theorem 4, we say that f locally interpolates g modulo Aut(A).

3 PCSPs solvable in First-Order Logic

It was first proven by [2] that a finite structure has finite duality if, and only if, its CSP can
be defined in first-order logic. Another proof of this result was obtained by [41], who proved
the following stronger statement.3 For a first-order sentence Φ, let Mod(Φ) be the class of
all finite structures X such that X |= Φ.

▶ Theorem 5 (Theorem 4.11 in [41]). Let P ⊆ Q be classes of structures, and Φ be a
first-order sentence such that:

for all finite X,Y such that X ∈ P and X → Y, we have Y |= Φ,
for all finite X,Y such that X |= Φ and X → Y, we have Y ∈ Q.

Then there exists an existential positive sentence Ψ such that P ⊆ Mod(Ψ) ⊆ Q.

The following result, initially by Cherlin, Shelah, and Shi [22], and later improved by
Hubička and Nešetřil [32], has found several applications in the study of infinite-domain
CSPs in the recent years [13, 14, 15]. A structure is connected if it is not isomorphic to the
disjoint union of two non-empty structures.

▶ Theorem 6. Let F be a finite set of finite connected structures. There exists an ω-
categorical structure C such that C has duality F . Moreover, C can be chosen to have an
expansion C+ by finitely many relations such that C+ is homogeneous with the Ramsey
property.

3 To see that Theorem 5 implies Atserias’s result, apply the theorem to P = Q = {X | X ̸→ A}.
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In particular, C+ meets the hypothesis of Theorem 4, and therefore every polymorphism
of C locally interpolates a polymorphism that is canonical with respect to Aut(C+). We now
show that the property of being 1-tolerant is preserved under this local interpolation.

▶ Lemma 7. Let A be an arbitrary structure. Let f be a 1-tolerant polymorphism of A and
let Γ be a subset of Aut(A). Then every operation g that is locally interpolated by f modulo
Γ is a 1-tolerant polymorphism of A.

Proof. Let g be locally interpolated by f modulo Γ, and let R be a relation of A. Let
a1, . . . , an ∈ Ar be such that all but at most one of them are in R. By assumption, there
exist α1, . . . , αn, β ∈ Γ such that g(a1, . . . , an) = βf(α1(a1), . . . , αn(an)). Since α1, . . . , αn

are automorphisms of A, we obtain that for all but at most one j, one has αj(aj) ∈ R. Since
f is 1-tolerant, f(α1(a1), . . . , αn(an)) is in R, and thus g(a1, . . . , an) is in R since β is an
automorphism of A. ◀

In the following, recall that a first-order formula is primitive positive if it only consists of
existential quantifications, conjunctions, and atomic formulas only. Every primitive positive
formula φ(x1, . . . , xn) without equalities corresponds in a canonical way to a relational
structure A, its canonical database, whose domain is the set of variables of the formula, and
whose relations are determined by the conjuncts of the formula.

▶ Theorem 2. Let (A,B) be a finite PCSP template. The following are equivalent:
1. PCSP(A,B) is solvable in first-order logic;
2. (A,B) has finite duality;
3. There exists a finite structure C with finite duality and such that A → C → B.

Proof. (1) implies (2). This is an immediate consequence of Theorem 5. Let P be the
class of finite structures that do not admit a homomorphism to B, and Q be the class of
finite structures that do not admit a homomorphism to A. Let Φ be a first-order sentence
proving that PCSP(A,B) is in FO. Then P ⊆ Mod(¬Φ) ⊆ Q holds by definition. Moreover,
if X ∈ P and X → Y, then Y ̸→ B, hence Y |= ¬Φ. Similarly, if X → Y and X |= ¬Φ, then
X does not admit a homomorphism to A, so Y does not admit a homomorphism to A, i.e.,
Y ∈ Q. Thus, Theorem 5 applies, and there exists an existential positive formula Ψ such that
P ⊆ Mod(Ψ) ⊆ Q, and Ψ is equivalent to a disjunction

∨
Ψi where each Ψi is a primitive

positive sentence. Moreover, each Ψi can be assumed without loss of generality to not contain
any equalities.4 Let F be the set of canonical databases for each Ψi. For any finite X, if
there exists F ∈ F such that F → X, then X |= Ψ, so that X ∈ Q and X does not admit a
homomorphism to A. If X does not admit a homomorphism to B, then X ∈ P so that X |= Ψ,
and therefore there is F ∈ F such that F → X. Thus, F forms a duality for (A,B).

(2) implies (3). Let F be a duality for (A,B). Without loss of generality, we can assume
that F consists of connected structures. Indeed, suppose that F ∈ F is isomorphic to a
disjoint union of non-empty structures F1,F2. Since A is F -free, there is no homomorphism
F → A and therefore one of F1 or F2 does not admit a homomorphism to A, say without
loss of generality that F1 does not. Consider F ′ := (F ∪ {F1}) \ {F}, which we prove is a
duality for (A,B). Suppose that X admits a homomorphism to A. Then X is F -free and also
F1-free since F1 ̸→ A, so that X is F ′-free. If X is F ′-free, then X is F -free, so that X admits
a homomorphism to B.

4 An equality in any Ψi can be removed by merging the corresponding variables.
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By Theorem 6, there exists an ω-categorical structure C that has duality F . Since
A is F-free, we have A → C. Since every finite substructure of C is F-free, there is a
homomorphism from every finite substructure of C to B. By compactness, there exists a
homomorphism C → B.

Since C is ω-categorical and has finite duality, there is an f : Cn → C that is a 1-tolerant
polymorphism of C by Theorem 3. Moreover, C admits a Ramsey expansion C+. By
applying Theorem 4 to C+, f locally interpolates an operation g modulo Aut(C+) that is
canonical with respect to C+. By Lemma 7, g is a 1-tolerant polymorphism of C.

Consider the structure C′ := C/Aut(C+) whose domain consists of the classes of the
equivalence relation ∼1 induced by Aut(C+), and such that for every relation symbol
R of arity r in the signature of C, one has (O1, . . . , Or) ∈ RC′ if, and only if, there
exist a1 ∈ O1, . . . , ar ∈ Or such that (a1, . . . , ar) ∈ RC. Then g induces a 1-tolerant
polymorphism of C′: define g̃(O1, . . . , On) to be the ∼1-class of g(a1, . . . , an), for arbitrary
a1 ∈ O1, . . . , an ∈ On. Since g is canonical with respect to C+, the definition of g̃ does
not depend on the chosen elements a1, . . . , an. One readily checks that g̃ thus defined is a
1-tolerant polymorphism of C′.

