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Abstract
We study an operator on classes of languages. For each class C, it produces a new class FO2(IC)
associated with a variant of two-variable first-order logic equipped with a signature IC built from C. For
C = {∅, A∗}, we obtain the usual FO2(<) logic, equipped with linear order. For C = {∅, {ε}, A+, A∗},
we get the variant FO2(<, +1), which also includes the successor predicate. If C consists of all Boolean
combinations of languages A∗aA∗, where a is a letter, we get the variant FO2(<, Bet), which includes
“between” relations. We prove a generic algebraic characterization of the classes FO2(IC). It elegantly
generalizes those known for all the cases mentioned above. Moreover, it implies that if C has decidable
separation (plus some standard properties), then FO2(IC) has a decidable membership problem.

We actually work with an equivalent definition of FO2(IC) in terms of unary temporal logic. For
each class C, we consider a variant TL(C) of unary temporal logic whose future/past modalities
depend on C and such that TL(C) = FO2(IC). Finally, we also characterize FL(C) and PL(C), the
pure-future and pure-past restrictions of TL(C). Like for TL(C), these characterizations imply that
if C is a class with decidable separation, then FL(C) and PL(C) have decidable membership.
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1 Introduction

Context. Regular languages of finite words form a robust class: they admit a wide variety
of equivalent definitions, whether by regular expressions, finite automata, finite monoids
or monadic second-order logic. It is therefore natural to study the fragments of regular
languages obtained by restricting the syntax of one of the above-mentioned formalisms. For
each particular fragment, we seek to prove that it has a decidable membership problem: given
a regular language as input, decide whether it belongs to the fragment. Intuitively, doing so
requires a thorough knowledge of the fragment and the languages it can describe.

This approach was initiated by Schützenberger [30] for the class SF of star-free languages.
These are the languages defined by a star-free expression: a regular expression without Kleene
star but with complement instead. Equivalently, these are the languages that can be defined
in first-order logic with the linear order [16] (FO(<)) or in linear temporal logic [11] (LTL).
Schützenberger established an algebraic characterization of SF: a regular language is star-free
if and only if its syntactic monoid is aperiodic. This yields a membership procedure for SF
because the syntactic monoid can be computed and aperiodicity is a decidable property.

Operators. This seminal result prompted researchers to look at other natural classes, spawn-
ing a fruitful line of research (see e.g., [4, 33, 12, 18, 36, 24]). Although there are numerous
classes, they can be grouped into families based on “variants” of the same syntax. Let us
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45:2 A Generic Characterization of Generalized Unary TL and Two-Variable FO

use logic to clarify this point. Each logical fragment can use several signatures (i.e., sets of
predicates allowed in formulas), each giving rise to a class. For instance, first-order logic
is commonly equipped with predicates such as the linear order “<” [16, 30], the succes-
sor “+1” [3] or the modular predicates “MOD” [2]. While it is worth looking at multiple
variants of prominent classes, doing so individually for each of them has an obvious disad-
vantage: the proof has to be systematically modified to accommodate each change. This can
be tedious, difficult, and not necessarily enlightening. To overcome this drawback, a natural
approach is to capture a whole family of variants with an operator. An operator “Op” takes
a class C as input, and outputs a larger one Op(C). Thus, we can study all classes Op(C)
simultaneously: the question becomes: “what hypotheses about C guarantee the decidability
of Op(C)-membership?”. For example, one can generalize the three definitions of star-free
languages through operators:
1. The star-free closure C 7→ SF(C) has been introduced in [31, 34]. Languages in SF(C) are

defined by “extended” star-free expressions, which can freely use languages from C.
2. A construction associating a signature IC to a class C has been given in [23]. For each L ∈ C,

the set IC contains a binary predicate IL(x, y): for a word w and two positions i, j in w,
IL(i, j) holds if and only if i < j and the infix of w between i and j belongs to L. We get
an operator C 7→ FO(IC) based on first-order logic. It captures many choices of signature.

3. Similarly, an operator C 7→ LTL(C) that generalizes LTL has been defined in [28].
It is shown in [23, 28] that SF(C) = FO(IC) = LTL(C) for any class C (with mild hypotheses).
Moreover, a generic algebraic characterization is proved in [25, 28]. Given a regular language L,
it relies on a construction that identifies monoids inside its syntactic monoid, called the
C-orbits: L ∈ SF(C) if and only if its C-orbits are all aperiodic. This elegantly generalizes
Schützenberger’s theorem and gives a transfer theorem for membership. Indeed, the C-orbits
are connected with a decision problem that strengthens membership: C-separation. Given
two input regular languages L1 and L2, C-separation asks whether there is K ∈ C such that
L1 ⊆ K and L2 ∩K = ∅. The crucial point is that C-orbits are computable if C-separation is
decidable. Thus, SF(C)-membership is also decidable in this case. Similar results are known
for other operators such as polynomial closure [23] or its unambiguous restriction [22, 27].

Unary temporal logic and two-variable first-order logic. The operator we investigate
generalizes another important class admitting multiple definitions [35, 6] (see [8, 7] for
extensions). We are interested in two of them. It consists of languages that can be defined in
two-variable first-order logic with the linear order (FO2(<)) or equivalently in unary temporal
logic (TL) with the modalities F (sometimes in the future) and P (sometimes in the past).
Etessami, Vardi and Wilke [9] have shown that FO2(<) = TL. Its algebraic characterization
by Thérien and Wilke [36] is one of the famous results of this type: a regular language belongs
to FO2(<) = TL if and only if its syntactic monoid belongs to the variety of monoids DA.

Both definitions extend to natural operators. First, the generic signatures IC yield an
operator C 7→ FO2(IC) based on FO2. Second, an operator C 7→ TL(C) has been defined in [27].
It enriches TL with new modalities FL and PL, both depending on the languages L ∈ C. For
example, the formula FL φ holds at a position i in a word w if there is a position j > i in w such
that φ holds at j and the infix between i and j belongs to L. We know that FO2(IC) = TL(C)
when C is closed under Boolean operations [27]. Here, we work with the TL(·) operator, which
encompasses all classic classes based on two-variable first-order logic or unary temporal logic.
This includes the original variants FO2(<) = TL and FO2(<,+1) = TLX, both of which were
studied by Thérien and Wilke [36] (here, “+1” is the successor predicate and TLX is defined
by enriching TL with “next” and “yesterday” modalities). Another example is the variant
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FO2(<,MOD) endowed with modular predicates, investigated by Dartois and Paperman [5].
Finally, we capture the variant FO2(<,Bet) = BInvTL equipped with “between” relations,
defined and characterized by Krebs, Lodaya, Pandya and Straubing [13, 14, 15].

Contributions. We prove a generic algebraic characterization of the classes FO2(IC) = TL(C).
We reuse the C-orbits introduced for star-free closure: for any class C (having mild properties)
we show that a regular language belongs to TL(C) if and only if all C-orbits of its syntactic
monoid belong to DA. In particular, this yields a transfer theorem for membership: if C
has decidable separation, then FO2(IC) = TL(C) has decidable membership. Moreover, this
characterization generalizes the characterizations known for all the above instances.

A key feature of our proof is that we use a third auxiliary operator. It combines two other
operators: Boolean polynomial closure (BPol) and unambiguous polynomial closure (UPol).
We have UPol(BPol(C)) ⊆ TL(C) if C has mild properties [27]. In fact, for many natural
classes, UPol(BPol(C)) = TL(C). For example, UPol(BPol({∅, A∗})) is the class UL of unam-
biguous languages defined by Schützenberger [32]. It is known [36] that UL = TL = FO2(<).
More generally, UPol(BPol(C)) = TL(C) for every class C consisting of group languages [27].
Yet, this is a strong hypothesis and the inclusion UPol(BPol(C)) ⊆ TL(C) is strict in general.
For example, the results of [15] imply that UPol(BPol(AT)) ̸= TL(AT), where AT consists
of all Boolean combinations of languages A∗aA∗ (with a ∈ A). Nevertheless, the classes
UPol(BPol(C)) serve as a central ingredient in the most difficult direction of our proof: “If
a language satisfies our characterization on C-orbits, prove that it belongs to TL(C)”. More
precisely, we exploit the known characterization of UPol(BPol(C)) to prove that auxiliary lan-
guages belong to this class, and we then conclude using the inclusion UPol(BPol(C)) ⊆ TL(C).

Finally, we look at two additional operators: C 7→ FL(C) and C 7→ PL(C). They are also
defined in terms of unary temporal logic, as the pure-future and the pure-past restrictions of
C 7→ TL(C). We present generic algebraic characterizations for these two operators as well.
Again, they are based on C-orbits. For every class C (with mild hypotheses), we show that
a regular language belongs to FL(C) (resp. PL(C)) if and only if all the C-orbits inside its
syntactic monoid are L-trivial (resp. R-trivial) monoids. As before, these results yield transfer
theorems: if C has decidable separation, then FL(C) and PL(C) have decidable membership.

Organization of the paper. We recall the notation and background in Section 2. In Section 3,
we present the C-orbits and their properties. In Section 4, we define the operator C 7→ TL(C).
Section 5 is devoted to the generic characterization of TL(C) and to its proof. In Section 6,
finally, we state the characterizations of the pure-future and pure-past restrictions of TL(C).

2 Preliminaries

We fix a finite alphabet A for the paper. As usual, A∗ denotes the set of all finite words
over A, including the empty word ε. A language is a subset of A∗. We let A+ = A∗ \ {ε}.
For u, v ∈ A∗, we write uv for the word obtained by concatenating u and v. We lift the
concatenation to languages as follows: if K,L ⊆ A∗, we let KL = {uv | u ∈ K, v ∈ L}.
If w ∈ A∗, we write |w| ∈ N for its length. A word w = a1 · · · a|w| ∈ A∗ is viewed as
an ordered set Pos(w) = {0, 1, . . . , |w|, |w| + 1} of |w| + 2 positions. In addition, we let
Posc(w) = {1, . . . , |w|} ⊊ Pos(w). Position i ∈ Posc(w) carries label ai ∈ A, which we write
w[i] = ai. On the other hand, positions 0 and |w| + 1 carry no label. We write w[0] = min

and w[|w| + 1] = max. For v, w ∈ A∗, we say that v is an infix (resp. prefix, suffix) of w
when there exist x, y ∈ A∗ such that w = xvy (resp. w = vy, w = xv). Given a word
w = a1 · · · a|w| ∈ A∗ and i, j ∈ Pos(w) such that i < j, we write w(i, j) = ai+1 · · · aj−1 ∈ A∗

(i.e., the infix obtained by keeping the letters carried by positions strictly between i and j).

