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Abstract
We study a precise class of dynamical systems that we call solvable ordinary differential equations.
We prove that analog systems mathematically ruled by solvable ordinary differential equations can
be used for transfinite computation, solving tasks such as the halting problem for Turing machines
and any Turing jump of the halting problem in the hyperarithmetical hierarchy. We prove that the
computational power of such analog systems is exactly the one of transfinite computations of the
hyperarithmetical hierarchy.

It has been proved recently that polynomial ordinary differential equations correspond unex-
pectedly naturally to Turing machines. Our results show that the more general exhibited class
of solvable ordinary differential equations corresponds, even unexpectedly, naturally to transfinite
computations. From a wide philosophical point of view, our results contribute to state that the
question of whether such analog systems can be used to solve untractable problems (both for
complexity for polynomial systems and for computability for solvable systems) is provably related to
the question of the relations between mathematical models, models of physics and our real world.

More technically, we study a precise class of dynamical systems: bounded initial value problems
involving ordinary differential equations with a unique solution. We show that the solution of these
systems can still be obtained analytically even in the presence of discontinuous dynamics once
we carefully select the conditions that describe how discontinuities are distributed in the domain.
We call the class of right-hand terms respecting these natural and simple conditions the class of
solvable ordinary differential equations. We prove that there is a method for obtaining the solution
of such systems based on transfinite recursion and taking at most a countable number of steps. We
explain the relevance of these systems by providing several natural examples and showcasing the fact
that these solutions can be used to perform limit computations and solve tasks such as the halting
problem for Turing machines and any Turing jump of the halting problem in the hyperarithmetical
hierarchy.
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20:2 Solving Discontinuous IVPs with Unique Solutions = Computing over the Transfinite

1 Introduction

It has been understood quite recently that it is possible to program with Ordinary Differential
Equations (ODEs): for any discrete model such as Turing machines, it is possible to build a
polynomial ODE that simulates its evolution. This possibility of programming with ODEs has
already been exploited to obtain various results and solve various open problems. Examples
include: characterization of computability and complexity classes using ODEs [22, 21, 30, 17];
proof of the existence of a universal (in the sense of Rubel) ODE [6]; proof of the strong
Turing completeness of biochemical reactions [15], or more generally various statements
about the completeness of reachability problems (e.g. PTIME-completeness of bounded
reachability) for ODEs [29].

Most of these studies and conclusions originated as a side effect of attempts to relate
the computational power of analog computational models to classical computability. Indeed
all these results relate classical computations, such as computation with Turing machines,
to polynomial ordinary differential equations. One fascinating question is to understand
whether it could be possible to formulate stronger models than Turing machines using classes
of ODEs that are more general than polynomial ODEs. The question is interesting both
from a computability point of view (can we compute more?) and a complexity point of view
(can we compute faster?). In general, this investigation has pertinence in the broader context
of analog computation, or computation by various alternative models, and is not limited to
the framework of ODEs.

▶ Remark 1 (A parallel that may help). If this helps, our discussions can be put in parallel
with the context of quantum computations, often better known than the context of analog
computations. Quantum computations are mathematically based on computation over the
continuum using complex numbers. Quantum models can solve some problems faster than
digital models: Grover’s algorithm is corroborative evidence for such an argument. This
seems to suggest that models of computations based on the continuum might have additional
power compared to discrete ones. Is it true for the case of models based on polynomial
ODEs? The answer is clearly no with polynomial ODEs if the point of view is computability.
However, from the results of [30, 29], this is more subtle and related to lengths of solutions
when considering time complexity. Is it true for the case of ODEs that are more general than
polynomial ones? In this article, we prove that it is possible to solve undecidable problems
with discontinuous (hence non-polynomial) ODEs: we prove that it is possible to simulate
transfinite computations with some ODEs.

▶ Remark 2 (Is this “realistic”? Can considered results be used “in practice”?). It is important
to realise that this relates to deep philosophical questions about the relations between
mathematical models, physics and our real world. For example, are mathematical models of
ODEs capturing the dynamics of our physical world? Are models of physics related to our
physical world? We do not aim to discuss this. However, we point out that these questions
are already present for any alternative model of computation. Using the above parallel,
we mean: the statement about Grover’s algorithm above is that the mathematical model,
considered by Grover and others, based on quantum postulates, can solve a problem faster
than by digital means. But then, today’s question of constructing a quantum computer
can be seen as whether this mathematical model can be implemented in our real world and
hence whether this mathematical model is relevant. We try to avoid these questions as much
as possible in the current article, and we stay at a mathematical model level. We however
think that our statements help to discuss these issues and how various models relate to our
physical world.
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▶ Remark 3 (So what is our positioning). The point of the current article is to consider a
mathematically well-founded natural notion of ordinary differential equation in a context
where there is a (unique, hence unambiguous) solution. We then explore its computational
power and relate it to models from computability. From a mathematical point of view, we
prove that it corresponds exactly to transfinite computations.

Indeed, we identify such a robust class of ODEs as the class whose dynamic is ruled by
functions that we call solvable functions. We prove that for such a class, the solution concept
is well defined, and a transfinite procedure can solve these systems. To demonstrate that, we
describe the transfinite procedure in detail revealing that the maximum number of transfinite
steps needed is countable. This result is expressed clearly by our main result in Section 5.
Moreover, for each countable ordinal α < ω1 (or α < ωCK

1 if effectivness is involved, where
ωCK

1 is the first non-recursive ordinal), we show that is possible to construct examples of
discontinuous IVPs with unique solution whose solution can be obtained only after α steps
of our procedure. This suggests that, according to the spirit of the approach of [3], this class
of IVPs can be used in order to simulate oracle machines deciding the α-jump of the empty
set, fully populating the hierarchy of hyperarithmetical reals.

More on some historical accounts and related work
About Denjoy’s totalization method for integration. It is clear that ODE solving and
integrations are related since integrating is a particularly simple (restricted) case of ODE
solving where the derivative is given explicitly. The question we solve has great similarities
with a historical question in the context of mathematics about antidifferentiation and
integration: does a method exist that can reconstruct a function f from its derivative f ′ in
the most general setting? Unfortunately, two of the most well-known integration methods, the
Riemann and Lebesgue integrals, are insufficient since they both require specific conditions
on the derivative to work. Historically, Denjoy was the first to propose a concept of integral
that extends the two and that is sufficiently general to solve the problem: starting from
f ′, using some transfinite process, one can find back f for any derivative f ′. He called the
method describing his integral the totalization method [12]. The method was purely rooted
on analysis and made use of transfinite iterations of operations such as taking limits and
repeated Lebesgue integrations. Starting from the derivative f ′, the method can retrieve f

within a maximum number of countably many transfinite steps.
Our method for solving ODEs can be related to the ideas of Denjoy, and our class

of solvable ODEs have similar properties: solving such systems of ODEs can always be
done at the price of a transfinite computational process. And as such ODEs can simulate
any transfinite computation, they capture transfinite computations and relate transfinite
computations over digital models to computations with analog models that use solvable
dynamics.

