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Abstract

We investigate how much type theory can prove about the natural numbers. A classical result in this
area shows that dependent type theory without any universes is conservative over Heyting Arithmetic
(HA). We build on this result by showing that type theories with one level of impredicative universes
are conservative over Higher-order Heyting Arithmetic (HAH). This result clearly depends on the
specific type theory in question, however, we show that the interpretation of logic also plays a major
role. For proof-irrelevant interpretations, we will see that strong versions of type theory prove exactly
the same higher-order arithmetical formulas as HAH. Conversely, for proof-relevant interpretations,
they prove different second-order arithmetical formulas than HAH, while still proving exactly the
same first-order arithmetical formulas. Along the way, we investigate the various interpretations
of logic in type theory, and to what extent dependent type theories can be seen as extensions of
higher-order logic. We apply our results by proving a De Jongh’s theorem for type theory.
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1 Introduction

When studying a theory, we obtain a lot of information by determining the arithmetical
statements that it can prove. This data decides its consistency strength, which functions it
can prove to be recursive, and which other theories it can prove to be consistent. In this
work, we determine this for dependent type theories that have a single level of universes. We
are interested in the general picture: in predicative and impredicative versions of type theory,
intensional and extensional versions, and a wide array of type constructors. We obtain our
results by studying a strong version of type theory and deducing results for weaker theories.
Besides the theory itself, we consider proof-irrelevant and proof-relevant interpretations of
logic, which we think of as black box (•) and white box (◦) interpretations, respectively.

Main Results. Strong versions of type theory with a single level of universes prove:
• the same higher-order arithmetical formulas as HAH for proof-irrelevant interpretations,
◦ the same first-order arithmetical formulas as HAH for proof-relevant interpretations.
Moreover, the proof-relevant result is maximal: type theories differ from HAH on second-order
arithmetical formulas. More precisely, for the proof-relevant interpretation: type theory
proves the axiom of choice which is not assumed in HAH while type theory does not prove
extensionality of sets which is assumed in HAH. The main type theory that we consider is a
version of the Calculus of Inductive Constructions (λC+), specified in Appendix A.
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44:2 Conservativity of Type Theory over Higher-Order Arithmetic

Proof Sketch. We prove the two results as follows:
• The proof-irrelevant result is relatively straightforward. We build a model for λC+ based

on subsingletons, partial equivalence relations (PERs), and assemblies. The innovation
is that we only use notions that can be defined in HAH. So, for every type A, we get a
formula Inh(JAK) stating that the type is inhabited in the model. Conservativity follows
by showing that the diagram commutes up to logical equivalence.

HAH

λC+

HAH

•

Inh(J·K)

◦ The proof-relevant result is more involved and is our main contribution. As ◦ only
interprets HAH − ext, we first interpret HAH in HAH − ext. Now, we extend the
model using a choice principle. For this, we conservatively extend HAH: first with
primitive notions for partial recursive functions (HAHP), and then with Hilbert-style
epsilon-constants, which can be seen as partial choice functions (HAHPϵ). To formulate
these extensions, we define a higher-order version of Beeson’s logic of partial terms.
Conservativity follows by showing for first-order formulas that e behaves as the identity
and that the diagram commutes up to logical equivalence.

HAH HAH − ext

λC+

HAHP HAHPϵ

e
◦

Inh(J·K′)

◀

De Jongh’s Theorem. The main application of our results is a proof of De Jongh’s theorem
for type theories. This theorem says that the only propositional formulas that hold in the
theory are those of intuitionistic logic. Here we say that a formula holds when any closed
instance of it is provable. De Jongh has shown this for Heyting arithmetic [12], and with
Smorynski for second-order Heyting arithmetic [13]. This is not the case for any intuitionistic
theory: extensionality, specification, and choice famously imply the law of the excluded
middle [15], but the axioms of ZF already cause more formulas to hold [17]. Recently,
Robert Passmann has shown that De Jongh’s theorem does hold for CZF and IZF (which
are equivalent to ZF classically but not intuitionistically) [32, 33]. Our goal was to prove
this for type theory despite the proof-relevant interpretation satisfying choice.

Related Work.
We give a higher-order version of the following classical theorem: type theory without
universes is conservative over HA. For a proof, see Beeson [3, Chapter XIII, Theorem
7.5.1]. Note that universes are needed to show 0 ̸= 1 in type theory [37], so, without
universes, this should be added as an axiom.
A related question was independently answered by Berardi [4] and Geuvers [18]. They show
that the calculus of constructions is not conservative over higher-order logic. This result
hinges on the fact that domains of quantification and propositions are not distinguished in
the calculus of constructions. We are in a different setting: we only consider arithmetical
formulas, where the only domains are iterated powersets of the natural numbers.
A history of De Jongh’s theorems is given by De Jongh, Verbrugge, and Visser [14].
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Structure of the paper. In Section 2 and Section 3 we introduce our arithmetic and type
theory respectively. The type theory is motivated in Section 4 where we consider the various
interpretations of higher-order logic in type theory. In Section 5, we see the other direction:
we build our model of type theory and its interpretation in arithmetic. This is used in
Section 6 and Section 7, where we prove proof-irrelevant and proof-relevant conservativity,
respectively. De Jongh’s theorem is covered in Section 8. Section 9 is the conclusion.

2 Higher-order Arithmetic

We start by stating the various theories of natural numbers. Although they share the same
language and axioms, these theories differ in their underlying logic. First, we explain and
motivate these logics. Then, we will introduce the various theories of arithmetic.

2.1 Higher-order Logic
Motivation. There are many versions of higher-order logic, and the notation is not stand-
ardised. So, before giving a formal introduction, we will first motivate our choices. Our
version of higher-order logic quantifies over relations; this directly generalises n-th-order logic.
There are also versions that quantify over functions. We observe that in intuitionistic logic,
quantifying over relations is more expressive than quantifying over functions:

We can encode an n-ary function f as an (n + 1)-ary relation R satisfying ∀x⃗ ∃!y R(x⃗, y),
see for instance [39, Section 2.7]. This means that we can replace ∃f . . . and ∀f . . . with
∃R (∀x⃗ ∃!y R(x⃗, y) ∧ . . . ) and ∀R (∀x⃗ ∃!y R(x⃗, y) → . . . ).
In classical logic, if we have terms a ≠ b, then it is also possible to encode an n-ary relation
R as an n-ary function f satisfying ∀x⃗ (f(x⃗) = a ∨ f(x⃗) = b). However, in intuitionistic
logic, this only encodes those R that satisfy ∀x⃗ (R(x⃗) ∨ ¬R(x⃗)).

So, for simplicity, we present higher-order logic using only quantifiers over relations. Our
second observation is that it is often enough to consider only unary relations:

If the theory can encode tuples, then, instead of quantifying over an n-ary relation R, we
can quantify over a unary relation X: we replace R(x0, . . . xn−1) with X(⟨x0, . . . , xn−1⟩).

Arithmetic can encode tuples [8, 25, 7, 21]; we can define for instance: ⟨⟩ := 0, ⟨a0⟩ := a0,
⟨a0, a1⟩ := ((a0 + a1) × S(a0 + a1))/2 + a0, and ⟨a0, . . . , an−1⟩ := ⟨⟨a0, . . . , an−2⟩, an−1⟩. So,
for our purposes, it is sufficient to quantify over subsets (unary relations). Restricting to the
unary case gives us “monadic” versions of logic.

▶ Definition 1. A monadic higher-order logic is a many-sorted logic with a sort for every
numeral n = 0, 1, . . .. If we write an, then the term a is of the n-th sort, intuitively a member
of the n-th power set of the domain. Terms are built using function symbols f , which each
have a signature n0 × · · · × nk−1 → m. We also allow relation symbols, which each have a
signature n0 ×· · ·×nk−1. We always assume that the language has relation symbols =n: n×n

and ∈n: n × (n + 1) for every sort n. Formulas are given by:

A, B, . . . ::= R(an0
0 , . . . , a

nk−1
k−1 ) | ⊥ | ⊤ | A ∨ B | A ∧ B | A → B | ∃xn B[xn] | ∀xn B[xn].

There are classical and intuitionistic versions of higher-order logic. For both we take standard
inference rules for propositional logic, quantifiers, and equality. In addition, we have two
axiom schemes for the element relation; for any n and any formula P [zn] we assume:

∃Xn+1 ∀zn (z ∈ X ↔ P [z]), (specification)
∀Xn+1 ∀Y n+1 (∀zn (z ∈ X ↔ z ∈ Y ) → X = Y ). (extensionality)

To reduce clutter, we started omitting the sorts in places where they can easily be inferred.

CSL 2024



44:4 Conservativity of Type Theory over Higher-Order Arithmetic

▶ Definition 2. We define monadic n-th-order logic as the restriction of monadic higher-order
logic to the first n sorts: 0, . . . , n − 1.

