
Depth-3 Circuit Lower Bounds for k-OV
Tameem Choudhury #

Department of Computer Science and Engineering, IIT Hyderabad, India

Karteek Sreenivasaiah #

Department of Computer Science and Engineering, IIT Hyderabad, India

Abstract
The 2-Orthogonal Vectors (2-OV) problem is the following: given two tuples A and B of n Boolean
vectors, each of dimension d, decide if there exist vectors u ∈ A, and v ∈ B, such that u and v

are orthogonal. This problem, and its generalization k-OV defined analogously for k tuples, are
central problems in the area of fine-grained complexity. One of the major conjectures in fine-grained
complexity is that k-OV cannot be solved by a randomised algorithm in nk−ϵpoly(d) time for any
constant ϵ > 0.

In this paper, we are interested in unconditional lower bounds against k-OV, but for weaker
models of computation than the general Turing Machine. In particular, we are interested in circuit
lower bounds to computing k-OV by Boolean circuit families of depth 3 of the form OR-AND-OR,
or equivalently, a disjunction of CNFs.

We show that for all k ≤ d, any disjunction of t-CNFs computing k-OV requires size Ω((n/t)k).
In particular, when k is a constant, any disjunction of k-CNFs computing k-OV needs to use
Ω(nk) CNFs. This matches the brute-force construction, and for each fixed k > 2, this is the first
unconditional Ω(nk) lower bound against k-OV for a computation model that can compute it in size
O(nk). Our results partially resolve a conjecture by Kane and Williams [17] (page 12, conjecture 10)
about depth-3 AC0 circuits computing 2-OV.

As a secondary result, we show an exponential lower bound on the size of AND ◦ OR ◦ AND
circuits computing 2-OV when d is very large. Since 2-OV reduces to k-OV by projections trivially,
this lower bound works against k-OV as well.
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1 Introduction

The area of fine-grained complexity is a branch of computational complexity that studies
the complexity of functions with a finer lens than the usual approach that makes a coarse
distinction between polynomial time and super-polynomial time. The area has been focused
on functions in P that find uses in a variety of contexts. In the seminal paper by Vassilevska
Williams and Williams [26], they show eight problems that are subcubic time equivalent to
one another. Hence a truly subcubic time algorithm for any one of these problems will also
imply a subcubic algorithm for the others.

The holy grail of computation complexity is to show unconditional lower bounds to
resources used in computing an explicit function. Unfortunately, the state of affairs in terms
of unconditional lower bounds for computation, in its full generality, is rather bleak. The best
known unconditional lower bounds for the running time of computing an explicit function are
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25:2 Depth-3 Circuit Lower Bounds for k-OV

merely linear. Even for functions such as SAT that do not have any polynomial time running
algorithms till date, we do not know how to show super-linear lower bounds. We do know
from the time hierarchy theorem1 that there are languages in DTIME(n2) that are not in
DTIME(nc) for any c < 2. However the languages constructed in a proof of the time hierarchy
are not natural, and not as explicit as we would like. Results such as [26] and [7] that show
equivalences among several important functions help in identifying candidate functions that
might witness the time hierarchy theorem for their time class. One such candidate function
for quadratic time2 is the 2-Orthogonal Vectors problem.

The 2-Orthogonal Vectors problem 2-OVn,d is defined as follows: Given as input two
tuples A ⊆ {0, 1}d and B ⊆ {0, 1}d of n vectors each, decide if there is a vector a ∈ A

and a vector b ∈ B such that a and b are orthogonal. To define a generalization of this
problem, we think of each vector from {0, 1}d as a characteristic vector of a subset from
[d]. Then a natural generalization of 2-OVn,d is the problem k-OVn,d that takes as input k

tuples A1, A2, . . . , Ak ⊆ {0, 1}d of n vectors each, and the task is to decide if there exists
vectors a1 ∈ A1, a2 ∈ A2, . . . , ak ∈ Ak such that a1 ∩ a2 ∩ . . . ∩ ak = ϕ. The problems
2-OV and k-OV have emerged as central problems in fine-grained complexity. An important
hypothesis is that no deterministic, or randomized, algorithm computing 2-OVn,d can run in
time O(n2−ϵ poly(d)) for any ϵ > 0. This is essentially saying that the brute force algorithm
is also the best. Interestingly, Ryan Williams in [24], shows that under the strong exponential
time hypothesis (SETH)3, 2-OV (3-OV) requires n2−o(1) time (n3−o(1) time respectively).

In the absence of techniques that can show unconditional lower bounds, two natural
directions of research emerge: (i) Conditional lower bounds to help us understand connections
between various such problems, and “bottlenecks” to better algorithms. (ii) Unconditional
lower bounds for weaker models of computation.

The first line of research has seen a tremendous body of results. There are numerous
fine-grained reductions, and lower bounds, conditioned on SETH, and the hardness of
functions such as 2-OVn,d, and k-OVn,d. In the 2018 survey [25], Vassilevska Williams aptly
describes it as “an explosion of hardness results based on OV”, and lists nineteen problems
whose complexity is connected to that of k-OV. The fact that better algorithms for so many
problems would imply better algorithms for k-OV, is perhaps not surprising. Intuitively, the
k-OV function looks “canonical” in a certain sense, and has managed to hide itself inside
several other problems that look quite different at the surface. These include seemingly
unrelated problems such as Longest Common Subsequence [1], Edit Distance [2], Fréchet
distance [4, 5], Regular Expressions Matching [3], to name a few. Their survey [25] is an
excellent source for those looking for a thorough treatment of fine-grained complexity, and in
particular, this line of research.

The second direction, of showing lower bounds against weaker models of computation,
seems to be lacking the same attention. To the best of our knowledge, the only paper
that addresses this line is that of Kane and Williams [17]. In their paper they show tight
lower bounds for formulas and branching programs computing 2-OV. We do not know any
non-trivial lower bounds for computing 2-OV by models stronger than branching programs.

Note that if a uniform circuit family of bounded fan-in, and size O(s(n, d)) computes
k-OVn,d, then an algorithm that simply evaluates the circuit, computes k-OVn,d in time
Õ(s(n, d)). So if the k-OV hypothesis is true, then we can expect any uniform circuit family
computing k-OVn,d to have size Ω(nk). This begs the question:

1 Such hierarchy theorems go through for the unit cost RAM model as well.
2 We are being imprecise here so as to remain informal. The input length of 2-OVn,d is actually nd. So

“quadratic in n” is not the same as DTIME(n2)
3 [15],[6]For every ϵ > 0, ∃k such that k-SAT problem on n variables cannot be solved in O(2(1−ϵ)n) time
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What is the largest class of circuits for which we can show Ω
(
nk poly(d)

)
size lower bounds

against computing k-OVn,d?

