
Nonnegativity Problems for Matrix Semigroups
Julian D’Costa #

Department of Computer Science, University of Oxford, UK

Joël Ouaknine #

Max Planck Institute for Software Systems, Saarland Informatics Campus, Saarbrücken, Germany

James Worrell #

Department of Computer Science, University of Oxford, UK

Abstract
The matrix semigroup membership problem asks, given square matrices M, M1, . . . , Mk of the same
dimension, whether M lies in the semigroup generated by M1, . . . , Mk. It is classical that this
problem is undecidable in general, but decidable in case M1, . . . , Mk commute. In this paper we
consider the problem of whether, given M1, . . . , Mk, the semigroup generated by M1, . . . , Mk contains
a non-negative matrix. We show that in case M1, . . . , Mk commute, this problem is decidable subject
to Schanuel’s Conjecture. We show also that the problem is undecidable if the commutativity
assumption is dropped. A key lemma in our decidability proof is a procedure to determine, given a
matrix M , whether the sequence of matrices (Mn)∞

n=0 is ultimately nonnegative. This answers a
problem posed by S. Akshay [1]. The latter result is in stark contrast to the notorious fact that it is
not known how to determine, for any specific matrix index (i, j), whether the sequence (Mn)i,j is
ultimately nonnegative. Indeed the latter is equivalent to the Ultimate Positivity Problem for linear
recurrence sequences, a longstanding open problem.
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1 Introduction

The Membership Problem for finitely generated matrix semigroups asks, given square matrices
M,M1, . . . , Mk of the same dimension and with rational entries, whether M lies in the
semigroup generated by M1, . . . , Mk. The problem was shown to be undecidable by Markov
in the 1940s [15], thereby becoming one of the first instances of a natural undecidable
mathematical problem. The problem, however, becomes decidable under the assumption
that the matrices M1, . . . , Mk commute [2].

There are many variants of the Membership Problem. In the Mortality Problem one
asks whether the zero matrix lies in a finitely generated matrix semigroup. This problem
is undecidable already for 3 × 3 matrices [21]. Meanwhile, the Identity Problem asks to
determine whether the identity matrix lies in a given finitely generated matrix semigroup.
The latter problem is undecidable in general but decidable for certain nilpotent and low-order
matrix groups [3, 9, 10, 12].
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27:2 Nonnegativity Problems for Matrix Semigroups

The present paper is concerned with the Non-negative Membership Problem, which asks
to determine whether a given finitely generated matrix semigroup contains a non-negative
matrix, i.e., a matrix all of whose entries are non-negative. We show that this problem
is undecidable in general but is decidable in the commutative case subject to Schanuel’s
Conjecture, a well-known unifying conjecture in transcendence theory. Our reliance on
Schanuel’s Conjecture arises because we reduce the commutative case of the Non-negative
Membership Problem to the decision problem for the first-order theory of real-closed fields
with exponential. As shown by Macintyre and Wilkie [14], the latter theory is decidable if
one assumes Schanuel’s Conjecture for the real exponential.

A key lemma in our main decidability result involves determining, for a given matrix M ,
whether for all but finitely many n ∈ N the matrix power Mn is non-negative. In such a case
we say that M is eventually non-negative. We give an effective characterisation of eventually
non-negative matrices, answering a question posed by S. Akshay [1]. The characterisation
is relatively straightforward and relies on classical results about rational sequences over
the semi-ring of non-negative rational numbers. We note that the problem of determining
whether, for some fixed index (i, j), the sequence of scalars ⟨(Mn)i,j : n ∈ N⟩ is ultimately
non-negative is equivalent to the Ultimate Positivity Problem for linear recurrence sequences,
decidability of which is a longstanding open problem [20].

It is immediate that a matrix semigroup contains a non-negative matrix if and only if
it contains an eventually non-negative matrix. Using a symbolic version of our criterion
characterizing eventually non-negative matrices, we reduce the Non-negative Membership
Problem to a version of integer programming with certain transcendental constants (namely
logarithms of algebraic numbers). In turn we reduce the solution of such integer programs to
the decision problem for the first-order theory of real closed fields with exponential.

A simpler variant of our main result concerns the problem of deciding whether a finitely
generated matrix semigroup contains a positive matrix, i.e., a matrix all of whose entries are
strictly positive. Here, to show decidability, we rely on a known characterisation of eventually
positive matrices, due to Noutsos [18]. While we still need to invoke Schanuel’s Conjecture
in this case, we do so through the use of a procedure of Richardson [22] for deciding equality
of elementary numbers (which is much more straightforward than the result of Macintyre
and Wilkie mentioned above).

As far as we are aware, the Non-negative Membership Problem has not been directly
addressed before. We note however that decidability of the version of this problem for
sub-semigroups of the group GL(2,Z) of 2 × 2 invertible integer matrices follows directly
from [7, Theorem 13].

2 Mathematical Background

Here we state some number-theoretic results that we will need in the sequel.
First stated in the 1960s, Schanuel’s conjecture is a unifying conjecture in transcendental

number theory that generalizes many of the classical results in the field.

▶ Conjecture 1 (Schanuel’s conjecture [13]). If α1, . . . , αk ∈ C are rationally linearly indepen-
dent, then some k-element subset of {α1, . . . , αk, eα1 , . . . , eαk } is algebraically independent.

