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Abstract
We propose a linear algebraic method, rooted in the spectral properties of graphs, that can be used
to prove lower bounds in communication complexity. Our proof technique effectively marries spectral
bounds with information-theoretic inequalities. The key insight is the observation that, in specific
settings, even when data sets X and Y are closely correlated and have high mutual information, the
owner of X cannot convey a reasonably short message that maintains substantial mutual information
with Y . In essence, from the perspective of the owner of Y , any sufficiently brief message m = m(X)
would appear nearly indistinguishable from a random bit sequence.

We employ this argument in several problems of communication complexity. Our main result
concerns cryptographic protocols. We establish a lower bound for communication complexity of multi-
party secret key agreement with unconditional, i.e., information-theoretic security. Specifically, for
one-round protocols (simultaneous messages model) of secret key agreement with three participants
we obtain an asymptotically tight lower bound. This bound implies optimality of the previously
known omniscience communication protocol (this result applies to a non-interactive secret key
agreement with three parties and input data sets with an arbitrary symmetric information profile).

We consider communication problems in one-shot scenarios when the parties inputs are not
produced by any i.i.d. sources, and there are no ergodicity assumptions on the input data. In this
setting, we found it natural to present our results using the framework of Kolmogorov complexity.
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1 Introduction

Within computer science, a broad range of communication complexity problems has been
studied in recent decades. In these problems several (two or more) agents solve together
some task (compute a function, search an elements in a set, sample a distribution, and so on)
when the input data are distributed among the agents. In different context we may impose
different constraints on the class of admissible protocols (protocols can be deterministic or
randomized, one-way or interactive, with a one shot of simultaneous messages or with several
rounds, etc.). The cost of a communication protocol is the total number of bits that must be
exchanged between participants, typically in the worst-case situation.
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In this paper we focus on communication problems with three parties (Alice, Bob, and
Charlie), though our techniques can be extended to bigger number of participants. We deal
with the situation when the input data accessible to Alice, Bob, and Charlie are correlated.
In a popular model number-on-forehead, the datasets given to Alice, Bob, and Charlie have
large intersections, which is a very particular form of correlation between the data. We study
a more general setting (more usual in cryptography and information theory) where the input
data sets given to the parties have large mutual information, but it might be impossible to
materialize this mutual information as common chunks of bits shared by several parties.

The principal communication problem under consideration is secret key agreement: Alice,
Bob, and Charlie use the correlation between their input data sets to produce a common
secret key. A special feature of this setting is the implicit presence of another participant
in the game, Eve (eavesdropper/adversary). The eavesdropper can intercept all messages
between Alice, Bob, and Charlie, but this should not give Eve any information about the
final result of the protocol – the produced secret key. A secret key agreement (for two or
many participants) is one of the basic primitives in cryptography; it can serve as a part
of more sophisticated protocols (the produced secret key can be used in a one-time pad
encryption or in more complicated cryptographic schemes).

In practice, the most standard and well known method of secret key agreement is the
Diffie-Hellman key exchange [8, 22] and its generalizations, see [27]. The security of this
protocol is based on assumptions of computational complexity. In particular, the Diffie-
Hellman scheme is secure only if the eavesdropper cannot solve efficiently the problem of
discrete logarithms. Such an assumption looks plausible for most practical applications.
However, theoretical cryptography studies also secret key agreement in information-theoretic
settings, where we impose no restrictions on the computational power of the eavesdropper.
Besides a natural theoretical interest, such a scheme can be useful as a building block in more
complex protocols. In particular, a protocol of information-theoretic secret key agreement
(pretty conventional, involving communication and computational tools conceivable in the
framework of the classical physics) is an indispensable component of the protocol of quantum
key distribution ([4, 7, 16]). Besides quantum cryptography, secret-key agreement based on
correlated information appears in various cryptographic schemes connected with noisy data
(biometric information, observations of an inherently noisy communication channel or other
physical phenomenon, see the discussions in [17, 10]), in the bounded-storage model ([9, 11]),
and so on. We refer the reader to the survey [5] for a more detailed discussion.

In the Diffie-Hellman scheme, the parties may start the protocol from zero, holding
initially no secret information. In contrast, a secret key agreement with information-theoretic
secrecy is impossible if the parties start from scratch. To produce a key that is secret in
information-theoretic sense, the participants of the protocol need to be given some input data
(inaccessible to the eavesdropper). The pieces of input data provided to the parties must be
correlated with each other, and the measure of this correlation determines the optimal size
of the common secret key that can be produced.

So far we were very informal and did not specify the mathematical definitions behind
the words secrecy (of the key) and correlation (between parties’ inputs). Let us describe the
settings of information-theoretic secret key agreement more precisely. This can be done in
different mathematical frameworks.

Historically, information-theoretically secure protocols of secret key agreement were
introduced in classical information theory, [1, 21]. In this setting, the input data of the
parties are produced by correlated random variables. In the settings with two parties it is
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usually assumed that there is a sequence of i.i.d. pairs of random variables with finite range,
(Xi, Yi), i = 1, . . . , n, and Alice and Bob receive the values of (X1 . . . Xn) and (Y1 . . . Yn)
respectively. Then Alice and Bob run a communication protocol and try to produce a
common value (secret key) W asymptotically independent of the transcript (the transcript
consist of the messages sent by Alice and Bob to each other). Ahlswede–Csiszar [1] and
Maurer [21] found a characterization of the optimal size of W in terms of Shannon’s entropy
of the input data. They showed that the optimal size of the secret key is asymptotically
equal to the mutual information between Alice’s and Bob’s inputs. A similar characterization
of the optimal secret key is known for multi-party protocols, with k ≥ 3 parties, [6]. The
problem of secret key agreement and a related problem of common randomness generation
were extensively studied in the information theory community and also (in somewhat different
settings) in theoretical computer science, see, e.g., [28, 13] and the survey [29].

In this paper we follow the paradigm of building the foundations of cryptography in the
framework of algorithmic information theory, as suggested in a general form in [2] and more
specifically for secret key agreement in [24, 15]. In this approach, the information-theoretic
characteristics of the data are defined not in terms of Shannon’s entropy but in terms of
Kolmogorov complexity. In this setting, we can talk about properties of individual inputs,
keys, transcripts, and not about probability distributions. We assume that the parties (Alice,
Bob, Charlie) are given as inputs binary strings x, y, z respectively, and that the parties
know the complexity profile of these strings, i.e., the optimal compression rate of these inputs
(precisely or at least approximately, see below). The secrecy of the produced key means that
this key must be incompressible, even conditional on the public data including the transcript
of the communication protocol. In other words, the mutual information (in the sense of
Kolmogorov complexity) between the key and the messages sent via the communication
channel (the transcript) must be negligibly small. Practically, this property guarantees that
the adversary can crack an encryption scheme based on this key only by the brute-force
search, see the discussion in [15].