ODEs as analog model of computation. From Shannon’s model to (polynomial) ODEs.
The idea of using ordinary differential equations (ODEs) as a computational model dates
back to the original work of Claude Shannon. Shannon’s theoretical interest was focused
on defining a general model of computation that could describe the behaviour of integrator
devices. He called the model GPAC, for general purpose analog computer. The key element
immediately evident to Shannon in designing his model was that every function that can
be produced as output of these machines is differential-algebraic [36]. It was therefore the
first stone that led years later to interpret systems of polynomial ODEs as a proper analog
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20:4 Solving Discontinuous IVPs with Unique Solutions = Computing over the Transfinite

computational model. The details of this evolution from algebraic differential equations
to polynomial ODEs are articulate and technical: in [31], it has been demonstrated that
Shannon’s model was lacking of completeness and formality and hence required modifications.
The authors of [20] solved these problems by restricting the connections allowed within
the circuits described in the model. This modification naturally produced the interesting
phenomenon of restricting the class of considered GPAC models, and the proof that its
dynamics correspond precisely to solutions of polynomial ODEs.

What is known about polynomial ODEs: lower bounds. This was later proved to be
equivalent to computable analysis, generating all computable functions over the reals [3].
This result was important to establish a practical bridge that could be crossed to pass from
an analog model such as the GPAC to a discrete model such as the model of Turing machines.
Specifically, the proofs included in [3] were based on the idea of simulating Turing machine
computations by only using initial value problems (IVPs) constructed with polynomial ODEs.
These particular results opened the doors for further investigations into the complexity of the
GPAC model. It was subsequently discovered that the length of the solution of the ODEs
involved was the right parameter to consider to measure complexity [4].

This correspondence between length and complexity can be effectively used to define a
zoo of different complexity classes within the model, capturing for each of them a natural
equivalence with discrete time-complexity classes such as FP or FEXP [4], [18]. The
introduction of proper robustness conditions for the dynamical systems utilized to simulate
Turing machines was then the last missing ingredient, which proved to be enough also to
capture an equivalence with the polynomial-space-complexity class FPSPACE, as shown in
[5]. The collection of all these results forms wide and substantial evidence of the fact that
polynomial ODEs represent a valid paradigm for analog computation as well as showcasing
their Turing completeness.

What is known about ODEs: upper bounds. Computing properties and solutions of ODEs.
On the other side of the spectrum, various investigations have been conducted to outline
computability and complexity properties of the more general operation of ODEs solving.
The approach from this line of work is conceptually different from what we have discussed
so far. Instead of producing a continuous version of an originally discrete computation,
it wonders which classes of ODEs solutions can be solved algorithmically. Undecidability
of related problems is quick to arise in this context even in the presence of computable
data. For example, the authors of [19] proved that the boundedness of the domain of
definition is undecidable even when only polynomial ODEs are considered. For the class
of polynomial-time computable, Lipschitz continuous ODEs, it is known that the solution
is computable since [28]. In this specific realm, a careful analysis of the complexity of this
operation has been conducted in [25], where it is proved that the solution of such problems
is indeed PSPACE-complete. Following the clue provided by the Lipschitz condition, it
is reasonable to assume that the uniqueness of the solution of a given IVP is a necessary
prerequisite for hoping to be able to compute it. It is not a sufficient condition, as there are
cases of IVPs with a unique solution and computable data for which the unique solution
is not computable, such as the one in [32]. The authors have further investigated the gap
between necessary and sufficient conditions for these systems in [9], where they show that
solutions of continuous ODEs with unique solutions are always computable. The algorithm
formulated in [9] has been called Ten Thousand Monkeys algorithm, since it relies on a search
method on the whole solution space by listing all finite sequences of open rational boxes.
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Notations
We start the coming technical part by introducing the notation and the main definitions that
will be used throughout this work. We use the standard notation N, R and Q for the set
of natural, real and rational numbers respectively while R+ and Q+ represent the positive
reals and the positive rationals. When making use of the norm operator, we always consider
Euclidean norms. We refer to a compact domain of an Euclidean space as a nonempty,
bounded, connected, closed subset of such space. Given a metric space X we indicate with
the notation dX the distance function in such space and with the notation BX(x, δ) the
open ball centred in x ∈ X with radius δ > 0. By default, we describe as open rational
ball or as open rational box an open ball or box with rational parameters. Precisely, an
open rational box B is a set of the form (a1, b1) × . . . × (ar, br) ⊂ Rr for some r ∈ N where
ai, bi ∈ Q for i = 1, . . . , r. We indicate with the notations diam(B) and rad(B) its diameter
and its radius. Moreover, given a function f : [a, b] → Rr for some a, b ∈ R, a < b and
some r ∈ N we indicate with the notation f ′ : [a, b] → Rr the derivative of such function,
where the derivative on the extremes a and b is defined as the limit on the left and on the
right respectively. Given a function f : X → Y and a set K ⊆ X we indicate with the
notation f ↾K the restriction of the function f to the set K, i.e. f ↾K is the function from
K to Y defined as f ↾K (x) = f(x). Given two topological spaces X and Y and a function
f : X → Y we indicate with the notation Df the set of discontinuity points of f on X. If
A and B are two sets, we refer to the set difference operation using the symbol A \ B and
indicate with the notation A + B the Minkowski sum of set A with set B. The expression
cl(A) indicates the closure of A, ∅ stands for the empty set, while the notation ω1 stands for
the first uncountable ordinal number. Given a property of a function f : X → Y , we say
that this property is satisfied almost everywhere if the property is satisfied on X \ D, where
D is a set with Lebesgue measure equal to zero.

2 IVPs with discontinuous ODEs

In this section we formally present the class of IVPs and dynamical systems considered,
providing examples and motivations leading to the definition of our hypothesis over the
right-hand term of the ODEs involved.

First, we recall the classical settings of initial value problems (IVPs) and ordinary
differential equations (ODEs): Consider an interval [a, b] ⊂ R, a compact domain E ⊂ Rr for
some r ∈ N, a point y0 ∈ E and a function f : E → E such that the dynamical system:{

y′(t) = f(y(t))
y(a) = y0

(1)

has one unique solution y : [a, b] → Rr with y([a, b]) ⊂ E. Given y0 and f , obtaining the
solution in such a setting is called an initial value problem. The condition y(a) = y0 (or, in
short, just the point y0) is referred to as the initial condition of the problem and function f

is referred to as the right-hand term of the problem. Since the solution is uniquely defined in
this case, we refer to function y : [a, b] → E satisfying Equation (1) as the solution of the
problem.