Moreover, let h be a homomorphism C → B. By Theorem 4 applied with C+ and B,
there exists a homomorphism h′ : C → B that is canonical from C+ to B. Similarly as above,
h′ induces a homomorphism h̃′ from C′ to B. Thus we get that A → C′ → B. Moreover C′

has a 1-tolerant polymorphism, so by Theorem 3, C′ has finite duality.
(3) implies (1). By Theorem 3, CSP(C) can be defined by a first-order sentence Φ. This

sentence shows that PCSP(A,B) is solvable in first-order logic. ◀

An anonymous reviewer of this paper provided another proof of the implication from
(2) to (3) in Theorem 2 using the sparse incomparability lemma (see, e.g., [29]) to show
directly that the duality F can be taken to consist of trees (which in our case follows from
an application of Theorem 3), and then using the fact that finite families of trees admit a
finite dual structure [38]. Namely, given an arbitrary finite duality F for (A,B), consider
the family G consisting of homomorphic images of structures from F and that are trees. If
X admits a homomorphism to A, then it is F-free and therefore G-free. Suppose now that
X ̸→ B. By the sparse incomparability lemma, one can find a structure X′ such that X′ → X
and X′ ̸→ B, and X′ has girth larger than the size of any structure in F . Since X′ ̸→ B, there
exists F ∈ F and a homomorphism h : F → X′, and the image of F under h must be a tree,
which implies that X′ is not G-free. Since X′ → X, X is not G-free either.

Thus, the construction of an infinite structure C as in our proof of Theorem 2 is not
necessary; however our method here applies to a wider setting as the next sections show.

We obtain as a corollary to Theorem 2 a characterization of the pair (A,B) that have
finite duality, in the case that A is a digraph containing a directed cycle.

▶ Corollary 8. Let (A,B) be a PCSP template where A is a digraph containing a directed
cycle. Then (A,B) has finite duality if, and only if, B contains a loop.

Proof. If B has a loop, then the empty set is a duality for PCSP(A,B). Suppose now that
(A,B) has finite duality. By Theorem 2, there exists a finite C with finite duality and such
that A admits a homomorphism to C and C → B. Since A has a directed cycle, so does C.

Since C has finite duality, its duality must consist of trees. Note that every orientation
of a tree admits a homomorphism to C since C contains a directed cycle, and therefore its
duality must be empty. This implies in particular that C has a loop, and so does B since
C → B. ◀
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Figure 1 Illustration of the structures A, C, B, and F2 (from left to right) in Proposition 9. The
red dashed arcs correspond to pairs in the relation R, while blue solid arcs correspond to pairs in
the relation B.

We conclude this section by showing that there are proper examples of PCSP templates
with finite duality.

▶ Proposition 9. There exists a PCSP template (A,B) with finite duality such that neither
A nor B has finite duality.

Proof. Consider the structures in a binary relational signature with two binary symbols R

and B displayed in Figure 1. Then A → C → B and C has the duality that consists of the
following structures: an R-path of length 2, a B-path of length 2, a vertex with incoming B-
and R-edges, and a vertex with outgoing B- and R-edges.

We show that the structure A does not have finite duality. Let P be an R-edge followed by
a B-edge. We use the notation + and − to denote the obvious amalgamation of copies of P.
For every n ≥ 1, consider the structure Fn defined by taking P+(P−P)+ · · ·+(P−P)+P+P,
with a total of 2n + 3 copies of P, and removing the first vertex and its adjacent R-edge
and the last vertex and its adjacent B-edge (F2 is showed in Figure 1). No Fn admits a
homomorphism to A, although every structure obtained by removing an edge does. Thus,
every Fn must be in a duality for A. Since all the structures Fn are homomorphically
incomparable, we obtain that A does not have finite duality.

The proof that B does not have finite duality is similar, where this time one defines P to
be an R-path or a B-path of length 2. ◀

Non-sufficient conditions

For finite-domain CSPs, a number of other conditions are known to be equivalent to the fact
that A has finite duality:

as mentioned, the existence of a 1-tolerant polymorphism of A,
the connectivity of a specific graph L(G,A′) for some retract A′ of A and all finite
structures G [20],
the fact that there exists a retract A′ of A is such that (A′)2 dismantles to its diagonal [36].

It is not clear what could be generalizations of the last two items in the case of promise
templates (A,B). However, the first item has a clear candidate for a generalization, namely
the existence of a 1-tolerant polymorphism of (A,B), i.e., a map f : An → B such that for
every relation symbol R, and every a1, . . . , an such that all but at most one are in RA, then
f(a1, . . . , an) is in RB.

We remark that a 1-tolerant polymorphism of arity n of a structure C can be composed
with itself to obtain a 1-tolerant polymorphism of any arity m ≥ n. Thus, in the case of CSPs,
first-order solvability can also be characterized by the existence of 1-tolerant polymorphisms
of all but finitely many arities.
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▶ Proposition 10. Let (A,B) be a PCSP template. If (A,B) has finite duality, then it
has a 1-tolerant polymorphism. However, there exists a PCSP template with 1-tolerant
polymorphisms of all arities but not finite duality.

Proof. Suppose that (A,B) has finite duality. By Theorem 2, there exists a finite structure
C with finite duality and homomorphisms h : A → C and g : C → B. By Theorem 3, C
has a 1-tolerant polymorphism f : Cn → C. The composition g ◦ f ◦ h is then a 1-tolerant
polymorphism of (A,B).

Consider now A := Kc and B := Kc2 to be complete graphs on c and c2 vertices, for any
c ≥ 2. Let n ≥ 1. We simply name the vertices of B by pairs (a, b) of elements of A. Then
the map f : An → B defined by f(a1, . . . , an) := (a1, a2) is a 1-tolerant n-ary polymorphism
of (A,B): if (a1, b1), . . . , (an, bn) are pairs such that aj ̸= bj for all but at most one j, then
(a1, a2) ̸= (b1, b2). However, it follows from Corollary 8 that (A,B) does not have finite
duality, since A has a directed cycle of length 2 and B does not have a loop. ◀

4 Local Consistency for PCSPs

We now apply the same reasoning as in the previous section to characterize the power of the
arc consistency reduction, recently introduced in [28, 33]. For this reduction, we need the
following concepts.