▶ Remark 1.1. The approach based on Kolmogorov complexity seems more general since we
do not need to assume that inputs have any property of stationarity or ergodicity, we do
not fix in advance the probability distribution of the pairs of inputs, we do not even assume
the existence of such a distribution. However, the frameworks of Shannon and Kolmogorov
for the definition of secrecy have similar practical interpretations. Indeed, a distribution
W on {0, 1}n has a high entropy, i.e., H(W ) ≈ n, if and only if with a high probability
W returns an n-bit string with Kolmogorov complexity close to n. For a more detailed
discussion of the connection between Shannon’s and Kolmogorov’s formalism see [14]. The
formal statements in Kolmogorov’s framework are usually stronger than their homologues in
Shannon’s framework, and theorems from the former theory in most cases formally imply
the corresponding results from the latter theory, see [24]. ⌟

A characterization of the optimal size of the secret key in term of Kolmogorov complexity
was suggested in [24]. We begin with the case of two parties, see Theorem 1.2 below. In
this theorem, a communication protocol is randomized (we assume that the parties may use
a public source of random bits, which is also accessible to the eavesdropper). Let x and y

stand for inputs of Alice and Bob, r denote the string of bits produced by a public source
of randomness (used by the parties and accessible to the eavesdropper), and t denote the
transcript of the protocol.

STACS 2024
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▶ Theorem 1.2 ([24]).
(i) For any numbers k, ℓ ∈ N and ϵ, δ > 0 there exist a randomized communication protocols

πk,ℓ,ϵ,δ such that on every pair of input strings (x, y) (of length at most n) satisfying1

C(x) δ= k and C(x | y) δ= ℓ, Alice and Bob with probability 1 − ϵ both obtain a result
w = w(x, y, r) such that

[length of w in bits] = C(x)−C(x | y)−O(δ)−o(n) and C(w | ⟨t, r⟩) ≥ |w|−o(n) (1)

(for n = |x| + |y|), which means that the size of the produced secret key is asymptotically
equal to the mutual information between Alice’s and Bob’s inputs, and the leakage of
information on the key to the eavesdropper (who can access the transcript of the protocol
t and public randomness r) is negligibly small.

(ii) The size of the key in (i) is pretty much optimal: no communication protocol can produce
a key w longer than C(x) − C(x | y) + O(δ) + o(n) without loosing the property of
secrecy C(w | ⟨t, r⟩) ≥ [length of w in bits] − o(n) (the size of a secret key cannot be
made asymptotically greater than the mutual information between Alice’s and Bob’s
inputs).

▶ Remark 1.3. In Theorem 1.2, the values of k and ℓ are embedded in the communication
protocol πk,ℓ,ϵ,δ. This means that the parties in some sense “know” (at least approximately)
the values of C(x) and C(x | y). This is similar to the settings of the classical information
theory, where the parties “know” the probability distribution on random inputs and can use
a suitable protocol. The theorem is nontrivial if the approximation rate δ = o(n) as n → ∞.

The secrecy of the key is understood in the information-theoretic sense: the last inequality
in (1) claims that complexity of the key w conditional one all data accessible to the adversary
must be (almost) maximal. The theorem can be adapted to a non-uniform setting where the
adversary is given an auxiliary inputs sn. In this case, all terms of Kolmogorov complexity
appearing in the theorem should be relativized conditional on sn. The theorem remains
meaningful if the size of sn is o(n). ⌟

Theorem 1.2 can be extended to the multi-party setting, where k > 2 parties are given
correlated data and need to agree on common secret key communicating via a public channel.
Let us discuss in more detail the version with k = 3 participants. We assume now that
three parties (Alice, Bob, and Charlie) are involved in the protocol. They are given inputs
x, y, z respectively. We assume that all parties have an access to a common source of random
bits (we denote by r the bits produced by this source) and exchange messages via a public
channel (we use the conventional definition of a multi-party communication protocol with a
public source of random bits, see [19]). It is assumed that every message sent by any party
reaches every other party (and the eavesdropper). In what follows we consider only triples of
inputs (x, y, z) with a “symmetric” complexity profile such that C(x) ≈ C(y) ≈ C(z) and
C(x, y) ≈ C(x, z) ≈ C(y, z).

▶ Theorem 1.4 (symmetric version of [24, Theorem 5.11]).
(i) For any profile (k1, k2, k3) ∈ N3 and ϵ, δ > 0 there exist a randomized communication

protocols πk1,k2,k3,ϵ,δ for three parties such that on every triple of binary input strings
(x, y, z) (of length at most n) satisfying

C(x) δ= C(y) δ= C(z) δ= k1, C(x, y) δ= C(x, z) δ= C(y, z) δ= k2, C(x, y, z) δ= k3 (2)

1 The term C(x) stands for the plain Kolmogorov complexity of x (optimal compression of x), the term
C(x|y) stands for conditional Kolmogorov complexity of x conditional on y (optimal compression of x

given advice y), and the notation C(x) δ= k and C(x|y) δ= ℓ means that |C(x)−k| ≤ δ and |C(x|y)−ℓ| ≤ δ.
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Alice, Bob, and Charlie can agree with probability 1 − ϵ on a key w = w(x, y, z, r) such
that

[length of w in bits] = I(x:y|z)+I(x:z|y)+I(y:z|x)
2 + I(x : y : z) − O(δ) − o(n), (3)

C(w | ⟨t, r⟩) ≥ |w| − o(n), (4)

where r is the bit string produced by the public source of randomness, and t is the
communication transcript (concatenation of the messages sent by Alice, Bob, and
Charlie).

(ii) The size of the key in (i) is asymptotically optimal, i.e., no communication protocol can
give a key w asymptotically longer than

1
2 (I(x : y | z) + I(x : z | y) + I(y : z | x)) + I(x : y : z) + O(δ) + o(n) (5)

without loosing the property of secrecy (4).
▶ Remark 1.5. The general version of [24, Theorem 5.11] applies to a triple of inputs with
arbitrary (possibly non-symmetric) complexity profile. In the general case, the characteriza-
tion of the optimal size of the secret key is more involved than (3), see [24]. We discuss only
symmetric complexity profiles in order to avoid cumbersome formulas and focus on the most
essential combinatorial ideas behind the proofs.

