
Descriptive Complexity for Neural Networks via
Boolean Networks
Veeti Ahvonen # Ñ

Tampere University, Finland

Damian Heiman #

Tampere University, Finland

Antti Kuusisto #Ñ

Tampere University, Finland

Abstract
We investigate the descriptive complexity of a class of neural networks with unrestricted topologies
and piecewise polynomial activation functions. We consider the general scenario where the running
time is unlimited and floating-point numbers are used for simulating reals. We characterize these
neural networks with a rule-based logic for Boolean networks. In particular, we show that the sizes
of the neural networks and the corresponding Boolean rule formulae are polynomially related. In
fact, in the direction from Boolean rules to neural networks, the blow-up is only linear. We also
analyze the delays in running times due to the translations. In the translation from neural networks
to Boolean rules, the time delay is polylogarithmic in the neural network size and linear in time.
In the converse translation, the time delay is linear in both factors. We also obtain translations
between the rule-based logic for Boolean networks, the diamond-free fragment of modal substitution
calculus and a class of recursive Boolean circuits where the number of input and output gates match.

2012 ACM Subject Classification Computing methodologies → Neural networks; Theory of com-
putation → Finite Model Theory; Mathematics of computing → Numerical analysis; Computer
systems organization → Parallel architectures

Keywords and phrases Descriptive complexity, neural networks, Boolean networks, floating-point
arithmetic, logic

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.9

Related Version Full Version: https://arxiv.org/abs/2308.06277

Funding Antti Kuusisto was supported by the Academy of Finland project Theory of computational
logics, grant numbers 352419, 352420, 353027, 324435, 328987. Damian Heiman was supported
by the same project, grant number 353027. Antti Kuusisto was also supported by the Academy
of Finland consortium project Explaining AI via Logic (XAILOG), grant number 345612. Veeti
Ahvonen was supported by the Vilho, Yrjö and Kalle Väisälä Foundation of the Finnish Academy of
Science and Letters.

1 Introduction

This article investigates the descriptive complexity of neural networks, giving a logical
characterization for a class of general neural networks which have the topology of directed
graphs and unlimited running time. The characterization is based on Boolean networks [5, 14].
Boolean networks have a long history, originating from the work of Kauffman in the 1960s [10].
Current applications include a wide variety of research relating to topics varying from biology
and medicine to telecommunications and beyond, see, e.g., [16, 15, 14].

Boolean networks are usually not defined via a logical syntax, but it is easy to give them
one as follows. Consider the set T = {X1, . . . , Xk} of Boolean variables. A Boolean rule over
T is an expression of the form Xi :− φ where Xi ∈ T is a head predicate and φ is a Boolean

© Veeti Ahvonen, Damian Heiman, and Antti Kuusisto;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 9; pp. 9:1–9:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:veeti.ahvonen@tuni.fi
https://homepages.tuni.fi/veeti.ahvonen/
https://orcid.org/0009-0007-4819-0199
mailto:damian.heiman@tuni.fi
https://orcid.org/0009-0000-6038-7006
mailto:antti.kuusisto@tuni.fi
https://homepages.tuni.fi/antti.kuusisto/
https://orcid.org/0000-0003-1356-8749
https://doi.org/10.4230/LIPIcs.CSL.2024.9
https://arxiv.org/abs/2308.06277
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Descriptive Complexity for Neural Networks via Boolean Networks

formula over the syntax φ ::= ⊤ | Xj | ¬φ | φ∧φ, where Xj ∈ T . A Boolean program over T
is then a set of Boolean rules (over T), one rule for each Xi. Given an input f : T → {0, 1}
and executing the rules in parallel, the program then produces a time-series of k-bit strings
in a natural way (see the preliminaries section for the full details). An extended Boolean
program over T is a Boolean program over some S ⊇ T together with a terminal clause
Xj(0) :− b for each Xj ∈ S \ T , where b ∈ {⊤,⊥}. Extended programs produce time-series
just like regular programs, but they also contain auxiliary variables Xj ∈ S \ T whose initial
value is not part of the input but is instead given via a terminal clause (cf. the preliminaries
section). The logic used in this paper, Boolean network logic BNL, consists of extended
Boolean programs.

It turns out that BNL is also closely related to the diamond-free fragment of modal
substitution calculus MSC used in [11] to characterize distributed message passing automata.
Calling that fragment SC (for substitution calculus), we prove that programs of SC and BNL
can be translated to each other with only a linear increase in program size. Thereby our
characterization via BNL can alternatively be obtained via SC. Moreover, we also show that
BNL is closely related to self-feeding circuits. Informally, self-feeding circuits are a class
of Boolean circuits where the number of input and output gates match. Each self-feeding
circuit is associated with an initializing function. An initializing function fixes the input for
some subset of the set of input gates. The fixed gates are intuitively “auxiliary gates”; this is
analogous to the terminal clauses for auxiliary variables in a BNL-program. To execute a
self-feeding circuit, it is given an input that consists of values for the non-auxiliary input
gates. With a given input, a self-feeding circuit induces a time-series of bit strings (whose
length matches the number of output gates) as follows. In round zero, the bit string is
obtained as a combination of the values given by the initializing function and input. In each
subsequent round n, the string in round n is obtained by feeding the string from the previous
round n − 1 to the circuit. We prove that programs of BNL and self-feeding circuits can
likewise be translated to each other with only a linear increase in size.

The neural network (NN) model we consider is very general. We allow unrestricted
topologies for the underlying directed graphs, including loops, thereby considering the
recurrent setting. The reals are modeled via floating-point numbers and the running times
are unlimited. We show that for each NN, there exists a corresponding program of BNL
that simulates the time series of the NN for each input, and vice versa, BNL-programs can –
likewise – be simulated by NNs. Furthermore, the sizes of the NNs and BNL-programs are
shown to be polynomially related.

In a bit more detail, let S = (p, q, β) denote a floating-point system with fraction precision
p, exponent precision q and base β (see Section 3.2 for the definitions). Let N denote the
number of nodes in an NN and ∆ the maximum degree of the underlying graph. Modeling
activation functions via piecewise polynomial functions, let P denote the number of pieces
required and Ω the maximum order of the involved polynomials. Then the following holds.

▶ Theorem 14. Given a general neural network N for S = (p, q, β) with N nodes, degree
∆, piece-size P and order Ω, we can construct a BNL-program Λ such that N and Λ are
asynchronously equivalent in S where for r = max{p, q},
1. the size of Λ is O(N(∆ + PΩ2)(r4 + r3β2 + rβ4)), and
2. the computation delay of Λ is O((log(Ω) + 1)(log(r) + log(β)) + log(∆)).

Here (and also in the below theorem) asynchronous equivalence means that the modeled time
series can be repeated but with a delay between significant computation rounds. The time
delays in our results are not arbitrary but rather modest. For modeling Boolean network

V. Ahvonen, D. Heiman, and A. Kuusisto 9:3

logic via a general neural network, let the depth of a program refer to the maximum nesting
depth of Boolean formulas appearing in rules. Our result is for NNs that use the activation
function ReLU(x) = max{0, x}, but it can be generalized for other activation functions.

▶ Theorem 15. Given a BNL-program Λ of size s and depth d, we can construct a general
neural network N for any floating-point system S with at most s nodes, degree at most 2,
ReLU activation functions and computation delay O(d) (or O(s) since s > d) such that Λ
and N are asynchronously equivalent in binary.

It is worth noting that in our setting, while we allow for general topologies and unlimited
running times, our systems have inherently finite input spaces. In the framework of NN
models, this is a well-justified assumption for a wide variety of modeling purposes. Our
results stress the close relations between the size and time resources of general NNs and
BNL-programs. Furthermore, as outputs we consider time series rather than a single-output
framework. Indeed, it is worth noting that trivially a single Boolean function suffices to
model any NN with a finite input space when limiting to single outputs only and not caring
about size and time blow-ups in translations.

Related work. The closely related topic of descriptive complexity of graph neural networks
(or GNNs) has been studied by Barceló et al. in [3], and by Grohe in [7], [6]. In [7], the GNNs
operate via feedforward neural networks, and a natural connection between these models and
the circuit complexity class TC0 is established via logic. The feedforward model in [7] uses
rational piecewise linear approximable activation functions, meaning that the parameters
of the linear representations of activation functions are finitely representable in a binary
floating-point system. In the current paper, we allow floating-point systems with an arbitrary
base, which can be useful, as a change of base often allows inadmissible reals to become
admissible. Moreover, our activation functions are piecewise polynomially definable, meaning
that most of the widely used activation functions are directly representable in our framework,
e.g., ReLU. Furthermore, practically all activation functions are reasonably approximable.

Neural networks are special kinds of distributed systems, and descriptive complexity of
distributed computing was initiated in Hella et al. [8], Kuusisto [11] and Hella et al. [9] by
relating distributed complexity classes to modal logics. While [8] and [9] gave characterizations
to constant-time distributed complexity classes via modal logics, [11] lifted the work to general
non-constant-time algorithms by characterizing finite distributed message passing automata
via the modal substitution calculus MSC. This was recently lifted to circuit-based networks
with identifiers in Ahvonen et al. [1], also utilizing modal substitution calculus. The logic
MSC has been linked to a range of other logics. For example, in [11], it is shown to contain
the µ-fragment of the modal µ-calculus, and it is easy to translate MSC into a fragment of
partial fixed-point logic. Building on [11], Reiter shows in [13] that this fragment of the modal
µ-calculus captures finite message passing automata in the asynchronous setting. It is worth
noting here that also [3] utilizes modal logic, establishing a match between aggregate-combine
graph neural networks and graded modal logic. The logics BNL and SC used in this article
are rule-based systems. Rule-based logics are used widely in various applications, involving
systems such as Datalog, answer-set programming (ASP) formalisms, and many others.

