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Abstract
Representing graphs by their homomorphism counts has led to the beautiful theory of homomorphism
indistinguishability in recent years. Moreover, homomorphism counts have promising applications in
database theory and machine learning, where one would like to answer queries or classify graphs
solely based on the representation of a graph G as a finite vector of homomorphism counts from
some fixed finite set of graphs to G. We study the computational complexity of the arguably
most fundamental computational problem associated to these representations, the homomorphism
reconstructability problem: given a finite sequence of graphs and a corresponding vector of natural
numbers, decide whether there exists a graph G that realises the given vector as the homomorphism
counts from the given graphs.

We show that this problem yields a natural example of an NP#P-hard problem, which still can
be NP-hard when restricted to a fixed number of input graphs of bounded treewidth and a fixed
input vector of natural numbers, or alternatively, when restricted to a finite input set of graphs.
We further show that, when restricted to a finite input set of graphs and given an upper bound
on the order of the graph G as additional input, the problem cannot be NP-hard unless P = NP.
For this regime, we obtain partial positive results. We also investigate the problem’s parameterised
complexity and provide fpt-algorithms for the case that a single graph is given and that multiple
graphs of the same order with subgraph instead of homomorphism counts are given.
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19:2 The Complexity of Homomorphism Reconstructibility

1 Introduction

Representing a graph in terms of homomorphism counts has proven to be fruitful in theory
and applications. Many graph properties studied in logic [16, 21], algebraic graph theory [15],
quantum information theory [40], and convex optimisation [51, 23] can be expressed as
homomorphism counts from some family of graphs. Homomorphism counts provide a basis
for other counting problems [10] and have been studied extensively using diverse tools ranging
from algorithmics [15] to algebra [23, 40], from combinatorics [50, 53] to category theory [14, 1].
In database theory, they correspond to evaluations of Boolean conjunctive queries under bag
semantics [7, 34]. In graph learning, representations of graphs as vectors of homomorphism
counts yield embeddings into a continuous latent space and underpin theoretically meaningful
and successfully field-tested machine learning architectures [45, 6, 58].

In this work, we consider representations of a graph G as a finite vector of homomorphisms
counts hom(I, G) ∈ NI for some finite set of graphs I, which we call a homomorphism
embedding. The rich theory of homomorphism counts calls for algorithmic applications of
homomorphism embeddings: in database theory, one would ideally like to decide properties
of the graph G having access to the vector hom(I, G) only [22, 8]. In graph learning, certain
entries of the homomorphism embedding might be associated with desirable properties of
the graph being embedded, and one would like to be able to synthesise a graph having
these desirable properties from a vector in the latent space [5, 24]. Despite its ubiquity in
the contexts described above, homomorphism embeddings have not undergone a systematic
complexity-theoretic analysis yet. The arguably most fundamental computational problem
associated to them is to decide whether a vector h ∈ NI actually represents a graph, i.e.
it is of the form h = hom(I, G) for some graph G. Therefore, we consider the following
homomorphism reconstructability problem for graph classes F and G:

HomRec(F , G)
Input Pairs (F1, h1), . . . , (Fm, hm) ∈ F × N where h1, . . . , hm are given in binary.
Question Is there a graph G ∈ G such that hom(Fi, G) = hi for every i ∈ [m]?

We simply write HomRec(F) if G is the class of all graphs. While the problem has a clean-
cut motivation in practical applications, one quickly encounters surprising connections to deep
theoretical results and long-standing open questions. One does not only have to carefully keep
distance to the notorious graph reconstruction conjecture of Ulam [46], but also be aware that
various decision problems involving the set R(I) of all vectors hom(I, G) ∈ NI where G ranges
over all graphs have received much attention recently, e.g. the homomorphism domination
problem [32], whose decidability is open, the homomorphism determinacy problem [34],
or the undecidable problem of determining whether inequalities of homomorphism counts
hold [28, 25]. Beyond computational concerns, an abstract characterisation of the set R(I)
akin to [18, 37] is desirable, yet elusive [3].

In this paper, we establish a firm grasp on the computational complexity of the homo-
morphism reconstructability problem HomRec(F , G) by exploring from which of its aspects
computational hardness arises and then finding restrictions for which efficient algorithms can
be found. Despite the interest in the problem, surprisingly little progress on this question has
been made. The only result related to our work is a theorem from [31], which asserts that
a variant of HomRec(F , G) with Boolean subgraph constraints instead of homomorphism
counts is NPNP-complete. In particular, a formal definition of HomRec(F , G) has not been
made before, and we would like to remark on a curious peculiarity of the definition we have
chosen: a polynomial-time algorithm for HomRec(F , G) may exploit algebraic properties of



J. Böker, L. Härtel, N. Runde, T. Seppelt, and C. Standke 19:3

homomorphism numbers and deduce via arithmetic operations on the given numbers whether
these can be realised by a graph G or not; let us call an algorithm of this type arithmetic.
However, it is also conceivable that an algorithm for HomRec(F , G) would operate by
explicitly constructing the graph G, for example, in a dynamic-programming fashion; let us
call such an algorithm constructive. A constructive algorithm seems just as reasonable as an
arithmetic one but may not be a polynomial-time algorithm for HomRec(F , G) since the
order of G does not have to be polynomial in the length of the binary encoding of the given
homomorphism numbers, even if one of the constraint graphs is Fi = . Hence, it also seems
reasonable to define the bounded homomorphism reconstructability problem BHomRec(F , G)
where an additional input n ∈ N given in unary imposes a bound on the number of vertices in
G that is linear in the input encoding. This bound, however, poses an additional constraint to
the graph G, which may make the design of arithmetic algorithms more difficult or impossible.
Hence, both HomRec(F , G) and BHomRec(F , G) are arguably reasonable definitions of
the reconstructability problem, each in their own right, and we consider both.

The Ocean of Hardness

Let C=P denote the class of all decision problems L for which there is a function f ∈ #P
and a polynomial-time computable function g such that, for every instance x of L, we have
x ∈ L ⇐⇒ f(x) = g(x) [54, 57, 26]. We first show that both the unbounded and the
bounded reconstructability problem are NPC=P-hard when not restricted in any way. Note
that NPC=P = NP#P since, whenever we issue a call to the #P-oracle, we may guess the
output using nondeterminism and verify it using a C=P-oracle instead [56, 9]; we refer to the
full version [4] for more details about counting classes.

