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Abstract
We establish a formal correspondence between resource calculi and appropriate linear multicategories.
We consider the cases of (symmetric) representable, symmetric closed and autonomous multicategories.
For all these structures, we prove that morphisms of the corresponding free constructions can be
presented by means of typed resource terms, up to a reduction relation and a structural equivalence.
Thanks to the linearity of the calculi, we can prove strong normalization of the reduction by
combinatorial methods, defining appropriate decreasing measures. From this, we achieve a general
coherence result: morphisms that live in the free multicategorical structures are the same whenever
the normal forms of the associated terms are equal. As further application, we obtain syntactic
proofs of Mac Lane’s coherence theorems for (symmetric) monoidal categories.
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1 Introduction

The basis of the celebrated Curry-Howard-Lambek correspondence is that logical systems,
typed λ-calculi and appropriate categorical constructions are different presentations of the
same mathematical structure. An important consequence of the correspondence is that we
can give syntactical presentations of categories, that can be exploited to prove general results
by means of elementary methods, such as induction. At the same time, we can use categorical
methods to obtain a more modular and clean design of programming languages. The classic
example is given by simply typed λ-calculi and cartesian closed categories [22]. The idea
is well-known: morphisms in free cartesian closed categories over sets are identified with
equivalence classes of λ-terms up to βη-equality. Another important setting is the linear
one, where we consider monoidal categories instead of cartesian ones. In this case, linear
logic [11] enters the scene: symmetric monoidal closed categories correspond to linear λ-calculi.
Computationally, this is a huge restriction, since linear terms can neither copy nor delete
their inputs during computation. A refinement of this picture can be obtained by switching
from categories to multicategories [21]. These structures were indeed first introduced by
Lambek to achieve a categorical framework formally closer to typed calculi/proof systems.
Morphisms of multicategories can have multiple sources f : a1, . . . , an → a, recalling the
structure of a type judgment x1 : a1, . . . , xn : an ⊢ f : a.

We are interested in establishing a Curry-Howard-Lambek style correspondence for
appropriate linear multicategories and then employ it to obtain coherence results. When we
deal with complex structures such as tensor products, it becomes crucial to have a decision
process to establish whether two arrows are equal. This is called a coherence problem. The
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main example is Mac Lane’s original result [24], which states that all structural diagrams
in monoidal categories commute. If one considers more complex structures, the class of
commutative diagrams is normally more restrictive. In the case of closed monoidal categories,
Kelly and Mac Lane [17] associated graphs to structural morphisms, obtaining the following
coherence result: two structural arrows between appropriate objects1 are equal whenever
their graph is the same. We aim to achieve coherence results for linear multicategories,
building on Lambek’s and Mints [28] intuition that coherence problems can be rephrased in
the language of proof theory and obtained by exploiting appropriate notions of normalization
for proofs/terms [21]. We do so by establishing a formal connection between resource calculi
and linear multicategorical structures.

Main Results. We study free multicategorical constructions for (symmetric) representable
and closed structures. Representability consists of the multicategorical monoidal structure [12].
We prove that free linear multicategories built on appropriate signatures can be presented by
means of typed resource calculi, where morphisms correspond to equivalence classes of terms
up to a certain equivalence. We handle the tensor product via pattern-matching, presented
as a syntactic explicit substitution. The definition of our type systems is given in natural
deduction style: we have introduction and elimination rules for each type constructor. Our
work is conceptually inspired by an “adjoint functors point-of-view”. A basic fact of the classic
Curry-Howard-Lambek correspondence is that βη-equality can be expressed by means of the
unit (η) and the counit (β) of the adjunction between products and arrow types. We generalize
this observation to the multicategorical setting, thus introducing an appropriate reduction
relation that corresponds to the representable structure. Indeed, a fundamental aspect of
our work consists of the in depth study of resource terms rewriting. We introduce confluent
and strongly normalizing reductions, that express the appropriate equalities. In order to do
so, we exploit action-at-distance to define our operational semantics, that has proven to be a
successful approach to calculi with explicit substitution [18, 1, 2]. An important feature of
this approach is to distinguish the operational semantics, defined by action-at-distance, from
a notion of structural equivalence, that deals with commutations of explicit substitution with
the other syntactic constructors. This approach overcomes the classic difficulties of rewriting
systems with explicit substitution, allowing us to obtain confluence and strong normalization
in an elegant way. In this way, we get a general coherence result: two structural morphisms
of linear multicategories are equal whenever the normal forms of their associated terms are
equal. In the context of (symmetric) representable multicategories, we apply this result to
obtain a syntactic proof of stronger coherence theorems, that can be seen as multicategorical
versions of the classic MacLane coherence theorems for (symmetric) monoidal categories [24].
The coherence theorem for representable multicategories was already proved in [12]. We give
an alternative type-theoretic proof for it. To our knowledge, the other coherence results that
we present are new. Moreover, exploiting the equivalence between monoidal categories and
representable multicategories established by Hermida [12], we are able to obtain the original
Mac Lane’s results as corollaries of our coherence theorems.

Related Work. Building on Lambek’s original ideas, several researchers have advocated
the use of multicategories to model computational structures. Hyland [14] proposed to
rebuild the theory of pure λ-calculus by means of cartesian operads, that is one-object
cartesian multicategories. The idea of seeing resource calculi as multicategories was first

1 A restriction on the type of morphisms is needed due to the presence of the monoidal unit.



F. Olimpieri 43:3

employed by Mazza et al. [26, 25]. We build on their approach, showing that these calculi
correspond to appropriate universal constructions, namely free linear multicategories. The
first resource calculus has been introduced by Boudol [6]. A similar construction was also
independently considered by Kfoury [19]. Resource terms have gained special interest thanks
to the definition by Ehrhard and Regnier of the Taylor expansion for λ-terms [9]. From this
perspective, the resource calculus is a theory of approximation of programs and has been
successfully exploited to study the computational properties of λ-terms [3, 35, 26, 30]. Our
syntax is very close to the one of polyadic calculi or rigid resource calculi [26, 34]. We need
to extend the standard operational semantics, adding an η-reduction and a reduction for
explicit substitution. Our η-reduction is built from an expansion rule instead of a contraction,
since η-expansion naturally fits the adjoint point-of-view, corresponding the the unit of the
considered adjunction. In dealing with the technical rewriting issues, we follow [28, 16, 8],
obtaining a terminating η-reduction. As already discussed, we handle the explicit substitution
following Accattoli and Kesner methodology [18, 2, 1].