2 Preliminaries

First we introduce some basic concepts. For any set S, we let ℘(S) denote the power set of
S and we let |S| denote the size (or cardinality) of S. We let N and Z+ denote the sets of
non-negative and positive integers respectively. For every n ∈ Z+, we let [n] = {1, . . . , n} and
[0;n] = {0, . . . , n}. We let bold lower-case letters a,b, c, . . . denote strings. The letters of a

CSL 2024

9:4 Descriptive Complexity for Neural Networks via Boolean Networks

string are written directly next to each other, i.e. abc, or with dots in-between, i.e. a · b · c,
or a mix of both, i.e. abc · def . Omitted segments of strings are represented with three dots,
i.e. abcd · · ·wxyz. If s = s0 · · · sk−1 is a string of length k, then for any j ∈ [0; k − 1], we let
s(j) denote the letter sj . The alphabet for the strings will depend on the context. We let
VAR = {Vi | i ∈ N } denote the (countably infinite) set of all schema variables. Mostly, we
will use meta variables X, Y , Z and so on, to denote symbols in VAR. We assume a linear
order <VAR over the set VAR. Moreover, for any set T ⊆ VAR, a linear order <T is induced
by <VAR. We let PROP = { pi | i ∈ N } denote the (countably infinite) set of proposition
symbols that is associated with the linear order <PROP, inducing a linear order <P over any
subset P ⊆ PROP. We let Π ⊆ PROP denote a finite subset of proposition symbols. When
we talk about rounds in any context, we refer to non-negative integers that are interpreted
as discrete steps of a computation.

2.1 Discrete time series
Next we consider infinite sequences of bit strings, i.e., we consider discrete time series of
strings over the alphabet {0, 1}. To separate important strings from less important ones, we
need to define when a time series produces an output; importantly, we allow an arbitrary
number of outputs. We will define two separate general output conditions for time series. In
the first approach, special bits indicate when to output. In the second approach the output
rounds are fixed, and we do not include bits that indicate when to output.

The formal definition for the first approach is as follows. Let k ∈ Z+ and let B denote an
infinite sequence (bj)j∈N of k-bit strings bj ∈ {0, 1}k. Let A ⊆ [k] and P ⊆ [k] be subsets of
bits called attention bits and print bits respectively (or bit positions, strictly speaking).
The sets A and P induce corresponding sequences (aj)j∈N and (pj)j∈N of substrings of the
strings in B. More formally, (aj)j∈N records the substrings with positions in A, and (pj)j∈N
records the substrings with positions in P . Next we define output conditions for B with
respect to attention and print bits. If at least one bit in an is 1 (for some n ∈ N), then we
say that B outputs pn in round n and that n is an output round. More precisely, B
outputs in round n with respect to (k, A, P), and pn is the output of B in round
n with respect to (k, A, P). Let O ⊆ N be the set of output rounds induced by B w.r.t.
(k,A, P); they induce a subsequence (bj)j∈O of B. We call the sequence (pj)j∈O the output
sequence of B (w.r.t. (k,A, P)).

Next we define an output condition where output rounds are fixed by a set O ⊆ N and
attention bits are excluded. We say that S outputs in rounds O (and also, in any particular
round n ∈ O). Outputs and output sequences w.r.t. (k,O, P) are defined analogously.

We study the two approaches for the sake of generality. The difference between the two
output frameworks is that the output rounds are induced internally from within the sequence
in the first approach, while they are given externally from the outside in the second one.
For instance, it is natural to indicate output conditions within a program if it is part of the
program’s design. Retroactively, it might be more natural to augment a program to draw
attention to rounds the original design doesn’t account for, and a different mechanism could
be used to compute the output rounds, e.g., a Turing machine.

2.2 Modal substitution calculus MSC and Boolean network logic BNL
We next define modal substitution calculus MSC introduced in [11]. Let Π ⊆ PROP be a finite
set of proposition symbols and T ⊆ VAR. A terminal clause (over (Π, T)) is a string of the
form Vi(0) :− φ, where Vi ∈ T and φ is defined over the language φ ::= ⊤ | pi | ¬φ | φ∧φ | ♢φ
where pi ∈ Π (i.e., φ is a formula of modal logic over Π). An iteration clause (over (Π, T)) is

V. Ahvonen, D. Heiman, and A. Kuusisto 9:5

a string of the form Vi :− ψ where ψ is a (Π, T)-formula of modal substitution calculus
(or MSC) defined over the language ψ ::= ⊤ | pi | Vi | ¬ψ | ψ ∧ ψ | ♢ψ where pi ∈ Π and
Vi ∈ T . We also use symbols ⊥,∨,→ and ↔ as shorthand in the usual way. In a terminal
clause Vi(0) :− φ, the symbol Vi is the head predicate and φ is the body of the clause.
Analogously, for an iteration clause Vi :− ψ, we say that Vi is the head predicate and ψ is
the body of the iteration clause.

Let T = {X1, . . . , Xn} ⊆ VAR be a finite, nonempty set of n ∈ Z+ distinct schema
variables. A (Π, T)-program of MSC is defined as a list

X1(0) :− φ1 X1 :− ψ1,

...
...

Xn(0) :− φn Xn :− ψn,

where each schema variable in T has precisely one terminal and one iteration clause. Inform-
ally, the terminal and iteration clauses of a program can be seen as the “rules” of the program.
The diamond-free fragment of MSC called substitution calculus SC simply restricts the
terminal and iteration clauses, not allowing diamonds ♢. Note that in SC the bodies of
terminal clauses are thereby formulae of propositional logic. Moreover, the programs of
MSC (and SC) are also associated with a set P ⊆ T of print predicates and either a set
A ⊆ T of attention predicates or an attention function A : {0, 1}k → ℘(N), where k
is the number of distinct proposition symbols that appear in the program. Informally, the
attention predicates and the attention function are analogous to the two output conditions
discussed for time series. We will later discuss how either can be used to determine a set of
output rounds for the program. We use attention predicates by default, and only discuss the
attention function when specified.

Usually, a run of a program of MSC is defined over a Kripke-model, but a run of a
(Π, T)-program of SC is defined over a model M of propositional logic, i.e., M is a valuation
Π → {0, 1} assigning a truth value to each proposition symbol in Π. The semantics of
formulae of propositional logic in model M are defined as follows: M |= pi (read: pi is true
in M) iff the valuation of pi is 1, and the semantics of ∧, ¬ and ⊤ is the usual one. If Π′ ⊆ Π
is the set of proposition symbols that appear in the program, the linear order <Π′ and the
model M induce a binary string i ∈ {0, 1}|Π′| that serves as input, i.e., the ith bit of i is 1 iff
the valuation of the ith proposition in Π′ is 1. Let Λ be a (Π, T)-program of MSC. The truth
of a (Π, T)-formula ψ in round n ∈ N (written M |= ψn) is defined as follows: 1) M |= ⊤n

always holds, 2) M |= pn
i iff M |= pi (where pi ∈ Π), 3) if ψ := ¬θ, then M |= (¬θ)n iff

M ̸|= θn, 4) if ψ := (χ ∧ θ), then M |= (χ ∧ θ)n iff M |= χn and M |= θn, and 5) the truth
of a head predicate Xi is defined separately as follows. We define that M |= X0

i if M |= φi

where φi is the body of the terminal clause of Xi in Λ. Assume we have defined the truth of
all (Π, T)-formulae in round n. We define that M |= Xn+1

i iff M |= ψn
i where ψi is the body

of the iteration clause of Xi in Λ.
We then define Boolean network logic (or BNL) which we will later show to be

equivalent to the fragment SC. Boolean network logic gets its name from Boolean networks,
which are discrete dynamical systems commonly used in various fields, e.g., biology, telecom-
munications and various others. For example, they are used to describe genetic regulatory
networks (e.g., [10]). A Boolean network consists of a set of Boolean variables, i.e. variables
that only get Boolean values 0 or 1. Each variable is given an initial Boolean value called the
“seed”. The Boolean values of all variables are updated in discrete steps starting with the
seed. In each step, each variable updates its Boolean value using its own Boolean function.
The updated value is determined from the Boolean values of all variables in the previous
step. There is no general syntax for Boolean networks, but BNL will give us a suitable one.

CSL 2024

9:6 Descriptive Complexity for Neural Networks via Boolean Networks

Let T ⊆ VAR. A T -formula of Boolean network logic (or BNL) is defined over
the language ψ ::= ⊤ | Vi | ¬ψ | ψ ∧ ψ, where Vi ∈ T (i.e. we do not include propositions).
Assume now that T is finite and nonempty. There are three main differences between T -
programs of BNL and SC: 1) The terminal clauses of BNL are either of the form X(0) :− ⊤
or X(0) :− ⊥. 2) The bodies of iteration clauses of BNL are T -formulae of BNL. 3) Each
schema variable in a BNL-program has exactly one iteration clause and either one or zero
terminal clauses. We let I denote the predicates that do not have terminal clauses, which
we call input predicates. For example, consider a BNL-program with the terminal clause
X(0) :− ⊤ and the iteration clauses Y :− Y ∧ X and X :− ¬X. Here Y is the sole input
predicate and X acts as an auxiliary predicate. Bodies and head predicates of clauses are
defined analogously to SC (and MSC). A BNL-program also includes print predicates and
either attention predicates or an attention function A : {0, 1}k → ℘(N), where k = |I|.

The run of a program of BNL is defined over a model M, i.e. M is a valuation I → {0, 1}.
Analogously to a model of SC, any model for BNL and the set I induce a binary string
i ∈ {0, 1}|I| that serves as input. (Note that vice versa each string i ∈ {0, 1}|I| induces a
model with valuation I → {0, 1} such that Ij 7→ i(j) if I0, . . . , I|I|−1 enumerates the set I
in the order <VAR.) The truth of a T -formula is defined analogously to SC except for the
truth value of head predicates in round 0. If X ∈ I, we define that M |= X0 if the valuation
of X in M is 1. If X /∈ I, then M |= X0 if the body of the terminal clause of X is ⊤.