Then, we discuss methods to solve initial value problems: In this particular
setting, different ways exist to obtain the solution analytically when the right-hand term is
continuous. Many of these methods, such as building Tonelli sequences, are often introduced
for proving Peano’s theorem related to the existence of the solution for IVPs with continuous
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right-hand terms and are based on the concept of defining sequences of continuous functions
eventually converging to the solution. Once it is known that the solution is unique, every
sequence considered in each of these methods can be shown to converge to the unique solution.
Their argument generally relies on fixed point theorems on the function space; therefore, it is
not constructive. An analysis based on these methods can also achieve computability for
the solution, where computability has to be intended in the sense of computable analysis,
as proved by the authors of [9] in the description of their (so-called) ten thousand monkeys
algorithm. The idea of this algorithm is to exploit the hypothesis of unicity for enclosing the
solution into covers of arbitrarily close rational boxes in E. Nonetheless, all these methods
are correctly functioning as long as the right-hand term of the IVP is continuous.

It is very natural to relax continuity for the right-hand term of the IVP. This is
motivated by the observation that we can easily have a discontinuous IVP with a unique
solution as in the coming example.

▶ Example 4 (A discontinuous IVP with a unique solution). As the simplest case of discon-
tinuous IVP, we consider the following example: let E = [−5, 5] × [−15, 15] and define the
function f : E → E as f(x, z) = (1, 2x sin 1

x − cos 1
x ) if x ̸= 0 and f(0, z) = (1, 0). It is easy

to see that f is a function of class Baire one, i.e. it is the pointwise limit of a sequence of
continuous functions. Note also that in this case the set of discontinuity points of function f

on E is the closed set Df = {(0, z) for z ∈ [−15, 15]}. Then consider the following IVP, with
y : [−2, 2] → R2 and y0 = (−3, 9 sin(− 1

3 )):{
y′(t) = f(y(t))
y(−2) = y0

(2)

It is easy to verify that the solution of such a system is unique, and it is for the first
component: y1(t) = t − 1, and for the second component y2(t) = (t − 1)2 sin( 1

t−1 ) for
t ̸= 1 and y2(1) = 0. Therefore the solution y : [−2, 2] → R2 is differentiable and can be
expressed as the unique solution of the IVP above with right-hand side f discontinuous on
E. Note that the only discontinuity of f encountered by the solution is the point (0, 0), i.e.
Df ∩ y([−2, 2]) = (0, 0).

▶ Remark 5 (Such an ODE cannot be solved using numerical methods from literature). It is
very important to stress that neither the ten thousand monkeys algorithm nor any (at least
that we know) of the general well-known methods used in analysis for obtaining the solution
of IVPs we know works when applied to the above example. The reason for it being the
discontinuity of the right-hand term on a straight line in the domain and the fact that these
methods assume continuity.

However, one would expect to be able to solve such an ODE, as its solution is very clear,
and solving such an ODE is a very classical mathematical exercise or example found in most
of the books about ODEs: see similar examples in [23].

The construction of this simple example (and of the solution of this classical exercise) is
based on the well-known fact that the real function f(x) = x2 sin( 1

x ) if x ̸= 0 and f(0) = 0
is differentiable over [0, 1] and its derivative is bounded and discontinuous in 0. Moreover,
we avoided some problems that arise for mono-dimensional ODEs with null derivative by
introducing a time variable y1 whose role is to prevent the system from stalling and ensure
the unicity of the solution.
▶ Remark 6 (About literature & discontinuous ODEs). Several mathematical theories exist for
discussing discontinuous ODEs: see for example [16, 1, 11]. It is important to realize that
the concept of solution differs from one theory to the other (there is not a unique theory for
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discontinuous ODEs) and that the existence of a solution is often a non-trivial problem in all
these theories. We are here, and in all the examples, in the case where we know that there is
a solution and a unique solution, so in a case where there is no ambiguity and agreement
about the solution concept. Furthermore, all the theories we know consider that equality
almost everywhere in (1) is sufficient, mostly to be able to use Lebesgue integration. We
indeed consider the notion of solution above: this must hold for all points. This is different
in spirit to all these theories1.

The concept behind such an example can be easily generalized. The following example
provides an intuitive tool that can be deployed to construct a huge class of discontinuous
IVPs with unique solutions.

▶ Example 7 (Converting complex derivatives into complex IVPs). Whenever we consider a
differentiable function g : [a, b] → R such that g(a) = g0 and with derivative g′ : [a, b] → R
we can obtain such function as a solution of an IVP of the type of (1) by constructing a
system as the following:{

y′
1(t) = 1

y′
2(t) = g′(y1(t))

{
y1(a) = a

y2(a) = g0
(3)

Getting to more and more complex examples. This consideration allows us to construct
examples for which the set of discontinuity points of the right-hand term on the domain is
more and more sophisticated.

For instance, we might consider a function whose set of discontinuity points is uncountable
and nowhere dense. This case is considerably more complex to construct compared to the
previous one, from a technical standpoint, but it is theoretically based on the same concept.
Indeed, the idea is to use the discontinuous derivative seen in the previous case and copy
it inside the Cantor set. This is done similarly to what happens when defining Volterra’s
function [7]. We first make use of the following statement.

▶ Lemma 8. There exists a function g : [0, 1] → R such that g is differentiable and its
derivative g′ is bounded and discontinuous on the Cantor set C.

At this point, by using function g′ just defined as the derivative involved with the
construction of an IVP of the type of (3), we can construct an IVP with a right-hand term
f with set of discontinuity points homeomorphic to the Cantor set.

More generally, the above technique makes it possible to introduce solutions that are more
and more complicated depending on how discontinuous is the derivative used as function g′

in (3). There are at least two possible directions in which the latter could be done.
First, since every uncountable closed subset of the Cantor set is homeomorphic to the

Cantor set, it is possible to construct the differentiable function g in such a way that the
restriction of its derivative to the Cantor set, i.e. g′ ↾C is discontinuous on an uncountable
closed subset of C. This sets the basis for iterating the procedure any infinitely countable
number of times due to homeomorphism.

Second, we can construct examples using the known possible complexity of a differentiable
function. Several differentiabiliy ranks for measuring descriptive complexity of differentiable
functions have been introduced in the literature. These ranks can be used for the purpose of

1 And this also explains that we are closer to the question of Denjoy, which was asking about antidifferen-
tiation of a derivative, observing that restricting to Lebesgue’s integration was not solving the problem
in the general case. Notice that ODE solving is a more general problem than integration, so we are also
not exactly in the framework of Denjoy.
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providing in a structured way more and more complex functions to play the role of function
g in (3): indeed, several different differentiable ranks have been proposed in literature, such
as the Kechris-Woodin rank or the Zalcwasser rank, which can be found in [26] and [38]
respectively. The relations between all the existing notions is not yet fully clear, and [34]
and [27] detail interesting comparisons. However, independently of which of these two routes
is taken, the key concept behind the creation of highly elaborate examples is the same: one
elementary discontinuous derivative (such as the one in Example 4) is used as a building
block that is then rescaled and concatenated into smaller and smaller intervals converging
to a new discontinuity point. It is then clear that the nature of the discontinuity on this
point of the new function obtained this way would be strictly more complex than the nature
of the discontinuities featured in the example used as an elementary block. Then, by using
the function obtained this way as a new elementary block to rescale and concatenate, the
process can continue in a fractal-like iterative fashion.