An elementary point is an element of Cn that arises as an isolated, nonsingular solu-
tion of n equations in n variables x1, . . . , xn, with each equation being either of the form
P (x1, . . . , xn) = 0, where P ∈ Q[x1, . . . , xn] is a polynomial with rational coefficients, or of
the form xj − exi = 0 for i, j ∈ {1, . . . , n}. An elementary number is the polynomial image
of an elementary point.
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Roughly speaking, an elementary number is obtained by starting with the rationals and
applying addition, subtraction, multiplication, division, exponentiation, and taking natural
logarithms. Elementary numbers may be transcendental and, unsurprisingly, it is non-trivial
to determine whether an elementary number is equal to zero.

▶ Proposition 2 (Richardson [22]). The problem of determining zeroness of an elementary
number is semi-decidable. The problem is moreover decidable if one assumes Schanuel’s
conjecture.

We will also need the following theorem due to Masser.

▶ Theorem 3 (Multiplicative relations among algebraic numbers [16])). Let m be fixed, and let
λ1, . . . , λm be complex algebraic numbers. Consider the free abelian group L under addition
given by

L = {(v1, . . . , vm) ∈ Zm : λv1
1 . . . λvm

m = 1}.

Then L has a basis {w1, . . . , wp} ⊆ Zm (with p ≤ m), where the entries of each of the wj are
all polynomially bounded in the sum of the heights and degrees of the minimal polynomials of
λ1, . . . , λm.

3 Linear Recurrence Sequences

First, we recall some basic terminology and results about linear recurrence sequences.
A sequence u = (un)∞

n=0 of elements of a semiring K is called K-rational if there exists
d ≥ 1, v, w ∈ Kd and M ∈ Kd×d such that un = v⊤Mnw for all n. When K is a field, a
sequence is K-rational if and only if it satisfies a linear recurrence relation

un = a1un−1 + · · · adun−d (n ≥ d)

where a1, . . . , ad ∈ K. In this case we also call u a linear recurrence sequence (LRS).
With the unique minimal order recurrence satisfied by u we associate the characteristic

polynomial

P (X) = Xd − a1Xd−1 − · · · − ad .

The roots of P (X) are called the characteristic roots of u. Writing λ1, . . . , λm for the distinct
characteristic roots, in non-increasing order of absolute value, the sequence u admits a
closed-form exponential-polynomial representation:

un =
m∑

i=1
Pi(n)λn

i ,

where the Pi are univariate polynomials whose coefficients are algebraic over K. We say that
u is non-degenerate if no quotient of two distinct characteristic roots is a root of unity. We
also say that a matrix M ∈ Qd×d is non-degenerate if no quotient of two distinct eigenvalues
is a root of unity.

In this paper we exclusively consider sequences with rational entries. We say that an
LRS u is dominated if λ1 is the unique characteristic root of maximum modulus. Note that
in this case λ1 is necessarily real. We have the following three straightforward propositions
concerning dominated LRS.

STACS 2024
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▶ Proposition 4. If an LRS u is dominated then {n ∈ N : un ≥ 0} is an effectively computable
ultimately periodic set.

Proof. Consider the closed form representation un =
∑m

i=1 Pi(n)λn
i with unique dominant

root λ1, necessarily real. Suppose that P1 has degree k and leading coefficient a. Then we
have un

nk|λ1|n = a(λ1/ |λ1|)n + o(1). Hence for sufficiently large n the sign of un is determined
by the sign of a and the parity of n. ◀

▶ Proposition 5. If u is a non-degenerate LRS such that some subsequence (ucn+d)∞
n=0 is

dominated, where c is a positive integer and d ∈ {0, 1 . . . , c − 1}, then u itself is dominated.

Proof. The sequence u admits a closed-form representation un =
∑m

i=1 Pi(n)λn
i , where

λ1, . . . , λm are the characteristic roots and P1, . . . , Pm are polynomials. Then

ucn+d =
m∑

i=1
Pi(cn + d)λcn+d

i

=
m∑

i=1
Qi(n)(λc

i )n

where Qi(n) := Pi(cn + d)λd
i for i ∈ {1, . . . , m}.

Note that the polynomials Q1, . . . , Qm are non-zero and, by non-degeneracy of u, the
numbers λc

1, . . . , λc
m are pairwise distinct. Since the sequence (ucn+d)∞

n=0 is dominated, we
have that λc

1 is its unique characteristic root of maximum modulus. But then λ1 is the
unique characteristic root of u. ◀

▶ Proposition 6. An LRS that is both non-degenerate and rational over the semiring Q+ of
nonnegative rational numbers is dominated.

Proof. Berstel [4] showed that if a sequence u is Q+-rational then its characteristic roots
of maximum modulus all have the form ρω for some non-negative real number ρ and root
of unity ω. Since u is non-degenerate it follows that it has a unique dominant root. For
an exposition, see [5, Chap. 8, Thm 1.1]. We provide an alternate proof based on the
Perron-Frobenius theorem in Appendix B. ◀

▶ Theorem 7. Given M ∈ Qd×d the set S := {n ∈ N : Mn ≥ 0} is ultimately periodic and
effectively computable.