The calculi we present are also strongly related to intuitionistic linear logic [20, 4]. It
is well-known that resource calculi can be seen as fragments of ILL [26, 25]. While ILL is
presented via sequent calculus, we chose a natural deduction setting, this latter being directly
connected to the “adjoint functors” point-of-view. Accattoli and Kesner approach to explicit
substitution allows us to bypass the cumbersome commutation rules needed for ILL rewriting.
Moreover, resource calculi are closer to the multicategorical definitions (their constructors
being unbiased [23], i.e., k-ary). Our handling of symmetries is also more canonical and
explicit. We use the properties of shuffle permutations, in a way similar to Hasegawa [29]
and Shulman [33], also inspired by our ongoing work on bicategorical semantics [27]. In this
way, the type system is syntax directed and we are able to prove that, given a term, there
exists at most one type derivation for it. The pioneering work of Mints [28] is very close
to our perspective. Mints introduced a linear λ-calculus to study the coherence problem of
closed category by the means of normalization. We build on that approach, extending it to
several different structures and to the multicategorical setting.

Shulman’s type theory for (symmetric) monoidal categories [33] does not employ explicit
substitutions, being able to handle tensors in way similar to what happens with standard
product types. Our proposal differs considerably from Shulman’s, both in purpose and
in implementation. While Shulman’s goal is to start from the categorical structure and
define a “practical” type theory to make computations, ours consists of establishing a formal
correspondence between two independent worlds: resource calculi and linear multicategories
and then employ it to prove results about the categorical structure.

Proof-theoretic methods to establish coherence results have been widely exploited and
studied also in recent times, see for instance [7, 36]. Graphical approaches to monoidal
structures [31] have been widely developed. Particularly interesting for our work are the
Kelly-Mac Lane graphs [17], This approach has been extended via linear logic, thanks to
the notion of proof-net [5, 13]. However, the handling of monoidal units needs extra care
from this perspective, while the terms calculi approach can account for them without any
particular complication.

2 Preliminaries

We introduce some concepts, notations and conventions that we will use in the rest of the
paper.

CSL 2024
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Integers, Permutations and Lists. For n ∈ N, we set [n] = {1, . . . , n} and we denote by
Sn the symmetric group of order n. The elements of Sn are permutations, that we identify
with bijections [n] ∼= [n]. Given σ, τ ∈ Sn, we denote by σ ◦ τ their composition. Given
σ ∈ Sn, τ ∈ Sm we denote by σ ⊕ τ : [n + m] ∼= [n + m] the evident induced permutation.
We now introduce the notion of shuffle permutation, that is crucial to obtain canonical type
derivations for resource terms with permutations (Proposition 32).

▶ Definition 1 (Shuffles). Let n1, . . . , nk ∈ N with n =
∑k

i=1 ni. A (n1, . . . , nk)-shuffle is a
bijection σ :

∑k
i=1[ni] ∼= [n] such that the composite [ni] ↪→

∑k
i=1[ni] ∼= [n] is monotone for

all i ∈ [k]. We denote the set of all (n1, . . . , nk)-shuffles as shu(n1, . . . , nk).

The relevant result on shuffles is the following, that induces canonical decomposition of
arbitrary permutations over sums of integers.

▶ Lemma 2. Every permutation σ ∈ S∑k

i=1
ni

can be canonically decomposed as τ0 ◦(
⊕k

i=1 τi)
with τ0 ∈ shu(n1, . . . , nk) and τi ∈ Sni

for i ∈ [k].

Given a set A and a list of its elements γ = a1, . . . , ak and σ ∈ Sk we set γ ·σ = aσ(1), . . . , aσ(k)
for the symmetric group right action. We write len(γ) for its length. We denote the
stabilisers for this action as Stab(γ) = {σ ∈ Sk | γ · σ = γ}. Given lists γ1, . . . , γk, we set
shu(γ1, . . . , γk) = shu(len(γ1), . . . , len(γk)).

Multicategories. Multicategories constitute the main object of our work. A multicategory
is a multigraph that comes equipped with an appropriate composition operation.

▶ Definition 3. A multigraph G is given by the following data:
A collection of nodes G0 ∋ a, b, c . . .

For every a1, . . . , an, b ∈ G0, a collection of multiarrows G(a1, . . . , an; b) ∋ s, t, u . . .

We denote by arr(G) the set of all multiarrows of G.

▶ Definition 4. A multicategory is a multigraph G equipped with the following additional
structure:

A composition operation − ◦ ⟨−, . . . , −⟩ : G(a1, . . . , an; b) ×
∏n

i=1 G(γi, ai) →
G(γ1, . . . , γn; a).
identities ida ∈ G(a, a).

The former data is subjected to evident associativity and identity axioms. We call objects
the nodes of G and morphisms its multiarrows.

A multicategory can be equipped with structure. We now introduce the notions of
symmetric, closed and representable multicategories.

▶ Definition 5. A multicategory M is symmetric if, for σ ∈ Sk we have a family of bijections
− · σ : M(γ, a1, . . . , ak; a) ∼= M(γ, aσ(1), . . . , aσ(k); a) that satisfies additional axioms [23].

▶ Definition 6. A (right) closed structure for a multicategory M is given by a family of
objects (a1 ⊗ · · · ⊗ ak) ⊸ a ∈ M and arrows eva1,...,ak,a : a1, . . . , ak, (a1 ⊗ · · · ⊗ ak) ⊸ a → a

, for a1, . . . , ak, a ∈ M, such that the maps

ev ◦ ⟨−, ida1 , . . . , idak
⟩ : M(γ; (a1 ⊗ · · · ⊗ ak) ⊸ a) → M(γ, a1, . . . , ak; a)

induce a bijection, multinatural in γ and natural in a. We write λ(−) to denote the inverses
to these maps.
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▶ Definition 7. A representable structure for a multicategory M is given by a family of objects
(a1 ⊗ · · · ⊗ ak) ∈ M and arrows rea1,...,ak

: a1, . . . , ak → (a1 ⊗ · · · ⊗ ak), for a1, . . . , ak ∈ M,

such that he maps

− ◦ ⟨idγ , re, idδ⟩ : M(γ, (a1 ⊗ · · · ⊗ ak), δ; a) → M(γ, a1, . . . , ak, δ; a)

induce a bijection, multinatural in γ, δ and natural in a. We write let(−) to denote the
inverses to these maps.

We use the name autonomous multicategories to denote symmetric representable closed
multicategories. We have categories of representable multicategories (RepM), symmetric
representable multicategories (RepsM), closed multicategories (ClosedM) and autonomous
multicategories (autoM), whose morphisms are functors that preserve the structure on the
nose.

Signatures. We introduce signatures for the structures we consider.