Arc consistency is a polynomial-time algorithm that takes as input a structure X, as
an instance of CSP(A), and that computes for every x ∈ X a set Px ⊆ A, and for every
constraint C of the form (x1, . . . , xn) ∈ RX a set QC ⊆ RA such that:
1. for every constraint C whose ith variable is xi ∈ X, the ith projection of QC is equal to

Pxi ,
2. for every homomorphism h : X → A and every x ∈ X, we have h(x) ∈ Px. In particular,

if Px is empty then X does not admit a homomorphism to A.

A minion is a functor M from finite sets to sets: for every finite set X, one has a set
M X and for every function σ : X → Y , one has a function M σ : M X → M Y , such that
M idX = idMX for all X and M (σ ◦ τ) = M σ ◦ M τ whenever the composition of σ and τ

is well defined.
A minor identity is a formal statement of the form fσ ≈ gτ where f is a symbol of

type X, g is a symbol of type Y , σ : X → Z and τ : Y → Z are functions, and X, Y, Z are
arbitrary finite sets. A minor condition is a set Σ of minor identities. A minor condition Σ
is satisfied in M if the symbols in Σ of any type X can be mapped to elements of M X such
that if fσ ≈ gτ is in Σ, then (M σ)(f) = (M τ)(g). The set Pol(A,B) can be seen to be such
a minion M , where M X consists of the homomorphisms AX → B, and the functions M σ

are obtained by identifying arguments of such homomorphisms according to σ.
The problem PMCN (M ) is the problem taking as input a minor condition Σ whose

symbols have sorts of size at most N , whose yes-instances are those Σ that can be satisfied
in every minion, and whose no-instances are those that are not satisfiable in M . It is
known that for N large enough only depending on the size of A and the size of its relations,
PMCN (Pol(A,B)) and PCSP(A,B) are equivalent under logspace reductions [8]. In the
following, we drop the subscript and always take N large enough for this equivalence to hold.
The arc consistency reduction described below is a complete reduction from PCSP(A,B) to
PMC(M ) for a minion M , although it is not necessarily sound; by the previous sentence,
this is essentially the same as trying to reduce from one PCSP to another.

This reduction applied to an input X of PCSP(A,B), and whose output is an instance of
PMC(M ), works as follows:
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First, apply the arc consistency algorithm to X, seen as an instance of CSP(A); one
obtains a family of subsets (Px)x∈X and (QC) satisfying the arc consistency condition
above,
Associate a function symbol fx with every x ∈ X, whose arguments are labelled by the
elements in Px; associate a function symbol fC with every constraint C = R(x1, . . . , xk),
whose arguments are labelled by the tuples in QC ;
Output the minor condition containing the identities fxi ≈ fσ

C where σ : QC → Pxi is the
projection on the ith component, as an input to PMC(M ).

We turn the set of instances X that are not rejected by this reduction into a class with the
amalgamation property. The additional symbols H(P,f) are indexed by pairs (P, f) where
P is a non-empty subset of A or of RA for some R, and f is an element of M P . Let X
be an arbitrary finite structure such that there exist a family of subsets (Px)x∈X and (QC)
satisfying the arc consistency condition (Item 1) together with a map ξ witnessing the
satisfiability of the corresponding minor condition Σ in M . Let X∗ be the expansion of X
where:

x ∈ H(P,f) iff P = Px and ξ(fx) = f ,
for every constraint (x1, . . . , xn) ∈ RX, we let (x1, . . . , xn) ∈ H(Q,g) iff QC = Q and
ξ(fC) = g.

We say that X∗ is a valid encoding, witnessed by the sets (Px), (QC) and the map ξ. Let Cred

be the class of valid encodings.

▶ Proposition 11. Cred is closed under substructures and has the strong amalgamation
property.

Proof. The fact that Cred is closed under substructures is readily checked.
Let now X∗,Y∗

1,Y∗
2 ∈ Cred and embeddings fi : X∗ → Y∗

i . Without loss of generality,
we can suppose that X ⊆ Y1, Y2 and that fi is the inclusion map. Take Z∗ to be the free
amalgam of Y∗

1 and Y∗
2 over X∗. We write Z for the reduct of Z∗ to the signature of A. Let

(P i
y), (Qi

C), ξi be the witnesses for the fact that Y∗
i is a valid encoding, for i ∈ {1, 2}.

Let Pz := P i
z if z ∈ Yi; this is well defined since if z ∈ Y1 ∩ Y2 = X, then we have

P 1
z = P 2

z . If C is a constraint (z1, . . . , zn) ∈ RZ, then by definition {z1, . . . , zn} ⊆ Yi for
some i ∈ {1, 2}. Let QC := Qi

C , and note again that if {z1, . . . , zn} ⊆ Y1 ∩ Y2 then Q1
C = Q2

C .
Define similarly ξ, where Σ is the minor condition arising from the sets (Pz) and (QC), by
defining ξ(fz) := ξi(fz) and ξ(fC) := ξi(fC) for a suitable i.

We prove that the family of sets (Pz), (QC) satisfies Item 1. If C is a constraint
(z1, . . . , zn) ∈ RZ, then by definition {z1, . . . , zn} ⊆ Yi for some i. Thus, since (P i

y), (Qi
C)

satisfies Item 1, the projection of Qi
C to each component coincides with the corresponding

P i
z , and we are done.

Similarly, it is easy to see that ξ witnesses that Σ is satisfiable in M . Thus, Z∗ is a valid
encoding, witnessed by the sets (Pz), (QC), and ξ. ◀

Consider the Fraïssé limit AC(A, M )∗ of Cred and its reduct AC(A, M ) to the signature of
A. One obtains a structure that gives a classification of PCSPs for which the arc consistency
reduction correctly solves the problem.

▶ Theorem 12. Let (A,B) be a PCSP template. The following hold:
There exists a homomorphism A → AC(A, M ),
For every finite structure B, arc consistency is a correct reduction from PCSP(A,B) to
PMC(M ) if, and only if, there exists a homomorphism AC(A, M ) → B.
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Proof. Since A is not rejected by the arc consistency reduction, there exists a valid encoding
A∗ ∈ Cred, and therefore A∗ embeds into AC(A, M )∗. It follows that A embeds into
AC(A, M ).