Proof. Recall that for some (effectively computable) strictly positive integer L the matrix
ML is non-degenerate. It will suffice to show that for each l ∈ {0, . . . , L − 1} we can
compute the set Sl := {n ∈ S : n ≡ l mod L}. Our procedure to do this is as follows. First,
check for every pair of indices i, j ∈ {1, . . . , d}, whether the sequence (u(i,j)

n )∞
n=0 given by

u
(i,j)
n = (MLn+l)i,j , is dominated. If yes then by Proposition 4 we can compute Sl as the

intersection over all pairs (i, j) of the sets {n ∈ N : u
(i,j)
n ≥ 0}. If no, then we claim that Sl

is empty.
Indeed, suppose n0 ∈ Sl. Then for each pair of indices i, j ∈ {1, . . . , d}, the LRS

(v(i,j)
n )∞

n=0 defined by v
(i,j)
n = (Mn0(1+Ln))i,j = e⊤

i Mn0(MLn0)ne⊤
j is both non-degenerate

and Q+-rational. By Proposition 6 each sequence (v(i,j)
n )∞

n=0 is dominated. Moreover, since
(v(i,j)

n )∞
n=0 is a subsequence of (u(i,j)

n )∞
n=0, the latter is also dominated by Proposition 5. This

proves (the contrapositive of) our claim. ◀
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▶ Remark 8. We can extract from the proof of Theorem 7 an effective characterisation of
those matrices M such that Mn ≥ 0 for some positive integer n. Let L be the least positive
integer such that ML is non-degenerate. Then some positive power of M is a non-negative
matrix iff some positive power of ML is non-negative iff for all indices (i, j) the sequence
(u(i,j)

n )∞
n=0 defined by u

(i,j)
n := (MLn)i,j is dominated and not ultimately negative.

4 The Positive Membership Problem

4.1 Eventually Positive Matrices
Recall that a positive matrix is one whose entries are all strictly positive. In this section we
show decidability of the following problem.

▶ Problem 9 (Positive Membership for Commutative Semigroup). Given a set of commuting
d × d matrices {A1, . . . , Ak} with rational entries, decide whether the generated semigroup
contains a positive matrix.

We approach this problem through the notion of eventually positive matrix.

▶ Definition 10 (Eventually Positive Matrix). We call a matrix M eventually positive if there
exists a natural number n0 such that for all n ≥ n0, the matrix Mn is positive.

We will need the following definition and result, adapted from Noutsos [18], which
characterizes eventual positivity of a matrix by proving a converse of the Perron-Frobenius
theorem.

▶ Definition 11 (Strong Perron-Frobenius property). A matrix A ∈ Rn×n has the strong
Perron-Frobenius property if there exists an eigenvalue λ with the following properties:
1. λ is real and positive,
2. λ is the unique dominant eigenvalue,
3. λ is simple,
4. λ has a corresponding eigenvector, all of whose entries are positive.

We now have:

▶ Theorem 12 (Characterizing eventual positivity [18]). A matrix A is eventually positive iff
A and A⊤ both have the strong Perron-Frobenius property.

Clearly a semigroup contains a positive matrix if and only if it contains an eventually
positive matrix. By the theorem above, this holds if and only if the semigroup contains a
matrix A such that both A and A⊤ have the strong Perron-Frobenius property.

4.2 Reduction to Integer Programming
We consider a direct-sum decomposition of Cd induced by a collection of commuting matrices
A1, . . . , Ak ∈ Cd×d. Let σ(Ai) denote the set of eigenvalues of Ai and consider a tuple of
eigenvalues

λ = (λ1, . . . , λk) ∈ σ(A1) × · · · × σ(Ak) .

Recall that ker(Ai − λiI)d is the generalized eigenspace of Ai corresponding to λi for
i ∈ {1, . . . , k}. We say that the tuple λ is a joint eigenvalue of A1, . . . , Ak if

Vλ :=
k⋂

i=1
ker(Ai − λiI)d

STACS 2024
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is non null. Intuitively, joint eigenvalues are tuples of eigenvalues of the Ai whose respective
generalized eigenspaces have non-trivial intersection. The set of joint eigenvalues is called the
joint spectrum of A1, . . . , Ak, denoted Σ. Using the fact that commuting matrices preserve
each other’s generalized eigenspaces, it can be shown (see, e.g., [19, Theorem 2.4]) that

Cd = ⊕λ∈ΣVλ ,

and that, for all i ∈ {1, . . . , k} and λ ∈ Σ, Ai preserves Vλ, and the restriction of Ai to Vλ

has spectrum {λi}. The commuting matrices A⊤
1 , . . . , A⊤

k induce an analogous decomposition
Cd = ⊕λ∈ΣWλ, where Wλ := ∩k

i=1 ker(A⊤
i − λiI).

Consider a matrix A := Am1 · · · Amk

k for m1, . . . , mk ∈ N. Given λ = (λ1, . . . , λk) ∈ Σ,
by the Spectral Mapping Theorem the restriction of A to the subspace Vλ has a single
eigenvalue λm1

1 · · · λmk

k . Thus all non-zero vectors in Vλ are generalized eigenvectors of A

for this eigenvalue. It follows that if A is eventually positive, then Conditions 1 and 2 of
Theorem 12 imply that there exists λ ∈ Σ such that λm1

1 · · · λmk

k is real positive and is the
unique dominant eigenvalue of A. Meanwhile, by Conditions 3 and 4 we can furthermore
choose λ such that the spaces Vλ and Wλ are both one dimensional and contain a positive
vector. In such a situation we call λ a dominant joint eigenvalue for A, Vλ a positive right
eigenspace, and Wλ a positive left eigenspace.

Conversely, suppose that there exist m1, . . . , mk ∈ N and λ ∈ Σ such that λ is a
dominant joint eigenvalue of A := Am1

1 · · · Amk

k , and Vλ and Wλ are positive right and left
joint eigenspaces respectively. Then Theorem 12 implies that A is eventually positive.