▶ Definition 8. A representable signature is a pair ⟨At, R⟩ where At is a set of atoms At
and R is a multigraph with nodes generated by the following inductive grammar:

R0 ∋ a ::= o ∈ At | (a1 ⊗ · · · ⊗ ak) (k ∈ N).

▶ Definition 9. A closed signature L is a pair ⟨At, L⟩ where At is a set of atoms At and L
is a multigraph with with nodes generated by the following inductive grammar:

L0 ∋ a ::= o ∈ At | (a1 ⊗ · · · ⊗ ak) ⊸ a (k ∈ N).

▶ Definition 10. An autonomous signature is a pair ⟨At, H⟩ where At is a set of atoms At
and H is a multigraph with nodes generated by the following inductive grammar:

H0 ∋ a ::= o ∈ At | (a1 ⊗ · · · ⊗ ak) | (a1 ⊗ · · · ⊗ ak) ⊸ a (k ∈ N).

A signature is discrete whenever the collections of multiarrows are empty. We shall often
identify a signature with its graph. There are categories ClosedSig, RepSig and AutoSig for,
respectively, closed, representable and autonomous signatures. We have forgetful functors
from the categories ClosedM, RepM and autoM, which we denote by (−). One of the main
goals of this paper is to build the left adjoints to those functors via appropriate resource
calculi.

Monoidal Categories vs Representable Multicategories. In order to transport coherence
results from (symmetric) representable multicategories to ordinary (symmetric) monoidal
categories, we shall employ an equivalence result due to Hermida [12, Theorem 9.8]. Let
Mon be the category of monoidal categories and lax monoidal functors.

▶ Theorem 11 ([12]). There is an equivalence of categories RepM ≃ Mon.

rep(−)

mon(−)

The representable structure of a monoidal category (M, ⊗M, 1) is given by (a1 ⊗M · · · ⊗M
ak) = (a1) ⊗M (a2 ⊗M (· · · ⊗M ak) . . . ). Then composition needs a choice of structural
isomorphisms of M to be properly defined [12, Definition 9.2]2. The former equivalence can
be extended to the symmetric case in the natural way.

2 If we assume Mac Lane’s Coherence Theorem, the choice is unique. However, we shall not do so, since
we are going to exploit Theorem 11 to transport an appropriate coherence theorem on representable
multicategories to ordinary monoidal categories, thus obtaining the Mac Lane’s result as corollary.

CSL 2024



43:6 Coherence by Normalization for Linear Multicategorical Structures

f ∈ R(a1, . . . , an; b) γ1 ⊢ s1 : a1 . . . γn ⊢ sn : an

(γ1, . . . , γn) ⊢ f(s1, . . . , sn) : b

γ1 ⊢ s1 : a1 . . . γk ⊢ sk : ak

γ1, . . . , γk ⊢ ⟨s1, . . . , sk⟩ : (a1 ⊗ · · · ⊗ ak)

a ∈ R0

x : a ⊢ x : a

γ ⊢ s : (a1 ⊗ · · · ⊗ ak) δ, x1 : a1, . . . , xk : ak, δ′ ⊢ t : b

δ, γ, δ′ ⊢ t[xa1
1 , . . . , x

ak
k := s] : b

C ::= [·] | ⟨s1, . . . , C, . . . , sk⟩ | C[x⃗ := t] | s[x⃗ := C] | f(s1, . . . , C, . . . , sk).
E ::= [·] | ⟨s1, . . . , E, . . . , sk⟩ | E[x⃗ := s] | s[x⃗ := E] (E ̸= [·]) | f(s1, . . . , E, . . . , sk).
L ::= [·] | L[x⃗ := t].

Figure 1 Representable Type System on a signature R and contexts with one hole. Types are
the elements of R0.

Notations and Conventions. Given a set of terms A and a reduction relation →ϵ⊆ A×A, we
denote respectively as ↠ϵ and →∗

ϵ its transitive closure and its transitive and reflexive closure.
We denote by =ϵ⊆ A × A the smallest equivalence relation generated by →ϵ . For a confluent
reduction, we denote by nf(s)ϵ the normal form of s, if it exists. Given an equivalence relation
e ⊆ A × A, and s ∈ A, we denote by [s]e the corresponding equivalence class. We will often
drop the annotation and just write [s]. We fix a countable set of variables V, that we will
use to define each calculi. Terms are always considered up to renaming of bound variables.
Given terms s, t1, . . . , tk and variables x1, . . . , xk we write s{t1, . . . , tk/x1, . . . , xk} to denote
capture-avoiding substitutions. We often use the abbreviation s{t⃗/x⃗}. To define reduction
relations, we rely on appropriate notions of contexts with one hole. Given a context with
hole C and a term s we write C[s] for the capture-allowing substitution of the holes of C
by s. The size of a term size (s) is the number of syntactic constructors appearing in its
body. The calculi we shall introduce are typed à la Church, but we will constantly keep the
typing implicit, to improve readability. Given γ ⊢ s : a we write C[δ ⊢ p : b] = s meaning
that C[p] = s and the type derivation of γ ⊢ p : b contains a subderivation with conclusion
δ ⊢ p : b. Given a typing judgment x1 : a1, . . . , xn : an ⊢ s : a we shall consider variables
appearing in the typing context as bound and we will work up to renaming of those variables.
We write π ▷ γ ⊢ s : a meaning that π is a type derivation of conclusion γ ⊢ s : a. For any
typing rule with multiple typing contexts, we assume those contexts to be disjoint.

3 A Resource Calculus for Representable Multicategories

We present our calculus for representable multicategories. We begin by introducing its
syntax and typing, then we discuss its operational semantics. We prove confluence and
strong normalization for its reduction. We show that equivalence classes of terms modulo
reduction and a notion of structural equivalence define the morphisms of free representable
multicategories over a signature. As an application of this result, we give a proof of the
coherence theorem for representable multicategories.

Representable Terms. Let R be a representable signature. The representable resource
terms over R are defined by the following inductive grammar:

Λrep(R) ∋ s, t ::= x ∈ V | ⟨s1, . . . , sk⟩ | s[xa1
1 , . . . , xak

k := t] | f(s1, . . . , sk)
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for k ∈ N and f ∈ arr(R), ai ∈ R. A term of the shape ⟨s1, . . . , sk⟩ is called a list. A term
of the shape s[x1, . . . , xk := t] is called an (explicit) substitution. Variables under the scope
of an explicit substitution are bound. Given a term s, we denote by ST(s) the set of its
subterms defined in the natural way.
▶ Remark 12. Our calculus follows the linear logic tradition of modelling the tensor product
structure by means of a let constructor [4]. We opted for the syntactic choice of an ex-
plicit substitution s[x1, . . . , xk := t], which stands for the more verbose let expression,
let ⟨x,1 , . . . , xk⟩ := t in s. Terms of the shape f(s1, . . . , sk) are needed to capture the
multiarrows induced by the signature R.