Ineq. (4) means that the eavesdropper (who can access the communication transcript t

and the public randomness r) gets no information on the produced secret key. Similarly to
Theorem 1.2, this secrecy condition remains meaningful even if the adversary is a non-uniform
agent having advice sn of size o(n). ⌟

The known proofs of the positive parts of Theorem 1.2 and Theorem 1.4 (the existence of
protocols) are quite explicit and constructive: we know specific communication protocols
that allow to produce a secret key of the optimal size. More specifically, the proofs suggested
in [24] provide a protocol for Theorem 1.2(i) with communication complexity

min {C(x | y), C(y | x)} + O(δ) + O(log n) (6)

and a protocol2 for Theorem 1.4(i) with communication complexity

C(x, y, z) − 1
2

(
I(x : y | z) + I(x : z | y) + I(y : z | x)

)
− I(x : y : z) + O(δ) + O(log n). (7)

The communication complexity (6) from Theorem 1.2(i) is known to by asymptotically
optimal, see [15]. In this paper we study the communication complexity of the problem from
Theorem 1.4. In fact, (7) is not optimal for general communication protocols; however, we
show that this communication complexity is asymptotically optimal in the class of protocols
with simultaneous messages, i.e., in the model where Alice, Bob, and Charlie send their
messages in parallel, receive the messages sent by their vis-a-vis, and compute the result
(secret key) without any further interaction.

2 The scheme proposed in [24] is the so called omniscience protocol. In this protocol, all parties send
simultaneously their messages (random hash-values of the inputs) so that each of them learns completely
the entire triple of inputs (x, y, z) (this explains the term omniscience). The total length of the sent
messages is less than C(x, y, z), so an eavesdropper can learn only a partial information on the inputs.
The gap between the total complexity of C(x, y, z) and the divulged information is used to produce a
secret key.

STACS 2024
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▶ Theorem 1.6 (main result). In the setting of Theorem 1.4, communication complexity of a
protocol with simultaneous messages (the total number of bits sent by Alice, Bob, and Charlie)
for triples of inputs (x, y, z) with a symmetric complexity profile (2)) cannot be smaller than

C(x, y, z) − 1
2

(
I(x : y | z) + I(x : z | y) + I(y : z | x)

)
− I(x : y : z) − O(δ) − O(log n). (8)

Communication complexity (8) is not optimal for general (multi-round) communication
protocols of secret key agreement, see Proposition 8.1.

The proof of our main result combines information-theoretic techniques and spectral
bounds for graphs (the expander mixing lemma). Spectral bounds per se are not new in
communication complexity (see, e.g., the usage of Lindsey’s lemma in [3]). Information-
theoretic methods are also pretty common in this area. But the combination of these two
techniques seems to be less standard. The key step of the proof is the observation that in
some setting, when parties hold correlated data sets, for each of them it is hard to send a
message that has non-negligible mutual information with the partners’ data. In other words,
a “too short” message sent by Alice would have zero mutual information with the data (y, z)
given to Bob and Charlie. For secret key agreement protocols, this observation implies that
the messages of every party inevitably have to be quite long. A similar argument can be
used in problems that are not connected with cryptography, see Theorem 5.1.

▶ Remark 1.7. It is instructive to compare our work with [15], where similar questions were
addressed in the setting of two parties. Our work was motivated by the observation that the
argument from [15] fails in the setting with k > 2 parties. In fact, the multi-party setting is
qualitatively different. This becomes clear when we consider secret key agreement with a
sub-optimal size of the key. The technique of [15] (in the setting with two parties) implies
that communication complexity of the secret key agreement cannot be reduced even if Alice
and Bob agree on a key of a pretty small size, see the “threshold phenomenon” discussed
in [15]. Apparently, this phenomenon does not occur in the multi-party setting.

Thus, to deal with multi-party setting, we have to revise significantly the techniques
from [15]. We have to change both the information-theoretic and algebraic components
of the proof. The most important new components appear in the information-theoretic
part of the proof. In particular, we need to use the exact expression (5) for the size of
the secret key. The key new element of our argument is the observation Alice must send a
message having large mutual information with Bob’s and Charlie’s inputs, and the cost of
this task can be high, see the discussion in Sections 3.3-3.4 (this idea was irrelevant in the
setting with two parties). In the algebraic component of the proof, we adapt the definition
of a spectral expander to hypergraphs and then construct a hypergraph with the required
properties (see Definition 3.5 and Section 3.5). Only the bridge between the algebraic and
the information-theoretic components is pretty much the same as in [15] (in the proof of
Theorem 4.1 we use an argument very similar to [15, Lemma 6]). ⌟

The rest of the paper is organized as follows. In Section 2 we recall several standard
definitions and introduce the notation. In Section 3 we explain informally the scheme of
our argument. In Section 4 we prove the main technical tool of this paper, Theorem 4.1
(which claims that in some setting, it is hard to send a message that has non-negligible
mutual information with the partners’ data). In Section 5 we illustrate the application of our
technique with a simple example that is not related to cryptography. In Section 6 we prove
Theorem 1.6 for a restricted (“the most important”) class of complexity profiles. In Section 7
we extend this result and prove Theorem 1.6 for all (symmetric) complexity profiles. We
conclude with a discussion of limitations of our technique and open problems.
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2 Preliminaries and Notation

2.1 General notation

For a binary string x we denote its length |x|. For a finite set S we denote its cardinality #S.
We manipulate with equalities and inequalities for Kolmogorov complexity. Since many

of them hold up to a logarithmic term, we use the notation A
lg= B, A ≤lg B, and A ≥lg B for

|A − B| = O(log n), A ≤ B + O(log n), and B ≤ A + O(log n) respectively, where n is clear
from the context (n is usually the length of the strings involved in the inequality).

Fq denotes the field of q elements (usually q = 2n). A k-dimensional vector over Fq is
a k-tuple (x1, . . . , xk) ∈ Fk

q . We say that two vectors (x1, . . . , xk) and (y1, . . . , yk) in Fk
q

are orthogonal to each other if x1y1 + . . . + xkyk = 0 (the addition and multiplication are
computed in the field Fq). A vector is called self-orthogonal if it is orthogonal to itself. In a
k-dimensional space over the field of characteristic 2 there are 2k−1 self-orthogonal vectors
(x1, . . . , xk) and they form a linear subspace of co-dimension 1 (a vector is self-orthogonal iff
x1 + . . . + xk = 0). A direction in Fk

q is an equivalence class of non-zero vectors over Fq that
are proportional to each other (a direction can be understood as a point in the projective
space of dimension k − 1).

C(x) stands for Kolmogorov complexity of x (the length of the shortest program3 produc-
ing x) and C(x | y) (the length of the shortest program producing x given input y) stands
for Kolmogorov complexity of x given y. Respectively, I(x : y) and I(x : y | z) denote the
mutual information between x and y and the conditional information between x and y given
z. We use the notation I(x : y : z) := I(x : y) − I(x : y | z). For a tuple of strings (x1, . . . , xn)
its complexity profile is the vector consisting of the complexity values C(xi1 , . . . , xis

) (for
all 2n − 1 sub-tuples 1 ≤ i1 < . . . < is ≤ n). Kolmogorov complexity can be relativized:
CO(x) and CO(x | y) stand for Kolmogorov complexity of x (conditional on y) assuming
that the universal decompressor can access oracle O. If the oracle is a finite string s, then
CO(x) = C(x | s) + O(1). For more detail on the basic facts about Kolmogorov complexity,
see the full paper. A comprehensive introduction in the theory of Kolmogorov complexity
can be found in [20] and [26].

