
On the Power of Border Width-2 ABPs over Fields
of Characteristic 2
Pranjal Dutta #Ñ

National University of Singapore, Singapore

Christian Ikenmeyer # Ñ

University of Warwick, UK

Balagopal Komarath #Ñ

Indian Institute of Technology Gandhinagar, India

Harshil Mittal #

Indian Institute of Technology Gandhinagar, India

Saraswati Girish Nanoti #

Indian Institute of Technology Gandhinagar, India

Dhara Thakkar #Ñ

Indian Institute of Technology Gandhinagar, India

Abstract
The celebrated result by Ben-Or and Cleve [SICOMP92] showed that algebraic formulas are
polynomially equivalent to width-3 algebraic branching programs (ABP) for computing polynomials.
i.e., VF = VBP3. Further, there are simple polynomials, such as

∑8
i=1 xiyi, that cannot be computed

by width-2 ABPs [Allender and Wang, CC16]. Bringmann, Ikenmeyer and Zuiddam, [JACM18],
on the other hand, studied these questions in the setting of approximate (i.e., border complexity)
computation, and showed the universality of border width-2 ABPs, over fields of characteristic ̸= 2.
In particular, they showed that polynomials that can be approximated by formulas can also be
approximated (with only a polynomial blowup in size) by width-2 ABPs, i.e., VF = VBP2. The
power of border width-2 algebraic branching programs when the characteristic of the field is 2 was
left open.

In this paper, we show that width-2 ABPs can approximate every polynomial irrespective of the
field characteristic. We show that any polynomial f with ℓ monomials and with at most t odd-power
indeterminates per monomial can be approximated by O

(
ℓ · (deg(f) + 2t)

)
-size width-2 ABPs. Since

ℓ and t are finite, this proves universality of border width-2 ABPs. For univariate polynomials, we
improve this upper-bound from O(deg(f)2) to O(deg(f)).

Moreover, we show that, if a polynomial f can be approximated by small formulas, then the
polynomial fd, for some small power d, can be approximated by small width-2 ABPs. Therefore,
even over fields of characteristic two, border width-2 ABPs are a reasonably powerful computational
model. Our construction works over any field.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory

Keywords and phrases Algebraic branching programs, border complexity, characteristic 2

Digital Object Identifier 10.4230/LIPIcs.STACS.2024.31

Funding Pranjal Dutta: Supported by the project “Foundation of Lattice-based Cryptography”,
funded by NUS-NCS Joint Laboratory for Cyber Security, Singapore.
Christian Ikenmeyer : Supported by EPSRC grant EP/W014882/1.
Saraswati Girish Nanoti: Funded by CSIR NET JRF Fellowship.
Dhara Thakkar : Funded by CSIR-UGC NET JRF Fellowship.

© Pranjal Dutta, Christian Ikenmeyer, Balagopal Komarath, Harshil Mittal,
Saraswati Girish Nanoti, and Dhara Thakkar;
licensed under Creative Commons License CC-BY 4.0

41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024).
Editors: Olaf Beyersdorff, Mamadou Moustapha Kanté, Orna Kupferman, and Daniel Lokshtanov;
Article No. 31; pp. 31:1–31:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pranjal@nus.edu.sg
https://sites.google.com/view/pduttashomepage/home
mailto:christian.ikenmeyer@warwick.ac.uk
https://www.dcs.warwick.ac.uk/~u2270030/
mailto:bkomarath@rbgo.in
https://bkomarath.rbgo.in/
mailto:mittal_harshil@iitgn.ac.in
mailto:nanoti_saraswati@iitgn.ac.in
mailto:thakkar_dhara@iitgn.ac.in
https://sites.google.com/iitgn.ac.in/dharathakkar/home
https://doi.org/10.4230/LIPIcs.STACS.2024.31
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 On the Power of Border Width-2 ABPs over Fields of Characteristic 2

1 Introduction

The fundamental aim in computational complexity theory is to separate computational
complexity classes – classes of problems that can be solved using a bounded amount of
computational resources (e.g., time, space). Despite a lot of research, separating classes has
remained elusive because the general computational model, Turing machines, are surprisingly
difficult to prove lower bounds against. Valiant [22] proposed a computational complexity
theory for families of multivariate polynomials, now called algebraic complexity, where the
computational models only use algebraic operations such as addition +, multiplication ×,
etc. The central question in algebraic complexity is to compare the computational power
of the permanent and determinant polynomials, for a symbolic matrix Xn = (xi,j)i,j∈[n],
defined as follows:

pern := pern(Xn) =
∑

σ∈Sn

n∏
i=1

xi,σ(i) ,

detn := detn(Xn) =
∑

σ∈Sn

sgn(σ)
n∏

i=1
xi,σ(i) .

The summations above are over all permutations on n elements. Efficient algorithms to
compute the determinant of a matrix whose entries are from a suitable ring (e.g. integers)
are known [3, 14]. However, efficient algorithms to compute the permanent would imply that
#P = FP, which is widely believed to be false.

A sequence (cn)n∈N of natural numbers is called polynomially bounded if there exists a
polynomial q with ∀n : cn ≤ q(n). A p-family is a sequence of polynomials whose degree and
number of variables are polynomially bounded. Usually, algebraic complexity theorists are
concerned with explicit p-families (e.g., (detn)n, (pern)n) because of its intimate connections
to Boolean complexity.

One can define the determinantal complexity of a multivariate polynomial f ∈ F[x] over a
field F, denoted dc(f), to be the smallest n such that f can be written as the determinant of
an n × n matrix with entries being affine linear forms (i.e. of the form a0 + a1x1 + · · · + anxn,
where ai ∈ F). The class VBP consists of all p-families (fn)n∈N for which the determinantal
complexity is polynomially bounded, see e.g. [13]. Interestingly, VBP can be captured by
algebraic branching programs (ABPs) which can be thought of as a product of w × w matrices
with affine linear entries, and w is called the width of the ABP.

The permanental complexity of a polynomial f , denoted pc(f), is the smallest n such that
f can be written as the permanent of an n × n matrix of affine linear forms. The class VNP
consists of all p-families (fn)n∈N for which the permanental complexity is polynomially
bounded.

It is known that VBP ⊆ VNP [22, 21]. One of the central questions in algebraic complexity
is Valiant’s conjecture of VNP ̸⊆ VBP, or equivalently proving dc(pern) = nω(1) [22]. This is
often known as the determinant vs permanent problem. The best known bounds for dc(pern),
over F = C is: n2/2 ≤ dc(pern) ≤ 2n − 1 [15, 10].

IMM-complexity. There are plausibly weaker classes than VBP, such as VF that tries to
capture the algebraic formula complexity of polynomial families. An algebraic formula is
a directed tree with a unique sink vertex. The source vertices are labelled by variables or
constants from F, and each internal node of the graph is labelled by either + or ×. Nodes
compute polynomials in the natural way by induction. The size of a formula is the number
of its nodes. Finally, the algebraic formula complexity of a polynomial f is the minimum

P. Dutta, C. Ikenmeyer, B. Komarath, H. Mittal, S. G. Nanoti, and D. Thakkar 31:3

size of a formula computing f . Ben-Or and Cleve [2] showed a surprising result that the
polynomial family constructed using an iterated product of 3 × 3 symbolic matrices (formally
it is called IMM3, see Definition 7) is computationally equivalent to algebraic formulas. And
further, Valiant showed that any polynomial f with algebraic formula complexity s, has
determinantal complexity at most 2s [22]. Therefore, separation questions like VF vs. VBP,
and VF vs. VNP can be framed as whether immc3(detn) = nω(1), and immc3(pern) = nω(1);
for a formal definition of IMM-complexity for 3 × 3 matrices (immc3), see Definition 9.