In summary, the semigroup generated by A1, . . . , Ak contains a positive matrix if and
only if there exists λ ∈ Σ, such that Vλ and Wλ are positive joint eigenspaces, and there are
m1, . . . , md ∈ N with
1.
∏k

i=1 λmi
i > 0,

2. ∀µ ∈ Σ \ {λ},
∏k

i=1 λmi
i >

∣∣∣∏k
i=1 µmi

i

∣∣∣.
It is clear that the Positive Membership Problem reduces to the restricted version of the

problem in which one asks for the existence of a positive matrix formed by a product in which
all generators of the semigroup are used at least once. Thus we can assume that the desired
exponents m1, . . . , mk in Conditions 1 and 2 are all strictly positive. In this situation we may
rewrite Condition 1 as

∑k
i=1 mi arg(λi) = 0 mod 2π and Condition 2 as either µ1 · · · µk = 0

or
∑k

i=1 mi log |µi/λi| < 0 for all µ ∈ Σ \ {λ}. Let c = (arg(λ1), . . . , arg(λk)) ∈ Rk and
let A be the (|Σ| − 1 × k)-matrix defined by writing, for all i ∈ {1, . . . , k} µ ∈ Σ \ {λ},
aµ,i := log |µi/λi| if µ1 · · · µk ≠ 0 and aµ,i = −1 if µ1 · · · µk = 0. Then the two conditions
above are equivalent to the existence of a solution x ∈ Nk of the following integer program:

(c⊤x = 0 mod 2π) ∧ Ax < 0 .

Note that by incorporating positivity constraints −xi < 0 in A we can assume without
loss of generality that x ranges over Zk. We now show that the satisfiability of such an
integer program is decidable, subject to Schanuel’s conjecture.

4.3 Integer Programming with Logs of Algebraic Numbers
▶ Problem 13 (IP-log). An instance of the IP-log problem consists of a matrix A ∈ Rm×n

whose entries are sums of logarithms of non-zero real algebraic numbers and a vector c ∈ Rn

whose entries are arguments of non-zero algebraic numbers. The problem asks to determine
whether there exists a vector x ∈ Zn such that c⊤x = 0 mod 2π and Ax < 0.



J. D’Costa, J. Ouaknine, and J. Worrell 27:7

Let us start by observing that one can eliminate the equation in the IP-log problem by an
effective linear change of variables. Indeed, exponentiation turns the linear relation c⊤x = 0
mod 2π into a multiplicative relation among algebraic numbers. We can then use Theorem 3
to find a basis {v1, . . . , vl} ⊆ Zn of the group of integer solutions of the equation c⊤x = 0
mod 2π. Let B ∈ Zn×l be the matrix that has these basis vectors as columns. Then c⊤x = 0
mod 2π iff x = By for some integer vector y. Hence the instance of IP-log has a solution iff
there exists a vector y ∈ Zl such that ABy < 0. In other words, we have reduced the initial
instance of IP-log to another instance with a trivial linear constraint.

▶ Theorem 14. The strict homogenous IP-log problem is decidable, assuming Schanuel’s
conjecture.

Proof. An instance of the strict homogenous IP-log problem asks to determine the truth of
the sentence:

∃x ∈ Zn : (c⊤x = 0 mod 2π) ∧ Ax < 0 .

As described above, we may assume without loss of generality that the equality constraint is
trivial (i.e., c = 0). It thus suffices to determine whether the system of inequalities Ax < 0
admits a solution x ∈ Zn. But, by scaling, this system of inequalities has a solution in Zn iff
it has a solution in Qn. In turn, by strictness of the constraints, there is a solution in Qn iff
there is a solution in Rn. We are thus left with the task of determining whether there exists
x ∈ Rn such that Ax < 0. Here we can apply Fourier-Motzkin elimination [8] (that is to say,
quantifier elimination in linear real arithmetic).

Recall that that Fourier-Motzkin elimination solves a system of linear inequalities by
eliminating the variables sequentially until one obtains an equisatisfiable variable-free system
of inequalites between constants. In the case at hand these constants will be rational
expressions in a fixed number of logarithms of real algebraic numbers. As such, they are
elementary numbers and so, using Richardson’s algorithm (Proposition 2), we can determine
which coefficients are zero. For a coefficient which is not zero, we need merely compute it to
sufficient precision to determine its sign. ◀

The following example illustrates the main points of the argument above: Let ω = e2πi/3

be a primitive cube root of unity and let λ1, λ2, λ3, λ4 be real positive algebraic numbers.
Consider the following system of inequations and an equation:

x1 arg(ω) + x2 arg(ω2) = 0 mod 2π

x1 log(λ1) + x2 log(λ2) < 0
x1 log(λ3) + x2 log(λ4) < 0

Clearly the equation above is satisfied when x1 = 3y1 + 2y2 and x2 = 3y1 − y2 for some
y1, y2 ∈ Z. Thus we eliminate the equation and obtain

(3y1 + 2y2) log λ1 + (3y1 − y2) log λ2 < 0
(3y1 + 2y2) log λ3 + (3y1 − y2) log λ4 < 0 ,

which is equivalent to

y1 log(λ3
1λ3

2) + y2 log(λ2
1/λ2) < 0

y1 log(λ3
3λ3

4) + y2 log(λ2
3/λ4) < 0 .

STACS 2024



27:8 Nonnegativity Problems for Matrix Semigroups

Assuming λ1λ2 > 1 > λ3λ4 we can isolate y1 by dividing out the coefficients (with known
signs) to get the following lower and upper bound on y1:

y1 < −y2
log(λ2

1/λ2)
log(λ3

1λ3
2) ∧ y1 > −y2

log(λ2
3/λ4)

log(λ3
3λ3

4) .

