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Abstract
In the Exact Matching problem, we are given a graph whose edges are colored red or blue and
the task is to decide for a given integer k, if there is a perfect matching with exactly k red edges.
Since 1987 it is known that the Exact Matching Problem can be solved in randomized polynomial
time. Despite numerous efforts, it is still not known today whether a deterministic polynomial-time
algorithm exists as well. In this paper, we make substantial progress by solving the problem for a
multitude of different classes of dense graphs. We solve the Exact Matching problem in deterministic
polynomial time for complete r-partite graphs, for unit interval graphs, for bipartite unit interval
graphs, for graphs of bounded neighborhood diversity, for chain graphs, and for graphs without a
complete bipartite t-hole. We solve the problem in quasi-polynomial time for Erdős-Rényi random
graphs G(n, 1/2). We also reprove an earlier result for bounded independence number/bipartite
independence number. We use two main tools to obtain these results: A local search algorithm as
well as a generalization of an earlier result by Karzanov.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Parameterized complexity and exact algorithms

Keywords and phrases Exact Matching, Perfect Matching, Red-Blue Matching, Bounded Color
Matching, Local Search, Derandomization

Digital Object Identifier 10.4230/LIPIcs.STACS.2024.33

Related Version Full Version: https://doi.org/10.48550/arXiv.2401.03924

Funding Lasse Wulf : Supported by the Austrian Science Fund (FWF): W1230.

1 Introduction

A fundamental problem in computer science is the question whether a randomized algorithm
has any sort of advantage over a deterministic algorithm. In particular, theoretical computer
scientists are concerned with the question: P = BPP? Here, P contains decision problems that
can be solved deterministically in polynomial-time, while BPP contains decision problems
that can be solved with randomized algorithms in polynomial-time (under a two-sided,
bounded error probability [2]). One can also define the classes RP ⊆ BPP and CoRP ⊆ BPP
of randomized polynomial-time algorithms with one-sided error probability (the difference
between the two classes is the side of the error). Nowadays, experts in complexity theory
believe that P = RP = CoRP = BPP, i.e. it is believed that randomness does not offer
any sort of advantage for the task of solving a problem in polynomial time. The reason
for this belief are deep connections between complexity theory, circuit lower bounds, and
pseudorandom generators [2, 24,26].

While it would be intriguing to attack the conjecture P = BPP directly, it seems very
hard to make direct progress in this way. In particular, P = BPP would imply deterministic
algorithms for all problems which can be solved with randomness. A more humble approach
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33:2 On the Exact Matching Problem in Dense Graphs

one can take is to look for one specific problem, where the research community knows a
randomized, but no deterministic algorithm, and try to find a deterministic algorithm for
this specific problem. Every single of these results can be seen as further evidence towards
P = BPP. One famous example of such a “derandomization” is the deterministic algorithm
for primality testing by Agrawal, Kayal and Saxena [1] from 2002.

Quite interestingly, we only know of a handful of problems where a randomized but no
deterministic polynomial-time algorithm is known. This paper is concerned with one of these
examples, the Exact Matching problem (Em). Given an integer k and a simple graph G

together with a coloring of its edges in red or blue, Em is the problem of deciding whether
G has a perfect matching with exactly k red edges. Em was introduced by Papadimitriou
and Yannakakis [36] back in 1982. Not too long after its introduction, in 1987, Mulmuley et
al. [33] showed that Em can be solved in randomized polynomial-time. Despite the original
problem being from 1982, and in spite of multiple applications of Em in different areas (see
next paragraph), it is still not known today, if a deterministic polynomial-time algorithm
exists.

Another interesting aspect of Em is its connection to polynomial identity testing (Pit).
Pit is another one of the rare problems in BPP for which we still do not know any deterministic
polynomial-time algorithm. Given a multivariate polynomial described by an algebraic circuit,
Pit is the problem of deciding whether the polynomial is identically equal to zero or not.
Using the well-known Schwartz-Zippel Lemma (named after Schwartz [37] and Zippel [44]
who discovered it in the eighties), it is clear that Pit belongs to CoRP. Therefore, under the
conjecture CoRP = P, there should be a deterministic polynomial-time algorithm for Pit.
However, Kabanets and Impagliazzo [26] provided strong evidence that derandomizing Pit
might be notoriously hard, since it would imply proving circuit lower bounds. The known
randomized algorithm for Em uses Pit as a subroutine on a slightly modified Tutte matrix of
the given graph. Alternatively, one can substitute the use of Pit with the famous Isolation
Lemma due to Mulmuley et al. [33]. Both approaches lead to randomized polynomial-time
algorithms for Em and show that Em is contained in the class RP.

