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Abstract
Team logics are extensions of first-order logic where formulae are not evaluated over assignments, but
over sets (“teams”) of assignments. In its most basic form, this does not increase the expressiveness
of the logic because we can only form statements about the common properties of all assignments
(“flatness”). Therefore, additional “team atoms” are introduced to allow for assertions about
interdependencies between the assignments like dependence or inclusion. We propose to consider
binders known from hybrid logic to increase the expressiveness, where the bound teams may then be
referenced as regular relations. We call this hybrid team logic (HTL). Additionally, we define the
positive and negative fragments of HTL (HTL+ and HTL−) by requiring that relations that arise
from binding only occur positively or negatively, respectively.

We find that HTL and its positive and negative fragments are equivalent to prominent team
logics: HTL+ is eqivalent to inclusion logic, HTL− is equivalent to exclusion/dependence logic
and HTL itself is equivalent to independence or inclusion/exclusion logic. This classifies HTL as
equivalent to existential second order logic and HTL+ as equivalent to the positive fragment of
greatest fixpoint logic.

Binders also enhance the expressiveness of guarded team logics because they enable access to
information that normally is obscured by the built-in limitations of these logics. We will take a
closer look at guarded hybrid team logics and establish a finite model property for the guarded
fragment of HTL using model checking games. More precisely, we encode winning strategies of
model checking games as relations, a process that is a natural fit for binders. Further, we notice
that the hierarchy of guarded team logics is more complex than the hierarchy of non-guarded team
logics, and we establish a hierarchy of prominent union-closed guarded team logics.
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1 Introduction

Team semantics is a generalization of Tarski semantics in which logical formulae are not
evaluated for single assignments, but for sets of assignments called teams. This opens new
avenues to reason about interdependencies between assignments, which are relevant e.g. for
large sets of data. In fact, most prominent team logics feature notions that have been studied
in database theory like dependence [3], independence [14], inclusion [9] or exclusion [10].

Team semantics was originally conceived by Hodges [22] to provide a compositional,
model theoretic semantics for independence-friendly logic [21]. Since then, it has been
established as a basis for logics of imperfect information. Here, it is prevalent to view the
aforementioned interdependencies as atomic properties of teams, an approach that emerged
with Väänänen’s dependence logic [29] and includes (conditional) independence logic [20]
and inclusion/exclusion logic [12]. The expressiveness of these logics is well understood. On
sentences, dependence, independence and exclusion logic are all equivalent to existential
second order logic Σ1

1 and inclusion logic is eqivalent to positive greatest fixpoint logic νFO+.
On formulae, independence and inclusion/exclusion logic are again equivalent to Σ1

1, while
dependence logic, exclusion logic and inclusion logic are equivalent to specific fragments of
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48:2 Guarded Hybrid Team Logics

Σ1
1 and νFO+, respectively (see Proposition 8 for more details). When including additional

propositional connectives like strong negation, even dependence logic reaches the expressive
power of full second order logic [24].

However, the expressive power comes at the cost of a comparatively high complexity.
Therefore, it seems natural to explore variants of the mentioned team logics that are inspired
by logics with desirable algorithmic and model-theoretic properties. One promising direction
is the study of guarded logics with team semantics. The basic guarded logic, i.e. the guarded
fragment GF of first-order logic, was introduced by Andréka, van Benthem and Németi [1] to
explain and generalise the good model theoretic properties of modal logics (for an overview
over modal logics, see [7, 8]). GF is defined by restricting first-order quantification in such a
way that formulae can only be evaluated with respect to guarded tuples, which are tuples of
elements that occur together in some atomic fact. This yields a logic that is decidable [1]
and where every formula has a finite model [16], amongst other convenient properties. For a
more in-depth survey, see e.g. [18]. Many variations and extensions of GF have been studied,
for example guarded fixpoint logic, guarded second order logic or the guarded fragment over
finite models (see e.g. [4, 5, 6, 17, 27]).

In particular, there exist explorations of guarded team logics by Grädel and Otto [19]
and Lück [26]. These focus mostly on the analysis of guarded team logics with additional
propositional connectives like strong negation, and establish guarded bisimulation as a
suitable tool to analyse the expressiveness of these logics. More specifically, a core feature
commonly found with guarded logics is invariance under guarded bisimulation. However, the
addition of team atoms will, in general, interfere with bisimulation invariance.

This work aims to provide further insight into guarded team logics that cannot be
characterised by guarded bisimulation invariance. For this, a novel team logic called “hybrid
team logic” (HTL), as well as its positive and negative fragment, are introduced. We show
that in their non-guarded version, these are equivalent to independence logic, inclusion logic
and dependence logic, respectively. Further, we notice that guarded hybrid team logics are
uniquely suited for a type of reduction that encodes winning strategies in model checking
games as formulae in the basic guarded fragment, thus reducing the satisfiability problem to
the satisfiability problem of GF and thereby providing an easy proof for decidability and a
finite model property for guarded fragments of HTL. We then establish a partial expressive
hierarchy of guarded team logics, which is more complex than the hierarchy of non-guarded
team logics. Due to space limitations, we mainly focus on union closed logics.

2 First-Order Team Logic

In this section, we lay the foundation for the coming sections by providing basic definitions
and recalling relevant results from the study of first-order team logic and its extensions.

2.1 Basic definitions
▶ Definition 1. We use the following conventions throughout the paper.

Let A be a set and a = (a1, . . . , an) ∈ An be a tuple. We write [a] := {a1, . . . , an} for the
set of components, |x| := n for the length, and a ∈ A∗ if n is irrelevant.
An assignment to variables x into a set A ≠ ∅ is a map t : [x] → A. We write dom(t) = [x].
For any tuple y = (y1, . . . , yk) ∈ dom(t)k, we write t(y) := (t(y1), . . . , t(yk)), and similarily
t(X) := {t(x) | x ∈ X} for X ⊆ dom(t).
An update t

[
a
x

]
: dom(t) ∪ {x} → A of an assignment t is the assignment that maps x to

a, and agrees with t everywhere else. Further, t
[
a
x

]
= t
[
a1
x1

]
. . .
[
an

xn

]
.
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▶ Definition 2. We use the following conventions with regard to teams.
A team T is a set of assignments with a shared domain dom(T ). A team may be empty.
If dom(T ) = ∅, it may only contain the empty assignment.
For tuples x ∈ dom(T )∗ and sets X ⊆ dom(T ), we write T (x) := {t(x) | t ∈ T} and
T (X) = {t(X) | t ∈ T}.
Let F : T → P(A) \ ∅. The update of T (along F ) is the team T

[
F
x

]
:= {t

[
a
x

]
| t ∈ T, a ∈

F (t)}. For any set B ⊆ A, we write T
[
B
x

]
for the special case where F (t) = B for all

t ∈ T .

Now, we can inductively provide team semantics for formulae of first-order logic in
negation normal form. We are only using relational signatures σ.

▶ Definition 3 (Team semantics for FO). Let A be a σ-structure with universe A. Let T be a
team in A and φ ∈ FOσ. We assume that free(φ) ⊆ dom(T ).

If φ is a literal then A, T |= φ iff A, t |= φ for all t ∈ T .
If φ = φ1 ∧ φ2 then A, T |= φ iff A, T |= φ1 and A, T |= φ2.
If φ = φ1 ∨φ2 then A, T |= φ iff there are T1, T2 ⊆ T with T1 ∪T2 = T so that A, T1 |= φ1
and A, T2 |= φ2. We call T1, T2 a split of T .
If φ = ∃xψ then A, T |= φ iff there is an update T

[
F
x

]
so that A, T

[
F
x

]
|= ψ.

If If φ = ∀xψ then A, T |= φ iff A, T
[
A
x

]
|= ψ. We call T

[
A
x

]
the universal update of T

in A.