Typing and contexts with hole for representable terms is defined in Figure 1. A context
is atomic when it contains just atomic types. We define the following subset of terms
LT = {L[⟨s1, . . . , sk⟩] | for some context L and terms si}.

▶ Remark 13. The condition about disjoint contexts grants linearity. A term is linear when
each variable appears at most once in its body. It is easy to check that, by construction, all
typed terms are linear. Moreover, given γ ⊢ s : a, the context γ is relevant, meaning that it
contains just the free variables of s.

A type of the shape (a1 ⊗ · · · ⊗ ak) is called a k-ary tensor product. We use a vector
notation to refer to arbitrary tensors, eg., a⃗, b⃗ . . . If k = 0, the type () is also called the unit.
We set Λrep(R)(a1, . . . , an; a) = {s | x1 : a1, . . . , xn : an ⊢rep s : a for some xi ∈ fv(s).}. We
observe that, given a representable term γ ⊢ s : a, there exists a unique type derivation for it.

Terms Under Reduction. We now introduce the reduction relation for representable terms.
This relation consists of the union of two different subreductions: β and η reductions, defined
in Figure 2. The structural equivalence on terms is defined as the smallest congruence on
terms generated by the rule of Figure 2. We assume that the context C does not bind any
variable of t.

▶ Remark 14. Our η-reduction consists of a restricted version of the standard notion of
η-expansion, the restriction is needed to achieve strong normalization. We build on a well-
established tradition in term rewriting [28, 16, 8]. Unrestricted η is trivially non-terminating.
Indeed, for x : (a ⊗ b) ⊢ x : (a ⊗ b) we have the non-terminating chain x →η ⟨x, y⟩[x, y :=
z] →η ⟨x, y⟩[x, y := ⟨v, w⟩[v, w := z]] →η . . . Hence, we need to forbid η-reduction on the
right side of a substitution term, that is exactly what the restricted η-contexts do. Moreover,
there is also a problem of interaction between η and β. Consider s = ⟨x, y⟩ well-typed, then
we can produce the non-terminating chain s →η ⟨v, w⟩[v, w := ⟨x, y⟩] →β s →η . . . For this
reason, the root-step of η has to be restricted too. The presence of a substitution context in
the β-rule is an action-at-distance [2], that allows to “free” possible blocked redexes, as the
following one x[x := (⟨y⟩[y := z])]. In this way, we can bypass traditional commutation rules
and retrieve good rewriting properties. Structural equivalence intuitively says that explicit
substitutions can “freely travel” in the body of a term.

We prove that typings are preserved under reduction and structural equivalence.

▶ Proposition 15 (Subject Reduction and Equivalence). Let s →rep s′ or s ≡ s′ with γ ⊢ s : a.

then γ ⊢ s′ : a.

Proof. The proof is by induction on s →rep s′ and s ≡ s′ and exploits an appropriate
substitution lemma. ◀

We now prove that the structural equivalence is a strong bisimulation for the reduction
→rep . Intuitively, this means that the equivalence does not affect terms rewriting.

CSL 2024
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▶ Proposition 16. If s′ ≡ s and s →rep t there exists a term t′ s.t. t′ ≡ t and s′ →rep t′.

We show that we can associate appropriate measures to terms that decrease under
reduction. For β, we just consider the size of terms. For η, we build on Mints approach [28].
We define the size of a type by induction: size (o) = 0, size (⟨a1, . . . , ak⟩) = 1+

∑
size (ai) .

Given γ ⊢ s : a we define a set of typed subterms of s: EST(s) = {δ ⊢ p : a | p ∈
ST(s) \ LT s.t. E[δ ⊢ p : a] = s for some context E}. We set η(s) =

∑
δ⊢p:a∈EST(s) size (a) .

▶ Remark 17. The size of terms decreases under β-reduction as a consequence of linearity.
Redexes cannot be copied nor deleted under reduction, since the substitution is linear. This
fact is trivially false for standard λ-calculi, where the size of terms can possibly grow during
computation. The intuition behind the η measure is that we are counting all subterms of s

on which we could perform the η-reduction. The restrictions on the shape of p ∈ EST(s) is
indeed directly derived from the ones on η-reduction.

▶ Proposition 18. The following statements hold. If s →β s′ then size (s′) < size (s); if
s →η s′ then η(s′) < η(s).

▶ Proposition 19. The reductions →β and →η are separately strongly normalizing and
confluent.

Proof. Strong normalization is a corollary of the former proposition. For confluence, first
one proves local confluence by induction and then apply Newman’s Lemma. ◀

We want to extend the result of separate strong normalization and confluence to the
whole →rep-reduction. To do so, we prove that β and η suitably commutes.

▶ Proposition 20. If s →∗
β t →∗

η t′ there exists s′ s.t. s →∗
η s′ and s′ →∗

β t′.

▶ Theorem 21. The reduction →rep is confluent and strongly normalizing.

Proof. Strong normalization is achieved by observing that any infinite reduction chain of
→rep would trigger, by Proposition 20, an infinite reduction chain for η, that is strongly
normalizing. Confluence is achieved by first proving local confluence and then by applying
Newman’s Lemma. ◀

Given s ∈ Λreps(R)(γ; a), we denote by nf(s) its unique normal form. As a corollary of
subject reduction, we get that nf(s) ∈ Λreps(R)(γ; a). We shall now present an inductive
characterization of →rep-normal terms for the case where R is a discrete signature.

▶ Definition 22. Consider the following set, inductively defined:

nf(Λrep(R)) ∋ s ::= v[x⃗1 := x1] . . . [x⃗n := xn] v ::= ⟨v1, . . . , vk⟩ | x

where k, n ∈ N, γ ⊢ p : o with o being an atomic type and δ ⊢ v : a with δ being atomic.

▶ Proposition 23. A term s ∈ Λrep(R) is a normal form for →rep iff there exists s′ ∈
nf(Λrep(R)) s.t. s ≡ s′.