Defining Logical Connectives. We can also formulate second or higher-order logic in a
more minimalistic way, using only ∈, →, and ∀. This is because, by quantifying over a
proposition Z (a nullary relation), we can define the other logical connectives:

⊥ := ∀Z Z, (false)
⊤ := ∀Z (Z → Z), (true)

A ∨ B := ∀Z ((A → Z) → (B → Z) → Z), (disjunction)
A ∧ B := ∀Z ((A → (B → Z)) → Z), (conjunction)

∃xn B[x] := ∀Z (∀xn (B[x] → Z) → Z). (existential quantifier)

We can use similar definitions in monadic versions of logic by filling in an arbitrary variable
x0. For example, we could define ⊥ as ∀X1 (x ∈ X) and ⊤ as ∀X1 (x ∈ X → x ∈ X).
Similarly, we can define equality using Leibniz’s principle:

(a =n b) := ∀Xn+1 (a ∈ X → b ∈ X). (equality)

It is a good exercise to show that these formulas indeed satisfy the correct inference rules. This
alternative definition will allow us to simplify our proof for proof-irrelevant conservativity.

2.2 Arithmetic

Language and Axioms. The language of our arithmetical theories consists of a zero constant
0 : 0 (a nullary function symbol), a successor function S : 0 → 0, addition + : 0 × 0 → 0, and
multiplication × : 0 × 0 → 0. We have axioms stating that 0 and S are jointly injective:

∀y (S(y) ̸= 0), ∀x ∀y (S(x) = S(y) → x = y).

In addition, we have axioms for addition and multiplication:

∀y (0 + y = y), ∀x ∀y (S(x) + y = S(x + y)),
∀y (0 × y = 0), ∀x ∀y (S(x) × y = (x × y) + y).

And we have an axiom scheme for induction; for every formula A[x] we have the axiom:

A[0] ∧ ∀x(A[x] → A[S(x)]) → ∀x A[x].

▶ Definition 3 (Peano and Heyting arithmetic). We define the following theories, all with the
language and axioms above, and each with different logical inference rules:

classical intuitionistic
n-th-order PAn HAn

higher-order PAH HAH

For PA1 and HA1 we will omit the 1. Note that HAH is stronger than HAω (arithmetic in
finite types), which quantifies over functions instead of relations [38].
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3 Type Theory

We formulate a strong version of type theory that allows all our interpretations of higher-order
arithmetic. This theory is impredicative, extensional, and includes inductive types. By
proving conservativity for this strong version, we also obtain conservativity results for weaker
versions: most notably for more predicative, and intensional versions of type theory. Many
of the choices are motivated and explained further in the next section where we discuss these
interpretations. So, we will only give a brief overview and cover the details in Appendix A.

Our type theory, which we call λC+, can be seen as a version of the Calculus of Inductive
Constructions [11, 5, 34] with only one level of universes. We assume an array of type
constructors: ⊬,⊮,⊭, . . . ,N, Σ, Π, W, =, ∥ · ∥, and quotient types. In addition, we assume two
type universes: Prop, Set : Type. The universe Prop is used to interpret propositions while
Set is used to interpret data types. Prop and Set are impredicative which means that they
are closed under products over arbitrary types. So, if we have any type A, and for x : A

a type B[x] : Prop, then we always have Π(x : A) B[x] : Prop, and the same for Set. This
allows for self-referential definitions that define a type in the universe by quantifying over all
types in the universe; for example, the empty type Π(X : Prop) X is a term of Prop. Note
that the universes are both types themselves, so we can use them to construct new types
like Prop × Set and N → Prop. Both universes are at the same level, that is, we do not have
Prop : Set or Set : Prop. However, we do assume that Prop is a subuniverse of Set, so A : Prop
implies A : Set, and we have that A : Set implies A : Type. We assume that the theory is
extensional, so definitional equality and propositional equality coincide, which implies that
we have function extensionality and uniqueness of identity proofs [22]. As we will explain
in the next section: we assume that Prop satisfies the axiom of propositional extensionality
(types in Prop are equal if they are logically equivalent). In particular, in the terminology of
homotopy type theory [41]: all types in Prop are h-propositions (all of their terms are equal)
and all types in Set are h-sets (all equalities between terms are h-propositions).

4 Interpreting Higher-order Arithmetic in Type Theory

An interpretation of HAH-formulas in type theory can be divided into three parts: defining
natural numbers, logical connectives, and power sets in type theory. For each part there
are multiple options, which come with different requirements on the type theory. These
requirements make sure that the type theory satisfies the rules and axioms of HAH for the
interpretation. We systematically consider the three parts in the following subsections, and,
in the end, we will have a clear overview of the various interpretations.

4.1 Interpreting Natural Numbers
To interpret the natural numbers, we use a natural numbers type. That is, that we have a
type N that satisfies the following inference rules:

N-F,
⊢ N : Set

N-I0,
⊢ 0 : N

Γ ⊢ n : N
N-IS,

Γ ⊢ S n : N

Γ, n : N ⊢ C[n] : C Γ ⊢ c : C[0] Γ ⊢ f : Π(n : N) (C[n] → C[S n])
N-E,

Γ ⊢ indN
C c f : Π(n : N) C[n]

N-β0,
indN

C c f 0 ≡ c
N-βS.

indN
C c f (S n) ≡ f n (indN

C c f n)

CSL 2024



44:6 Conservativity of Type Theory over Higher-Order Arithmetic

Such a type can be assumed (as we do in λC+) or defined using other type constructors,
and it is sufficient for the β-reduction rules to be satisfied propositionally. For example, the
definition of natural numbers using W-types [30, 16] satisfies these rules propositionally.

A non-example is the impredicative Church encoding of natural numbers:

N := Π(C : Set) (C → ((C → C) → C)) : Set.

Here we would encode a natural number n as λC λc λf fn c. For 0 := λC λc λf c and
S n := λC λc λf f (n C c f) this indeed satisfies the formation and introduction rules. However,
it only satisfies a weak form of the elimination rule. For recNC c f := λn n C c f we have:

Γ ⊢ C : Set Γ ⊢ c : C Γ ⊢ f : C → C Γ ⊢ n : N
N-E, weak.

Γ ⊢ recNC c f : N → C

This is weaker in two ways: (a) it only gives functions instead of dependent functions, and
(b) the codomain must be in Set. From the perspective of category theory this means that
we only have a weak natural numbers object [2], and crucially, from a logical perspective this
will mean that we cannot prove the axiom scheme of induction.

In the Calculus of Constructions it is not possible to define a type in Prop that satisfies
the strong elimination rule [19]. The same story is true for other inductive types: we can
define types that satisfy the correct introduction rules, however they only satisfy a weak
version of the elimination rules [20]. The work of Awodey, Frey, Speight, and Shulman [1, 36]
shows that we can avoid limitation (a) using some additional assumptions (N, Σ, =, and
function extensionality). However, limitation (b) still applies.

4.2 Interpreting Logical Connectives
Logical connectives are the most influential part: we have a proof-irrelevant (•) and a
proof-relevant (◦) interpretation. For any many-sorted logic, if we pick for every sort s

corresponding types s• and s◦, then the interpretations are defined as follows:

(a =s b)• := (a =s• b), (a =s b)◦ := (a =s◦ b),
(A ∨ B)• := ∥A• + B•∥, (A ∨ B)◦ := A◦ + B◦,

(A ∧ B)• := A• × B•, (A ∧ B)◦ := A◦ × B◦,

(A → B)• := A• → B•, (A → B)◦ := A◦ → B◦,

(∃xs B[x])• := ∥Σ(x : s•) B[x]•∥, (∃xs B[x])◦ := Σ(x : s◦) B[x]◦,

(∀xs B[x])• := Π(x : s•) B[x]•, (∀xs B[x])◦ := Π(x : s◦) B[x]◦.

The difference is that the proof-irrelevant interpretation uses propositional-truncation [41,
Section 3.7]. The propositional truncation ∥A∥ : Prop of a type A removes the distinctions
between terms. For every a : A we get a term |a| : ∥A∥ and if we have A → C for
C : Prop then we get ∥A∥ → C. We can define propositional truncation in λC+ by taking
∥A∥ := Π(Z : Prop) ((A → Z) → Z) : Prop and |a| := λZ λf f a.

To summarise: a term of A• does not give us any information besides the fact that the
formula holds while a term of A◦ contains a reason that the formula is true.

4.3 Interpreting Power Sets
Now we interpret the sorts of higher-order logic: we define n• := Pn

• N and n◦ := Pn
◦ N using

the black box powertype P• A := A → Prop and the white box powertype P◦ A := A → Set.
The element-relation is simply interpreted by (x ∈ X)• := X x and (x ∈ X)◦ := X x.
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Recall that the axioms of higher-order logic should hold for a sound interpretation:

∃Xn+1 ∀zn (z ∈ X ↔ P [z]), (specification)
∀Xn+1 ∀Y n+1 (∀zn (z ∈ X ↔ z ∈ Y ) → X = Y ). (extensionality)

Specification holds for both interpretations: impredicativity of Prop and Set implies that
P [z]• : Prop and P [z]◦ : Set so in both cases we can take X := λz P [z]. Extensionality holds
for ◦ because we have the following in λC+:

funext : Π(f, f ′ : A → Prop) (Π(x : A) (f x = f ′ x) → (f = f ′)),
propext : Π(P, P ′ : Prop) ((P ↔ P ′) → (P = P ′)).