In addition to the syntax and semantics presented here, other propositional connectives
can be considered. However, most of them (like intuitionistic disjunction, implication or
strong negation) do not preserve some of the following convenient properties:

▶ Proposition 4. FO with team semantics satisfies the following properties:
Flatness: A, T |= φ if and only if for all t ∈ T,A, {t} |= φ.
Union-closure: A, T1 |= φ and A, T2 |= φ implies A, T1 ∪ T2 |= φ.
Downward closure: A, T |= φ and T ′ ⊆ T implies A, T ′ |= φ

Locality: A, T |= φ if and only if A, T↾free(φ)|= φ.
Empty team property: A, ∅ |= φ.

One could argue whether flatness is a desirable property, as it essentially reduces FO
with team semantics to classical FO. Still, this version of FO with team semantics provides
a clear base for the addition of team atoms.

2.2 Team Atoms
Team atoms are added to first-order team logic to describe atomic team properties that
correspond to interdependencies between the assignments in a team. The first and probably
best-known resulting logic was dependence logic [29]. Other notable team logics include
independence logics [20], inclusion logic and exclusion logic [12] and its combinations, which
extend FO with team semantics by one or more of the following team atoms:

▶ Definition 5 (Team atoms). Let A be a structure, let T be a team in A and let x, y, z ∈
dom(T )∗ be tuples of variables, where x and y have the same length.

Dependence: A, T |= = (x, z) if and only if the assignments to z depend on the
assignments to y, in the sense that for all t, t′ ∈ T , t(x) = t′(x) implies t(z) = t′(z).
Independence: A, T |= (x⊥zy) if and only if for all t, t′ ∈ T with t(z) = t′(z), there is a
t′′ ∈ T with t(x) = t′′(x) and t′(y) = t′′(y).
Inclusion: A, T |= (x ⊆ y) if and only if for all t ∈ T there is a t′ ∈ T with t(x) = t′(y).
Exclusion: A, T |= (x|y) if and only if for all t, t′ ∈ T we have t(x) ̸= t′(y).

CSL 2024
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FO(inc)νFO+ FO(exc)

FO(inc, exc)

FO with team semantics

FO(dep)

FO(indep)Σ1
1

Figure 1 An overview over the hierarchy of team logics. L → L′ means that L′ is at least as
expressive as L, with dotted arrows for sentences.

All of these are proper extensions of FO with team semantics, which can be seen by
analysing which of the properties in Proposition 4 are preserved.

▶ Proposition 6. FO(dep, indep, inc, exc) satisfies locality and has the empty team property.
FO(dep) and FO(exc) are downward closed, but not union closed. FO(inc) is union-closed,
but not downward closed. FO(indep) is neither downward nor union-closed. (cf. [12, 20, 29])

To further describe the expressive power of these logics, we can, on one hand, compare
them amongst themselves.

▶ Proposition 7.
FO(dep) ≡ FO(exc) [12].
FO(dep) ≡ FO(indep) for sentences [29],[20].
FO(inc, exc) ≡ FO(indep) [12].

On the other hand, it may be desirable to compare a team logic L to another logic L′ that
is not designed to handle teams. This can be achieved by interpreting the evaluation of a
team over given variables as a relation. For example, for any given formula φ(x) ∈ L, we can
then ask whether there is a corresponding φ′(R) ∈ L′ with a new relation symbol R so that
for every structure A and team T , we have that A, T |= φ(x) if an only if (A, T (x)) |= φ′(R).

In particular, all standard variations of first-order team logic are fragments of existential
second order Σ1

1 in this sense. To be more precise:

▶ Proposition 8.
For every formula φ ∈ FO(indep), there is a corresponding sentence φ(R) ∈ Σ1

1 and vice
versa [12].
For every formula φ ∈ FO(dep), there is a corresponding sentence φ(R) ∈ Σ1

1 where R
only appears negatively, and vice versa [25].
For every formula φ ∈ FO(inc), there is a corresponding sentence ∀x(Rx → ψ(R, x)) ∈
νFO+ (positive greatest fixpoint logic) and vice versa [13].

▶ Note. Positive greatest fixpoint logic νFO+ is an extension of first-order logic by positive
occurrences of greatest fixpoint operators [gfpS,x ψ(S, x)]y, thus being a fragment of least
fixed point logic. More details can be found e.g. in [23] for fixed point logics in general, and
in [13] for νFO+ in particular.

See Figure 1 for a summary of this section.
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3 Hybrid Team Logics

We introduce a new team logic called hybrid team logic. The name is inspired by hybrid
modal logics, a collection of extensions of modal logic by first-order machinery that was first
introduced in 1967 by Prior in [28] to deal with specific issues in temporal logics. For a
detailed account of the fundamentals of hybrid logics, see e.g. [2].

One of the main features of modal hybrid logics is the ↓ binder, which was introduced by
Goranko in [15] to “bind” the current world as the interpretation of a constant. This concept
can be transferred to team logics in the sense that teams can be bound as interpretations of
new relational variables.

▶ Definition 9. Hybrid team logic (HTL) is an extension of first-order logic with team
semantics by binders ↓ with the following semantics: for all structures A, teams T , variables
x ∈ dom(T )∗ and formulae φ(X) ∈ HTL where X is a new relation symbol of arity |x|,

A, T |=↓xXφ(X) ⇔ (A, T (x)), T |= φ(X).

The variables in x are considered free variables, i.e. free(↓xXφ(X)) = free(φ) ∪ [x].
The positive (negative) fragment HTL+ (HTL−) is the fragment of HTL where bound relations
may only occur positively (negatively).

We immediately notice that inclusion and exclusion atoms can be expressed in hybrid
team logic on an elementary level.

▶ Lemma 10. FO(inc) ⊆ HTL+, FO(exc) ⊆ HTL− and FO(inc, exc) ⊆ HTL.

Proof. We need to show that for every φ ∈ FO(inc) (FO(exc), FO(inc, exc)), there is a
φ′ ∈ HTL+ (HTL−, HTL) so that for all structures A and teams T ,

A, T |= φ ⇔ A, T |= φ′.

Recall that X is a relational variable, i.e. A, T |= Xx if and only if T (x) ⊆ XA and
A, T |= ¬Xx if and only if T (x) ∩XA = ∅. With that, it is straightforward to verify that

A, T |= (x ⊆ y) ⇔ A, T |=↓yX(Xx)

and

A, T |= (x|y) ⇔ A, T |=↓yX(¬Xx).

With that, we can replace every occurrence of an inclusion or exclusion atom in φ to get
the desired φ′. ◀

Taking a closer look at the positive fragment HTL+ of hybrid team logic, we shall see
that it is equivalent to inclusion logic FO(inc) and positive greatest fixpoint logic νFO+.
Considering Lemma 10, it is enough to show that HTL+ is a fragment of νFO+ in the sense
of Proposition 8.

One way to think about this equivalence is that each of the logics in question provides its
own tools (independence atoms, binders, teams, fixpoints), which can be simulated by the
other logics. For example, in the proof of FO(inc) ≡ νFO+ in [13], fixpoints are simulated in
FO(inc) by expanding any given team to a cartesian product, i.e. introducing a second team
(over fresh free variables) that represents the fixpoint and can be handled independently.

Another example already occurred in Proposition 8, where νFO+ could be used to
simulate teams via an additional relation. In general, this team will be manipulated when
evaluating a formula, e.g. by splitting or updating. This can be simulated with the help of
fixpoints.

CSL 2024
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▶ Theorem 11. For every φ(x) ∈ HTL+ there is a φ∗(R, x) ∈ νFO+ so that R only appears
positively and

A, T |= φ(x) ⇔ (A, T (x)), t |= φ∗(R, x) for all t ∈ T.

Proof. We use syntactic induction and retrace the proof of Theorem 15 in [13] regarding
everything except binders. If φ =↓xSψ(S, xy), by induction we have ψ∗(R,S, xy) and use

φ∗ = ψ∗(R,∃yR_y, xy),

i.e. ∃yR_y is supposed to replace S in the sense that every instance of Sx is replaced by
∃yRxy. This way, we have

A, T |= φ

⇔ (A, T (x)), T |= ψ(S, xy)
⇔ (A, T (xy), T (x)) , t |= ψ∗(R,S, xy) for all t ∈ T

⇔ (A, T (xy)) , t |= φ∗ for all t ∈ T,

because (A, T (x)), t |= Sx if and only if (A, T (xy)), t |= ∃yRxy. ◀

▶ Corollary 12. HTL+ ≡ FO(inc) ≡ νFO+

The question of whether the unique features available in some logic can be simulated in
another logic will be revisited in Section 5.