History of Exact Matching

We have already established that Em should belong to P if we believe the conjecture
P = RP = BPP. However, the best deterministic algorithm to date takes exponential
time. This is especially astonishing knowing that Em was introduced by Papadimitriou and
Yannakakis [36] back in 1982. A few years later, in 1987, Mulmuley et al. [33] showed that Em
can be solved in randomized polynomial-time in their famous paper that also introduced the
Isolation Lemma. In fact, their algorithm additionally allows for a high degree of parallelism
i.e. they proved that Em belongs to RNC (and hence also to RP and BPP). RNC is defined as
the class of decision problems allowing an algorithm running in polylogarithmic time using
polynomially many parallel processors, while having additional access to randomness (we
refer the interested reader to [6, Chapter 12] for a formal definition). This means that if we
allow for randomness, Em can be solved efficiently even in parallel, while the best known
deterministic algorithm requires exponential time.

In the same year 1987, Karzanov [27] gave a precise characterization of the solution
landscape of Em in complete and complete bipartite graphs. His characterization also implies
deterministic polynomial-time algorithms for Em restricted to those graph classes. Several
articles later appeared [19,23,42], simplifying and restructuring those results.

Em is known to admit efficient deterministic algorithms on some other restricted graph
classes as well: With standard dynamic programming techniques, Em can be solved in
polynomial-time on graphs of bounded tree-width [11,40]. Moreover, derandomization results
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exist for K3,3-minor free graphs [41, 43] and graphs of bounded genus [18]. These works
make use of so-called Pfaffian orientations. Besides solving Em on restricted graph classes,
some prior work has also focused on solving Em approximately. Yuster [43] proved that in a
YES-instance, we can always find an almost exact matching in deterministic polynomial-time
(an almost exact matching is a matching with exactly k red edges that fails to cover only
two vertices).

This completes a summary of the history of the Em problem until two years ago. With
so little progress, one might wonder if the community has lost interest in, or forgot about
the problem. However, over the last decade alone, we have seen the problem appear in
the literature from several areas. This includes budgeted, color bounded, or constrained
matching [5,28,31,32,38], multicriteria optimization [21], matroid intersection for represented
matroids [7], binary linear equation systems [4], recoverable robust assignment [17], or
planarizing gadgets for perfect matchings [22]. In many of these papers, a full derandomization
of Em would also derandomize some or all of the results of the paper. Em also appeared as
an interesting open problem in the seminal work on the parallel computation complexity of
the matching problem [39], which might be partly responsible for the increase in attention
that the problem has received recently.

Recent progress

As mentioned above, until recently, Em was only solved for a handful of graph classes. This
is even more extreme in the case of dense graphs where it was only solved on complete and
complete bipartite graphs. In 2022, El Maalouly and Steiner [12] finally made progress on
this side by showing that Em can be solved on graphs of bounded independence number and
bipartite graphs of bounded bipartite independence number. Here, the independence number
of a graph G is defined as the largest number α such that G contains an independent set of
size α. The bipartite independence number of a bipartite graph G equipped with a bipartition
of its vertices is defined as the largest number β such that G contains a balanced independent
set of size 2β, i.e., an independent set using exactly β vertices from both color classes. This
generalizes previous results for complete and complete bipartite graphs, which correspond
to the special cases α = 1 and β = 0. The authors also conjectured that counting perfect
matchings is #P-hard for this class of graphs. This conjecture was later proven in [14] already
for α = 2 or β = 3. This makes them the first classes of graphs where Em can be solved,
even though counting perfect matchings is #P-hard. This work was later extended to an
FPT-algorithm on bipartite graphs parameterized by the bipartite independence number [12].