▶ Theorem 1. Let F denote the class of all graphs. Then, HomRec(F) is in NEXP and
BHomRec(F) is in NPC=P. Moreover, both problems are NPC=P-hard. Hence, they are not
contained in the polynomial hierarchy unless it collapses.

This result illustrates two intertwined sources of hardness in the reconstructability problem:
first, the reconstruction hardness of finding a graph G, which corresponds to the class NP,
and secondly, the counting hardness of verifying that G actually satisfies the given constraints,
which corresponds to the C=P-oracle. The reconstruction hardness is what we are interested
in since the counting hardness simply reflects the hardness of counting homomorphisms,
which is well understood: the problem #Hom of counting the number of homomorphisms
from a graph F to a graph G is #P-complete and, under the complexity-theoretic assumption
that FPT ̸= #W[1], becomes tractable if and only if one restricts the graphs F to come from
a (recursively enumerable) class of bounded treewidth [12].

To isolate the reconstruction hardness, we restrict F to be a class of bounded treewidth,
which allows us to verify in polynomial time that a graph G satisfies all given constraints. In
particular, the bounded problem is then in NP since one can guess a graph G of the given
size and verify that it satisfies all constraints in polynomial time. We show that the intuition
conveyed by Theorem 1 is correct: HomRec(F) is still NP-hard if F has bounded treewidth
and even remains NP-hard when only a constant number of constraints is allowed to appear
in the input.

▶ Theorem 2. There is a class F of graphs of bounded treewidth such that HomRec(F)
and BHomRec(F) are NP-hard.

The reduction used to prove Theorem 2 further demonstrates that both problems remain
NP-hard when only allowing some fixed number of constraints: it produces a family of
instances with graphs from F where the number of constraints, all homomorphism numbers,
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Figure 1 Reconstructable and subgraph counts (yellow) for graphs on nine vertices. The
grey area depicts the values which are not ruled out by the Kruskal–Katona bound [33, 30], cf. [36,
13.31b], or the Razborov bound [49], cf. [38, Theorem 16.14]. The -counts realisable by graphs on
nine vertices correspond to columns with at least one yellow box.

and all but one constraint graph are fixed. This raises the question what happens if we fix all
input graphs and allow the homomorphism numbers to vary instead, i.e. does HomRec(F)
become tractable if F is finite? Even though the input to HomRec(F) for finite F essentially
consists only of natural numbers encoded in binary, we are still able to show that HomRec(F)
is also NP-hard in this case. In contrast, however, BHomRec(F) is sparse for finite F , i.e.
it only has polynomial number of yes-instances, and hence, unlikely to be NP-hard [39].

▶ Theorem 3. There is a finite set F of graphs such that HomRec(F) is NP-hard. If
BHomRec(F) is NP-complete for a finite set F of graphs, then P = NP.

Hence, the complexity of the reconstructability problem becomes much more nuanced
for finite F , and in order to design efficient algorithms for it, we seemingly have to focus
on BHomRec(F) for finite F . The fact that there are only polynomially many feasible
combinations of homomorphism numbers in this case might be somehow exploitable, e.g. by
a dynamic-programming algorithm operating on a table indexed by them.

Islands of Tractability

The first tractable instance of HomRec(F) that comes to mind is given by F1 = and
F2 = and h1, h2 ∈ N. In this case, we need to decide whether h2 ≤ h1(h1 − 1) and h2
is even. Although this is fairly trivial, we encounter severe combinatorial difficulties when
attempting to generalise this even to F1 = and F2 = . Figure 1 shows that the set of
reconstructible vectors has a non-trivial shape. In particular, while highly engineered results
from extremal combinatorics [38, 49, 27, 20] provide insights in the (asymptotic) behaviour
of the upper and lower boundary of that set, we are unable to characterise the seemingly
erratic gaps and spikes depicted in Figure 1. On the positive side, we are able to map out
large regions of reconstructible vectors using number-theoretic insights:

▶ Theorem 4. There exists a function γ : N → N such that for every k ≥ 2, n ≥ 1, h ≤
(

n
k

)
,

there exists a graph G on n + γ(k − 1) − 1 vertices such that sub(Kk, G) = h.
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Theorem 4 allows for the construction of graphs with almost all possible numbers of
clique subgraphs. Indeed, the proportion of covered values is

(
n
k

)/(
n+γ(k−1)−1

k

)
= 1 − o(1)

for n → ∞ and fixed k. In other words, all sensible values can be realised by only slightly
deviating from the stipulated size constraint.

The problem arising when dealing with the remaining admissible parameters, i.e.
(

n
k

)
<

h ≤
(

n+γ(k−1)−1
k

)
, seems to be that the constraints on the number of vertices and cliques

interact in an elusive fashion. Although understanding such interactions better remains a
direction for future investigations, we are able to identify certain combinatorial conditions
under which the constraints are somewhat independent. This yields fixed-parameter algo-
rithms for variants of HomRec(F , G) contrasting Theorem 3. Here, Proviso 20 stipulates
mild constraints on the graph classes F and G. For example, G can be taken to be the class
of all graphs and F to be the class of all connected graphs.

▶ Theorem 5. For graph classes F , G as in Proviso 20, the following problem is in FPT:

p-SingleHomRec(F , G)
Input a graph F ∈ F , an integer h ∈ N given in binary
Parameter |V (F )|
Question Does there exist a graph G ∈ G such that hom(F, G) = h?

Curiously, any fpt-algorithm for p-SingleHomRec(F , G) has to be arithmetic: In FPT,
one can neither construct the graph G nor count homomorphisms from F to G [12]. Indeed,
our algorithm essentially only operates with integers and exploits number-theoretic properties
of the set of reconstructible numbers. In Theorem 21, we apply similar ideas to derive an
fpt-algorithm for a version of HomRec(F , G) with multiple equi-sized subgraph constraints.