For the sake of completeness, we mention that the other team logics are also equivalent
to their respective counterparts from Lemma 10. A proof can be found in Appendix A.

▶ Proposition 13. HTL− ≡ FO(exc) and HTL ≡ FO(inc, exc).

4 Guarded Team Logics

In classical first-order logic, there are several equivalent ways to define the guarded fragment.
In particular, there are syntactic and semantic definitions. In the former case, we add guards
to quantification in the sense that, if quantification appears in a formula, it has to have the
form ∃x(α(xy) ∧ ψ(xy)) or ∀x(α(xy) → ψ(xy)) for some guard α. In the latter case, we
require the images of all assignments to be guarded.

Here, we work with one of the least restrictive variations of guarded logics, similar to [18].

▶ Definition 14. Let σ be a relational signature and A be a σ-structure with universe A.
The set of guards G(A) is defined as

G(A) := {G ⊆ A | G ⊆ [a], a ∈ RA, R ∈ σ ∪ {=}}.

As we can see, the set of guards in A contains all sets that are completely “covered” by a
tuple that occurs in a relation. The inclusion of “=” in the selection of guards entails that
all singleton sets are guarded.

▶ Definition 15. Let A be a relational structure.
A tuple a is guarded in A if [a] ∈ G(A).
An assignment t is guarded if t(dom(t)) ∈ G(A).
A team T is guarded if T (dom(T )) ⊆ G(A).
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It is clear that, in general, not all updates of guarded teams are guarded. However, there
always is a universal guarded update, i.e. a unique maximal guarded update that can take the
place of universal updates in guarded semantics. With this, we can define a guarded variant
of team logic by replacing the classical quantification of FO with guarded quantification.

▶ Definition 16. Guarded team logic GTL is defined analogously to standard FO with team
semantics, where quantification is replaced by guarded quantification in the following sense:

A, T |= ∀gxψ iff A, T ′ |= ψ for the universal guarded update T ′ of T↾free(ψ)\{x}.
A, T |= ∃gxψ iff A, T ′ |= ψ for some guarded update T ′ of T↾free(ψ)\{x}.

For tuples x = (x1, . . . , xn), we write ∃gxψ instead of ∃gx1 . . . ∃gxnψ (similarly for ∀).
Extending GTL by adding binders, inclusion atoms etc. yields guarded hybrid team logic

GHTL, guarded inclusion logic GTL(inc) etc. respectively. Binding teams with the ↓-operator
does not change the set of guards.

One of the features of guarded logics is the fact that quantification can be thought of as
moving from guarded patch to guarded patch. This is reflected by the evaluation of guarded
quantification through the restriction of T to those variables that are relevant for the inner
formula.
▶ Note. In general, there are several options to design guarded team logics. One obvious
candidate would be to use team semantics with the standard guarded fragment of FO, which
would entail guarding each quantification with a relational atom. However, this would
prohibit mixed teams, i.e. teams that contain assignments that are guarded by different
relations. In the non-team case, there is no tangible difference between both versions as all
assignments are considered independently, anyway. With teams, however, there are cases
where extensions of GF with team semantics are strictly weaker than extensions of GTL as
defined above (see Appendix B.2 for details).
▶ Note. GTL is technically not a fragment of FO with team semantics. The reason is that
guarded quantification implicitly introduces a disjunction over all relations in the signature.
For infinite signatures, this is not reproducible in FO. For any finite signature however, we
can find a translation between GTL and FO with team semantics (and their extensions).
For the rest of this paper, we therefore assume that all signatures are finite if not explicitly
stated otherwise (see Appendix B for details).

4.1 Properties of Guarded Team Logics
In Sections 2 and 3, we introduced several team logics and mentioned their properties in
Proposition 4. It is straightforward to verify that these properties translate to the respective
guarded variants of these logics. (See Appendix B for more details.)

This leaves the question whether we can lift desirable properties of classical guarded logic
to the team setting. We take a closer look at two specific properties.

▶ Proposition 17 ([1, 16]). The guarded fragment of classical first-order logic is decidable
since it has the finite model property, i.e. every satisfiable formula has a finite model.

▶ Remark 18. All logics with team semantics that are examined here have the empty team
property, i.e. all formulae are satisfied by the empty team across all structures. A sensible
notion of decidability and finite model property for team logics would therefore only regard
satisfaction by non-empty teams.
We can immediately show that guarded dependence logic GTL(dep) cannot have the finite
model property:

CSL 2024
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▶ Lemma 19. Let E be a binary relation symbol. The sentence

φ := ∃gx(∀gy¬Eyx) ∧
∀gz(∃gw(z ̸= w ∧ Ezw) ∧

∀gw(¬Ezw ∨ (Ezw ∧ =(z, w) ∧ =(w, z))))

is a satisfiable formula in GTL(dep) that is satisfied by a structure A only if A contains at
least one infinite simple E-path.

Proof. If A |= φ, then there is at least one element a without any E-predecessor. We
also know that every element has exactly one successor and at most one predecessor. This
implies that A consists of only cycles or infinite paths with or without starting point. The
vertex a cannot lie on a circle, so it has to be the starting point of an infinite path. Clearly,
(N, {(n, n+ 1) | n ∈ N}) satisfies φ. ◀

In contrast, guarded hybrid team logic GHTL has the finite model property and is
decidable. Both can be shown by reducing the satisfiability of formulae in GHTL to the
satisfiability of the classical guarded fragment.

▶ Theorem 20. Let σ be a relational signature and φ(x) ∈ GHTLσ. There is a signature
τ ⊇ σ ∪ {Rφ} and a formula φ∗(Rφ) ∈ GFτ so that all σ-structures A and guarded teams T
satisfy φ if and only if there is a expansion of A to a τ -structure A∗ so that (A∗, T (x)) |=
φ∗(Rφ).

Proof. The general strategy is to expand σ by relation symbols Rψ for all instances of
subformulae ψ of φ. Then, we include clauses in φ∗ that are only satisfied if the interpretations
of the Rψ provide a winning strategy for a basic model checking game that is similar to the
one presented in [29, section 5.2].

Let S(φ) be the set of (instances of) subformulae of φ, including φ itself, and let X (φ)
be the set of relational variables that are bound in φ. We define τ = σ ∪ {Rψ}ψ∈S(φ) ∪ X (φ)
and formulae φ∗(ψ) according to Appendix C.1 and define

φ∗ :=
∧

ψ∈S(φ)

φ∗(ψ).

There are a few technical details that have to be considered (see Appendix C.2), but overall,
it is straightforward to verify by syntactic induction that this is as required. ◀

We see that guarded hybrid team logic is uniquely suited for this type of translation,
because the concept of interchangeability between teams and relations that is at the core of
the proof is already included in the logic itself.

Moreover, we get a glimpse of why guarded dependence logic loses the finite model
property: the dependence atom is fundamentally non-guarded in the sense that it cannot be
defined by a formula in classical guarded logic. Another explanation would be the similarity
of GF(dep) to guarded logic with counting quantifiers, which also does not have the finite
model property and is undecidable [16].

▶ Corollary 21. GHTL has the finite model property and is decidable in the sense of
Remark 18.

Proof. From Theorem 20, we know that any φ ∈ GHTL is satisfied by some (possibly
infinite) structure A and non-empty team T with domain x if and only if φ∗ ∧ ∃xRφx is
satisfied by an appropriate expansion A∗ of A with RA∗

φ = T (x).
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Due to the finite model property of GF, we find a finite model (B∗, T ′(x)) satisfying
φ∗ ∧ ∃xRφx. Using Theorem 20, we get a finite model B, T ′ of φ with non-empty T ′

which proves the finite model property.
The translation from φ to φ∗ ∧ ∃xRφx ∈ GF is computable in linear time, so decidability
of GHTL follows directly from the decidability of GF. ◀

5 A Hierarchy of Union-Closed Team Logics

One takeaway from Lemma 19 and Corollary 21 is that the hierarchy of team logics in the
guarded case differs from the hierarchy in the non-guarded case.