However, it does not hold for •, consider for example X := λz ⊮ and Y := λz ⊭. These
represent the same proposition (the one that holds everywhere) but they are not equal.

So, • interprets HAH while ◦ only interprets HAH − ext. In addition, there exists a
second-order formula that is not provable in HAH [9], but whose proof-relevant interpretation
in type theory is inhabited [41, Section 1.6], namely the axiom of choice:

∀Z1 (∀x0 ∃y0 ⟨x, y⟩ ∈ Z → ∃F 1 (∀x0 ∃!y0 ⟨x, y⟩ ∈ F ∧ ∀x0 ∀y0 (⟨x, y⟩ ∈ F → ⟨x, y⟩ ∈ Z)).

This means that the second-order formulas that are provable in type theory for ◦ are
incomparable with those provable in HAH. Therefore, our best hope is to show that type
theory still proves the same first-order formulas. To do this, we use an interpretation e of
HAH in HAH − ext obtained by redefining = and ∈:

(a =0
e b) := (a =0 b),

(A =n+1
e B) := ∀xn (x ∈n

e A ↔ x ∈n
e B),

(a ∈n
e A) := ∃xn (a =n

e x ∧ x ∈n A).

For a formula A we write Ae for the result of replacing = and ∈ by =e and ∈e respectively.
The definition of =e ensures that we satisfy extensionality and ∈e ensures that we respect
the new equality. Note that this interpretation does not modify first-order formulas.

5 Interpreting Type Theory in Higher-order Arithmetic

To interpret our type theory in arithmetic, we will construct a model of λC+ using only notions
that we can express within HAH. Our model can be seen as an modification of Hyland’s
small complete category [23], which forms a model for the calculus of constructions [35]. Our
description can be incorporated into one of the usual categorical frameworks for type theory,
such as comprehension categories [24], or categories with families [22]. The main idea is that
we interpret our universes using the following categories:

Prop⇝ Subsing (the category of subsingletons),
Set⇝ PER (the category of partial equivalence relations),

Type⇝ Assem (the category of assemblies or K1-sets).

We will show that these categories have the right structure to interpret λC+, namely:
embeddings Subsing ↪→ PER ↪→ Assem, encodings of Subsing and PER as objects of Assem,
definitions for 0, 1, 2, . . . , N, Σ, Π, W, =, ∥ · ∥, /, and elements showing that the axioms are
satisfied. We use this model to interpret every type in λC+ as a formula in HAH: the formula
stating that the type is inhabited in the model. However, first we show why a naive model –
of propositions, sets, and types in λC+ as sets in HAH or ZFC – cannot work. The notions
we define for this naive approach will be useful to define our actual model.

CSL 2024



44:8 Conservativity of Type Theory over Higher-Order Arithmetic

5.1 Sets in HAH
Conventions. The sets in HAH are all subsets of Pn(N) for some n. It will be very
convenient if we can view Pn(N) as a subset of Pn+1(N). Our motivation for this is that we
want to define notions such as Σ(a ∈ A) B[a], Π(a ∈ A) B[a], and W(a ∈ A) B[a]. If we view
the hierarchy as cumulative, then we only need to define these notions for the case where
A and all B[a] are subsets of the same Pn(N). One way to achieve this is by considering
x ∈ N to be equal to {· · · {x} · · · } ∈ Pn(N). This already gives us a cumulative hierarchy.
For example: {0, 2} ∈ P(N) is viewed as {{0}, {2}} ∈ P2(N), and {{{0}}, {{2}}} ∈ P3(N),
and so on. More formally: we define inclusions ιn : Pn(N) → Pn+1(N) by ι0(x) := {x} and
ιn+1(X) := {ιn(x) : x ∈ X}. These are embeddings because they preserve ∈-relation: we
have x ∈ Y iff ιn(x) ∈ ιn+1(Y ). From now on, we will use these emdeddings implicitly.

Secondly, it is convenient if we extend our definition of pairs from natural numbers to
sets. We do this using the disjoint union, for A, B ⊆ Pn(N) we inductively define:

⟨A, B⟩ := {p ∈ Pn(N) : ∃(a ∈ A) (p = ⟨0, a⟩) ∨ ∃(b ∈ B) (p = ⟨1, b⟩)} ∈ Pn(N).

Definitions. Now we can inductively define Σ, Π, W inside HAH. If we have a set A ⊆ Pn(N)
and for every a ∈ A a set B[a] ⊆ Pn(N), then we define the dependent Cartesian product
and dependent function space as follows:

Σ(a ∈ A) B[a] := {p ∈ Pn(N) : ∃(a ∈ A) ∃(b ∈ B[a]) (⟨a, b⟩ = p )} ⊆ Pn(N),
Π(a ∈ A) B[a] := {P ⊆ Σ(a ∈ A) B[a] : ∀(a ∈ A) ∃!(b ∈ B[a]) (⟨a, b⟩ ∈ P )} ⊆ Pn+1(N).

To define W(a ∈ A) B[a] we have to define labelled trees in HAH. A tree for A and B must
satisfy the following: every node has a label a ∈ A, and a child for every b ∈ B[a]. We will
encode a tree by describing the set of finite paths starting at the root. So, a tree will be a
set T ⊆ Pn(N) whose elements are of the form ⟨a0, b0, a1, . . . , an−1, bn−1, an⟩ such that for
every i we have ai ∈ A and bi ∈ B[ai]. This set should be:

inhabited: there exists an a ∈ A such that ⟨a⟩ ∈ T ;
downward-closed: if ⟨a0, b0, a1, . . . , an, bn, an+1⟩ ∈ T then ⟨a0, b0, a1, . . . , an⟩ ∈ T ;
complete: if we have ⟨a0, b0, a1, . . . , an⟩ ∈ T and bn ∈ B[an] then there exists an an+1 ∈ A

such that ⟨a0, b0, a1, . . . , an, bn, an+1⟩ ∈ T ;
consistent: if ⟨a0, b0, a1, . . . , bn−1, an⟩, ⟨a0, b0, a1, . . . , bn−1, a′

n⟩ ∈ T then an = a′
n.

For two paths p, q ∈ T , we write p ⊏ q iff p is a strict subpath of q, that is, iff we can
write p = ⟨a0, b0, a1, . . . , an⟩ and q = ⟨a0, b0, a1, . . . , am⟩ where n < m. We call a tree T

well-founded iff the inverse relation ⊐ is well-founded, that is, if we have for any S ⊆ T :

∀(p ∈ T ) (∀(q ⊐ p) (q ∈ S) → p ∈ S) → S = T.

Now for A, B[a ∈ A] ⊆ Pn(N) we define:

W(a ∈ A) B[a] := {T ⊆ Pn(N) : T is a well-founded tree for A and B[a]} ⊆ Pn+1(N).

Problems. It is important to note for A, B[a ∈ A] ⊆ Pn(N) that, while Σ(a ∈ A) B[a] is
still a subset of Pn(N), we see that Π(a ∈ A) B[a] and W(a ∈ A) B[a] are both subsets of
Pn+1(N). So Π and W increase the level. This is a problem: if we interpret Prop and Set as
subsets of some Pn(N) then they cannot be closed under Π and W. This problem exists in
general for naive interpretations of impredicative type theory. If we interpret an impredicative
universe as a set U in ZFC, then for A, B ∈ U we must have A → B := Π(a ∈ A) B ∈ U . If U
contains a set A with at least two elements, then we get a contradiction for the cardinality:
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|Π(B ∈ U) (B → A)| = |(Σ(B ∈ U) B) → A| (by Currying)
≥ |P(Σ(B ∈ U) B)| (because |A| ≥ 2)
≥ |P(Π(B ∈ U) (B → A))| (because Π(B ∈ U) (B → A) ∈ U)
> |Π(B ∈ U) (B → A)|. (by Cantor’s diagonal argument)

This counterexample comes from lectures of Hyland and Streicher, see [28, 35]. If U only
consists of subsingletons, then we have no contradiction, and we obtain a model for simple
type theories like ML0 and λC [37]. Indeed, we use this approach to interpret Prop as the
set P({∗}). The intuitive idea behind our other interpretations, of Set and Type, is that we
restrict Π(a ∈ A) B[a] and W(a ∈ A) B[a] to the elements that are in some sense computable.

5.2 Subsingletons, PERs, and Assemblies
In this subsection we define the three categories we use to model λC+. We start simple:

▶ Definition 4 (subsingleton). A subsingleton is a subset S ⊆ {∗}. A subsingleton morphism
from S to T is just a function from S to T .