Proof. (⇒) By induction on s. If s = x then s ∈ nf(Λrep(R)). If ⟨s1, . . . , sk⟩ then si are
normal form. Then we apply the IH and get s′

i ∈ nf(Λrep(R)) s.t. si ≡ s′
i. By definition

s′
i = vi[x⃗i,1 := xi,1] . . . [x⃗i,1 := xi,ni ]. We then set s′ = ⟨v1, . . . , vk⟩[x⃗1,1 := x1,n1 ] . . . [x⃗k,1 :=

xk,nk
]. If s = p[x⃗ := q] we have that p is a normal form and q is a β-normal form. We reason

by cases on q. If q does not have η-redexes, we apply the IH and conclude in a way similar
to the list case. If q has η-redexes, since s is β normal we have that q /∈ LT. We can prove
that q = x[x⃗1 := q1] . . . [x⃗1 := qn] with qi hereditarely of the same shape. Hence we conclude
by pushing out all the substitutions from left to right. ◀
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β Root step: s[xa1
1 , . . . , xak

k := L[⟨t1, . . . , tk⟩]] →β L[s{t1, . . . , tk/x1, . . . , xk}].
η Root step: s →η x⃗[x⃗a⃗ := s] where x⃗ fresh , γ ⊢ s : a⃗, s /∈ LT.

Contextual extensions:
s →β s′

C[s] →β C[s′]
s →η s′

E[s] →η E[s′]
(→rep = →β ∪ →η).

Structural equivalence: C[s[x⃗ := t]] ≡ C[s][x⃗ := t] x⃗ /∈ fv(C).

Figure 2 Representable reduction relations and structural equivalence.

Free Representable Multicategories. Let R be a representable signature. First, we define
a multicategory RM(R) by setting ob(RM(R)) = R0 and RM(R)(γ; a) = Λrep(R)(γ; a)/∼
where ∼ = (≡ ∪ =rep). Composition is given by substitution, identities are given by variables.
The operation is well-defined on equivalence classes and satisfies associativity, identity axioms.
We also have that if s ∼ s′, then nf(s) ≡ nf(s′). We denote by ηR : R → RM(R) the evident
inclusion.

▶ Proposition 24 (Representability). We have a bijection RM(R)(γ, (a1 ⊗ · · · ⊗ ak), δ; a) ∼=
RM(R)(γ, a1, . . . , ak, δ; a) multinatural in γ, δ and natural in a, induced by the map [s] 7→
[s{⟨x1, . . . , xk⟩/x}].

Proof. Naturality follows from basic properties of substitution. Inverses are given by the
maps (−)[x⃗ := x] : RM(R)(γ, a1, . . . , ak, δ; a) → RM(R)(γ, (a1 ⊗ · · · ⊗ ak), δ; a). ◀

▶ Definition 25. Let R be a representable signature and S be a representable multicategory.
Let i : R → S be a map of representable signatures. We define a family of maps RT(i)γ,a :
Λrep(R)(γ; a) → S(i(γ); i(a)) by induction as follows:

RT(i)a,a(x) = idi(a) RT(i)γ1,...,γk,(a1⊗···⊗ak)(⟨s1, . . . , sk⟩) =
k⊗

i=1

RT(i)γi,ai (si)

RT(i)δ1,γ,δ2,a(s[x1, . . . , xk := t]) = let(RT(i)δ1,a1,...,ak,δ2,a(s)) ◦ ⟨idδ1 , RT(i)γ,(a1⊗···⊗ak)(t), idδ2 ⟩

RT(i)γ1,...,γn,a(f(s1, . . . , sn)) = i(f) ◦ ⟨RT(i)(s1), . . . , RT(i)(sn)⟩.

▶ Theorem 26 (Free Construction). Let S be a a representable multicategory and i : R → S a
map of representable signatures. There exists a unique representable functor i∗ : RM(R) → S
such that i = i∗ ◦ ηR.

Proof. The functor is defined exploiting Definition 25. ◀

Coherence Result. We fix a discrete representable signature R. We show that if s, t ∈
RM(R)(γ; a), then s = t. Our proof strongly relies on the characterization of normal forms
given in Proposition 23.

▶ Lemma 27. Let γ, γ′ be atomic contexts. If there exists a type a and normal terms s, s′

such that s, s′ ∈ Λrep(R)(γ; a) then γ = γ′ and s ≡ s′.

▶ Theorem 28. Let s, s′ be normal terms s.t. s, s′ ∈ Λrep(R)(γ; a), then s ≡ s′.

Proof. By Proposition 23, s ≡ t = (v[x⃗1 := x1] . . . [x⃗p := xp]) and s′ ≡ t′ = (v′[y⃗1 :=
x′

1] . . . [y⃗p := x′
p′ ]). We prove that t ≡ t′ by induction on p ∈ N. If p = 0 then t is
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either a list or a variable. We proceed by cases. If t = x then γ = o and a = o for
some atomic type o. By the former lemma we have that t ≡ t′. If t = ⟨v1, . . . , vk⟩ the
result is again a corollary of the former lemma since, by Definition 22, γ is atomic. If
p = n + 1 then t = v[x⃗1 := x1] . . . [x⃗n+1 := xn+1] and, by definition of typing we have

xn+1 : a⃗ ⊢ xn+1 : a⃗ δ1, x⃗n+1 : a⃗, δ2 ⊢ v[x⃗1 := x1] . . . [x⃗n := xn] : a

δ1, xn+1 : a⃗, δ2 ⊢ s : a

with γ = δ1, xn+1 : a⃗, δ2. Since t′ ∈ nf(Λrep)(γ; a), there exists i ∈ N such that t′ =
v′[y⃗1 := x′

1] . . . [y⃗i := x′
i] . . . [y⃗p := x′

p′ ] and x′
i = xn+1. By structural equivalence we have that

t′ ≡ v′[y⃗1 := x′
1] . . . [y⃗p := x′

p′ ] . . . [y⃗i := xi]. By definition of typing and by the hypothesis we
have that

x′
i : a⃗ ⊢ x′

i : a⃗ δ1, x⃗i : a⃗, δ2 ⊢ v′[y⃗1 := x′
1] . . . [y⃗p′ := x′

p′ ] : a

δ1, xn+1 : a⃗, δ2 ⊢ s′ : a

By IH we have that v[x⃗1 := x1] . . . [x⃗p := xn] ≡ v′[y⃗1 := x′
1] . . . [y⃗p := x′

p′ ] . We can then
conclude that t ≡ t′, by structural equivalence. ◀

▶ Theorem 29 (Coherence for Representable Multicategories). Let [s], [t] ∈ RM(R)(γ; a). Then
[s] = [t].

▶ Theorem 30 (Coherence for Monoidal Categories). All diagrams in the free monoidal
category on a set commute.

Proof. Corollary of the former theorem and Theorem 11, by noticing that mon(RM(R)) is
the free monoidal category on the underlying set of R. ◀

4 A Resource Calculus for Symmetric Representable Multicategories

The symmetric representable terms have exactly the same syntax and operational semantics
as the representable ones. We first extend the type system in order to account for symmetries.
We then study the free constructions establishing an appropriate coherence result.