If arc consistency is a correct reduction, then all the structures that have a valid encoding
in Cred admit a homomorphism to B; thus, a compactness argument gives that AC(A, M )
admits a homomorphism to B.

For the other direction, we remark that the reduction is always complete, i.e., every
yes-instance of PCSP(A,B) is mapped to a yes-instance of PMC(M ). Conversely, suppose
that the minor condition Σ that is computed by the algorithm on an instance X admits
a solution in M . We give a homomorphism X → B as follows. Let X∗ ∈ Cred be a valid
encoding, which exists since X is not rejected by the reduction. We get an embedding
X∗ → AC(A, M )∗, giving a homomorphism X → AC(A, M ), which can then be composed
with the homomorphism AC(A, M ) → B that exists by assumption, from which we get a
homomorphism X → B. ◀

Note that if the number of elements in M P is bounded for every subset P of A or
of a relation of A, then AC(A, M )∗ is homogeneous in a finite language, and is therefore
ω-categorical. By [32, Theorem 2.11], the expansion of AC(A, M )∗ by a free linear or-
der is a Ramsey structure. Let G be its automorphism group. Thus, the existence of a
homomorphism AC(A, M ) → B is equivalent, by Theorem 4, to the existence of a homo-
morphism AC(A, M )/G → B, which can be effectively tested when AC(A, M )/G is finite.
The domain of D := AC(A, M )/G consists, by homogeneity, of pairs (P, f) where P is a
non-empty subset of A and f is in M P . Moreover, if R is an n-ary relation symbol, then
((P1, f1), . . . , (Pn, fn)) ∈ RD if, and only if, there exists a g ∈ M (RA ∩ (P1 × · · · × Pn)) such
that (M σi)(g) = fi holds for all i ∈ {1, . . . , n}, where σi : RA ∩ (P1 × · · · × Pn) → Pi is
the ith projection. Provided that the elements of M can be presented to an algorithm in
some way, then the structure D can be computed according to the definition above, and the
existence of a homomorphism D → B can be tested. This gives a decision procedure to check
whether the arc consistency reduction to M solves a given PCSP.

It is noted in [28] that arc consistency as an algorithm solving PCSP(A,B) can be seen
as a reduction from PCSP(A,B) to PMC(M0), where M0 is the minion consisting of all
operations of finite arity on a 1-element set (i.e., for every n, M0 contains a single function of
arity n). In this case, the elements of the finite structure D correspond exactly to non-empty
subsets of A, and we obtain another proof of the characterization of the power of the arc
consistency algorithm for PCSPs by means of the powerset structure defined by Feder and
Vardi [29].

The arc consistency procedure can be generalized to the k-consistency algorithm by
computing sets Px1,...,xk

⊆ Ak for every k-tuple of elements from X, and asking for similar
conditions as in Item 1. We say that a PCSP template (A,B) has width k if every instance
X of PCSP(A,B) that is not rejected by the k-consistency algorithm (when seeing X as an
instance of CSP(A)) admits a homomorphism to B.

When a PCSP template has bounded width (i.e., has width k for some k) then the
corresponding PCSP can be solved in polynomial time. It is hitherto not known whether
the search version of the PCSP can then be solved in polynomial time. The existence of a
structure C that would allow us to follow the same line of reasoning as for arc consistency is
open. Atserias and Toruńczyk [5] proved that the class of locally consistent systems of linear
equations over Z2 cannot be turned into a class with the amalgamation property using an
expansion by finitely many relations (i.e., this class is not homogenizable). However, in order
to obtain a structure A′ playing the role of AC(A, M0) in Theorem 12 for any PCSP(A,B)
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that is solvable by, say, 3-consistency, it is plausible that one only needs the number of orbits
of elements of A′ to be finite, a much weaker condition than homogeneity in a finite relational
language, or even ω-categoricity.

5 The Basic Linear Programming Relaxation

The basic linear programming relaxation of an instance X of CSP(A) is the following linear
program with variables λx(a) for x ∈ X and a ∈ A:

∑
a∈A λx(a) = 1 for all x ∈ X∑

a∈RA λC(a) = 1 for all constraints C := y ∈ RX∑
a:ai=b λC(a) = λx(b) for all x, b, and y s.t. yi = x

λx(a), λC(a) ≥ 0 for all variables

(BLP(X,A))

Note that if X admits a homomorphism to A, then the λ’s can be taken to have values in
{0, 1} and to describe completely a homomorphism X → A. However, there can be proper
solutions to the program BLP(X,A) that do not correspond to any homomorphism.

We say that PCSP(A,B) is solvable by BLP if whenever BLP(X,A) has a solution for
a given X, then X admits a homomorphism to B. Note that if PCSP(A,B) is solvable by
BLP, then it is in particular solvable in polynomial time. It is proven in [8] that PCSP(A,B)
is solvable by BLP if, and only if, a certain structure LP(A) whose domain is the set of
probability distributions on A admits a homomorphism to B. It is unknown whether it is
always true that a PCSP(A,B) that is solvable by BLP is also polynomially solvable in its
search variant. Moreover, it is not known whether the BLP-solvability of a given PCSP is
decidable.

The λ’s represent probability distributions on A and RA that are required to be consistent;
one sees that the supports of any solution to BLP(X,A) forms a family of sets Px, QC

satisfying the arc consistency condition. Thus, the BLP relaxation is more powerful than arc
consistency.

The approach used in the previous sections can be applied here, by encoding the probability
distributions λ’s arising from a solution to BLP(X,A) as suitable relations over X using
additional symbols Pa,q for tuples a from A and q ∈ Q ∩ [0, 1] to encode the probability
distributions λ’s. This gives a class CBLP of structures that has the amalgamation property.
Let C∗

BLP be the Fraïssé limit of CBLP, and let CBLP be its reduct of the signature of A.

▶ Proposition 13. Let (A,B) be a PCSP template. The following are equivalent:
PCSP(A,B) is solvable by BLP,
there exists a homomorphism CBLP → B.