Because we want our model to satisfy propositional extensionality, we always consider subsets
of the same singleton {∗}; by defining for example: ∗ := 0. Note that we cannot prove
intuitionistically for every S ⊆ {∗} that S = ∅ or S = {∗}, so P({∗}) can be large [29].

The next categories are more interesting and use a notion of computation. We use
Kleene’s first algebra [26, 27, 10]: the fact that natural numbers can be seen as codes for
partial computable functions. For f, n ∈ N, we will write f n ↓ iff the partial computable
function encoded by f is defined on the natural number n, and f n for the result. In Section 7
we will consider a conservative extension of HAH where f n and ↓ are primitive notions that
satisfy a computational choice principle. This will be needed to show conservativity in the
proof-relevant case. For now however, think of f n as Kleene-application as described here.

▶ Definition 5 (PER). A partial equivalence relation (PER) is a relation R ⊆ N × N that is
symmetric and transitive. For a PER R we define:

dom(R) := {n ∈ N : ⟨n, n ⟩ ∈ R} = {n ∈ N : ∃(m ∈ N) ⟨n, m⟩ ∈ R}, (domain)
[n]R := {m ∈ N : ⟨n, m⟩ ∈ R}, (equivalence class)
N/R := {[n]R : n ∈ dom(R)}. (quotient)

A PER morphism from R to S is a function F : N/R → N/S that is “tracked” by some
f ∈ N, meaning that a ∈ dom(R) implies f a ↓ and f a ∈ F ([n]R).

The intuition is made clear by the following: suppose that we have a type and and want to
define a PER to model it. The idea is that we view natural numbers as potential codes or
realizers for terms of the type. Consider the relation that relates natural numbers when they
encode the same term. This explains why we consider PER’s: the relation is symmetric and
transitive but not necessarily reflexive as not every natural number has to encode a term.
Using this principle we define PER’s that model ⊬,⊮,⊭, . . ., and N:

n := {⟨i, j⟩ : i = j ∧ i < n}, (for n = 0, 1, 2, . . . ) N := {⟨i, j⟩ : i = j}.

The PER morphisms are those functions on equivalence classes (which we view as terms)
that can be implemented as partial computable functions acting on the codes.
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The next category generalises these ideas of modelling types:

▶ Definition 6 (assembly). An n-assembly consists of a set A ⊆ Pn(N) and a relation
⊩ ⊆ N × A such that for every A ∈ A there exists a “realizer” a ∈ N such that a ⊩A A.
For an n-assembly A we will write |A| for the set and ⊩A for the relation. An n-assembly
morphism from A to B is a function F from A to B that is “tracked” by some f ∈ N, meaning
that for every A ∈ A and a ∈ N with a ⊩A A we have f a ↓ and f a ⊩B F (A).

The inclusions ιn : Pn(N) → Pn+1(N) also give us a cumulative hierarchy of assemblies.

Cumulativity. We can view any subsingleton S ⊆ {∗} as a PER {⟨i, j⟩ : ∗ ∈ S} and any
PER R as a 1-assembly with domain N/R and realizability relation ∈. This gives us full
embeddings: Subsing ↪→ PER ↪→ Assem which we use to model cumulativity in λC+. In a
similar vein, for any set A ⊆ Pn(N), we get an n-assembly ∇A with domain A and the total
realizability relation N × A; in this way Pn(N) also forms a full subcategory of Assemn.

Universes. We have to show that we can view the sets Subsing and PER as assemblies to
model Prop : Type and Set : Type. For Subsing this is easy, if we take ∗ := 0, then we have
Subsing = P({0}) ⊆ P(N) so we get an 1-assembly ∇Subsing. Similarly, we can consider a
PER to be a subset of N × N := Σ(x ∈ N)N ⊆ N, so we get a 1-assembly ∇PER.

5.3 Modelling Type Constructors
We define Σ, Π, W for assemblies by restricting the definitions for sets to those elements
which are realised. So, for A, B[A ∈ A] ∈ Assemn and Q = Σ, Π, W, we define the assembly
Q(A ∈ A) B[A] by taking |Q(A ∈ A) B[A]| := {Q ∈ Q(A ∈ |A|) |B[A]| : ∃(q ∈ N) (q ⊩ Q)},
where ⊩ ⊆ N × |Q(A ∈ A) B[A]| is defined as follows for Q = Σ, Π, W:
Σ We say p ⊩ P iff we have pr0(p) ⊩A pr0(P ) and pr1(p) ⊩B[A] pr1(P ).
Π We sayf ⊩ F iff for every A ∈ A and a ⊩A A we have f a ↓ and f a ⊩B[A] F (A).
W We say t ⊩ T iff for every ⟨A0, B0, A1, . . . , An−1, Bn−1, An⟩ ∈ T and b0 ⊩B[A0] B0, . . . ,

bn−1 ⊩B[An−1] Bn−1 we have that for t0, . . . , tn−1 ∈ N given inductively by t0 := t and
ti+1 := (pr1(ti)) bi we have for every i < n + 1 that ti ↓ and pr0(ti) ⊩A Ai.

Now that we have defined Σ, Π, W for assemblies, we use this to define these notions also for
subsingletons and PER’s. This is possible because of the following observation:

▶ Proposition 7. Suppose that A ∈ Assemn and for every A ∈ A that B[A] ∈ Assemn.
If A and all B[A] are isomorphic to a subsingleton/PER, then Σ(A ∈ A) B[A] is as well.
If all B[A] are isomorphic to a subsingleton/PER, then Π(A ∈ A) B[A] is as well.
If A is isomorphic to a subsingleton/PER, then W(A ∈ A) B[A] is as well.

Note that this is precisely what we need to model our formation rules. In particular, we can
model the impredicative rule for products: up to isomorphism, we have that Π(A ∈ A) B[A]
always lives in the same category as the B[A], regardless of A.

For A ∈ Assemn we define equality and propositional truncation as subsingletons:

(A =A A′) := {∗ : A = A′} ∈ Subsing, ∥A∥ := {∗ : ∃A (A ∈ A)} ∈ Subsing.

Lastly, if we have A ∈ Assemn and for every A, A′ ∈ A an R[A, A′] ∈ Assemn, then we define
A/R ∈ Assemn+1 by taking |A/R| := |A|/{⟨A, A′⟩ : ∃(R ∈ R[A, A′])} and q ⊩ Q iff there
exists an A ∈ Q such that q ⊩ A. We can extend this to PER’s and subsingletons using:

▶ Proposition 8. If A ∈ Assemn is isomorphic to a subsingleton/PER, then A/R is as well.
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5.4 Interpretation

Model. Now that we have all of the building blocks, we pack everything together to build
our model. Using simultaneous induction on the derivation we define:

for any well-formed context Γ an n-assembly JΓK for some n;
for any judgement Γ ⊢ A : Type a function JΓ ⊢ A : TypeK : JΓK → Assemn for some n;
for any judgement Γ ⊢ a : A a morphism JΓ ⊢ a : AK : JΓK → JΓ ⊢ A : TypeK.

Here contexts are the only part that we have not yet discussed. We define JΓK using Σ:

JK := 1, JΓ, x : AK := Σ(G ∈ JΓK) JΓ ⊢ A : TypeK(G).

The other two judgements use the structure that we have defined in the previous sections:
the embeddings Subsing ↪→ PER ↪→ Assem, the assemblies ∇Subsing and ∇PER, and the
constructions n, N, Σ, Π, W, =, ∥ · ∥, /. The full model is given in Appendix B.

Realizability. Now that we have defined a model for λC+ within HAH, we consider the two
interpretations HAH → λC+ → HAH. The idea is as follows: for a formula A, we get types
ΓA

• ⊢ A• : Prop and ΓA
◦ ⊢ A◦ : Set. By interpreting these in our model we get a subsingleton

JA•K := JΓA
• ⊢ A• : PropK(GA

• ) and a PER JA◦K := JΓA◦ ⊢ A◦ : SetK(GA
◦ ) by defining some

canonical GA
• ∈ JΓA

• K and GA
◦ ∈ JΓA

◦ K that have the same free variables as A. We consider
the HAH-formulas: Inh(JA•K) and Inh(JA◦K) where Inh(A) := ∃x (x ∈ A). These formulas
have the same free variables as A and state the the types are inhabited in the model, that is,
that the model satisfies A.

To make this precise, we consider the context of A∗ for ∗ := •, ◦. If A has free variables
xn0

0 , . . . , x
nk−1
k−1 then the context is ΓA

∗ := (x0 : Pn0
∗ N, . . . , xk−1 : Pnk−1

∗ N). This means that
JΓA

∗ K = JPn0
∗ NK × · · · × JPnk−1

∗ NK where JNK := (N/=) = {{x} : x ∈ N} and we have
JPn+1

• NK := JPn
• NK → ∇Subsing and JPn+1

◦ NK := JPn
◦ NK → ∇PER. We can translate

between P(N) and JPn
∗ NK using gn

∗ : Pn(N) → JPn
∗ NK and hn

∗ : JPn
∗ NK → Pn(N):

g0
∗(x) := {x}, gn+1

∗ (X) := (f ∈ JPn NK) 7→ {z : hn
∗ (f) ∈ X},

h0
∗({x}) := x, hn+1

∗ (F ) := {x ∈ Pn(N) : Inh(F (gn
∗ (x)))}.