CSL 2024
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Classes. A class of languages C is simply a set of languages. Such a class C is a lattice when
∅ ∈ C, A∗ ∈ C and C is closed under both union and intersection: for all K,L ∈ C, we have
K ∪ L ∈ C and K ∩ L ∈ C. Moreover, a class of languages C is a Boolean algebra if it is a
lattice closed under complement: for all L ∈ C, we have A∗ \ L ∈ C. Finally, the class C is
closed under quotients if for all L ∈ C and u ∈ A∗, we have u−1L

def= {w ∈ A∗ | uw ∈ L} ∈ C
and Lu−1 def= {w ∈ A∗ | wu ∈ L} ∈ C. A prevariety is a Boolean algebra closed under
quotients and containing only regular languages. Regular languages are those which can be
equivalently defined by finite automata, finite monoids or monadic second-order logic. We
work with the definition by monoids, which we now recall.

Monoids. A monoid is a set M endowed with an associative multiplication (s, t) 7→ st

having an identity element 1M (i.e., such that 1Ms = s1M = s for every s ∈ M). An
idempotent of a monoid M is an element e ∈ M such that ee = e. We write E(M) ⊆ M for
the set of all idempotents in M . It is folklore that for every finite monoid M , there exists a
natural number ω(M) (denoted by ω when M is understood) such that for every s ∈ M , the
element sω is an idempotent. Finally, we shall use the following Green relations [10] defined
on monoids. Given a monoid M and s, t ∈ M , we write:

s ⩽J t when there exist x, y ∈ M such that s = xty,

s ⩽L t when there exists x ∈ M such that s = xt,

s ⩽R t when there exists y ∈ M such that s = ty.

Clearly, ⩽J, ⩽L and ⩽R are preorders (i.e., they are reflexive and transitive). We write <J,
<L and <R for their strict variants (for example, s <J t when s ⩽J t but t ̸⩽J s). Finally, we
write J, L and R for the corresponding equivalence relations (for example, s J t when s ⩽J t

and t ⩽J s). There are many technical results about Green relations. We will just need the
following easy and standard lemma, which applies to finite monoids (see e.g., [17, 20]).

▶ Lemma 1. Let M be a finite monoid and let s, t ∈ M . If s J t and s ⩽R t, then s R t.

Regular languages and syntactic morphisms. Since A∗ is a monoid whose multiplication is
concatenation (the identity element is ε), we may consider monoid morphisms α : A∗ → M

where M is an arbitrary monoid. That is, α : A∗ → M is a map satisfying α(ε) = 1M and
α(uv) = α(u)α(v) for all u, v ∈ A∗. We say that a language L ⊆ A∗ is recognized by α when
there exists a set F ⊆ M such that L = α−1(F ).

It is well known that regular languages are exactly those recognized by a morphism into a
finite monoid. Moreover, every language L is recognized by a canonical morphism, which we
briefly recall. One can associate to L an equivalence ≡L over A∗: the syntactic congruence
of L. Given u, v ∈ A∗, we let u ≡L v if and only if xuy ∈ L ⇔ xvy ∈ L for every x, y ∈ A∗.
One can check that “≡L” is indeed a congruence on A∗: it is an equivalence compatible with
word concatenation. Thus, the set of equivalence classes ML = A∗/≡L is a monoid. It is
called the syntactic monoid of L. Finally, the map αL : A∗ → ML sending every word to
its equivalence class is a morphism recognizing L, called the syntactic morphism of L. It
is known that a language L is regular if and only if ML is finite (i.e., ≡L has finite index):
this is the Myhill-Nerode theorem. In this case, one can compute the syntactic morphism
αL : A∗ → ML from any representation of L (such as an automaton or a monoid morphism).

Decision problems. We consider two decision problems, both depending on an arbitrary
class C. They serve as mathematical tools for analyzing it, as obtaining an algorithm for one
of these problems requires a solid understanding of that class C. The C-membership problem
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is the simplest: it takes as input a single regular language L and simply asks whether L ∈ C.
The second problem, C-separation, is more general. Given three languages K,L1, L2, we say
that K separates L1 from L2 if L1 ⊆ K and L2 ∩K = ∅. Given a class C, we say that L1 is
C-separable from L2 if some language of C separates L1 from L2. The C-separation problem
takes as input two regular languages L1, L2 and asks whether L1 is C-separable from L2.

▶ Remark 2. The C-separation problem generalizes C-membership. Indeed, a regular language
belongs to C if and only if it is C-separable from its complement, which is regular.

3 Orbits

Instead of looking at single classes, we consider operators. These are correspondences
C 7→ Op(C) that take as input a class C to build a new one Op(C). We investigate three
operators in Sections 4 to 6. For now, we present general tools for handling such operators.
Given a class C and a morphism α : A∗ → M , we define special subsets ofM : the C-orbits for α.
This notion was introduced in [28]. We shall use it to formulate generic characterizations
of the operators C 7→ Op(C) that we consider: for each input prevariety C, the languages in
Op(C) are characterized by a property of the C-orbits for their syntactic morphisms.

C-pairs. Consider a class C and a morphism α : A∗ → M . We say that a pair (s, t) ∈ M2 is
a C-pair for α if and only if α−1(s) is not C-separable from α−1(t). Note that if C-separation
is decidable, then one can compute all C-pairs for an input morphism.

We turn to a useful technical result, which characterizes the C-pairs using morphisms.
Consider two morphisms α : A∗ → M and η : A∗ → N . For every pair (s, t) ∈ M2, we say
that (s, t) is an η-pair for α when there exist u, v ∈ A∗ such that η(u) = η(v), α(u) = s

and α(v) = t. In addition, for each class C, we define the C-morphisms as the surjective
morphisms η : A∗ → N into a finite monoid N such that all languages recognized by η belong
to C. We have the following elementary lemma, proved in [27, Lemma 5.11].

▶ Lemma 3. Let C be a prevariety and α : A∗ → M be a morphism. Then,
1. For every C-morphism η : A∗ → N , all C-pairs for α are also η-pairs for α.
2. There exists a C-morphism η : A∗ → N such that all η-pairs for α are also C-pairs for α.

C-orbits. Consider a class C and a morphism α : A∗ → M . For every idempotent e ∈ E(M),
the C-orbit of e for α is the set Me ⊆ M consisting of all elements ete ∈ M such that
(e, t) ∈ M2 is a C-pair. If C is a prevariety and α is surjective, it is proved in [28, Lemma 5.5]
that Me is a monoid in M : it is closed under multiplication and e ∈ Me is its identity. On
the other hand, Me is not a “submonoid” of M (this is because 1M needs not belong to Me).

▶ Lemma 4. Let C be a prevariety and α : A∗ → M be a surjective morphism into a finite
monoid. For all e ∈ E(M), the C-orbit of e for α is a monoid in M whose identity is e.

As seen above, when C has decidable separation, one can compute the C-pairs associated
with an input morphism. Hence, one can also compute the C-orbits in this case.

▶ Lemma 5. Let C be a class with decidable separation. Given as input a morphism
α : A∗ → M into a finite monoid and e ∈ E(M), one can compute the C-orbit of e for α.

Finally, the following lemma connects C-orbits with C-morphisms.

CSL 2024
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▶ Lemma 6. Let C be a prevariety and α : A∗ → M be a morphism. Moreover, let η : A∗ → N

be a C-morphism. For every e ∈ E(M), there exists f ∈ E(N) such that the C-orbit of e
for α is contained in the set α(η−1(f)).

Proof. Let t1, . . . , tn ∈ M be all elements of the set {t ∈ M | (e, t) is a C-pair}. By definition,
the C-orbit of e for α is Me = {et1e, . . . , etne}. Since η is a C-morphism, Lemma 3 implies
that (e, ti) is an η-pair for all i ≤ n. This yields xi, yi ∈ A∗ such that η(xi) = η(yi),
α(xi) = e and α(yi) = ti. Let p = ω(N), w = (x1 · · ·xn)p and f = η(w). Note that f
is idempotent by choice of p. We show that etie ∈ α(η−1(f)) for i ≤ n. We define
wi = (x1 · · ·xn)px1 · · ·xi−1yixi+1 · · ·xn(x1 · · ·xn)2p−1. By definition, we have α(wi) = etie.
Now, since η(xi) = η(yi), we get η(wi) = η(w) = f . Hence, etie ∈ α(η−1(f)), as desired. ◀

4 Generalized unary temporal logic

In this section, we define generalized unary temporal logic. We introduce an operator
C 7→ TL(C) that associates a new class of languages TL(C) with every input class C. We first
recall its definition (taken from [27]), and we then complete it with useful properties.

4.1 Definition
Syntax. We associate with any class C a set of temporal formulas denoted by TL[C] as follows.
A TL[C] formula is built from atomic formulas using Boolean connectives and temporal
operators. The atomic formulas are ⊤, ⊥, min, max and “a” for every letter a ∈ A. All
Boolean connectives are allowed: if ψ1 and ψ2 are TL[C] formulas, then so are (ψ1 ∨ ψ2),
(ψ1 ∧ψ2) and (¬ψ1). We associate two temporal modalities with every language L ∈ C, which
we denote by FL and PL: if ψ is a TL[C] formula, then so are (FL ψ) and (PL ψ). For the
sake of improved readability, we omit parentheses when there is no ambiguity.

Semantics. Evaluating a TL[C] formula φ requires a word w ∈ A∗ and a position i ∈ Pos(w).
We define by induction what it means for (w, i) to satisfy φ, which one denotes by w, i |= φ.

Atomic formulas: w, i |= ⊤ always holds, w, i |= ⊥ never holds and for every symbol
ℓ ∈ A ∪ {min,max}, w, i |= ℓ holds when ℓ = w[i].
Disjunction: w, i |= ψ1 ∨ ψ2 when w, i |= ψ1 or w, i |= ψ2.
Conjunction: w, i |= ψ1 ∧ ψ2 when w, i |= ψ1 and w, i |= ψ2.
Negation: w, i |= ¬ψ when w, i |= ψ does not hold.
Finally: for L ∈ C, we let w, i |= FL ψ when there exists j ∈ Pos(w) such that i < j,
w(i, j) ∈ L and w, j |= ψ.
Previously: for L ∈ C, we let w, i |= PL ψ when there exists j ∈ Pos(w) such that j < i,
w(j, i) ∈ L and w, j |= ψ.

When no distinguished position is specified, it is customary to evaluate formulas at the leftmost
unlabeled position. One could also consider the symmetrical convention of evaluating formulas
at the rightmost unlabeled position. The convention chosen does not matter: we end-up with
the same class of languages. However, we shall consider restrictions of TL[C] for which this
choice does matter. This is why we introduce notations for both conventions. Given a formula
φ ∈ TL[C] we let Lmin(φ) = {w ∈ A∗ | w, 0 |= φ} and Lmax(φ) = {w ∈ A∗ | w, |w| + 1 |= φ}.