2.2 Communication complexity

We use the conventional notion of a communication protocol for two or three parties, see for
detailed definitions [19]. We discuss deterministic protocols and randomized protocols with a
public source of random bits (see the full version of the paper for more detail).

In general, a communication protocol may consist of several rounds, when each next
message of every party depends on the previously sent messages. In the simultaneously
messages model there is no interaction: all parties send in parallel their messages that depend
only on their own input data (and the random bits), and then compute the final result.

We will assume that the communication protocol has a “uniform” description. More
technically, we assume that for n-bit inputs (the full description of such a protocol) has an
efficient description of size O(log n). For such a protocol we do not loose much security even
if the description of the protocol is available to the eavesdropper. Thus, we cannot “cheat” by
embedding in the structure of the protocol any secret information hidden from the adversary.

3 In an optimal programming language, see [20, 26] for more detail.

STACS 2024
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2.3 Reminder of the spectral graph technique
Let G = (L ∪ R, E) be a bi-regular bipartite graph where each vertex in L has degree DL,
each vertex in R has degree DR, and each edge e ∈ E connects a vertex from L with a vertex
from R (observe that #E = #L · DL = #R · DR). The adjacency matrix of such a graph is a

zero-one matrix M =
(

0 A

A⊤ 0

)
where A is a matrix of dimension (#L) × (#R) (Axy = 1

if and only if there is an edge between the x-th vertex in L and the y-th vertex in R). Let
λ1 ≥ λ2 ≥ . . . ≥ λN be the eigenvalues of M , where N = #L + #R is the total number of
vertices. Since M is symmetric, all λi are real numbers. It is well known that for a bipartite
graph the spectrum is symmetric, i.e., λi = −λN−i+1 for each i, and λ1 = −λN =

√
DLDR

(see, e.g., [12]). The graphs with a large gap between λ1 and λ2 have the property of good
mixing, see [25].

▶ Lemma 2.1 (Expander Mixing Lemma for bipartite graphs, see [12]). Let G = (L∪R, E) be a
regular bipartite graph where each vertex in L has degree DL and each vertex in R has degree
DR. Then for each A ⊆ L and B ⊆ R we have

∣∣∣E(A, B) − DL·#A·#B
#R

∣∣∣ ≤ λ2
√

#A · #B,

where λ2 is the second largest eigenvalue of the adjacency matrix of G and E(A, B) is the
number of edges between A and B.

▶ Corollary 2.2. Let G = (L ∪ R, E) be a graph from Lemma 2.1. Then for A ⊆ L and
B ⊆ R such that #A · #B ≥

(
λ2#R

DL

)2
we have E(A, B) = O

(
DL·#A·#B

#R

)
.

3 Main technical tools and the scheme of the proof

In this section we sketch the main ideas used in the proof of our principal result (Theorem 1.6).

3.1 Setting the parameters
Let us assume that δ = O(log n), i.e., all parties of the protocol “know” the complexity
profile of the triple of inputs (x, y, z) up to an additive logarithmic term4. This assumption
does not affects significantly the argument, but it helps to avoid minor technical details and
makes the explanation more transparent. To simplify the notation, in this section we discuss
only triples of inputs with the profile

C(x) lg= C(y) lg= C(z) lg= kn, C(x, y) lg= C(x, z) lg= C(y, z) lg=(2k − 1)n,

C(x, y, z) lg=(3k − 3)n
(9)

In this setting, Theorem 1.4 gives the optimal size of a secret key

1
2

(
I(x : y | z) + I(x : z | y) + I(y : z | x)

)
+ I(x : y : z) lg= 1.5n. (10)

Our aim is to bound communication complexity for inputs with this complexity profile:

▶ Theorem 3.1 (special case of Theorem 1.6). In the setting of Theorem 1.4, communication
complexity of a protocol with simultaneous messages for some triples of inputs (x, y, z) with
complexity profile (9) cannot be smaller than (3k − 4.5)n, which matches Eq. (8).

4 A logarithmic error term is, in some sense, the finest meaningful precision for Kolmogorov complexity. All
our arguments can be repeated mutatis mutandis for any coarser precision δ such that log n ≪ δ(n) ≪ n.
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3.2 Preliminary consideration: the need for hard inputs

The optimal size of the secret key in Theorem 1.2 and Theorem 1.4 depends only on the
complexity profile of (x, y, z) and not on the combinatorial structure of the input. The
situation with communication complexity (the number of bits sent by the parties) is different:
it may vary significantly for different tuples of inputs with the same complexity profile.
When we talk about the communication complexity of a protocol, we mean the worst-case
complexity, i.e., the maximal number of sent bits among all admissible inputs. To prove a
lower bound for the worst-case communication complexity, we need to provide a triple of
inputs for which the parties have to send long messages. We provide a class of inputs that
are guaranteed to be “hard” (for all valid protocol, for most triples of inputs from this class,
communication complexity is high).

3.3 First step of the argument: conditional on Charlie’s message, the
mutual information between Alice’s and Bob’s inputs must increase

We begin with an observation that might seem to have nothing to do with communication
complexity. We recall the lower bound for the size of the secret key (that applies to protocols
with any communication complexity). In [24] (see Theorem 1.2(ii)) it is shown that two
parties, Alice and Bob, can agree on secret key of complexity k only if the mutual information
between Alice’s input x and Bob’s input y is greater than k. The proof of this statement can
be easily adapted to the following slightly more general setting:

▶ Lemma 3.2. Assume that there is a publicly available information s (accessible to Alice,
Bob, and the eavesdropper); besides this, Alice is given a private input x and Bob is given a
private input y. Then, by communication via a public channel accessible to the eavesdropper,
Alice and Bob cannot agree on a secret key of complexity greater than I(x : y | s).