One class of Boolean circuits that has been extensively studied in terms of lower bounds
is AC0 (gates from {∧,∨,¬}, unbounded fan-in, O(1)-depth). In fact we know exponential
lower bounds against this class of circuits. So a good target would be to show that k-OVn,d

requires AC0 circuits of size Ω(nk poly(d)). We note that k-OVn,d can indeed be computed
by depth-3 AC0 circuits of size nkd, as shown later in equation 2. Can we show matching
lower bounds?

The best known lower bound against depth-3 AC0 circuits is 2Ω(
√

n) for computing majority.
This bound can be obtained by several classic techniques from the 80s including the switching
lemma by Håstad [13], the polynomial method by Razborov [21] and Smolensky [22], and
finite-limit vectors by [14]. One of the most important problems in circuit complexity is to
prove 2ω(n/ log log n) lower bounds to the size of depth-3 AC0 circuits computing an explicit
function. This would imply superlinear lower bounds against O(log n) depth circuits (of
bounded fan-in) due to the depth reduction procedure described by Valiant [23] (alternatively,
see Chapter 11 of Jukna [16]). With the aim of making progress on this front, Goldreich and
Wigderson proposed a new framework in [11] where they define a new model of arithmetic
circuits that use multilinear gates, as opposed to allowing gates computing sum or product
alone, and a new complexity measure on this model. The main motivation being that lower
bounds to their complexity measure implies lower bounds to a specific class of Boolean
depth-3 circuits that they call D-canonical. The best lower bounds obtained for this class
of depth-3 Boolean circuits, using their framework, is Ω(2n3/5) by Goldreich and Tal [10].
In fact, the brute force depth-3 AC0 circuits computing the negation of k-OV, described
later in equation 3, bears close resemblance to D-canonical circuits since it is a product of
set-multilinear functions, but over the Boolean algebra, as opposed to GF(2).

More recently, the status of depth-3 AC0[⊕] circuits (gates computing xor are allowed in
addition to the usual ∧, ∨, ¬) got an update. The lower bound for computing majority using
depth-3 AC0[⊕] circuits was improved from 2Ω(n1/4) to 2Ω(

√
n) by Oliveira, Santhanam and

Srinivasan [20]. This closed the gap between upper and lower bounds up to a logarithmic
factor in the exponent.

While techniques such as the switching lemma and the polynomial method work in
a “bottom-up” fashion, the techniques in [14] is a “top-down” approach specifically for
depth-3 AC0 circuits. To the best of our knowledge, the only top-down strategies for circuit
lower bounds are the Karchmer-Wigderson game by Karchmer and Wigderson [18], the
discriminator lemma for depth-2 threshold circuits by Hajnal, Masse, Pudlák, Szegedy,
Turán [12], and finite-limits by Håstad, Jukna, Pudlak [14]. Our results in this paper can be
seen as a non-trivial application of the techniques of Håstad, Jukna, Pudlak [14].

Kane and Williams [17] conjecture that any depth-3 AC0 circuit computing 2-OVn,d

requires Ω(n2) wires (see page 12, conjecture 10 in [17]). Observe that 2-OVn,d (and k-OVn,d)
can be computed by OR ◦ AND ◦ OR circuits with 2n2d wires (and knkd wires respectively):

2-OVn,d(A, B) =
∨

i1,i2∈[n]

∧
j∈[d]

(¬ai1 [j] ∨ ¬bi2 [j]) (1)

k-OVn,d(A1, . . . , Ak) =
∨

i1,...,ik∈[n]

∧
j∈[d]

(¬ai1 [j] ∨ · · · ∨ ¬aik
[j]) (2)

Hence, informally, their conjecture for 2-OVn,d, and by extension k-OVn,d, is that the
brute-force circuit is also the best.

STACS 2024
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A second important question in [17] is about generalizing lower bounds from 2-OV to
k-OV. As they have noted, generalizing their lower bounds to k > 2 would beat the state of
the art in branching program lower bounds. Our results for depth-3 AC0 circuits generalize
to k > 2, and scale well when the bottom fan-in is bounded.

Our Results
In this paper, we show lower bounds against the size of certain classes of depth-3 AC0

circuit families computing k-OVn,d. Our main result shows lower bounds against a restricted
class of OR ◦ AND ◦ OR circuits computing k-OVn,d, while our secondary result deals with
AND◦OR◦AND circuits computing a special case of k-OVn,d. Our main result is the following:

▶ Theorem 1. For all k ≤ d, any OR ◦ AND ◦ OR circuit with bottom fan-in t computing
k-OVn,d requires top fan-in Ω

(
( n

t )k
)
.

Circuit families of the type OR ◦ AND ◦ OR can also be understood as a disjunction of
CNFs. Therefore Theorem 1 is equivalent to the following statement:

“Any disjunction of t-CNFs computing k-OVn,d requires size Ω
(
(n/t)k

)
.”

(Here, by ‘t-CNF ’, we mean a CNF whose clauses have at most t literals, and by ‘size’ we
mean the number of CNFs being used.)

The brute-force circuit described earlier in equation 2 for k-OVn,d, is a disjunction of nk

many k-CNFs, and the lower bound from Theorem 1 for this model is Ω((n/k)k). Hence
for all constant k > 1, the complexity of computing k-OVn,d as a disjunction of k-CNFs is
Θ(nk).

The proof technique used for Theorem 1 actually goes through for a more general class of
depth-3 circuits where the bottom gates can have arbitrary fan-in as long as the number of
negated literals among their inputs is at most t. We describe this in the next subsection.
The more general theorem is the following. Let C−

t be the set of all unate functions (see
Definition 7) that are negative unate on at most t variables.

▶ Theorem 2. For all k ≤ d, any OR ◦ AND ◦ C−
t circuit computing k-OVn,d requires top

fan-in Ω
(
( n

t )k
)
.

It is important to note that the usual trick of using random restrictions to get rid of the
bottom fan-in restriction in Theorem 1 is very unlikely to work as it is known that 2-OV
becomes easy to compute by AC0 circuits with high probability under random restrictions [17]
(section 3).

As a secondary result, we show an exponential lower bound on the size of AND◦OR◦AND
circuits computing 2-OVn,d when d is very large:

▶ Theorem 3. For all ℓ ≤ d, any AND ◦ OR ◦ AND circuit computing 2-OVn,d requires size
s ∈ Ω(min{2ℓ,

(
d

nℓ

)n}). In particular, for ℓ = d/2n and d ∈ Ω(n2), s ∈ Ω(2n).

Since 2-OVn,d reduces to k-OVn,d by projections trivially, the above theorem holds for
k-OVn,d as well. It must also be noted that the input size for 2-OVn,d is 2nd which, for the
choice of d in Theorem 3, is 2n3. Hence with respect to an input size of n, the lower bound
for 2-OVn,d from Theorem 3 is actually 2Ω(n1/3).