There has also been a recent interest in approximation algorithms for Em. Such approxi-
mation algorithms have been developed for the closely related budgeted matching problem,
where sophisticated methods were used to achieve a PTAS [5] and, more recently, an efficient
PTAS [8]. These methods however do not guarantee to return a perfect matching (but note
that a deterministic FPTAS for budgeted matching would imply a deterministic polynomial-
time algorithm for Em [5]). In [9,11] it is argued that relaxing the perfect matching constraint
takes away most of the difficulty of the problem. In contrast, the aim of the recent work
has been to keep the perfect matching constraint and relax the requirement on the number
of red edges. The first such result was given in [12], where it was shown that in a bipartite
graph we can always find a perfect matching with at least 0.5k and at most 1.5k red edges in
deterministic polynomial-time. This represents a two-sided approximation for the problem.
Shortly after, [9] studied the surprisingly much more difficult problem of getting a one-sided
approximation and presented a 3-approximation in that setting (i.e. an algorithm that
outputs a perfect matching with at least k/3 and at most k red edges), relying on a newly
defined concept of graph rigidity.
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33:4 On the Exact Matching Problem in Dense Graphs

Another relaxation of the problem is to consider only modular constraints on the number
of red edges, e.g., requiring the output perfect matching to have an odd number of red edges.
In the case of bipartite graphs, the problem can be solved using the more general result
of [3] on network matrices. This does not work for general graphs, for which the problem
was solved in [13] with a different approach relying on a deep result by Lovász [30] on the
linear hull of perfect matchings. The problem remains open for other congruency constraints,
e.g., requiring the output to have (r mod p) red edges for some integers r and p. The latter
problem has been used by [34] as a building block in an algorithm for a special class of integer
programs having a constraint matrix with bounded subdeterminants. This means that a
deterministic algorithm for this special case of Em would also derandomize the algorithm
of [34].

In [11], the Top-k Perfect Matching problem is introduced, where the input is a weighted
graph and the goal is to find a PM that maximizes the weight of the k heaviest edges in the
matching. In combination with the result from [15], the problem is shown to be polynomially
equivalent to Em when the input weights are polynomially bounded. Several approximation
and FPT algorithms were also developed.

Another recent line of work follows a polyhedral approach to understand the differences
between finding a perfect matching and Em [25]. In particular, the authors show exponential
extension complexity for the bipartite exact matching polytope. This stands in contrast with
the bipartite perfect matching polytope whose vertices are all integral [10].

Finally, [40] studies some generalizations of Em to matching problems with vertex color
constraints and shows an interesting connection to quantum computing.

Our contribution

In this paper, we study Em on dense graph classes. We are able to solve Em in deterministic
polynomial time on many different classes of dense graphs, which before could only be handled
by a randomized algorithm. In order to achieve this result, we use two key techniques: First,
a local search algorithm, second, a generalization of Karzanov’s [27] theorem. With the
first technique, the local search algorithm, we obtain the following results: (For a formal
definition of all the graph classes listed, as well as a motivation for why we consider exactly
these classes, we refer the reader to Section 2.1.)

There is a deterministic nO(1) time algorithm for Em on complete r-partite graphs for
all r ≥ 1. The constant in the exponent is independent of r. This is an extension of the
special cases r = n and r = 2, which correspond to the cases of complete and complete
bipartite graphs [27] already known in 1987.
There is a deterministic nO(1) time algorithm for Em on graphs of bounded neighborhood
diversity d = O(1). The neighborhood diversity is a parameter popular in the area of
parameterized complexity [29].
There is a deterministic nO(1) time algorithm for Em on graphs G which have no complete
bipartite t-hole (i.e. Kt,t ̸⊆ G) with t = O(1).
There is a deterministic nO(log12(n)p−12) time algorithm for Em on the random graph
G(n, p). By this, we mean the following: We say an algorithm is correct for a graph G, if
for all possible red-blue edge colorings of G and all possible k, the algorithm correctly
solves Em on that input. We show that there is a deterministic algorithm A, which always
halts in nO(log12(n)p−12) steps, and if G is sampled from the distribution G(n, p), then
with high probability A is correct for G. As a special case, we obtain a quasi-polynomial
algorithm for G(n, 1/2). We are the first authors to consider Em from the perspective of
random graphs.
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As a special case, our main theorem contains a re-proof of the two main results of [12],
showing that there is a deterministic nO(1) algorithm for Em on graphs of bounded
independence number/ bip. graphs of bounded bip. independence number. Our result is
therefore a large generalization of this earlier result and puts it into the bigger context of
local search.