Universality vs. impossibility. It is noteworthy that all the above-mentioned complexity
measures (dc, pc, immc3) are finite for any polynomial f ∈ F[x]; in other words, the model of
computation defined by these complexity measures are “universal”. Given the phenomenon
of universality and the results of Ben-Or and Cleve and Valiant, it is natural to study the
computational power of iterated multiplication of 2 × 2 matrices. Astonishingly, Allender and
Wang [1] showed an impossibility result that the polynomial

∑8
i=1 xiyi cannot be computed

using IMM2. In other words, the IMM2-complexity (Definition 9) of this polynomial is infinite!
However, Bringmann, Ikenmeyer, and Zuiddam [4] showed that by allowing approximations,
the polynomial family IMM2 becomes universal! In fact, they proved a stronger statement
that the IMM2-approximation complexity, which we denote by immc2, is polynomially related
to approximate algebraic formula complexity. However, their proofs only work over fields F
when char(F) ̸= 2. They left open the following, which sets the fundamental basis for this
work.

▶ Question 1 ([4]). Determine the computational power of IMM2 with approximations over
fields of characteristic 2.

Border complexity & GCT. The study of border complexity measures, by allowing ap-
proximations in the algebraic model was first introduced in [17, 5]. Given f ∈ F[x] and
a suitable associated complexity measure Γ, the border-Γ complexity of f (denoted Γ(f))
is the smallest n such that f can be approximated arbitrarily closely by polynomials of
Γ-complexity at most n. Trivially, Γ(f) ≤ Γ(f), for any f . By this definition, one can talk
about the border-complexity measures such as immc, dc, pc etc. Replacing a complexity
measure by its border measure in a complexity class, we obtain the closure of this class,
such as VF, VBP, VNP, and so on. The operation of going to the closure is indeed a closure
operator in the sense of topology (See [11]). The original Geometric Complexity Theory
(GCT) papers [17, 18] propose to use representation-theoretic techniques to separate VNP
from VBP by studying the determinant orbit closure, but progress has been slow. Simpler
models of computation are desirable to study the easier VNP ̸⊆ VF conjecture, for example
immc3, or even the much simpler immc2. This was a main motivation for [4], but their result
does not work in characteristic 2. This naturally leads to the following question.

▶ Question 2. How is immc2 related to immc3 for fields of characteristic 2?

Division and powering. Strassen [20] showed that we can eliminate divisions in algebraic
circuits and formulas computing polynomials without loss of efficiency. The result relies on
the ability to compute small powers of polynomials efficiently. This naturally leads to the
following question.

▶ Question 3. Given border width-2 computations for polynomials f and g, can we also
compute f

g (given g divides f) and fr, for small r, efficiently?

STACS 2024

31:4 On the Power of Border Width-2 ABPs over Fields of Characteristic 2

More generally, one can ask, given computations for f and g, what combinations of f

and g are possible in the model? A known approach to produce such results is to use Waring
decompositions (See [4, 12]). Given a homogeneous degree d polynomial f , the Waring rank
of f , denoted WR(f), is the smallest r such that there exist homogeneous linear polynomials
ℓ1, · · · ℓr with f =

∑r
i=1 ℓd

i . Border Waring rank, denoted WR(f), can be defined analogously
in the border setup. For example, a border Waring decomposition for xy would allow us
to compute the product fg using only addition, scaling by constants, and squaring. Over
fields of characteristic 2, the border Waring rank of xy is infinite and hence, this technique
becomes infeasible.

1.1 Our Contributions
Our main theorem is to answer Question 1 by showing the universality of immc2:

▶ Theorem 4 (Universality of immc2). immc2(f) is finite for every polynomial f , over all
fields.

This theorem over fields of characteristic other than two was proved by Bringmann, Ikenmeyer,
and Zuiddam [4]. In fact, they prove the stronger statement that any polynomial family with
small algebraic formulas approximating it can also be approximated with IMM2 with only a
polynomial blow-up in complexity. Unfortunately, our construction yields an exponential
complexity for even simple polynomial families, such as

∏n
i=1 xi +

∏n
i=1 yi +

∏n
i=1 zi (see

Theorem 19). However, the next theorem proves that for every polynomial with small
formulas approximating them, we can approximate a small power of the polynomial using
IMM2 over any field. This partially answers Question 2.

▶ Theorem 5 (Powering is powerful). There exists a constant k such that for any polynomial
f with a size-s formula approximating f , there is a d ≤ sk + k such that immc2(fd) ≤ sk + k.

The above theorem shows that the border width-2 ABPs are a reasonably powerful
computational model. Further, Theorem 4 and Theorem 5 can be seen as weak extensions
of [4], over any field, regardless of its characteristic and size.

A natural question is which interesting classes of polynomials can be efficiently approx-
imated using IMM2. In Theorem 19, we show that every sparse polynomial family (i.e.,
the number of monomials is poly(n)) where the monomials do not have a large number
of variables with odd degree can be efficiently approximated. A particularly interesting
subset of this class is the class of all univariate polynomials. Applying Theorem 19 to
univariate polynomials, we obtain a computation of any degree-d univariate polynomial using
O(d2) operations. But, Horner’s rule gives a formula for any degree-d univariate polynomial
that only uses O(d) operations. The following theorem is a refinement of Theorem 19 to
univariates where we show that every degree-d univariate can be approximated using O(d)
matrices. This construction is a consequence of our partial answers towards Question 3.

▶ Theorem 6. For any degree-d univariate polynomial f , we have immc2(f) ≤ 9d+4
2 .

We leave open the question whether immc2 is polynomially related to approximate
algebraic formula complexity over fields of characteristic 2.

1.2 Comparison with previous works
As mentioned before, [4] showed that any polynomial with small border algebraic formula
complexity have small immc2-complexity, when char(F) ̸= 2. Their proof was constructive, and
fundamentally (& inductively) used the following identity: x·y = 1

2 ·
(
(x + y)2 − x2 − y2). One

P. Dutta, C. Ikenmeyer, B. Komarath, H. Mittal, S. G. Nanoti, and D. Thakkar 31:5

could also use even a smaller representation: x · y =
(1

2 · (x + y)
)2 −

(1
2 · (x − y)

)2. However
both representations use the constant 1

2 , and one can show that one cannot come up with an
identity which does not use 1

2n , for some n ∈ N. In other words, WR(x · y) = WR(x · y) = ∞
over F with char(F) = 2. Therefore, their construction fails miserably over characteristic 2
fields.