Let X1, . . . , Xn enumerate the set T of schema variables (in the order <VAR). Let Λ be a
T -program of SC (or BNL), and M a model for SC (or respectively M for BNL) that induces
an input i ∈ {0, 1}k, where k is the number of proposition symbols (or resp. the number
of input predicates). Each time step (or round) t ∈ N defines a global configuration
gt : T → {0, 1}. The global configuration at time step t is induced by the values of head
predicates, i.e., gt(Xi) = 1 iff M |= Xt

i (or resp. M |= Xt
i), for each Xi ∈ T . Thus, an

SC-program (or BNL-program) also induces an infinite sequence (st)t∈N called the global
configuration sequence (with input i), where st = gt(X1) · · · gt(Xn). The set of print
predicates P corresponds to the set of print bits { i | Xi ∈ P }. If the program has attention
predicates A, then A corresponds to the set of attention bits { i | Xi ∈ A }. If the program
has an attention function A, then the output rounds are given by A(i). Therefore, analogously
to the general output conditions defined for infinite sequences of bit strings, a program of
SC or BNL with an input i also induces output rounds and an output sequence w.r.t.
(n,A,P) (or resp. w.r.t. (n,A(i),P)).

We say that a (Π, T)-program of SC and a T ′-program of BNL (or likewise, two BNL-
programs) are asynchronously equivalent if they have the same output sequences with
every input. We say that they are globally equivalent if they also have the same global
configuration sequences and output rounds with each input (note that identical inputs require
that |Π′| = |I|, where Π′ ⊆ Π is the set of proposition symbols that appear in the SC-program
and I is the set of input predicates of the BNL-program). We define the delay between two
asynchronously equivalent objects x and y. Let x1, x2, . . . and y1, y2, . . . enumerate their
(possibly infinite) sets of output rounds in ascending order. Assume that the cardinality of
the sets of output rounds is the same and xn ≥ yn for every n ∈ N. If T is the smallest
amount of time steps (that might depend on x or y) such that T · yn ≥ xn for every n ∈ N,
then we say that the computation delay of x is T . The case for yn ≥ xn is analogous.

The size of a program of SC or BNL is defined as the number of appearances of ⊤,
proposition symbols pi, head predicates Vi and logical connectives ¬ and ∧ in its terminal
and iteration clauses. The depth d(ψ) of a BNL-formula or SC-formula is defined recursively:

V. Ahvonen, D. Heiman, and A. Kuusisto 9:7

1) d(pi) = d(⊤) = d(X) = 0, where pi is a proposition symbol and X is a schema variable,
2) d(¬ψ) = d(ψ) + 1 and 3) d(ψ ∧ θ) = max{d(ψ), d(θ)} + 1. The depth of a BNL-program
is the maximum depth of the bodies of its iteration clauses.

BNL-programs inherit a number of properties from Boolean networks. Each reachable
combination of truth values for the head predicates (i.e., each reachable global configuration) is
called a state and together they form a state space. Note that certain global configurations
may not be reachable, because neither they nor their preceding states are possible states at
round 0 due to the terminal clauses of the BNL-program. Given that the number of states
is finite, a BNL-program will eventually either reach a single stable state or begin looping
through a sequence of states. A stable state is called a point attractor, a fixed-point
attractor or simply a fixed point, whereas a looping sequence of multiple states is a cycle
attractor. The smallest amount of time it takes to reach an attractor from a given state
is called the transient time of that state. The transient time of a BNL-program is the
maximum transient time of a state in its state space [5]. The concept of transient time is
also applicable to SC, since it is also deterministic and eventually stabilizes with each input.

Consider the fragment BNL0 where no head predicate of a program is allowed to have a
terminal clause. The programs of this logic BNL0 are an exact match with Boolean networks;
each program encodes a Boolean network, and vice versa. The logic BNL extends this
framework by allowing terminal clauses.

A BNL-program that only has fixed points (i.e., no input leads to a cycle attractor)
and outputs precisely at fixed points, is called a halting BNL-program. For a halting
BNL-program Λ with input predicates I and print predicates P, each input i ∈ {0, 1}|I|

results in a single (repeating) output denoted by Λ(i), which is the output string determined
by the fixed-point values of the print predicates. In this sense, a halting BNL-program is like
a function Λ: {0, 1}|I| → {0, 1}|P|. We say that Λ specifies a function f : {0, 1}ℓ → {0, 1}k

if |I| = ℓ, |P| = k and Λ(i) = f(i) for all i ∈ {0, 1}ℓ. The computation time of a halting
BNL-program is its transient time.

We introduce two useful tools that are used when constructing BNL-programs (these
tools are also definable via MSC or SC). Flagging is one of the most useful tools similar to
adding “if-else” conditions in programming. Given two formulae φ and χ, and a rule X :− ψ,
flagging X (w.r.t. φ and χ) means rewriting the rule X :− ψ as X :− (φ ∧ ψ) ∨ (¬φ ∧ χ).
Now, if φ is true then the truth value of X depends on the truth value of ψ, and if φ is false
then the truth value of X depends on the truth value of χ. We call φ the flag and χ the
backup. Often χ is X itself meaning that the truth value of X does not change if φ is false.
Using flags, it is possible to create branches in a program, and thereby combine subprograms
into a single, bigger program.

A one-hot counter is defined as a sequence of schema variables T0, T1, . . . , Tn with the
terminal clauses T0(0) :− ⊤ and Ti(0) :− ⊥ for all i ≥ 1, and iteration clauses T0 :− Tn and
Ti :− Ti−1 for all i ≥ 1. Exactly one of these schema variables is true in any one time step,
and they turn on in a looping sequence from left to right. Tt is true in round t for all t ≤ n.
In round n+ 1, T0 is true again and the cycle continues. This is ideal for flagging: Tn can be
used as a flag for attention predicates to trigger an output round once every n time steps.

We are ready to prove that BNL is equivalent to SC.

▶ Theorem 1. Each SC-program of transient time T has an asynchronously equivalent
BNL-program of linear size and transient time T + 1, and each BNL-program has a globally
equivalent SC-program of linear size.

CSL 2024

9:8 Descriptive Complexity for Neural Networks via Boolean Networks

Proof sketch. For the full proof, see [2]. From SC to BNL, we create a BNL-program that
uses one time step to compute the terminal clauses of the SC-program; the terminal clauses
of the SC-program are embedded into the iteration clauses of the BNL-program using a
flag. From BNL to SC, we amend the BNL-program with the missing terminal clauses using
proposition symbols. ◀

2.3 Link to self-feeding circuits
In this section we introduce self-feeding circuits. We will show that for every BNL-program,
we can construct an equivalent self-feeding circuit and vice versa. We also pay special
attention to the size and time complexities in the translations.

We first recall some basics related to circuits and then define a related self-feeding circuit
model. A Boolean circuit is a directed, acyclic graph where at least each node of non-zero
in-degree is labeled by one of the symbols ∧,∨,¬. The nodes of a circuit are called gates.
The in-degree of a gate u is called the fan-in of u, and the out-degree of u is the fan-out.
The input gates of a circuit are precisely the gates that have zero fan-in and no label ∧,∨
or ¬. The output gates are the ones with fan-out zero; we allow multiple output gates in a
circuit. The fan-in of every gate labeled with ¬ is 1.

The size |C| of a circuit C is the number of gates in C. The depth depth(C) (or the
computation/evaluation time) of C is the length of the longest path (number of edges)
from an input gate to an output gate. The height height(G) of a gate G in C is the length
of the longest path from an input gate to the gate G. The sets of input and output gates of
a circuit are both linearly ordered. A circuit with n input gates and k output gates then
computes (or specifies) a function of type {0, 1}n → {0, 1}k. This is done in the natural
way, analogously to the Boolean operators corresponding to ∧,∨,¬; see, for example, [12] for
the formal definition. The output of the circuit is the binary string determined by the bits of
the output gates. Note that gates with the labels ∧,∨ can have any fan-in (also 0), meaning
that by default, circuits have unbounded fan-in. In the elaborations below, we say a circuit
is fan-in bounded (or the circuit has a bounded fan-in) if the fan-in of every ∧-gate and
∨-gate of the circuit is at most 2. The ∧-gates that have zero fan-in always output 1, and
therefore correspond to the symbol ⊤. The ∨-gates that have zero fan-in always output 0
and therefore, similarly, correspond to the symbol ⊥.

Analogously to circuits, a Boolean formula φ with n variables specifies a function of type
{0, 1}n → {0, 1}. Let B denote the set of all Boolean formulas, and let C denote the set of all
circuits. Given x and y in the set B ∪ C, we say that x and y are equivalent if they specify
the same function.

Let k ∈ Z+. A self-feeding circuit for k is a circuit C that specifies a function

f : {0, 1}k → {0, 1}k.

The circuit C is associated with a set of input positions I ⊆ [k] and an initializing
function π : [k] \ I → {0, 1}. The elements of [k] \ I are called auxiliary positions.
Moreover, C is also associated with a set P ⊆ [k] of print positions and either with a set
A ⊆ [k] of attention positions or an attention function a : {0, 1}|I| → ℘(N).

Informally, a self-feeding circuit computes as follows. The non-auxiliary input gates
are fed with the input and the auxiliary input gates are fed with the values given by the
initializing function; then the circuit produces an output in the ordinary way. After that
in each round n the output from the previous round n− 1 is fed back to the circuit itself
to produce a new binary string. We then define the computation of self-feeding circuits
formally. Let C be a self-feeding circuit for k with input positions I and input i : I → {0, 1}

V. Ahvonen, D. Heiman, and A. Kuusisto 9:9

(or the corresponding bit string i ∈ {0, 1}|I|). Respectively, the function π ∪ i corresponds
to the binary string sπ∪i ∈ {0, 1}k, where for each j ∈ [k], if j ∈ I, then sπ∪i(j − 1) = i(j)
and if j /∈ I, then sπ∪i(j − 1) = π(j). Each round n ∈ N defines a global configuration
gn ∈ {0, 1}k. The configuration of round 0 is the k-bit binary string g0 = sπ∪i. Recursively,
assume we have defined gn. Then gn+1 is the output string of C when it is fed with the
string gn. Now, consider the sequence (gn)n∈N of k-bit strings that C produces. The circuit
C with input i (or i) also induces a set of output rounds and an output sequence w.r.t.
(k,A, P) (or (k, a(i), P)). Analogously to SC and BNL, we define asynchronous equivalence,
global equivalence and computation delay between two self-feeding circuits or between a
self-feeding circuit and a program.