Therefore, our study establishes the premises for ranking discontinuous IVPs depending
on the complexity required to solve them and foretells the development of a related hierarchy.
Up to that point, all examples were mostly obtained from integrating various derivatives.
However, ODE solving is a more general problem than integration, and more complicated
examples can be constructed. We now go in particular to constructing an ODE that solves
the halting problem of Turing machines2.

3 Undecidability: solving the halting problem with discontinuous IVPs

We now show how these dynamical systems can be used for the purpose of obtaining precise
undecidability results: given a Gödel enumeration of Turing machines, we define the halting
problem as the problem of deciding the halting set H = {e : Me(e) ↓} where Me(e) ↓ means
that machine represented by natural e halts on input e. We consider a one-to-one total
computable function over the naturals h : N → N that enumerates such a set. It is known that
any such function enumerating a noncomputable set naturally generates a noncomputable
real number [33]. The following definition expresses this:

▶ Proposition 9. Let h : N → N be a one-to-one computable function such that h(i) > 0
for all i ∈ N and such that it enumerates a non-computable set A. Then the real number µ

defined as:

µ =
∞∑

i=0
2−h(i) (4)

is noncomputable.

Note that in this way we always have 0 < µ < 1. We now describe a bidimensional
dynamical system that generates the real number µ associated in the sense of the definition
above to function h enumerating the halting problem.

The example mentioned above of the IVP that can assume value µ is illustrated by the
following theorem:

▶ Theorem 10. Let E = [0, 5]×[0, 5]. There exists an IVP with unique solution y : [0, 5] → E,
rational initial condition and right-hand term computable everywhere on E except a straight-
line, with y2(5) = µ.

2 We believe this is not feasible using integration only.
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▶ Remark 11. The spirit of the construction of such an example is inspired by the technique
used in [19], where the solution of the IVP considered is stretched in a controlled manner
so that it grows infinitely approaching a fixed noncomputable time. In our case instead,
with the above example, we are replacing their indefinite growth with a dumped oscillation
whose frequency increases as we approach the noncomputable target but whose absolute
value decreases accordingly, yielding a finite convergence for the solution. This introduces
many complications, and the fact that we want to guarantee the derivability of the solution
is a true difficulty.

The sketch of the proof of the theorem above is the following. We first discretize time by
introducing specific time slots in which both components of the solution, y1 and y2, have a
well-defined behaviour. Specifically, we require the first component, which is negative, to
increase by a factor of 2 in each of these time slots, converging to zero. Instead, the second
component, which is positive, is required to incrementally converge to the real µ by adding
to itself the quantity 2−h(i) on the i-th time step. We need two components because we
want the right-hand term to be computable outside its set of discontinuity points. This is
achievable in this way since indeed it is possible to implement the correct derivative for y1 in
each time slot by only going through the enumeration described by function h while looking
at the value of the second component y2. Then, the existence and continuity of the solution
is granted by designing an infinitely countable sequence of time slots that converges suitably.

We first define the function that represents the discretized time evolution of the dynamical
system:

▶ Definition 12. Let h : N → N be a one-to-one computable function such that h(i) > 0 for
all i ∈ N and such that it enumerates the halting set H. Define the function τ : N → Q to be
the total computable function such that:

τ(i) =
{

2− h(i)
2 if h(i) < i

2− i
2 if h(i) ≥ i

(5)

That means that τ∗ =
∑∞

i=0 τ(i) is finite and τ∗ < µ + 2 +
√

2 < 5. This quantity τ∗

represents the time required for the solution to reach the noncomputable value µ.

▶ Remark 13. The reason for measuring time steps with Definition 12, instead of directly
exploiting the construction of µ via Proposition 9, is technical. The intuition behind it is
that we want time to evolve slowly enough when compared to the increasing rate of the
solution. This consideration takes care of the construction’s main difficulty: the solution’s
differentiability at time τ∗, when the derivative is discontinuous.

Let us now proceed to analyze the behaviour of the solution y. For the first component
y1 we have a dynamic given by a function f1 such that, for all i ∈ N, if we have:{

y′
1(t) = f1(y1(t)) ∀t ∈ [0, τ(i)]

y1(0) = −2−i
(6)

then we have y1(τ(i)) = −2−(i+1). In other words, we require y1 to be an increasing function
such that at every time step τ(i) its value increases by a factor of 2, converging then to 0 as
time converges to τ∗. Therefore, to make it continuous, we require y1(τ∗) = 0. Moreover,
we define y′

1(τ∗) = 0. Note also that to achieve this goal we require f1 to be autonomous,
with no explicit dependence on time. It is clear that if we construct y1 this way, then its
derivative will be discontinuous in τ∗.
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For the second component y2 we have a dynamic given by a function f2 such that, for all
i ∈ N, if we have:

y′
2(t) = f2(y1(t)) ∀t ∈ [0, τ(i)]

y1(t) ∈ [−2−i, −2−(i+1)) ∀t ∈ [0, τ(i)]
y2(0) =

∑i
m=0 2−h(m)

(7)

then we have y2(τ(i)) =
∑i+1

m=0 2−h(m) (condition ∗). In other words, we require y2 to be
an increasing function such that at every time step τ(i) its value increases of the quantity
2−h(i+1), converging then to µ as time converges to τ∗. Once again, we require y2(τ∗) = 0
and y′

2(τ∗) = 0 and it is clear that if we construct y2 this way then its derivative will be
discontinuous in τ∗.

Such a solution y is indeed differentiable at time τ∗ and the derivative of both components
exists and equals zero at such time. Moreover, we have that y1(τ∗) = 0 and y2(τ∗) = µ. At
this point, forcing the dynamic to remain constant for the remaining time to obtain y2(5) = µ

is sufficient. This yields the desired outcome since the IVP has reached, at a computable
time, a noncomputable value that encodes the halting problem. This ends the sketch of the
proof of Theorem 10.

▶ Remark 14. Even if this is not fully formal: it is important to observe that the obtained
function f remains very “simple” from a (possibly effective) descriptive point of view. Outside
its straight-line of discontinuity, it is computable, and from the fact that Turing machines
computations can be done using polynomial ODEs, we could even assume that it has a very
simple form outside this straight-line: we basically only need to get condition (*).

We mean, it is important to realize that the fact that the solution is not computable
does not come from the intrinsic uncomputability of the function f , nor from the form of the
subset of discontinuities, but actually from the fact that it has a discontinuity and that the
whole process and above construction is intrinsically forcing the solution to compute a limit.

Iterating limits. For a set A, let us call real number
∑

i∈A 2−i the real encoding of A. We
just described a dynamics that maps some rational initial condition to the real µ encoding
the halting set H. Writing A′ for the jump of set A, H corresponds to ∅′.

It is possible to extend the previous construction to make it work for any set A (not only
the empty set): starting from some initial condition corresponding to the real encoding of A,
it eventually reaches the real encoding of A′.

We can climb the arithmetical hierarchy by iterating finitely many times this technique.
Indeed, by repeating the ODE twice, we get a way to map a real encoding of A to a real
encoding of A′′, then A′′′, and so on.