2 Preliminaries and Conventions

Write N = {0, 1, 2, . . . } for the set of natural numbers. A ≤p B denotes that a decision
problem A is polynomial-time many-one reducible to the decision problem B. A graph is a
pair G = (V, E) of a set of vertices V and a set of edges E ⊆

(
V
2
)
. We usually write V (G)

and E(G) for V and E, respectively, and use n to denote the order n := |V (G)| of G. For
ease of notation, we denote an edge {u, v} by uv or vu. A homomorphism from a graph F

to a graph G is a mapping h : V (F ) → V (G) such that h(uv) ∈ E(G) for every uv ∈ E(F ).
A (C-vertex-)coloured graph is a triple G = (V, E, c) where (V, E) is a graph, the underlying
graph, and c : V (G) → C a function assigning a colour from a set C to every vertex of G. An
(L-)labelled graph is defined analogously with a function ℓ : L → V (G) assigning a vertex
of G to every label from a set of labels L instead. Homomorphisms between coloured graphs
and between labelled graphs are then defined as homomorphisms of the underlying graphs
that respect colours and labels, respectively.

A graph G′ is a subgraph of a graph G, written G′ ⊆ G, if V (G′) ⊆ V (G) and E(G′) ⊆
E(G). The subgraph induced by a set U ⊆ V (G), written G[U ], is the subgraph of G with
vertices U and edges E(G)∩

(
U
2
)
. We write hom(F, G) for the number of homomorphisms from

F to G, sub(F, G) for the number of subgraphs G′ ⊆ G such that G′ ∼= F , and indsub(F, G)
for the number of subsets U ⊆ V (G) such that G[U ] ∼= F . This notation generalises to
coloured and labelled graphs in the straightforward way.

The definition of HomRec(F , G) from the introduction directly generalises to classes F
and G of relational structures over the same signature, and in particular, classes of labelled
and coloured graphs. We call a pair (F, h) of a structure F and a number h ∈ N a constraint
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19:6 The Complexity of Homomorphism Reconstructibility

and also denote the pair by hom(F ) = h, or for example in the context of reconstructability
of subgraph counts, by sub(F ) = h. As stipulated in the introduction, if F is a class of
graphs, we abbreviate HomRec(F , G) for the class of all graphs G to HomRec(F). We
use the abbreviation BHomRec(F) in the same way, and for a class of labelled or coloured
graphs F , we analogously abbreviate the problem name if G is the class of all labelled or all
coloured graphs, respectively. We define the problems SubRec(F , G) and BSubRec(F , G)
analogously to HomRec(F , G) and BHomRec(F , G), respectively, with subgraph counts
instead of homomorphism counts and also follow the conventions agreed upon above. See
the full version [4] for details.

3 Decidability

The problem BHomRec(F , G) is trivially decidable if membership in G is decidable since it
is possible to perform a brute-force search for G by testing all graphs up to order n. For
HomRec(F , G), decidability is implied by the following lemma:

▶ Lemma 6. Let F and G be classes of structures over the same signature. Suppose that
G is closed under taking induced substructures. Let (F1, h1), . . . , (Fm, hm) ∈ F × N. Let
G ∈ G be such that hom(Fi, G) = hi for all i ∈ [m]. Then there exists H ∈ G such that
|H| ≤

∑m
i=1 hi |Fi| and hom(Fi, H) = hi for all i ∈ [m].

Proof. Let U denote the union over all images of homomorphisms Fi → G, i ∈ [m]. Clearly,
|U | ≤

∑m
i=1 hom(Fi, G) |Fi|. Let H := G[U ] ∈ G. For all i ∈ [m], hom(Fi, H) = hom(Fi, G).

Indeed, every homomorphism Fi → H gives rise to a homomorphism Fi → G by composition
with the embedding H ↪→ G. Conversely, observe that every homomorphism Fi → G is in
fact a homomorphism Fi → H since its image is contained in U . It remains to observe that
this correspondence establishes a bijection. ◀

Under the assumptions of the previous lemma, HomRec(F , G) can be decided via a brute-
force search on all graphs in G up to order

∑m
i=1 hi |Fi|. Together with our insights on

BHomRec(F , G), this shows the following theorem.

▶ Theorem 7. Let F and G be classes of structures over the same signature. Suppose that
membership in G is decidable. Then BHomRec(F , G) is decidable. If G is closed under
taking induced substructures, then also HomRec(F , G) is decidable.

4 Hardness

In this section, we prove the hardness results presented in the introduction. First, we remark
that, for the class F of all graphs, HomRec(F) is in NEXP since we can non-deterministically
guess a graph G of exponential size by Lemma 6 and then count homomorphisms to G in
exponential time by simply going through all mappings from the given constraint graphs to G.
For the bounded problem, we are given a size bound on G as part of the input, which means
that BHomRec(F , F) is in NPC=P since we can non-deterministically guess a graph G of
linear size and then verify that G satisfies all constraints by using the C=P-oracle.

▶ Theorem 8. Let F denote the class of all graphs. Then, HomRec(F) is in NEXP and
BHomRec(F) is in NPC=P.

Let F denote the class of all graphs. The fact that BHomRec(F) ∈ NPC=P reflects
the intuition on the hardness on BHomRec(F) that we gave in the introduction, i.e. that
there are two intertwined sources of hardness, the reconstruction hardness, manifested as NP,
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and the counting hardness, manifested as the C=P-oracle. In Section 4.1, we show that this
intuition is in fact correct and that HomRec(F) and BHomRec(F) are NPC=P-hard. In
Section 4.2, we further reinforce this intuition by presenting a reduction from the well-known
NP-complete problem SetSplitting to HomRec(F) and BHomRec(F) for a class of
bounded treewidth F that proves that these problems are NP-hard for a family of inputs
where the number of constraints, all homomorphism numbers, and all graphs but one are fixed.
This isolates the reconstruction hardness and supports our intuition of the reconstruction
hardness being NP-hardness.

In our reduction from SetSplitting, the given instance to SetSplitting is encoded
as a constraint graph that grows with the size of the given instance while the number of
produced constraints and the produced homomorphism numbers remain fixed. This raises the
question if we can achieve tractability by restricting the order of the constraint graphs instead,
i.e. if HomRec(F) and BHomRec(F) become tractable if F is finite. In Section 4.3, we
show that there is a finite class F for which HomRec(F) is NP-hard by reducing from the
NP-complete problem QPoly of solving an equation involving a quadratic polynomial. We
further show that this reduction cannot be adapted to work for BHomRec(F , G) and then
prove that BHomRec(F , G) is sparse, i.e. it only has polynomial number of yes-instances,
which means that it cannot be NP-hard under the assumption that P ̸= NP. In Section 4.4,
we briefly discuss which of our hardness results also hold for the subgraph reconstructability
problem.