Evidently the system above has a solution iff

−y2
log(λ2

3/λ4)
log(λ3

3λ3
4) < −y2

log(λ2
1/λ2)

log(λ3
1λ3

2) ,

i.e., iff

log(λ2
1/λ2)

log(λ3
1λ3

2) <
log(λ2

3/λ4)
log(λ3

3λ3
4) .

The truth of the latter inequality can be checked by first using Richardson’s algorithm to
verify that the left-hand and right-hand expressions are unequal and then calculating to
sufficient precision to determine which of the two is greater. (In this case existence of a
solution was equivalent to the matrix A having non-zero determinant, but this will not hold
for general systems with more constraints.)

4.4 Algorithm
In summary, we have the following algorithm for the positive membership problem in the
commutative case:

INPUT: A set of commuting rational matrices {A1, . . . , Ak}.

1. Find all joint eigenvalues λ ∈ Σ for which both the corresponding right eigenspace Vλ

and the left eigenspace Wλ are one-dimensional and contain a positive vector. This can
be done, e.g., using a decision procedure for the theory of real-closed fields.

2. For each joint eigenvalue λ identified in Step 1, compute the corresponding IP-log problem
as in Section 4.2 to see if λ is dominant. If the IP-log problem is satisfiable then output
“YES” and halt.

3. Output “NO”.

We conclude:

▶ Theorem 15. The positive membership problem is decidable for commutative semigroups,
assuming Schanuel’s conjecture is true.

5 The Non-negative Membership Problem for Commutative
Semigroups

We now combine the ideas in Sections 3 and 4 to solve the problem of deciding whether a
semigroup of commuting matrices contains a non-negative matrix. For ease of exposition we
will assume that the matrices are simultaneously diagonalizable. The general commuting
case involves more complicated algebra and is proven in Appendix A.

▶ Problem 16 (Non-negative Matrix in Commutative Simultaneously Diagonalizable Semigroup).
Given a set of commuting simultaneously diagonalizable d × d matrices {A1, . . . , Ak} with
rational entries, decide whether the semigroup generated by multiplying these matrices together
contains a matrix with all its entries greater than or equal to zero.
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First, we refine our notion of dominated recurrences.

▶ Definition 17 (Positively dominated by p). Let u = (un)∞
n=0 be a linear recurrence sequence

which is non-degenerate and does not have any polynomial terms in its exponential-polynomial
form. Then u =

∑d
l=1 clλ

n
l for complex numbers λ1, . . . , λd and coefficients cl. We say u is

positively dominated by term p (here p (for positive) refers to the index) if
1. cp > 0,

2. λp > 0,

3. ∀l ̸= p, |λp| > |λl|.
Call this predicate PDp(u).

Given a single matrix M , we consider the d2 recurrences uij defined by (uij)n := e⊤
i Mnej .

We have shown in Section 3 that M being eventually non-negative is equivalent to the
decidable condition

∀i∀j(uij is ultimately zero ∨ ∃p PDp(uij)).

We now show a similar construction for multiple matrices. Let A1, . . . , Ak ∈ Qd×d be
a set of commuting simultaneously diagonalizable matrices. The idea is to search for an
eventually non-negative matrix Am1

1 . . . Amk

k .
Let m denote the tuple (m1, . . . , mk). Define the integer parameterized matrix entry

recurrence uij(m) by [uij(m)]n := e⊤
i [Am1

1 . . . Amk

k ]nej .
The existence of an eventually non-negative matrix (and thus, a non-negative matrix) in

the semigroup is equivalent to the decidable condition

ENN := ∃m ∀i∀j(uij(m) is ultimately zero ∨ ∃p PDp(uij(m))).

Let S be a matrix that simultaneously diagonalizes the matrices A1, . . . , Ak such that
Ar = S−1DrS = S−1 diag(λr1, . . . , λrd)S. The notation λrl denotes the lth eigenvalue of Ar

(with multiplicity).
Then

uij
n (m1, . . . , mk) := e⊤

i [Am1
1 . . . Amk

k ]nej

= e⊤
i S−1[Dm1

1 . . . Dmk

k ]nSej

= e⊤
i S−1[diag(λ11, . . . , λ1d)m1 . . . diag(λk1, . . . , λkd)mk ]nSej

= e⊤
i S−1

[
diag

(
k∏

r=1
λmr

r1 , . . . ,

k∏
r=1

λmr

rd

)]n

Sej

=
d∑

l=1
(S−1)il (S)lj

[
k∏

r=1
λmr

rl

]n

.

Now we have an exponential-polynomial representation for uij(m) with coefficients
(S−1)il(S)lj and roots

∏k
r=1 λmr

r1 , . . . ,
∏k

r=1 λmr

rd .

We see that uij(m) is positively dominated by p if
1. (S−1)ip (S)pj > 0,

2.
∏k

r=1 λmr
rp > 0,

3. ∀l ̸= p such that (S−1)ip (S)pj ̸= 0,
∣∣∣∏k

r=1 λmr
rp

∣∣∣ >
∣∣∣∏k

r=1 λmr

rl

∣∣∣.
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Let c(p) = (arg(λ1p), . . . , arg(λkp)) and let A(p) be the (at most) (d − 1) × k-matrix
defined by alr = log |λrl/λrp|. Here l runs over elements of {1, . . . , d} apart from p such that
(S−1)il (S)lj ̸= 0. Let m be the vector (m1, . . . , mk) ∈ Nk.

Now Condition 2 is equivalent to c(p)⊤m = 0 mod 2π and Condition 3 is equivalent to
A(p)m < 0.