An important fact to be noted about depth-3 AC0 circuits is that, in general, the
computational power of OR◦AND◦OR circuits and AND◦OR◦AND circuits are incomparable.
As demonstrated by [14], the iterated intersection function on 2n variables (see Definition 26)
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is computable by AND ◦ OR ◦ AND circuits of linear size, but any OR ◦ AND ◦ OR circuit
family computing it requires size 2Ω(

√
n). A more thorough discussion on this topic can

be found in Chapter 11.5 of Jukna [16]. This is true in the context of k-OVn,d and our
bounds also: an idea used by Kane and Williams (Proposition 4 in [17]) can be used to
show AND ◦ OR ◦ AND circuits computing k-OVn,d that are smaller than our lower bounds
in Theorem 1 for OR ◦ AND ◦ OR circuits when d ∈ O(1).

We show in Section 5 a general construction for k-OVn,d that achieves a trade-off between
top fan-in and bottom fan-in. This shows that in general, for circuits with bottom fan-in t

our lower bound against the top fan-in of OR ◦ AND ◦ OR circuits computing k-OVn,d is at
least a factor of tk−1/k away from the corresponding upper bound.

Techniques

We note that throughout this paper, we work with the function k-Intn,d defined as the
negation of k-OVn,d. We do this because k-Intn,d is a monotone function, and hence allows
us several conveniences with regard to notation. Thus our lower bounds to AND ◦OR ◦ AND
circuits computing k-Intn,d transfer directly to OR ◦ AND ◦ OR circuits computing k-OVn,d.
More formally, k-Intn,d is defined as

k-Intn,d(A1, . . . , Ak) =
∧

i1,...,ik∈[n]

∨
j∈[d]

(ai1 [j] ∧ · · · ∧ aik
[j]) (3)

Main result. For our main result, the strategy we use is that of finite limit vectors. This is
a top-down strategy that was used by Håstad, Jukna, and Pudlák in [14] for proving depth-3
AC0 circuit lower bounds. We briefly describe the approach.

Assume an AND ◦ OR ◦ AND circuit C = C1 ∧ · · · ∧ Cs(n) computes a function f . Then
for any N ⊆ f−1(0), by an averaging argument, there is a Ci that correctly outputs 0 on at
least 1/s fraction of inputs in N . Hence showing an upper bound to |C−1

i (0) ∩N| implies a
lower bound to s(n) as s ≥ |N |/|C−1

i (0) ∩N|.
The technique of finite limits by [14] is used to show that Ci cannot be correct on many

inputs in N . The idea is to show that if C−1
i (0)∩N is large, then we can construct a 1-input

y such that for any set of t input positions, it looks identical to some string in C−1
i (0) ∩N .

Such a string y is called a t-limit for the set C−1
i (0) ∩ N . Then if the bottom gates in Ci

can each see only t bits of the input, the string y fools all of them into evaluating to 0
simultaneously, and hence Ci will output 0 on y. This is a contradiction since y ∈ C−1(1) by
construction, but Ci(y) = 0 implies C(y) = 0. It is not hard to see that if the t-limit string
y has the additional property that y ≥ x for all x ∈ C−1

i (0) ∩N , and each bottom gate in
Ci has at most t positive literals among its inputs, the same argument goes through. We
call such a y an upper t-limit for the set C−1

i (0) ∩N (as opposed to the term ‘lower t-limit’
used in [14] for the case when y ≤ x). We shall also use the term “bottom positive fan-in” to
indicate how many of the input literals are allowed to be positive for each bottom gate.

The key idea behind our construction of a t-limit is to first model any subset of maxterms
of k-Intn,d as a k-partite hypergraph such that the maxterms in the subset and the hyperedges
are in bijection. We call this hypergraph as a “Support Graph”, and construct it in Section 3.2.
Then we construct a t-limit for the case of 2-Intn,d by using Kőnig’s theorem on this graph.
To deal with the general case of k-Intn,d, we first show a sunflower lemma on this support
graph, and then use the sunflower structure to construct a t-limit. We show a version of the
sunflower lemma on our hypergraph that is very slightly less demanding than the standard
sunflower lemma [9]. We note that this does not improve the asymptotic complexity of our
final bound.

STACS 2024



25:6 Depth-3 Circuit Lower Bounds for k-OV

We remark here that all t-limit strings that we construct in this paper are also upper
t-limit strings. Hence all our lower bounds for k-Intn,d go through for the circuit class
AND ◦ OR ◦ C+

t where C+
t is the set of all unate functions that are positive unate on at

most t variables. Informally, this means that the bottom gates can compute any unate
functions, have unbounded fan-in, but at most t of the inputs can be positive literals. (The
dual statement for k-OVn,d is Theorem 2 stated in the previous section.) As an example,
lower bounds using this technique will also work against depth-3 circuits where the top and
middle layers are AND and OR respectively, and the bottom layer consists of homogeneous
linear threshold functions, each of which is defined by a vector of weights that has at most t

positive weights.
An important observation about the technique described above is that it is impervious

to the fan-in of the middle OR gates. So we could use a suitable DNF for each bottom
gate and convert an AND ◦ OR ◦ C+

t circuit to an AND ◦ OR ◦ AND circuit with bottom
positive fan-in at most t and a possibly larger middle fan-in. Since the technique gives lower
bounds to top fan-in regardless of middle fan-in, all lower bounds that we can derive against
AND ◦ OR ◦ AND circuits with bottom positive fan-in t using this technique, transfer to
AND ◦OR ◦ C+

t without any change. Hence throughout this paper, we focus our attention to
AND ◦ OR ◦ AND circuits.

Secondary result. The exponential lower bound of [14] for OR◦AND◦OR circuits computing
the iterated intersection function Sn,d for d ∈

√
n is of particular interest to us. The function

Sn,d bears a close resemblance to 2-Intn,d. While Sn,d is the iterated intersection, 2-Intn,d

can be seen as “all-pairs” intersection.
We show a reduction (via projections) from Sn,d/n to 2-Intn,d. The blow-up in the

dimension of vectors is rather large, and we can conclude non-trivial lower bounds only for
d ∈ ω(n).

2 Preliminaries

We often interpret a d-dimensional vector u ∈ {0, 1}d as the characteristic vector of a subset
of [d].

▶ Definition 4 (k-OVn,d). For tuples A1, A2, . . . , Ak ⊆ {0, 1}d where ∀i ∈ [k], |Ai| = n.

k-OVn,d(A1, A2, . . . , Ak) = 1 ⇐⇒ ∃a1 ∈ A1,∃a2 ∈ A2, · · · ,∃ak ∈ Ak, such that
a1 ∩ a2 ∩ · · · ∩ ak = ∅

For notational convenience, we work with the negation of k-OVn,d throughout the paper.
We use k-Intn,d to denote the negation of k-OVn,d, and is defined as follows:

▶ Definition 5 (k-Intn,d). For tuples A1, A2, . . . , Ak ⊆ {0, 1}d where ∀i ∈ [k], |Ai| = n.

k-Intn,d(A1, A2, . . . , Ak) = 1 ⇐⇒ ∀a1 ∈ A1,∀a2 ∈ A2, · · · ,∀ak ∈ Ak, we have
a1 ∩ a2 ∩ · · · ∩ ak ̸= ∅

An input to the function k-Intn,d has nk vectors, each of dimension d. Hence nkd many
input bits in total.