We recall a well-known fact. The lemma below is related to the fact that the Boolean
functions in the circuit complexity class NC1 (with one output gate) are equivalent to the
Boolean functions in the class of polynomial-size Boolean formulas.

▶ Lemma 2 ([4]). Given a Boolean formula of size n, there exists an equivalent circuit with
bounded fan-in, one output gate, size O(n2) and formula depth O(logn).

It is easy to obtain the following theorems.

▶ Theorem 3. Given a BNL-program of size n and depth d, we can construct a globally
equivalent self-feeding circuit with bounded fan-in, size O(n) and depth d. Moreover, we can
also construct a globally equivalent self-feeding circuit with bounded fan-in, size O(n3) and
depth O(logn).

Proof. We prove both claims at once. Let Λ be a BNL-program of size n. We construct
a globally equivalent self-feeding circuit CΛ as follows. Let X1, . . . , Xm enumerate the
head predicates and ψ1, . . . , ψm the corresponding rules of the head predicates of Λ. Let I
denote the set of input predicates of Λ. Each rule ψi is transformed into a corresponding
circuit Ci with bounded fan-in as follows. To prove the first claim, each Ci is obtained in a
straightforward way from the tree representation of ψi, and therefore the size of each circuit
Ci is linear in the size of ψi. Respectively to prove the second claim, each Ci is obtained
by applying Lemma 2. We combine each circuit Ci to one circuit CΛ such that they share
the common input gates. The initializing function π is defined as follows. If Xi /∈ I, then
π(i) = 1 if the rule of the terminal clause of Xi is ⊤ and respectively π(i) = 0 if the rule
of the terminal clause of Xi is ⊥. The depth of the obtained circuit CΛ is O(logn) if each
circuit Ci is obtained by applying Lemma 2 and otherwise the depth is d, since combining
circuits does not affect the depth. The size of CΛ is O(n3) if Lemma 2 was applied to circuits
Ci since there are at most n head predicates and the size of each Ci is O(n2). Otherwise
the size of C is O(n) since each Ci was linear in the size of the corresponding rule ψi. The
corresponding input positions, print positions and attention positions (or attention function)
are straightforward to define. Clearly CΛ is globally equivalent to Λ. ◀

▶ Theorem 4. Given a self-feeding circuit C with size n, depth d and m edges, we can
construct an asynchronously equivalent BNL-program of size O(n + m) and computation
delay O(d). Moreover, if C has bounded fan-in then the size of the program is O(n).

Proof. The proof is heavily based on the proof of Lemma 3 and Theorem 4 in [1], but we give
a sketch of the proof. We assume that d > 0. The case for d = 0 is trivial. First we modify
C so that we obtain a globally equivalent circuit C ′ of size O(n) such that the height of each
output gate is O(d), see for example [1]. We define a one-hot counter T0, . . . , Tdepth(C′) as
defined before. We define a head predicate XG for each gate G in C ′ as follows. If G is an

CSL 2024

9:10 Descriptive Complexity for Neural Networks via Boolean Networks

∧-gate at height h and Y1, . . . , Yk are corresponding head predicates of gates that connect to
G, then XG :− (Th ∧ Y1 ∧ · · · ∧ Yk) ∨ (¬Th ∧ψG), where ψG is XG if G is not an output gate
and otherwise ψG is ⊥. Moreover, if the fan-in of G is zero, then XG :− (Th ∧⊤)∨(¬Th ∧ψG).
The cases for ∨-gates and ¬ -gates are analogous. Intuitively, the one-hot counter is used
as a flag to make sure that each XG evaluates in the correct time. Let π be the initializing
function of C ′. If G is the ith input gate and G′ is the ith output gate, then we define
XG :− (T0 ∧XG′) ∨ (¬T0 ∧XG).

The input, print and attention predicates are the predicates corresponding to the output
gates in input, print and attention positions respectively. If C ′ has an attention function a,
then we define the attention function a′ such that a′(i) = { (depth(C ′) + 1)n | n ∈ a(i) }. The
constructed program is clearly asynchronously equivalent to C. Moreover the computation
delay is O(d) since it takes depht(C ′) rounds to “simulate” each round of C. The size is also
clearly O(n+m) and O(n) if C is fan-in bounded. ◀

3 Arithmetic with BNL

In this section we first show how to carry out integer addition and multiplication in Boolean
network logic in parallel. We then extend this demonstration to floating-point arithmetic,
including floating-point polynomials and piecewise polynomial functions.

The algorithms we use for integers are mostly well known and thus some of the formal
details are spared; they can be found in [2]. Informally, the idea is to split both addition
and multiplication into simple steps that are executed in parallel. We will show that we
can simulate integer arithmetic (respectively, floating-point arithmetic) by programs whose
size is polynomial in the size of the integers (respectively, in the size of the floating-point
system). We also analyze the time delays of the constructed programs. The time delay is
polylogarithmic in the size of the integers (and resp. in the size of the floating-point system)
and sometimes even a constant. Ultimately, the same applies to floating-point polynomials
and piecewise polynomial functions.

3.1 Integer arithmetic
We next define how a halting BNL-program simulates integer functions in an arbitrary base
β ∈ Z, β ≥ 2. Informally, we represent integers with bit strings that are split into substrings
of length β, where exactly one bit in each substring is 1 and the others are 0. Formally, let
s1, . . . , sk ∈ {0, 1}β be one-hots, i.e. bit strings with exactly one 1. We say that s = s1 · · · sk

corresponds to b1 · · · bk ∈ [0;β − 1]k if for every bi, we have si(bi) = 1 (and other values
in si are zero). For example, if β = 5, then 00100 · 01000 · 00001 ∈ {0, 1}β·3 corresponds to
2 · 1 · 4 ∈ [0; 4]3. We say that s is a one-hot representation of b1 · · · bk.

Using the binary one-hot representations, we can present integers in BNL by assigning
each bit with a head predicate that is true if and only if the bit is 1. The sign (+ or −) of a
number can likewise be handled with a single bit that is true iff the sign is positive.

▶ Definition 5. Let β ∈ Z, β ≥ 2, be a base. We say that a halting BNL-program Λ
simulates (or computes) a function f : [0;β − 1]ℓ → [0;β − 1]k if for each input string
i ∈ {0, 1}ℓβ that corresponds to b ∈ [0;β − 1]ℓ, the output Λ(i) also corresponds to f(b).

We note that comparison of two p-length integers in base β can be simulated with a
BNL-program of size O(pβ2 + p2) and computation time 2. The one-hot representations of
the numbers are first coded into input predicates. Then in round 1, auxiliary predicates
determine which number has the higher digit in each position, which requires β2 space for

V. Ahvonen, D. Heiman, and A. Kuusisto 9:11

each of the p positions. Finally in round 2, the attention/output predicates check that if the
first number had a lower digit in some position i, then it has a greater digit in some position
j to the left of i; this requires O(p2) space.

Parallel addition
In this section we construct a parallel integer addition algorithm via BNL-programs. The
algorithm is mostly well known and is based on how integer addition is computed in Nick’s
class NC1 (sometimes called the carry-lookahead method), i.e., we parallelize the textbook
method (sometimes called the long addition algorithm). Here the main difference to integer
addition in Nick’s class is that we generalize the algorithm for arbitrary bases.

To illustrate our method of carrying out integer addition, consider the following example
of adding x = 614 and y = 187 in base 10. Let c1, c2 and c3 denote the carry over digits and
let s1, s2, s3 and s4 denote the digits of the sum x + y from right to left. We have

c1 = 1 = ⌊(4 + 7)/10⌋, c2 = 1 = ⌊(1 + 8 + c1)/10⌋, c3 = 0 = ⌊(6 + 1 + c2)/10⌋

and therefore s1 = 1, s2 = 0, s3 = 8 and s4 = 0 = c3, since (4 + 7) ≡ 1(mod 10),
(1 + 8 + 1) ≡ 0(mod 10) and (6 + 1 + 1) ≡ 8(mod 10). Therefore x + y = 0801, as wanted.
As we can see, in order to know that c2 = 1 we have to first check if c1 = 1. In other words,
we have to check if a carry from a previous position has been propagated forward.

Now we are ready to prove the following lemma.

▶ Lemma 6. Given a base β ∈ Z, β ≥ 2 and p ∈ Z+, adding two numbers in [0;β − 1]p can
be simulated with a (halting) BNL-program of size O(p3 + pβ2) and computation time O(1).

Proof. We start with an informal description. Consider the addition of two p-digit integers
x = xp · · ·x1 and y = yp · · · y1 in a base β ≥ 2 (we also allow leading zeros). We assume that
the signs of both x and y are positive since this can be easily generalized for arbitrary signs.
For i ∈ [p], we let c1 =

⌊
x1+y1

β

⌋
and ci+1 =

⌊
xi+1+yi+1+ci

β

⌋
denote the carry digits. We let s

denote the result of the addition, that is, x + y = (xp · · ·x1) + (yp · · · y1) = sp+1 · · · s1 =: s,
where for j ∈ [p], xj + yj + cj−1 ≡ sj modβ (if j = 1, then cj−1 is omitted), and sp+1 = cp.
The hard part is to compute the carry digits ci. We note that ci is 1 if and only if the sum
of xi, yi and ci−1 is at least β. The problem is that the sum of xi and yi might be less than
β. Therefore, we have to also check if ci−1 is 1. To compute ci−1 we have to check if the
sum of xi−1, yi−1 and ci−2 is at least β and so on. So in order to compute ci, we might have
to check all previous carry digits.

So, in the worst case for ci there are O(p) possibilities where adding xj and yj (j < i)
might lead the carry digit cj to become 1 and in the worst case there are O(p) digits between
j and i for whom we need to check if they carry cj further. Since we are going to use one-hot
representations this requires O(p3 + pβ2) space in total but it can be done in O(1) time
steps, as we will show next.