▶ Corollary 22. GTL(dep) ̸⊆ GHTL−.

Of course, all the obvious inclusions like GTL(exc) ⊆ GTL(inc, exc) still hold, and the
translations of Lemma 10 work on an atomic level and are therefore unaffected by changes
to quantification.

▶ Corollary 23. GTL(inc) ⊆ GHTL+, GTL(exc) ⊆ GHTL−, GTL(inc, exc) ⊆ GHTL.

This also implies that there are formulae in guarded dependence logic that cannot be expressed
in guarded exclusion logic, contrary to the non-guarded case.

In this section, we further investigate the relative expressiveness of union-closed guarded
team logics, i.e. guarded inclusion logic GTL(inc), positive guarded hybrid team logic GHTL+

and guarded positive greatest fixpoint logic νGF+.
An upper bound for the expressiveness of these logics is GHTL. It is clear that GTL(inc) ⊆

GHTL+ ⊆ GHTL. The proof for νGF+ ⊆ GHTL can roughly be outlined as follows:
1. As mentioned towards the end of Section 3, in the non-guarded case, we could simulate

fixpoints by introducing them as new teams over fresh variables. This way, we could
effectively handle more than one team simultaneously. However, this strategy is not
available any more because in general, it would require a shared guard for all teams.

2. Let L be a team logic and R a relation symbol that may occur both positively and
negatively. For all tuples x of appropriate length and ψ ∈ L with free(ψ) ⊆ [x], we can
define a sentence φ(R,ψ) that is satisfied in a structure A if and only if RA, interpreted
as a team with domain [x], satisfies ψ.

3. We can bind a team, introduce a fixpoint, bind the fixpoint, and then “recover” the team
(using the sentence in 2.) and check whether it is in the fixpoint. This circumvents the
problem in 1.

However, the same strategy cannot be employed in GHTL+ or GHTL−, because the sentence
in 2. uses both positive and negative instances of R. Neither νGF+ nor GHTL− contains
the other because the former is union-closed and the latter is downward closed, but not vice
versa. By contrast, Theorem 11 can be easily adapted.

▶ Lemma 24. For every φ(x) ∈ GHTL+ there is a formula φ∗(R, x) ∈ νGF+ in which R

only appears positively and

A, T |= φ(x) ⇔ (A, T (x)), t |= φ∗(R, x) for all t ∈ T.

Proof. The proof is very similar to the one of Theorem 11. In most steps, quantification
does not matter, so we focus on the ones where it does:
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If φ = ∃gyψ(xy), let

φ∗ = ∃gy[gfpS,xy ∃gzRxz ∧ ψ∗(S, xy)]xy,

where the length of xz is equal to the arity of R. The tuple z is supposed to represent the
variables that are dropped from the domain of the team when evaluating the quantification.
An identical argument can be made for universal quantification.
If φ =↓xSψ(S, xy), let

φ∗ = ψ∗(R,∃gyR_y, xy),

matching the non-guarded case. ◀

We shall see that we have GHTL+ ≡ νGF+ for sentences but GHTL+ ⊊ νGF+ for
arbitrary formulae.

5.1 GHTL+ ≡ νGF+ on Sentences
To simplify notation, we introduce some abbreviations:

We write [gfpψ] instead of [gfpS,x ψ(S, x)] whenever the variables are not in focus.
For all structures A and fixpoints [gfpψ], we write [gfpψ]A for the interpretation of [gfpψ]
in A.

One direction of GHTL+ ≡ νGF+ is already included in Lemma 24. To show νGF+ ⊆
GHTL+, we provide a translation φ∗ ∈ GHTL+ for any sentence φ ∈ νGF+. To do that, we
design φ∗ so that first, all necessary fixpoints are simulated and bound, and then the sentence
is evaluated as usual, with the bound pseudo-fixpoints replacing the actual fixpoints.

In the process of applying the translation, we transition from νGF+ to GHTL+ fixpoint
by fixpoint. This leads to intermediate steps that involve the syntax of both logics. To
handle this combined logic, we need team semantics for νGF+, which we get by extending
the semantics of guarded team logic GTL by a clause for fixpoints:

▶ Definition 25. For all structures A, teams T and fixpoints [gfpψ],

A, T |= [gfpψ]x :⇔ T (x) ⊆ [gfpψ]A.

▶ Lemma 26. Let ψ ∈ νGF+ and let R be a new relation symbol.
1. A, T |= [gfpψ]x iff (A, [gfpψ]A), T |= Rx.
2. νGF+ with team semantics has the flatness property.
3. A, {t} |= ψ iff A, t |= ψ.
4. If (A, T (x)), T |= ψ(S, x), then A, T |= [gfpψ]x.
5. If T is maximal so that A, T |= [gfpψ]x, then (A, T ), T |= ψ(S, x).

Proof. 1. follows directly from Definition 25. The proofs for 2. and 3. are identical to the
proofs for non-guarded team logic, using 1. The proofs of 4. and 5. can then be reduced to
the respective proofs of [13, Lemma 14]. ◀

▶ Note. Lemma 26, part 2, does not imply flatness for GHTL+, even though it is a fragment
in the sense of Lemma 24. For this, the translations φ∗ would have to be flat with regard to
the relational encoding of the team, i.e.

for all t ∈ T : (A, T (x)), t |= φ∗ ⇔ for all t′ ∈ T : (A, {t′(x)}), t′ |= φ∗.
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As is, fixpoints may contain non-guarded tuples because the inner formulae are satisfiable
by non-guarded tuples (e.g. [gfpS,x1x2 ⊤]A contains every pair in the universe of A). However,
there are ways to replace these fixpoints without changing the guarded parts.

▶ Lemma 27. Let φ ∈ νGF+, let A be a structure and a be a tuple in A.
1. There is a formula φg ∈ νGF+ such that A, a |= φg if and only if A, a |= φ and a ∈ G(A).
2. [gfpφg]A = [gfpφ]A ∩ G(A).

Proof.
1. We can construct φg using trivial quantification, e.g. φg(x) := ∃gx′(x′ = x ∧ φ(x′)).
2. To show [gfpφg]A ⊆ [gfpφ]A ∩ G(A), we use the first part of this lemma twice. First, we

immediately get [gfpφg]A ⊆ G(A) because φg is only satisfiable by guarded tuples. Second,
for all a ∈ [gfpφg]A, we have (A, [gfpφg]A), a |= φg(x, S) and therefore (A, [gfpφg]A), a |=
φ(x, S) and with an argument similar to [13, Lemma 14] we get A, a |= [gfpφ]x.
For the other direction, let a ∈ [gfpφ]A ∩G(A), so we have (A, [gfpφ]A), a |= φ(x, S) and
therefore (A, [gfpφ]A), a |= φg(x, S) because a is guarded. When evaluating φg(x, S),
every occurrence of Sy will be evaluated by a guarded tuple (because a and every update of
a due to quantification is guarded). The non-guarded part of [gfpφ]A is therefore irrelevant
for the evaluation and can be omitted, which yields (A, [gfpφ]A ∩ G(A)), a |= φg(x, S).
Again, we refer to [13, Lemma 14] to get A, a |= [gfpφg]x and are done. ◀

We can now provide a tool to replace fixpoints by bound teams. To this end we allow
the creation of formulae that may contain both binders and fixpoints, as long as no fixpoint
contains a binder (bound relations are allowed). This way, we can always find a fixpoint with
a first-order inner formula, which is key for the translation to work.

▶ Lemma 28. Let φ([gfpψ]) be a sentence in νGF+ so that [gfpψ] appears in φ and ψ itself
does not contain fixpoints. Then

φ([gfpψ]) ≡ ∃gx ↓xX(ψ(X,x) ∧ φ(X)).