For any x, y ∈ {0, 1}d, we write x ≤ y if ∀i, xi ≤ yi. Similarly, we write x⊕ y to denote
the string obtained by a point-wise xor between x and y.
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▶ Definition 6 (Monotone function). We say that a Boolean function f is monotone if
∀x, y ∈ {0, 1}d such that x ≤ y, we have f(x) ≤ f(y).

The notion of monotone can be generalized to the notion of being unate:

▶ Definition 7 (Unate function). A Boolean function f : {0, 1}n → {0, 1} is unate if there
exists a monotone Boolean function g : {0, 1}n → {0, 1} and a string s ∈ {0, 1}n such that
for all inputs x, we have f(x) = g(x⊕ s).

Further, a unate function is positive unate (negative unate) on a variable xi if si = 0
(si = 1 respectively).

For monotone functions such as k-Intn,d, we can define maximal 0-inputs:

▶ Definition 8 (Maximal 0-input). Let f be a monotone Boolean function. An input x is a
maximal 0-input for f if f(x) = 0 and for all strings y such that x < y, f(y) = 1.

Throughout this article, we will use the term “maxterm” and “maximal 0-inputs” inter-
changeably. This deviates from the standard definition of maxterm, but is very convenient in
our context.

For a vector u ∈ {0, 1}d, and a set of indices S ⊆ [d], we denote the restriction of u to
the indices in S as u|S .

▶ Definition 9 (t-limit). A vector y ∈ {0, 1}m is said to be a t-limit for a set B ⊆ {0, 1}m

if and only if ∀S ⊆ [m] with |S| = t, ∃x ∈ B such that y ̸= x but y|S = x|S. Further,
y ∈ {0, 1}m is said to be an upper t-limit if y ≥ x.

Note that if a string y is a t-limit for a set B and B ⊆ B′, then y is also a t-limit for B′.
We will be using Kőnig’s theorem in our proofs, which is stated as follows:

▶ Proposition 10 ([19], [8]). The maximum cardinality of a matching in a bipartite graph G
is equal to the minimum cardinality of a vertex cover of its edges.

We will always assume that the depth-3 circuits we consider are layered. i.e., inputs are
read directly by only the gates at the bottom layer, and every layer reads outputs from the
layer below it. This assumption does not affect asymptotic complexity. We say a depth-3
circuit C has bottom positive fan-in (bottom negation fan-in) t if for every gate in the bottom
layer, at most t of its inputs are positive literals (negated literals respectively).

We denote the permutation group on k distinct elements with Sk. Let P = (P1, . . . , Pk) be
an ordered partition of [d] into k parts. For any permutation σ ∈ Sk, we use Pσ to denote the
ordered partition obtained by permuting the parts of P using σ. i.e., Pσ ≜ (Pσ(1), . . . , Pσ(k))

3 AND ◦ OR ◦ AND circuits

To describe the lower bound for k-Intn,d against AND ◦OR ◦ AND circuits, we first identify a
special set of maxterms (maximal 0-inputs) of k-Intn,d. We do this by explicitly constructing
such inputs.

3.1 Maxterms of k-Intn,d

Fix any choice of integers k, d ∈ N such that 1 < k ≤ d. For any choice of n1, . . . , nk ∈ [n],
and any ordered partition P = (P1, . . . , Pk) of [d] into k parts, we will construct an input
N = (A1, . . . , Ak) where Ai ⊆ {0, 1}d with |Ai| = n such that N is a maxterm for k-Intn,d.
Throughout, we will denote the j’th vector in Ai by aj

i .
The input N = (A1, . . . , Ak) ∈ {0, 1}nkd is constructed as follows:

STACS 2024



25:8 Depth-3 Circuit Lower Bounds for k-OV

Set every vector other than an1
1 , . . . , ank

k to all 1s.
In each ani

i , set the indices contained in Pi to 0s. Set every other position to 1. Formally,
for all i ∈ [k], set ani

i |Pi
← 0⃗ and ani

i |[d]\Pi
← 1⃗.

We shall call ((n1, . . . , nk),P) the support of N , and denote it by sup(N).
To see that N is indeed a maxterm of k-Intn,d, observe that since P is a partition of [d], for

every position ℓ ∈ [d], there is a unique i ∈ [k] such that ℓ ∈ Pi. Therefore, by construction
of N , ani

i [ℓ] = 0. So for every position ℓ, there is some vector among an1
1 , . . . , ank

k that is
0 in position ℓ, and hence an1

1 ∩ · · · ∩ ank

k = ∅. Moreover, due to i being unique for each
such ℓ, we also have a

nj

j [ℓ] = 1 for all j ̸= i. So changing ani
i [ℓ] from 0 to 1 results in the

vectors intersecting at ℓ. Combining this with the fact that every vector in N other than
an1

1 , . . . , ank

k is the all-1s vector, we conclude that N is indeed a maximal 0-input.
We will be particularly interested in a subset of such maxterms of k-Intn,d that are formed

by the permutations of the parts of some fixed partition into non-empty parts. We define
this formally as follows.

▶ Definition 11 (Permutation-maxterms). Fix an ordered partition P = (P1, . . . , Pk) of [d]
into k non-empty parts. A permutation-maxterm with respect to P is any maxterm N

constructed as above that has sup(N) = ((n1, . . . , nk),Pσ) for some n1 . . . , nk ∈ [n] and
σ ∈ Sk.

We shall use Nn,k,d
P to denote the set of all permutation-maxterms of k-Intn,d with respect

to some ordered partition P of [d] into k non-empty parts. We drop the subscript, and
superscripts if it is clear from context.

Note that for any partition P as in the definition above, |Nn,k,d
P | = nkk! as there are nk

many k-tuples (n1, . . . , nk) and k! many permutations in Sk.
▶ Remark 12. The proofs in this paper do not depend on the exact partition chosen. Any
arbitrary ordered partition of [d] into k non-empty parts will work. For a further simplification,
one could assume k = d, and fix the permutation P = (P1, . . . , Pk) to be Pi = {i} for all
i ∈ [d].

3.2 Support Graph
We define a k-partite hypergraph to encode, and reason about, the relationship between
permutation-maxterms of k-Intn,d. Here, by k-partite hypergraph we mean that every
hyperedge must contain exactly one vertex from each part.