We will write a BNL-program of size O(p3 + pβ2) that computes the sum of two integers
(where β is the base and p is the length of the integers) in O(1) steps. We assume that integers
x = xp · · ·x1 and y = yp · · · y1 in [0;β − 1]p (where we allow leading zeros) are encoded
to variables Xj,m and Yj,m, where j ∈ [p] and m ∈ [0;β − 1], using one-hot representation.
For example, consider the integer 13. It can be represented in base 10 with the following
variables: Z1,0, . . . , Z1,9 and Z2,0, . . . , Z2,9, where precisely Z2,1 and Z1,3 are true and the
others are false. For i ∈ [p] and b ∈ {0, 1}, we have

CSL 2024

9:12 Descriptive Complexity for Neural Networks via Boolean Networks

Oi,b :−
∨

⌊(n+m+b)/β⌋=1

(Xi,n ∧ Yi,m)

︸ ︷︷ ︸
O(β)

, Ci :−
∨

1≤j≤i

(
Oj,0 ∧

∧
j<k<i

(
Ok,1

))
︸ ︷︷ ︸

O(p2)

.

The predicates Oi,0 determine whether the sum of the digits in position i will result in a
carry-over digit. The predicates Oi,1 determine whether the sum of the digits in position i

will result in a carry-over digit presuming that the sum of digits in position i− 1 has resulted
in a carry-over digit. Finally, the predicates Ci determine whether a carry-over digit is
created in position i taking into account the whole sum.

Therefore we can write rules for variables Si,k (i ∈ [p+ 1] and k ∈ [0;β − 1]) that will
represent the sum of x and y in one-hot representation. For i = 1 and k ∈ [0;β − 1], we have

S1,k :−
∨

n+m≡k(mod β)

(X1,n ∧ Y1,m)

︸ ︷︷ ︸
O(β)

and for i ∈ {2, . . . , p}, we have

Si,k :−
∨

n+m≡k(mod β)

(Xi,n ∧ Yi,m ∧ ¬Ci−1)

︸ ︷︷ ︸
O(β)

∨
∨

n+m+1≡k(mod β)

(Xi,n ∧ Yi,m ∧ Ci−1)

︸ ︷︷ ︸
O(β)

.

For i = p+ 1, we have Sp+1,0 :− ¬Cp, Sp+1,1 :− Cp, and Sp+1,k :− ⊥ for every k ∈ [β − 1].
After three iteration rounds, the values of predicates Si,k have been computed. The program
could be timed by using one-hot counters and flags correctly to avoid unwanted values for
the predicates in steps one and two, but this is trivial to add and does not affect the size
and time complexity. We have O(p) predicates Oi,b of size O(β), O(p) predicates Ci of
size O(p2) and O(pβ) predicates Si,k of size O(β). The total size of the program is thus
O(pβ + p3 + pβ2) = O(p3 + pβ2).

If x and y both have negative signs, we can use the same addition algorithm; the output
simply includes a negative sign. If x and y have opposite signs, we need to use a subtraction
algorithm instead. First, we need to compare x and y with signs omitted; in other words, we
compare which number has a greater absolute value (this also determines the sign of the
output). As stated before, this requires O(pβ2 + p2) space and 2 iteration rounds. Then, we
modify the addition algorithm above in the following way. Instead of adding digits together,
we subtract them; the digits of the number with the smaller absolute value are subtracted
from the digits of the number with the greater absolute value. If the subtraction of two digits
goes below 0, it results in a negative carry −1. Otherwise the algorithm works in the same
exact way, and thus adds nothing to the size and time complexity of the program. ◀

Parallel multiplication
In this section we introduce a parallel multiplication algorithm. The parallelization method
is mostly well known and is based on splitting the multiplication into simple addition tasks.

▶ Lemma 7. Given a base β ∈ Z, β ≥ 2, multiplication of any two numbers in [0;β − 1]p
can be simulated with a (halting) BNL-program of size O(p4 + p3β2 + pβ4) and computation
time O(log(p) + log(β)).

V. Ahvonen, D. Heiman, and A. Kuusisto 9:13

Proof sketch. The formal explanations and examples are in [2]. Assume that we have two
p-digit integers (we allow leading zeros, i.e. the leftmost digits can be zeros): a multiplicand
x and a multiplier y = yp · · · y1 in an arbitrary base β ∈ Z, β ≥ 2. The parallel multiplication
algorithm computes in the following two steps. (1) We run p different multiplications in
parallel where the multiplicand x is multiplied by yi0 · · · 0 with i− 1 zeros on the right (for
each i ∈ [p] in base β). Each multiplication is actually also computed in parallel by using
the parallel addition algorithm to obtain relatively small space and time complexities. As a
result we obtain p different numbers of length 2p. (2) We add the numbers obtained in the
first step together in parallel using the parallel addition algorithm. ◀

3.2 Floating-point arithmetic
In this section we consider floating-point arithmetic, including polynomials and piecewise
polynomial functions. We show that BNL-programs can simulate these in polynomial space
and in polylogarithmic time, and some simple arithmetic operations even in constant time.

Floating-point system
A floating-point number in a system S = (p, q, β) (where p, q, β ∈ Z+, β ≥ 2) is a number
that can be represented in the form ±0.d1d2 · · · dp × β±e1···eq , where di, ei ∈ [0;β − 1]. For
such a number in system S, we call f = 0.d1d2 . . . dp the fraction, the dot between 0 and d1
the radix point, p the fraction precision, e = ±e1 · · · eq the exponent, q the exponent
precision and β the base (or radix).

A floating-point number in a system S may have many different representations such as
0.10 × 101 and 0.01 × 102 which are both representations of the number 1. To ensure that our
calculations are well defined, we desire a single form for all non-zero numbers. We say that a
floating-point number (or more specifically, a floating-point representation) is normalized,
if 1) d1 ̸= 0, or 2) f = 0, e is the smallest possible value and the sign of the fraction is +.

For a floating-point system S = (p, q, β), we define an extended system of raw floating-
point numbers S+(p′, q′) (where p′ ≥ p and q′ ≥ q) that possess a representation of the
form ±d0.d1d2 · · · dp′ × β±e1···eq′ . When performing floating-point arithmetic, the precise
outcomes of the calculations may be raw numbers, i.e., no longer in the same system as
the operands strictly speaking. Therefore, in practical scenarios, we have p′ = O(p) and
q′ = O(q). Consider, e.g., the numbers 99 and 2 which are both in the system S = (2, 1, 10),
but their sum 101 is not, because 3 digits are required to represent the fraction precisely.
For this purpose, we must round numbers.

The easiest way to round a number is truncation, where the least significant digits of the
number are simply omitted, rounding the number toward zero. On the other hand, the most
common method is to round to the nearest floating-point number, with ties rounding to the
number with an even least significant digit. This is called round-to-nearest ties-to-even.

Representing floating-point numbers in binary
Our way of representing floating-points of arbitrary base in binary is based on international
standards (e.g. IEEE 754). Informally, if b represents a floating-point number in a system
S = (p, q, β), then the first two bits encode the signs of the exponent and fraction. The next
qβ bits encode the exponent in base β, and the last pβ bits encode the fraction in base β.

Before we go into the details, we have to define simulation of functions that compute
with floating-point numbers in a system S = (p, q, β). Let F = ±f × β±e be a floating-point
number in system S. Let p1,p2 ∈ {0, 1} and s1, . . . , sq, s′

1, . . . , s′
p ∈ {0, 1}β . We say that

CSL 2024

9:14 Descriptive Complexity for Neural Networks via Boolean Networks

s = p1p2s1 · · · sqs′
1 · · · s′

p corresponds to F (or s is a one-hot representation of F) if
(1) p1 = 1 iff the sign of the exponent is +, (2) p2 = 1 iff the sign of the fraction is +, (3)
s1 · · · sq corresponds to e = e1 · · · eq, and (4) s′

1 · · · s′
p corresponds to f = 0.d1d2 · · · dp (or,

more precisely, to d1 · · · dp). Correspondence is defined analogously for raw floating-point
numbers; we simply replace p and q with p′ and q′, and add one more bit string s0 ∈ {0, 1}β

that must correspond to the digit d0 to the left of the radix point. Likewise, we say that
a bit string s corresponds to a sequence (F1, . . . , Fk) of floating-point numbers if s is the
concatenation of the bit strings that correspond to F1, . . . , Fk from left to right. For example,
in the system S = (4, 3, 3) the number −0.2001 × 3+120 has the corresponding string

1︸︷︷︸
p1

· 0︸︷︷︸
p2

· 010 · 001 · 100︸ ︷︷ ︸
s1s2s3

· 001 · 100 · 100 · 010︸ ︷︷ ︸
s′

1s′
2s′

3s′
4

.

▶ Definition 8. Let S = (p, q, β) be a floating-point system, and let S+ = (p′, q′) be a raw
floating-point system. We say that a halting BNL-program Λ simulates a function f : Sℓ →
Sk (or respectively f : (S+)ℓ → Sk) if the output Λ(i1 · · · iℓ) corresponds to f(F1, . . . , Fℓ)
for any F1, . . . , Fℓ ∈ S (or resp. F1, . . . , Fℓ ∈ S+) and the corresponding inputs i1, . . . , iℓ ∈
{0, 1}2+β(p+q) (or resp. i1, . . . , iℓ ∈ {0, 1}2+β(p′+1+q′)).

Later when we construct programs for the floating-point operations, e.g. normalization,
we will use a tool called shifting, which means moving each digit of a fraction to the left or
right by one (e.g. shifting a fraction 0.012 once to the left leads to 0.120)

Consider a raw floating-point number ±0.d1d2 · · · dp′ × β±e1···eq′ where d1 ̸= 0, which we
seek to round to the system S = (p, q, β) (where p ≤ p′ and q ≤ q′) using round-to-nearest
ties-to-even. First, we check whether e1 · · · eq′−q = 0 · · · 0; if not, then we have exceeded the
maximum exponent and output the highest or lowest possible number depending on the
sign of the fraction. If yes, we set e′ = eq′−q+1 · · · eq′ . Next, we check the value of dp+1. If
dp+1 <

β
2 , then we let f ′ = d1 · · · dp. If dp+1 >

β
2 , then we let f ′ = d1 · · · dp + 0p−11 using

integer addition. (We round to the nearest number in both cases.) If dp+1 = β
2 , then we let

f ′ = d1 · · · dp if dp is even and f ′ = d1 · · · dp + 0 · · · 01 if dp is odd. (In other words, in the
case of a tie we round to the nearest number whose rightmost digit is even.) Finally, if f ′ has
precision p+ 1, then we must shift the fraction to the right and round again; otherwise we
output ±0.f ′ × β±e′ where the signs are the same as before rounding. A BNL-program that
carries out the rounding clearly takes as much space as integer addition for the fractions, i.e.,
O(p3 + pβ2). Instead of integer addition, we could use a different method using carries that
would result in size O(p2β), but this does not affect our other results.