On the other hand, Kumar [12] showed that for any f ∈ C[x], a constant multiple of f can
be approximated by

∏
i∈[m](1 + ℓi) − 1, where ℓi are linear polynomials in C(ϵ)[x]. Note that,

this implies that immc2(f) ≤ m. The representation depends on the Waring decomposition
of f , and further one can show that for the minimum m: WR(f) ≤ m ≤ deg(f) · WR(f) [8].
However, over F of char(F) = 2, for any d ≥ 2, there are d-degree polynomials (e.g., x1 · · · xd)
which has infinite border Waring rank, and hence the above universality proof fails.

In this work, we come up with a Waring-free proof to show the universality over char-
acteristic 2 fields, and therefore our proofs are very different (yet simple) from the known
constructive proofs.

1.3 Proof ideas

The key building block in the proof of universality of border width-2 ABPs over fields

characteristic ̸= 2 in [4] is a Q matrix. For a polynomial f , they define Q(f) =
(

f 1
1 0

)
.

Given Q(f) and Q(g), Q(f + g) can be computed as Q(f)Q(0)Q(g). So, to prove universality,
it suffices to show that Q(fg) can also be computed from Q(f) and Q(g). Bringmann,
Ikenmeyer and Zuiddam [4] showed that Q(f2) can be approximately computed using Q(f),
and then the identity fg = (1

2 (f + g))2 − (1
2 (f − g))2 can be used to compute the product

using squaring, addition, and scaling by constants. As discussed before, such an identity
does not exist over fields of characteristic two.

We overcome this block by not trying to compute the product of two arbitrary polynomials.
We observe that for universality, it is enough to be able to compute Q(fx) from Q(f) for
an arbitrary variable x. The advantage is that since x is a variable and not an arbitrary
polynomial, we can use any 2 × 2 matrix that contains only constants and the variable x in
the computation of Q(fx), whereas for computing Q(fg), both f and g are available to us
only as Q matrices (or in any other form that have been proved inductively). This is the key
idea in Lemma 15 (see Section 4).

The source of inefficiency of Lemma 15 is that Q(f) is used twice to compute Q(fx).
Therefore, even computing a simple polynomial such as xn using this lemma takes Ω(2n)
matrices. Compare this to the computation of Q(fg) in [4] where they use Q(f) and Q(g) at
most three times which is enough to stay within a polynomial factor of formula complexity.
In Lemma 17, we show that we can compute Q(fg2) by using Q(f) once and Q(g) twice
(see Section 4). This lemma enables efficient computation of powers of polynomials with
small formulas (Theorem 20), sparse polynomials where each monomial only contains a few
variables with odd power (Theorem 19), and univariate polynomials (Theorem 24). We also
use this lemma to compute powers of polynomials efficiently. That is, given a computation
of Q(f) using s matrices, compute Q(fr) using O(rs) matrices (see Section 7). We also
observe that the division Q(f

g2) from Q(f) and Q(g) can be performed by combining standard
division elimination techniques [20] with Lemma 17 (see Section 8).

STACS 2024

31:6 On the Power of Border Width-2 ABPs over Fields of Characteristic 2

2 Preliminaries

We consider polynomial families f = (fn)n≥0 over an arbitrary field F. The nth polynomial in
the family fn is a polynomial in F[x1, . . . , xm] where m = poly(n). The following polynomial
family is particularly important in this paper.

▶ Definition 7. For any fixed, natural k ≥ 1, we define the polynomial family IMMk =
(IMMk,n) such that IMMk,n is the (1, 1)th entry of the product of n matrices of order k × k

where each entry of each matrix is a fresh variable, i.e., the (i, j)th entry of the mth matrix
is the variable x

(m)
i,j for all 1 ≤ i, j ≤ k and 1 ≤ m ≤ n.

▶ Definition 8. A weakest projection from a set of variables X to another set of variables
Y is a mapping X 7→ Y ∪ F. A weak projection is a mapping from X to affine linear forms
in at most one variable in F[Y]. For polynomials f and g, we say f ≤wst g (f ≤w g), if there
is a weakest projection (resp., weak projection) that maps g to f .

The notion of a projection is used to compare the number of algebraic operations required
to compute polynomials. Note that if fn is computable using s operations and if gm ≤wst fn,
then gm is also computable using s operations. The weak variant ≤w weakens this slightly
since we can only conclude that gm can be computed using at most poly(s) operations.

▶ Definition 9. Let f = (fn) be a polynomial family. We define the f -complexity wrt ≤wst

(or ≤w) of a polynomial g as the smallest m such that g ≤wst fm (resp., ≤w). If there is no
such m, then the f -complexity of g is ∞. We define the f -complexity of a polynomial family
g = (gn) as the sequence s = (sn) where sn is the f -complexity of the polynomial gn.

We say that f computes a polynomial g wrt ≤wst (or, ≤w) if f -complexity of g wrt ≤wst

(resp., ≤w) is finite.

For f = (fn), we denote f -complexity wrt ≤wst (or, ≤w) using fcwst (resp., fcw). We omit
the projection from the notation if it is the weakest projection. For example, we denote
det-complexity, IMM3-complexity, and IMM2-complexity under weakest projections by dc,
immc3, and immc2 respectively.

▶ Definition 10. A polynomial family f = (fn)n≥0 is called universal wrt ≤wst (or ≤w) if
for any polynomial g, the f -complexity of g wrt ≤wst (resp., ≤w) is finite.

We can now define the approximation equivalent of ≤wst and ≤w.

▶ Definition 11. An approximate weakest projection is a map from X to Y ∪ F(ϵ). An
approximate weak projection is a map from X to affine linear forms in at most one variable
in F(ϵ)[Y].

Given f, g ∈ F[X], we say f ≤wst g (f ≤w g) if there is an approximate weakest projection
(resp., approximate weak projection) that maps g to some polynomial that approximates f .

We can use these to define approximate f -complexity of polynomials.

▶ Definition 12. Let f = (fn) be a polynomial family. We define the approximate f -
complexity of a polynomial g as the smallest m such that g ≤wst fm (or g ≤w fm). If no such
m exists, we define the f -complexity of g as ∞. We define the f -complexity of a polynomial
family g = (gn) as the sequence s = (sn) where sn is the f -complexity of the polynomial gn.

We say that f approximately computes a polynomial g wrt ≤wst (or, ≤w) if the approximate
f -complexity of g wrt ≤wst (resp., ≤w) is finite.

P. Dutta, C. Ikenmeyer, B. Komarath, H. Mittal, S. G. Nanoti, and D. Thakkar 31:7

We denote approximate f -complexity wrt ≤wst (or, ≤w) fcwst (resp., fcw). As before, we
omit the projection if it is the weakest projection.

We now introduce some additional definitions that are applicable when f = IMM2. In
this case, we can naturally consider computation of 2 × 2 matrices of polynomials by f .

▶ Definition 13. Let A =
(

g1 g2
g3 g4

)
where g1, g2, g3, g4 are polynomials. We say that A is

computed wrt ≤wst (or, ≤w) by a sequence of m matrices if there is a sequence of m 2 × 2
matrices, where all 4m entries are variables or constants from F (resp., affine linear forms
in at most one variable), such that the product of those matrices is A.

The above definition can be naturally extended into the setting of approximate computa-
tion. Following [4], we use the notation O(ϵk) to denote an arbitrary polynomial in the set
ϵkF[ϵ, x1, . . . , xn].