Proof. We show the equivalence for an arbitrary structure A. Without loss of generality,
we can assume that fixpoints are guarded because they are always evaluated by guarded
teams. As such, only the guarded part of the fixpoint matters, and we can always find a
corresponding fixpoint due to Lemma 27.

For one direction, assume A |= φ([gfpψ]). Because we can assume that fixpoints are
guarded, it suffices to show

(A, [gfpψ]A), [gfpψ]A |= ψ(X,x) ∧ φ(X).

For (A, [gfpψ]A), [gfpψ]A |= ψ(X,x), we use Lemma 26, part 5, as [gfpψ]A obviously is
maximal. Also, we can use the assumption and Lemma 26, part 1, to replace every instance
of [gfpψ]x in φ with Xx to get (A, [gfpψ]A), [gfpψ]A |= φ(X).

For the other direction, let T be a witness for the existential claim. From (A, T (x)), T |=
ψ(X,x), it follows that T ⊆ [gfpψ]A according to Lemma 26, part 4, and Definition 25.
We also have (A, T (x)) |= φ(X), and because X occurs only positively in φ, satisfaction
of φ is preserved whenever the interpretation of X is replaced by a superset. This yields
(A, [gfpψ]A) |= φ(X). We replace all instances of Xx with [gfpψ]x using Lemma 26, part 1,
and are done. ◀

▶ Theorem 29. νGF+ ≡ GHTL+ for sentences.
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Proof. GHTL+ ⊆ νGF+ is already established for formulae in Lemma 24. Towards νGF+ ⊆
GHTL+, let σ be a signature and φ ∈ νGF+ be a sentence. We start by applying Lemma 28
on one of the “innermost” fixpoints [gfpψ1] of φ, i.e. one that does not contain other fixpoints,
to get

φ1 := ∃gx ↓xX1(ψ1(X1, x) ∧ φ(X1)).

We notice that φ(X1) is again a sentence in νGF+ over the signature σ ∪ {X1} that now
contains one fixpoint less. This allows for repeated application of Lemma 28 until all fixpoints
are eliminated and we get a formula of the form

φn :=∃gx1 ↓xX1(ψ1(X1, x1)
∧ ∃gx2 ↓xX2(ψ2(X2, x2)
. . .

∧ ∃gxn ↓xXn(ψn(Xn, xn) ∧ φ(X1, . . . , Xn)) . . .)),

where φ(X1, . . . , Xn) is a first-order sentence. All instances of bound relations are positive,
because they only replace fixpoints or relation variables in fixpoints, which only appear
positive in νGF+. Therefore, φn ∈ GHTL+ and we are done. ◀

5.2 GF(inc) ⊊ GHTL+ ⊊ νGF+ on Formulae
The aim of this section is to show that on formulae, guarded positive greatest fixpoint logic
is more expressive than positive guarded hybrid team logic, which in turn is more expressive
than guarded inclusion logic. For this, we take a closer look at the nature of quantification
in guarded logics.

Quantification in guarded logics can either be local or global, which means that the new
assignment or team either has to be guarded together with (parts of) the old assignment or
team, or the previous team can be “forgotten”. More specifically, we say that a subformula
Qgxψ (where Q ∈ {∀,∃}) corresponds to a global move if free(ψ) ⊆ [x], i.e. Qgxψ is a
sentence. This motivates the following definitions :

▶ Definition 30.
For all formulae φ, any subformula of φ that is a sentence on its own is called a
subsentence of φ. In general, there will be subsentences that do contain other subsentences.
Gaifman-neighbourhoods [11]: For any σ-structure A with universe A and subset B ⊆ A,
we inductively define the l-neighbourhood n(B, l) according to n(B, 0) = B and

n(B, l + 1) =
{
a ∈ A

∣∣∣∣∣ ∃a ∈
⋃
R∈σ

RA s.t. a ∈ [a] and [a] ∩ n(B, l) ̸= ∅

}
.

For any assignment t with domain dom(t) = X, we write n(t, l) := n(t(X), l). For any
team T with domain dom(T ) = X, we define

n(T, l) := n

(⋃
t∈T

t(X), l
)
, or equivalently n(T, l) :=

⋃
t∈T

n (t, l) .

Let T be a team in A with dom(T ) = X and T ′ ⊆ T . We say that T ′ is an l-local cluster
in T if, for all t ∈ T , we have t ∈ T ′ or

n(t, l) ∩ n(T ′, l) = ∅.
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Let A,B be structures, TA, TB be teams with domain X and CA, CB be l-local clusters in
TA, TB respectively. We say that CA and CB are l-locally isomorphic (A, CA ≃l B, CB)
if there is a bijection π : CA → CB that can be extended to an isomorphism ι : n(CA, l) →
n(CB, l) on the induced substructures in the sense that for all x ∈ X and tA ∈ TA, we
have ι(tA(x)) = π(tA)(x).
The local rank lr(φ) is defined inductively, identically to the standard quantifier rank for
guarded logics, with one essential difference: lr(φ) = 0 if φ is a (sub)sentence.

The concept of local clusters and local isomorphism gives us a strong criterion for local
indistinguishability.

5.2.1 GHTL+ ̸⊆ GF(inc)
If there are two teams in the same structure that cannot be distinguished locally, both teams
satisfy the same GF(inc)-formulae.

▶ Lemma 31. Let A be a σ-structure and l ∈ N. Let T1 and T2 be teams in A such that
for every (l + 1)-local cluster C2 in T2, there is an (l + 1)-local cluster C1 in T1 such that
A, C1 ≃l+1 A, C2. Let φ ∈ GF(inc) be a formula with locality rank lr(φ) ≤ l. Then A, T1 |= φ

implies A, T2 |= φ.

Proof. The full proof can be found in Appendix D. In short, we use syntactic induction.
For (sub)sentences, the current teams are irrelevant and we have A, T1 |= φ if and only if
A |= φ if and only if A, T2 |= φ. For everything else, we mainly have to make sure that we
can match every local move (or split) in T1 by a local move (or split) in T2 that preserves
the preconditions. This is always provided by the local isomorphism. ◀

It is clear that the precision of this invariance is not comparable to results like bisimulation
invariance of GF or GTL. Still, it is a strong enough tool so show our intended result by
providing an example of an inexpressible property using a specific class of structures.

▶ Definition 32. For n ≥ 3, let Bn consist of an n-cycle and an n-line, i.e. Bn is an
{E}-structure with universe Bn := {b1, . . . , bn, c1, . . . , cn} and

EBn = {(bi, bi+1) | 1 ≤ i < n)} ∪ {(ci, ci+1) | 1 ≤ i < n} ∪ {(cn, c1)}.

▶ Lemma 33. Let ℓ ∈ N and φ ∈ GF(inc) with lr(φ) ≤ ℓ. Let B2ℓ+4 be as defined in
Definition 32 and let TC := {x 7→ cℓ+2} and TL := {x 7→ bℓ+2} be two teams with domain
{x} consisting of just one assignment each. Then

B2ℓ+4, TC |= φ ⇔ B2ℓ+4, TL |= φ.

Proof. If we can show that the prerequisites of Lemma 31 are fulfilled in both directions, we
are done. Obviously, both TC and TL consist of only one (ℓ+1)-local cluster, for which we only
have to show that there is an isomorphism ι : n(TC , ℓ+1) → n(TL, ℓ+1) so that ι(cℓ+2) = bℓ+2.
We notice that n(TC , ℓ+ 1) = {c1, . . . , c2ℓ+3} and n(TL, ℓ+ 1) = {b1, . . . , b2ℓ+3}. It is then
straightforward to check that ι(ci) = bi fulfils the requirements. ◀

▶ Theorem 34. GHTL+ ̸⊆ GF(inc).