Normalizing a floating-point number
We informally describe how the normalization of raw floating-point numbers can be done. By
normalization we mean that a raw floating-point number is normalized as described above.

▶ Lemma 9. Let S = (p, q, β) be a floating-point system. Normalization of a raw floating-
point number in S+(p′, q′) to the floating-point system S, where p′ = O(p) and q′ = O(q),
can be simulated with a (halting) BNL-program of size O(r3 + r2β2) and computation time
O(1), where r = max{p, q}.

Proof sketch. The full proof can be found in [2]. Let S = (p, q, β) be a floating-point system.
The normalization of a raw floating-point number f × βe (we do not write down the signs
here) in system S+(p′, q′) to the system S, where p′ = O(p) and q′ = O(q) can be split into
the following cases.

V. Ahvonen, D. Heiman, and A. Kuusisto 9:15

1. If f = 0, we only set e to the smallest possible value and the sign of the fraction to +.
2. If 0 < |f | < 1, then we can calculate in a few steps how much we have to shift the fraction

to the left (and decrease the exponent).
3. If |f | ≥ 1, we shift the fraction to the right by one (and decrease the exponent by one)

and, after that, round the number to match fraction precision p. The rounding might
lead to a non-normalized floating-point number, but we only have to shift the number to
the right again at most once (because after rounding, |f | ≤ 1).

The hard part is to keep the time complexity as low as possible. We do not go into the
details here (full proofs are in [2]), but the main idea is to apply parallel integer addition
specified in Section 3.1. ◀

Addition of floating-point numbers
In this section we show that we can simulate floating-point addition via BNL-programs,
which is possible even in constant time.

▶ Lemma 10. Addition of two (normalized) floating-point numbers in S = (p, q, β) can be
simulated with a (halting) BNL-program of size O(r3 + r2β2) and computation time O(1),
where r = max{p, q}.

Proof sketch. The full proof can be found in [2]. In the parts where we add or normalize
numbers, we apply the results obtained in earlier sections. The addition is done in the
following steps. (1) We compare which of the exponents is greater and store it. (2) We
determine the difference d between the exponents. If d is greater than the length of the
fractions, we are done and output the number with the greater exponent. If d is smaller
than the length of the fractions, then we shift the fraction of the number with the smaller
exponent to the right d times. We then perform integer addition on the fractions and store
the result. (3) We obtain a number whose exponent was obtained in the first step and whose
fraction was obtained in the second step. We normalize this number. ◀

Multiplication of floating-point numbers
In this section we show that we can simulate floating-point multiplication via BNL-programs.
The multiplication requires logarithmic time, since the proof applies the result obtained for
integer multiplication in Lemma 7.

▶ Lemma 11. Multiplication of two (normalized) floating-point numbers in S = (p, q, β) can
be simulated with a (halting) BNL-program of size O(r4 + r3β2 + rβ4) and computation time
O(log(r) + log(β)), where r = max{p, q}.

Proof sketch. The full proof can be found in [2]. Informally, we do the following.
1. We add the exponents together by using the parallel (integer) addition algorithm and

store the result. If the result is less than the maximum exponent, we move to the next
step. Otherwise, we are done and output the largest possible number, i.e. the number
with the highest possible fraction and exponent in the system.

2. We multiply the fractions using the integer multiplication algorithm and store the product.
3. We obtain a number whose exponent was obtained in the first step and whose fraction

was obtained in the second step. We normalize this number.
Applying the results of parallel (integer) addition, parallel (integer) multiplication, and
normalization described in the previous sections, we obtain the wanted results. ◀

CSL 2024

9:16 Descriptive Complexity for Neural Networks via Boolean Networks

Floating-point polynomials and piecewise polynomial functions
Next we consider floating-point polynomials and activation functions that are piecewise
polynomial. A piecewise polynomial function (with a single variable) is defined as separate
polynomials over certain intervals of real numbers. For instance, the function “f(x) = x2

when x ≥ 0 and f(x) = −x when x < 0” is piecewise polynomial; the intervals are the sets
of non-negative and negative numbers and the attached polynomials are x2 and −x. In a
floating-point system, a piecewise polynomial function is an approximation, much like addition
and multiplication. We perform approximations after each addition and multiplication; as
a result, the calculations must be performed in some canonical order because the order of
approximations will influence the result. By the number of pieces, we refer to the number of
intervals that the piecewise polynomial function is defined over; our example above has 2
pieces. We obtain the following theorem.

▶ Theorem 12. Assume we have a piecewise polynomial function α : S → S, where each
polynomial is of the form anx

n + · · · + a1x + a0 where n ∈ N, ai ∈ S = (p, q, β) for each
0 ≤ i ≤ n and r = max{p, q} (addition and multiplication approximated in S). Let Ω be the
highest order of the polynomials (or 1 if the highest order is 0) and let P ∈ Z+ be the number
of pieces. We can construct a BNL-program Λ that simulates α(x) such that
1. the size of Λ is O(PΩ2(r4 + r3β2 + rβ4)), and
2. the computation time of Λ is O((log(Ω) + 1)(log(r) + log(β))).

Proof sketch. The full proof can be found in [2]. We obtain BNL-programs that simulate the
polynomials in polynomial space and polylogarithmic time. When calculating a floating-point
polynomial anx

n + · · · + a1x + a0, the order of calculations is as follows: Multiplications
are handled first. When carrying out the multiplication x1 · x2 · ... · xk, we simultaneously
calculate the products y1 = x1 ·x2, y2 = x3 ·x4, etc. (If k is an odd number, the multiplicand
xk has no pair. In this case we define y(k+1)/2 = xk.) Then, in similar fashion we calculate
the products z1 = y1 · y2, z2 = y3 · y4, etc. We continue this until we have calculated the
whole product. After multiplications, we handle the sums in identical fashion. We obtain
the wanted results by simulating the additions and multiplications of each polynomial as
described in Lemmas 10 and 11. ◀

4 Descriptive complexity for general neural networks

In this section, we establish connections between Boolean network logic and neural networks.
Informally, we define a general neural network as a weighted directed graph (with any
topology) operating on floating-point numbers in some system S. Each node receives either
a fixed initial value or an input as its first activation value. In each communication round
a node sends its activation value to its neighbours and calculates a new activation value
as follows. Each node multiplies the activation values of its neighbours with associated
weights, adds them together with a node-specific bias and feeds the result into a node-specific
activation function. Note that floating-point systems are bounded, and the input space of a
neural network is thus finite.

Before specifying neural networks formally, we introduce some concepts for infinite
sequences of floating-point numbers analogous to infinite sequences of bit strings. Let k ∈ Z+
and let S = (p, q, β) be a floating-point system. Let F denote an infinite sequence (fj)j∈N
of k-floating-point strings fj ∈ Sk. Let A ⊆ [k] and P ⊆ [k] be subsets of positions called
attention positions and print positions respectively. The sets A and P induce corresponding
sequences (aj)j∈N and (pj)j∈N of substrings of the strings in F . More formally, (aj)j∈N

V. Ahvonen, D. Heiman, and A. Kuusisto 9:17

records the substrings with positions in A, and (pj)j∈N records the substrings with positions
in P . Next we define output conditions for F with respect to attention and print positions.
Let t ∈ S|A| denote a set of thresholds for each attention position. If at least one floating-point
number in an exceeds the threshold in the same position in t (for some n ∈ N), then we say
that F outputs pn in round n and that n is an output round. More precisely, F outputs
in round n with respect to (k,A, P, t), and pn is the output of F in round n with
respect to (k,A, P, t) . Let O ⊆ N be the set of output rounds; they induce a subsequence
(fj)j∈O of F . We call the sequence (pj)j∈O the output sequence of F .

Next we define an output condition where output rounds are fixed by a set O ⊆ N and
attention bits are excluded along with thresholds. We say that S outputs in rounds O (and
also, in any particular round n ∈ O). Outputs and output sequences w.r.t. (k,O, P) are
defined analogously.

4.1 General neural networks
Next we define neural networks formally. A (directed) graph is a tuple (V,E), where V is
a finite set of nodes and E ⊆ V × V is a set of edges. Note that we allow self-loops on
graphs, i.e. edges (v, v) ∈ E. A general neural network N (for floating-point system S) is
defined as a tuple (G, a, b,w, π), where G = (V,E,<V) is a directed graph associated with a
linear order <V for nodes in V . The network N contains sets I,O ⊆ V of input and output
nodes respectively, and a set H = V \ (I ∪O) of hidden nodes. The tuples a = (αv)v∈V and
b = (bv)v∈V are assignments of a piecewise polynomial activation function αv : S → S and
a bias bv ∈ S for each node. Likewise, w = (we)e∈E is an assignment of a weight we ∈ S

for each edge. The function π : (V \ I) → S assigns an initial value to each non-input node.
The computation of a general neural network is defined with a given input function

i : I → S. Similar to BNL-programs, an input function i also induces a floating-point string
i ∈ S|I|, and respectively a floating-point string induces an input function. The state of
the network at time t is a function gt : V → S, which is defined recursively as follows.
For t = 0, we have g0(v) = i(v) for input nodes and g0(v) = π(v) for non-input nodes. Now
assume we have defined the state at time t. The state at time t+ 1 is defined as follows:

gt+1(v) = αv

(
bv +

∑
(u,v)∈E

(
gt(u) · w(u,v)

))
.