▶ Definition 14. We say that A is approximately computed wrt ≤wst (or, ≤w) by a sequence
of m matrices if there is a sequence of m 2 × 2 matrices, where all 4m entries are variables
or constants from F(ϵ) (resp., affine linear forms over F(ϵ) in at most one variable), such

that the product of those matrices is
(

g1 + O(ϵ) g2 + O(ϵ)
g3 + O(ϵ) g4 + O(ϵ)

)
.

We omit the projection if it is the weakest projection. All results in this paper except
Theorem 26 hold wrt weakest projections.

3 Approximately computing the Allender-Wang polynomial over fields
of characteristic 2

Allender and Wang showed that immc2(AW) = ∞ where AW =
∑8

i=1 xiyi. Bringmann,
Ikenmeyer, and Zuiddam (See Example 3.8 in [4]) constructed an approximation to the AW
polynomial when char(F) ̸= 2 thereby showing that immc2(AW) is finite when char(F) ̸= 2.
Here, we show that it is finite when char(F) = 2 as well.

We restate the definition of Q-matrix computing a polynomial f from [4].

Q(f) =
(

f 1
1 0

)
Observe that Q(f + g) = Q(f)Q(0)Q(g). That is, if we can compute two polynomials as

Q-matrices, then we can also compute their sum as a Q-matrix. Now, let

F (x, y) :=
(1

ϵ 0
0 1

)(
x 1
1 0

)(
ϵ 1
0 1

)(1
ϵ y

−1 1

)(
x 1
1 0

)(
1 0
1 −ϵ

)
.

Note that F (x, y) computes
(

xy 1
1 + ϵy 0

)
.

Finally, the following sequence approximately computes AW:

(
1 0

)
F (x1, y1)

(
0 1
1 0

)
F (x2, y2) · · ·

(
0 1
1 0

)
F (x8, y8)

(
1
0

)
= AW + O(ϵ).

This shows that immc2(AW) ≤ 55. The above computation works over all fields, irrespect-
ive of the characteristic.

STACS 2024

31:8 On the Power of Border Width-2 ABPs over Fields of Characteristic 2

4 Universality of IMM2 with approximations

The key idea in [4] that allows IMM2 to efficiently simulate formulas is a way to compute
Q(f2) from Q(f) (squaring). Then, the identify fg = ((f + g)2 − f2 − g2)/2 that is valid
only when char(F) ̸= 2 is used to compute Q(fg) from Q(f) and Q(g) using addition and
squaring. The following lemma allows one to multiply an arbitrary polynomial with any
indeterminate when char(F) = 2.

▶ Lemma 15. Let f be a polynomial. Suppose that there is a sequence, say σ, of N matrices
that approximately computes Q(f). Then, for any indeterminate x, there is a sequence of
2N + 4 matrices that approximately computes Q(fx).

Proof. Consider the following sequence, say σ′, of 2N + 4 matrices:(1
ϵ 0
0 1

)
σ|ϵ→ϵ2

(
ϵ 1
0 1

)(1
ϵ x

−1 1

)
σ|ϵ→ϵ2

(
1 0
1 −ϵ

)
where σ

∣∣
ϵ→ϵ2 denotes the sequence obtained from σ by replacing ϵ with ϵ2.

Note that σ′ computes(
1
ϵ

0
0 1

)(
f + O(ϵ2) 1 + O(ϵ2)
1 + O(ϵ2) O(ϵ2)

)(
ϵ 1
0 1

)(
1
ϵ

x

−1 1

)(
f + O(ϵ2) 1 + O(ϵ2)
1 + O(ϵ2) O(ϵ2)

)(
1 0
1 −ϵ

)
=
(

f
ϵ

+ O(ϵ) 1
ϵ

+ O(ϵ)
1 + O(ϵ2) O(ϵ2)

)(
0 ϵx + 1

−1 1

)(
f + 1 + O(ϵ2) −ϵ + O(ϵ3)

1 + O(ϵ2) O(ϵ3)

)
=
(

− 1
ϵ

+ O(ϵ) fx + f+1
ϵ

+ O(ϵ)
O(ϵ2) ϵx + 1 + O(ϵ2)

)(
f + 1 + O(ϵ2) −ϵ + O(ϵ3)

1 + O(ϵ2) O(ϵ3)

)
=
(

fx + O(ϵ) 1 + O(ϵ2)
1 + ϵx + O(ϵ2) O(ϵ3)

)
. ◀

We also provide a Macaulay program in Appendix A to verify the construction described in
the proof of Lemma 15. Although not as powerful as multiplying two arbitrary polynomials,
Lemma 15 is sufficient to prove universality. Let p be a polynomial with ℓ monomials. Note
that for any monomial, say m, of p, repeatedly applying Lemma 15 gives a sequence of
O
(
2deg(m)) matrices that approximately computes Q(m). Thus, Q(p) can be approximately

computed using a sequence of O
(
ℓ · 2deg(p)) matrices.

Although sufficient to show universality, this is inefficient. Even for simple polynomials
such as xn which can be computed using n − 1 operations, we require O(2n) matrices. We
can improve the efficiency by using the following lemma.

▶ Remark 16. For any degree-d monomial m, we have immc2(m) = d. We can write
m = y1 · · · yd where each yi is a variable. Then, we set the (1, 1) entry of the ith matrix to
yi. All other entries are 0. The product now computes m at entry (1, 1) and 0 elsewhere.
Since this construction does not compute Q(m), it is not possible to use this to compute, say∏n

i=1 xi +
∏n

i=1 yi +
∏n

i=1 zi using poly(n) operations.

▶ Lemma 17. Let f and g be polynomials. Suppose that there is a sequence, say σ, of
N matrices that approximately computes Q(f), and a sequence, say π, of M matrices that
approximately computes Q(g). Then, there is a sequence of N + 2M + 4 matrices that
approximately computes Q(fg2).

P. Dutta, C. Ikenmeyer, B. Komarath, H. Mittal, S. G. Nanoti, and D. Thakkar 31:9

Proof. Consider the following sequence, say σ′, of N + 2M + 4 matrices:(
− 1

ϵ 0
0 ϵ

)
π
∣∣
ϵ→ϵ3

(
ϵ 0
0 1

ϵ

)
σ
∣∣
ϵ→ϵ5

(
−ϵ 0
0 1

ϵ

)
π
∣∣
ϵ→ϵ3

(1
ϵ 0
0 ϵ

)
where σ

∣∣
ϵ→ϵ5 denotes the sequence obtained from σ by replacing ϵ with ϵ5, and

. π
∣∣
ϵ→ϵ3 denotes the sequence obtained from π by replacing ϵ with ϵ3.