For the sake of presentability, we only provide the reductions to the reconstructability
problem for labelled or coloured graphs in the main body of this paper. In the full version [4],
we show that all these reductions be adapted to (unlabelled and uncoloured) graphs via
gadget constructions that employ Kneser graphs, cf. the full version [4].

4.1 NPC=P-Hardness
We first show that both problems HomRec(F) and BHomRec(F) are NPC=P-hard. We
reduce from the following NPC=P-complete variant of 3-Colouring, cf. the full version [4].

EC-3-Colouring
Input A graph G, a subset of vertices S ⊆ V (G), and a k ∈ N given in binary.
Question Is there a homomorphism c : G[S] → such that there are exactly k

homomorphisms ĉ : G → such that ĉ|S = c?

The idea is that the number of homomorphisms from a graph F to the complete graph
on three vertices is precisely the number of 3-colourings of F . Then, one can formulate
constraints that can only be satisfied by , and by adding an additional constraint hom(F ) =
h, one obtains a yes-instance to the reconstructability problem if and only if the number of
3-colourings of F is exactly h. By additionally employing labels on F and , we obtain a
reduction from EC-3-Colouring.

▶ Theorem 9. Let LF denote the class of all labelled graphs. Then, EC-3-Colouring ≤p

HomRec(LF) and EC-3-Colouring ≤p BHomRec(LF).

Proof. Given an instance (F, S, k) of EC-3-Colouring, let m := |S|. Fix an arbitrary
linear order on S, i.e. S = {s1, . . . , sm}. We use the labels ℓ1, . . . , ℓm to classify vertices of F

as members of S: let F ′ be the labelled graph obtained from F and S by assigning label ℓi

to the vertex si ∈ S for every i ∈ [m]. The reduction then produces the following constraints,
where for BHomRec(LF), we set the additional size constraint to three:
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19:8 The Complexity of Homomorphism Reconstructibility

(a) hom(F ′) = k,
(b) hom( ) = 3,
(c) hom( ) = 6, and
(d) hom( ℓi) = 1 for every i ∈ [m].
Note that is the unique graph that satisfies hom( ) = 3 and hom( ) = 6. The remaining
constraints enforce that each label from {ℓ1, . . . , ℓm} appears exactly once in G. For a
partition L = {L1, L2, L3} of these labels into at most three parts, let GL denote the with
its three vertices labelled by the labels in L1, L2, and L3, respectively. Then, (F, S, k) is in
EC-3-Colouring if and only if there is a partition L as above such that hom(F ′, GL) = k,
which again is the case if and only if there is a labelled graph G that satisfies the constraints
produced by the reduction. ◀

By encoding vertex labels by gadgets consisting of Kneser graphs, we can also obtain a
reduction for uncoloured graphs. Since the number of labels used in the reduction above
depends on the input instance, we can view every label as indexed by a binary number and
construct a gadget from distinct Kneser graphs for 0 and 1 to encode its index. This allows
us to only use a constant and finite set of Kneser graphs, which means that we do not have
to worry about their size, and guarantees that the resulting reduction still runs in polynomial
time. The proof can be found in the full version [4].

▶ Theorem 10. Let F denote the class of all graphs. Then, EC-3-Colouring ≤p

HomRec(F) and EC-3-Colouring ≤p BHomRec(F).

Together with the following observation, this then finishes the proof of Theorem 1.

▶ Corollary 11. Let F denote the class of all graphs. Then, HomRec(F) and BHomRec(F)
are not in PH unless PH collapses.

Proof. This follows from Toda’s Theorem [55] since every oracle query in the computation
of a P#P-machine can be simulated by a nondeterministic polynomial-time machine guessing
the answer and then verifying it with an oracle query to a problem in C=P. ◀

4.2 NP-Hardness for Constraints of Bounded Treewidth
The reduction used to prove NPC=P-hardness in the previous section uses the graph given as
input for EC-3-Colouring as a constraint, which has the side effect that the treewidth of the
produced instances is not bounded. Moreover, the same reduction cannot be easily adapted
to prove NP-hardness of HomRec(F) for a class of graphs F of bounded treewidth by simply
considering input graphs of bounded treewidth: the NP-complete problem 3-Colouring [19]
restricted to graphs of bounded treewidth is polynomial-time solvable [2]. Hence, we need a
different approach to such a reduction. We reduce from the following problem SetSplitting,
which is well-known to be NP-complete [35].

SetSplitting
Input A collection C of subsets of a finite set S.
Question Is there a partition of S into two subsets S1 and S2 such that no subset in

C is entirely contained in either S1 or S2?

The idea is that we represent every element i of S by a vertex of colour i. A set T ∈ C
is encoded by a star that has a leaf for every element of T and a root vertex of some fixed
colour that is distinct from the colours used for elements of S. Intuitively, the graph G
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(c) hom(F3) = 0.

Figure 2 The three constraints produced by the reduction of Theorem 12.

then consists of two stars that encode the two sets S1 and S2. To ensure that no subset
in C is entirely contained in S1 or S2, we use the constraints to require that there are no
homomorphisms from our constraint graphs to G.

The idea sketched above produces a single constraint for every set T ∈ C. We can use the
following trick to combine these constraints into a single one: a graph F consisting of several
connected components has exactly one homomorphism to G if and only if all its connected
components have exactly one homomorphism to G. Hence, if we choose G to consist of two
stars that encode S1 and S2 and also add a star that has all elements of S as its leaves, we
can instead require to have exactly one homomorphism from all our constraint graphs to G

and, thus, combine all these constraint graphs into a single (disconnected) graph from which
we require to have exactly one homomorphism.

▶ Theorem 12. Let CS denote the class of all disjoint unions of coloured stars. Then,
SetSplitting ≤p HomRec(CS) and SetSplitting ≤p BHomRec(CS), where the reduc-
tion only produces three constraints hom(F1) = 1, hom(F2) = 2, and hom(F3) = 0.