More specifically, the sum is unfolded from left to right according to the order <V of
the nodes u ∈ V . For each piece of an activation function, we assume a normal form
anx

n + · · · + a1x+ a0, which designates the order of operations (as in the proof sketch of
Theorem 12). If we designate that u1, . . . , uk enumerate the set O of output nodes in the
order <V , then the state of the system induces an output tuple ot = (gt(u1), . . . , gt(uk)) at
time t for all t ≥ 0.

We once again define two frameworks for designating output rounds, one machine-internal
and one machine-external framework. In the first framework, the set V contains a set A
of attention nodes u, each of which is associated with a threshold su ∈ S; the order of
the nodes induces a threshold string t ∈ S|A|. In the second framework, attention nodes
are excluded and the neural network is associated instead with an attention function
a : S|I| → ℘(N).

Next we define how the output rounds and output sequence are obtained. Let v1, . . . , vn

enumerate the nodes of the neural network (in the order <V). Let i : I → S be an input
function that induces an input i ∈ S|I|. A neural network induces an infinite sequence (st)t∈N
called the network state sequence (with input i), where st = gt(v1) · · · gt(vn). The set of

CSL 2024

9:18 Descriptive Complexity for Neural Networks via Boolean Networks

output nodes O corresponds to the set of print positions { i | vi ∈ O }. If the network has
attention nodes A, then A corresponds to the set of attention positions { i | vi ∈ A }. If the
network has an attention function a, then the output rounds are given by a(i). Therefore,
analogously to the general output conditions defined for infinite sequences of floating-point
strings, a neural network with an input i also induces output rounds and an output
sequence w.r.t. (n,A,O, t) (or resp. w.r.t. (n, a(i), O)).

We then define some parameters that will be important when describing how neural
networks and BNL-programs are related in terms of space and time complexity. The in-degree
of a node v is the number of nodes u such that there is an edge (u, v) ∈ E; we say that u is a
neighbour of v. Note that we allow reflexive loops so a node might be its own “neighbour”.
The degree of a general neural network N is the maximum in-degree of the underlying
graph. The piece-size of N is the maximum number of “pieces” across all its piecewise
polynomial activation functions. The order of N is the highest order of a “piece” of its
piecewise polynomial activation functions.

A general neural network can easily emulate typical feedforward neural networks. This
requires that the graph of the general neural network is connected and acyclic, the sets I, O
and H are chosen correctly and the graph topology is as required, with all paths from an
input node to an output node being of the same length. Unlike in a classical feedforward
neural network, the hidden and output nodes of a general neural network have an initial value,
but they are erased as the calculations flow through the network, so this is an inconsequential,
essentially syntactic phenomenon. The inputs are also erased in the same way, likewise an
inconsequential syntactic phenomenon. Finally, there is a round t where the general neural
network outputs the same values as a corresponding feedforward network would.

In general, our neural network models are recurrent in the sense that they allow loops.
They are one-to-many networks, in other words, they can map each input to a sequence of
outputs unlike feedforward neural networks which always map each input to a single output.

4.2 Equivalence and time series problems
In order to translate neural networks to BNL-programs and vice versa, we define time
series problems for both floating-point numbers and binary numbers, and two types of
corresponding equivalence relations. The reason for this is obvious, as BNL-programs operate
with binary numbers and neural networks with floating-point numbers. Informally, in the
below asynchronous equivalence means that the modeled time series can be repeated but
with a delay between output rounds. The time delays in our results are not arbitrary but
rather modest. Moreover, we do not fix the attention mechanism for the programs or neural
networks, and our definitions work in both cases.

First we define notions for floating-points. Let k, ℓ ∈ N, P ⊆ [k] and let S = (p, q, β)
be a floating-point system. We let F(k, P, S) denote the family of sequences F = (fn)n∈N
of k-strings fn ∈ Sk of numbers in S with print position set P . A (floating-point) time
series problem P for (ℓ, k, P) in S is a function P : Sℓ → F(k, P, S) ×℘(N). With a given
input (F1, . . . , Fℓ) ∈ Sℓ, P gives a sequence (fn)n∈N ∈ F(k, P, S) and a subset O ∈ ℘(N) and
therefore P induces the output sequence of (fn)n∈N w.r.t. (k,O, P) (P induces a subsequence
(pn)n∈N, and O further induces the output sequence (pn)n∈O). Let Λ be a BNL-program
with (β(p+ q) + 2)|P | print predicates and (β(p+ q) + 2)ℓ input predicates. We say that
Λ simulates a solution for time series problem P if for every input i ∈ {0, 1}(β(p+q)+2)ℓ

corresponding to (F1, . . . , Fℓ) ∈ Sℓ, the output sequence of Λ with input i corresponds to
the output sequence induced by P(F1, . . . , Fℓ), i.e., the output strings of Λ correspond to
the output strings of P. A neural network N with ℓ input nodes and |P | output nodes

V. Ahvonen, D. Heiman, and A. Kuusisto 9:19

solves P if the output sequence of N with input (F1, . . . , Fℓ) is the output sequence induced
by P(F1, . . . , Fℓ). We say that a BNL-program Λ and a neural network N (for S) are
asynchronously equivalent in S if the time series problems in S simulated by Λ are
exactly the ones solved by N .

We define notions for binaries in similar fashion. Recall that k, ℓ ∈ N, P ⊆ [k]. Similarly,
let S(k, P) denote the family of k-bit string sequences B = (bn)n∈N with print bit set P . A
(binary) time series problem P for (ℓ, k, P) is a function P : {0, 1}ℓ → S(k, P) × ℘(N)
that assigns a k-bit string sequence and a set O ∈ ℘(N) of output rounds to every input
i ∈ {0, 1}ℓ; together they induce an output sequence w.r.t. (k,O, P). We say that a
BNL-program Λ with ℓ input predicates and |P | print predicates solves P if the output
sequence of Λ with any input i ∈ {0, 1}ℓ is the output sequence induced by P(i). We say that
a neural network N for floating point system S with ℓ input nodes and |P | output nodes
simulates a solution for binary time series problem P if for every input (F1, . . . , Fℓ) ∈ Sℓ

that represents i ∈ {0, 1}ℓ (i.e. every Fi represents 0 or 1), the output sequence of N with
input (F1, . . . , Fℓ) corresponds to the output sequence induced by P(i) (in the same fashion,
where every floating-point number represents 0 or 1). We say that a BNL-program Λ and a
general neural network N are asynchronously equivalent in binary if the time series
problems in binary simulated by N are exactly the ones solved by Λ.

We define the computation delay between two objects that are asynchronously equival-
ent (in binary or in floating-point system S) analogously to the computation delay defined in
the preliminaries.

▶ Remark 13. Asynchronous equivalence in binary could be extended to two BNL-programs;
this is consistent with the asynchronous equivalence defined in preliminaries. Therefore
asynchronous equivalence in binary could also extend for SC and self-feeding circuits. We
could also define equivalence between two neural networks. Informally, two neural networks
are asynchronously equivalent if they solve exactly the same floating-point time series
problems. It is also possible to define a weakened equivalence relation for neural networks,
where a neural network simulates another neural network in “binary” as follows. Let P be a
floating-point time series problem for (ℓ, k, P) in S = (p, q, β) and let P′ be a binary time
series problem for ((β(p+ q) + 2)ℓ, (β(p+ q) + 2)k, P ′), where P ′ is the set of bit positions
which corresponds to positions in P . We say that P′ corresponds to P if for each f ∈ Sℓ and
the unique bit string i ∈ {0, 1}(β(p+q)+2)ℓ that corresponds to f , we have that the output
sequence induced by P′(i) corresponds to the one induced by P(f). We say that neural
networks N and N ′ are weakly asynchronously equivalent in S if the time series problems
in S solved by N are exactly the ones with a corresponding binary time series problem
simulated by N ′, or respectively the time series problems in S solved by N ′ are exactly the
ones with a corresponding binary time series problem simulated by N .

4.3 From NN to BNL

We provide a translation from general neural networks to Boolean network logic. The proof
is based on the results obtained for floating-point arithmetic in Section 3.2.

▶ Theorem 14. Given a general neural network N for S = (p, q, β) with N nodes, degree ∆,
piece-size P and order Ω (or Ω = 1 if the order is 0), we can construct a BNL-program Λ
such that N and Λ are asynchronously equivalent in S where for r = max{p, q},
1. the size of Λ is O(N(∆ + PΩ2)(r4 + r3β2 + rβ4)), and
2. the computation delay of Λ is O((log(Ω) + 1)(log(r) + log(β)) + log(∆)).

CSL 2024

9:20 Descriptive Complexity for Neural Networks via Boolean Networks

Proof. First we consider the framework where output rounds are defined by attention nodes
and attention predicates. We consider the setting where output rounds are fixed as a corollary.

We use separate head predicates Su,e, Su,f , Eu,i,b, and Fu,j,b (i ∈ [q], j ∈ [p], b ∈ [0;β−1])
for each node u of N . Together, they encode the 1) exponent sign, 2) fraction sign, 3)
exponent and 4) fraction of the activation values of u in one-hot representation as described
in Section 3.2. These calculations are done using the arithmetic algorithms from the same
section. The program can not calculate a new activation value in one step like a neural
network does, as each arithmetic operation takes some time to compute. The input of a single
node is a floating-point number with q digits for the exponent, p digits for the fraction, and a
sign for both. Its one-hot representation therefore has (p+ q)β + 2 bits; exactly the number
of head predicates assigned for each node. Each of these predicates receives a corresponding
bit as input. For instance, if the input floating-point number of u is −0.314 × 10+01, then
the head predicates Su,e, Eu,1,0, Eu,2,1, Fu,1,3, Fu,2,1 and Fu,3,4 get the input 1 while all the
other head predicates for u get the input 0.