Note that σ′ computes(
− 1

ϵ 0
0 ϵ

)(
g + O(ϵ3) 1 + O(ϵ3)
1 + O(ϵ3) O(ϵ3)

)(
ϵ 0
0 1

ϵ

)(
f + O(ϵ5) 1 + O(ϵ5)
1 + O(ϵ5) O(ϵ5)

)(
−ϵ 0
0 1

ϵ

)
(

g + O(ϵ3) 1 + O(ϵ3)
1 + O(ϵ3) O(ϵ3)

)(1
ϵ 0
0 ϵ

)
=
(

−g + O(ϵ3) − 1
ϵ2 + O(ϵ)

ϵ2 + O(ϵ5) O(ϵ3)

)(
f + O(ϵ5) 1 + O(ϵ5)
1 + O(ϵ5) O(ϵ5)

)(
−g + O(ϵ3) −ϵ2 + O(ϵ5)

1
ϵ2 + O(ϵ) O(ϵ3)

)
=
(

−fg − 1
ϵ2 + O(ϵ) −g + O(ϵ3)

ϵ2f + O(ϵ3) ϵ2 + O(ϵ5)

)(
−g + O(ϵ3) −ϵ2 + O(ϵ5)

1
ϵ2 + O(ϵ) O(ϵ3)

)
=
(

fg2 + O(ϵ) 1 + ϵ2fg + O(ϵ3)
1 − ϵ2fg + O(ϵ3) −ϵ4f + O(ϵ5)

)
.

This proves Lemma 17. ◀

We also provide a Macaulay program in Appendix A to verify the construction described
in the proof of Lemma 17. The key improvement here is that instead of using σ for Q(f)
two times as in Lemma 15, we can compute Q(fx2) using Q(f) only once. Crucially, this
allows certain monomials to be computed efficiently.

▶ Lemma 18. Consider a monomial, say m = c · xk1
1 · · · xkn

n . Let λ denote the number
of odd ki’s in k1, . . . , kn. Then, Q(m) can be approximately computed using a sequence of
(5 · 2λ − 4) + 3 ·

(
deg(m) − λ

)
matrices.

Proof. Without loss of generality, assume that k1, . . . , kλ are the λ odd ki’s. At a high level,
we start with Q(c), then repeatedly apply Lemma 15 to get Q(c · x1 · · · xλ), then repeatedly
apply Lemma 17 to get Q(c · xk1

1 · · · xkλ

λ), and then repeatedly applying Lemma 17 to get
Q(c · xk1

1 · · · xkλ

λ x
kλ+1
λ+1 · · · xkn

n). More precisely, our construction is as follows:

We begin with the sequence Q(c). Using Lemma 15
(
with indeterminate x1

)
, we get

a sequence of 2 · 1 + 4 = 6 matrices that approximately computes Q(c · x1). Next, using
Lemma 15

(
with indeterminate x2

)
, we get a sequence of 2 · 6 + 4 = 16 matrices that

approximately computes Q(c ·x1x2). Again, using Lemma 15
(
with indeterminate x3

)
, we get

a sequence of 2 ·16+4 = 36 matrices that approximately computes Q(c ·x1x2x3). We continue
this process until finally, using Lemma 15

(
with indeterminate xλ

)
, we get a sequence of

2 ·
(
5 · 2λ−1 − 4

)
+ 4 = 5 · 2λ − 4 matrices that approximately computes Q(c · x1x2x3 · · · xλ).

Now, using Lemma 17
(
with g = x1

)
k1−1

2 times, we get a sequence of (5 · 2λ − 4) + (2 +
4) ·
(

k1−1
2
)

matrices that approximately computes Q(c · xk1
1 x2 · · · xλ). Next, using Lemma 17(

with g = x2
)

k2−1
2 times, we get a sequence of (5 · 2λ − 4) + (2 + 4) ·

(
k1−1

2
)

+ (2 + 4) ·
(

k2−1
2
)

matrices that approximately computes Q(c · xk1
1 xk2

2 x3 · · · xλ). We continue this process until

STACS 2024

31:10 On the Power of Border Width-2 ABPs over Fields of Characteristic 2

finally, using Lemma 17
(
with g = xλ

)
kλ−1

2 times, we get a sequence of (5 · 2λ − 4) + (2 + 4) ·(
k1−1

2
)

+ (2 + 4) ·
(

k2−1
2
)

+ . . . + (2 + 4) ·
(

kλ−1
2
)

= (5 · 2λ − 4) + 3 ·
(∑λ

i=1 ki − λ
)

matrices
that approximately computes Q(c · xk1

1 xk2
2 xk3

3 · · · xkλ

λ).

Now, using Lemma 17
(
with g = xλ+1

) kλ+1
2 times, we get a sequence of (5 · 2λ − 4) + 3 ·(∑λ

i=1 ki −λ
)

+(2+4) ·
(kλ+1

2
)

matrices that approximately computes Q(c ·xk1
1 · · · xkλ

λ x
kλ+1
λ+1).

Next, using Lemma 17
(
with g = xλ+2

) kλ+2
2 times, we get a sequence of (5 · 2λ − 4) + 3 ·(∑λ

i=1 ki − λ
)

+ (2 + 4) ·
(kλ+1

2
)

+ (2 + 4) ·
(kλ+2

2
)

matrices that approximately computes
Q(c · xk1

1 · · · xkλ

λ x
kλ+1
λ+1 x

kλ+2
λ+2). We continue this process until finally, using Lemma 17

(
with

g = xn

)
kn

2 times, we get a sequence of (5 · 2λ − 4) + 3 ·
(∑λ

i=1 ki − λ
)

+ (2 + 4) ·
(kλ+1

2
)

+ (2 +
4) ·

(kλ+2
2
)

+ . . . + (2 + 4) ·
(

kn

2
)

= (5 · 2λ − 4) + 3 ·
(∑λ

i=1 ki − λ
)

+ 3 ·
∑n

i=λ+1 ki matrices
that approximately computes Q(c · xk1

1 · · · xkλ

λ x
kλ+1
λ+1 x

kλ+2
λ+2 · · · xkn

n). That is, we get a sequence
of (5 · 2λ − 4) + 3 ·

(
deg(m) − λ

)
matrices that approximately computes Q(m).

This proves Lemma 18. ◀

Note that Lemma 18 allows us to compute xn using O(n) matrices.

▶ Theorem 19. Let p be a polynomial with ℓ monomials, each containing at most t odd-power
indeterminates. Then, Q(p) can be approximately computed using a sequence of at most
ℓ ·
(
5 · 2t + 3 · deg(p)

)
matrices.

Proof. Let m1, . . . , mℓ denote the ℓ monomials of p. For each 1 ≤ i ≤ ℓ, we use Lemma 18
to get a sequence, say σi, of at most (5 · 2t − 4) + 3 · deg(mi) matrices that approximately
computes Q(mi). Now, the following sequence approximately computes Q(p):

σ1 · Q(0) · σ2 · Q(0) · · · Q(0) · σℓ

Note that the number of matrices in this sequence is at most

(ℓ − 1) +
ℓ∑

i=1

(
(5 · 2t − 4) + 3 · deg(mi)

)
≤ ℓ ·

(
5 · 2t + 3 · deg(p)

)
This proves Theorem 19. ◀

5 Connections to Algebraic Formulas

In this section, we explore the relationship between the computational power of width-2
ABPs and algebraic formulas. Our main theorem in this section is:

▶ Theorem 20. There exists a constant k such that for any polynomial f with a size-s
formula approximating it, there is a d ≤ sk + k such that immc2(fd) ≤ sk + k.