We can even go up to higher levels. Indeed, for example, we can go up to Aω: Aω is
the set of the pairs (n, w) such that word w is in the nth jump of A. Iterating the trick, we
can reach the upper levels of the hyperarithmetical hierarchy. Given any recursive ordinal
α < ω1

CK , this provides a technique to map some real encoding of A in the initial condition to
the encoding of Aα, where Aα is the αth jump: see [35] for the concepts from computability
theory involved. Doing it in a recursive manner requires technically to deal with the encoding
of ordinals, and in particular to deal with fixed point constructions as in [13, 37].
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4 Transfinite analysis of complexity

4.1 The concept of solvable system
We propose the following definition.

▶ Definition 15 (Solvable function). Let E ⊂ Rr for some r ∈ N and f : E → Rr. We say
that f is solvable if it is a function of class Baire one such that for every closed set K ⊆ E

the set of discontinuity points of the restriction f ↾K is a closed set.

It is important first to make the following observation:
▶ Remark 16. All the examples of dynamical systems discussed in Section 2 as well as the
IVP introduced by Theorem 10 have a right-hand term that is a solvable function.

We say that a dynamical system or some ordinary differential equation is solvable when
this holds: the right-hand term of the ordinary differential equation is a solvable function.

It is easy to see that the remarks still apply to the case of any of the more complicated
examples that can be constructed based on the previous ones and on Theorem 10, once the
techniques for building such examples are the ones mentioned at the end of Section 2.

The choice of the terminology solvable for these right-hand terms is made more clear by
the coming Theorem 22. It says basically that solutions of such initial value problems can be
solved, through a transfinite recursion process.

4.2 A ranking for solvable systems
Before getting to this, we introduce a ranking that allows us to quantify involved levels of
discontinuities.

We have seen in previous sections that we can build examples of unique solutions of
IVPs that are extremely complicated and that even simple examples can be used to obtain
noncomputable reals. We now want to produce a more precise quantification of these
statements.
▶ Remark 17 (Using differentiability ranks?). Following previous arguments, the most intuitive
direction seems to derive such quantification directly from the examples and the differentiab-
ility ranks. Nonetheless, this approach does not suit our purpose, since it only characterizes
a limited subclass of systems, i.e. the systems yielded by application of the trick introduced
with (3). Despite being a relevant and insightful subclass, this approach “from below” fails
to exhaust the generality of the problem. We instead propose an approach “from above”
which builds from the commonalities of those examples and extends beyond them to a more
complete analysis that is not just tailored on derivatives defined over the reals.

As a first step, we prepare the right setting for a transfinite classification of the right-hand
terms of our systems. As it is clear by the examples illustrated in previous sections, such
stratification should be based upon the degree of discontinuity for the right-hand term of the
system. We can quantify this precisely by introducing the following definition.

▶ Definition 18 (Sequence of f -removed sets on E). Consider a compact domain E ⊂ Rr

for some r ∈ N and a function f : E → Rr. Let {Eα}α<ω1 be a transfinite sequence of sets
and {fα}α<ω1 a transfinite sequence of functions such that fα = f ↾Eα

: Eα → Rr defined as
following:

Let E0 = E

For every α = β + 1, let Eα = Dfβ

For every α limit ordinal, let Eα = ∩βEβ with β < α

we call the sequence {Eα}α<ω1 the sequence of f -removed sets on E.
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We remark that since functions in the sequence {fα}α<ω1 above are allowed to be defined
over disconnected sets, the notion of continuity in the above definition has to be intended
with respect to the induced topology relative to Eα as a subset of Rr. Moreover, note that it
follows from the definition of the sequence that such sequence is decreasing, meaning that
Eδ ⊆ Eγ if δ > γ for every Eδ and Eγ in the sequence.

▶ Remark 19 (Similar ranking for measuring discontinuities in literature). The definition of this
sequence, or of slight variations of the same sequence, has already been considered in the
literature. For instance, the author of [24] selects a version of this sequence where the closure
of the sets is taken at each level and relates such sequence of functions with a bound for the
topological complexity of any algorithm that computes them while using only comparisons
and continuous arithmetic (and information) operations. Similarly, starting from the same
transfinite sequence of functions applied to countably based Kolmogorov spaces, it is shown
in [10] that a given function is at the α level of the hierarchy if and only if it is realizable
through the α-jump of a representation.

Since computing the unique solution of continuous IVP is always possible, from the argu-
ments of [9], being able to obtain analytically the unique solution of any given discontinuous
IVP should be directly related to the amount of discontinuity for the right-hand term f , and
consequently to the ordinal number of nonempty levels of the above sequence of f -removed
sets. Moreover, we would like to obtain the solution within a countable number of steps.
Hence, we want to pinpoint some sufficient conditions on f that permit us to restrict our
attention to these well-behaved classes of discontinuous systems.

This ranking turns out to provide a way to rank the concept of solvable systems. Using
the Cantor-Baire stationary principle, we can prove:

▶ Theorem 20. Consider a closed domain E ⊂ Rr for some r ∈ N and a function f : E → Rr.
If f is solvable, then there exists an ordinal α < ω1 such that Eα = ∅.

Once we have singled out which conditions we must require for the right-hand term f , we
can present the main tool used to converge to the solution of the IVP. In a similar fashion
to the method designed by Denjoy, where the tool to be repeatedly applied was Lebesgue
integration, we need to be able to apply such tool for each considered level of the sequence of
f -removed sets on E until we finally reach the empty set. This is why we created a tool that
can be defined for any countable ordinal in a uniform manner. We call the tool (α)Monkeys
approach in honor of the ten thousand monkey algorithm from [9], since such an algorithm
inspires the definition.

▶ Definition 21 ((α)Monkeys approach). Consider an interval [a, b] ⊂ R, a domain E ⊂ Rr

for some r ∈ N and a right-hand term f : E → Rr for an ODE of the form of (1) with initial
condition y0. Let {Eγ}γ<ω1 be the sequence of f -removed sets on E and let Eα be one set in
the sequence for some α < ω1. We call the (α)Monkeys approach for (f, y0) the following
method: consider all tuples of the form (Xi,β,j , hi,β,j , Bi,β,j , Ci,β,j , Yi,β,j) for i = 0, . . . , l − 1,
β < α, j = 1, . . . , mi,β, where hi,β,j ∈ Q+, l, mi ∈ N and Xi,β,j, Bi,β,j, Ci,β,j and Yi,β,j

are open rational boxes in E. A tuple is said to be valid if y0 ∈
⋃

β,j X0,β,j and for all
i = 0, . . . , l − 1, β < α, j = 1, . . . , mi,β we have:
1. Either (Bi,β,j = ∅) or (cl(Bi,β,j) ∩ Eβ ̸= ∅ and cl(Bi,β,j) ∩ Eβ+1 = ∅)
2. f ↾Eβ

(cl(Bi,β,j)) ⊂ Ci,β,j;
3. Xi,β,j ∪ Yi,β,j ⊂ Bi,β,j;
4. Xi,β,j + hi,β,jCi,β,j ⊂ Yi,β,j;
5.