Proof. In Lemma 33, we saw that there cannot be a formula separating Bn, TL from Bn, TC
for all n ∈ N. However, there is such a formula in GHTL+, namely

φ(x) :=↓xX(∃gyz(Eyz∧ ↓yzY (∃gw(Ezw ∧ Y zw) ∧ ∃guv(Euv ∧ Y uv ∧Xu)))),
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which is always satisfied by TC but not by TL. After binding the starting team to X, we
move to a binary team Tyz with the property that for each edge in Tyz, we can move one
step further on the graph and still be in Tyz. This can only be the case if Tyz consists exactly
of all edges of the cycle. We bind this team and then move to another team Tuv that may
only consist of edges on the cycle where the first node is in X. This can only be possible if
the vertex in the original team was on the cycle. ◀

5.2.2 νGF+ ̸⊆ GHTL+

This section builds upon the previous one. In particular, we want to provide an inexpressibility
result for GHTL+ similar to Lemma 31. All the observations about local behaviour in guarded
logics still apply, but we now have to account for the fact that teams can be bound with ↓
and then “carried” through global moves. To handle this, we can make use of the fact that
these bound teams appear only positively, which means that a subsentence is still satisfied
when replacing bound teams by supersets.

▶ Lemma 35. Let τ = σ ∪ σ+ be a signature and l ∈ N. Let A be a σ-structure and let
A1, A2 be expansions of A to τ so that for all R ∈ σ+, we have RA1 ⊆ RA2 . Let T1 ⊆ T2
be teams in A2 such that T1 is an (l + 1)-local cluster in T2 (with respect to A2) and for
every (l + 1)-local cluster C2 in T2, there is a (l + 1)-local cluster C1 in T1 ⊆ T2 so that
A1, C1 ≃l+1 A2, C2.
Let φ ∈ GHTL+ be a formula with locality rank lr(φ) ≤ l such that all relations in σ+ appear
only positively. Then A1, T1 |= φ implies A2, T2 |= φ.

▶ Note. Even though local clusters are supposed to capture the intuition of locally isolated
partitions, the union of two or more disjoint local clusters is still a local cluster and a union
of local isomorphisms is still a local isomorphism.

Proof of Lemma 35. Overall, the proof is very similar to the proof of Lemma 31. Concerning
local behaviour, it is identical except for the case φ =↓xRψ. Here we need to show that
(A1, T1(x)), T1 |= ψ implies (A2, T2(x)), T2 |= ψ. If we can show that (A1, T1(x)), T1 and
(A2, T2(x)), T2 satisfy the preconditions of the lemma, we are done by induction.

First, we notice that T1(x) ⊆ T2(x) because T1 ⊆ T2.
T1 is still an (l + 1)-local cluster in T2: else, the neighbourhoods of T1 and T2 \ T1 in
(A2, T2(x)) would overlap. This means there is a short path from T1 to T2, i.e. a tuple of
guarded sets (G1, . . . , Gn) so that n ≤ 2l+ 2, G1 ∈ T1(X) and Gn ∈ T2(X) \ T1(X) with
dom(T2) = dom(T1) = X. We can assume that this path is minimal, which in particular
means that no Gi is guarded by T2(x) for 1 ≤ i < n. But this means this path would
already exist in A2 without the expansion by T2(x), and T1 would not have been a cluster
in T2 in the first place.
The same argument can be extended to all other clusters in T2 and T1 in the sense that
they still are clusters after the expansion, so we can keep the correspondence of clusters
between T1 and T2.
For every pair of corresponding cluster A1, C1 ≃l+1 A2, C2, with local isomorphism
(ι, π), we have to show (A1, T1(x)), C1 ≃l+1 (A2, T2(x)), C2. For this, it suffices to
show that for all tuples a with [a] ⊆ n(C1, l + 1) we have a ∈ T1(x) if and only if
ι(a) ∈ T2(x). But a ∈ T1(x) if and only if there is a t1 ∈ T1 with a = t(x), so
ι(a) = ι(t1(x)) = π(t1)(x) ∈ C2(x) ⊆ T2(x) (the other direction is similar).
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As soon as we reach a subsentence ψ, we can ignore the team, which leaves the interpret-
ations of relations in σ+ as the only remaining difference between A1 and A2. But these
relations only appear positively, and all interpretations of these relations in A2 are supersets
of the interpretations in A1. So any evaluation that satisfies ψ in A1 can be applied to A2 as
well. ◀

▶ Lemma 36. Let ℓ ∈ N and φ ∈ GHTL+ with lr(φ) ≤ ℓ. Let B2ℓ+4 be as defined in
Definition 32 and let TB := {x 7→ bℓ+2, x 7→ cℓ+2} and TC := {x 7→ cℓ+2} be two teams with
domain {x}. Then

B2ℓ+4, TC |= φ ⇒ B2ℓ+4, TB |= φ.

Proof. Again, it is enough to show that Lemma 35 is applicable. We assume σ+ = ∅. We
have TC ⊆ TB and each assignment in TB is its own (ℓ+ 1)-local cluster, both of which are
locally isomorphic to the cluster in TC . ◀

▶ Theorem 37. νGF+ ̸⊆ GHTL+.

Proof. Similar to the proof of Theorem 34, we provide a formula φ ∈ νGF+ in the required
format (see Proposition 8) that is satisfied by all (Bn, TC) but not by (Bn, TB):

φ := ∀gx(Rx → [gfpS,x ∃gy(Exy ∧ Sy)]x)

is satisfied in Bn if and only if all elements in the teams are part of the cycle, so exactly as
required. ◀

6 Closing Remarks

We have seen that guarded team logics bring together many desirable properties of guarded
logics and team logics. Hybrid team logics in particular not only offer a new perspective on
well-known team logics as seen in Section 3, we could also easily show in Corollary 21 that
the guarded variants are decidable and have the finite model property. In Section 5 we also
showed that positive guarded hybrid team logic provides an intermediate step in the hierarchy
of expressiveness between guarded inclusion logic and guarded positive greatest fixpoint logic.
An important ingredient for this was the separation of local and global behaviour of guarded
formulae, which we used to establish a strict hierarchy through Lemma 31 and Lemma 35.

It remains an open question whether GF(inc) ≡ GHTL+ for sentences. Further, the
expressiveness of downward closed guarded team logics like guarded dependence logic, was
largely set aside for this paper. This also extends to related questions, e.g. which fragments of
existential second order logic correspond to guarded independence logic and guarded hybrid
team logic, respectively. It might also be worthwhile to revisit basic design questions for
guarded team logics such as which notion of guardedness is appropriate in which contexts, or
what effect the addition of further propositional connectives would have.
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A Proposition 13: Negative and Full Hybrid Team Logic

We outline a proof for Proposition 13. In both cases, one part of the equivalence is already
shown in Lemma 10. The other part uses syntactic induction, which poses one particular
challenge: when we evaluate a formula that contains binders, we may accumulate bound
relations over the course of this evaluation. In the proof of Theorem 11, the translation from
φ to φ∗ “records” each change of the team using fixpoints, which automatically makes the
bound teams available if needed. Therefore, we do not have to deal with the afromentioned
accumulation in the induction.

In the proofs of Proposition 13 (and also if we wanted to prove HTL+ ⊆ FO(inc) directly),
this strategy is not available. Instead, we want to save bound teams over fresh free variables
and refer to them using exclusion (or inclusion) atoms. This results in a slightly more general
statement.
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▶ Theorem 38. Let σ be a signature and Γ be a set of relational variables with σ ∩ Γ = ∅.
Let (xX)X∈Γ be a family of pairwise disjoint tuples of variables such that |xX | is equal to the
arity of X, and let y be a tuple of additional fresh variables.

For every φ(x,Γ) ∈ HTL− so that all X ∈ Γ appear only negatively, there is a
φ+(x, (xX)X∈Γ) ∈ FO(exc) such that

(A, (XA)X∈Γ), T |= φ(y,Γ) ⇔ A, T

[
XA

xX

]
X∈Γ

|= φ+(y, (xX)X∈Γ).