We note that infinitely many new predicates are required for this encoding, and therefore
CBLP is not ω-categorical, just as is the case of LP(A) [8]. In fact, LP(A) can be seen to be
homomorphically equivalent to CBLP, using the natural correspondence between probability
distributions on A and the orbits of C∗

BLP, which are described by the unary predicates Pa,q

for a ∈ A and q ∈ Q ∩ [0, 1].
However, for every N ≥ 1, one can consider the class C(N)

BLP of structures X endowed with
rational probability distributions where no denominator is greater than N . Every C(N)

BLP has
the amalgamation property, and therefore a Fraïssé limit C∗,N

BLP. Since the language is now
finite, each C∗,N

BLP is ω-categorical, and for every N < M we have embeddings C∗,N
BLP ↪→ C∗,M

BLP.
We thus get the following refinement of Proposition 13.
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▶ Proposition 14. Let (A,B) be a PCSP template. The following are equivalent:
PCSP(A,B) is solvable by BLP,
A → C1

BLP → C2
BLP → · · · → CBLP → B.

Once more, [32, Theorem 2.11] applies and gives that each CN
BLP admits a homogeneous

Ramsey expansion by finitely many relations. It is not immediately clear if this observation
and Proposition 14 can be used to derive a decision procedure for solvability of a PCSP by
BLP.

6 The Affine Integer Relaxation

Similarly as in Section 5, we can obtain a limit structure characterizing the power of the
so-called affine integer relaxation (AIP) [8]. Given an input X to CSP(A), the system
AIP(X,A) is like BLP(X,A) except that the variables are integer-valued. If X → A, then the
same {0, 1} solution to BLP(X,A) is a solution to AIP(X,A), and we say that AIP solves
PCSP(A,B) if whenever a solution to AIP(X,A) exists, then X → B. The power of AIP to
solve PCSPs has been characterized in [8] by means of the existence of a structure IP(A),
similarly as LP(A) characterizes the power of BLP.

The class of structures X for which AIP(X,A) has a solution can be expanded by relations
encoding, for each X, a possible solution to AIP(X,A). The resulting class CAIP of structures
has the amalgamation property (where the amalgam is always free), and therefore it has a
Fraïssé limit C∗

AIP, whose reduct CAIP to the signature of A characterizes solvability by AIP.

▶ Proposition 15. Let (A,B) be a PCSP template. The following are equivalent:
PCSP(A,B) is solvable by AIP,
there exists a homomorphism CAIP → B.

7 Further connections to infinite-domain CSPs

We conclude this paper by hinting at further connections between algorithms solving PCSPs
and infinite-domain CSPs.

Sandwiches and Monotone Algorithms

All current polynomial-time algorithms for solving or reducing PCSPs feature the use of
algorithms solving CSPs either via a trivial reduction, via computationally simple many-one
reductions, or as oracles.

In the first case, one solves PCSP(A,B) through a “trivial” reduction to a problem of
the form CSP(C), where the reduction does not transform the input. By definition, this
“do-nothing” reduction is valid if, and only if, there exists a homomorphism from A to C and
from C to B, which we denote by A → C → B. Because of this characterization, characterizing
when a “do-nothing” reduction is a valid reduction from PCSP(A,B) to CSP(C) relies on
studying the templates that are sandwiched between A and B in the homomorphism preorder.
Barto [7] and Barto and Asimi [1] have showed examples of problems of the form PCSP(A,B)
where such a C with CSP(C) polynomial-time tractable exists but cannot be taken to be
a finite structure. As explained in Sections 5 and 6, the tractability of PCSPs that are
solvable by relaxations like the basic linear relaxation and integer affine relaxation can also
be explained by sandwiches, taking C to be a reduct of a given structure whose domain
consists of tuples of rational or integer numbers.
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A second type of algorithms solving PCSPs consists in having a computationally simple,
but non-trivial, reduction to a CSP. The power of reductions known as gadget reductions
is completely classified (even where the target problem is itself a PCSP). As in the case of
CSPs, the existence of a gadget reduction between two PCSPs is equivalent to the existence
of a certain type of map between the sets of polymorphisms of the corresponding templates.
A more powerful type of reductions, called k-reductions or k-consistency reductions, has
emerged recently [33, 28] and the computational power of such reductions is still unclear.

The computationally more powerful algorithms leverage algorithms for CSPs as blackboxes,
mainly using the solvability of linear programming over Q or of linear diophantine equations
over Z. This is for example the case of CLAP [23], BLP+AIP [19], and cohomological
consistency [27].

For each of the three types of algorithms or reductions proposed above, it is in general
hard to characterize the power of the respective methods, and in particular it is hard to prove
that a given approach does not solve a given PCSP, even in concrete cases. For example,
considerable effort has been put recently into proving that specific polynomial-time algorithms
do not solve PCSP(Ks, Kc) for c ≥ s > 2 [25, 26], which is conjectured to be NP-hard and
therefore should not be solvable by any polynomial-time algorithm if P ̸= NP. Beyond the
main result of this paper, the thesis we put forward here is that the tools from various fields
of logic can be used to study these questions in a more general setting than Theorem 2.

We note that by allowing arbitrary logspace reductions, one can prove the tractability of
every PCSP by a reduction to a CSP (potentially with an infinite template).

▶ Observation 16. For every PCSP template (A,B) such that PCSP(A,B) is in P, there
exists a structure C such that CSP(C) is in P and such that PCSP(A,B) reduces to CSP(C)
in logspace.

Proof. Let L be the set of instances accepted by a given polynomial-time algorithm solving
PCSP(A,B). By [11, Theorem 1], there exists a structure C such that L admits a logspace
reduction to CSP(C), and CSP(C) admits a polynomial-time Turing reduction to L (and
is therefore in P ). Since PCSP(A,B) reduces to L (by a trivial reduction), we have that
PCSP(A,B) reduces to CSP(C). ◀

We mention that while every finite-domain PCSP reduces to a problem in NP, this is not
the case for infinite-domain CSPs, even for decidable ones (as there exist, e.g., NEXPTIME-
complete CSPs [31]). Thus, it is probable that structural restrictions can be imposed on the
infinite templates appearing in Observation 16, so that their CSPs are still able to “solve” all
the finite-domain PCSPs. While the assumption that PCSP(A,B) is in P is difficult to use, it
seems that assuming that the tractability of PCSP(A,B) comes from specific polynomial-time
algorithms does allow us to provide better constructions for C, as in the cases explored in
the previous sections.