We are now ready to define the operator C 7→ TL(C). Consider an arbitrary class C. We
write TL(C) for the class consisting of all languages Lmin(φ) where φ ∈ TL[C]. Observe that
by definition, TL(C) is a Boolean algebra. Actually, the results of [27] imply that when C is
a prevariety, then so is TL(C) (we do not need this fact in the present paper).
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Classic unary temporal logic. Let ST = {∅, A∗} and DD = {∅, {ε}, A+, A∗}. The modalities
FA∗ and PA∗ have the same semantics as the modalities F and P of standard unary temporal
logic – e.g., w, i |= Fφ when there exists j ∈ Pos(w) such that i < j and w, j |= φ. Similarly,
the modalities F{ε} and P{ε} have the same semantics as the modalities X (next) and Y
(yesterday) – e.g., w, i |= Xφ when i+1 ∈ Pos(w) and w, i+1 |= φ. Using these facts, one can
check that the classes TL(ST) and TL(DD) correspond exactly to the two original standard
variants of unary temporal logic (see e.g., [9]): we have TL = TL(ST) and TLX = TL(DD).

▶ Remark 7 (Robustness of classes to which TL is applied). Note that including ∅ in an input
class does not bring any new modality in unary temporal logic. Similarly, the classes TL(DD)
and TL(DD \ {A+}) are identical. However, in order to use generic results such as those from
Section 3, we require the classes to which the operator C 7→ TL(C) is applied to have robust
properties: they should be prevarieties (hence, they should be closed under complement).

▶ Remark 8 (Connection with FO2). Etessami, Vardi and Wilke [9] have shown that the
variant TL corresponds to the class FO2(<) (two-variable first-order logic equipped with the
linear order), and that TLX corresponds to FO2(<,+1) (which also allows the successor).
In [27], these results are generalized to all classes TL(C) where C is a Boolean algebra. In
this case, we can construct from C a set of predicates IC such that TL(C) = FO2(IC).

▶ Remark 9. Another important input is the class AT of alphabet testable languages. It
consists of all Boolean combinations of languages A∗aA∗, where a ∈ A is a letter. The class
TL(AT) has been studied by Krebs, Lodaya, Pandya and Straubing [13, 14, 15], who worked
with the definition based on two-variable first-order logic (i.e., with the class FO2(IAT), see
Remark 8). In particular, they proved that TL(AT) has decidable membership. We shall
obtain this result as a corollary of our generic characterization of the classes TL(C).

4.2 Connection with unambiguous polynomial closure
It is shown in [27] that C 7→ TL(C) can be expressed by other operators for very specific
inputs: prevarieties of group languages. If G is such a class, then TL(G) coincides with
UPol(BPol(G)), a class built on top of G with the two standard operators UPol and BPol. We
do not use this result here, since we are tackling arbitrary input prevarieties, and in general,
UPol(BPol(C)) is strictly included in TL(C) (it follows from [15] that the inclusion is strict
for the class AT of Remark 9). However, the operators UPol and BPol remain key tools in
the paper: we use two results of [27] about them. Let us first briefly recall their definitions.

Given finitely many languages L0, . . . , Ln ⊆ A∗, a marked product of L0, . . . , Ln is
a product of the form L0a1L1 · · · anLn where a1, . . . , an ∈ A. A single language L0 is a
marked product (this is the case n = 0). The polynomial closure of a class C, denoted by Pol(C),
consists of all finite unions of marked products L0a1L1 · · · anLn such that L0, . . . , Ln ∈ C.
If C is a prevariety, then Pol(C) is a lattice (this is due to Arfi [1], see also [19, 23] for recent
proofs). However, Pol(C) need not be closed under complement. This is why it is often
combined with another operator: the Boolean closure of a class D, denoted by Bool(D), is
the least Boolean algebra containing D. We write BPol(C) for Bool(Pol(C)). It is standard
that if C is a prevariety, then so is BPol(C) (see [23] for example). Finally, UPol is the
unambiguous restriction of Pol. A marked product L0a1L1 · · · anLn is unambiguous when
every word w ∈ L0a1L1 · · · anLn has a unique decomposition w = w0a1w1 · · · anwn where
wi ∈ Li for 0 ≤ i ≤ n. The unambiguous polynomial closure of a class C, written UPol(C),
consists of all finite disjoint unions of unambiguous marked products L0a1L1 · · · anLn such
that L0, . . . , Ln ∈ C (by “disjoint” we mean that the languages in the union must be pairwise
disjoint). While this is not apparent on the definition, it is known [27] that if the input
class C is a prevariety, then so is UPol(C). Thus, UPol preserves closure under complement.
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In the paper, we are interested in the “combined” operator C 7→ UPol(BPol(C)). Indeed, it
is connected to the classes TL(C) by the following proposition proved in [27, Proposition 9.12].

▶ Proposition 10. For every prevariety C, we have UPol(BPol(C)) ⊆ TL(C).

Although the inclusion of Proposition 10 is strict in general, it is essential for proving that
particular languages belong to TL(C). Indeed, we will combine it with the next result [27,
Theorem 6.7] to prove that languages belong to UPol(BPol(C)) – and therefore to TL(C).

▶ Theorem 11. Let C be a prevariety, L ⊆ A∗ be a regular language and α : A∗ → M be its
syntactic morphism. Then, L ∈ UPol(BPol(C)) if and only if α satisfies the following property:

(esete)ω+1 = (esete)ωete(esete)ω for every C-pair (e, s) ∈ M2 and every t ∈ M. (1)

5 Algebraic characterization of TL(C)

We present a generic characterization of TL(C) when C is a prevariety. It elegantly generalizes
the characterizations of TL = FO2(<) and TLX = FO2(<,+1) by Thérien and Wilke [36]
and that of TL(AT) = FO2(IAT) by Krebs, Lodaya, Pandya and Straubing [13, 14, 15].

5.1 Statement
The characterization is based on the well-known variety of finite monoids DA (see [35] for a
survey on this class). A finite monoid M belongs to DA if it satisfies the following equation:

(st)ω = (st)ωt(st)ω for every s, t ∈ M. (2)

Thérien and Wilke [36] showed that a regular language belongs to TL if and only if its
syntactic monoid is in DA (strictly speaking, they considered two-variable first-order logic,
the equality FO2(<) = TL is due to Etessami, Vardi and Wilke [9]). We extend this result
in the following generic characterization of TL(C), based on C-orbits introduced in Section 3.

▶ Theorem 12. Let C be a prevariety, L ⊆ A∗ be a regular language and α : A∗ → M be its
syntactic morphism. The two following properties are equivalent:
1. L ∈ TL(C).
2. For every idempotent e ∈ E(M), the C-orbit of e for α belongs to DA.

Given as input a regular language L ⊆ A∗, one can compute its syntactic morphism
α : A∗ → M . In view of Theorem 12, L ∈ TL(C) if and only if for every e ∈ E(M), the
C-orbit of e for α belongs to DA. The latter condition can be decided by checking all C-orbits,
provided that we are able to compute them. By Lemma 5, this is possible when C-separation
is decidable. Altogether, we obtain the following corollary of Theorem 12.

▶ Corollary 13. If a prevariety C has decidable separation, TL(C) has decidable membership.
▶ Remark 14. Let L ⊆ A∗ be a regular language and α : A∗ → M be its syntactic morphism.
The fact that the C-orbit of e ∈ E(M) for α belongs to DA means that we have,

(esete)ω = (esete)ωete(esete)ω for all s, t ∈ M such that (e, s) and (e, t) are C-pairs. (3)

One can check that (3) follows from (1), which characterizes UPol(BPol(C)) (this is consistent
with Proposition 10 asserting that UPol(BPol(C)) ⊆ TL(C)). Indeed, choosing t = s in (1)
shows that the C-orbit of e is aperiodic, i.e., (ese)ω+1 = (ese)ω if (e, s) is a C-pair. However,
note that the element t is “free” in (1), whereas it must be part of a C-pair (e, t) in (3).

Before proving Theorem 12, we first explain why it generalizes the original characteriza-
tions of the classes TL, TLX and TL(AT), as mentioned at the beginning of the section.
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5.2 Application to historical classes
We first deduce the original characterizations of the classes TL = TL(ST) and TLX = TL(DD)
by Thérien and Wilke [36] as simple corollaries of Theorem 12. We start with the former.

▶ Theorem 15 (Thérien and Wilke [36]). Let L ⊆ A∗ be a regular language and let M be its
syntactic monoid. The two following properties are equivalent:
1. L belongs to TL.
2. M belongs to DA.

Proof. Let α : A∗ → M be the syntactic morphism of L. Since TL = TL(ST), Theorem 12
implies that L ∈ TL if and only if every ST-orbit for α belongs to DA. Since ST = {∅, A∗},
every pair (e, s) ∈ E(M) ×M is a C-pair, so that the ST-orbit of e ∈ E(M) for α is eMe. In
particular the ST-orbit of 1M is the whole monoid M . Hence, every ST-orbit for α belongs
to DA if and only if M belongs to DA, which completes the proof. ◀

We turn to the characterization of TLX = TL(DD), also due to Thérien and Wilke [36].
In order to state it, we need an additional definition. Consider a regular language L and let
α : A∗ → M be its syntactic morphism. The syntactic semigroup of L is the set S = α(A+).
Note that for every idempotent e ∈ E(S), the set eSe is a monoid whose neutral element is e.

▶ Theorem 16 (Thérien and Wilke [36]). Let L ⊆ A∗ be a regular language and S be its
syntactic semigroup. The two following properties are equivalent:
1. L belongs to TLX.
2. For every e ∈ E(S), the monoid eSe belongs to DA.

Proof. Let α : A∗ → M be the syntactic morphism of L. For e ∈ E(M), let Me ⊆ M be the
DD-orbit of e for α. Since DD = {∅, {ε}, A+, A∗}, for (e, s) ∈ E(S) ×S, the language α−1(e)
is not DD-separable from α−1(s). Hence, (e, s) is a C-pair, so that Me = eSe for all e ∈ E(S).
Moreover, if 1M ̸∈ E(S) (which means that α−1(1M ) = {ε}), then we have M1M

= {1M }
(which clearly belongs to DA). Hence, every DD-orbit for α belongs to DA if and only if
eSe ∈ DA for every e ∈ E(S). In view of Theorem 12, this implies Theorem 16. ◀

Finally, we consider the class TL(AT), defined and characterized by Krebs, Lodaya, Pandya
and Straubing [13, 14, 15]. Let us first present their characterization. It is based on a variety
of finite monoids called MeDA. Let M be a finite monoid. For each e ∈ E(M), let Ne ⊆ M

be the submonoid of M generated by the set {s ∈ M | e ⩽J s}. We say that M belongs to
MeDA if and only if for every idempotent e ∈ E(M), the monoid of eNee belongs to DA.

▶ Theorem 17 (Krebs, Lodaya, Pandya and Straubing [15]). Let L ⊆ A∗ be a regular language
and M be its syntactic monoid. The two following properties are equivalent:
1. L ∈ TL(AT).
2. M belongs to MeDA.

Proof. For w ∈ A∗, let alph(w) ⊆ A be the set of letters occurring in w (i.e., the least set
B ⊆ A such that w ∈ B∗). For e ∈ E(M), let Me be the AT-orbit of e for α. We prove that
Me = eNee for every e ∈ E(M). It will follows that M belongs to MeDA if and only if every
AT-orbit for α belongs to DA. In view of Theorem 12 this implies Theorem 17.