Fix k ≥ 2 and d ≥ k, and any ordered partition P of [d] into k non-empty parts. For any
subset S ⊆ Nn,k,d

P of permutation-maxterms of k-Intn,d, we define the support graph of S as
a k-partite hypergraph GS = (V1 ∪ · · · ∪ Vk, E) such that each maxterm in S corresponds
to a hyperedge in the graph. Recall that an input to k-Intn,d consists of k tuples, each
having n vectors of dimension d. In each Vi, we include a total of nk vertices as follows: for
each j ∈ [n], we include k vertices in Vi indexed as vj,1

i , . . . , vj,k
i . So for all i ∈ [k], we have

|Vi| = nk and hence the graph GS is defined on nk2 many vertices.
We define the set E of hyperedges as follows:(

vn1,b1
1 , . . . , vnk,bk

k

)
∈ E ⇐⇒ ∃ maxterm N ∈ S such that

sup(N) = ((n1, . . . , nk),Pσ) and bi = σ(i) ∀i ∈ [k]

▶ Remark 13. Note that the set of maxterms S ⊆ NP and the set of hyperedges in GS are in
bijection. More precisely, a maxterm N with sup(N) = ((n1, . . . , nk),Pσ) corresponds to the
hyperedge

(
v

n1,σ(1)
1 , . . . , v

nk,σ(k)
k

)
and vice-versa.
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▶ Definition 14 (Co-disjoint). We call two vectors u ∈ {0, 1}d and v ∈ {0, 1}d as co-disjoint
if and only if u ∩ v = ∅. i.e., the set of positions where u is 0, and the set where v is 0 are
disjoint.

For two tuples of vectors A = (a1, . . . , an) and B = (b1, . . . , bn) where ai, bi ∈ {0, 1}d, we
say A and B are co-disjoint if for all i ∈ [n], ai and bi are co-disjoint.

Maxterms M = (M1, . . . , Mk) and N = (N1, . . . , Nk), both from Nn,k,d
P , are said to be

co-disjoint if and only if for all i ∈ [k], Mi and Ni are co-disjoint.

Intuitively, the graph GS records where the 0s in each of the maxterms in S appear. This
gives us the following close connection between co-disjointness of vectors across maxterms,
and disjointness of their hyperedges.

▶ Lemma 15. Let S ⊆ Nn,k,d
P , and let GS = (V1 ∪ · · · ∪ Vk, E) be its support graph. Let

M = (M1, . . . , Mk) and N = (N1, . . . , Nk) be two maxterms from S and let EM , and EN

respectively, denote their corresponding hyperedges in GS. Then for each i ∈ [k], we have the
following two properties:
1. If EM and EN share a vertex in Vi, then Mi = Ni.
2. If EM and EN contain different vertices from Vi, then Mi and Ni are co-disjoint.

Proof. Let sup(M) = (a1, . . . , ak,Pσ) and sup(N) = (b1, . . . , bk,Pπ).

Proof of (1). If EM and EN share a vertex in Vi for some i ∈ [k], then v
ai,σ(i)
i = v

bi,π(i)
i

and so we have ai = bi and σ(i) = π(i). Let ℓ = ai = bi, and let q = σ(i) = π(i). Then by
construction of the maxterms M and N , all vectors in Mi other than mℓ

i are all 1s, and
similarly all vectors in Ni other than nℓ

i are all 1s. The vector mℓ
i and nℓ

i both have 0s in
indices from the part Pq, and 1s elsewhere. So mℓ

i = nℓ
i . Hence the tuple Mi and Ni are

identical.

Proof of (2). If EM and EN have different vertices from Vi, then v
ai,σ(i)
i ≠ v

bi,π(i)
i . So

either ai ̸= bi or σ(i) ̸= π(i) (or both). The claim holds in both cases:
If ai ̸= bi, then recall that by construction, the only vector that has 0s in Mi is the vector
mai

i . Every other vector in Mi, and in particular mbi
i is the all 1s vector by construction.

So the tuples of vectors Mi and Ni cannot both be 0 in any vector in any position.
Else ai = bi and σ(i) ̸= π(i). By our construction of maxterms, the 0s in the vectors mai

i

and nbi=ai
i are in the indices given by Pσ(i) and Pπ(i) respectively. Since P is a partition,

and σ(i) ̸= π(i), Pσ(i) ∩ Pπ(i) = ∅. Therefore there cannot be an index where both mai
i

and nbi
i are both 0. ◀

The following lemma follows directly from Lemma 15:

▶ Lemma 16. Let S ⊆ Nn,k,d
P be a set of maxterms such that all hyperedges in GS are

pairwise vertex-disjoint. Then the maxterms in S are pairwise co-disjoint. (i.e., for all
positions ℓ ∈ [nkd], there is at most one maxterm in S that has 0 in the ℓ’th position.)

Proof. Let M, N ∈ S be any two maxterms, and let the vertex set of GS be V = V1∪· · ·∪Vk.
The hyperedges EM and EN , corresponding to M , and N respectively, are vertex-disjoint
from the premise. So for each i ∈ [k], EM and EN contain different vertices from Vi. Applying
Lemma 15 to GS , we obtain that Mi and Ni are co-disjoint for all i ∈ [k]. Hence there is no
position where both M and N are 0 by definition of co-disjoint. ◀

STACS 2024
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3.3 Warm-up: 2-Intn,d

We give a self-contained proof of our lower bound for the case of 2-Intn,d that demonstrates
the strategy behind the proof for the general case.

▶ Theorem 17. For all d > 1, any AND ◦ OR ◦ AND circuit with bottom fan-in t computing
2-Intn,d requires top fan-in at least 2n2/t2.

Proof. Let C = C1 ∧ C2 ∧ · · · ∧ Cs be an AND ◦ OR ◦ AND circuit with bottom fan-in t

computing 2-Intn,d. Let P = (P1, P2) be any ordered partition of [d] into two non-empty parts.
Consider the permutation-maxterms N = Nn,2,d

P of 2-Intn,d as described in definition 11.
Since N is a subset of the 0-inputs of 2-Intn,d, the circuit C outputs 0 on every input in N .
By an averaging argument, there exists i ∈ [s] such that Ci correctly outputs 0 on at least
1/s fraction of inputs in N . We will show that |C−1

i (0)∩N| ≤ t2. Then the theorem follows
as:

2n2

s
= 1

s
|N | ≤ |C−1

i (0) ∩N| ≤ t2.

Let S = C−1
i (0) ∩ N . Suppose, for the sake of contradiction, |S| > t2. We will show

later in the proof that in such a case, there is a t-limit y ∈ C−1(1) for S. This leads to a
contradiction as follows: let Ci = g1∨g2∨· · ·∨gℓ with each gj having fan-in at most t. Then,
by definition of t-limit, for all T ⊆ [nkd] with |T | = t, there exists x ∈ S such that x|T = y|T .
Now each of the gates gj is a function of at most t variables, and we know that for all inputs
x ∈ S, we have gj(x) = 0 for all j ∈ [ℓ]. Since y looks identical to some string in S when
restricted to these t positions, all the gj will output 0 on y too. This forces Ci(y) = 0, but
this cannot happen since y ∈ C−1(1). Hence it could not have been the case that |S| > t2.