Proof. If the field has characteristic ̸= 2, this can be done by using the methods in [4]. We
consider fields of characteristic two. It is sufficient to consider IMM3,n for an arbitrary n as
IMM3 is a VF-complete family. We can consider without loss of generality that n is a power
of two. These polynomials have polynomial-size algebraic formulas of depth O(log(n)) where
every path from root to leaf has the same number of product gates. We now construct a
width-two algebraic branching program inductively from the formula as follows. For every
polynomial p computed at a sub-formula with product depth d, we will compute Q(p2d). For
input gates, this is trivial. Suppose f and g are sub-formulas that have product depth d.

P. Dutta, C. Ikenmeyer, B. Komarath, H. Mittal, S. G. Nanoti, and D. Thakkar 31:11

For the formula f + g, notice that (f + g)2d

= f2d + g2d over fields of characteristic two.
We can compute Q(f2d + g2d) from Q(f2d) and Q(g2d). For the formula f · g, we compute
Q
(
(f2d)

2
(g2d)

2)
= Q((fg)2d+1

) using Lemma 17. Notice that since the product depth is
the same on every root to leaf path, these cases are exhaustive. Since each step can at
most double the size and depth is O(log(n)), the size of the resulting width-two algebraic
branching program is only poly(n). ◀

The following remarks discuss two important consequences of this theorem. First, it allows
us to extend the main result of [4] to more fields.

▶ Remark 21. Over characteristic 2, it is not clear whether one can compute f from fd, for
a polynomially-bounded d, which is a power of 2, using immc2. However, over large fields of
characteristic ̸= 2, one can follow the efficient root-finding procedure, for e.g., see [5, 6, 19],
to conclude a small border width-2 complexity of f .

Second, it allows us to reduce border PIT for formulas to border PIT for width-2 ABPs.

▶ Remark 22. The border PIT problem (for definition and further connections with lower
bounds, see [16, Section 2.6], [9], or [7, Section 7.1]) for a computational model is to check
whether or not the polynomial computed by the given computation is approximately 0.
Theorem 20 shows that border PIT for formulas reduces to border PIT for width-2 ABPs
over all fields. For fields of characteristic ̸= 2, this was already a consequence of the main
result in [4]. Theorem 20 extends this to all fields. Notice that the proof of this theorem
is constructive. That is, given a formula that approximately computes f , the proof of
Theorem 20 can be easily modified to produce a polynomial-time algorithm to output a
width-2 algebraic program approximating fd. Now, over any field, fd is approximately 0 if
and only if f is approximately 0.

We say that a model supports efficient computation of square roots if any computation of
f2 in the model implies the existence of a computation for f where the size is polynomially
related to the computation for f2. The following corollary establishes that if we can efficiently
compute square roots approximately using width-two algebraic branching programs, then
all polynomial families with constant-depth, polynomial-size circuits can be approximately
computed using polynomial-size width-two algebraic branching programs.

▶ Corollary 23. Suppose k is a universal constant such that given any width-two algebraic
branching program of size s approximately computing a polynomial f2, we can approximately
compute f using width-two algebraic branching programs of size at most sk + k. Then, any
polynomial family p that has constant depth algebraic circuits of size s can be approximately
computed using width-two algebraic branching programs of size poly(s).

Proof. Since p has polynomial-size algebraic circuits of constant depth, it also has polynomial-
size algebraic formulas of constant depth where all root to leaf paths have the same product
depth. We then apply Theorem 20 to obtain a width-two algebraic branching program that
computes f2d , where d is the product depth of the formula. Notice that the construction in
Lemma 17 can obtain a width-two algebraic branching program that approximately computes
(f1 · · · fk)2 in size 2

∑k
i=1 si + O(k) from those of size si for fi, where 1 ≤ i ≤ k, even when

k is unbounded. Finally, we apply the square root computation given by the hypothesis d

times to obtain a width-two algebraic branching program that approximately computes f in
size O(skd). ◀

STACS 2024

31:12 On the Power of Border Width-2 ABPs over Fields of Characteristic 2

6 Improved bound for univariate polynomials

For univariate polynomials, a quadratic (in degree) upper bound on immc2 over fields of
characteristic 2 follows from Theorem 19. However, we can do better. In fact, we can make
this asymptotically optimal by using a two-step Horner’s method.

▶ Theorem 24. Let p be a univariate polynomial in x. Then, Q(p) can be approximately

computed using a sequence of at most
9 · deg(p) + 4

2 matrices.

Proof. Let d := deg(p) if deg(p) is even, and d := deg(p) − 1 otherwise.
If deg(p) is even, p is of the following form:

adxd + ad−1xd−1 + . . . + a1x + a0.

Otherwise, p is of the following form:

ad+1xd+1 + adxd + ad−1xd−1 + . . . + a1x + a0.

Note that in both the cases, p can be expressed as follows:(
. . .
((

ax2 + ad−1x + ad−2)x2 + ad−3x + ad−4

)
x2 + . . . + a3x + a2

)
x2 + a1x + a0,

where a := ad if deg(p) is even, and a := ad+1x + ad otherwise.

At a high level, our construction exploits the above expression by starting with Q(a), then
obtaining Q(ax2) using Lemma 17, then obtaining Q

(
ax2 + ad−1x + ad−2) by appending a

few matrices, then obtaining Q
((

ax2 + ad−1x + ad−2
)
x2
)

using Lemma 17, and so on, until
we finally obtain Q(p). More precisely, we construct the desired sequence as follows:

First, we compute Q(a). When d is even, the matrix Q(ad) computes Q(a). When d is
odd, we could have taken Q(ad+1x)Q(0)Q(ad) as a sequence of matrices computing Q(a) if
we were in the weak setting. However, since we are in the weakest setting, we instead use

the length-2 sequence
(

ad+1 ad

0 1

)(
x 1

ad+1

1 0

)
to compute Q(a).

Next, using Lemma 17
(
with g = x

)
, we get a sequence of at most 2 + 2 + 4 = 8

matrices that approximately computes Q(ax2). Again, if we were in the weak setting, we
could have appended this sequence with Q(0)Q(ad−1x)Q(0)Q(ad−2) to get Q(ax2 + ad−1x +
ad−2). However, since we are in the weakest setting, we instead append this sequence with

Q(0)
(

ad−1 ad−2
0 1

)(
x 1

ad−1

1 0

)
when ad−1 ≠ 0, and Q(0)Q(ad−2) when ad−1 = 0. This

gives us a sequence of at most 8 + 3 = 11 matrices that computes Q(ax2 + ad−1x + ad−2).

Again, using Lemma 17
(
with g = x

)
, we get a sequence of at most 11 + 2 + 4 = 17

matrices that approximately computes Q
(
(ax2 + ad−1x + ad−2)x2). As before, we append

it with Q(0)
(

ad−3 ad−4
0 1

)(
x 1

ad−3

1 0

)
when ad−3 ̸= 0, and Q(0)Q(ad−4) when ad−3 = 0.

This gives us a sequence of at most 17 + 3 = 20 matrices that approximately computes
Q
(

(ax2 + ad−1x + ad−2)x2 + ad−3x + ad−4

)
.