Proof. Given a collection C of subsets of a finite set S, we may assume that S = [k] by
re-labelling the elements of S. In the construction of the graphs F1, F2, F3, we use the
colours 1, . . . , k and also B (“black”), E (“everything”), and P (“partition”). We construct
these graphs as shown in Figure 2 and add the constraints hom(F1) = 1, hom(F2) = 2,
hom(F3) = 0. Note that the constraint hom(F1) = 1 is equivalent to hom(F ) = 1 for every
connected component F of F1. For BHomRec(CS), we set the size bound to 2k + 6.

Given a partition of S into sets S1 and S2 such that no subset in C is entirely contained
in either S1 or S2, the graph GS1,S2 in Figure 3 satisfies all constraints. Conversely, let
G be a coloured graph that satisfies all constraints. By the constraint hom(F2) = 2, the
graph F2 occurs exactly twice as a subgraph in G; call these occurrences G1 and G2. Let
S1 ⊆ [k] be the set of all i ∈ [k] such that a vertex of colour i is connected to the B-vertex of
G1. If the B-vertex in G2 ⊆ G is distinct from the B-vertex in G1 ⊆ G, then let S2 ⊆ [k]
be the set of all i ∈ [k] such that a vertex of colour i is connected to the B-vertex of G2;
otherwise, let S2 := ∅. The first constraint yields that the i-B-P -graph occurs exactly once
as a subgraph of G for every i ∈ [k]. By the second constraint, every i-B-P graph has to
be a supergraph of one of the two occurrences G1 and G2 of F2. Hence, the sets S1 and S2
cover S. Moreover, as every i-B-P graph occurs exactly once as a subgraph of G, the sets S1
and S2 have to be a partition of S. Finally, by the first constraint, the 1-k-B-E-graph is
a subgraph of G. Observe that, for every T ∈ C, the set T cannot be a subset of either S1
or S2 as the T -B-graph occurs exactly once in G by the first constraint and it already is a
subgraph of the 1-k-B-E-graph whose B-vertex has to be distinct from the B-vertices of the
occurrences of F2 by the third constraint. ◀
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S2

Figure 3 The graph GS1,S2 constructed from S1 and S2 in the proof of Theorem 12.

Note the following curiosity of Theorem 12: the numbers in the constraints produced by
the reduction are constant, i.e. they do not depend on the specific problem instance given as
an input. Hence, the hardness solely lies in the graphs and not the homomorphism numbers;
more specifically, there is only a single constraint graph that depends on the input instance
and is the cause of hardness.

We again use Kneser graphs to turn this reduction into one for uncoloured graphs. We
view the colours as numbers and use gadgets of Kneser graphs that encode these numbers in
binary. This allows us to argue that the reduction is still correct, where in particular, we
have to argue that, if there is a graph G satisfying all constraints, then we can extract a
solution to the given SetSplitting instance from it; this is not straightforward since such a
graph G does not have to adhere to our encoding of coloured graphs. This then yields the
following theorem, which implies Theorem 2. The proof can be found in the full version [4].

▶ Theorem 13. There is a class of graphs F of bounded treewidth such that SetSplitting ≤p

HomRec(F) and SetSplitting ≤p BHomRec(F), where the number of constraints, the
homomorphism numbers, and all constraint graphs but one are constant.

4.3 NP-Hardness for a Finite Set of Graphs
The previous sections shows that restricting the constraint graphs to be from a class F of
bounded treewidth and the number of constraints to a constant is not enough to achieve
tractability: both HomRec(F) and BHomRec(F) remain NP-hard. What happens if we
go even further and consider a finite class F? Then, the treewidth of F is trivially bounded
and so is the number of constraints. At first glance, hardness in this case seems unlikely
since the reductions presented in the previous sections rely heavily on encoding the input
instance as the constraint graphs and only used small constants for the homomorphism
numbers. Now, the input essentially consists just of homomorphism numbers encoded in
binary and, for BHomRec(F), also the size of the desired graph encoded in unary. This
makes it all the more surprising that we can actually prove the NP-hardness of HomRec(F).
We reduce from the following decision problem, which only takes three natural numbers in
binary encoding as input and is NP-complete [41, Theorem 1]:

QPoly
Input Natural numbers a, b, and c in binary encoding.
Question Are there natural numbers x and y such that ax2 + by = c?

The idea of the reduction is simple: we encode the polynomial ax2 + by as a coloured
star F from which we require exactly c homomorphisms. This star has a leaf of colour A and
two leaves of colour X to encode the monomial ax2. Furthermore, it has a leaf of colour B

and of colour Y to encode the monomial by. Then, the sum ax2 + by is realised by encoding
x and y as two separate components of G – additional constraints are used to enforce that G

has precisely two components, that the first component has exactly a leaves of colour A, and
that the second component has exactly b leaves of colour B.
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(a) The graph Fpoly.
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(b) The graph Ga,b,x,y constructed from a, b, x, y ∈ N.

Figure 4 The most important graphs used in the reduction of Theorem 14.

▶ Theorem 14. There is a finite set F of coloured stars such that QPoly ≤p HomRec(F).

Proof. We use the colours R, A, X, B, Y, M1 and M2. The main observation is that, for the
graphs Fpoly and Ga,b,x,y from Figure 4, we have hom(Fpoly, Ga,b,x,y) = ax2 + by. Note that,
however, the size of Ga,b,x,y is not polynomial in log a + log b + log c, i.e. in the size of an
instance (a, b, c) of QPoly. Given an instance (a, b, c) of QPoly, we produce the following
constraints and denote the set of all coloured graphs used in these constraints by F ; note
that F is independent of the instance (a, b, c):
(a) hom( RA ) = a + 1,
(b) hom( RB ) = b + 1,
(c) hom(Fpoly) = c,
(d) hom( R ) = 2,
(e) hom( RM1 ) = 1,
(f) hom( RM2 ) = 1,

(g) hom
(

R
M1
M2

)
= 0,

(h) hom
(

RM1
B Y

)
= 1,

(i) hom
(

RM2
A X

)
= 1.