Now we define GA
∗ := ⟨gn0

∗ (x0), . . . , g
nk−1
∗ (xk−1)⟩.

6 Proof-irrelevant Conservativity

Now that we have defined our interpretations, the proof-irrelevant result follows quickly:

▶ Theorem 9. For any HAH-formula A, we have HAH ⊢ Inh(JA•K) ↔ A.

Proof. We prove this with induction on the formula A. Because the other logical connectives
can be defined using ∈, →, and ∀, and because λC+ satisfies the rules and axioms of HAH,
we only have to check the following cases:

Inh(J(x ∈n Y )•K) ↔ ∗ ∈ Jx : Pn
• N, Y : Pn+1

• N ⊢ Y x : PropK(⟨gn
• (x), gn+1

• (Y )⟩)
↔ ∗ ∈ gn+1

• (Y )(gn
• (x))

↔ hn
• (gn

• (x)) ∈ Y

↔ x ∈n Y,
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Inh(J(A → B)•K) ↔ ∗ ∈ JΓA→B
• ⊢ A• → B• : PropK(GA→B

• )
↔ ∗ ∈ Π(h ∈ JΓA

• ⊢ A• : PropK(GA
• )) JΓB

• ⊢ B• : PropK(GB
• )

↔ ∗ ∈ JΓA
• ⊢ A• : PropK(GA

• ) → ∗ ∈ JΓB
• ⊢ B• : PropK(GB

• )
↔ A → B,

Inh(J(∀xn B[x])•K) ↔ ∗ ∈ JΓ∀xnB[x]
• ⊢ Π(x : Pn

• N) B[x]• : PropK(G∀xnB[x]
• )

↔ ∗ ∈ Π(f ∈ JPn NK) JΓB[x]
• ⊢ B[x]• : PropK(⟨G∀xnB[x]

• , f⟩)

↔ ∀(f ∈ JPn
• NK) ∗ ∈ JΓB[x]

• ⊢ B[x]• : PropK(⟨G∀xnB[x]
• , f⟩)

↔ ∀(x ∈ Pn
• (N)) ∗ ∈ JΓB[x]

• ⊢ B[x]• : PropK(⟨G∀xnB[x]
• , gn

• (x)⟩)
↔ ∀xn B[x]. ◀

▶ Corollary 10 (proof-irrelevant conservativity). For a higher-order arithmetical formula A,
we have that HAH proves A iff there exists a term a such that λC+ proves ΓA

• ⊢ a : A•.

Proof. We have already seen that λC+ satisfies the axioms and inference rules of HAH, so it is
an extension of HAH. That this extension is conservative will follow from the previous theorem.
Suppose for a formula A in the language of HAH that it is provable in λC+, that is, that we
have ΓA

• ⊢ a : A• for some term a. Then we get JΓA
• ⊢ a : A•K(GA

• ) ∈ JΓA
• ⊢ A• : PropK(GA

• )
so we have Inh(JA•K). Using the last theorem we see that A is provable in HAH. ◀

7 Proof-relevant Conservativity

In the proof of Theorem 9, we used the fact that, from second-order logic upwards, we can
define every logical connective using ∈, →, and ∀. Because our conservativity will only hold
for first-order formulas, we cannot use this shortcut. It turns out that ∨ and ∃ are the
difficult cases; luckily, in HA we can define A ∨ B := ∃n0 ((n = 0 → A) ∧ (n ̸= 0 → B)) so we
only have to worry about ∃. Similarly, we can define ⊥ := (0 = 1) and ⊤ := (0 = 0). First
we write out what ⟨z, z′⟩ ∈ JA◦K means by unrolling the definition:

▶ Proposition 11. In HAH, we can prove the following:

⟨z, z′⟩ ∈ J( a =0 b )◦K ↔ a =0 b,

⟨z, z′⟩ ∈ J( A ∧ B )◦K ↔ ⟨pr0 z, pr0 z′⟩ ∈ JA◦K ∧ ⟨pr1 z, pr1 z′⟩ ∈ JB◦K,

⟨z, z′⟩ ∈ J( A → B )◦K ↔ ∀x, x′ (⟨x, x′⟩ ∈ JA◦K → ⟨z x, z′ x′⟩ ∈ JB◦K),
⟨z, z′⟩ ∈ J(∃x0B[x])◦K ↔ pr0 z = pr0 z′ ∧ ⟨pr1 z, pr1 z′⟩ ∈ JB[pr0 z]◦K,
⟨z, z′⟩ ∈ J(∀x0B[x])◦K ↔ ∀x (⟨z x, z′ x⟩ ∈ JB[x]◦K).

Now, we will prove conservativity by using an extra assumption: that we have Hilbert-style
epsilon constants. That is, we assume for every first-order formula A[x⃗, y], that there exists
a choice function ϵy.A ∈ N sending every x⃗ to some y such that A[x⃗, y] if such a y exists:

∀x⃗ (∃y A[x⃗, y] → ϵy.A x⃗ ↓), ∀x⃗ (ϵy.A x⃗ ↓ → A[x⃗, ϵy.A x⃗]).

Unfortunately, this assumption is not true for Kleene-application; however, in the next
sections, we will see that we can conservatively extend HAH with a notion of application
where these constants exist. First, we show how this allows us to prove conservativity:

▶ Theorem 12. Assuming ϵ-constants, for any HA-formula A, we have Inh(JA◦K) ↔ A.
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Proof. For any HA-formula A with free variables x⃗, we construct a canonical realizer rA:

ra=0b := λx⃗ 0,

rA∧B := λx⃗ ⟨rA x⃗, rB x⃗⟩,
rA→B := λx⃗ λy (rB x⃗),
r∃y0 B[y] := λx⃗ ⟨ϵy.B x⃗, rB x⃗ (ϵy.B x⃗)⟩,
r∀y0 B[y] := λx⃗ λy (rB x⃗ y).

With induction on A, we can prove Inh(JA◦K) ↔ (rA x⃗ ↓ ∧ ⟨rA x⃗, rA x⃗⟩ ∈ JA◦K) ↔ A. ◀

What remains is proving that we can make this assumption. Here, we translate the approach
of [42] to higher-order logic. First, in Subsection 7.1 we extend our higher-order logic to allow
for partial function symbols. Then in Subsection 7.2 we extend HAH to HAHP by adding
primitive notions for application. This extension is conservative because these notions can
already be defined using Kleene-application. Then in Subsection 7.3, we extend further, to
HAHPϵ by adding ϵ-constants, and show that this is still conservative over HAH.

7.1 Higher-order Logic of Partial Terms
We will consider a higher-order version of the logic of partial terms by Beeson [3, Section
VI.1]. In this logic, function symbols are allowed to correspond to partial functions. So, if
we have a function symbol f then f(x⃗) is not necessarily defined. For every term a we add
a new atomic formula a ↓, which stands for “a is defined”. We add the following inference
rules:

↓-var,
Γ ⊢ xn ↓,

Γ ⊢ f(an0
0 , . . . , a

nk−1
k−1 ) ↓

↓-fun,
Γ ⊢ ani

i ↓
Γ ⊢ R(an0

0 , . . . , a
nk−1
k−1 )

↓-rel.
Γ ⊢ ani

i ↓

Note that we view =n and ∈n as relation symbols so the ↓-rel rule applies. In addition, we
restrict the exists-introduction and forall-elimination rules to terms that are defined:
Γ ⊢ B[an] Γ ⊢ an ↓

∃-I,
Γ ⊢ ∃xn B[xn]

Γ ⊢ ∀xn B[xn] Γ ⊢ an ↓
∀-E.

Γ ⊢ B[an]

The other rules are the same as those of higher-order logic. Any theory in higher-order logic
can be seen as a theory in the higher-order logic of partial terms by adding for every function
symbol f : n0 × · · · × nk → m the axiom ∀xn0

0 . . . ∀xnk

k f(x0, . . . , xk) ↓. Accordingly, we will
view HAH as a theory in this new logic.

In this logic, it is often useful to consider a weaker notion of equality that also holds
when both terms are not defined: an ≃ bn := a ↓ ∨ b ↓ → a = b.