Proof. Literals in σ, ∧, and quantification are straightforward. If φ = ¬Xy for some X ∈ Γ,
we use φ+ = (xX⊥y) as both formulae are satisfied if and only if T (y) ∩XA = ∅. This leaves
disjunctions and binders. In both cases, we make use of the fact that we may use dependence
atoms because FO(exc) ≡ FO(exc,dep).

If φ = α ∨ β, let

φ+ = ∃zz′ww′( =(y, zz′) ∧ =(y, ww′) ∧ (z = z′ ∨ w = w′)
∧ (z ̸= z′ ∨ (z = z′ ∧ α+)) ∧ (w ̸= w′ ∨ (w = w′ ∧ β+))).

In short, a team S satisfies φ+ if and only if it can be split into two subteams Sα∪Sβ = S

so that Sα satisfies α∗ and Sβ satisfies β∗. In particular, this split only depends on
the assignments to y, so if S has the form S↾y ×S′ with dom(S′) = dom(S) \ [y], the
subteams have the form Sα↾y ×S′ and Sβ↾y ×S′.
Because y and all xX are supposed to be disjoint, T

[
XA

xX

]
X∈Γ

has this form and we

have A, T
[
XA

xX

]
X∈Γ

|= φ+ if and only if there is some split Tα ∪ Tβ = T such that

A, Tα
[
XA

xX

]
X∈Γ

|= α+ and A, Tβ
[
XA

xX

]
X∈Γ

|= β+. By induction, this is equivalent to
A, Tα |= α and A, Tβ |= β, which is equivalent to A, T |= φ as required.
If φ =↓y′Y ψ(y,Γ, Y ) for some [y′] ⊆ [y], let

φ+ = ∀xY ∃zz′( =(xY , zz′) ∧ ((z = z′ ∧ ψ+(y, (xX)X∈Γ, xY )) ∨ (z ̸= z′ ∧ (xY |y′)))).

Similar to the above case, a team S satisfies φ+ if and only if there is a superset S′ of
S(y′) so that S

[
S′

xY

]
satisfies ψ+. (†)

Applying (†) in one direction, if A, T
[
XA

xX

]
X∈Γ

|= φ+, there is a superset T ′ of T (y′) so

that A, T
[
XA

xX

]
X∈Γ

[
T ′

xY

]
|= ψ+. Because exclusion logic is downward closed, this implies

A, T
[
XA

xX

]
X∈Γ

[
T (y′)
xY

]
|= ψ+, which by induction is equivalent to (A, (XA)X∈Γ, T (y′)), T |=

ψ. Using the definition of binders, we get (A, (XA)X∈Γ), T |= φ as required.
For the other direction, we can trace the same steps backwards, except for the one using
downward closure. Considering (†), we know that A, T

[
XA

xX

]
X∈Γ

[
T (y′)
xY

]
|= ψ+ directly

implies A, T
[
XA

xX

]
X∈Γ

|= φ+ and we are done. ◀

▶ Theorem 39. Let σ be a signature and Γ be a set of relational variables with σ ∩ Γ = ∅.
Let (xX)X∈Γ be a family of pairwise disjoint tuples of variables such that |xX | is equal to the
arity of X, and let y be a tuple of additional fresh variables.

For every φ(x,Γ) ∈ HTL there is a φ#(x, (yX)X∈Γ) ∈ FO(inc, exc) such that

(A, (XA)X∈Γ), T |= φ(y,Γ) ⇔ A, T

[
XA

xX

]
X∈Γ

|= φ#(y, (xX)X∈Γ).
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Proof. Again, ordinary literals, ∧, and quantification is straightforward. Negative literals in
Γ and ∨ are exactly as in the proof above, which does not rely on any properties that are
specific to FO(exc). This leaves binders.

In the proof above, we approximated the bound team with a superset, which was sufficient
because of downward closure. Here, we can identify the team directly using both inclusion
and exclusion atoms. So if φ =↓y′Y ψ(y,Γ, Y ) for some [y′] ⊆ [y], let

φ# = ∀xY ∃zz′( =(xY , zz′) ∧ ((z = z′ ∧ (xY ⊆ y′) ∧ ψ#) ∨ (z ̸= z′ ∧ (xY |y′)))).

A team S satisfies φ# if and only if S
[
S(y′)
xY

]
satisfies ψ#. With that, we can adapt the above

proof to not require downward closure and are done. ◀

Proposition 13 follows from these theorems for Γ = ∅ and Lemma 10.

B Syntactic Definitions of Guarded Team Logics

Proof that for a given finite signature, every formula in guarded logics is expressible as a
formula in non-guarded logics:

▶ Lemma 40. Let σ be a finite signature. Let L be a first-order team logic and let GL be
the guarded variant in the sense of Definition 16, i.e. quantification is replaced by guarded
quantification. Then for all φ ∈ GL there is a φσ ∈ L so that for all σ-structures A with
team T we have

A, T |= φ ⇔ A, T |= φσ.

Proof. It suffices to show that quantification is replaceable. For this, we use an auxilliary
formula Gσ(x) ∈ FO that is satisfied by a team T if and only if T (x) is guarded. With this,
for all formulae ψ with free(ψ) = [xy], we have

∃gxψ ≡ ∃x(Gσ(xy) ∧ ψσ) and ∀gxψ ≡ ∀x(¬Gσ(xy) ∨ (Gσ(xy) ∧ ψσ),

where ¬Gσ(xy) is the negated formula in negation normal form. As Gσ is in FO and
therefore flat, any formula with the same purpose for GF can be used (see for example [17,
Section 3]). ◀

In particular, this proves that the properties of Proposition 6 transfer to their guarded
variants, which we show for union-closed logics as an example.

▶ Lemma 41. Let L be a union-closed team logic and GL be the guarded variant of L. Then
GL is also union-closed.

Proof. Let φ ∈ GL, and let A be a σ-structure with teams T1 and T2 such that A, T1 |= φ

and A, T2 |= φ. By Lemma 40, there exists a φσ ∈ L that is equivalent to φ on σ-structures,
so A, T1 |= φσ and A, T2 |= φσ. The union-closure of L yields A, T1 ∪ T2 |= φσ and therefore
A, T1 ∪ T2 |= φ as required. ◀

We see that this same strategy can be applied to all properties in Proposition 4.

CSL 2024
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B.1 A Note on Structures with Infinite Signature
Over infinite signatures, there are formulae in GTL that cannot have an equivalent formula
in FO with team semantics, which we prove by giving a counterexample:

Let σ = {E1, E2, . . .} consist of infinitely many binary relations, and let A be a σ-structure
with universe N × {0, 1} and ((n, b), (m, c)) ∈ Ei if and only if n = m = i and b ̸= c, i.e. each
relation consist of exactly one (symmetric) edge and each element in the universe has exactly
one partner. The sentence φ := ∀gx∃gy(x ̸= y) is satisfied if and only if each element has
a partner, so it is satisfied in A, but not in any reduct of A. But as we know, any formula
ψ ∈ FO can only contain a finite set of relations σψ ⊂ σ, and is therefore satisfied in A if
and only if it is satisfied in the reduct of A to σψ. Therefore, ψ cannot be equivalent to φ.

B.2 The Standard Guarded Fragment with Team Semantics
We take a closer look at GF with team semantics, i.e. FO with team semantics where each
quantification in a formula is accompanied by a guard that only consists of one atom (see [1]).
We provide an example for a property that is expressible in GTL(inc), but not in GF(inc). In
GTL(inc), the sentence φ := ∃gxy((Exy ∨ Fxy) ∧ (y ⊆ x)) is satisfied by a (directed) graph
with coloured edges if and only if there is an infinite walk along E- and F -edges. This is
impossible to express in GF(inc), as can be seen by comparing the following two structures.

Let A be a structure with universe A = {(n,m) ∈ N × N | m ≤ n} and relations
EA := {((n, i), (n, i+ 1)) | i ≡ 0 mod 2} and FA := {((n, i), (n, i+ 1)) | i ≡ 1 mod 2}, i.e.
A consists of finite paths of increasing length that alternate between E- and F -edges. Let B

be a structure with universe B := A ⊎ {∞} × N and relations similar to A so that we again
have an infinite number of alternating paths, but now including a path of infinite length. We
have B |= φ, but A ̸|= φ in GTL.