For simplicity we introduce the following new notation:

Z(i, j, m) := uij(m) is identically zero
S(i, j, p) := (S−1)ip (S)pj > 0
C(p, m) := c(p)⊤m = 0 mod 2π

A(i, j, p, m) := A(p)m < 0
NND(i, j, p, m) := Z(i, j, m) ∨ (S(i, j, p) ∧ C(p, m) ∧ A(i, j, p, m)).

Note that A(i, j, p, m) depends on i and j because we only care about the eigenvalue
blocks where the coefficient is non-zero.

Writing out the predicate ENN in full with new notation, we have

ENN := ∃m ∀i∀j(uij(m) is identically zero ∨ ∃p PDp(uij(m)))
≡ ∃m ∀i∀j(Z(i, j, m) ∨ ∃p (S(i, j, p) ∧ C(p, m) ∧ A(i, j, p, m)))
≡ ∃m ∀i∀j ∃p NND(i, j, p, m)

Now observe that the quantifications over i, j and p are finite and range over {1, . . . , d}.
Thus we can replace the quantifications with finite disjunctions and conjunctions.

Our goal is to move all disjunctions outside the existential quantifier on m so that we
can use the IP-log algorithm from Section 4.3 on conjunctions of terms of the form Am < 0.

Let f range over functions assigning a particular choice of p to each sequence uij(m).
There are d(d×d) such functions.

ENN ≡ ∃m ∀i∀j(∃p NND(i, j, p, m))
≡ ∃m ∧ij (∨p NND(i, j, p, m))
≡ ∃m ∨f (∧ijNND(i, j, p = f(i, j), m))
≡ ∨f ( ∃m ∧ij NND(i, j, p = f(i, j), m)).

Essentially this means we non-deterministically choose a p for each sequence uij(m) and
then check if there is an m that works for all of them – that makes all the selected p’s into
real positively dominating terms.

Analysing the elements of NND(i, j, f(i, j), m), we see that Z(i, j, m) and S(i, j, f(i, j))
constraints are trivially checkable. Constraints ∧ijC(f(i, j), m) can be removed iteratively us-
ing Masser’s theorem. The remaining conjunctions are terms of the form ∧ijA(i, j, f(i, j), m),
but since these are linear programs A(i, j, p)m < 0 we can simply concatenate the various
matrices A(i, j, p) together. We can then use the IP-log algorithm from Section 4.3 to check
if there exists an integer solution to the conjunction of these terms.

Of course in practice we would only need to check d different matrices of size d − 1 × k

since the eigenvalues are the same for all sequences.
Thus we have reduced the diagonalizable case to a finite disjunction of predicates, each

of which can be reduced to strict homogenous IP-log. More generally, we have:

▶ Theorem 18. The non-negative membership problem is decidable for commutative semi-
groups, assuming Schanuel’s conjecture is true.

Proof. See Appendix A. ◀
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6 Undecidability in the Non-commutative Case

To complement the decidability results for commuting matrices in the preceding sections, in
this section we show undecidability of the full version of the membership problem, in which
commutativity is not assumed:

▶ Problem 19 (Non-negative Membership). Given a set of d×d matrices with rational entries,
decide whether the generated semigroup contains a non-negative matrix.

The proof of undecidability is by reduction from the threshold problem for probabilistic
automata, which is well-known to be undecidable [11].

▶ Problem 20 (Threshold Problem for Probabilistic Automata). Given vectors u and v in
Qd and a matrix semigroup S generated by stochastic matrices {A1, . . . , Ak} ∈ Qd×d, decide
whether there exists a matrix A ∈ S such that u⊤Av ≥ 1/2.

▶ Theorem 21. The Non-negative Membership Problem is undecidable.

Proof. Given non-negative integers m, n, write 0m×n for the zero matrix of dimension m × n.
Suppose that we are given an instance of the threshold problem for probabilistic automata,
defined by vectors u, v ∈ Qd and a matrix semigroup S generated by stochastic matrices
A1, . . . , Ak ∈ Qd×d. Now consider the semigroup S ′ generated by the following matrices of
dimension (d + 2) × (d + 2):

U :=

 1 −1/2 u⊤

0 0 01×d

0d×1 0d×1 0d×d

 ,

A′
i :=

 1 −1/2 01×d

0 0 01×d

0d×1 0d×1 Ai

 (i = 1, . . . , k),

and V :=

 1 −1/2 01×d

0 0 01×d

0d×1 v 0d×d

 .

Note that matrix A′
i incorporates Ai for i = 1, . . . , k, while the matrices U and V respectively

incorporate the initial and final vectors u and v of the probabilistic automaton.
We claim that the semigroup S ′ contains a non-negative matrix if and only if there exists

a matrix A ∈ S such that u⊤Av ≥ 1
2 . To this end, consider a string of matrices chosen from

the set {U, V } ∪ {A′
1, . . . , A′

k}. Any product B of such a string that does not end with a
suffix UA′

i1
· · · A′

is
V , for some i1, . . . , is ∈ {1, . . . , k}, has B1,2 = − 1

2 and hence cannot be a
non-negative matrix. It remains to consider products B of strings that do have such a suffix.
In this case we have

B1,2 = (UA′
i1

· · · A′
is

V )1,2 = u⊤Ai1 · · · Aisv − 1
2 ,

and hence B is only non-negative if u⊤Ai1 · · · Ais
v ≥ 1

2 . Since it further holds that B1,1 = 1
and Bi,j = 0 for all other entries (i, j), we conclude that exists a non-negative matrix in the
semigroup S ′ if and only if there exists a matrix A ∈ S such that u⊤Av ≥ 1