7.2 HAHP: Adding Primitive Application
In HAHP, we extend the language with a binary partial function symbol app : (0, 0) ⇀ 0, and
constants k, s, suc, rec : 0 which stand for natural numbers encoding basic functions: k and s
give a partial combinatory algebra [6], suc computes the successor function, and rec allows
us to do recursion. We abbreviate app(a, b) as a b. For k, s, suc, rec, we add the axioms:

∀x ∀y (k x y = x), ∀x (suc x = S(x)),
∀x ∀y (s x y ↓), ∀x ∀y (rec x y 0 = x),
∀x ∀y ∀z (s x y z ≃ (x z) (y z)), ∀x ∀y ∀z (rec x y (S z) ≃ y z (rec x y z)).
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The raison d’être for k and s is that they are used to define λx b[x]:

λx x := s k k, λx S(b[x]) := λx (suc b[x]),
λx c := k c, (if c ̸= x) λx b[x] + c[x] := λx (add b[x] c[x]),

λx (b[x] c[x]) := s (λx b[x]) (λx c[x]), λx b[x] × c[x] := λx (mul b[x] c[x]),

where add := λy rec y (λi λr suc r) and mul := λy rec 1 (λi λr add r y).
These lambda functions are enough to construct our model in HAHP using app as our

application. We write J·K′ : λC+ → HAHP for this modification of J·K : λC+ → HAH.

▶ Theorem 13. HAHP is conservative over HAH.

Proof. Kleene-application satisfies the axioms of HAHP. Here, app(a, b) is the application of
the partial recursive function encoded by a to b. See [40, Proposition 9.3.12] for more. ◀

7.3 HAHPϵ: Adding Computable Choice
In HAHPϵ, we extend the theory even further by adding a constant ϵ∃yA : 0 for every
HAH-formula A[x0

0, . . . , x0
k−1, y0], and adding the following axioms:

∀x⃗ (∃y A[x⃗, y] → ϵ∃y A x⃗ ↓), ∀x⃗ (ϵ∃y A x⃗ ↓ → A[x⃗, ϵ∃y A x⃗]).

Such constants do not exist for Kleene-application, so HAHPϵ is not conservative over HAHP.
However, HAHPϵ is conservative over HAH as we will prove in the remainder of this section.

▶ Proposition 14. Suppose that A[x0, y0] is an HAH-formula and let HAHPF be the extension
of HAHP with a relation symbol F : 0 × 0 and axioms:

∀x !y F (x, y), ∀x (∃y A[x, y] → ∃y F (x, y)), ∀x ∀y (F (x, y) → A[x, y]),

where !y means “at most one y” which is defined by !y B[y] := ∀y ∀y′ (B[y] ∧ B[y′] → y = y′).
Then HAHPF is conservative over HAHP.

Proof. We prove this using forcing. We define a forcing condition P to be a finite ap-
proximation of the relation F : a finite set of pairs {⟨x0, y0⟩, . . . , ⟨xn−1, yn−1⟩} where the
xi are distinct and for every i < n we have A(xi, yi). For a forcing condition P and an
HAHPF -formula A we define a HAHP-formula P ⊩R A with induction on A:

P ⊩R A := A, (if A is an atomic HAHP-formula)
P ⊩R F (x, y) := ∀(P ′ ⊇ P ) ∃(P ′′ ⊇ P ′) (⟨x, y⟩ ∈ P ′′),
P ⊩R A ∨ B := ∀(P ′ ⊇ P ) ∃(P ′′ ⊇ P ′) ((P ′′ ⊩R A) ∨ (P ′′ ⊩R B)),
P ⊩R A ∧ B := (P ⊩R A) ∧ (P ⊩R B),
P ⊩R A → B := ∀(P ′ ⊇ P ) ((P ′ ⊩R A) → (P ′ ⊩R B)),
P ⊩R ∃xn B[x] := ∀(P ′ ⊇ P ) ∃(P ′′ ⊇ P ′) ∃xn (P ′′ ⊩R B[xn]),
P ⊩R ∀xn B[x] := ∀(P ′ ⊇ P ) ∀xn (P ′ ⊩R B[x]).

As usual, we can prove with induction for every HAHPF -formula A that we have:

HAHP ⊢ ∀P ∀(P ′ ⊇ P ) ((P ⊩R A) → (P ′ ⊩R A)),
HAHP ⊢ ∀P (∀(P ′ ⊇ P ) ∃(P ′′ ⊇ P ′) (P ′′ ⊩R A) → (P ⊩R A)).
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Similarly, for every HAHP-formula B we show with induction on B that:

HAHP ⊢ ∀P ((P ⊩R B) ↔ B).

With this, we prove for every HAHPF -formula A that HAHPF ⊢ A implies HAHP ⊢
∀P (P ⊩R A) with induction on the proof of HAHPF ⊢ A. This is tedious but straightforward.
See also the proof of [42, Proposition 2.5] where they show a similar statement.

This shows that HAHPF is conservative over HAHP: suppose for a HAHP-formula B that
we have HAHPF ⊢ B, then we have HAHP ⊢ ∀P (P ⊩R B) and therefore HAHP ⊢ B. ◀

▶ Proposition 15. Suppose that A[x0, y0] is an HAH-formula and let HAHPf be the extension
of HAHP with a partial function symbol f : 0 ⇀ 0 and axioms:

∀x (∃y A[x, y] → f(x) ↓), ∀x (f(x) ↓ → A[x, f(x)]).

Then HAHPf is conservative over HAHP.

Proof. This follows because every n-ary function symbol f can be encoded as an (n + 1)-ary
relation symbol F and an axiom ∀x⃗ !y F (x⃗, y). The axioms of Proposition 14 are precisely
the axioms of this proposition under this encoding. For a similar translation in more detail,
see [39, Section 2.7]. ◀

▶ Proposition 16. Suppose that A[x0, y0] is an HAH-formula and let HAHPc be the extension
of HAHP with a constant c : 0 and axioms:

∀x (∃y A[x, y] → c x ↓), ∀x (c x ↓→ A[x, c x]).

Then HAHPc is conservative over HAH.

Proof. We work in HAHPf and use our existing evaluation eval(a, b) to define a new
evaluation evalf (a, b), which can use the partial function symbol f as an oracle.

The informal idea to calculate evalf (a, b) is the following. We start by calculating eval(a, b).
If this returns a value ⟨0, x0⟩ then that means that the function a wants to ask the oracle for
the result of applying f to x0. So we supply this value and run the function again, now we
calculate eval(a, ⟨b, f(x0)⟩). If this returns a value ⟨0, x1⟩ then the function a want another
result from the oracle so we calculate eval(a, ⟨b, f(x0), f(x1)⟩). We keep doing this until a

eventually returns a value ⟨1, c⟩ in which case we say evalf (a, b) = c.
More formally, we say that the formula evalf (a, b) = c is true if there exists a sequence

⟨x0, . . . , xn−1⟩ such that:
for every i < n we have eval(a, ⟨b, f(x0), . . . , f(xi−1)⟩) = ⟨0, xi⟩;
and eval(a, ⟨b, f(x0), . . . , f(xn−1)⟩) = ⟨1, c⟩.

For this new evaluation we can define new constants kf , sf , sucf , recf which leads to a new
lambda abstraction λf . For the details, see [43, Theorem 2.2].

We can use this to show that HAHPc is conservative over HAH. For any HAHPc-formula
A we relativize the evaluation and constants to f to get an HAHPf -formula Af , we can prove
with induction that we have HAHPc ⊢ A iff HAHPf ⊢ Af . For an HAH-formula B we see
that Bf is the same as B so HAHPc ⊢ B implies HAHPf ⊢ B which implies HAH ⊢ B. ◀

▶ Theorem 17. HAHPϵ is conservative over HAH.

Proof. Suppose that we have HAHPϵ ⊢ A for an HAH-formula A. Note that the proof for A

can only use a finite amount of choice functions, say ϵ∃y Bi
for i < n. We can modify the proof

of A to use only the choice function ϵ∃y C where C[z, y] :=
∧

i<n ∀x⃗ (z = ⟨i, x⃗⟩ → Bi[x⃗, y]).
So, the theorem follows from the previous proposition. ◀
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▶ Corollary 18 (proof-relevant conservativity). For a first-order arithmetical formula A, we
have that HAH proves A iff there exists a term a such that λC+ proves ΓA ⊢ a : A◦.

Proof. This follows from Theorem 12 and Theorem 17 in the same way as Corollary 10. ◀

8 De Jongh’s Theorem for Type Theory

Before proving it for type theory, let us first state De Jongh’s original theorem:

▶ Theorem 19 (De Jongh [12]). Let A[P0, . . . , Pn−1] be a propositional formula with propos-
itional variables P0, . . . , Pn−1. If A is not provable in intuitionistic propositional logic, then
we can construct sentences B0, . . . , Bn−1 in the language of HA such that A[B0, . . . , Bn−1]
is not provable in HA.

De Jongh and Smorynski have shown that this also holds for HA2 [13] and Robert Passmann
has shown it for CZF and IZF [32, 33]. First we observe that we can use Passman’s proof to
obtain a new result for HAH:

▶ Corollary 20. De Jongh’s Theorem holds for HAH.