We first consider s′ ∈ eNee and prove that s′ ∈ Me. We have s ∈ Ne such that s′ = ese.
By definition, s = s1 · · · sn where e ⩽J si for every i ≤ n. If n = 0, then s = 1M and
ese = e ∈ Me. Assume now that we have n ≥ 1. Since e ⩽J si, we have qi, ri ∈ M such that
e = qisiri for every i ≤ n. Hence, since e ∈ E(M), we have e = q1s1r1 · · · qnsnrn. For every
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i ≤ n, let xi ∈ α−1(qi), yi ∈ α−1(ri) and ui ∈ α−1(si). Finally, let w = x1u1y1 · · ·xnunyn

and w′ = wu1 · · ·unw. By definition, we have e = α(w) and ese = α(w′). Moreover, it is
clear that alph(w) = alph(w′). By definition of AT, it follows that α−1(e) is not AT-separable
from α−1(ese). Thus, (e, ese) is an AT-pair for α, which yields s′ = ese ∈ Me, as desired.

Conversely, let s′ ∈ Me. By definition, there exists an AT-pair (e, s) ∈ M2 with
e ∈ E(M) such that s′ = ese. Therefore, by definition of AT, there exist u, v ∈ A∗ such
that alph(u) = alph(v), α(u) = e and α(v) = s. Let a1 . . . , an ∈ A be the letters such
that v = a1 · · · an. Since alph(u) = alph(v), it is immediate that for each i ≤ n, there
are xi, yi ∈ A∗ such that u = xiaiyi. Hence e = α(u) ⩽J α(ai) and we conclude that
s = α(a1 · · · an) ∈ Ne. Consequently, s′ = ese ∈ eNee, as desired. ◀

5.3 Proof of Theorem 12
We fix a prevariety C, a regular language L ⊆ A∗ and its syntactic morphism α : A∗ → M

for the proof. We prove that L ∈ TL(C) if and only if all C-orbits for α belong to DA. We
start with the left-to-right implication.

From TL(C) to DA. This direction follows from results of [27]. To use them, we need some
preliminary terminology. We introduce equivalence relations connected to the class TL(C)
when C is a prevariety. Given a morphism η : A∗ → N into a finite monoid N , denote by Cη

be the class of all languages recognized by η. The following fact is easy (see [27, Fact 9.3]).

▶ Fact 18. Let C be a prevariety. For every TL[C] formula φ, there exists a C-morphism
η : A∗ → N such that φ is a TL[Cη] formula.

We use the standard notion of rank of a TL[Cη] formula: the rank of φ is defined as the
length of the longest sequence of nested temporal operators within its parse tree. Formally:

Any atomic formula has rank 0.
The rank of ¬φ is the same as the rank of φ.
The rank of φ ∨ ψ and φ ∧ ψ is the maximum between the ranks of φ and ψ.
For every language L ⊆ A∗, the rank of FL φ and PL φ is the rank of φ plus 1.

Two TL[Cη] formulas φ and ψ are equivalent if they have the same semantics. That is,
for every w ∈ A∗ and every position i ∈ Pos(w), we have w, i |= φ ⇔ w, i |= ψ. The following
key lemma is immediate from a simple induction on the rank of TL formulas.

▶ Lemma 19. Let η : A∗ → N be a morphism into a finite monoid and let k ∈ N. There are
only finitely many non-equivalent TL[Cη] formulas of rank at most k.

We now define equivalence relations. Let η : A∗ → N be a morphism into a finite monoid
and let k ∈ N. Given w,w′ ∈ A∗, i ∈ Pos(w) and i′ ∈ Pos(w′), we write, w, i ∼=η,k w

′, i′ when:

For every TL[Cη] formula φ of rank at most k, w, i |= φ ⇐⇒ w′, i′ |= φ.

It is straightforward that ∼=η,k is an equivalence relation. Moreover, it is immediate from
the definition and Lemma 19, that ∼=η,k has finite index. We lift each relation ∼=η,k to A∗

(abusing terminology, we also denote by ∼=η,k the new relation): given w,w′ ∈ A∗, we write
w ∼=η,k w′ when w, 0 ∼=η,k w′, 0. Clearly, ∼=η,k is an equivalence relation of finite index
over A∗. Moreover, we have the following connection between TL(C) and the relations ∼=η,k.

▶ Lemma 20. Let C be a prevariety and L ⊆ A∗. If L ∈ TL(C), then there exists a
C-morphism η : A∗ → N and k ∈ N such that L is a union of ∼=η,k-classes.
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Proof. Let L ∈ TL(C). There exists a TL[C] formula φ such that w ∈ L ⇔ w, 0 |= φ for all
w ∈ A∗. By Fact 18, there exists a C-morphism η : A∗ → N such that φ is a TL[Cη] formula.
Let k ∈ N be the rank of φ. We prove that L is a union of ∼=η,k-classes. Given w,w′ ∈ A∗

such that w ∼=η,k w
′, we have to prove that w ∈ L ⇔ w′ ∈ L. By symmetry, we only prove

the left to right implication. Thus, we assume that w ∈ L. By definition of φ, it follows that
w, 0 |= φ. Moreover, since w ∼=η,k w

′ (i.e., w, 0 ∼=η,k w
′, 0) and φ is a TL[Cη] formula of rank

k, we have w′, 0 |= φ by definition of ∼=η,k. Hence, w′ ∈ L by definition of φ, as desired. ◀

In addition to the link stated in Lemma 20 between TL(C) and the equivalence relations
∼=η,k, we use a property of ∼=η,k that follows from [27, Lemma 9.6 and Proposition 9.7].

▶ Proposition 21. Consider a morphism η : A∗ → N into a finite monoid, let f ∈ E(N) be
an idempotent, let u, v, z ∈ η−1(f) and let x, y ∈ A∗. For every k ∈ N, we have:

x(zkuz2kvzk)k(zkuz2kvzk)ky ∼=η,k x(zkuz2kvzk)kzkvzk(zkuz2kvzk)ky.

We are ready to conclude this direction of the proof: assuming that L ∈ TL(C), we show
that all C-orbits for its syntactic monoid belong to DA. Let e ∈ E(M) and Me be its C-orbit.
Proving that Me ∈ DA amounts to proving that any elements s, t ∈ Me satisfy (2). Fix
e, s, t ∈ E(M) ×Me ×Me. Lemma 20 yields a C-morphism η : A∗ → N and k ∈ N such that
L is a union of ∼=η,k-classes. Since η is a C-morphism, Lemma 6 yields f ∈ E(N) such that
Me ⊆ α(η−1(f)). Since e, s, t ∈ Me, we get z, u, v ∈ A∗ such that z, u, v ∈ η−1(f), α(z) = e,
α(u) = s and α(v) = t. Let x, y ∈ A∗ be two arbitrary words. By Proposition 21, we obtain,

x(zkuz2kvzk)k(zkuz2kvzk)ky ∼=η,k x(zkuz2kvzk)kzkvzk(zkuz2kvzk)ky.

Since L is a union of ∼=η,k-classes, the words (zkuzkvzk)2k and (zkuzkvzk)kzkvzk(zkuzkvzk)k

are equivalent for the syntactic congruence of L, so they have the same image under its
syntactic morphism α. Since e ∈ E(M), this yields (esete)2k = (esete)kete(esete)k. Hence,
(st)2k = (st)kt(st)k since e, s, t ∈ Me and e is neutral in Me by Lemma 4. It now suffices to
multiply by enough copies of st on both sides to get (st)ω = (st)ωt(st)ω. Therefore, (2) holds.

From DA to TL(C). Assuming that every C-orbit for the syntactic morphism α : A∗ → M

of L belongs to DA, we have to show that L ∈ TL(C), i.e., to build a TL[C] formula defining L.
Let us start by giving a high-level overview of the proof for this direction.

Since TL(C) is closed under union, it suffices to prove that for all s ∈ M , the language
α−1(s) is in TL(C). We achieve this by inductively constructing a TL[C] formula defining
α−1(s). According to Lemma 3, there exists a C-morphism η : A∗ → N such that the C-pairs
for α are exactly the η-pairs for α. We use η to leverage the assumption that all C-orbits for
α belong to DA. More precisely, η recognizes all the basic languages in C that we shall use
in our TL[C] formulas. The induction proceeds as follows: using η, we define a sequence of
languages K0 ⊇ K1 ⊇ · · · ⊇ K|N | and show by induction on |N | − ℓ that Kℓ ∩ α−1(s) can be
defined by a TL[C] formula for each ℓ ≤ |N |. The induction basis is the case ℓ = |N |, which
is simple because K|N | is a finite language. Furthermore, the case ℓ = 0 gives the desired
result since K0 contains all words. The induction step consists in building a TL[C] formula
describing Kℓ ∩α−1(s) from several TL[C] formulas that describe the languages Kℓ+1 ∩α−1(t)
for all t ∈ M . However, the actual argument is slightly more involved. Indeed, in order to
perform the induction step, we must abstract each word in Kℓ ∩ α−1(s) by considering a
specific decomposition of this word and viewing each infix as a new letter. We then argue
that the resulting word belongs to Kℓ+1 ∩ α−1(s), which allows us to apply induction. Yet,
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for this process to work, the letter that we use to abstract an infix must have the same images
as this original infix under both α and η. This is problematic, because such a letter does
not necessarily exist. We solve this issue by considering an extended alphabet B, replacing
α : A∗ → M and η : A∗ → N with two new morphisms β : B∗ → M and δ : B∗ → N

that have the required property. Of course, this involves some preliminary work: we must
reformulate both our objective (proving that all languages α−1(s) can be defined in TL(C))
and our hypothesis (that every C-orbit for α belongs to DA) on the new morphisms β and η.

We now start the proof by first defining β and δ. Recall that η : A∗ → N is the C-
morphism provided by Lemma 3: it is such that the C-pairs for α are exactly the η-pairs
for α. We fix η for the entire proof. We define an auxiliary alphabet B. Let P ⊆ M ×N be
the set of all pairs (α(w), η(w)) ∈ M ×N where w ∈ A+ is a nonempty word. For each pair
(s, r) ∈ P , we create a fresh letter bs,r ̸∈ A and we define B = {bs,r | (s, r) ∈ P}.

Let β : B∗ → M and δ : B∗ → N be the morphisms defined by β(bs,r) = s and δ(bs,r) = r

for (s, r) ∈ P . By definition, we have (β(w), δ(w)) ∈ P for all w ∈ B+. Let Cδ be the class of
all languages over B recognized by δ. One can check that Cδ is a prevariety. We now reduce
membership of inverse images under α to TL(C) to that of inverse images under β to TL(Cδ).

▶ Lemma 22. For every F ⊆ M , if β−1(F ) ∈ TL(Cδ), then α−1(F ) ∈ TL(C).