⋃
β,j Yi,β,j ⊂

⋃
β,j Xi+1,β,j;
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We spend a few words explaining the rationale behind such a definition. Similarly to the
case of the ten thousand monkey algorithm, this definition defines a search method within
the space E where the solution of the IVP lives. The search is performed by considering
tuples of the form (Xi,β,j , hi,β,j , Bi,β,j , Ci,β,j , Yi,β,j) which describe finite sequences of l open
sets. Each of these tuples should be thought as an expression of its related finite sequence of
l open sets that is {

⋃
β,j Xi,β,j}i=0,2,...,l. Each of these open sets is the union of a transfinite

collection of open rational boxes. Stating that one of these tuples is valid means two things:
one, that the related sequence starts from a set that contains the initial condition, and two,
that the sets in the sequence are concatenated correctly according to the five rules above.
These rules are chosen so that the concatenation between the sets is dictated by the action
of f , but only in a controlled fashion, i.e. in a manner that takes care of the portions of the
domain where each restriction fβ is continuous, for all β < α. This is clarified by the first
item in the above list, whose direct consequence is that fβ is continuous on all rational boxes
Bi,β,j . This consideration allows to interpret the sequences expressed by valid tuples as good
candidates for possibly containing the solution. This sets the premises for the next section,
where the method to obtain the solution of the IVP is finally presented.

5 Obtaining the solution: an analytical method

We now have all the elements needed to describe the transfinite method that obtains
analytically the solution of the IVP considered and hence proves our main result.

The idea is, as in [9], to use a search method based on boxes covering the domain. By
considering smaller and smaller radii for these boxes, we can derive a sequence of continuous
piecewise linear functions that eventually converge to a solution. As we know that the
solution is unique, it must converge to the solution.

However, compared to the authors of [9], we have to deal with possibly transfinitely
many boxes, unlike their framework where everything remains finite. This requires some
modifications (e.g. the domain must be bounded in the reasoning), and more technical care
(e.g. for concatenating the boxes).

▶ Theorem 22. Consider a closed interval, a compact domain E ⊂ Rr for some r ∈ N and
a function f : E → E such that, given an initial condition, the IVP of the form of (1) with
right-hand term f has a unique solution on the interval. If f is solvable, then we can obtain
the solution analytically via transfinite recursion up to an ordinal α such that α < ω1.

Proof. Let [a, b] be the closed interval such that y : [a, b] → E is the unique solution of the
IVP with right-hand term f and initial condition y0 = y(a). Let {Eγ}γ<ω1 be the sequence of
f -removed sets on E. Since f is solvable, by means of Theorem 20 we know that there exists
an α < ω1 such that Eα = ∅ and Eβ = ∅ for all β ≥ α. Therefore by transfinite recursion up
to α based on repeated application of f we can consider the whole sequence of f -removed sets
on E. We now show how to obtain the solution y([a, b]). We first pick a n ∈ N and consider
a valid tuple of the (α)Monkeys approach for (f, y0) for this value of n. We consider a valid
tuple with (Xi,β,j , hi,β,j , Ci,β,j , Yi,β,j) for i = 0, . . . , l − 1, β < α, j = 1, . . . , mi,β dependent
on this fixed n. To do so, consider a set

⋃
β,j X0,β,j such that y0 ∈

⋃
β,j X0,β,j . Then, for all

sets
⋃

β,j Xi,β,j for all i = 0, . . . , l − 1 we can select each open rational box Xi,β,j so that it
satisfies either (Xi,β,j = ∅) or (Xi,β,j ∩ Eβ ̸= ∅ and Xi,β,j ∩ Eβ+1 = ∅) for all i = 0, . . . , l − 1,
β < α, j = 1, . . . , mi,β . Moreover, because every continuous function on a closed domain
is uniformly continuous, we can define for all i = 0, . . . , l − 1, β < α, j = 1, . . . , mi,β the
function δi,β,j : R+ → R+ to be a modulus of continuity of fβ on cl (Xi,β,j) ∩ Eβ , i.e. a
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function such that ∥fβ(x) − fβ(z)∥ < δi,β,j(∥x − z∥) for all x, z ∈ cl (Xi,β,j) ∩ Eβ , for all
i = 0, . . . , l − 1, β < α, j = 1, . . . , mi,β . By convention, for all ϵ > 0, if there are no points
x, z ∈ cl (Xi,β,j) ∩ Eβ such that ∥x − z∥ < ϵ then we define δi,β,j(ϵ) = ϵ. Let us now call
K ∈ Q+ a rational such that maxx∈E ∥x∥ < K. At this point, by taking the partition
sufficiently small, we can make sure to take each nonempty open rational box Xi,β,j and
rational hi,β,j such that 0 < rad(Xi,β,j) < δi,β,j( 1

2n ) − Khi,β,j and such that its Khi,β,j

neighborhood has no intersection with Eβ+1 and has the same modulus of continuity δi,β,j .
Take then each one of these neighborhoods as the set Bi,β,j for all i = 0, . . . , l − 1, β < α,
j = 1, . . . , mi,β . It follows that rad(Bi,β,j) < rad(Xi,β,j) + Khi,β,j < δi,β,j( 1

2n ). We then
choose open rational boxes Ci,β,j such that they satisfy fβ(cl(Bi,β,j)) ⊂ Ci,β,j . Note that
we can make the choice in a way that ensures rad (Ci,β,j) < 1

2n by definition of the moduli
of continuity. From these choices it follows that we can pick open rational boxes Yi,β,j

satisfying Xi,β,j + hi,β,jCi,β,j ⊂ Yi,β,j and rad (Yi,β,j) < δi,β,j( 1
2n ) for all i = 0, . . . , l − 1,

β < α, j = 1, . . . , mi,β . Finally, we consider as the set
⋃

β,j Xi+1,β,j a set such that⋃
β,j Yi,β,j ⊂

⋃
β,j Xi+1,β,j for all i = 0, . . . , l − 1. It is clear that the tuple described this

way is a valid tuple of the (α)Monkeys approach for (f, y0).

Let us now define two sequences {hi,β(i),j(i)}i=0,...,l−1 and {ti}i=0,...,l where t0 = a and
ti = a +

∑i−1
k=0 hk,β(k),j(k) for all i = 1, . . . , l and a piecewise linear function ηn : [a, tl] → E

such that ηn(a) = y0 and such that for all i = 0, . . . , l − 1 we have ηn(ti) ∈ Xi,β(i),j(i) and
ηn(t) = ηn(ti) + (t − ti)ci,β(i),j(i) for all ti < t ≤ ti+1, for some ci,β(i),j(i) ∈ Ci,β(i),j(i). Note
that this function is well defined because |ti+1 − ti| = hi,β(i),j(i) for all i = 0, . . . , l − 1 and
so it follows that ηn(t) ∈ Yi,β(i),j(i) ⊂

⋃
β,j Xi+1,β,j for all ti < t ≤ ti+1. In other words, we

can always choose the sequences in such a way that function ηn is well defined. Moreover,
note that η′

n(t) = ci,β(i),j(i) ∈ Ci,β(i),j(i) for all ti < t < ti+1, for all i = 0, . . . , l − 1; note
also that since ηn(t) ∈ Bi,β(i),j(i) we have fβ(i)(ηn(t)) ∈ Ci,β(i),j(i) for all ti < t < ti+1, for
all i = 0, . . . , l − 1. Therefore we have

∥∥η′
n(t) − fβ(i)(ηn(t))

∥∥ ≤ diam (Ci,β,j) < 1
n for all

ti < t < ti+1 such that ηn(t) ∈ Eβ(i), for all i = 0, . . . , l − 1.