Proof. This theorem follows from Passmann’s proof for IZF because of the following two
observations: HAH can be seen as a subtheory of IZF, and the sentences B0, . . . , Bn−1 used
by Passmann can already be stated in the language of HAH. See Appendix C. ◀

Now, using our conservativity results, we see the following:

▶ Corollary 21. De Jongh’s Theorem holds for λC+ (and smaller type theories) for both the
proof-relevant and proof-irrelevant interpretations of (higher-order) logic.

In particular, we see that this holds for both predicative and impredicative theories and for
both intuitionistic and extensional theories with at most one level of universes.

9 Conclusion and Future Work

The interpretations of higher-order logic in type theory differ greatly on second-order formulas:
• the proof-irrelevant interpretation satisfies specification and extensionality but not choice,
◦ the proof-relevant interpretation satisfies specification and choice but not extensionality.
However, although having all three of these principles makes the theory classical [15], these
interpretations still prove exactly the same first-order arithmetical formulas: those of the
intuitionistic theory HAH. These results hold for both intensional and extensional versions
of type theory and are sufficient to prove De Jongh’s theorem for both predicative and
impredicative versions.

We have characterised the arithmetical statements provable in type theories with one
level of impredicative universes. This gives two natural directions of future work:

Can we find a characterisation for predicative type theories? For such a type theory
both interpretations do not satisfy specification, so, can we find a corresponding weaker
arithmetical theory?
Can we find a characterisation for type theories with more universes?
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A Type Theory

Γ ⊢ A : A
x not free in Γ start,

Γ, x : A ⊢ x : A

Γ ⊢ A : A Γ ⊢ b : B
x not free in Γ weakening,

Γ, x : A ⊢ b : B

axiomP,
⊢ Prop : Type

Γ ⊢ A : Prop
cumulP,

Γ ⊢ A : Set
Γ ⊢ A ≡ A′ : A Γ ⊢ a : A

convers,
Γ ⊢ a : A′

axiomS,
⊢ Set : Type

Γ ⊢ A : Set
cumulS,

Γ ⊢ A : Type
Γ ⊢ p : a =A a′

reflection,
Γ ⊢ a ≡ a′ : A

Rules stating that Γ ⊢ · ≡ · : A is a congruence relation have been omitted for brevity.

*

n numeral ⋉-F,
⊢ ⋉ : Set

k < n ⋉-I,
⊢ k⋉ : ⋉

Γ, i : ⋉ ⊢ C[i] : C Γ ⊢ c0 : C[0⋉] . . . Γ ⊢ cn−1 : C[(n − 1)⋉]
⋉-E,

Γ ⊢ ind⋉
C c0 . . . cn−1 : Π(i : ⋉) C[i]

Γ ⊢ ind⋉
C c0 . . . cn−1 k⋉ : C[k⋉]

k < n ⋉-β,
Γ ⊢ ind⋉

C c0 . . . cn−1 k⋉ ≡ ck : C[k⋉]

N-F,
⊢ N : Set

N-I0,
⊢ 0 : N

Γ ⊢ n : N
N-IS,

Γ ⊢ S n : N

Γ, n : N ⊢ C[n] : C Γ ⊢ c : C[0] Γ ⊢ f : Π(n : N) (C[n] → C[S n])
N-E,

Γ ⊢ indN
C c f : Π(n : N) C[n]

Γ ⊢ indN
C c f 0 : C[0]

N-β0,
Γ ⊢ indN

C c f 0 ≡ c : C[0]
Γ ⊢ indN

C c f (S n) : C[S n]
N-βS,

Γ ⊢ indN
C c f (S n) ≡ f n (indN

C c f n) : C[S n]

Γ ⊢ A : C Γ, x : A ⊢ B[x] : C
Σ-F,

Γ ⊢ Σ(x : A) B[x] : C
Γ ⊢ Σ(x : A) B[x] : C Γ ⊢ a : A Γ ⊢ b : B[a]

Σ-I,
Γ ⊢ ⟨a, b⟩ : Σ(x : A) B[x]

Γ, p : Σ(x : A) B[x] ⊢ C[p] : C Γ ⊢ f : Π(x : A) Π(y : B[a]) C[⟨x, y⟩]
Σ-E,

Γ ⊢ indΣ
C f : Π(p : Σ(x : A) B[x]) C[p]

Γ ⊢ indΣ
C f ⟨a, b⟩ : C[⟨a, b⟩]

Σ-β,
Γ ⊢ indΣ

C f ⟨a, b⟩ ≡ f a b : C[⟨a, b⟩]

Γ ⊢ A : A Γ, x : A ⊢ B[x] : B
Π-F,

Γ ⊢ Π(x : A) B[x] : B
Γ ⊢ Π(x : A) B[x] : B Γ, x : A ⊢ b[x] : B[x]

Π-I,
Γ ⊢ λ(x : A) b[x] : Π(x : A) B[x]

Γ ⊢ f : Π(x : A) B[x] Γ ⊢ a : A
Π-E,

Γ ⊢ f a : B[a]
Γ ⊢ (λ(x : A) b[x]) a : B[a]

Π-β,
Γ ⊢ (λ(x : A) b[x]) a ≡ b[a] : B[a]
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Γ ⊢ A : A Γ, x : A ⊢ B[x] : B
W-F,

Γ ⊢ W(x : A) B[x] : A

Γ ⊢ W(x : A) B[x] : A Γ ⊢ a : A Γ ⊢ d : B[a] → W(x : A) B[x]
W-I,

Γ ⊢ tree a d : W(x : A) B[x]

Γ, t : W(x : A) B[x] ⊢ C[t] : C
Γ ⊢ f : Π(a : A) Π(d : B[a] → W(x : A) B[x]) ((Π(b : B[a]) C[d b]) → C[tree a d])

W-E,
indW

C f : Π(t : W(x : A) B[x]) C[t]

Γ ⊢ indW
C f (tree a d) : C[tree a d]

W-β,
Γ ⊢ indW

C f (tree a d) ≡ f a d (λ(b : B a) indW
C f (d b)) : C[tree a d]

Γ ⊢ A : A Γ ⊢ a : A Γ ⊢ a′ : A
=-F,

Γ ⊢ a =A a′ : Prop
Γ ⊢ A : A Γ ⊢ a : A

=-I,
Γ ⊢ refl a : a =A a

Γ, a : A, a′ : A, e : a =A a′ ⊢ C[a, a′, e] : C Γ ⊢ f : Π(x : A) C[x, x, refl x]
=-E,

Γ ⊢ ind=
C f : Π(x, x′ : A) Π(e : x =A x′) C[x, x′, e]

Γ ⊢ ind=
C f a a (refl a) : C[a, a, refl a]

=-β,
Γ ⊢ ind=

C f a a (refl a) ≡ f a : C[a, a, refl a]

Γ ⊢ A : A
∥ · ∥-F,

Γ ⊢ ∥A∥ : Prop
Γ ⊢ ∥A∥ : Prop Γ ⊢ a : A

∥ · ∥-I,
Γ ⊢ |a| : ∥A∥

Γ, t : ∥A∥ ⊢ C[t] : Prop Γ ⊢ f : Π(x : A) C[|x|]
∥ · ∥-E,

Γ ⊢ ind∥·∥
C f : Π(t : ∥A∥) C[t]

Γ ⊢ ind∥·∥
C f h |a| : C[|a|]

∥ · ∥-β,
Γ ⊢ ind∥·∥

C f h |a| ≡ f a : C[|a|]

Γ ⊢ A : A Γ, x : A, x′ : A ⊢ R[x, x′] : B
/-F,

Γ ⊢ A/R : A
Γ ⊢ A/R : A Γ ⊢ a : A

/-I,
Γ ⊢ [a]R : A/R

Γ, q : A/R ⊢ C[q] : C Γ ⊢ f : Π(x : A) C[[x]R]
Γ ⊢ h : Π(x, x′ : A) Π(r : R[x, x′]) ((ax/ x x′ r)∗ (f x) = f x′)

/-E,
Γ ⊢ ind/

C f h : Π(q : A/R) C[q]

Γ ⊢ A/R : A
/-I=,

Γ ⊢ ax/ : Π(a, a′ : A) (R[a, a′] → [a]R = [a′]R)

Γ ⊢ ind/
C f h [a]R : C[[a]R]

/-β,
Γ ⊢ ind/

C f h [a]R ≡ f a : C[[a]R]

propext.
⊢ propext : Π(P, P ′ : Prop) ((P ↔ P ) → (P =Prop P ′))
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B Model

Using simultaneous induction on the derivation we define:
for any well-formed context Γ an n-assembly JΓK for some n;
for any judgement Γ ⊢ A : Type a function JΓ ⊢ A : TypeK : JΓK → Assemn for some n;
for any judgement Γ ⊢ a : A a morphism JΓ ⊢ a : AK : JΓK → JΓ ⊢ A : TypeK.

For contexts, we define:

JK := 1, JΓ, x : AK := Σ(G ∈ JΓK) JΓ ⊢ A : TypeK(G).

For the start and weakening laws, we define:

JΓ, x : A ⊢ x : AK(G) := pr1(G), JΓ, x : A ⊢ b : BK(G) := JΓ ⊢ b : BK(G).