We also identify a certain graph property, which we call the path-shortening property.
Graphs which are very dense and structured are candidates to examine for this property.
Our main theorem is that for every graph with the path-shortening property, a local search
approach can be used to correctly solve the Exact Matching Problem. In fact, all the examples
above follow from our main theorem. We remark that our local search algorithm is very
simple, only the proof of its correctness is quite involved. The main idea of the observation
is that in graphs with the path-shortening property, strong locality statements about the set
of all perfect matchings can be made. Details are presented in Section 3.

While the local search approach allows us to tackle several new graph classes, we still
notice that it fails even on some very dense and structured graph classes. In particular, we are
interested in graph classes which are related to the problem of counting perfect matchings (for
example, Okamoto et al. [35] list chordal, interval, unit interval, bipartite chordal, bipartite
interval, and chain graphs among others). We highlight one example, the case of so-called
chain graphs, where our local search fails.

This failure inspires us to seek other methods to understand the Em problem on dense
graphs and leads us to consider our second key technique. We call this technique Karzanov’s
property, as it is a generalization of the result by Karzanov [27]. We show that several graph
classes have Karzanov’s property, including classes where our local search algorithm fails.
We introduce a related property, which we call the chord property. We introduce a novel
binary-search like procedure, which gives us both an efficient algorithm for Em on these
graph classes, as well as a characterization of their solution landscape.

Finally, we are also able to identify some graph classes, where Karzanov’s property almost
holds. We call this the weak Karzanov’s property. For those graph classes, we are not able to
solve Em deterministically, but we are at least able to show that one can always find a PM
with either k or k− 1 red edges. Hence we can come very close to solving the problem. These
graph classes are therefore obvious candidates to attack next in the effort of derandomizing
Em. In summary, we obtain the following.

There is a deterministic nO(1) time algorithm for Em on chain graphs, unit interval graphs,
bipartite unit interval graphs and complete r-partite graphs for all r ≥ 1. The solution
landscape for these graph classes can also be characterized by the perfect matchings of
maximum and minimum number of red edges with a given parity.
There is a deterministic nO(1) time algorithm on interval graphs, bipartite interval graphs,
strongly chordal graphs and bipartite chordal graphs, that outputs a perfect matching
with either k − 1 or k red edges or deduces that the answer of the given Em-instance is
“No”.

Organization of the paper

In the following we start with some preliminaries in Section 2. Then in Section 3 we introduce
our local search algorithm, the main ideas behind its correctness and its limitations. In
Section 4 we introduce Karzanov’s property, as well as Karzanov’s weak property and discuss
the main ideas behind their utility and limitations.

STACS 2024



33:6 On the Exact Matching Problem in Dense Graphs

In the appendix of the full version of this paper, you can find the detailed proofs missing
from Section 3, proofs that the local search algorithm works for several graph classes, the
detailed proofs missing from Section 4, and proofs that several graph classes satisfy Karzanov’s
property while some others only satisfy Karzanov’s weak property.

2 Preliminaries and Problem Definition

All graphs in this paper are undirected and simple. For a graph G = (V, E), we denote by
V (G) := V its vertex set and by E(G) := E its edge set. We usually use the letters n, m to
denote n := |V | and m := |E|. In this paper, paths and cycles are always simple (i.e. no
vertex is repeated). In order to simplify the notation, we identify paths and cycles with their
edge sets. Any reference to their vertices will be made explicit. The neighborhood N(v) of a
vertex v is the set of all vertices adjacent to v. A colored graph in this paper is a graph where
every edge has exactly one of two colors, i.e. a tuple (G, c) with c : E(G)→ {red, blue}. For
a subset F ⊆ E of edges, we denote by R(F ) := {e ∈ F | e is red} its set of red edges and
by r(F ) := |R(F )| its number of red edges. Analogously, we define B(F ) and b(F ) for blue
edges. A matching of G is a set M ⊆ E of edges, which touches every vertex at most once. A
perfect matching (abbreviated PM) is a matching M which touches every vertex exactly once.
An edge e is called matching, if e ∈M and non-matching otherwise. The Exact Matching
Problem is formally defined as follows.