If (a, b, c) is an instance of QPoly with x, y ∈ N such that ax2 + by = c, then Ga,b,x,y

from Figure 4b satisfies all these constraints. Conversely, if there is a coloured graph G that
satisfies all constraints, we know by (d)–(g) that there are two R-coloured vertices v1 and v2
such that v1 is connected to an M1-coloured vertex but not an M2-coloured vertex and v2 is
connected to an M2-coloured vertex but not an M1-coloured vertex. By (h) and (i), v1 has
exactly one B-coloured neighbor and exactly one Y -coloured neighbor and v2 has exactly
one A-coloured neighbor and exactly one X-coloured neighbor. Hence, by (a) and (b), v1
has exactly a neighbors of colour A and v2 has exactly b neighbors of colour B. Let x be the
number of X-coloured neighbors of v1 and y be the number of Y -coloured neighbors of v2.
Then, we have c = hom(Fpoly, G) = ax2 + by. ◀

We can again use Kneser graphs to obtain a reduction for uncoloured graphs, which
implies the hardness stated in Theorem 3. The proof can be found in the full version [4].

▶ Theorem 15. There is a finite set F of graphs such that QPoly ≤p HomRec(F).

Can such a reduction also be used to prove NP-hardness of BHomRec(F) for a finite
class F? This is not possible, since for a fixed graph F , the number of homomorphisms from
F to a graph G is polynomial in the order of G. Hence, with a finite set F of graphs and a
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graph G of order up to n, we can only realise polynomially many distinct homomorphism
numbers, while the hardness of solving the equation ax2 + by = c stems from the fact that
there is an exponential number of solution candidates. This implies that BHomRec(F) is
sparse for every finite F , which means that it cannot be NP-hard unless P = NP [39].

▶ Theorem 16. If BHomRec(F) is NP-hard for a finite set of graphs F , then P = NP.

4.4 Subgraph Counts
While subgraphs counts can be expressed as linear combinations of homomorphism numbers
via injective homomorphism numbers, cf. [10], adapting our reductions to subgraph counts is
not as straightforward. There is no obvious way of adapting the reduction of Theorem 9 since
non-injectivity is crucial to encode colourability of graphs. The reduction of Theorem 12 can
partially be salvaged by producing individual constraints instead of only three constraints.
Then, all constraint graphs are colourful, which means that their subgraph counts are
homomorphism counts, which can be computed efficiently. However, the gadget construction
used in Theorem 13 then produces constraint graphs of unbounded vertex-cover number.
Hence, this reduction is uninteresting since the determining factor for tractability of subgraphs
counts is the vertex-cover number [11].

The results for finite F transfer to subgraphs and are meaningful since subgraph counts
can trivially be computed in polynomial time in this case. However, for subgraph counts, the
reduction of Theorem 3 encodes the binomial equation a

(
x
2
)

+ by = c instead of ax2 + by = c.
Luckily, the problem BPoly of solving this equation is still NP-complete, cf. the full version [4].
Moreover, BSubRec(F) is still sparse for every finite class of graphs F .

▶ Theorem 17. There is a finite set F of graphs such that BPoly ≤p SubRec(F). If
BSubRec(F) is NP-hard for a finite set of graphs F , then P = NP.

5 Towards Tractability: Reconstructing Clique Counts

In this section, we show that BHomRec(F) is tractable when the only constraint graph is a
clique and the constraints are in a certain range. The proofs rely on number-theoretic insights
and tailored combinatorial constructions. Using a number-theoretic result by Kamke [29],
we show that for almost all sensible n, h, k ∈ N there exists a graph G on slightly more than
n vertices containing h copies of the k-vertex clique Kk as a subgraph.

▶ Theorem 18 (Kamke [29], cf. [42, Theorem 11.10]). There exists a function γ : N → N
such that for every k ≥ 1 and n ≥ 1 there exist a1, . . . , aγ(k) ∈ N such that n =

∑γ(k)
i=1

(
ai

k

)
.

Nečaev [43] showed that γ(k) can be chosen to be of order at most O(k log k) and gave a
similar lower bound in [44]. Specific values of γ include γ(1) = 1, Gauß’ Eureka Theorem,
cf. [47], stating γ(2) = 3 and the unproven Tetrahedral Numbers Conjecture of Pollock [48]
asserting γ(3) = 5.

▶ Theorem 4. There exists a function γ : N → N such that for every k ≥ 2, n ≥ 1, h ≤
(

n
k

)
,

there exists a graph G on n + γ(k − 1) − 1 vertices such that sub(Kk, G) = h.

Proof. Let γ denote the function from Theorem 18. For every fixed k, the proof is by
induction on n. For n ≤ k, the claim is trivial. Suppose subsequently that n > k. Inductively,
we may suppose that there exists a graph G on n − 1 + γ(k − 1) − 1 vertices with h ≤

(
n−1

k

)
copies of Kk. One may add an isolated vertex to obtain a graph on n + γ(k − 1) − 1 vertices
with h copies of Kk, as desired.
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. . . v2 with deg(v2) = a2

v3 with deg(v3) = a3

v1 with deg(v1) = a1

Kn−1

Figure 5 Example for k = 3, building a graph G with n − 1 + γ(k − 1) vertices and sub( , G) =
h >

(
n−1

3

)
. Since γ(2) = 3, there are a1, a2, a3 such that h −

(
n−1

3

)
=

(
a1
2

)
+

(
a2
2

)
+

(
a3
2

)
. Connecting

a fresh vertex vi with ai vertices from the Kn−1, adds
(

ai
2

)
subgraphs to G.