The typing is defined in Figure 3. It is easy to see that the representable type system
consists of a fragment of the symmetric one, where we just consider identity permutations.
We write γ ⊢srep s : a when we need to specify that the type judgment refers to the symmetric
representable type system. We set Λreps(R)(a1, . . . , an; a) = {s | x1 : a1, . . . , xn : an ⊢srep s :
a for some xi ∈ fv(s).}.

▶ Remark 31. The role of permutations in the type system of Figure 3 deserves some
commentary. Instead of having an independent permutation rule, variables in contexts can
be permuted only when contexts have to be merged. In this way, the system is syntax
directed. The limitation to the choice of shuffle permutation is needed to get uniqueness of
type derivations for terms. Indeed, consider s = ⟨⟨x, y⟩, z⟩. If we allow the choice of arbitrary
permutations, we could build the following derivations:

x : a ⊢ x : a y : b ⊢ y : b σ

y : b, x : a ⊢ ⟨x, y⟩ : (a ⊗ b) z : a ⊢ z : a id

y : b, x : a, z : a ⊢ s : ((a ⊗ b) ⊗ a)

x : a ⊢ x : a y : b ⊢ y : b id

x : a, y : b ⊢ ⟨x, y⟩ : (a ⊗ b) z : a ⊢ z : a σ ⊕ id

y : b, x : a, z : a ⊢ s : ((a ⊗ b) ⊗ a)

where σ is the swap. Thanks to the shuffle limitation, only the one on the left is allowed.

▶ Proposition 32 (Canonicity of Typing). If π ▷ γ ⊢ s : a and π′ ▷ γ ⊢ s : a′ then a = a′ and
π = π′.
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a ∈ R0

x : a ⊢ x : a

γ1 ⊢ s1 : a1 . . . γk ⊢ sk : ak σ ∈ shu(γ1, . . . , γk)
(γ1, . . . , γk) · σ ⊢ ⟨s1, . . . , sk⟩ : (a1 ⊗ · · · ⊗ ak)

γ ⊢ s : (a1 ⊗ · · · ⊗ ak) δ, x1 : a1, . . . , xk : ak, δ′ ⊢ t : b σ ∈ shu(δ, γ′, δ′)
(δ, γ, δ′) · σ ⊢ t[xa1

1 , . . . , xak

k := s] : b

Figure 3 Symmetric Representable Type System on a signature R. We omit the case f(s⃗).

Proof. By induction on s. In the cases where a merging of type contexts happens, such as
the list case, we rely on the properties of shuffle permutations and on the fact that type
contexts are repetitions-free. Hence, the action of non-identity permutations on contexts is
always fixedpoint-free. ◀

▶ Proposition 33. The following rule is admissible:
γ ⊢ s : a σ ∈ Sk

γ · σ ⊢ s : a
.

Proof. Easy induction on the structure of s, exploiting Lemma 2. ◀

The reduction relation is the same as the representable one, that we know to be strongly
normalizing and confluent. We also have preservation of typing under reduction and structural
equivalence. Given s ∈ Λreps(R)(γ; a), we denote by nf(s) its unique normal form. As a
corollary of subject reduction, we get that nf(s) ∈ Λreps(R)(γ; a).

Free Symmetric Representable Multicategories. We now characterize the free symmetric
representable construction. Given a representable signature R, we define a multicategory
by setting ob(SRM(R)) = R0 and SRM(R)(γ; a) = Λreps(R)(γ; a)/(≡ ∪ =rep). Composition
is given by substitution, identities are given by variables. The operation is well-defined on
equivalence classes and satisfies associativity, identity axioms. One can prove that SRM(R) is
representable, by repeating the argument given for Proposition 24. The proof that SRM(R)
is symmetric is a direct corollary of Proposition 33:

▶ Proposition 34 (Symmetry). We have that M(γ, a1, . . . , ak; a) = M(γ; aσ(1), . . . , aσ(k); a).

▶ Example 35. An interesting example of structural equivalence is the following. Let
s = ⟨⟩[− := x][− := y] and s′ = ⟨⟩[− := y][− := x], with s, s′ ∈ Λreps(R)((), (); ()). We
have that ⟨⟩[− := x][− := y] ≡ ⟨⟩[− := y][− := x], with x : (), y : () ⊢ s : () and
y : (), x : () ⊢ s′ : (). This is the way our syntax validates the fact that permutations
of the unit type collapse to the identity permutation, since s corresponds to the identity
permutation, while s′ to the swapping of x with y.

▶ Definition 36. Let R be a representable signature and S be a symmetric representable
multicategory. Let i : R → S be a map of representable signatures. We define a family of
maps RT(i)γ,a : Λreps(R)(γ; a) → S(i(γ); i(a)) by induction as follows:

RT(i)a,a(x) = idi(a) RT(i)(γ1,...,γk)·σ,⟨a1,...,ak⟩(⟨s1, . . . , sk⟩) =

 k⊗
j=1

RT(i)γj ,aj
(sj)

 ◦ σ

RT(i)δ1,γ,δ2·σ,a(s[xa1
1 , . . . , xak

k := t]) = ((RT(i)δ1,a1,...,ak,a(s))∗ ◦ ⟨idδ1 , RT(i)γ,⃗a(t), idδ2⟩) ◦ σ.
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▶ Theorem 37 (Free Construction). Let S be a a symmetric representable multicategory and
i : R → S a map of representable signatures. There exists a unique symmetric representable
functor i∗ such that i = i∗ ◦ ηR.

Coherence Result. Fix a discrete signature R. We shall prove that morphisms in SRM(R)
can by characterized by means of appropriate permutations of their typing context. This
will lead the following coherence result for symmetric representable multicategories: two
morphisms in SRM(R) are equal whenever their underlying permutations are the same.

We start by defining the strictification of a representable type strict(a), by induction as
follows: strict(o) = o, strict((a1 ⊗ · · · ⊗ ak)) = strict(a1), . . . , strict(ak). strict(a) is the list of
atoms that appear in the type a. We extend the strictification to contexts in the natural
way. Let s ∈ nf(Λreps(R))(γ, a) and σ ∈ Stab(strict(γ)). We define the right action of σ on s,
sσ by induction as follows:

xid = x ⟨s1, . . . , sk⟩σ◦(
⊕k

i=1
σi) = ⟨sσ1

1 , . . . , sσk

k ⟩ · σ

(s[x⃗1 := x1] . . . [x⃗n := xn])σ = (sσ)[σ(x⃗1) := x1] . . . [σ(x⃗n) := xn]

where σ(x1, . . . , xk) stands for the image of x1, . . . , xk along the permutation σ.