We apply this proposition to a protocol with three parties. Let tC denote the concatenation
of the messages sent by Charlie. This is a piece of publicly available information (accessible
to Alice, Bob, and the eavesdropper). Due to Lemma 3.2, Alice and Bob cannot agree on a
secret key with Kolmogorov complexity greater than I(x : y | tC) (at this point we ignore
whether Charlie can learn the same key or not). Hence, in the settings (9), a secret key of
size (10) can be produced only if I(x : y | tC) ≥lg 1.5n. Observe that in the setting (9) the
mutual information between x and y is equal to n. This means that the mutual information
between Alice’s and Bob’s inputs conditional on Charlie’s message, i.e., I(x : y | tC), is
bigger than the unconditional mutual information between Alice’s and Bob’s inputs, i.e.,
I(x : y). A pretty standard information-theoretic argument implies that the gap between
I(x : y) and I(x : y | tC) is not greater than the mutual information between ⟨x, y⟩ and
tC , and we conclude that I(x, y : tC) ≥lg n/2. In other words, Charlie must send a message
tC that has ≥ n/2 bits of mutual information with the pair of inputs of Alice and Bob. A
similar argument implies that Alice must send a message tA such that I(y, z : tA) ≥lg n/2
and Bob must send a message tB such that I(x, z : tB) ≥lg n/2.

This part of the argument is based on Lemma 3.2, which re-employs an argument from [24]
in a pretty direct way. So at this stage we need no substantially new ideas.
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3.4 Second step of the argument: it may be difficult for Alice to send a
message increasing the mutual information between Bob’s and
Charlie’s inputs

We have shown above that in the setting (9) Alice, Bob, and Charlie can agree on a secret
key of optimal size only if each of them sends a messages that contains ≥lg n/2 bits of mutual
information with the inputs of two other parties

We are going to show that this may require sending very long messages (much longer
than n/2 bits). This part of the argument is the main technical contribution of our paper.
To explain this idea, we make a digression and discuss a similar problem in simpler settings.

Digression: how to say something that the interlocutor already knows. Let us consider
randomized communication protocols with two participants playing non-symmetric roles. We
call the participants Speaker and Listener and assume that Speaker holds an input string
a and Listener holds another input string b. This is a one-way protocol: Speaker sends a
message to Listener in one round, without any feedback. The aim of Speaker is to send to
Listener a message that is not completely unpredictable from the point of view of Listener.
More precisely, Speaker’s message must have positive (and non-negligible) mutual information
with Listener’s input b. We start with a simple example when the task of Speaker is trivial.

▶ Example 3.3. Let Speaker is given a string a = uv and Listener is given a string b = uw,
where u, v, and w are independent incompressible strings of length n, i.e., C(uvw) lg= C(u) +
C(v) + C(w) lg= 3n. Observe that

C(a) lg= 2n, C(b) lg= 2n, I(a : b) lg= n (11)

In this setting, if Speaker wants to communicate a message of length n with a high mutual
information with Listener’s y, she may send a part of u, which is know to both participants
of the protocol. On the other hand, if Speaker wants to communicate a message with a low
mutual information with Listener’s b, this is also possible: Speaker may send a part of v,
which is know to Speaker but not to the Listener. ⌟

▶ Example 3.4. Now we consider a pair (a, b) with the same complexity profile as in
Example 3.3 but with a different combinatorial structure. Let a be a line in the projective
plane over the finite field F2n and b be a point in the same projective plane incident to a, and
the pair (a, b) have the maximal possible complexity (among all incident pairs (line, point)
in the plane). For these a and b we have the same complexity profile (11). Indeed, we need
two elements of the field (2n bits of information) to specify a line or a point, but we need
only one element of the field (n bits of information) to specify a point when a line is known.
However, the combinatorial properties of this pair are very different from the properties of
the pair in Example 3.3.

If Speaker is given a and Listener is given b as above, then Speaker cannot send a
reasonably short message having non-negligible mutual information with Listener’s input b.
In fact, if Speaker wants to send to Listener a message m = m(a) having δ bits of mutual
information with b, then the size of m must be at least n + δ. In particular, if the message
m is shorter than n, then it cannot contain any information on b, see Section 4. ⌟

Example 3.4 is an instance of a much more general phenomenon. Let us have a bipartite
graph G = (VL, VR, E), where the set of vertices is VL∪VR and the set of edges is E ⊂ VL×VR.
We assume that the graph is bi-regular, i.e., all vertices in VL have the same degree DL and
all vertices in VR have the same degree DR (we always assume that DL ≥ DR). We say that
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G is a spectral expander5 if the second eigenvalue of its adjacency matrix λ2 = O(
√

DL). Let
(x, y) ∈ E be a “typical” edge of this graph (in the sense that its Kolmogorov complexity
is close to the maximum possible value), and let x and y be the inputs given to Alice and
Bob respectively. Then we have a property similar to Example 3.3: if Alice wants to send a
message having δ bits of mutual information with Bob’s data y, she must send a message of
size at least log DR + δ. We prove this fact using the Expander Mixing Lemma. (Example 3.4
corresponds to the graph G = (VL, VR, E) where VL consists of all lines in the plane, VR

consists of all points in the plane, and E is the set of all pairs of incident lines and points; it
is known that this graph is a spectral expander.) [End of Digression.]

Now we generalize the observations from the Digression above and explain the main idea
of the proof of Theorem 3.1. We need the following extension of the notion of expander.

▶ Definition 3.5. Let G = (V1, V2, V3, H) be a hypergraph where the set of vertices consists
of three disjoint parts V1, V2, V3 of the same cardinality, and the set of hyperedges is a set
H ⊂ V1 × V2 × V3. We consider three bipartite graphs G1, G2, G3 associated with hypergraph
G: each Gi is a bipartite graph (Vi, Vjℓ, Ei) (here j = i + 1 mod 3 and ℓ = i + 2 mod 3),
where Vjℓ is the sets of ⟨y, z⟩ ∈ Vj ×Vℓ that are connected in G and (x, ⟨y, z⟩) ∈ Ei if and only
if the triple {x, y, z} corresponds to a hyperedge in H. The hypergraph is called tri-expander
if the graphs G1, G2, G3 are bi-regular spectral expanders6.

We show that the communication is costly for a triple of inputs (x, y, z) that is a hyperedge
in a tri-expander. To this end, we combine the idea from section 3.3 with an argument
similar to the observation sketched in the Digression: each party must send a message having
non-negligible mutual information with two other inputs (an information-theoretic argument)
but this is only possible when each of the messages is very long (due to the spectral bound
and the expander mixing lemma).

3.5 Construction of a tri-expander
To conclude the proof of the main result it remains to show that there exists a tri-expander
with suitable parameters:

▶ Proposition 3.6. For all integer numbers k ≥ 0 and n ≥ 1 there exists a tri-expander
G = (V1, V2, V3, H) such that #V1 = #V2 = #V3 = Θ(2kn), #H = Θ(2kn · 2(k−1)n · 2(k−2)n),
and for all i ̸= j, for every x ∈ Vi there exists Θ(2(k−1)n) vertices y ∈ Vj such that x and y

are adjacent in the hypergraph.