2 . ◀
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7 Further work

We leave open the question of quantitative refinements of our decidability results. These
include giving complexity upper bounds for the Non-negative and Positive Membership
Problems as well as the related question of giving upper bounds on the length of the shortest
string of generators that yields a non-negative or positive matrix in a given semigroup.
Both questions would seem to be difficult owing to the use of Schanuel’s Conjecture in
our proofs. Characterising the complexity of determining whether a matrix is eventually
non-negative would seem to be more straightforward. We claim that the decision procedure
can be implemented in non-deterministic polynomial time. Note that the analogous Eventual
Positivity problem is in PTIME [18].
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A Non-diagonalizable Case

▶ Problem 22 (Non-negative Membership for Commutative Semigroup). Given a set of
commuting d × d matrices {A1, . . . , Ak} with rational entries, decide whether the semigroup
generated by multiplying these matrices together contains a matrix with all its entries greater
than or equal to zero.

It is known that unfortunately simultaneous Jordanization of commuting matrices is not
always possible [6]. However, a slightly weaker block diagonal form [19, Thm 12] is possible.
Here we put the matrices into block diagonal form, where each block is of the form λiI + N

where N is strictly upper triangular and thus nilpotent.
Let A1, . . . , Ak ∈ Qd×d be a set of commuting matrices.
As in Section 5, define the integer parameterized matrix entry recurrence uij(m) by

uij
n (m1, . . . , mk) := e⊤

i [Am1
1 . . . Amk

k ]nej .
Let S be a matrix that simultaneously block-diagonalizes the matrices such that Ar =

S−1BDrS = S−1 diag(Br1, . . . , Brb)S. Here Brl = λrlI + Nrl denotes the lth block of
Ar, where Nrl is strictly upper triangular. Note that for fixed l the various Nrl inherit
commutativity from the original matrices. Then we have that

uij
n (m1, . . . , mk) := e⊤

i [Am1
1 . . . Amk

k ]nej

= e⊤
i S−1[BDm1

1 . . . BDmk

k ]nSej

= e⊤
i S−1[diag(B11, . . . , B1b)m1 . . . diag(Bk1, . . . , Bkb)mk ]nSej

= e⊤
i S−1

[
diag

(
k∏

r=1
Bmr

r1 , . . . ,

k∏
r=1

Bmr

rb

)]n

Sej

= [s−1
i1 , . . . , s−1

id ] diag
([

k∏
r=1

Bmr
r1

]n

, . . . ,

[
k∏

r=1
Bmr

rb

]n)n

[s1j , . . . , sdj ]⊤.

Let us examine the structure of the submatrix
[∏k

r=1 Bmr

rb

]n

. Recall that Brl = λrlI +Nrl.
Note that any power or product of powers of the nilpotents can be non-zero only upto total
degree at most d. We adopt the convention that a zero power indicates the identity matrix
of appropriate size. For ease of notation we drop the block subscript and expand out
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[
k∏

r=1
Bmr

rb

]n

=
[

k∏
r=1

(λrI + Nr)mr

]n

=
k∏

r=1
λnmr

r (I + Nr/λr)nmr

=
k∏

r=1
λnmr

r ·
k∏

r=1

(
d∑

ir=0

(
nmr

ir

)
(Nr/λr)ir

)

=
k∏

r=1
λnmr

r ·

 i1+···+ik=d∑
(i1,...,ik)=(0,...,0)

(
k∏

r=1

(
nmr

ir

)
(Nr/λr)ir

)
= MPoly(nm)

k∏
r=1

λnmr
r .

Here MPoly(nm) is shorthand for the block-matrix with entries which are polynomial of
degree at most d in the variables (m1, . . . , mk) (scaled by n) with coefficients arising from
the nilpotent submatrices.

Substituting this back into our original expression for uij
n (m1, . . . , mk) we get

uij
n (m1, . . . , mk) := e⊤

i [Am1
1 . . . A

mk
k ]nej

= [s−1
i1 , . . . , s−1

id ] diag

([
k∏

r=1

Bmr
r1

]n

, . . . ,

[
k∏

r=1

Bmr
rb

]n)n

[s1j , . . . , sdj ]⊤

= [s−1
i1 , . . . , s−1

id ] diag

(
MPoly1(nm)

k∏
r=1

λnmr
r1 , . . . , MPolyb(nmr)

k∏
r=1

λnmr
rd

)n

[s1j , . . . , sdj ]⊤

=
d∑

l=1

(
polyij

l (nm)
k∏

r=1

λnmr
rl

)
(after folding in constants).

Notice that the asymptotic top term in n in the polynomial polyij
l (nm) is the homogenous

subpolynomial of highest degree in (m1, . . . , mk) - call it hij
l (m). Once we pick a particular

p to be our positively dominating term, we only need the following three conditions for the
recurrence to be positively dominated by p:
1. hij

p (m) > 0,

2.
∏k

r=1 λmr
rp > 0,

3. ∀l ̸= p such that polyij
l (nm) is not the zero polynomial,

∣∣∣∏k
r=1 λmr

rp

∣∣∣ >
∣∣∣∏k

r=1 λmr

rl

∣∣∣.
Via the same algebraic manipulations as in the diagonalizable case, checking

ENN := ∃m ∀i∀j(uij(m) is identically zero ∨ ∃p PDp(uij(m))),

reduces to solving conjunctions of the form

∧ij(hij
l (m) > 0 ∧ c(p)⊤m = 0 mod 2π ∧ A(p)m < 0)

over the integers.
We can eliminate the second conjunct using Masser’s theorem. Now suppose there exists

a real solution on the unit sphere to hij
l (m) > 0 ∧ A(p)m < 0. By openness, there exists a

rational solution nearby. Since both these conjuncts are homogenous, m is a solution iff nm
is a solution, for all real n > 0. Thus we may clear denominators from the rational solution
to obtain an integer solution m to ENN .
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The sentence

∃m ∈ Rk : hij
l (m) > 0 ∧ A(p)m < 0

can be written in the first order theory of the reals with exponentiation, which is decidable
assuming Schanuel’s conjecture as shown by Wilkie and Macintyre [14].