Proof. We first define a morphism γ : A∗ → B∗. Consider a letter a ∈ A. By definition,
(α(a), η(a)) ∈ P . Hence, we may define γ(a) = bα(a),η(a) ∈ B. By definition, we have
α(w) = β(γ(w)) ∈ M and η(w) = δ(γ(w)) for every w ∈ A∗. It follows that for every F ⊆ M ,
we have α−1(F ) = γ−1(β−1(F )) ⊆ A∗. Consequently, it now suffices to prove that for every
K ⊆ B∗ such that K ∈ TL(Cδ), we have γ−1(K) ∈ TL(C). We fix K for the proof. Since
K ∈ TL(Cδ), it is defined by a formula ψ ∈ TL[Cδ]. We apply two kinds of modifications to
ψ in order to build a new formula ψ′ ∈ TL[C] defining γ−1(K):
1. We replace every atomic subformula “b” for b ∈ B by the TL[C]-formula

∨
{a∈A|γ(a)=b} a.

2. For every temporal modality FH (resp. PH) occurring in ψ, we have H ∈ Cδ by hypothesis.
Hence, H is recognized by δ and there exists G ⊆ N such that H = δ−1(G). Note that
η−1(G) ∈ C since η is a C-morphism. We replace the temporal modality FH (resp. PH)
by Fη−1(G) (resp. Pη−1(G)).

By definition the resulting formula ψ′ belongs to TL[C] and one can verify that for every
w ∈ A∗, we have w, 0 |= ψ′ ⇔ γ(w), 0 |= ψ. Since Lmin(ψ) = K, we get Lmin(ψ′) = γ−1(K),
which implies that K ∈ TL(C). This completes the proof. ◀

In view of Lemma 22, it suffices to prove that any language recognized by β belongs to
TL(Cδ). Since L is recognized by α, this will imply L ∈ TL(C), which is our goal. In the next
lemma, we reformulate on β and δ the assumption that every C-orbit for α belongs to DA.

▶ Lemma 23. For every e ∈ E(M) and every s, t ∈ M , if (e, s) and (e, t) are δ-pairs for β,
then (esete)ω = (esete)ωete(esete)ω.

Proof. By hypothesis, there exist u, v, x, y ∈ B∗ such that δ(u) = δ(v), δ(x) = δ(y),
β(u) = β(x) = e, β(v) = s and β(y) = t. The definitions of β and δ imply that for any
w ∈ B∗, there exists w′ ∈ A∗ such that δ(w) = η(w′) and β(w) = α(w′). Therefore, we obtain
u′, v′, x′, y′ ∈ A∗ such that η(u′) = η(v′), η(x′) = η(y′), α(u′) = α(x′) = e, α(v′) = s and
α(y′) = t. Thus, (e, s) ∈ M2 and (e, t) ∈ M2 are η-pairs for α. By definition of η, it follows
that they are C-pairs for α. Hence, ese and ete both belong to the C-orbit of e for α. Since
all C-orbits for α belong to DA by hypothesis, this gives (esete)ω = (esete)ωete(esete)ω. ◀
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We now use the Green relation J over N to associate a number dJ(r) ∈ N with every
element r ∈ N . We let dJ(r) be the maximal number n ∈ N such that there exist n elements
r1, . . . , rn ∈ N satisfying r <J r1 <J · · · <J rn. By definition, 0 ≤ dJ(r) ≤ |N | − 1. In
particular, we have dJ(r) = 0 if and only if r is maximal for ⩽J (i.e., if and only if r J 1N ).
Finally, given a word w ∈ B∗, we write dJ(w) ∈ N for dJ(δ(w)). Observe that for all
x, y, z ∈ B∗, we have dJ(y) ≤ dJ(xyz) (as xyz ⩽J y), a fact that we shall use frequently.

In order to argue inductively, we define a family of languages Kℓ ⊆ B∗ for ℓ ∈ N as follows:

Kℓ =
{
w ∈ B∗ | for all k ≤ ℓ and x, y, z ∈ B∗, if w = xyz and |y| = k, then dJ(y) ≥ k

}
.

Note that K0 = B∗ as dJ(y) ≥ 0 for all y ∈ B∗. Also, if ℓ ≥ |N |, then Kℓ is finite (it contains
words of length at most |N | − 1 as dJ(y) < |N | for all y ∈ B∗). We now have the next lemma.

▶ Lemma 24. Let ℓ ∈ N and w ∈ Kℓ. Then dJ(w) ≤ ℓ if and only if for all x, y, z ∈ B∗

such that w = xyz and |y| ≤ ℓ+ 1, we have dJ(y) ≤ ℓ.

Proof. The “only if” direction is immediate since dJ(y) ≤ dJ(w) for every infix y of w.
Conversely, assume that for all x, y, z ∈ B∗ such that w = xyz and |y| ≤ ℓ + 1, we have
dJ(y) ≤ ℓ. We prove that dJ(w) ≤ ℓ. If |w| ≤ ℓ + 1, this is immediate. Assume now that
|w| > ℓ + 1. We get b1, . . . , bn ∈ B and v ∈ B∗ such that |v| = ℓ + 1 and w = vb1 · · · bn.
We use induction on i to prove that δ(v) J δ(vb1 · · · bi) for all i ≤ n. Since dJ(v) ≤ ℓ by
hypothesis, the case i = n yields dJ(w) ≤ ℓ. The case i = 0 is trivial: we have δ(v) J δ(v).
Assume now that i ≥ 1. By induction hypothesis, we know that δ(v) J δ(vb1 · · · bi−1). Let
x, y ∈ B∗ such that |y| = ℓ and xy = vb1 · · · bi−1 (the words x and y exist because |v| = ℓ+1).
Since w ∈ Kℓ, and y is an infix of w such that |y| = ℓ, we know that dJ(y) ≥ ℓ. Moreover,
ybi is an infix of w such that |ybi| = ℓ + 1, which yields dJ(ybi) ≤ ℓ by hypothesis. Since
dJ(y) ≤ dJ(ybi), we get dJ(ybi) = dJ(y) = ℓ, which implies that δ(ybi) J δ(y). Moreover, we
have δ(ybi) ⩽R δ(y). Thus, Lemma 1 yields δ(ybi) R δ(y). This implies that δ(xybi) R δ(xy).
Hence, δ(vb1 · · · bi) J δ(vb1 · · · bi−1) J δ(v). This completes the proof. ◀

We now prove that for all s ∈ M and ℓ ∈ N, we have Kℓ ∩β−1(s) ∈ TL(Cδ). Our objective
(every language recognized by β belongs to TL(Cδ)) follows from the case ℓ = 0, since
K0 = B∗. The proof involves two steps. The first settles the case of elements of Kℓ ∩ β−1(s)
whose image under δ has a dJ value at most ℓ. We do not use induction for this case, which
relies on the inclusion UPol(BPol(Cδ)) ⊆ TL(Cδ). It is also the place where we use Lemma 23,
i.e., the hypothesis that all C-orbits for α are in DA.

▶ Proposition 25. Let (ℓ, s, r) ∈ N×M×N. If dJ(r) ≤ ℓ then Kℓ ∩ β−1(s) ∩ δ−1(r) ∈ TL(Cδ).

Proof. We prove that Kℓ ∩ β−1(s) ∩ δ−1(r) ∈ UPol(BPol(Cδ)), which, by Proposition 10,
will give the desired result Kℓ ∩ β−1(s) ∩ δ−1(r) ∈ TL(Cδ). Let γ : B∗ → Q be the syntactic
morphism of Kℓ ∩ β−1(s) ∩ δ−1(r). By Theorem 11, it suffices to show that given q1, q2 ∈ Q

and f ∈ E(Q) such that (f, q1) ∈ Q2 is a Cδ-pair for γ, the following equation holds:

(fq1fq2f)ω+1 = (fq1fq2f)ωfq2f(fq1fq2f)ω. (4)

Let q1, q2, f ∈ Q be such elements. By definition of Cδ, we know that δ is a Cδ-morphism.
Therefore, Lemma 3 implies that (f, q1) is a δ-pair for γ. We get u′, v′

1 ∈ B∗, such that
δ(u′) = δ(v′

1), γ(u′) = f and γ(v′
1) = q1. Note that if v′

1 = ε, then q1 = 1Q and (4) holds since
it is clear that (fq2f)ω+1 = (fq2f)2ω+1. Therefore, we assume from now on that v′

1 ∈ B+.
Let us also choose v′

2 ∈ B∗ such that γ(v′
2) = q2. We now define p = ℓ×ω(N)×ω(M)×ω(Q),
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u = (u′)p, v1 = (u′)p−1v′
1 and v2 = uv′

2u(uv1uv
′
2u)p−1. We compute γ(u) = f , γ(v1) = fq1

and δ(u) = δ(v1). Moreover, since p is a multiple of ω(N), the element δ(u) = δ(v1) is an
idempotent g ∈ E(N). Finally, we have γ(v2) = fq2f(fq1fq2f)p−1 and δ(v2) = (gδ(v′

2)g)p.
In particular, it follows that δ(v2) is an idempotent h ∈ E(N) such that gh = hg = h.

We prove that (uv1uv2u)p and (uv1uv2u)puv2u(uv1uv2u)p are equivalent for the syntactic
congruence of Kℓ ∩ β−1(s) ∩ δ−1(r). This will imply that they have the same image under γ,
which yields (fq1fq2f)ω = (fq1fq2f)ωfq2f(fq1fq2f)2ω−1. One may then multiply by
fq1fq2f on the right to get (4), as desired. For x, y ∈ A∗, let z1 = x(uv1uv2u)py and
z2 = x(uv1uv2u)puv2u(uv1uv2u)py. We have to show that z1 ∈ Kℓ ∩ β−1(s) ∩ δ−1(r) if and
only if z2 ∈ Kℓ ∩ β−1(s) ∩ δ−1(r). We first treat the special case where |u| < ℓ.

Assume that |u| < ℓ. We show that in this case z1 ̸∈ Kℓ and z2 ̸∈ Kℓ (which implies the
desired result). Since u = (u′)p and p ≥ ℓ, the hypothesis that |u| < ℓ yields u = u′ = ε.
Since δ(u) = δ(v1), we get δ(v1) = 1N . Recall that v1 = (u′)p−1v′

1 and v′
1 ∈ B+ by hypothesis.

Thus, v1 ∈ B+, which means that it contains a letter b ∈ B such that δ(b) J 1N . In particular
dJ(b) = 0. Hence, b is an infix of length 1 of both z1 and z2 such that dJ(b) < 1. Now
ℓ > |u| = 0, so that ℓ ≥ 1. This implies z1 ̸∈ Kℓ and z2 ̸∈ Kℓ. This completes the special case.