We now construct a t-limit for any S ⊆ N when |S| > t2. Let S ⊆ N be any set with
size |S| > t2 and let GS be its support graph. Note that since k = 2, GS is a bipartite graph
with simple edges rather than hyperedges, and every maxterm in S corresponds to an edge
in GS and vice versa. We claim at least one of the following is true for GS :

(i) There exists a matching of size t + 1 in GS .
(ii) There exists a vertex of degree at least t + 1 in GS .

Indeed this is a consequence of Kőnig’s Theorem (stated in Proposition 10): suppose the
size of a maximum matching is at most t, then the minimum vertex-cover has size at most
t. Since there are |S| many edges in GS , there must be a vertex v in the vertex cover with
degree at least |S|

t . Since |S| > t2, it must be that deg(v) > t which satisfies (ii). In both
the above cases, we construct a string y ∈ C−1(1) that is a t-limit for S.

Case (i): Consider the set S′ of maxterms corresponding to the edges in a maximum
matching of GS . Then S′ is a set of at least t + 1 pairwise co-disjoint maxterms. Then
y ≜ 1⃗ is a t-limit for S′. To see why, consider any set of t positions. By Lemma 16, at
each of these positions, at most one of the maxterms in S′ can be 0. Since there are t + 1
such maxterms and only t positions, there must be a maxterm where the value at all the
given positions is 1, thus looking identical to y.
Case (ii): Let the vertex set of GS be V = V1 ∪ V2. Without loss of generality, let the
vertex v with deg(v) > t be in V1. Let E be the edges that have v as one endpoint, and
let ME ⊆ S be the maxterms corresponding to the edges in E. Then by property (1) of
Lemma 15, the first tuple of vectors in all these maxterms is the same. Let A1 be the
first tuple of vectors. We construct the input y = (Y1, Y2) as follows: set Y1 ← A1, and
set Y2 ← 1⃗.



T. Choudhury and K. Sreenivasaiah 25:11

Since the string y was obtained by taking first tuple of a maxterm, and setting every
vector in the 2nd tuple to 1, it must be a 1-input.
To see that y is a t-limit, take any subset of indices T ⊆ [2nd] with |T | = t. We will
show that one of the maxterms in ME looks identical to y in these t positions. For every
position from [nd] (the 1st tuple of vectors), every maxterm in ME is identical to y since
Y1 = A1. So assume that all indices in T are from the range {nd + 1, . . . , 2nd}. By
construction, y is all-1s in this range of indices. Since edges in E have distinct endpoints
in V2, property (2) of Lemma 15 tells us that the second tuple of vectors in the maxterms
in T are pairwise co-disjoint. This is similar to case (i): we have |ME | ≥ t + 1 many
maxterms such that for any position in T , at most one of them is 0, and there are only t

positions in T . So by the pigeon-hole principle, there must be a maxterm in ME that has
1 in all positions from T , thus looking identical to y in these positions. ◀

Since 2-OVn,d is the negation of 2-Intn,d, the following is an immediate corollary of
Theorem 17.

▶ Corollary 18. For all d > 1, any OR ◦ AND ◦ OR circuit with bottom fan-in t computing
2-OVn,d requires top fan-in at least 2n2/t2.

▶ Remark 19. It is easy to see that the t-limit string y constructed in the proof of Theorem 17
is in fact an upper t-limit. Therefore the lower bound shown for 2-Intn,d works against a
slightly more general class of circuits – AND ◦ OR ◦ AND circuits that have each bottom
AND-gate seeing at most t positive literals. Analogously the lower bound for 2-OVn,d works
against OR ◦ AND ◦ OR circuits where each bottom gate has at most t negated inputs.

3.4 General case: k-Intn,d

We will need the following lemma on k-partite hypergraphs:

▶ Lemma 20. Let G be a k-partite hypergraph with m many hyperedges. Then for all t > 0
at least one of the following holds:

(i) There are more than t vertex-disjoint hyperedges in G.
(ii) There is a vertex u such that deg(u) >

⌊
m
kt

⌋
.

Proof. Let G be a k-partite hypergraph with m hyperedges. Let S be a largest set of
vertex-disjoint hyperedges in G. If |S| > t, then the lemma is true. Suppose |S| ≤ t. Let VS

be the set of vertices participating in the hyperedges in S. Since each hyperedge contains
exactly k many vertices, |VS | ≤ kt. Also, since S is a largest such set, each of the remaining
hyperedges must contain at least one vertex from VS . Therefore, by an averaging argument,
there is a vertex u ∈ VS that is part of at least m−|S|

|VS | many hyperedges outside S, and 1
hyperedge in S. Therefore, we have:

deg(u) ≥ m− |S|
|VS |

+ 1 ≥ m− t

kt
+ 1 = m

kt
− 1

k
+ 1 >

⌊m

kt

⌋
◀

We use Lemma 20 to show that if we start with enough hyperedges, then there is a subset of
them such that in each part, either all of them coincide, or they are all distinct.

▶ Lemma 21. Let k ≥ 2, and let G = (V1 ∪ · · · ∪ Vk, E) be a k-partite hypergraph with
|E| > k!tk

2 . Then there exists S ⊆ E with |S| > t such that for each i ∈ [k], exactly one of
the following holds:
1. There exists a vertex u ∈ Vi such that all hyperedges in S share the vertex u.
2. No two hyperedges in S share the same vertex in Vi.

STACS 2024
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Proof. Induction on k. Base case k = 2 is a consequence of Kőnig’s theorem (Proposition 10):
Since k = 2, G is just a bipartite graph. If there is a matching in G of size more than t,
then let S be the edges in such a matching. Clearly the edges in S are vertex-disjoint and
statement (2) holds. Else the maximum matching has size ≤ t. Then Proposition 10 implies
that the minimum vertex cover has size at most t. By an averaging argument, there must
exist a vertex u such that deg(u) > |E|/t > k!tk

2t = 2t2

2t = t. Define S to be the set of edges
that share u. Without loss of generality, let u ∈ V1. Then all edges in S must have distinct
vertices in V2. Therefore in V1, they all coincide, and in V2 they are all distinct.

Case k > 2. Apply Lemma 20 to G. If (i) holds, then we have a set S of more than t

vertex-disjoint hyperedges. This means for all i ∈ [k], statement (2) holds and we are done.
Suppose (ii) holds, then there is a vertex u such that deg(u) > ⌊m/kt⌋ = (k−1)! tk−1

2 . Let
S be the set of all hyperedges that contain vertex u. Then |S| = deg(u). Let z ∈ [k] be such
that u ∈ Vz.