The power of the sandwich approach

Provided that PCSP(A,B) is solvable by a “natural” algorithm, we even obtain a structure
C such that CSP(C) is in P and such that PCSP(A,B) reduces to CSP(C) by the do-nothing
reduction, i.e., A → C → B. We call an algorithm M natural if it satisfies the following
conditions:
1. for every finite X, M accepts the input X iff M accepts all the connected components of

X,
2. for every finite X,Y such that M accepts Y and such that X admits a homomorphism to

Y, M accepts X.
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Let us call M monotone if it satisfies Item 2.5 If PCSP(A,B) is solvable by a monotone
polynomial-time algorithm M , then there exists a polynomial-time algorithm M ′ satisfying
Item 1, making polynomially many calls to M , and such that M ′ solves PCSP(A,B). Indeed,
on input X, M ′ simply calls M on all the connected components of X and accepts X if all
its connected components are accepted by M . Note that M ′ still solves PCSP(A,B) since
for every X, whether X homomorphically maps to A or B only depends on whether all its
connected components do.

▶ Observation 17. Let (A,B) be a PCSP template. The following are equivalent:
1. There exists a structure C such that A → C → B and such that CSP(C) is in P,
2. PCSP(A,B) is solvable by a monotone polynomial-time algorithm.

Proof. The implication from Item 1 to Item 2 is immediate, as any algorithm solving CSP(C)
must be natural, and PCSP(A,B) reduces to CSP(C) by a trivial reduction. This gives a
monotone algorithm solving PCSP(A,B).

Suppose now that PCSP(A,B) is solvable by a monotone polynomial-time algorithm M .
By the argument above Observation 17, one can even assume that M is natural. Let C be
the disjoint union of all the finite structures X such that M accepts X. Since M needs to
accept A, we have A → C. Moreover, since every accepted structure admits a homomorphism
to B, a compactness argument gives that C → B.

Note that for every finite X, M accepts X iff X → C. Indeed, if X is accepted by M then
it is even an induced substructure of C. Conversely, if X has a homomorphism to M, every
connected component of X admits a homomorphism to a structure Y such that Y is accepted
by M . By assumption, this means that X is accepted by M . Thus, CSP(C) is solved by M .

Finally, note that the trivial reduction X 7→ X is a reduction from PCSP(A,B) to
CSP(C). ◀

It was conjectured in [17] that every tractable PCSP must sandwich a tractable CSP.
By Observation 17, this is equivalent to conjecturing that every polynomial-time tractable
PCSP can be solved by a monotone algorithm running in polynomial time. Since all
the known algorithms for PCSPs satisfy the condition of being natural, we see that the
sandwich approach, although looking at first sight more limited than the other two mentioned
approaches, is in fact currently also the most general.

8 Conclusion

We have provided in Sections 4–7 results relating the power of certain algorithms and
reductions to solve PCSPs that has already been studied in the literature [8, 28, 19] providing
characterizations of the applicability of a given algorithm by properties of the polymorphisms
of the PCSP templates. We give here a logical take on the problem of characterizing the
power of these algorithms. The general approach that we give has the advantage that it
is fairly automatic: given the description of an algorithm, it is quite immediate to encode
the inputs of the algorithm that are accepted as a class of relational structures, and study
the potential generic objects for such a class. Remarkably, the powerful Ramsey theorem
of [32] provides “out-of-the-box” strong combinatorial properties for these objects that can
be potentially be used to prove tractability properties for the search variant of PCSPs, as
well as decidable conditions for the applicability of a given algorithm.

5 This can be seen as a special case of the monotone reductions described in [34].
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The algorithms that arise as “higher levels” of algorithms described here (e.g., k-
consistency as a higher level of arc consistency, kth level of the Sherali-Adams hierarchy as a
“higher level” version of BLP) escape both the algebraic methods and the methods presented
here. We note that [24] have algebraic characterizations of the instances that are accepted by
a given algorithm, however this does not answer the question of which PCSP templates have
the property that all their instances that are accepted by this algorithm have a solution.

We are thankful for the numerous comments by anonymous reviewers that helped improve
the quality of this paper.

References
1 Kristina Asimi and Libor Barto. Finitely tractable promise constraint satisfaction problems. In

Filippo Bonchi and Simon J. Puglisi, editors, 46th International Symposium on Mathematical
Foundations of Computer Science, MFCS 2021, August 23-27, 2021, Tallinn, Estonia, volume
202 of LIPIcs, pages 11:1–11:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.MFCS.2021.11.

2 Albert Atserias. On digraph coloring problems and treewidth duality. Eur. J. Comb., 29(4):796–
820, 2008. doi:10.1016/j.ejc.2007.11.004.

3 Albert Atserias, Andrei A. Bulatov, and Anuj Dawar. Affine systems of equations and counting
infinitary logic. Theor. Comput. Sci., 410(18):1666–1683, 2009. doi:10.1016/j.tcs.2008.12.
049.

4 Albert Atserias and Víctor Dalmau. Promise constraint satisfaction and width. In Joseph (Seffi)
Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9–12, 2022,
pages 1129–1153. SIAM, 2022. doi:10.1137/1.9781611977073.48.

5 Albert Atserias and Szymon Toruńczyk. Non-homogenizable classes of finite structures.
In Jean-Marc Talbot and Laurent Regnier, editors, 25th EACSL Annual Conference on
Computer Science Logic, CSL 2016, August 29 – September 1, 2016, Marseille, France,
volume 62 of LIPIcs, pages 16:1–16:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2016. doi:10.4230/LIPIcs.CSL.2016.16.

6 Per Austrin, Venkatesan Guruswami, and Johan Håstad. (2+ϵ)-Sat is NP-hard. SIAM J.
Comput., 46(5):1554–1573, 2017. doi:10.1137/15M1006507.

7 Libor Barto. Promises make finite (constraint satisfaction) problems infinitary. In 34th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC, Canada,
June 24-27, 2019, pages 1–8. IEEE, 2019. doi:10.1109/LICS.2019.8785671.

8 Libor Barto, Jakub Bulin, Andrei A. Krokhin, and Jakub Opršal. Algebraic approach to
promise constraint satisfaction. J. ACM, 68(4):28:1–28:66, 2021. doi:10.1145/3457606.

9 Libor Barto and Marcin Kozik. Constraint satisfaction problems solvable by local consistency
methods. J. ACM, 61(1):3:1–3:19, 2014. doi:10.1145/2556646.