We continue this process. Finally, we get a sequence of at most
9d + 4

2 ≤
9 · deg(p) + 4

2
matrices that approximately computes Q(p). This proves Theorem 24. ◀

P. Dutta, C. Ikenmeyer, B. Komarath, H. Mittal, S. G. Nanoti, and D. Thakkar 31:13

7 Powering

Efficiently computing fr from f , or powering, is an essential ingredient in many constructions,
such as division elimination.

▶ Lemma 25. Let p be a polynomial. Let r ≥ 1 be an integer. Suppose that there is a
sequence of M matrices that approximately computes Q(p). Then, there is a sequence of at
most rM + 2r + 1 matrices that approximately computes Q(pr).

Proof. At a high level, we repeatedly use Lemma 17 to get Q(p2), Q(p4), . . . , Q(pr) when r

is even, and Q(p3), Q(p5), . . . , Q(pr) when r is odd. More precisely, we construct the desired
sequence as follows:

Case 1: r is even. Using Lemma 17
(
with f = 1 and g = p

)
, we get a sequence of

1 + 2M + 4 = 2M + 5 matrices that approximately computes Q(p2). Next, using Lemma 17(
with f = p2 and g = p

)
, we get a sequence of (2M + 5) + 2M + 4 = 4M + 9 matrices that

approximately computes Q(p4). Again, using Lemma 17
(
with f = p4 and g = p

)
, we get a

sequence of (4M + 9) + 2M + 4 = 6M + 13 matrices that approximately computes Q(p6).
We continue this process until finally, using Lemma 17

(
with f = pr−2 and g = p

)
, we get

a sequence of
(
(r − 2)M + 2r − 3

)
+ 2M + 4 = rM + 2r + 1 matrices that approximately

computes Q(pr).

Case 2: r is odd. Using Lemma 17
(
with f = p and g = p

)
, we get a sequence of

M + 2M + 4 = 3M + 4 matrices that approximately computes Q(p3). Next, using Lemma 17(
with f = p3 and g = p

)
, we get a sequence of (3M + 4) + 2M + 4 = 5M + 8 matrices that

approximately computes Q(p5). Again, using Lemma 17
(
with f = p5 and g = p

)
, we get a

sequence of (5M + 8) + 2M + 4 = 7M + 12 matrices that approximately computes Q(p7).
We continue this process until finally, using Lemma 17

(
with f = pr−2 and g = p

)
, we get

a sequence of
(
(r − 2)M + 2r − 6

)
+ 2M + 4 = rM + 2r − 2 matrices that approximately

computes Q(pr). This proves Lemma 25. ◀

8 Division Elimination

We are now ready to prove a division elimination result. The usual division elimination
computes f/g from f and g given that g divides f . Since we can compute Q(fg2) efficiently
from Q(f) and Q(g). Efficient division elimination will imply that we can compute Q(fg) =
Q(fg2/g) as well. In the following theorem, we prove a weaker version of division elimination,
where we show how to compute f/g2 from f and g given g2 divides f . This is the only
construction in this paper that relies on the additional power of weak projections over weakest
projections.

▶ Theorem 26. Let f(x) and g(x) be n-variate polynomials over a sufficiently large field of
characteristic 2, where x = (x1, . . . , xn). Suppose that there are sequences, say σ and π, of N

and M matrices that approximately compute Q(f) and Q(g) wrt weak projections respectively.
Assume that g2 divides f . Then, there is a sequence, say η, of O

(
N4M(M + N)

)
matrices

that approximately computes Q
(

f
g2

)
wrt weak projections.

Proof. Define h(x) := f(x)
g(x)2 . Let k be the degree of h(x). If g(0) ̸= 1, then we find α such

that g(x + α) = 1 + g1(x).

STACS 2024

31:14 On the Power of Border Width-2 ABPs over Fields of Characteristic 2

Using the sequence π, we can get a new sequence of O(M) matrices that approximately
computes g1(x). We have

h(x+α) = f(x + α)
(g(x + α))2 = f(x + α)

(1 + (−1 + g(x + α)))2 = f(x + α)
(1 + g1(x))2 = f(x + α)

1 + g2
1(x) =

∑
i≥0

f ·(g2
1)i

For each 0 ≤ i ≤ k/2, we get a sequence, say ηi, of O
(
k(M +N)

)
matrices, that approximately

computes Q(f · g2i
1) using Lemma 17.

Define P(x) :=
∑k/2

i=0 f · (g2
1)i. The following sequence, say λ, of O

(
k2(M + N)

)
matrices,

computes Q(P) approximately:

η0 · Q(0) · η1 · Q(0) · · · Q(0) · ηk/2.

Let R(t) := P(tx1, ..., txn). Note that R(t) is of the form, R(t) = b0 + b1t + b2t2 + . . . + bℓt
ℓ,

where b0, b1, . . . , bℓ are polynomials in x1, . . . , xn over F. Let a0, . . . , aℓ ∈ F. Note that

A ·

b0
b1
...
bℓ

 =

R(a0)
R(a1)

...
R(aℓ)

 , where A :=

1 a0 a2

0 . . . aℓ
0

1 a1 a2
1 . . . aℓ

1
...

...
...

...
1 aℓ a2

ℓ . . . aℓ
ℓ

For every 0 ≤ i, j ≤ ℓ, let ci,j denote the entry at the ith row and the jth column of A−1.

Then, we have

b0 = c0,0 · R(a0) + c0,1 · R(a1) + . . . + c0,ℓ · R(aℓ)

b1 = c1,0 · R(a0) + c1,1 · R(a1) + . . . + c1,ℓ · R(aℓ)
...

bℓ = cℓ,0 · R(a0) + cℓ,1 · R(a1) + . . . + cℓ,ℓ · R(aℓ)

For every 0 ≤ i ≤ ℓ, we obtain a sequence, say λi, from λ, by replacing xr with ai · xr for
every 1 ≤ r ≤ n. Note that λi approximately computes Q(R(ai)) using O

(
k2(M + N)

)
matrices.

Now, for every 0 ≤ i ≤ k, the following sequence, say Γi, approximately computes Q(bi)
using O

(
k2ℓ(M + N)

)
matrices:[

ci,0 0
0 1

]
λ0

[
1 0
0 1

ci,0

]
Q(0)

[
ci,1 0
0 1

]
λ1

[
1 0
0 1

ci,1

]
Q(0) . . . Q(0)

[
ci,ℓ 0
0 1

]
λℓ

[
1 0
0 1

ci,ℓ

]
.

Also, we have

h(x + α) = hom0
(
P(x)

)
+ hom1

(
P(x)

)
+ . . . + homk

(
P(x)

)
= b0 + b1 + . . . + bk

Therefore, the following sequence of O
(
k3ℓ(M + N)

)
matrices approximately computes

Q(h(x + α)):

Γ0 · Q(0) · Γ1 · Q(0) . . . Q(0) · Γk

Finally, we replace x by x + α in the above sequence to get a sequence, say η, that
approximately computes Q(h(x)). Note that k ≤ deg(f) ≤ N and ℓ ≤ deg(f) + k · deg(g) ≤
O(MN). Thus, η has O

(
N4M(M + N)

)
matrices. ◀

P. Dutta, C. Ikenmeyer, B. Komarath, H. Mittal, S. G. Nanoti, and D. Thakkar 31:15

9 Conclusion

This work successfully establishes that width-2 ABPs can approximate any polynomial
regardless of the characteristic of the field, thus resolving a weaker version of the open
question from [4]. Here are some immediate questions which require rigorous investigation.
1. Let f ∈ F[x], of degree d, where char(F) = 2. Further, let immc(f2) = s. Can we say

that immc2(f) = poly(s, d)?
2. Can we prove a subexponential upper bound on immc2(f), for any exponential-sparse

polynomial f , of border formula-complexity poly(n), over fields of characteristics 2? Of
course, proving a polynomial upper bound would settle the open question of [4], proving
that VF = VBP2, over fields of characteristics 2 (and hence, over any field!).