Proof. We construct such a tri-expander explicitly. We fix the finite field F2n with q = 2n

elements, the (k + 2)-dimensional space L over this field, and the subspace Lso ⊂ L that
consists of self-orthogonal vectors. Observe that #Lso = #L/q = qk+1 (a subspace of
co-dimension 1 in L). Let V denote the space of all directions in Lso except for the direction
(1, . . . , 1) (which is self-orthogonal for even k). Observe that #V = Θ(qk).

We let V1 = V2 = V3 = V and define H as the set of all triple (x, y, z) ∈ V 3 such that
x, y, z are distinct and pairwise orthogonal directions in Lso.

For every vector x ∈ Lso, the condition of being orthogonal to x determines in Lso a
subspace of co-dimension 1; this subspace consists of qk vectors (including x itself as it is
self-orthogonal) and, respectively, (qk − 1)/(q − 1) directions (again, including the direction

5 We use the term expander without assuming that the degree of a graph is constant.
6 The usage of the expander mixing lemma for a tri-expander seems to be similar but not literally

equivalent to the hypergraph generalization of the expander mixing lemma from [18].
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collinear with x). If we have two non-collinear vectors x, y ∈ Lso, then the condition of being
orthogonal to x and y determines in Lso a subspace of co-dimension 2; this subspace consists
of qk−1 vectors (including x and y), which corresponds to (qk−1 − 1)/(q − 1) = Θ(qk−2)
directions (once again, including the directions collinear with x and with y).

Thus, we have Θ(qk) individual vertices, Θ(qk · qk−1) pairs of adjacent vertices, and
Θ(qk · qk−1 · qk−2) adjacent triples (hyperedges). It remains to compute the eigenvalues of
the associated bipartite graphs.

▶ Lemma 3.7. The hypergraph G = (V1, V2, V3, H) defined above is a tri-expander.

(We give a proof in the full version of the paper.) ◀

▶ Remark 3.8. A standard counting shows that for most hyperedges (x, y, z) in the graph
from Proposition 3.6 we have C(x) lg= log Θ(qk) lg= kn, C(x, y) lg= log Θ(qk · qk−1) lg=(2k − 1)n,

C(x, y, z) lg= log Θ(qk · qk−1 · qk−2) lg=(3k − 3)n, and we get the profile (9). ⌟

4 When it is hard to say anything that the interlocutor already knows

In this section we explain our main technical tool. We consider randomized communication
protocols with two participants, Speaker and Listener. We assume that Speaker holds an
input string a and Listener holds another input string b; we assume also that the complexity
profile of the pairs (a, b) is known to all parties. The aim of Speaker in this protocol is
to send to Listener a message that has non-negligible mutual information with Listener’s
input b, as we discussed in Section 3.

▶ Theorem 4.1. Let G = (VL, VR, E) be a bipartite spectral expander such that N = #VL,
M = #VR, and (DL, DR) are the degrees of the edges in VL and VR respectively. Let
(a, b) ∈ E be a “typical” edge in the graph, i.e., C(a, b) lg= log #E, and C(m | a) lg= 0. Then
I(m : b) ≤lg max{0, C(m) − C(a | b)}. In particular, if the length of m is less than C(a | b),
then I(m : b) lg= 0.

▶ Remark 4.2. The statement of Theorem 4.1 remain valid if we relativize all terms of
Kolmogorov complexity in this statement conditional on a string r such that I(r : (a, b)) lg= 0.
In what follows we present the proof without r. But every step of this argument trivially
relativizes conditional on r assuming that C(a, b | r) lg= C(a, b) lg= log #E. ⌟

Proof of Theorem 4.1. Let na := log N , nb = log M , n′
a = log DR, n′

b = log DL, and
nab := na − n′

a. Using this notation, we have

C(a) lg= na, C(b) lg= nb, C(a | b) lg= n′
a, C(b) lg= nb, C(b | a) lg= n′

b, I(a : b) lg= nab.

Since Speaker computes the message m given the input data a, we have C(m | a) lg= 0. We
denote α := I(m : a | b) and β := I(m : a : b). It is easy to verify that C(m) = α + β.

Case 1. Assume that C(m) ≤ n′
a − 2 · const · log n for some const > 0 (a constant to be

specified later). In this case, to prove the theorem, we need to show that I(m : b) lg= 0. In our
notation this is equivalent to β

lg= 0. More technically, we are going to show that

β ≤ const · log n. (12)

For the sake of contradiction we assume that (12) is false. It is enough to consider the
case when β is somewhat large but not too large, i.e., just slightly above the threshold (12).
Indeed, any communication protocol violating (12) can be converted in a different protocols
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with the same or a smaller value of α and with β = const · log n + O(1). To this end, we
observe that by discarding a few last bits of Speaker’s message m we make the protocol only
simpler. So, we may replace the initial message m with the shortest prefix of the initial
message that still violates (12). Thus, in what follows, we assume w.l.o.g. that

const · log n < β ≤ const · log n + O(1).

Let us define A := {a′ : C(a′ | m) ≤ C(a | m)} and B := {b′ : C(b′ | m) ≤ C(b | m)}. We
use the following standard claim:

▷ Claim. For A and B defined above we have #A = 2C(a|m)±O(log n) = 2na−α−β±O(log n)

and #B = 2C(b|m)±O(log n) = 2nb−β±O(log n) (see, e.g. [24, Claim 4.7]).

From the claim we obtain #A · #B = 2na−α−β+nb−β±O(log n) = 2na+nb−C(m)−β±O(log n).

Since C(m) ≤ n′
a − 2 · const log n and β < const log n + O(1), we conclude

na + nb − C(m) − βn ± O(log n) ≥ na + nb − (n′
a − 2 · const · log n)

− const · log n − O(log n)
≥ nab + nb + const · log n − O(log n) ≥ nab + nb.

(To get the last inequality, we should choose the value of const in (12) so that const · log n

majorizes the term O(log n) in the inequality above.) Thus, #A · #B ≥ 2nab+nb = M2

DL
.

With the Corollary 2.2 we obtain E(A, B) = O
(

DL·#A·#B
M

)
= O

(
#A·#B
M/DL

)
. Now observe

that given m and the numbers C(a | m) and C(b | m) we can enumerate the sets A and B

and, therefore, we can describe (a, b) by the index of this edge in the list of all edges between
A and B. The size of such an index is log E(A, B). Hence,

C(a, b | m) ≤lg log E(A, B) ≤lg (na + nb − C(m) − β) − (nb − n′
b)

= na + n′
b − C(m) − β = C(a, b) − C(m) − β,

and C(a, b) ≤lg C(m) + C(a, b | m) ≤lg C(a, b) − β. The terms O(log n) hidden in the notation
≤lg and lg= in this inequality do not depend on β. Thus, we get a contradiction if the constant
in (12) is chosen large enough.