From now on, we assume that |u| ≥ ℓ. Since δ(u) = δ(v1) = g ∈ E(N), δ(v2) = h ∈ E(N)
and gh = hg = h, we have δ(z1) = δ(z2) = δ(x)hδ(y). Therefore, z1 ∈ δ−1(r) if and only if
z2 ∈ δ−1(r). Let us prove that z1 ∈ Kℓ ⇔ z2 ∈ Kℓ. This is trivial if ℓ = 0 since K0 = B∗.
Assume now that ℓ ≥ 1. Since |u| ≥ ℓ by hypothesis, it follows that for every k ≤ ℓ, z1 and
z2 have the same infixes of length k. This implies that z1 ∈ Kℓ ⇔ z2 ∈ Kℓ, as desired.

It remains to prove that if z1, z2 ∈ Kℓ ∩ δ−1(r), then β(z1) = β(z2). We first show that
our assumptions imply g J h. Again, there are two cases. First, assume that ℓ = 0. Since
dJ(r) ≤ ℓ by hypothesis, we get r J 1N . Thus, since u and v2 are infixes of z1 ∈ δ−1(r), we
have δ(u) J δ(v2) J 1N , which exactly says that g J h J 1N . Assume now that ℓ ≥ 1. Recall
that |u| ≥ ℓ. Since u is an infix of v2, this also implies that |v2| ≥ ℓ. Hence, since u and v2
are infixes of z2 ∈ Kℓ ∩ δ−1(r), we get dJ(u) ≥ ℓ and dJ(v2) ≥ ℓ, r ⩽J δ(u) and r ⩽J δ(v2).
In particular, it follows that dJ(r) ≥ dJ(u) ≥ ℓ and dJ(r) ≥ dJ(v2) ≥ ℓ. Since dJ(r) ≤ ℓ by
hypothesis on r, we get dJ(r) = dJ(u) = dJ(v2) = ℓ. Together with r ⩽J δ(u) and r ⩽J δ(v2),
this yields r J δ(u) J δ(v2), i.e., r J g J h. This completes the proof that g J h. Since we also
know that hg = gh = h, we have h ⩽R g and Lemma 1 yields g R h. We get z ∈ N such
that g = hz. Thus, we have h = hg = hhz = hz = g.

Altogether, we obtain δ(u) = δ(v1) = δ(v2) = g ∈ E(N). This implies that (β(u), β(v1))
and (β(u), β(v2)) are δ-pairs for β. Moreover, recall that u = (u′)p where p is a multiple
of ω(M). Hence, we have β(u) ∈ E(M). Consequently, it follows from Lemma 23 that
β((uv1uv2u)p) = β((uv1uv2u)puv2u(uv1uv2u)p). It now suffices to multiply by β(x) on the
left and β(y) on the right to obtain β(z1) = β(z2), as desired. ◀

We now turn to the second step of the proof, which is formalized in the following statement.

▶ Proposition 26. Let ℓ ≤ |N | and s ∈ M . There exists a TL[Cδ] formula φℓ,s such that for
every w ∈ Kℓ, we have w, 0 |= φℓ,s ⇔ β(w) = s.

Let us first use Proposition 26 to complete the main proof: we have to show that every
language recognized by β belongs to TL(Cδ). Clearly, it suffices to show that β−1(s) ∈ TL(Cδ)
for each s ∈ M . We apply Proposition 26 for ℓ = 0. Since K0 = B∗, this yields a formula
φ0,s ∈ TL[Cδ] such that Lmin(φ0,s) = β−1(s). Thus, β−1(s) ∈ TL(Cδ), as desired.

It remains to prove Proposition 26. We construct φℓ,s ∈ TL[Cδ] by induction on |N | − ℓ.
If ℓ = |N |, we define φℓ,s so that Lmin(φℓ,s) = Kℓ ∩β−1(s). Since K|N | ∩β−1(s) is finite and
TL[Cδ] is closed under disjunction, it suffices to build for every word w ∈ B∗ a TL[Cδ] formula
φw defining {w}. Since B∗ ∈ Cδ, one may use the “F” modality. For w = b1 · · · bn, let
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ψw = F (b1 ∧ F (b2 ∧ F (b3 ∧ · · · ∧ F bn))).

One may then choose φw = ψw ∧
∧

u∈B∗,|u|=|w|+1 ¬ψu.
Assume now that ℓ < |N |. We present a construction for splitting the words in Kℓ into

two parts: a prefix mapped to an element r ∈ N such that dJ(r) ≤ ℓ (we handle it with
Proposition 25) and a suffix that we abstract as a word in Kℓ+1 (we handle it by induction).

Let w ∈ Kℓ. For each position i ∈ Pos(w) \ {0} and k ∈ N, we write σk(w, i) ∈ B∗ for the
infix w(i−1, j) where j = min(i+k, |w|+1). In other words, σk(w, i) = w[i] · · ·w[i+k−1] if
i+ k − 1 ≤ |w| and σk(w, i) = w[i] · · ·w[|w|] otherwise. In particular, we have |σk(w, i)| ≤ k.

▶ Lemma 27. Let k ≤ ℓ + 1 and u ∈ B∗ be such that |u| ≤ k. There exists a formula
πk,u ∈ TL[Cδ] such that for all w ∈ Kℓ and i ∈ Pos(w) \ {0}, w, i |= πk,u ⇔ σk(w, i) = u.

Proof. If u = ε, it suffices to define πk,u = ⊤ when k = 0 and πk,u = max when k ≥ 1.
Assume now that |u| ≥ 1. If k ≤ 1, it follows that |u| = 1 = k. Hence, u is a letter b ∈ B and
it suffices to define πk,u = b. Assume now that k ≥ 2. Let C ⊆ B be the set of letters mapped
to 1N under δ, so that H def= δ−1(1N ) = C∗. By definition, H ∈ Cδ. Since 2 ≤ k ≤ ℓ+ 1, we
have ℓ ≥ 1, which implies, by definition of Kℓ, that no word of Kℓ can contain a letter b
with dJ(b) = 0. In particular, words of Kℓ cannot contain letters of C. Therefore, if w ∈ Kℓ,
i ∈ Pos(w) and ψ ∈ TL[Cδ], we have w, i |= FH ψ if and only if w, i+ 1 |= ψ. Let u = b1 · · · bn

(with bi ∈ B). We have n = |u| ≤ k by hypothesis. We consider two cases for defining πk,u:
If n = k, we let πk,u = (b1 ∧ FH (b2 ∧ FH (b3 ∧ · · · FH bn))).
If n < k, we let πk,u = (b1 ∧ FH (b2 ∧ FH (b3 ∧ · · · FH (bn ∧ FH max)))).

The above fact on FH implies that this definition fulfills the desired property. ◀

Pointed positions. Consider w ∈ Kℓ. We say that an arbitrary position i ∈ Pos(w) is pointed
when either i ∈ {0, |w| + 1}, or i ∈ Posc(w) and dJ(σℓ+1(w, i)) ≥ ℓ+ 1.

▶ Definition 28 (Detection of pointed positions in TL[Cδ]). Let π = min∨max∨
∨

u∈U πℓ+1,u

where U = {u ∈ B∗ | |u| ≤ ℓ+ 1 and dJ(u) ≥ ℓ+ 1}. By definition of πℓ+1,u in Lemma 27,
we know that for w ∈ Kℓ and i ∈ Pos(w), we have w, i |= π if and only if position i is pointed.

A position i ∈ Pos(w) which is not pointed is said to be safe. We now prove that we may
constrain the evaluation of TL[Cδ] formulas to infixes that only contain safe positions.

▶ Lemma 29. Let ψ ∈ TL[Cδ] and H ∈ Cδ. There exist two formulas Fsa
H ψ and Psa

H ψ of
TL[Cδ] such that for all w ∈ Kℓ and all i ∈ Pos(w), the two following properties hold:

w, i |= Fsa
H ψ if and only if there exists j ∈ Pos(w) such that j > i, w, j |= ψ, w(i, j) ∈ H

and all positions h ∈ Pos(w) such that i < h < j are safe.
w, i |= Psa

H ψ if and only if there exists j ∈ Pos(w) such that j < i, w, j |= ψ, w(j, i) ∈ H

and all positions h ∈ Pos(w) such that j < h < i are safe.

Proof. We begin by characterizing infixes containing only safe positions. Let w ∈ Kℓ and
i, j ∈ Pos(w) be such that i < j. We prove that the following two properties are equivalent:
1. All positions h ∈ Pos(w) such that i < h < j are safe.
2. Either δ(w(i, j)) = 1N or dJ(w(i, j)σℓ(w, j)) ≤ ℓ.
Assume first that all positions h ∈ Pos(w) such that i < h < j are safe. If i+ 1 = j, then
w(i, j) = ε, whence δ(w(i, j)) = 1N . Assume now that i+ 1 < j. Observe that w(i, j)σℓ(w, j)
belongs to Kℓ since it is an infix of w ∈ Kℓ. Moreover, since i+1 < j, there exists at least one
h ∈ Pos(w) such that i < h < j. Combined with the assumption that all such positions h are
safe, this implies that for every x, y, z ∈ B∗ such that xyz = w(i, j)σℓ(w, j) and |y| ≤ ℓ+ 1,
we have dJ(y) ≤ ℓ. Therefore, Lemma 24 entails that dJ(w(i, j)σℓ(w, j)) ≤ ℓ, as desired.
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Conversely, assume that either δ(w(i, j)) = 1N or dJ(w(i, j)σℓ(w, j)) ≤ ℓ. We start with
the latter case. Since w(i, j)σℓ(w, j) ∈ Kℓ, Lemma 24 implies that for every x, y, z ∈ B∗ such
that xyz = w(i, j)σℓ(w, j) and |y| ≤ ℓ+ 1, we have dJ(y) ≤ ℓ. In particular, it follows that
every h ∈ Pos(w) such that i < h < j is safe. Assume now that δ(w(i, j)) = 1N . If ℓ = 0,
then σℓ(w, j) = ε and we are back to the previous case. Otherwise, ℓ ≥ 1 and since w ∈ Kℓ,
the fact that δ(w(i, j)) = 1N yields w(i, j) = ε, which completes the argument.

We are now ready to complete the proof of the lemma. Let ψ ∈ TL[Cδ] and H ∈ Cδ.
For every r ∈ N , we let Hr = H ∩ δ−1(r) and Ur = {u ∈ B∗ | |u| ≤ ℓ and dJ(rδ(u)) ≤ ℓ}.
Observe that Hr ∈ Cδ. Now, in view of the preliminary result, it suffices to define,

Fsa
H ψ = FH1N

ψ∨
∨

r∈N

∨
u∈Ur

FHr
(πℓ,u ∧ ψ) and Psa

H ψ = PH1N
ψ∨

∨
r∈N

∨
u∈Ur

(πℓ,u ∧ PHr
ψ) .