Suppose we have just considered a valid tuple of the (α)Monkeys approach for (f, y0) for a
fixed value n̄ ∈ N following the above procedure and we have defined function ηn̄ : [0, tl] → E

in the way described. Let us indicate this tl with the symbol T . It is clear that we can consider
a new valid tuple and a new function ηn : [0, T ] → E for each value of n > n̄ while maintaining
the same domain for each function. We can then consider a sequence of the functions
{ηn}n>n̄ as defined above, where each function in the sequence is defined based on the valid
tuple (Xi,β,j , hi,β,j , Ci,β,j , Yi,β,j) with rad (Xi,β,j) < δi,β,j( 1

2n ), rad (Bi,β,j) < δi,β,j( 1
2n ) and

rad (Ci,β,j) < 1
2n for all n > n̄, i = 0, . . . , l − 1, β < α, j = 1, . . . , mi,β as described above.

We want to show that such sequence {ηn}n>n̄ is uniformly bounded and equicontinuous. To
prove that it is uniformly bounded we need to prove that there exists a constant R ∈ R+

such that ∥ηn(t)∥ ≤ R for all n > n̄, for all a ≤ t ≤ T . This is indeed trivial since
ηn(t) ∈

⋃
i,β,j Bi,β,j for all n > n̄, for all a ≤ t ≤ T and each open rational box Bi,β,j ⊂ E

for all n > n̄, i = 0, . . . , l − 1, β < α, 1 ≤ j ≤ mi,β . For equicontinuity it is enough to prove
that there exists a constant M ∈ R+ such that

∥∥ηn(t̃) − ηn(t)
∥∥ ≤ M

∣∣t − t̃
∣∣ for all n > n̄, for

all a ≤ t, t̃ ≤ T . The existence of M follows from the fact that the sequence is uniformly
bounded together with the fact that ∥η′

n(t)∥ < K for all n > n̄, for almost all a ≤ t ≤ T .
Therefore, since the sequence is uniformly bounded and equicontinuous, we can apply a
well-known theorem in analysis (Ascoli’s theorem, Theorem 28) in order to conclude that
the sequence {ηn}n>n̄ has a subsequence {ηn(u)}u>n̄ that converges uniformly on [a, T ] to a
function η : [a, T ] → E. Moreover, another known result for the differentiability of the limit
of sequences (Theorem 29) tells us that function η is differentiable almost everywhere on
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[a, T ]. Note that by taking limit of n → ∞ we have l → ∞ and rad (Bi,β,j) , rad (Ci,β,j) → 0
and hi,β,j → 0 for all i = 0, . . . , l − 1, β < α, j = 1, . . . , mi,β . Therefore the inequality
∥η′

n(t) − fβ(ηn(t))∥ ≤ diam (Ci,β,j) < 1
n for all ti < t < ti+1 such that ηn(t) ∈ Eβ(i), for

all i = 0, . . . , l − 1, leads to the equation η′(t) = f(η(t)) for almost all t ∈ [a, T ]. Since
η(a) = y0, continuity and unicity of the solution of the IVP imply η(t) = y(t) for all t ∈ [a, T ].
Specifically, this means that any convergent subsequence converges to the same function,
which is precisely the solution y of the IVP.

Finally, to obtain the solution over the whole domain [a, b], it is sufficient to consider
the initial valid tuple of the (α)Monkeys approach for (f, y0) as described above but in such
a way that, when defining the sequence of times {ti}i=0,...,l we have tl ≥ b and then take
T = b. This is always possible due to the definition of a valid tuple and the fact that f is
bounded within E. ◀

The above statement, combined with the constructions from Section 3, hence proves that
the computational power of solvable ODEs is the one of transfinite computations, up to
some limit ordinal. We now discuss what this ordinal is, according to the adopted viewpoint
(the issue is about which functions are considered definable in the above reasonings, and
appears only for ordinals that would be countable but non-recursive, i.e. non-countable in
the considered model of set theory).

▶ Remark 23 (On ω1 vs ωCK
1 , Boldface view). The statement of Theorem 22 is formulated in

an approach based on descriptive set theory, using the approach of the so-called boldface
hierarchies. The description of the examples in Section 3 follows an approach that is closer
to a computability theoretic point of view, that is to say using the approach of the so-called
lightface hierarchies. From a boldface point of view, what the constructions of Section 3 say
is that it is possible to reach the level of Baire’s hierarchy using limits constructed in the
spirit of the examples of this section. This can be done up to level ω1 (non-included), the
first uncountable ordinal. Combined with Theorem 22, the computational power of solvable
ODEs corresponds to transfinite iterations of limits up to any ordinal less than ω1.

▶ Remark 24 (On ω1 vs ωCK
1 , Lightface view). From a lightface point of view, it makes sense

to replace the hypothesis “of Class Baire one” (it is the pointwise limit of a sequence of
continuous functions) in the definition of Solvable function (Definition 15) by the fact that
it is the pointwise limit of a computable sequence of computable functions. All solvable
examples that we considered are solvable in this new sense. Hyperarithmetic sets are known
to correspond to sets that can be defined using transfinite induction up to ωCK

1 , which is
the first non-recursive ordinal [2]. The above reasoning of the proof of Theorem 22 provides
a way to obtain (define) the solution in the hyperarithmetical hierarchy via a transfinite
recursion up to an ordinal α such that α < ωCK

1 : we are using arguments similar to the ones
of [13]. We hence obtain that there is a precise correspondence between computations by
the class of solvable systems and the hyperarithmetic hierarchy, as the hyperarithmetical
hierarchy is known to correspond to transfinite recursion up to ordinal ωCK

1 : see [35, 2].

6 Conclusions and future work

We have discussed the properties of IVPs involving discontinuous ODEs that have a unique
solution. This study has led us to the identification of a robust class of these systems, which
we called solvable, for which the solution can always be obtained analytically by means
of transfinite recursion up to a countable number of maximum steps. We have presented
several examples of such systems and illustrated a technique that constructs examples of
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ever-increasing complexity. We have established that the solutions of solvable systems can be
used, even in the simple case of a basic set of discontinuity points, to yield noncomputable
values and solve the halting problem.