We construct a (k − 1)-partite hypergraph G′ = (V ′, E′) by removing Vz, and the z’th
coordinate from each edge. More formally:

V ′ ≜ V1 ∪ · · · ∪ Vz−1 ∪ Vz+1, · · · ∪ Vk

E′ ≜ {(v1, . . . , vz−1, vz+1, . . . , vk) | (v1, . . . , vz−1, u, vz+1, vk) ∈ S}

(Informally, an edge e′ ∈ E′ is just an edge e ∈ S with its z’th coordinate removed.)
We define V ′

i = Vi for all i ̸= z as the k − 1 parts of V ′. Note that |E′| = |S|. This is
because ∀e1, e2 ∈ S such that e1 ̸= e2, the edges e1 and e2 share the vertex u in Vz. So there
must exist j ̸= z such that e1 and e2 use different vertices in Vj . Hence e′

1 ̸= e′
2. Further,

observe that for any i ̸= z, e′
1, e′

2 ∈ E′ share a vertex in V ′
i if and only if e1 and e2 share the

same vertex in Vi.
Now G′ is a (k−1)-partite hypergraph with |E′| = |S| > (k−1)! tk−1

2 many hyperedges. By
induction on G′, there must exist a set S′ ⊆ E′ with |S′| > t such that for each i ̸= z, either
all hyperedges in S′ share a vertex in V ′

i , or they use distinct vertices in V ′
i . We already

know that since S′ ⊆ S, all edges in S′ share the same vertex in Vz, namely u. Hence for all
i ∈ [k], the edges in S′ satisfy (1) or (2). ◀

▶ Remark 22. The statement of Lemma 21 can be seen as a sunflower lemma. Take any
vertex u in the graph G that participates in at least one hyperedge from S. Then exactly
one of the following holds: (i) The vertex u participates in exactly one hyperedge in S, or
(ii) The vertex u participates in all hyperedges in S. The standard sunflower lemma would
require more than k! tk hyperedges, while our statement needs half of that.

We now describe how to construct an upper t-limit in the general case.

▶ Lemma 23. LetM⊆ Nn,k,d
P be any set of permutation-maxterms of k-Intn,d for any k ≥ 2

and d ≥ k. If |M| > k! tk

2 , then there is a string y ∈ k-Int−1
n,d(1) that is an upper t-limit for

M.

Proof. Let GM = (V, E) be the k-partite support graph of M (defined in section 3.2), and
let V = V1 ∪ · · · ∪ Vk. By Lemma 21, there exists a set of hyperedges S ⊆ E with |S| ≥ t + 1
such that for each i ∈ [k], either all edges in S share the same vertex in Vi, or no two edges
share a vertex of Vi. Let MS be the set of maxterms corresponding to S.

Let B ⊆ [k] be the set of all indices i ∈ [k] such that all edges in S share the same vertex
in Vi. Then B contains indices of parts where the edges in S use distinct vertices. (Observe
that B is non-empty because otherwise all maxterms would share all vertices, and hence
would be one and the same. But we know that |S| ≥ t + 1 > 1, so this cannot happen.) By
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property (1) of Lemma 15, this implies that for each i ∈ B, the i’th tuple of vectors in the
maxterms in MS are identical. For each i ∈ B, denote the i’th tuple of vectors in all these
maxterms as Ai.

We construct the string y = (Y1, . . . , Yk) as follows:

∀i ∈ B, set Yi ← Ai

∀j ∈ B, set Yj ← 1⃗

y is a 1-input of k-Intn,d

Observe that y can also be obtained by starting with any maxterm N = (N1, . . . , Nk) from
S, and setting to 1s all vectors in Nj for all j ∈ B. Since N is a maxterm (maximal 0-input),
the string y must be a 1-input. This also means that the string y is point-wise greater than
or equal to any maxterm in S.

y is a t-limit

Let T ⊆ [nkd] with |T | = t be a set of any t positions. For all i ∈ B, the string y is identical
to every maxterm in MS . So assume that T only has positions that fall into tuples indexed
by B. By property (2) of Lemma 15, the maxterms in MS are pairwise co-disjoint on all
such positions. i.e., for any position ℓ ∈ T , at most one maxterm in MS can be 0. So we
have t positions, and |MS | = |S| ≥ t + 1 maxterms. By pigeon-hole principle, there exists a
maxterm in MS that is 1 on all these t positions, thus looking identical to y.

Since y is point-wise greater or equal to every maxterm in S, we conclude that indeed y

is an upper t-limit for M. ◀

▶ Lemma 24. Let C be any OR ◦ AND circuit with bottom positive fan-in t computing a
function f on n variables. Let y be any string that is an upper t-limit for f−1(0). Then
C(y) = 0.

Proof. Let g be any bottom AND-gate of C. Let P ⊆ [n] (Q ⊆ [n]) be the variables whose
positive literals (negated literals resp.) are input to g. Then |P | ≤ t by assumption.

Since y is an upper t-limit for g−1(0), it must be that for every set T of t positions there
exists a string x(T ) ∈ g−1(0) such that y|T = x(T )|T . In particular, this holds for the set P .
So in all positions from P , the gate g sees no difference between y and x(T ).

The gate g sees negative literals of all variables from Q. Since y is an upper t-limit, we
have x(T )|Q ≤ y|Q. Hence for all i ∈ Q such that ¬xi = 0, we also have ¬yi = 0. Hence
g(y) ≤ g(x(T )) = 0 as x(T ) ∈ g−1(0). ◀

▶ Theorem 25. For all k, d such that k ≤ d, any AND ◦ OR ◦ AND circuit with bottom
positive fan-in t computing k-Intn,d requires top fan-in Ω

((
n
t

)k
)

.

Proof. Let C = C1 ∧ · · · ∧ Cs be an AND ◦OR ◦ AND circuit with bottom positive fan-in t,
computing k-Intn,d. Consider the set N = Nn,k,d

P of all permutation-maxterms of k-Intn,d

with respect to any ordered permutation P of [d] into k non-empty parts (see Definition 11,
and Remark 12). Since C outputs 0 on all inputs from N , there must be some OR ◦ ANDt

subcircuit Ci that correctly outputs 0 on at least 1/s fraction of inputs in N . We will show
that |C−1

i (0) ∩N| ≤ k! tk/2, and the theorem follows since:

k! nk

s
= 1

s
|N | ≤ |C−1

i (0) ∩N| ≤ k! tk

2
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Let M = C−1
i (0) ∩ N . Suppose, for the sake of contradiction, |M| > k! tk/2. Since

M⊆ N , we apply Lemma 23 to conclude that there exists a string y ∈ k-Int−1
n,d(1) that is

an upper t-limit y for M. Then by Lemma 24, it must be that C(y) = 0. But this is a
contradiction since y ∈ k-Int−1

n,d(1). ◀

Since k-OVn,d is the negation of k-Intn,d, the following is an immediate corollary of The-
orem 25.

▶ Theorem 1. For all k ≤ d, any OR ◦ AND ◦ OR circuit with bottom fan-in t computing
k-OVn,d requires top fan-in Ω

(
( n

t )k
)
.