▶ Theorem 38. Let s ∈ nf(Λreps(R))(γ, a). There exists a unique σ ∈ Stab((strict(γ)) and a
unique non-symmetric representable normal term t such that s = tσ.

Proof. By induction on s, exploiting Proposition 32. If s = x the result is immediate. If
s = ⟨s1, . . . , sk⟩ with γ = (γ1, . . . , γk) · σ ⊢ ⟨s1, . . . , sk⟩ : (a1 ⊗ · · · ⊗ ak) and γ being atomic,
by IH we have unique σ1, . . . , σk ∈ St(strict(γi)) and t1, . . . , tk ∈ nf(Λrep(A)) s.t. si = tσi

i for
i ∈ [k]. Then, by definition, s = ⟨t1, . . . , tk⟩σ◦(σ1⊗···⊗σk). Uniqueness derives by Proposition
32. If s = p[x⃗1 := x1] . . . [x⃗n := xn], By IH there exists unique σ and t s.t. p = tσ. Then
we can conclude by the fact that the action of non-identity permutations on variables is
fixedpoint-free. ◀

Let s ∈ nf(Λreps(R))(γ; a). We denote by sym(s) the unique permutation given by the
former theorem. Given s ∈ ΛrepsA(γ; a) we set sym(s) = sym(nf(s)). This definition is clearly
coherent with the quotient on terms performed in the free construction.

▶ Theorem 39. Let s, s′ ∈ nf(Λreps(R))(γ; a). If sym(s) = sym(s′) then s ≡ s′.

▶ Theorem 40 (Coherence). Let [s], [s′] ∈ SRM(A)(γ; a). If sym([s]) = sym[s′] then [s] = [s′].

▶ Theorem 41 (Coherence for Symmetric Monoidal Categories). Two morphisms in the free
symmetric monoidal categories are equal if their underlying permutations are equal.

Proof. Corollary of Theorems 11 and 40. ◀

5 A Resource Calculus for Symmetric Closed Multicategories

We consider the case of symmetric closed multicategories, which is orthogonal to the rep-
resentable structures we introduced in the previous sections. This calculus corresponds to
the resource version of linear λ-calculus, where we have unbiased k-ary λ-abstraction and
(linear) application. We begin by defining the terms and their typings, then proceed to
introducing their operational semantics. We conclude by characterizing the free construction
via well-typed equivalence classes of terms.
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a ∈ L0

x : a ⊢ x : a

γ, x1 : a1, . . . , xk : ak ⊢ s : b

γ ⊢ λ⟨xa1
1 , . . . , xak

k ⟩.s : (a1 ⊗ · · · ⊗ ak) ⊸ b

γ0 ⊢ s : (a1 ⊗ · · · ⊗ ak) ⊸ b γ1 ⊢ t1 : a1 . . . γk ⊢ tk : ak σ ∈ shu(γ0, . . . , γk)
(γ, δ) · σ ⊢ s⟨t1, . . . , tk⟩ : b

C ::= C ::= [·] | s⟨s1, . . . , C, . . . , sk⟩ | C⟨s1, . . . , sk⟩ | λ⟨x1, . . . , xk⟩.C | f(s1, . . . , C, . . . , sk).
E ::= [·] | s⟨s1, . . . , E, . . . , sk⟩ | E⟨s1, . . . , sk⟩ (E ̸= [·]) | λ⟨x1, . . . , xk⟩.E | f(s1, . . . , E, . . . , sk).

Figure 4 Symmetric closed type system on a signature L and contexts with one hole. Types are
the elements of L0. We omit the case of f(s⃗).

β Root-Step: (λ⟨xa1
1 , . . . , xak

k ⟩.s)⟨t1, . . . , tk⟩ →β s{t1, . . . , tk/x1, . . . , xk}.

η Root-Step: s →η λx⃗a⃗.(sx⃗) where x⃗ fresh , γ ⊢ s : a⃗ ⊸ a, s /∈ AT.

Contextual extensions:
s →β s′

C[s] →β C[s′]
s →η s′

E[s] →η E[s′]
(→sc=→β ∪ →η).

Figure 5 Symmetric closed reduction relations.

Symmetric Closed Resource Terms. Let L be a closed signature. The symmetric closed
resource terms on L are defined by the following inductive grammar:

Λsc(L) ∋ s ::= x ∈ V | λ⟨xa1
1 , . . . , xak

k ⟩.s | s⟨s1, . . . , sk⟩ | f(s1, . . . , sk)

for k ∈ N and f ∈ arr(L), ai ∈ L. A term of the shape s⟨s1, . . . , sk⟩ is called a (k-linear)
application. A term of the shape λ⟨x1, . . . , xk⟩.s is called a (k-linear) λ-abstraction. Variables
under the scope of a λ-abstraction are bound. We define the following subset of terms
AT = {L[λx⃗.t] | for some substitution context L and term t.}. Typing and contexts with
hole are defined in Figure 4. Given a term γ ⊢ s : a, there exists a unique type derivation
for it.

Terms under Reduction. The reduction relation is defined in Figure 5.

▶ Remark 42. The definition of the β-reduction follows the standard choices for resource
calculi. The novel technicality is the restriction of the η-reduction, that is justified again
by the goal of obtaining a strongly normalizing reduction. Indeed, η-reduction is again not
normalizing. The situation recalls what happens in the standard λ-calculus and we deal with
it adapting to our framework the restrictions introduced in [28, 16].

To study the rewriting, we adapt the method introduced for representable terms. We first
prove that typing is preserved under reduction. Then, we introduce a measure that decreases
under η. We define the size of a type by induction: size (o) = 0, size (⟨a1, . . . , ak⟩ ⊸ a) =
1 +

∑
size (ai) + size (a) . Given γ ⊢ s : a we define a set of typed subterms of s: EST(s) =

{δ ⊢ p : a | p ∈ ST(s) \ AT s.t. E[δ ⊢ p : a] = s for some context E}. We set η(s) =∑
δ⊢p:a∈EST(s) size (a) . The proof of strong normalization and confluence is completely
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symmetrical to the representable case. Given s ∈ Λsc(R)(γ; a), we denote by nf(s) its unique
normal form. As a corollary of subject reduction, we get that nf(s) ∈ Λsc(R)(γ; a).