Case 2. Now we assume that C(m) = n′
a + δ for an arbitrary δ. Denote by m′ the prefix

of m of length (n′
a − const log n) and by m′′ the suffix of m of length (δ + const log n). We

know from Case 1 that I(m′ : b) lg= 0. It remains to apply the chain rule,

I(m : b) lg= I(m′ : b) + I(m′′ : b | m′) lg= I(m′′ : b | m′) ≤lg |m′′| lg= δ.

and the theorem is proven. ◀

▶ Corollary 4.3. Let G = (VL, VR, E) be a bipartite spectral expander such that N = #VL,
M = #VR, and (DL, DR) are the degrees of the edges in VL and VR respectively.
(a) We assume that Speaker and Listener are given, respectively, a and b that are ends of a

typical edge (a, b) ∈ E in the graph. We consider a one-round communication protocol
where Speaker sends to Listener a message m = m(a). Then I(m : b) ≤lg max{0, C(m) −
C(a | b)}. In particular, if the length of m is less than C(a | b), then I(m : b) lg= 0.

(b) A similar statement is true if Speaker and Listener are given instead of a and b some
inputs a′ and b′ such that C(a′ | a) lg= 0 and C(b′ | b) lg= 0 (e.g., if Speaker is given a
function of a vertex a ∈ VL and Listener is given a function of a vertex b ∈ VR).

STACS 2024



22:14 Spectral Approach to the Communication Complexity of Multi-Party Key Agreement

5 Protocols with simultaneous messages : a warm-up example

In this section we use Theorem 4.1 from the previous section to prove a lower bound for
communication complexity of the following problem. Alice and Bob hold, respectively, lines
a and b in a plane (intersecting at one point c). They send to Charlie (in parallel, without
interacting with each other) some messages so that Charlie can reconstruct the intersection
point. We argue that the trivial protocol (where Alice and Bob send the full information on
their lines) is essentially optimal.

▶ Theorem 5.1. Let Alice and Bob be given lines in the projective plane over the finite
field F2n (we denote them a and b respectively), and it is known that the lines intersect at
point c. Another participant of the protocol Charlie has no input information. Alice and Bob
(without a communication with each other) send to Charlie messages mA and mB so that
Charlie can find c. For every communication protocol for this problem, for some a, b we have
|mA| + |mB | ≥lg 4n, which means essentially that in the worst case Alice and Bob must send
to Charlie all their data (for a typical pair of lines we have C(a) + C(b) lg= 4n).

In the setting of Theorem 5.1, the inputs of Alice and Bob contain n bits of the mutual
information with c, so an easy lower bound for the communication complexity is n + n = 2n.
However, due to the spectral properties of graphs implicitly present in this construction, the
true communication complexity of this problem is twice bigger.

Sketch of the proof (see the full version of the paper for the details). In this sketch we
ignore the public randomness and explain the argument for deterministic protocols. A
generalization for protocols with public randomness is pretty straightforward, see full version
of the paper.

Let (a, b) be a pair of lines in a projective plane over F2n intersecting at a point c, such that
C(a, b) lg= C(a)+C(b) lg= 4n (which is the case for most pairs of lines in the plane). Observe that
I(a : c) lg= n and I(b : c) lg= n. It follows that for the messages mA = mA(a) and mB = mB(b)
we have I(mA : c) ≤lg n and I(mB : c) ≤lg n. Using standard information theoretic inequalities,
one can show that Alice’s message mA and Bob’s message mB determine the point c uniquely
only if I(mA : c) lg= n and I(mB : c) lg= n. Thus, Alice and Bob must send messages with large
enough information on c.

The graph of possible pairs (a, c) and the graph of possible pairs (b, c) (the configurations
(line, point)) is the same as in Example 3.4. Hence, we can apply Theorem 4.1 (Alice
and Bob play the roles of Speaker, and Charlie plays the role of Listener) and conclude
that I(mA : c) ≤lg max{0, C(mA) − n} and I(mB : c) ≤lg max{0, C(mB) − n}. In particular,
I(mA : c) lg= n and I(mB : c) lg= n only if Kolmogorov complexities of mA and mB are both at
least 2n. Thus, the total communication complexity is ≥lg 2n + 2n = 4n. ◀

6 Secret key agreement: a lower bound for the most crucial profile

In this section we prove a lower bound for communication complexity of secret key agreement
with three parties. Let us recall the setting. We assume that Alice, Bob, and Charlie are
given inputs x, y, z respectively with the complexity profile (9). This is a pretty “generic”
complexity profile; by choosing k, we control the gap between the complexities of x, y, z and
the mutual informations shared by the inputs.
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We consider communication protocols with public randomness. Denote by r the string of
random bits accessible for all the parties (including the eavesdropper). We assume that Alice,
Bob, and Charlie broadcast simultaneously messages mA = mA(x, r), mB = mB(y, r), mC =
mC(z, r) over a public communication channel. Then each of them computes the final result

keyAlice(x, r, mB , mC), keyBob(y, r, mA, mC), keyCharlie(z, r, mA, mB).

We say that a protocol is successful if keyAlice = keyBob = keyCharlie = w (i.e., the parties
agree on a common key w) and C(w | ⟨mA, mB , mC , r⟩) lg= |w| (i.e., the eavesdropper gets no
information on this key).

Theorem 1.4 claims that for any ϵ > 0 there exists a protocol that is successful with
probability (1 − ϵ), and the size of the key is equal to (5), which gives for the profile (9) the
value 1.5n. Moreover, this value of the key is optimal (up to an additive term O(log n)).

It was shown in [24] that a secret key of this size can be obtained in an omniscience
protocol. In this protocol, the parties broadcast messages so that each of them learns
completely the entire triple of inputs (x, y, z). The total length of the broadcasted messages
bits is less than C(x, y, z), so an eavesdropper can learn only a partial information on the
inputs. More specifically, communication complexity of the omniscience protocol is (7), which
is (3k − 4.5)n for a triple satisfying (9). The gap between C(x, y, z) lg=(3k − 3)n and the
amount of the divulged information is used to produce the secret key of size 1.5n.

The omniscience protocol used in [24] provides an upper bound on the communication
complexity of secret key agreement. In what follows we prove the matching lower bound (for
protocols with simultaneous messages) and show that (3k−4.5)n is the optimal communication
complexity for a protocol of secret key agreement protocols with simultaneous messages for
inputs satisfying (9). The proof follows the scheme sketched in Section 3. The first ingredient
of this proof is Lemma 3.2 (see p. 8).