Thus, it remains to construct a graph with
(

n−1
k

)
< h ≤

(
n
k

)
copies of Kk and n+γ(k−1)−1

vertices. Write h′ := h −
(

n−1
k

)
≤

(
n−1
k−1

)
. By Theorem 18, there exist non-negative integers

a1, . . . , aγ(k−1) such that h′ =
∑γ(k−1)

i=1
(

ai

k−1
)
. It can be easily seen that

(
h
k

)
>

(
n
k

)
for

all integers h > n ≥ k ≥ 1. Hence,
(

ai

k−1
)

≤ h′ ≤
(

n−1
k−1

)
implies that ai ≤ n − 1 for all

1 ≤ i ≤ γ(k − 1).
Define the graph G by taking the disjoint union of a clique Kn−1 and fresh vertices

v1, . . . , vγ(k−1). For 1 ≤ i ≤ γ(k − 1), the vertex vi is connected to an arbitrary selection of
ai many vertices of the clique. Note that this adds

(
ai

k−1
)

copies of Kk to the graph. The
resulting graph on n−1+γ(k −1) vertices satisfies sub(Kk, G) =

(
n−1

k

)
+

∑γ(k−1)
i=1

(
ai

k−1
)

= h.
For an example with k = 3, see Figure 5. ◀

For the special case of k = 3, i.e. , we can do slightly better than in Theorem 4.
While Theorem 4 requires γ(2) − 1 = 2 extra vertices to realise any sensible h, we show in
Theorem 19 that for large n one additional vertex suffices. While Theorem 4 builds on an
(n − 1)-vertex clique to which new vertices and edges are added, for Theorem 19 we start
with an (n + 1)-vertex clique and remove edges to realise the precise subgraph count. The
proof of Theorem 19 can be found in the full version [4].

▶ Theorem 19. For every n ≥ 130 and h ≤
(

n
3
)
, there is a graph G on n + 1 vertices such

that sub( , G) = h.

6 Parametrised Complexity

For graph classes F and G, we consider the parametrised version p-HomRec(F , G) of
the homomorphism reconstructability problem. For an instance (F1, h1), . . . , (Fm, hm), the
parameter is k :=

∑m
i=1|V (Fi)|. We aim for an fpt-algorithm, i.e. an algorithm that runs in

f(k) polylog(h1, . . . , hm) for some computable function f . By Theorem 15, p-HomRec(F , G)
is para-NP-hard and thus we cannot expect to obtain an fpt-algorithm unless P = NP,
cf. [17, Corollary 2.13], which means that we have to restrict the problem in some way.
Surprisingly, it turns out that a certain restriction of p-HomRec(F , G) and of the analogous
p-SubRec(F , G) are in FPT. Curiously, in FPT, one cannot even count homomorphisms or
subgraphs from arbitrary graphs [12, 11]. Our algorithm has to make do with the integers
from the input and cannot construct the graph G explicitly.

Given constraint graphs I ⊆ F , the overall strategy is to compute in time only depend-
ing on I a data structure representing the (infinite) set of all reconstructable vectors of
homomorphism counts

R(I) :=
{

hom(I, G) ∈ NI | G ∈ G
}

(1)
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or analogously of subgraph counts. This data structure is required to admit a polynomial-time
procedure for testing whether a given vector h ∈ NI is in this set. We identify various
combinatorial conditions sufficient for guaranteeing the feasibility of this approach. To start
with, we impose the following conditions on the graph classes F and G:

▶ Proviso 20.
(i) membership in G is decidable,
(ii) G is closed under taking induced subgraphs,
(iii) G is closed under disjoint unions,
(iv) all F ∈ F are connected.
Items (iii) and (iv) imply that the set R(I) of all reconstructable vectors is closed under
addition. Indeed, for all connected graphs F and graphs G and H it holds that hom(F, G +
H) = hom(F, G) + hom(F, H) and sub(F, G + H) = sub(F, G) + sub(F, H). Thus, we can
use the vectors realised by small graphs, i.e. those which can be inspected in FPT time, to
construct vectors realised by bigger graphs. More formally, writing

S(I) :=
{

hom(I, G) ∈ NI
∣∣∣∣ G ∈ G with |V (G)| ≤ max

I∈I
|V (I)|

}
, (2)

it holds that the set of all finite linear combinations of elements in S(I) with coefficients
from N is contained in R(I), i.e. NS(I) ⊆ R(I). The challenge is to ensure that all
reconstructable vectors can be constructed in this way.

We require item (ii) to relate vectors realised by large graphs to those realised by small
graphs, cf. Lemmas 22 and 24. However, this assumption is not sufficient to yield an
fpt-algorithm. To that end, we make further assumptions which ensure that the set of
realised vectors is in a sense linear and thus admits the aforementioned desired data structure.
Combinatorially, these assumptions mean that the various constraints may not interact
non-trivially.

6.1 Equi-Size Subgraph Constraints
The restriction we impose on p-SubRec(F , G) to put it in FPT is that all constraint graphs
are of the same size:

▶ Theorem 21. For graph classes F , G as in Proviso 20, the following problem is in FPT:

p-EquiSizeSubRec(F , G)
Input Pairs (F1, h1), . . . , (Fm, hm) ∈ F × N with |V (F1)| = · · · = |V (Fm)| =: k

Parameter km

Question Is there a G ∈ G such that sub(Fi, G) = hi for every i ∈ [m]?

Given an instance I ⊆ F , define R(I) and S(I) as in Equations (1) and (2) but with sub
instead of hom. As argued in the previous section, we have NS(I) ⊆ R(I). In the context of
p-EquiSizeSubRec(F , G), the following Lemma 22 yields that NS(I) = R(I).

▶ Lemma 22. Let F and G be graphs. Then

sub(F, G) =
∑

H s.t. |V (H)|=|V (F )|

sub(F, H) indsub(H, G)

where the sum ranges over all isomorphism types of graphs H on |V (F )| vertices.
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Indeed, by Lemma 22, every vector sub(I, G) ∈ R(I) is an N-linear combination of the
vectors sub(I, H) where H has exactly k vertices. It is crucial that all graphs in I have the
same number of vertices since otherwise any statement akin to Lemma 22 would involve
negative coefficients stemming from Inclusion–Exclusion. In virtue of Lemma 22, testing
membership in R(I) reduces to solving a system of linear equations over N.

▶ Example 23. Let p, c ≥ 0 be integers. There exists a graph G with sub( , G) = p and
sub( , G) = c if and only if p ≥ 3c.

Proof. By Lemma 22, there exists a graph G with sub( , G) = p and sub( , G) = c if and
only if the system ( p

c ) = ( 1 3
0 1 ) ( x

y ) has solutions x, y ∈ N, i.e. sub( , y + x ) = x + 3y

and sub( , y + x ) = y. The columns of this matrix correspond to the two graphs on
three vertices which have a subgraph or , namely and . Solving this system yields
that y = c and x = p − 3c, as desired. ◀

The matrix constructed in Example 23 via Lemma 22 can clearly be computed in FPT.
It remains to solve its system of linear equations, which is also possible in FPT [13].