We now need to prove that failing to find such a real solution implies that the semigroup
does not contain a non-negative matrix. Suppose that there exists some m = (m1, . . . , mk)
such that Am1

1 . . . Amk

k is non-negative. Then (Am1
1 . . . Amk

k )n is non-negative for all n. By
Proposition 6, each individual recurrence is ultimately zero or must have a strictly dominant
top term. Thus m satisfies Am < 0 and c⊤m = 0 mod 2π for the appropriate A and c.
The top term (as a function of n) has a polynomial coefficient which is the homogenous
polynomial we identified above. Thus the homogenous polynomial is non-negative for m,
completing the requirements necessary for the sentence ∃m ∈ Rk : hij

l (m) > 0 ∧ A(p)m < 0
to be true.

We conclude:

▶ Theorem 23. The non-negative membership problem is decidable for commutative semi-
groups, assuming Schanuel’s conjecture is true.

B Positive Rational Sequences are Dominated

We need the following classical results from Perron-Frobenius theory (see, e.g., [17, Chap. 8]).

▶ Theorem 24.
1. If A ≥ 0 is irreducible then it has cyclic peripheral spectrum, i.e., its eigenvalues of

maximum modulus have the form {ρ, ρω, . . . , ρωk−1}, where ρ > 0, k is a positive integer,
and ω is a primitive k-th root of unity.

2. If a non-negative irreducible matrix A has only one eigenvalue on the spectral circle it is
called a primitive matrix. If A is primitive, the pointwise limit limn→∞(A/ρ(A))n exists
and is a strictly positive matrix.

We now prove Berstel’s result for matrix entry recurrences.

▶ Proposition 25. Let M ∈ Qd×d be a non-negative non-degenerate matrix. Then for all
i, j ∈ {1, . . . , d} the LRS un = (Mn)i,j is dominated.

Proof. Since M ≥ 0 there exists a permutation matrix P such that M can be written in
the form M = PUP −1, where U ≥ 0 is block upper triangular. It follows that there exist
i′, j′ ∈ {1, . . . , d} such that

(Mn)i,j = (PUnP −1)i,j = (Un)i′,j′

for all n ∈ N. Now write

U =


B1,1 B1,2 . . . B1,e

0 B2,2 . . . B2,e

0 0
. . .

...
0 0 0 Be,e

 ,

where all the blocks in U are non-negative and the diagonal blocks B1,1, B2,2, . . . , Be,e are
irreducible. Then

(Un)i′,j′ =
∑

l1<l2<···<lm

n1+n2+···nm=n−(m−1)

e⊤
i′ Bn1

l1,l1
Bl1,l2Bn2

l2,l2
· · · Blm−1,lm

Bnm

lm,lm
ej′ , (1)
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where the sum runs over all positive integers m and strictly increasing sequences of block
indices l1 < · · · < lm.

Consider a single block Bl,l along the diagonal. Since it is irreducible and non-negative,
it has cyclic peripheral spectrum. By our assumption of non-degeneracy, rl := ρ(Bl,l) ≥ 0
is the only eigenvalue on the spectral circle. Thus Bl,l is primitive and by our second
Perron-Frobenius result above, asymptotically Bn

l,l/rn
l ∼ Cl where Cl is a positive matrix

and the asymptotic equivalence relation ∼ applies entry-wise. Let rmax be the maximum
spectral radius of a block Bl,l lying on a path from i′ to j′.

We now analyse the asymptotic behavior of the normalized recurrence (Un)i′,j′/rn
max. Con-

sider a summand Sn in (Un)i′,j′/rn
max. Replacing the diagonal blocks with their asymptotic

limits,

Sn ∼
(

rl1

rmax

)n1 ( rl2

rmax

)n2

. . .

(
rlm

rmax

)nm

e⊤
i′ Cl1Bl1,l2Cl2 · · · Blm−1,lmClm ej′ .

Although the number of terms in the sum grows polynomially in n, we see that each term
with some rlk

< rmax that does not have nk constant tends to zero exponentially quickly.
The remaining summands in (Un)i′,j′/rn

max are thus those where nk is non-constant only for
blocks with ρ(Blk,lk

) = rmax. Let K be the sum of the constant powers for non-maximal
blocks in such a summand Qn, and P be the product of the powers of non-maximal rlk

. Then

Qn ∼ rn
max · (P/rK+m−1

max ) · e⊤
i′ Cl1Bl1,l2Cl2 · · · Blm−1,lm

Clm
ej′ .

Observe that the coefficient of rn
max is a product of spectral radii and non-negative matrices,

and is thus non-negative. This implies different such terms containing rn
max cannot cancel

out. So e⊤
i′ Unej′ ∼ A(n) · rn

max for some polynomial A with positive coefficients depending
on the non-diagonal blocks and the spectral radii of the diagonal blocks. Thus (Mn)i,j is
either dominated by rmax or ultimately zero (the latter in case rmax = 0 or the sum in (1) is
empty). ◀
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