This completes the proof. ◀

Pointed decomposition. Let w ∈ Kℓ and let 0 = i0 < i1 < · · · < in < in+1 = |w| + 1
be all the pointed positions of w. The pointed decomposition of w is the decomposition
w = w0b1w1 · · · bnwn where the highlighted letters b1, . . . , bn ∈ B are those carried by the
pointed positions i1, . . . , in. For 0 ≤ j ≤ n, we associate the word f(w, ij) = wj to the pointed
position ij . Moreover, we define a new word ŵ ∈ B∗ built from the suffix b1w1 · · · bnwn. For
1 ≤ j ≤ n, let (tj , qj) = (β(bjwj), δ(bjwj)) ∈ P . By definition of β and δ, we know that
there is a letter btj ,qj

∈ B such that (β(btj ,qj
), δ(btj ,qj

)) = (tj , qj). We let ŵ = bt1,q1 · · · btn,qn
.

Note that by definition, β(b1w1 · · · bnwn) = β(ŵ) and δ(b1w1 · · · bnwn) = δ(ŵ). Finally, we
define a surjective map i 7→ µ(i) associating a position µ(i) ∈ Pos(ŵ) to each pointed position
i ∈ Pos(w): for 0 ≤ j ≤ n + 1, we let µ(ij) = j. We complete this definition with a key
property. For every pointed position i ∈ {0} ∪ Posc(w), one can compute the images of the
word f(w, i) under β and δ with a TL[Cδ] formula. This is where we use Proposition 25.

▶ Lemma 30. Let (t, r) ∈ M×N . There exists Γt,r ∈ TL[Cδ] such that for all w ∈ Kℓ and all
pointed positions i ∈ {0} ∪ Posc(w), we have w, i |= Γt,r ⇔ β(f(w, i)) = t and δ(f(w, i)) = r.

Proof. First observe that by definition, if w ∈ Kℓ and i ∈ {0} ∪ Posc(w) is pointed, the infix
f(w, i) contains only safe positions. Hence, for every x, y, z ∈ B∗ such that f(w, i) = xyz

and |y| ≤ ℓ+ 1, we have dJ(y) ≤ ℓ. By Lemma 24, it follows that dJ(f(w, i)) ≤ ℓ. Therefore,
if dJ(r) > ℓ, then δ(f(w, i)) cannot be equal to r, and it suffices to define Γt,r = ⊥.

We now assume that dJ(r) ≤ ℓ. Proposition 25 implies that Kℓ ∩β−1(t)∩δ−1(r) ∈ TL(Cδ).
We get a formula ψ ∈ TL[Cδ] such that for every u ∈ Kℓ, we have u, 0 |= ψ if and only if
β(u) = t and δ(u) = r. Using Lemma 29, we modify ψ so that given w ∈ Kℓ, the evaluation of
ψ at a pointed position i is constrained to the infix f(w, i). More precisely, we use structural
induction to build two formulas ⟨ψ⟩min and ⟨ψ⟩max such that given w ∈ Kℓ, a pointed
position i ∈ {0} ∪ Posc(w) and j ∈ Pos(f(w, i)), the two following properties hold:

If j ≤ |f(w, i)|, then w, i+ j |= ⟨ψ⟩min ⇔ f(w, i), j |= ψ.
If 1 ≤ j, then w, i+ j |= ⟨ψ⟩max ⇔ f(w, i), j |= ψ.

It will then suffice to define Γt,r = ⟨ψ⟩min. We only describe the construction, and leave it
to the reader to check that it satisfies the above properties. Note that we use the formula
π ∈ TL[Cδ] of Definition 28 that detects pointed positions.

For ψ ∈ B ∪ {⊤,⊥}, we let ⟨ψ⟩min = ⟨ψ⟩max = ψ. If ψ = min, we let ⟨ψ⟩min = π

and ⟨ψ⟩max = ⊥. If ψ = max, we let ⟨ψ⟩min = ⊥ and ⟨ψ⟩max = π. We handle Boolean
operators in the expected way. For instance, we define ⟨ψ′ ∨ ψ′′⟩min = ⟨ψ′⟩min ∨ ⟨ψ′′⟩min,
⟨ψ′ ∧ ψ′′⟩min = ⟨ψ′⟩min ∧ ⟨ψ′′⟩min and ⟨¬ψ′⟩min = ¬⟨ψ′⟩min, and similarly for ⟨·⟩max.
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If ψ = FH ψ′ for H ∈ Cδ, we let ⟨ψ⟩min = Fsa
H ⟨ψ′⟩max and ⟨ψ⟩max = ¬π ∧ Fsa

H ⟨ψ′⟩max.
Symmetrically, if ψ = PH ψ′ for some H ∈ Cδ, we define ⟨ψ⟩min = ¬π ∧ Psa

H ⟨ψ′⟩min and
⟨ψ⟩max = Psa

H ⟨ψ′⟩min. This concludes the inductive construction of ⟨ψ⟩min and ⟨ψ⟩max and
the proof of the proposition. ◀

Construction of the formulas φℓ,s. We are ready to complete the proof of Proposition 26.
For every s ∈ M , we build a formula ζs ∈ TL[Cδ] such that for every w ∈ Kℓ, we have
w, 0 |= ζs ⇔ β(ŵ) = s. Given s ∈ M , it will then suffice to define φℓ,s ∈ TL[Cδ] as follows:

φℓ,s =
∨

{(s1,s2)∈M2|s1s2=s}

(( ∨
r∈N

Γs1,r

)
∧ ζs2

)
.

Indeed, it is straightforward that for every word w ∈ Kℓ, we have β(w) = β(f(w, 0))β(ŵ).
Consequently, by definition of φℓ,s, we get w, 0 |= φℓ,s ⇔ β(f(w, 0))β(ŵ) = s ⇔ β(w) = s for
all w ∈ Kℓ, which concludes the proof of Proposition 26. We now concentrate on building ζs.
This is where we use induction in Proposition 26. Indeed, we have the following lemma.

▶ Lemma 31. For every w ∈ Kℓ, we have ŵ ∈ Kℓ+1.

Proof. Let k ≤ ℓ+ 1 and x, y, z ∈ B∗ such that ŵ = xyz and |y| = k. We have to prove that
dJ(y) ≥ k. Let w = w0b1w1 · · · bnwn be the pointed decomposition of w. By definition of ŵ,
we have δ(y) = δ(bhwh · · · bh+k−1wh+k−1) for some h ≤ n. Let u = bhwh · · · bh+k−1wh+k−1.
We have to show that dJ(y) = dJ(u) ≥ k. Clearly, |u| ≥ k. Hence, if k ≤ ℓ, the hypothesis
that w ∈ Kℓ yields dJ(u) ≥ k. Otherwise, k = ℓ+ 1. Thus, |u| ≥ ℓ+ 1 and since the position
labeled by bh in w is pointed, this yields dJ(u) ≥ ℓ+ 1. In both cases, we get dJ(y) ≥ k. ◀

Let s ∈ M . In view of Lemma 31, induction on |N | − ℓ in Proposition 26 yields a TL[Cδ]
formula ψs such that for every w ∈ Kℓ, we have ŵ, 0 |= ψs ⇔ β(ŵ) = s. Thus, it now suffices
to prove that for every ψ ∈ TL[Cδ], there exists a formula ⌊ψ⌋ ∈ TL[Cδ] such that for every
w ∈ Kℓ and every pointed position i ∈ Pos(w), we have w, i |= ⌊ψ⌋ ⇔ ŵ, µ(i) |= ψ. It will
then follow, for i = 0, that w, 0 |= ⌊ψs⌋ ⇔ β(ŵ) = s, meaning that we can define ζs = ⌊ψs⌋.

We construct ⌊ψ⌋ by structural induction on ψ. If ψ ∈ {min,max,⊤,⊥}, we let ⌊ψ⌋ = ψ.
Suppose now that ψ = bt,q ∈ B for (t, q) ∈ P . Thus, when evaluated in w at a pointed
position i carrying a “b”, we want ⌊ψ⌋ to check that β(b)β(f(w, i)) = t and δ(b)δ(f(w, i)) = q.
Let T =

{
(b, t′, q′) ∈ B ×M ×N | β(b)t′ = t and δ(b)q′ = q

}
. Using the formulas Γt′,q′ from

Lemma 30, we define ψ =
∨

(b,t′,q′)∈T (b ∧ Γt′,q′). Boolean operators are handled as expected.
It remains to deal with temporal modalities, i.e., the case where there exists H ∈ Cδ such
that ψ = FH ψ′ or ψ = PH ψ′. For every b ∈ B, let Fb =

{
r ∈ N | δ(b)r ∈ δ(H)

}
. We define:

⌊FH ψ′⌋ def=
{

Fsa
B∗

(
π ∧

(∨
b∈B

(
b ∧ Fδ−1(Fb) (π ∧ ⌊ψ′⌋)

)))
if ε ̸∈ H,

Fsa
B∗

(
π ∧

(∨
b∈B

(
b ∧ Fδ−1(Fb) (π ∧ ⌊ψ′⌋)

)
∨ ⌊ψ′⌋

))
if ε ∈ H.

⌊PH ψ′⌋ def=
{ ∨

b∈B Pδ−1(Fb) (π ∧ b ∧ Psa
B∗ (π ∧ ⌊ψ′⌋)) if ε ̸∈ H,

Psa
B∗ (π ∧ ⌊ψ′⌋) ∨

∨
b∈B Pδ−1(Fb) (π ∧ b ∧ Psa

B∗ (π ∧ ⌊ψ′⌋)) if ε ∈ H.

We give an intuition when ψ = FH ψ′ and ε /∈ H. Let w0b1w1 · · · bnwn be the pointed
decomposition of w and ŵ = b′

1 · · · b′
n. Let ik ∈ Pos(w) be the position of the distinguished bk,

so that µ(ik) = k. Now, ŵ, k |= FH ψ′ when there exists m > k such that ŵ,m |= ψ′ and
b′

k+1 · · · b′
m−1 ∈ H. The construction ensures that w, ik |= ⌊FH ψ′⌋ when there exists m > k

such that w, im |= ⌊ψ′⌋ and bk+1wk+1 · · · bm−1wm−1 ∈ H. The purpose of using Fsa
B∗ (π∧ . . . )

is to “jump” to bk+1. The remainder checks that the next jump, to a pointed position,
determines a word of δ−1(δ(H)) = H. More generally, one can check that w, i |= ⌊ψ⌋ ⇔
ŵ, µ(i) |= ψ for all w ∈ Kℓ and all pointed positions i ∈ Pos(w). This concludes the proof.
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6 Natural restrictions of generalized unary temporal logic

We turn to two natural restrictions of the classes TL(C), which were defined in [26]: the
pure-future and pure-past fragments. For a class C, we write FL[C] ⊆ TL[C] for the set
of all formulas that contain only future modalities (i.e., the modalities PL are disallowed).
Symmetrically, PL[C] ⊆ TL[C] is the set of all formulas in TL[C] that contain only past
modalities (i.e., the modalities FL are disallowed).

We now define the two associated operators C 7→ FL(C) and C 7→ PL(C). For every class C,
let FL(C) be the class consisting of all languages Lmin(φ) where φ ∈ FL[C]. Symmetrically,
we write PL(C) for the class consisting of all languages Lmax(φ), with φ ∈ PL[C].