Proof of Theorem 21. Let I ⊆ F denote the instance. As observed above, NS(I) = R(I).
Write H for the set of all isomorphism types of graphs on k vertices. Write A ∈ NI×H for
the matrix with entries sub(F, H) for (F, H) ∈ I × H. This matrix can be computed in FPT.
Then b = (h1, . . . , hm) ∈ R(I) if and only if Ax = b has a solution over the non-negative
integers. Testing the latter condition can be done in FPT by [13]. ◀

6.2 A Single Homomorphism Constraint
For p-HomRec(F , G), the restriction to ensure fixed parameter-tractability is that there is
only one (connected) constraint graph.

▶ Theorem 5. For graph classes F , G as in Proviso 20, the following problem is in FPT:

p-SingleHomRec(F , G)
Input a graph F ∈ F , an integer h ∈ N given in binary
Parameter |V (F )|
Question Does there exist a graph G ∈ G such that hom(F, G) = h?

Define R(F ) and S(F ) as in Equations (1) and (2) replacing I by the singleton set {F}.
As before, NS(F ) ⊆ R(F ). Dealing with p-SingleHomRec(F , G) is more complicated
than tackling p-EquiSizeSubRec(F , G) in the sense that we will not be able to prove
that NS(F ) = R(F ). In fact, these sets only coincide for large enough numbers. The key
combinatorial identity is the following, whose proof is deferred to the full version [4]:

▶ Lemma 24. Let F be a graph on k vertices. Then for all graphs G on more than k vertices,

hom(F, G) =
∑

H s.t. |V (H)|≤k

hom(F, H) indsub(H, G)(−1)k−|V (H)|
(

|V (G)| − |V (H)| − 1
k − |V (H)|

)
,

where the sum ranges over all isomorphism types of graphs H on at most k vertices.

Lemma 24 yields that R(F ) ⊆ ZS(F ), i.e. every realised number is a linear coefficient
of numbers in S(F ) with (not necessarily non-negative) integer coefficients. What allows
us to obtain Theorem 5 is the purely number-theoretic observation that NS(F ) and ZS(F )
coincide on sufficiently large numbers. Lemma 25 is based on Bézout’s identity and proven
in the full version [4].
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▶ Lemma 25. Given y1, . . . , yn ∈ N, one can compute integers y and N such that

X ∩ {N, N + 1, . . . } = yN ∩ {N, N + 1, . . . }

where X := N{y1, . . . , yn}.

▶ Example 26. Let y1 = 6 and y2 = 16. Their greatest common divisor is 2. The set of
their N-linear combinations is X = N{6, 16} = 2N \ {2, 4, 8, 10, 14, 20}, i.e. the set of all even
numbers except 2, 4, 8, 10, 14, 20.

This concludes the preparations for the proof of Theorem 5:

Proof of Theorem 5. The algorithm operates as follows: Compute S(F ) in time only de-
pending on |V (F )|. Let y denote the greatest common divisor of the numbers in S(F ). By
Lemmas 24 and 25, there exists a number N only depending on |V (F )| such that for every
h ≥ N there exists a graph G with hom(F, G) = h if and only if h is a multiple of y. This
settles the question for all h ≥ N . It remains to consider the case h < N . By Lemma 6, it
suffices to consider graphs G of size bounded in |V (F )| to conclude. ◀

To illustrate our algorithm, we include an example:

▶ Example 27. Consider the constraint graph F = . Enumerating all graphs on at most 4
vertices yields that S( ) = {0, 6, 16, 48}. For example, hom( , ) = 6, hom( , ) = 16,
and hom( , ) = 48. Hence, R( ) is a subset of the set in Example 26. It remains to check
the finitely many exceptions 2, 4, 8, 10, 14, 20. By Lemma 6, this can be done by inspecting
graphs on at most 20 · 4 = 80 vertices.

7 Conclusion

This paper provides the first systematic study of the homomorphism reconstructability
problem. Our results show that this deceivingly simple-to-state problem generally is hard
– not only in terms of its computational complexity but also in terms of finding efficient
algorithms for the simplest of cases, being subject to intricate phenomena from combinatorics
and number theory. The following questions remain open and warrant further investigation:

Is BHomRec(F) NP#P-complete for every class of unbounded treewidth F , analogous to
the #W[1]-completeness of #Hom(F) [12]? Is HomRec(F) NEXP-complete for the class
of all graphs F? Is there a graph class F for which HomRec(F) is not only NP-hard
but actually NP-complete?
While p-SingleHomRec(F , G) is fpt, Theorem 3 implies that there exists a constant C

such that p-HomRec(F , G) restricted to instances with ≤ C constraints is para-NP-hard.
What is the minimal such C? Is p-HomRec(F , G) with two connected constraints fpt?
Is there a sharp threshold from fixed-parameter tractability to para-NP-hardness?
The proof of Theorem 12 suggests that in some cases the number of constraints can be
decreased by increasing the number of connected components of the constraint graphs.
Notably, a crucial ingredient in Proviso 20 is that the constraint graphs are connected.
How do the parameters number of constraints and number of connected components
affect the complexity of HomRec(F , G)? What does the complexity hierarchy under
these two parameters look like?
In [18, 37], the functions f : G → N which are of the form f = hom(−, G) for some
graph G were characterised. Here, G denotes the class of all graphs. For which finite
graph classes I does a characterisation of functions f : I → N of this form exist? Our
Theorem 3 implies that in some cases deciding whether a given f is of this form is
NP-hard.
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Are there non-trivial examples of combinations of constraint graphs for which recon-
structability is tractable? Is there an effective description of the yellow area in Figure 1?
Is HomRec(F , G) self-reducible [52]? That is, can we efficiently construct a graph G

that realises the given constraints if we have access to an oracle for HomRec(F , G)?
What is the computational complexity of deciding whether homomorphism constraints
are approximately reconstructable?
More generally, one could study the complexity of questions about the set of graphs
satisfying a given set of homomorphism constraints – such as computing its cardinality.
How can one sample graphs satisfying homomorphism constraints uniformly at random?
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