After receiving these inputs, the rest of the program is built by applying the programs
for floating-point addition and multiplication constructed in Section 3.2 to the aggregations
and activation functions of each node in the established canonical order of operations. The
calculations are timed with a one-hot counter, i.e., predicates T0, . . . , Tn as described in
Section 2.2. Here n is the worst-case number of rounds required for the algorithms to calculate
an activation value for a node in the network (based on the number of neighbours, as well as
the order and number of pieces of the activation function). The predicates in this counter are
used to stall the head predicates for each node such that they receive the bits corresponding
to the new activation values at the same time (this includes the print predicates, which
are all the predicates corresponding to output nodes). The attention nodes have additional
predicates that correspond to the threshold values; during rounds where the activation values
have been calculated, an attention predicate turns true if this value is exceeded.

We compute additions and multiplications for each node in the network; this can be done
simultaneously for each node. Each node requires at most ∆ multiplications and additions
in the aggregation before the use of the activation function. Multiplications can be done
simultaneously and sums in parallel as described in section 3. These steps require size
O(N∆(r4 + r3β2 + rβ4)) (each of the N nodes performs O(∆) multiplications/additions; the
size of the multiplication is O(r4 + r3β2 + rβ4) which dwarfs the addition size O(r3 + r2β2))
and the overall time required is O(log(r) + log(β)) + O(log(∆)) (multiplication + addition).

After the aggregation come the activation functions. Since they are piecewise polynomial,
we may apply Theorem 12, using the piece-size and order of the network. If Ω = 0 we are
done, so assume that Ω ∈ Z+. Each of the N nodes calculates at most P polynomial pieces
of order at most Ω, which gives us a size of O(NPΩ2(r4 + r3β2 + rβ4)). This requires only
O((log(Ω) + 1)(log(r) + log(β))) time. The same predicates are used for the calculation
of each subsequent global configuration of the network. Timing the calculations does not
increase the size and time complexity. Adding the sizes and times together, the size of
the program is O(N(∆ + PΩ2)(r4 + r3β2 + rβ4)) and computing each global configuration
of N requires time O(log(r) + log(β)) + O(log(∆)) + O((log(Ω) + 1)(log(r) + log(β))) =
O((log(Ω) + 1)(log(r) + log(β)) + log(∆)); the first O(log(r) + log(β)) is not dwarfed if Ω = 1.

The case for the second framework, where output rounds are given by an attention
function, is obtained as a corollary. We simply take the worst case time for calculating a new
activation value with the aggregations and piecewise polynomial functions in BNL; let’s say
the worst case is T rounds. If a : Sk → ℘(N) is the attention function of N , then the attention
function of Λ is the function a′ : {0, 1}k(β(p+q)+2) → ℘(N), a′(i) = Ta(i′) = {Tn | n ∈ a(i′)}
where i ∈ {0, 1}k(β(p+q)+2) corresponds to i′ ∈ Sk. ◀

V. Ahvonen, D. Heiman, and A. Kuusisto 9:21

4.4 From BNL to NN

Before the formal translation from BNL-programs to general neural networks, we introduce
two typical piecewise polynomial activation functions with just two pieces and order at most
1. These are the well-known rectified linear unit and the Heaviside step function. Recall that
an activation function is a function S → S, where S is a floating-point system. The rectified
linear unit ReLU is defined by ReLU(x) = max{0, x} and the Heaviside step function
H is defined by H(x) = 1 if x > 0, and H(x) = 0, otherwise. It is easy to generalize our
results for other activation functions.

▶ Theorem 15. Given a BNL-program Λ of size s and depth d, we can construct a general
neural network N for any floating-point system S with at most s nodes, degree at most 2,
ReLU (or Heaviside) activation functions and computation delay O(d) (or O(s) since s > d)
such that Λ and N are asynchronously equivalent in binary.

Proof sketch. The full proof can be found in [2]. The aggregation each node performs on
the activation values of its neighbours weakens neural networks in the sense that much of
the information related to specific neighbours is lost. Due to this, a single node of a neural
network can’t imitate an arbitrary iteration clause where each predicate has a precise role.
Instead, the program Λ is first turned into an asynchronously equivalent “fully-open” program
Λ′ that is described in [2]. Informally, that means each body of the iteration clauses of Λ′

includes at most one logical connective. This is turned into a neural network by creating a
node for each predicate of Λ′. The network only uses the floating-point numbers −1, 0, 1, 2,
and the iteration clauses can all be calculated with ReLU or Heaviside by choosing the
weights and biases appropriately. ◀

We have shown a translation from neural networks to BNL-programs and vice versa.
Using the translations in succession, it is possible to transform a neural network into a weakly
asynchronously equivalent neural network that only uses 1 and 0 as activation values, and
either ReLU or Heaviside activation functions in every node. Generalizing our result for
other activation functions is possible.

The match between BNL and neural networks provides a concrete demonstration of
the obvious fact that – in some relevant sense – there is no difference between symbolic
and non-symbolic approaches. Under reasonable background assumptions, non-symbolic
approaches can be technically reduced to symbolic ones. More than to the differences between
the symbolic and non-symbolic realms, the clear advantages of modern AI methods relate to
the difference between systems based on explicit programming and systems that involve an
aspect of learning not based on explicit and fully controlled programming steps.

5 Conclusion

We have shown a strong equivalence between a general class of one-to-many neural networks
and Boolean network logic in terms of discrete time series. The translations are simple in both
directions, with reasonable time and size blow-ups. We receive similar results for the logic SC
due to Theorem 1 and self-feeding circuits due to Theorem 3. The link to self-feeding circuits
is novel, since it allows us to apply circuit based methods to reason about neural networks
in the recurrent setting. Interesting future directions involve investigating extensions with
randomization as well as studying the effects of using alternatives to floating-point numbers,
such as, for example, fixed-point arithmetic.

CSL 2024

9:22 Descriptive Complexity for Neural Networks via Boolean Networks

References
1 Veeti Ahvonen, Damian Heiman, Lauri Hella, and Antti Kuusisto. Descriptive complexity

for distributed computing with circuits. In Jérôme Leroux, Sylvain Lombardy, and David
Peleg, editors, 48th International Symposium on Mathematical Foundations of Computer
Science, MFCS 2023, August 28 to September 1, 2023, Bordeaux, France, volume 272 of
LIPIcs, pages 9:1–9:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:
10.4230/LIPICS.MFCS.2023.9.

2 Veeti Ahvonen, Damian Heiman, and Antti Kuusisto. Descriptive complexity for neural
networks via boolean networks. CoRR, abs/2308.06277, 2023. doi:10.48550/arXiv.2308.
06277.

3 Pablo Barceló, Egor V. Kostylev, Mikaël Monet, Jorge Pérez, Juan L. Reutter, and Juan Pablo
Silva. The logical expressiveness of graph neural networks. In 8th International Confer-
ence on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020.

4 Maria Luisa Bonet and Samuel R. Buss. Size-depth tradeoffs for boolean formulae. Information
Processing Letters, 49(3):151–155, 1994. doi:10.1016/0020-0190(94)90093-0.

5 Daizhan Cheng and Hongsheng Qi. A linear representation of dynamics of boolean networks.
IEEE Transactions on Automatic Control, 55(10):2251–2258, 2010.

6 Martin Grohe. The logic of graph neural networks. In 36th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 – July 2, 2021, pages 1–17.
IEEE, 2021.

7 Martin Grohe. The descriptive complexity of graph neural networks, 2023. arXiv:2303.04613.
8 Lauri Hella, Matti Järvisalo, Antti Kuusisto, Juhana Laurinharju, Tuomo Lempiäinen, Kerkko

Luosto, Jukka Suomela, and Jonni Virtema. Weak models of distributed computing, with
connections to modal logic. In Proceedings of the 2012 ACM Symposium on Principles of
distributed computing, pages 185–194, 2012.

9 Lauri Hella, Matti Järvisalo, Antti Kuusisto, Juhana Laurinharju, Tuomo Lempiäinen, Kerkko
Luosto, Jukka Suomela, and Jonni Virtema. Weak models of distributed computing, with
connections to modal logic. Distributed Comput., 28(1):31–53, 2015.

10 Stuart Kauffman. Homeostasis and differentiation in random genetic control networks. Nature,
224(5215):177–178, 1969.

11 Antti Kuusisto. Modal Logic and Distributed Message Passing Automata. In Computer
Science Logic 2013 (CSL 2013), volume 23 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 452–468, 2013.

12 Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science. An
EATCS Series. Springer, 2004.

13 Fabian Reiter. Asynchronous distributed automata: A characterization of the modal mu-
fragment. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors,
44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, July
10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 100:1–100:14, 2017.

14 Julian D Schwab, Silke D Kühlwein, Nensi Ikonomi, Michael Kühl, and Hans A Kestler.
Concepts in boolean network modeling: What do they all mean? Computational and structural
biotechnology journal, 18:571–582, 2020.

15 Massimiliano Zanin and Alexander N Pisarchik. Boolean networks for cryptography and
secure communication. Nonlinear Science Letters B: Chaos, Fractal and Synchronization. Vol,
1(1):27–34, 2011.

16 Ranran Zhang, Mithun Vinod Shah, Jun Yang, Susan B Nyland, Xin Liu, Jong K Yun, Réka
Albert, and Thomas P Loughran Jr. Network model of survival signaling in large granular
lymphocyte leukemia. Proceedings of the National Academy of Sciences, 105(42):16308–16313,
2008.

https://doi.org/10.4230/LIPICS.MFCS.2023.9
https://doi.org/10.4230/LIPICS.MFCS.2023.9
https://doi.org/10.48550/arXiv.2308.06277
https://doi.org/10.48550/arXiv.2308.06277
https://doi.org/10.1016/0020-0190(94)90093-0
https://arxiv.org/abs/2303.04613

	1 Introduction
	2 Preliminaries
	2.1 Discrete time series
	2.2 Modal substitution calculus MSC and Boolean network logic BNL
	2.3 Link to self-feeding circuits

	3 Arithmetic with BNL
	3.1 Integer arithmetic
	3.2 Floating-point arithmetic

	4 Descriptive complexity for general neural networks
	4.1 General neural networks
	4.2 Equivalence and time series problems
	4.3 From NN to BNL
	4.4 From BNL to NN

	5 Conclusion