10 Libor Barto and Marcin Kozik. Combinatorial gap theorem and reductions between promise
CSPs. In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA,
January 9–12, 2022, pages 1204–1220. SIAM, 2022. doi:10.1137/1.9781611977073.50.

11 Manuel Bodirsky and Martin Grohe. Non-dichotomies in constraint satisfaction complexity. In
Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir,
and Igor Walukiewicz, editors, Automata, Languages and Programming, 35th International
Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II – Track
B: Logic, Semantics, and Theory of Programming & Track C: Security and Cryptography
Foundations, volume 5126 of Lecture Notes in Computer Science, pages 184–196. Springer,
2008. doi:10.1007/978-3-540-70583-3_16.

12 Manuel Bodirsky, Martin Hils, and Barnaby Martin. On the scope of the universal-algebraic
approach to constraint satisfaction. In Proceedings of the 25th Annual IEEE Symposium on
Logic in Computer Science, LICS 2010, 11-14 July 2010, Edinburgh, United Kingdom, pages
90–99. IEEE Computer Society, 2010. doi:10.1109/LICS.2010.13.

CSL 2024

https://doi.org/10.4230/LIPIcs.MFCS.2021.11
https://doi.org/10.1016/j.ejc.2007.11.004
https://doi.org/10.1016/j.tcs.2008.12.049
https://doi.org/10.1016/j.tcs.2008.12.049
https://doi.org/10.1137/1.9781611977073.48
https://doi.org/10.4230/LIPIcs.CSL.2016.16
https://doi.org/10.1137/15M1006507
https://doi.org/10.1109/LICS.2019.8785671
https://doi.org/10.1145/3457606
https://doi.org/10.1145/2556646
https://doi.org/10.1137/1.9781611977073.50
https://doi.org/10.1007/978-3-540-70583-3_16
https://doi.org/10.1109/LICS.2010.13


41:18 Promise and Infinite-Domain Constraint Satisfaction

13 Manuel Bodirsky, Florent R. Madelaine, and Antoine Mottet. A proof of the algebraic
tractability conjecture for monotone monadic SNP. SIAM J. Comput., 50(4):1359–1409, 2021.
doi:10.1137/19M128466X.

14 Manuel Bodirsky, Antoine Mottet, Miroslav Olsak, Jakub Opršal, Michael Pinsker, and Ross
Willard. ω-categorical structures avoiding height 1 identities. Trans. Amer. Math. Soc.,
374:327–350, 2021.

15 Manuel Bodirsky, Antoine Mottet, Miroslav Olšák, Jakub Opršal, Michael Pinsker, and
Ross Willard. Topology is relevant (in a dichotomy conjecture for infinite-domain constraint
satisfaction problems). In 34th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2019, Vancouver, BC, Canada, June 24-27, 2019, pages 1–12. IEEE, 2019. doi:
10.1109/LICS.2019.8785883.

16 Manuel Bodirsky, Michael Pinsker, and Todor Tsankov. Decidability of definability. The
Journal of Symbolic Logic, 78(4):1036–1054, 2013. doi:10.2178/jsl.7804020.

17 Joshua Brakensiek and Venkatesan Guruswami. An algorithmic blend of LPs and ring equations
for promise CSPs. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January
6-9, 2019, pages 436–455. SIAM, 2019. doi:10.1137/1.9781611975482.28.

18 Joshua Brakensiek and Venkatesan Guruswami. Promise constraint satisfaction: Algebraic
structure and a symmetric boolean dichotomy. SIAM J. Comput., 50(6):1663–1700, 2021.
doi:10.1137/19M128212X.

19 Joshua Brakensiek, Venkatesan Guruswami, Marcin Wrochna, and Stanislav Zivný. The
power of the combined basic linear programming and affine relaxation for promise constraint
satisfaction problems. SIAM J. Comput., 49(6):1232–1248, 2020. doi:10.1137/20M1312745.

20 Raimundo Briceno, Andrei Bulatov, Víctor Dalmau, and Benoit Larose. Dismantlability,
connectedness, and mixing in relational structures. J. Comb. Theory, Ser. B, 147:37–70, 2021.
doi:10.1016/j.jctb.2020.10.001.

21 Andrei A. Bulatov. A dichotomy theorem for nonuniform CSPs. In Chris Umans, editor, 58th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA,
USA, October 15-17, 2017, pages 319–330. IEEE Computer Society, 2017. doi:10.1109/FOCS.
2017.37.

22 Gregory Cherlin, Saharon Shelah, and Niandong Shi. Universal graphs with forbidden
subgraphs and algebraic closure. Advances in Applied Mathematics, 22:454–491, 1999.

23 Lorenzo Ciardo and Stanislav Živný. CLAP: A new algorithm for promise CSPs. In
Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA,
January 9–12, 2022, pages 1057–1068. SIAM, 2022. doi:10.1137/1.9781611977073.46.

24 Lorenzo Ciardo and Stanislav Zivný. Hierarchies of minion tests for PCSPs through tensors.
CoRR, abs/2207.02277, 2022. doi:10.48550/arXiv.2207.02277.

25 Lorenzo Ciardo and Stanislav Zivný. Approximate graph colouring and crystals. In Nikhil
Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 2256–2267.
SIAM, 2023. doi:10.1137/1.9781611977554.CH86.

26 Lorenzo Ciardo and Stanislav Zivný. Approximate graph colouring and the hollow shadow. In
Barna Saha and Rocco A. Servedio, editors, Proceedings of the 55th Annual ACM Symposium
on Theory of Computing, STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages 623–631.
ACM, 2023. doi:10.1145/3564246.3585112.

27 Adam Ó Conghaile. Cohomology in constraint satisfaction and structure isomorphism. In
Stefan Szeider, Robert Ganian, and Alexandra Silva, editors, 47th International Symposium
on Mathematical Foundations of Computer Science, MFCS 2022, August 22-26, 2022, Vienna,
Austria, volume 241 of LIPIcs, pages 75:1–75:16. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2022. doi:10.4230/LIPIcs.MFCS.2022.75.

https://doi.org/10.1137/19M128466X
https://doi.org/10.1109/LICS.2019.8785883
https://doi.org/10.1109/LICS.2019.8785883
https://doi.org/10.2178/jsl.7804020
https://doi.org/10.1137/1.9781611975482.28
https://doi.org/10.1137/19M128212X
https://doi.org/10.1137/20M1312745
https://doi.org/10.1016/j.jctb.2020.10.001
https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.1137/1.9781611977073.46
https://doi.org/10.48550/arXiv.2207.02277
https://doi.org/10.1137/1.9781611977554.CH86
https://doi.org/10.1145/3564246.3585112
https://doi.org/10.4230/LIPIcs.MFCS.2022.75


A. Mottet 41:19

28 Víctor Dalmau and Jakub Opršal. Local consistency as a reduction between constraint
satisfaction problems. CoRR, abs/2301.05084, 2023. doi:10.48550/arXiv.2301.05084.