For the β-conversion law, if Γ ⊢ A ≡ A′ : A, then we define:

JΓ ⊢ a : A′K(G) := JΓ ⊢ a : AK(G),

For the axioms and cumulativity laws, we define:

J ⊢ Prop : TypeK := ∇Subsing, JΓ ⊢ A : Set K(G) := {⟨z, z′⟩ : ∗ ∈ JΓ : PropK(G)},

J ⊢ Set : TypeK := ∇PER, JΓ ⊢ A : TypeK(G) := N/JΓ ⊢ A : SetK(G).

For the finite types, we define:

J ⊢ ⋉ : SetK := n, J ⊢ kn : ⋉K := {k},

JΓ ⊢ ind⋉
C c0 . . . cn−1 : Π(k : ⋉) C[k]K(G)({k}) := JΓ ⊢ ck : C[k]K(G).

For the natural numbers, we define:

J ⊢ N : SetK := N, J ⊢ 0 : NK := {0} JΓ ⊢ S n : NK(G) := S(JΓ ⊢ n : NK(G)),
JΓ ⊢ indN

C c f : Π(n : N) C[n]K(G)({n}) :=
JΓ ⊢ f : Π(n : N) (C[n] → C[S n])K(G)({n − 1})(. . .

JΓ ⊢ f : Π(n : N) (C[n] → C[S n])K(G)({0})(JΓ ⊢ c : C[0]K(G))).

For Σ-types, we define:

JΓ ⊢ Σ (x : A) B[x] : C K(G) := Σ (X ∈ JΓ ⊢ A : C K(G)) JΓ, x : A ⊢ B[x] : C K(⟨G, X⟩),
JΓ ⊢ ⟨a, b⟩ : Σ(x : A) B[x]K(G) := ⟨JΓ ⊢ a : AK(G), JΓ ⊢ b : B[a]K(G)⟩,
JΓ ⊢ indΣ

C f : Π(p : Σ(x : A) B[x]) C[p]K(G)(⟨A, B⟩) :=
JΓ ⊢ f : Π(x : A) Π(y : B[x]) C[⟨x, y⟩]K(G)(A)(B).

For Π-types, we define:

JΓ ⊢ Π (x : A) B[x] : BK(G) := Π (X ∈ JΓ ⊢ A : AK(G)) JΓ, x : A ⊢ B[x] : BK(⟨G, X⟩),
JΓ ⊢ λ(x : A) b[x] : Π(x : A) B[x]K(G)(A) := JΓ, x : A ⊢ b[x] : B[x]K(⟨G, A⟩),
JΓ ⊢ f a : B[a]K(G) := JΓ ⊢ f : Π(x : A) B[x]K(G)(JΓ ⊢ a : AK(G)).
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For W-types, we define:

JΓ ⊢ W(x : A) B[x] : AK(G) := W(X ∈ JΓ ⊢ A : AK(G)) JΓ, x : A ⊢ B[x] : BK(⟨G, X⟩),
JΓ ⊢ tree a d : W(x : A) B[x]K(G) := {⟨A0, B0, A1, . . . , An⟩ : A0 = JΓ ⊢ a : AK(G)

∧ ⟨A1, B1, A2, . . . , An⟩ ∈ JΓ ⊢ d : B[a] → W(x : A) B[x]K(G)(B0)},

JΓ ⊢ indW
C f : Π(t : W(x : A) B[x]) C[t]K(G)(T ) :=

JΓ ⊢ f : Π(a : A) Π(d : B[a] → W(x : A) B[x]) ((Π(b : B[a]) C[d b]) → C[tree a d])K
(G)(root(T ))(B0 7→ {⟨A1, B1, A2, . . . , An⟩ : ⟨root(T ), B0, A1, . . . , An} ∈ T})(. . . ).

For propositional equality, we define:

JΓ ⊢ a =A a′ : PropK(G) := (JΓ ⊢ a : AK(G) =JΓ⊢A:TypeK(G) JΓ ⊢ a′ : AK(G)),
JΓ ⊢ refl a : a =A a K(G) := ∗,

JΓ ⊢ ind=
C f : Π(x, x′ : A) Π(e : x =A x′) C[x, x′, e]K(G)(A)(A′)(E) :=

JΓ ⊢ f : Π(x : A) C[x, x, refl x]K(G)(A).

For propositional truncation, we define:

JΓ ⊢ ∥A∥ : PropK(G) := ∥JΓ ⊢ A : AK(G)∥,

JΓ ⊢ |a| : ∥A∥K(G) := ∗,

JΓ ⊢ ind∥·∥
C f h : Π(t : ∥A∥) C[t]K(G)(T ) := JΓ ⊢ f : Π(x : A) C[|x|]K(G)(A)

for any A ∈ JΓ ⊢ A : TypeK(G).

For quotient types, we define:

JΓ ⊢ A/R : AK(G) := JΓ ⊢ A : AK(G)/JΓ, x : A, x′ : A ⊢ R[x, x′] : BK(G),
JΓ ⊢ [a]R : A/RK(G) := [JΓ ⊢ a : AK(G)],

JΓ ⊢ ind∥·∥
C f h : Π(t : ∥A∥) C[t]K(G)(Q) := JΓ ⊢ f : Π(x : A) C[[x]R]K(G)(A)

for any A ∈ Q.

For propositional extensionality, we define:

J ⊢ propext : Π(P, P ′ : Prop) ((P ↔ P ) → (P =Prop P ′))K(S)(S′)(F ) := ∗.

We can see with induction that these interpretations are well-defined, so in particular that
every function JΓ ⊢ a : AK is indeed tracked by a natural number and therefore a morphism.

C De Jongh’s Theorem for HAH

▶ Corollary (De Jongh’s theorem for HAH). Let A[P0, . . . , Pn−1] be a propositional formula
with propositional variables P0, . . . , Pn−1. If A is not provable in intuitionistic propositional
logic then we can construct sentences B0, . . . , Bn−1 in the language of HAH such that
A[B0, . . . , Bn−1] is not provable in HAH.
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Proof. Firstly, every higher-order arithmetical formula can be seen as a first-order formula
in the language of set theory by interpreting ∃xn as ∃(x ∈ Pn(ω)) and ∀xn as ∀(x ∈ Pn(ω)).
IZF proves the axioms of HAH so we can view HAH as a subtheory of IZF. Now, in the proof
of De Jongh’s theorem for IZF, Passmann [32] constructs suitable B0, . . . , Bn−1 of the form:∨

k(Γk ∧
∧

l ¬(¬∆l ∧ ∆l+1)),

where Γk and ∆l are roughly the following set theoretic formulas:

Γk := (|P(1)| < k), ∆l := (|P(ℵ0)| < ℵl).

More precisely, the formula Γk can be stated in the language of HAH as follows:

Γk := ∀X1
0 · · · ∀X1

k−1 (
∧

i<k(∀y0(y ∈ Xi → y = 0)) →
∨

i<j<k(xi = xj)).

Note that Γk is not trivial in constructive set theory because we cannot prove for every set
of the form {x ∈ 1 | A} that it equal to 0 = ∅ or 1 = {∅}. For ∆l we can take any of the
equivalent definitions for the statement |P(ℵ0)| < ℵl in ZFC. One possible definition of ∆l

in the language of HAH is the following:

∆l := ∀X 2
0 · · · ∀X 2

l (
∧

i<l+1 is-infinite(Xi) →
∨

i<j<l+1(|Xi| = |Xj |)).

Note that the Xi are of level 2 so in IZF they will be interpreted as elements of P2(ω) which
are subsets of P(ω). So ∆l states that for any l + 1 infinite subsets of P(N) there must be
two that have the same cardinality. This means that we have at most l infinite subsets of
P(N) with distinct cardinalities, in which case we would have ω = ℵ0, . . . , ℵl−1 = P(ω). Here
we make use of the following definitions:

|Xn+1| = |Y n+1| := ∃Zn+1 (∀(x ∈ X) ∃!(y ∈ Y ) (⟨x, y⟩ ∈ Z) ∧
∀(y ∈ Y ) ∃!(x ∈ X) (⟨x, y⟩ ∈ Z)),

is-infinite(Xn+1) := ∃Y n+1 (∃(x ∈ X) (x /∈ Y ) ∧ ∀(y ∈ Y ) (y ∈ X) ∧ |X| = |Y |).

Note that we use Dedekinds definition of infinity because it is easier to state in the language
of HAH. It is equivalent to the usual notion of infinity in ZFC. Now, suppose that we have a
propositional formula A[P0, . . . , Pn−1] that is not provable in intuitionistic logic. Passmann
shows that there are B0, . . . , Bn−1 such that A[B0, . . . , Bn−1] is not provable in IZF. But we
can view B0, . . . , Bn−1 as HAH-formulas and then A[B0, . . . , Bn−1] is certainly not provable
in HAH because we can view HAH as a subtheory of IZF. ◀
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