Due to the similarity of our approach to the method proposed by Denjoy for the problem
of antidifferentiation, and in light of results and constructions illustrated in papers such
as [13] and [37], we believe in having set the tables for a more in-depth light-face and bold-face
analysis of the class of systems at hand, possibly leading to a rank and a hierarchy of these
systems, as well to a classification of hyperarithmetical real numbers as targets reachable
by solutions of discontinuous IVPs. More precisely: the integrability rank that inspired the
modus operandi of our ranking is the Denjoy rank. The creation of such rank is directly
based on a transfinite method.

An analysis has been done for the Denjoy rank: an unpublished theorem from Ajtai,
whose proof is included in [13], demonstrates that once a code for a derivative f is given
as a computable sequence of computable functions converging pointwise to f , then the
antiderivative F of f is Π1

1 relative to f . This fact has direct implications related to the
hierarchy of hyperarithmetical reals. The hyperarithmetical reals, or ∆1

1, are defined as
the reals x for which the set {r ∈ Q : r < x} is ∆1

1. The implication mentioned above
is expressed formally by a Theorem from [13], which proves that the hyperarithmetical
reals are exactly those reals x such that x =

∫ 1
0 f for some derivative f of which we know

the code of.
An alternative computability theoretic analysis of Denjoy’s rank has been done in [37],
relating levels of the hierarchy to levels of the arithmetical hierarchy in some precise
manner, using a slightly alternative setting, on the way objects are encoded.

We believe that adapting similar analysis to the framework of solvable systems can be
done using both views, and could lead to similar statements, with a more precise analysis of
involved rankings, and of involved ordinals, given some class of functions or dynamics.

The latter, combined with papers such as [3] and [4] that describe simulations of discrete
models of computations by analog models based on systems of ODEs, open the doors
for identifying the model of solvable IVPs as an analog model for simulating transfinite
computation, or as an alternative approach for presenting transfinite computations.

Notice that our discussions also pointed out classes of ordinary differential equations
with solutions with levels of complications that we did not see discussed in any books about
ordinary differential equations, in addition to many already existing counterexamples in
literature. In particular, from arguments similar to [13], it follows that our results show
that the totality of countable ordinals is necessary in any constructive process for solving an
ODE in the general case and that for any countable ordinal, we can construct an example of
solvable ODE of that difficulty.
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A Appendix: Useful definitions and results

We include in this appendix some definitions and theorems that can be used to integrate the
main document for a deeper understanding of its arguments.

A.1 Ordinal numbers
We describe the process of transfinite recursion as the process that for each ordinal α

associates with α an object that is described in terms of objects already associated with
ordinals β < α. Moreover, we use the expression transfinite recursion up to α if the process
associates an object for all ordinals β < α. We present the Cantor-Baire stationary principle
[14], as expressed by the following theorem:

▶ Theorem 25 (Cantor-Baire stationary principle). Let {Eγ}γ<ω1
be a transfinite sequence

of closed subsets of Rr for some r ∈ N. Suppose {Eγ}γ<ω1
is decreasing; i.e., Eγ ⊆ Eβ if

γ ≥ β. Then there exists α < ω1 such that Eβ = Eα for all β ≥ α.

A.2 Sequences
Given a set X of elements and an index set Y we indicate sequences of elements from X with
the notation {xn}n∈Y where xn ∈ X for each n ∈ Y . If the index set is the set of natural
numbers, we simply write {xn}n. Instead, if the index set is some ordinal number, we talk
about transfinite sequences. Given a sequence {xn}n for some set of elements X we indicate
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a subsequence of such sequence with the notation {xn(u)}u where n : N → N is the function
determining the elements of the subsequence considered. We now define uniformly bounded
sequences of functions:

▶ Definition 26 (Uniformly bounded). Let I ⊂ R, E ⊂ Rr for some r ∈ N and let {gn}n :
I → E be a sequence of functions. We say that the sequence is uniformly bounded if there
exists a constant K > 0 such that ∥gn(t)∥ ≤ K for all gn ∈ {gn}n and for all t ∈ I.

We then define equicontinuous sequences of functions:

▶ Definition 27 (Equicontinuous). Let I ⊂ R, E ⊂ Rr for some r ∈ N and let {gn}n : I → E

be a sequence of functions. We say that the sequence is equicontinuous if for any ϵ > 0 there
exists a δϵ > 0 such that

∥∥gn(t) − gn(t̃)
∥∥ ≤ ϵ whenever

∣∣t − t̃
∣∣ ≤ δϵ for all gn ∈ {gn}n and

for all t, t̃ ∈ I.

For infinite, uniformly bounded, equicontinuous sequence of functions over the reals there
exists a famous result due to Ascoli [8]:

▶ Theorem 28 (Ascoli). Let I ⊂ R be a bounded interval, E ⊂ Rr for some r ∈ N and let
{gn}n : I → E be an infinite, uniformly bounded, equicontinuous sequence of functions. Then
the sequence {gn}n has a subsequence {gn(u)}u that converges uniformly on I.

It follows a theorem concerning differentiability of limits of converging sequences of
functions:

▶ Theorem 29. Let {fn}n be sequence of functions from the closed interval [a, b] ⊂ R
to Rr for some r ∈ N and pointwise converging to function f . Let M > 0 be such that∥∥fn(t̃) − fn(t)

∥∥ ≤ M
∣∣t − t̃

∣∣ for all n ∈ N, for all a ≤ t, t̃ ≤ b. Then f is differentiable almost
everywhere and f(x) =

∫ x

a
f ′(t)dt for all ∈ [a, b].

A.3 Functions of class Baire one
We define the set of discontinuity points of a given function:

▶ Definition 30 (Set of discontinuity points). Let f be a function f : X → Y where X and Y

are two complete metric spaces. We define the set of discontinuity points (of f on X) as the
the set:

Df = {x ∈ X : ∃ϵ > 0 : ∀δ > 0 ∃y, z ∈ BX(x, δ) : dY (f(y), f(z)) > ϵ}

We define what it means for a given function to be of class Baire one:

▶ Definition 31 (Baire one). Let X, Y be two separable, complete metric spaces. A function
f : X → Y is of class Baire one if it is a pointwise limit of a sequence of continuous
functions, i.e. if there exists a sequence of continuous functions from X to Y , {fm}m, such
that lim

m→∞
fm(x) = f(x) for all x ∈ X.

An important property of functions of class Baire one is that the composition of a function
of class Baire one with a continuous functions yields a function of class Baire one [39]. We
now refresh a well known topological concept:

▶ Definition 32 (Nowhere dense set). Let X be a topological space and let S be a subset of
X. We say that S is nowhere dense (in X) if its closure has empty interior.

STACS 2024


	1 Introduction
	2 IVPs with discontinuous ODEs
	3 Undecidability: solving the halting problem with discontinuous IVPs
	4 Transfinite analysis of complexity
	4.1 The concept of solvable system
	4.2 A ranking for solvable systems

	5 Obtaining the solution: an analytical method
	6 Conclusions and future work
	A Appendix: Useful definitions and results
	A.1 Ordinal numbers
	A.2 Sequences
	A.3 Functions of class Baire one