29 Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: A study through datalog and group theory. SIAM J. Comput.,
28(1):57–104, 1998. doi:10.1137/S0097539794266766.

30 Pierre Gillibert, Julius Jonusas, Michael Kompatscher, Antoine Mottet, and Michael Pinsker.
Hrushovski’s encoding and ω-categorical CSP monsters. In Artur Czumaj, Anuj Dawar,
and Emanuela Merelli, editors, 47th International Colloquium on Automata, Languages, and
Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference),
volume 168 of LIPIcs, pages 131:1–131:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2020. doi:10.4230/LIPIcs.ICALP.2020.131.

31 Pierre Gillibert, Julius Jonusas, Michael Kompatscher, Antoine Mottet, and Michael Pinsker.
When symmetries are not enough: A hierarchy of hard constraint satisfaction problems. SIAM
J. Comput., 51(2):175–213, 2022. doi:10.1137/20m1383471.

32 Jan Hubička and Jaroslav Nešetřil. All those Ramsey classes (Ramsey classes with closures
and forbidden homomorphisms). CoRR, abs/1606.07979, 2016. arXiv:1606.07979.

33 Andrei A. Krokhin and Jakub Opršal. An invitation to the promise constraint satisfaction
problem. ACM SIGLOG News, 9(3):30–59, 2022. doi:10.1145/3559736.3559740.

34 Andrei A. Krokhin, Jakub Opršal, Marcin Wrochna, and Stanislav Zivný. Topology and
adjunction in promise constraint satisfaction. SIAM J. Comput., 52(1):38–79, 2023. doi:
10.1137/20M1378223.

35 Gábor Kun, Ryan O’Donnell, Suguru Tamaki, Yuichi Yoshida, and Yuan Zhou. Linear
programming, width-1 CSPs, and robust satisfaction. In Shafi Goldwasser, editor, Innovations
in Theoretical Computer Science 2012, Cambridge, MA, USA, January 8-10, 2012, pages
484–495. ACM, 2012. doi:10.1145/2090236.2090274.

36 Benoit Larose, Cynthia Loten, and Claude Tardif. A characterisation of first-order constraint
satisfaction problems. Log. Methods Comput. Sci., 3(4), 2007. doi:10.2168/LMCS-3(4:6)2007.

37 Antoine Mottet and Michael Pinsker. Smooth approximations and CSPs over finitely bounded
homogeneous structures. In Christel Baier and Dana Fisman, editors, LICS ’22: 37th Annual
ACM/IEEE Symposium on Logic in Computer Science, Haifa, Israel, August 2–5, 2022, pages
36:1–36:13. ACM, 2022. doi:10.1145/3531130.3533353.

38 Jaroslav Nešetřil and Claude Tardif. Duality theorems for finite structures (characterising
gaps and good characterisations). Journal of Combinatorial Theory, Series B, 80(1):80–97,
2000. doi:10.1006/jctb.2000.1970.

39 Michael Pinsker. Current challenges in infinite-domain constraint satisfaction: Dilemmas of the
infinite sheep. In 52nd IEEE International Symposium on Multiple-Valued Logic, ISMVL 2022,
Dallas, TX, USA, May 18-20, 2022, pages 80–87. IEEE, 2022. doi:10.1109/ISMVL52857.
2022.00019.

40 Michael Pinsker and Manuel Bodirsky. Canonical functions: a proof via topological dynamics.
Contributions Discret. Math., 16(2):36–45, 2021. URL: https://cdm.ucalgary.ca/article/
view/71724.

41 Benjamin Rossman. Homomorphism preservation theorems. J. ACM, 55(3):15:1–15:53, 2008.
doi:10.1145/1379759.1379763.

42 Marcin Wrochna and Stanislav Živný. Improved hardness for H -colourings of G-colourable
graphs. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 1426–1435.
SIAM, 2020. doi:10.1137/1.9781611975994.86.

43 Dmitriy Zhuk. A proof of CSP dichotomy conjecture. In Chris Umans, editor, 58th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October
15-17, 2017, pages 331–342. IEEE Computer Society, 2017. doi:10.1109/FOCS.2017.38.

44 Dmitriy Zhuk. A proof of the CSP dichotomy conjecture. J. ACM, 67(5):30:1–30:78, 2020.
doi:10.1145/3402029.

CSL 2024

https://doi.org/10.48550/arXiv.2301.05084
https://doi.org/10.1137/S0097539794266766
https://doi.org/10.4230/LIPIcs.ICALP.2020.131
https://doi.org/10.1137/20m1383471
https://arxiv.org/abs/1606.07979
https://doi.org/10.1145/3559736.3559740
https://doi.org/10.1137/20M1378223
https://doi.org/10.1137/20M1378223
https://doi.org/10.1145/2090236.2090274
https://doi.org/10.2168/LMCS-3(4:6)2007
https://doi.org/10.1145/3531130.3533353
https://doi.org/10.1006/jctb.2000.1970
https://doi.org/10.1109/ISMVL52857.2022.00019
https://doi.org/10.1109/ISMVL52857.2022.00019
https://cdm.ucalgary.ca/article/view/71724
https://cdm.ucalgary.ca/article/view/71724
https://doi.org/10.1145/1379759.1379763
https://doi.org/10.1137/1.9781611975994.86
https://doi.org/10.1109/FOCS.2017.38
https://doi.org/10.1145/3402029

	1 Introduction
	1.1 Contributions

	2 Definitions
	2.1 Promise Constraint Satisfaction Problems
	2.2 omega-categorical structures
	2.3 Ramsey expansions and canonical polymorphisms

	3 PCSPs solvable in First-Order Logic
	4 Local Consistency for PCSPs
	5 The Basic Linear Programming Relaxation
	6 The Affine Integer Relaxation
	7 Further connections to infinite-domain CSPs
	8 Conclusion