In both A and B, every E(F )-edge is disjoint from every other E(F )-edge. This means
that for every GF-guarded team T in one of the structures, T |= (x ⊆ y) if and only if
T |= x = y. Therefore, A and B can only be distinguished by a sentence in GF(inc) if they
can be distinguished by a sentence in GF. Due to flatness, this is only possible if they can
be distinguished by a sentence in the standard GF, which is known to be impossible.

C The Proof of Theorem 20 in Detail

C.1 Translations
In Table 1, we provide a detailed account of all translations used in the proof of Theorem 20.
For better readability, we use a few abbreviations:

Let x, y, z be tuples. If [y] ⊆ [x], we use α(y) ⊆ β(x) as an abbreviation for ∀gy(α(y) →
∃gz(β(x))) with [x] = [y] ⊎ [z]. If [x] ⊆ [y], we use α(y) ⊆ β(x) as an abbreviation for
∀gy(α(y) → β(x)). Correspondingly (α(y) = β(x)) := (α(y) ⊆ β(x)) ∧ (β(x) ⊆ α(y)).

C.2 Further Details
We provide a proper account of the model checking game that is referenced in the proof.

For all structures A, team T and φ ∈ GHTL, we can inductively define a model checking
game G(A, T, φ) as a two player game with perfect information. Player II (“Verifier”) wants
to show that A, T |= φ, while player I (“Falsifier”) tries to spoil it for II. During the game,
both players may move to positions (S, ψ)A with S being a team in A and ψ ∈ GHTL. The
starting position for the game G(A, T, φ) is (T, φ)A.
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Table 1 Translations used in the proof of Theorem 20.

ψ = φ∗(ψ) :=

α(x) for some literal α in σ ∪ X (φ) Rψx ⊆ α(x)
ψ1(y1) ∧ ψ2(y2) with [x] = [y1] ∪ [y2] (Rψx = Rψ1y1) ∧ (Rψx = Rψ2y2)

ψ1(y1) ∨ ψ2(y2) with [x] = [y1] ∪ [y2] (Rψx ⊆ (Rψ1y1 ∨Rψ2y2))
∧ (Rψ1y1 ⊆ Rψx) ∧ (Rψ2y2 ⊆ Rψx)

∃gyϕ(xy) with [x] = free(ϕ) \ [y] ∀gx(Rψx ↔ ∃gyRϕxy)
∀gyϕ(xy) with [x] = free(ϕ) \ [y] ∀gx(Rψx ↔ ∀gyRϕxy)

↓xXϕ(xy) (Xx = Rψxy) ∧ (Rψxy = Rϕxy)

In any position (S, ψ)A, the rules of the game are as follows:

If ψ is a literal, II wins if A, S |= ψ, else I wins.

If ψ = ψ1 ∧ ψ2, then I decides whether the game proceeds from (S, ψ1)A or (S, ψ2)A.

If ψ = ψ1 ∨ ψ2, then II chooses a split S1 ∪ S2 = S and I decides whether the game
proceeds from (S1, ψ1)A or (S2, ψ2)A.

If ψ = ∃gxϕ, then II chooses a guarded update S′ of S and the game proceeds from
(S′, ϕ)A.

If ψ = ∀gxϕ, then let S′ be the universal guarded update of S and the game proceeds
from (S′, ϕ)A.

If ψ =↓xXϕ, then the game proceeds from (S, ϕ)(A,S(x)).
As we can see, the definition of the game mirrors the semantics of GHTL. As such, it is clear
that a winning strategy for II in the game G(A, T, φ) is equivalent to A, T |= φ.

In the proof, we use the fact that II has a winning strategy in the game G(A, T, φ(x)) if
and only if there is an expansion A∗ of A with RA∗

φ = T (x) so that A∗ |= φ∗. This strategy
is provided by the Rψ in the sense that each of the translations in Appendix C.1 corresponds
to a winning strategy in one of the positions of the game. For example, if II has a winning
strategy in position (RA∗

ϕ , ϕ)A, then A∗ |= ∀gx(Rψx ↔ ∃gyRϕxy) if and only if II has a
winning strategy in position (RA∗

ψ , ψ)A for ψ = ∃gyϕ(xy).
As already stated at the end of the proof, there are a few technical details that have to

be considered:

1. In general, the arity of Rψ should correspond to the number of free variables in ψ. If ψ is
a sentence, then Rψ would be 0-ary. We circumvent this by choosing Rψ to be unary.
This way, the winning strategy should include the position (∅, ψ)A if RA∗

ψ is empty, and
({∅}, ψ)A else. In the latter case, the specific interpretation of Rψ does not matter, as it
only serves as a distinction between the empty assignment {∅} and the empty team.

2. This also requires a modification of the translation in the case that ψ is a sentence that
starts with a quantification.
If ψ = ∃gxϕ(x), then φ∗(ψ) = ∃gyRψy → ∃gxRϕx.
If ψ = ∀gxϕ(x), then φ∗(ψ) = ∃gyRψy → ∀gxRϕx.
This prevents false positives by making sure that the interpretation of Rϕ is non-empty if
the interpretation of Rψ is non-empty.
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D Proof of Lemma 31

Recall Lemma 31:
Let A be a σ-structure and l ∈ N. Let T1 and T2 be teams in A such that for every (l+ 1)-

local cluster C2 in T2, there is a (l+ 1)-local cluster C1 in T1 such that A, C1 ≃l+1 A, C2. Let
φ ∈ GF(inc) be a formula with locality rank lr(φ) ≤ l. Then A, T1 |= φ implies A, T2 |= φ.

Proof. We use syntactic induction.
For classical literals, 1-local isomorphisms imply atomic equivalence.
Inclusion atoms are also handled by 1-local isomorphism: we assume A, T1 |= (x ⊆ y)
and t ∈ T2. Then there is a 1-local cluster C2 in T2 containing t and a corresponding
1-local cluster C1 in T1 with bijection π from C1 to C2. We then find some t′ ∈ T1 so that
t′(y) = π−1(t)(x) by assumption. Because C1 is a 1-local cluster, we also have t′ ∈ C1
and by commutativity of the maps this yields π(t′)(y) = t(x).
Conjunctions are straightforward. For disjunctions, we show that every split T 1

1 ∪T 2
1 = T1

can be used to find a split T 1
2 ∪ T 2

2 = T2 that preserves the preconditions of the lemma.
For this, let C2 be a cluster in T2 and C1 be the corresponding cluster in T1 with local
isomorphism (ι, π). Clearly, C1

1 = C1 ∩ T 1
1 and C2

1 = C1 ∩ T 2
1 form a split of C1, and thus

C1
2 = π(C1

1 ) and C2
2 = π(C2

1 ) form a split of C2. Let T 1
2 be the union of all C1

2 and T 2
2

be the union of all C2
2 . Then T 1

2 ∪ T 2
2 = T2. For all i, j ∈ {1, 2}, Cji is a cluster in T ji and

A, Cj1 ≃l+1 A, Cj2 . By construction, we find a corresponding Cj1 for all Cj2 and are done.
For local universal quantification, the guarded universal update of each (l + 1)-local
cluster is still a l-local cluster, and the guarded universal update of two (l + 1)-locally
isomorphic clusters are still l-locally isomorphic.
For local existential quantification, we can argue similarly to the local universal case. For
any cluster C2 in T2, there might be several l + 1-locally isomorphic clusters C1

1 , C
2
1 , . . .

in T1 which might not be l-locally isomorphic in the update of T1 anymore. However, we
just have to update C2 in a way so that there is some corresponding cluster in the update
of T1, for which we can choose any of the possible candidates, e.g. C1

1 , and update C2
according to the image of C1

1 under the local isomorphism.
For global quantification, when evaluating a (sub)sentence, the current teams are irrelevant
and we have A, T1 |= φ if and only if A |= φ if and only if A, T2 |= φ. ◀
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