References
1 Eric Allender and Fengming Wang. On the power of algebraic branching programs of width

two. computational complexity, 25(1):217–253, 2016.
2 Michael Ben-Or and Richard Cleve. Computing algebraic formulas using a constant number

of registers. SIAM Journal on Computing, 21(1):54–58, 1992.
3 Stuart J Berkowitz. On computing the determinant in small parallel time using a small number

of processors. Information processing letters, 18(3):147–150, 1984.
4 Karl Bringmann, Christian Ikenmeyer, and Jeroen Zuiddam. On algebraic branching programs

of small width. Journal of the ACM (JACM), 65(5):1–29, 2018.
5 Peter Bürgisser. The complexity of factors of multivariate polynomials. Found. Comput. Math.,

4(4):369–396, 2004. doi:10.1007/s10208-002-0059-5.
6 Pranjal Dutta. Discovering the roots: Unifying and extending results on multivariate polyno-

mial factoring in algebraic complexity. Master’s thesis, 2018.
7 Pranjal Dutta. A tale of hardness, de-randomization and de-bordering in complexity theory.

PhD Thesis, 2022.
8 Pranjal Dutta, Fulvio Gesmundo, Christian Ikenmeyer, Gorav Jindal, and Vladimir Lysikov.

Border complexity via elementary symmetric polynomials. arXiv preprint arXiv:2211.07055,
2022.

9 Michael A Forbes and Amir Shpilka. A pspace construction of a hitting set for the closure
of small algebraic circuits. In Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, pages 1180–1192, 2018.

10 Bruno Grenet. An upper bound for the permanent versus determinant problem. Theory of
Computing, 2011.

11 Christian Ikenmeyer and Abhiroop Sanyal. A note on VNP-completeness and border complexity.
Information Processing Letters, 176:106243, 2022.

12 Mrinal Kumar. On the power of border of depth-3 arithmetic circuits. ACM Trans. Comput.
Theory, 12(1):5:1–5:8, 2020. doi:10.1145/3371506.

13 M. Mahajan. Algebraic complexity classes. Perspectives in Comp. Compl.: The Somenath
Biswas Ann. Vol., pages 51–75, 2014.

14 Meena Mahajan and V. Vinay. Determinant: Combinatorics, algorithms, and complexity.
Chicago Journal of Theoretical Computer Science, 1997(5), 1997.

15 Thierry Mignon and Nicolas Ressayre. A quadratic bound for the determinant and permanent
problem. International Mathematics Research Notices, 2004(79):4241–4253, 2004.

16 Ketan Mulmuley. Geometric complexity theory v: Efficient algorithms for noether normaliza-
tion. Journal of the American Mathematical Society, 30(1):225–309, 2017.

17 Ketan Mulmuley and Milind A. Sohoni. Geometric complexity theory I: an approach to
the P vs. NP and related problems. SIAM J. Comput., 31(2):496–526, 2001. doi:10.1137/
S009753970038715X.

STACS 2024

https://doi.org/10.1007/s10208-002-0059-5
https://doi.org/10.1145/3371506
https://doi.org/10.1137/S009753970038715X
https://doi.org/10.1137/S009753970038715X

31:16 On the Power of Border Width-2 ABPs over Fields of Characteristic 2

18 Ketan D Mulmuley and Milind Sohoni. Geometric complexity theory II: towards explicit
obstructions for embeddings among class varieties. SIAM Journal on Computing, 38(3):1175–
1206, 2008.

19 Amit Sinhababu and Thomas Thierauf. Factorization of polynomials given by arithmetic
branching programs. computational complexity, 30:1–47, 2021.

20 Volker Strassen. Vermeidung von Divisionen. Journal für die reine und angewandte Mathematik,
264:184–202, 1973. URL: http://eudml.org/doc/151394.

21 Seinosuke Toda. Classes of arithmetic circuits capturing the complexity of computing the
determinant. IEICE Transactions on Information and Systems, 75(1):116–124, 1992.

22 Leslie G Valiant. Completeness classes in algebra. In Proceedings of the eleventh annual ACM
symposium on Theory of computing, pages 249–261, 1979.

A Macaulay2 source code for main constructions

Listing 1 illustrates our construction of Q(fx) from Q(f). The code can be run using
Macaulay2. The variables O1 through O8 in these programs represent (arbitrary) polynomials
in the ring ZZ/2[eps,x1,...,xn] that appear as a result of the approximation.

Listing 1 Q(fx) from Q(f).
R=ZZ /2[eps];
S=frac R;
S[f,x,O1 ,O2 ,O3 ,O4];
M1= matrix {{1/ eps ,0} ,{0 ,1}};
M2= matrix {{f+eps ^2*O1 ,1+ eps ^2* O2 } ,{1+ eps ^2*O3 ,eps ^2* O4 }};
M3= matrix {{eps ,1} ,{0 ,1}};
M4= matrix {{1/ eps ,x} ,{ -1 ,1}};
M5= matrix {{1 ,0} ,{1 , - eps }};
print(M1*M2*M3*M4*M2*M5);

Listing 2 illustrates our construction of Q(fg2) from Q(f) and Q(g).

Listing 2 Q(fg2) from Q(f) and Q(g).
R=ZZ /2[eps];
S=frac R;
S[f,g,O1 ,O2 ,O3 ,O4 ,O5 ,O6 ,O7 ,O8];
M1= matrix {{ -1/eps ,0} ,{0 , eps }};
M2= matrix {{g+eps ^3*O5 ,1+ eps ^3* O6 } ,{1+ eps ^3*O7 ,eps ^3* O8 }};
M3= matrix {{eps ,0} ,{0 ,1/ eps }};
M4= matrix {{f+eps ^5*O1 ,1+ eps ^5* O2 } ,{1+ eps ^5*O3 ,eps ^5* O4 }};
M5= matrix {{-eps ,0} ,{0 ,1/ eps }};
M6= matrix {{1/ eps ,0} ,{0 , eps }};
print(M1*M2*M3*M4*M5*M2*M6);

http://eudml.org/doc/151394

	1 Introduction
	1.1 Our Contributions
	1.2 Comparison with previous works
	1.3 Proof ideas

	2 Preliminaries
	3 Approximately computing the Allender-Wang polynomial over fields of characteristic 2
	4 Universality of . with approximations
	5 Connections to Algebraic Formulas
	6 Improved bound for univariate polynomials
	7 Powering
	8 Division Elimination
	9 Conclusion
	A Macaulay2 source code for main constructions