4 OR ◦ AND ◦ OR circuits

In this section, we show that any OR ◦AND ◦OR circuit requires exponential size to compute
2-Intn,d for any d ∈ Ω(n2). This result is a consequence of a known lower bound for the
iterated intersection function defined as follows:

▶ Definition 26 (Iterated Intersection). Let A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn) be
tuples of vectors from {0, 1}d,

Sn,d(A, B) = 1 ⇐⇒ ∀i ∈ [n] we have ai ∩ bi ̸= ∅

Observe that Sn,d(A, B) differs from 2-Intn,d(A, B) in that the intersection between two
vectors ai and bj when i ̸= j does not affect the value of Sn,d at all. Recall the definition of
2-Intn,d(A, B):

2-Intn,d(A, B) = 1 ⇐⇒ ∀i, j ∈ [n] we have ai ∩ bj ̸= ∅

The function Sn,d can also be defined using an AND ◦ OR ◦ AND2 circuit of size nd:

Sn,d(A, B) =
n∧

i=1

d∨
j=1

ai[j] ∧ bi[j].

The result by Håstad, Jukna, Pudlák in [14] shows the following lower bound for computing
Sn,d by OR ◦ AND ◦ OR circuits:

▶ Proposition 27 ([14]). For all ℓ ≤ nd, any OR ◦AND ◦OR circuit computing Sn,d requires
size min{2ℓ, (d/ℓ)n}.

In particular, Proposition 27 shows that S√
n,

√
n requires 2Ω(

√
n) size OR ◦ AND ◦ OR

circuits. This can be used to show lower bounds for 2-Intn,d:

▶ Theorem 28. Let C be an OR ◦ AND ◦ OR circuit computing 2-Intn,d. Then for all ℓ ≤ d,
size of C is at least min{2ℓ,

(
d

nℓ

)n}.

Proof. We show this by reducing Sn,⌊d/n⌋ to 2-Intn,d via projections. Let d′ = ⌊d/n⌋. Take
any instance A = (a1, . . . , an) and B = (b1, . . . , bn) with ai, bi ∈ {0, 1}d′ of Sn,d′ . We
create two tuples of d-dimensional vectors A′ = (a′

1, . . . , a′
n) and B′ = (b′

1, . . . , b′
n) that serve

as an instance of 2-Intn,d as follows – for all i ∈ [n], define a′
i = 1(i−1)d′

ai 1(n−i)d′ and
b′

i = 0(i−1)d′
bi 0(n−i)d′ . Note that the dimension of each ai and bi is nd′ ≤ d.

Observe that ai and bi are disjoint if and only if a′
i and b′

i are disjoint. So if (A, B) was a
0-instance of Sn,d′ , then (A′, B′) is a 0-instance of 2-Intn,d.
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Further, if bj ̸= 0⃗ for some j ∈ [n], then for all i ̸= j, we have a′
i ∩ b′

j ̸= ∅. To see this,
observe that if bj ̸= 0⃗, then there is some position p ∈ [(j − 1)d′ + 1, jd′] such that b′

j [p] = 1.
But by construction, the vector a′

i is 1 everywhere outside the interval [(i − 1)d′ + 1, id′].
Since i ̸= j, the vector a′

i must be 1 at position p.
If (A, B) was a 1-instance of Sn,d′ , then all ai intersect bi. This means all bi are non-zero

vectors. Thus for all i, j ∈ [n], a′
i ∩ b′

j ̸= ∅.
The above reduction shows that C can be used to compute Sn,⌊d/n⌋. Applying Proposi-

tion 27 to C tells us that C must have size at least min{2ℓ,
(

d
nℓ

)n} for all ℓ ≤ d. ◀

Our reduction in proof of Theorem 28 inflates the dimension of vectors by a factor
of n making the obtained bound trivial when d ∈ O(n). However, we can still conclude
an exponential lower bound by substituting ℓ = d/2n that gives us a lower bound of
min{2d/2n, 2n} ∈ 2Ω(n) when d ∈ Ω(n2).

Since 2-OVn,d is the negation of 2-Intn,d, the following is an immediate corollary.

▶ Theorem 3. For all ℓ ≤ d, any AND ◦ OR ◦ AND circuit computing 2-OVn,d requires size
s ∈ Ω(min{2ℓ,

(
d

nℓ

)n}). In particular, for ℓ = d/2n and d ∈ Ω(n2), s ∈ Ω(2n).

5 A General Upper Bound

In this section, we describe a more general construction of a depth-3 circuit to compute
k-Intn,d that allows a trade-off between the top fan-in and bottom fan-in. We recall the
construction given by equation 3 here:

k-Intn,d(A1, . . . , Ak) =
∧

i1,...,ik∈[n]

∨
j∈[d]

(ai1 [j] ∧ · · · ∧ aik
[j]) (3)

We generalize this construction to obtain the following trade-off between top and bottom
fan-in:

▶ Proposition 29. For any integer 1 ≤ t ≤ nk, the function k-Intn,d can be computed by
a monotone depth-3 AND ◦ OR ◦ AND circuit with top fan-in ⌈nk

t ⌉, middle fan-in dt, and
bottom fan-in at most kt.

Proof. Let C be the circuit described in equation 3. Observe that each OR ◦ AND subcircuit
of C is checking whether a particular choice ai1 ∈ A1, ai2 ∈ A2, . . . , aik

∈ Ak of vectors are
intersecting or not. Since there are nk many such choices, the top fan-in in C is nk. Checking
if a particular choice of k vectors intersects at some fixed coordinate uses an AND of fan-in
k, and hence the bottom fan-in in C is k.

To obtain the trade-off in the theorem statement, the idea is to construct an AND◦OR◦AND
circuit where each OR◦AND subcircuit checks whether t many such choices of vectors intersect.
Each choice can be written as a k-tuple of vectors (ai1 , . . . , aik

). For convenience, let’s assume
that t divides nk. Let T = {T1, T2, . . . , Tnk/t} be a partition of the set of nk possible k-tuples
of vectors into nk/t parts with each Tl containing exactly t many k-tuples. For the vectors in
any particular k-tuple in Tl to have non-empty intersection, there must exist a position i ∈ [d]
where all the k vectors in the k-tuple are 1. Hence to check if each of the k-tuples of vectors
in Tl have non-zero intersection, it suffices to check if there exist t positions i1, i2, . . . , it ∈ [d]
such that the j’th k-tuple of vectors intersect in ij .
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Let Aj
l [i] be the AND of the bits in the ith position of the vectors in the jth tuple in

Tl. This is an AND gate with fan-in k because there are k many vectors in each tuple. We
construct the following circuit where the ℓ’th OR ◦ AND subcircuit checks if each k-tuple of
vectors in Tℓ have non-zero intersection:

Gt =
∧

l∈{1,..., nk

t }

∨
i1,i2,...it∈[d]

(A1
l [i1] ∧A2

l [i2] ∧ . . . At
l [it])

Observe that Gt has top fan-in as nk/t, middle fan-in as dt, and bottom fan-in kt as
desired. ◀
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