▶ Remark 32. Note that FL[C] formulas are evaluated at the leftmost unlabeled position
whereas PL[C] formulas are evaluated at the rightmost unlabeled position.

6.1 Connection with left and right polynomial closure
The main ideas to establish decidable characterizations for FL(C) and PL(C) follow the lines
of the proof of Theorem 12. However, there are some differences. First, for the easy direction
(proving that some property on C-orbits is necessary), we have to adapt Lemma 20 to the
operators C 7→ FL(C) and C 7→ PL(C). We prove these adapted properties in the extended
version of this paper [29] as corollaries of results presented in [26].

The proof of the difficult direction is mostly identical to that in Theorem 12. However,
there is a key difference: we have to find a substitute for Proposition 25, whose proof
relied the inclusion UPol(BPol(C)) ⊆ TL(C) from Proposition 10. We replace unambiguous
polynomial closure (UPol) by two variants, called right and left polynomial closure (RPol
and LPol). It is shown [26] that RPol(BPol(C)) ⊆ FL(C) and LPol(BPol(C)) ⊆ PL(C) for
every prevariety C: this serves as a substitute for Proposition 10. Finally, while no simple
generic characterization of the classes RPol(BPol(C)) and LPol(BPol(C)) are known, we are
able to replace Theorem 11 by combining independent characterizations of the operators Pol
and RPol (resp. Pol and LPol) from [23, 21].

We now establish a connection between the operators C 7→ FL(C) and C 7→ PL(C) and
the two weaker variants RPol and LPol of unambiguous polynomial closure. Consider a
marked product L0a1L1 · · · anLn. For 1 ≤ i ≤ n, we write Hi = L1a1L2 · · · ai−1Li−1 and
Ki = Liai+1Li+1 · · · anLn. We say that L0a1L1 · · · anLn is right deterministic (resp. left
deterministic) when we have A∗aiKi ∩Ki = ∅ (resp. HiaiA

∗ ∩Hi = ∅) for every i ≤ n. The
right polynomial closure of a class C, written RPol(C), consists of all finite disjoint unions of
right deterministic marked products L0a1L1 · · · anLn such that L0, . . . , Ln ∈ C (by “disjoint”
we mean that the languages in the union must be pairwise disjoint). Similarly, the left
polynomial closure LPol(C) of C consists of all finite disjoint unions of left deterministic
marked products L0a1L1 · · · anLn such that L0, . . . , Ln ∈ C. While this is not immediate, it
is known [21] that when the input class C is a prevariety, then so are RPol(C) and LPol(C).

As expected, we are interested in the “combined” operators C 7→ RPol(BPol(C)) and
C 7→ LPol(BPol(C)). Indeed, the first one is connected to the classes FL(C) by the following
result proved in [26, Proposition 5].

▶ Proposition 33. For every prevariety C, we have RPol(BPol(C)) ⊆ FL(C).

We have the following symmetrical statement for PL(C).

▶ Proposition 34. For every prevariety C, we have LPol(BPol(C)) ⊆ PL(C).
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Propositions 33 and 34 serve as the replacement of Proposition 10 when dealing with
the classes FL(C) and PL(C), respectively. It now remains to replace the generic algebraic
characterization of the classes UPol(BPol(C)) presented in Theorem 11. This is more tricky
as no such characterization is known for the classes RPol(BPol(C)) (nor for the classes
LPol(BPol(C))). Yet, we manage to prove a sufficient condition for a language to belong to
RPol(BPol(C)) or LPol(BPol(C)) by combining results of [27] and [21]. While it does not
characterize these classes in general, it suffices for our needs: proving that particular languages
belong to RPol(BPol(C)) (and therefore to FL(C) by Proposition 33) or to LPol(BPol(C))
(and therefore to FL(C) by Proposition 34).

▶ Proposition 35. Let C be a prevariety, L ⊆ A∗ be a regular language and α : A∗ → M be
its syntactic morphism. Assume that α satisfies the following property:

(esete)ω+1 = ete(esete)ω for every C-pair (e, s) ∈ M2 and every t ∈ M. (5)

Then, L ∈ RPol(BPol(C)).

▶ Proposition 36. Let C be a prevariety, L ⊆ A∗ be a regular language and α : A∗ → M be
its syntactic morphism. Assume that α satisfies the following property:

(esete)ω+1 = (esete)ωese for every C-pair (e, t) ∈ M2 and every s ∈ M.

Then, L ∈ LPol(BPol(C)).

Since Propositions 35 and 36 are symmetrical, we only prove the first one and leave the
second to the reader.

Proof of Proposition 35. We use a generic characterization of the classes RPol(D) proved
in [21]. Let us first present it. For every class D, we define a preorder ⪯D and an equivalence
∼D over M . Given s, t ∈ M , we let,

s ∼D t if and only if s ∈ F ⇔ t ∈ F for every F ⊆ M such that α−1(F ) ∈ D,
s ⪯D t if and only if s ∈ F ⇒ t ∈ F for every F ⊆ M such that α−1(F ) ∈ D.

Clearly, ⪯D is a preorder on M and ∼D is the equivalence generated by ⪯D. When
α : A∗ → M is the syntactic morphism of L, it is shown in [21, Theorem 4.1] that for
every prevariety D, we have L ∈ RPol(D) if and only if sω+1 = tsω for all s, t ∈ M such
that s ∼D t.

Hence, since BPol(C) is a prevariety, it suffices to prove that for every s, t ∈ M such
that s ∼BPol(C) t, we have sω+1 = tsω. We fix s, t for the proof. Since s ∼BPol(C) t, we
have s ⪯BPol(C) t. Moreover, let co-Pol(C) be the class consisting of all complements of
languages in Pol(C) (i.e., L ∈ co-Pol(C) if and only if A∗ \ L ∈ co-Pol(C)). Clearly, we have
co-Pol(C) ⊆ BPol(C). Hence, the definition implies that s ⪯co-Pol(C) t

Moreover, it is shown in [27, Lemma 6.6] that ⪯co-Pol(C) is the least preorder onM such that
for every x, y, q ∈ M and e ∈ E(M), if (e, q) ∈ M2 is a C-pair, then xeqey ⪯co-Pol(C) xey (the
proof is based on the algebraic characterization of Pol(C), see [23]). This yields s0, . . . , sn ∈ M

such that s = s0, t = sn and, for every i ≤ n, there exist x, y, q ∈ M and e ∈ E(M) such
that (e, q) ∈ M2 is a C-pair, si−1 = xeqey and si = xey. We use induction on i to prove that
sω+1 = sis

ω for every i ≤ n. Since sn = t, the case i = n yields the desired result. When
i = 0, it is immediate that sω+1 = s0s

ω since s0 = s. Assume now that i ≥ 1.
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By induction hypothesis, we know that sω+1 = si−1s
ω. Moreover, we have x, y, q ∈ M

and e ∈ E(M) such that (e, q) ∈ M2 is a C-pair, si−1 = xeqey and si = xey. Since
(sω+1)ω+2 = sω+2, we get sω+2 = (xeqeysω)ω+2. Hence, we get

sω+2 = x (eqeysωxe)ω+1 eqeysω

= x eysωxe(eqeysωxe)ω eqeysω by (5) since (e, q) is a C-pair
= xeysω(xeqeysω)ω+1.

This yields, sω+2 = sis
ω(si−1s

ω)ω+1 = sis
ω(sω+1)ω+1 = sis

ω+1. It now remains to multiply
by sω−1 on the right to get sω+1 = sis

ω, as desired. ◀

6.2 Statements

The classes FL(C) and PL(C) admit algebraic characterizations similar to that of TL(C). We
reuse the C-orbits introduced in Section 3. Let X ∈ {L,R, J} be one the Green relations
defined in Section 2. A monoid M is X -trivial when s X t implies s = t for all s, t ∈ M . It
is standard and simple to verify that a finite monoid M is R-trivial (resp. L-trivial) if and
only if for all s, t ∈ M , we have (st)ωs = (st)ω (resp. t(st)ω = (st)ω), see [17, 20] for a proof.
We are now able to present the two symmetrical characterizations of FL(C) and PL(C).

▶ Theorem 37. Let C be a prevariety, L ⊆ A∗ be a regular language and α : A∗ → M be its
syntactic morphism. The two following properties are equivalent:
1. L ∈ FL(C).
2. Every C-orbit for α is L-trivial.

▶ Theorem 38. Let C be a prevariety, L ⊆ A∗ be a regular language and α : A∗ → M be its
syntactic morphism. The two following properties are equivalent:
1. L ∈ PL(C).
2. Every C-orbit for α is R-trivial.

Since FL(C) and PL(C) are symmetrical, it is natural to consider a third class denoted
FL(C) ∩ PL(C). It consists of all languages belonging simultaneously to FL(C) and PL(C). It
is standard that the finite monoids which are both L-trivial and R-trivial are exactly the
J-trivial monoids (see [17, 20]). This yields the following corollary of Theorems 37 and 38.

▶ Corollary 39. Let C be a prevariety, L ⊆ A∗ be a regular language and α : A∗ → M be its
syntactic morphism. The two following properties are equivalent:
1. L ∈ FL(C) ∩ PL(C).
2. Every C-orbit for α is J-trivial.

Recall that given a regular language L ⊆ A∗ as input, its syntactic morphism α : A∗ → M

can be computed. Moreover, Lemma 5 implies that all C-orbits for α can be computed when
C-separation is decidable. Thus, the three above characterizations yield the following corollary.

▶ Corollary 40. Let C be a prevariety with decidable separation. Then, the classes FL(C),
PL(C) and FL(C) ∩ PL(C) have decidable membership.

We leave the proof of Theorem 37 for the extended version of this paper [29] (it omits
the proof of Theorem 38, which is symmetrical).
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7 Conclusion

We presented generic characterizations of the classes TL(C), FL(C) and PL(C). While the
proofs are complex, the statements are simple and elegant. They generalize in a natural way
all known characterizations of classes built with these operators. As a corollary, we obtained
that if C is a prevariety with decidable separation, then all classes TL(C), FL(C) and PL(C)
have decidable membership.

The next step is to tackle separation. This question is difficult in general, but it is worth
looking at particular input classes. For instance, one can define the TL-hierarchy of basis C:
level 0 is TL0(C) = C and level n ≥ 1 is TLn(C) = TL(TLn−1(C)). It can be shown that
the hierarchies of bases ST = {∅, A∗} and DD = {∅, {ε}, A+, A∗} are strict. Thus, since
BPol(C) ⊆ TL(C), they both classify the star-free languages (or equivalently the languages
definable in full linear temporal logic). We already know that in both hierarchies, membership
is decidable for levels 1 (i.e., the variants TL and TLX of unary temporal logic) and 2 (which
were studied in [15]). The results of the present paper show that if TL2(ST) and TL2(DD)
have decidable separation, then TL3(ST) and TL3(DD) would have decidable membership.

Finally, all other major operators have language-theoretic counterparts. Another possible
follow-up is to look for such a definition for all three operators C 7→ TL(C),FL(C) and PL(C).
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