Sketch of proof of Lemma 3.2. This lemma is a relativized version of [24, Theorem 4.2].
One can follow the argument from [24] step by step, substituting s as a supplementary
condition in each term of Kolmogorov complexity appearing in the proof. ◀

▶ Corollary 6.1. Consider a communication protocol with three parties where Alice is given
x, Bob is given y, and Charlie is given z. Denote by mC the concatenation of all messages
broadcasted by Charlie during the communication. If the parties agree on a secret key w on
which the eavesdropper gets no information (even given access to the messages sent by all
parties), then C(w) ≤lg I(x : y | r, mC).

Proof. We apply Lemma 3.2 substituting mC instead of the public information s. ◀

▶ Theorem 3.1 rephrased. Let Alice, Bob, and Charlie be given x, y, and z respectively such
that (x, y, z) is a hyperedge of the hypergraph G = (V1, V2, V3, H) from Proposition 3.6 (the
pairwise disjoint self-orthogonal directions in a (k + 2)-dimensional vector space over F2n).
We consider non-interactive communication protocols where Alice, Bob, and Charlie send
messages mA, mB, and mC respectively and produce a secret key w with the optimal complexity
C(w) lg= 1.5n. Then C(mA) ≥lg(k − 1.5)n, C(mB) ≥lg(k − 1.5)n, C(mC) ≥lg(k − 1.5)n, and
the communication complexity of the protocol is at least (3k − 4.5)n − O(log n).

Proof. To simplify the notation, we ignore the bits r provided by the public source of
randomness and explain the proof for deterministic protocols. Our argument trivially
relativizes given any instance of random bits r independent of (x, y) (which is true with a
probability close to 1), cf. the proof of Theorem 5.1 in the full version of the paper.
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From Corollary 6.1 we know that the size of the key (in our case 1.5n) cannot be greater
than I(x : y | mC). By the construction of the tri-expander, I(x : y) lg= n. Therefore, the
difference between I(x : y) and I(x : y | mC) is at least 0.5n.

▶ Lemma 6.2. For all binary strings x, y, s it holds I(x : y | s) − I(x : y) ≤lg I(s : xy).

(See the proof of the lemma in the full version of the paper.) We combine Corollary 6.1 with
Lemma 6.2 and obtain I(mC : xy) ≥lg 0.5n.

Then, we apply Theorem 4.1 to the bipartite graph G3 associated with the tri-expander
G (see p. 11); here Charlie plays the role of Speaker, and Alice and Bob together play the role
of Listener. Since I(mC : xy) ≥lg 0.5n, we obtain C(mC) ≥lg C(z | x, y) + 0.5n

lg=(k − 1.5)kn.

A similar argument applies to C(mA) and C(mB), and we are done. ◀

7 Secret key agreement: a lower bound for all symmetric profiles

Proof of Theorem 1.6. If the complexity profile of (x, y, z) is symmetric then it can be
specified by three real numbers:{

C(x | y, z) lg= C(y | x, z) lg= C(z | x, y) lg= α,

I(x : y | z) lg= I(x : z | y) lg= I(y : z | x) lg= β, I(x : y : z) lg= γ.
(13)

In what follows we say that the triple of numbers (α, β, γ) represent symmetric complexity
profile of the triple (x, y, z).

In Theorem 3.1 we proved that communication complexity (7) of the omniscience protocol
is optimal in case α = (k − 2)n, β = n, and γ = 0. We reduce the problem with arbitrary
α, β, γ to the special case settled in Theorem 3.1.

▶ Lemma 7.1. If communication complexity (7) is optimal (in the worst case) for some
triples of inputs (x, y, z) with complexity profile (13), then

(i) for every positive δ ≤ n, the omniscience protocol is also optimal for some triples of
inputs (x′, y′, z′) with symmetric complexity profile (α′, β′, γ′) = (α − δ, β, γ);

(ii) for every positive δ, the omniscience protocol is also optimal for some triples of inputs
(x′, y′, z′) with symmetric complexity profile (α′, β′, γ′) = (α, β, γ + δ);

(iii) if α
lg=(k − 2)n, β

lg= n, γ
lg= 0 (as in Theorem 3.1), then for every positive δ ≤ β/2 the

omniscience protocol is also optimal for some triples of inputs (x′, y′, z′) with symmetric
complexity profile (α′, β′, γ′) = (α, β + δ, γ − 3δ).

In Lemma 7.1 we show that the existence of an “excessively efficient” protocol for triples
of inputs with modified symmetric profiles (α′, β′, γ′) would imply an “excessively efficient”
protocol for the original symmetric profile (9), which is impossible due to Theorem 3.1. The
proof of this lemma uses mostly techniques of Kolmogorov complexity that are not specific
for communication problems. The argument is based on repeated application of Muchnik’s
theorem on conditional descriptions ([23]). Due to the lack of space, the proof of the lemma
is deferred to full version of the paper.

It is not hard to verify that starting with a triple (x, y, z) from Theorem 3.1 and then
applying the reductions from Lemma 7.1, we can obtain any realizable profiles (2). Indeed, we
begin with a triple of pairwise orthogonal directions (x, y, z) with α = (k − 2)n, β = n, γ = 0
for a suitable n and k, then apply Lemma 7.1 (ii) or Lemma 7.1 (iii) to get a triple (x′, y′, z′)
with a suitable I(x′ : y′ : z′) (case (ii) serves to make the triple mutual information positive,
and case (iii) is needed if we want to make it negative), and further apply Lemma 7.1 (i) to
trim the value of α. Thus, Theorem 3.1 implies optimality of (7) for triples of inputs (x, y, z)
with arbitrary symmetric complexity profile (2). ◀
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8 Conclusion and open problems

We proved that the standard omniscience protocol provides the optimal worst-case communi-
cation complexity of the problem of secret key agreement (with three parties) in the class of
protocols with simultaneous messages. A natural direction for further research is the study
of the limits of our approach. A more specific open problem is to settle the communication
complexity of multi-party secret key agreement for multi-round protocols. Indeed, in the
multi-party settings, the existing communication protocols can be actually improved at the
cost of increasing the number of rounds. In particular, the communication complexity (7) is
no longer the optimal for multi-round protocols:

▶ Proposition 8.1. In the setting of Theorem 3.1 there is a multi-round communication
protocol (not a simultaneous messages protocol) with communication complexity (2k − 2.5)n +
O(log n), where the parties agree on a secret key of the optimal size 1.5n − O(log n).

(See the proof in the full version of the paper.) Our technique implies some lower bounds
for communication complexity of interactive protocols, but this bound does not match the
known upper bounds.

Another open problem is to establish the trade-off between the size of the secret key and
the optimal communication complexity. For two-parties protocols, communication complexity
of secret key agreement cannot be reduced even if Alice and Bob agree on a very small secret
key, see the “threshold phenomenon” in [15]; for protocols with k ≥ 3 parties the situation is
different, and communication complexity may be improved if the size of the secret key is
suboptimal. It would be also interesting to extend our results to the communication model
with private sources of randomness.
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