Free Symmetric Closed Multicategories. Let L be a closed signature, we define a mul-
ticategory SCM(L) by setting ob(SCM(L)) = L0 and SCM(L)(γ; a) = Λsc(L)(γ; a)/∼ where
∼ = =sc. Composition is given by substitution, identities are given by variables. The opera-
tion is well-defined equivalence classes and satisfies associativity and identity axioms. We
also have that if s ∼ s′, then nf(s) = nf(s′). We denote by ηL : L → SCM(L) the evident
inclusion. One can prove that SCM(R) is symmetric, by repeating the argument given in the
previous section. This multicategory is also closed:

▶ Theorem 43. We have a bijection SCM(L)(γ; ⟨a1, . . . , ak⟩ ⊸ a) ∼= SCM(L)(γ, a1, . . . , ak; a)
natural in a and multinatural in γ, induced by the maps [s] 7→ [s⟨x1, . . . , xk⟩].

Proof. Naturality derives from basic properties of substitution. Inverses are given by the
maps [s] 7→ [λ⟨x1, . . . , xk⟩.s]. ◀

▶ Definition 44. Let E be a symmetric closed multicategory and let i : L → E be a map
of closed signatures. We define a family of maps RTγ,a : Λsc(L)(γ, a) → E(i(γ), i(a)) by
induction as follows:

RTa,a(x) = 1i(a) RTγ,⃗a⊸a(λx⃗.s) = λ(RTγ,⃗a,a(s))

RT(γ0,...,γk),a(s⟨t1, . . . , tk⟩) = (ev ◦ ⟨RTγ0,⟨a1,...,ak⟩⊸a(s), RTγ1,a1(t1), . . . , RTγk,a1(tk)⟩) · σ.

▶ Theorem 45 (Free Construction). Let S be a a symmetric closed multicategory and
i : L → S a map of representable signatures. There exists a unique symmetric closed
functor i∗ : SCM(L) → S such that i∗ ◦ ηL = i.

▶ Theorem 46 (Coherence). Let [s], [s′] ∈ SCM(R)(γ; a). Then [s] = [s′] iff nf([s]) ≡ nf([s′]).

6 A Resource Calculus for Autonomous Multicategories

In this section we present our calculus for autonomous multicategories. These structures
bring together representability, symmetry and closure. For this reason, the calculus we
will present is a proper extension of the ones we introduced before. Again, we follow the
same pattern of Sections 3 and 5, first introducing the typing, then studying the operational
semantics and finally characterizing the free constructions.

Autonomous Terms. Let A be an autonomous signature. The autonomous resource terms
on A are defined by the following inductive grammar:

Λaut(A) ∋ s, t ::= x | λ⟨xa1
1 , . . . , xak

k ⟩.s | st | ⟨s1, . . . , sk⟩ | s[xa1
1 , . . . , xak

k := t] | f(s1, . . . , sk)

for k ∈ N and f ∈ arr(A), ai ∈ A. Variables under the scope of a λ-abstraction and of a
substitution are bound. The typing is given in Figure 6. The calculi introduced in the
previous sections can be seen as subsystems of the autonomous one.

Given a subterm p of s we write ty(p)s for the type of p in the type derivation of s. The
mapping is functional as corollary of the former proposition.
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a ∈ A0

x : a ⊢ x : a

γ1 ⊢ s1 : a1 . . . γk ⊢ sk : ak σ ∈ shu(γ1, . . . , γk)
(γ1, . . . , γk) · σ ⊢ ⟨s1, . . . , sk⟩ : (a1 ⊗ · · · ⊗ ak)

γ, x1 : a1, . . . , xk : ak ⊢ s : b

γ ⊢ λ⟨xa1
1 , . . . , xak

k ⟩.s : (a1 ⊗ · · · ⊗ ak) ⊸ b

γ ⊢ s : a⃗ ⊸ b δ ⊢ t : a⃗ σ ∈ shu(γ, δ)
(γ, δ) · σ ⊢ st : b

γ ⊢ s : (a1 ⊗ · · · ⊗ ak) δ1, x1 : a1, . . . , xk : ak, δ2 ⊢ t : b σ ∈ shu(γ, δ1, δ2)
(γ, δ1, δ2) · σ ⊢ t[xa1

1 , . . . , xak

k := s] : b

Figure 6 Autonomous type system on a signature A. We omit the case of f(s⃗).

Terms under Reduction. The reduction relation →aut, together with its subreductions β

and η are defined by putting together the reductions →rep (Figure 2) and →sc (Figure 5).
The same happens with structural equivalence. The reduction satisfies subject reduction,
strong normalization and confluence. The proofs build on the results of the previous sections.
As decreasing measures, we use the size of a term for β-reduction and the sum of the two η

measures we defined in the previous sections for η-reduction.

Free Autonomous Multicategories. Let A be an autonomous signature, we define a
multicategory AUT(A) by setting ob(AUT(A)) = A0 and AUT(A)(γ; a) = Λaut(A)(γ; a)/∼
where ∼ is the equivalence ≡ ∪ =aut . Composition is given by substitution, identities
are given by variables. The operation is well-defined on equivalence classes and satisfies
associativity and identity axioms. We also have that if s ∼ s′ then nf(s) ≡ nf(s′). We
denote by ηA : A → AUT(A) the evident inclusion. One can prove that this multicategory is
symmetric, representable and closed by importing the proofs given in the previous sections.

▶ Definition 47. Let S be an autonomous multicategory and let i : A → S be a map of
autonomous signatures. We define a family of maps RTγ,a : Λaut(A)(γ, a) → E(i(γ), i(a)) by
induction, extending Definitions 36 and 44 in the natural way.

▶ Theorem 48 (Free Construction). Let S be a an autonomous multicategory and i : A → S a
map of autonomous signatures. There exists a unique autonomous functor i∗ : AUT(A) → S
such that i∗ ◦ ηA = i.

▶ Theorem 49 (Coherence). Let [s], [s′] ∈ AUT(R)(γ; a). Then [s] = [s′] iff nf([s]) ≡ nf([s′]).

7 Conclusion

We established a formal correspondence between resource calculi and appropriate linear
multicategories, providing coherence theorems by means of normalization. As future work,
we consider two possible perspectives. It is tempting to parameterize our construction over
the choice of allowed structural rules on typing contexts. For instance, while the choice of
permutations (i.e., symmetries) gives linear structures, the choice of arbitrary functions
between indexes would give cartesian structures. In this way, we would achieve a general
method to produce type theories for appropriate algebraic theories, in the sense of [15].
For this, the the perspective on multicategories of [32] will be a starting point. Another
perspective is the passage to the second dimension, following the path of [10]. In this way, the
rewriting of terms would become visible in the multicategorical structure itself. Coherence by
normalization could then be upgraded to a method of coherence by standardization, exploiting
a rewriting relation on reduction paths.
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