Problem Em
Input: Colored graph (G, c), integer k ≥ 0.
Question: Is there a perfect matching M in G such that r(M) = k?

The symmetric difference A△B of two sets A and B is A ∪B \ (A ∩B). Let M be a PM.
An M -alternating cycle, or simply an alternating cycle (if M is clear from context), is a cycle
which alternates between edges in M and edges not in M . An alternating path is defined
analogously. If M1, M2 are PMs, it is well known that D := M1 △M2 is a vertex-disjoint
union of alternating cycles. Since △ behaves like addition mod 2, we also have M2 = M1△D

and M1 = M2 △D. In this paper, we try to follow the convention that the letter C denotes
a single cycle and the letter D denotes a vertex-disjoint union of one or more cycles.

2.1 Definition of Graph Classes
Throughout the paper, we show how to solve Em on various classes of dense graphs. In this
subsection, we properly define all graph classes used.

The motivation to consider exactly those classes comes from different sources. Some of
the classes considered are direct generalizations of classes, where it was previously known
that Em can be solved. Other classes are generally well-known. For the remaining classes,
we regard them as interesting, because they appear in the context of counting the number of
perfect matchings. (For example, in their paper about counting perfect matchings, Okamoto
et al. [35] list chordal, interval, unit interval, bipartite chordal, bipartite interval, and chain
graphs among others.) The reason for this is, that if it is #P-hard to count the number of
perfect matchings, then the Pfaffian derandomization method used in [18,41,43] is unlikely
to work (compare [15] for details). We also pay special attention to bipartite graphs, since
we expect Em to be easier to tackle if the graph is bipartite.

A graph is complete r-partite, if the vertex set can be partititioned into r parts V1, . . . , Vr

such that inside each part there are no edges, and between two different parts, there are all the
possible edges. The case r = n corresponds to the complete graph, while r = 2 corresponds
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to the complete bipartite graph. A generalization of complete r-partite graphs, if r = O(1),
are graphs of bounded neighborhood diversity, a parameter coming from parameterized
complexity [29]. A graph has neighborhood diversity d, if V (G) can be partitioned into d

parts V1 . . . , Vd, such that between every two parts Vi, Vj with i ̸= j, there are either no
edges, or all the possible edges, and every part itself induces either a complete or an empty
graph.

The Erdős-Rényi random graph G(n, p) is the random graph on n vertices, where every
edge appears with probability p independently [16]. It is very well-studied and has a rich
history.

The remaining definitions in this subsection are motivated by [35]. Furthermore, many
of these graph classes are extensively studied in algorithmic graph theory [20]. A graph
G = (V, E) is an interval graph if there exists a mapping I : V → {[a, b] ⊆ R | a ≤ b} such
that {u, v} ∈ E ⇐⇒ I(u) ∩ I(v) ̸= ∅ holds for all distinct u, v ∈ V . If additionally I(v) is a
unit interval for all vertices v, then G is called a unit interval graph.

We may consider bipartite versions of interval graphs the following way: A bipartite
graph G = (X ∪̇ Y, E) is a bipartite interval graph if there exists a mapping I : X ∪̇ Y →
{[a, b] ⊆ R | a ≤ b} such that {x, y} ∈ E ⇐⇒ I(x) ∩ I(y) ̸= ∅ holds for all x ∈ X, y ∈ Y . If
additionally I(v) is a unit interval for all vertices v, then G is called a bipartite unit interval
graph. Note that by this definition, if two vertices x, y ∈ X are in the same color class of the
bipartition, there is no edge between x and y even if the intervals I(x) and I(y) intersect.

Interval graphs are strongly chordal. A graph G is called strongly chordal if every cycle
of length at least 4 admits a chord and every even cycle of length at least 6 admits an odd
chord (i.e. a chord that splits the cycle into two odd length paths).

Bipartite interval graphs are bipartite chordal. A bipartite graph G is bipartite chordal if
and only if every cycle of (necessarily even) length at least 6 admits a chord.

Finally, we consider a special case of bipartite interval graphs, so-called chain graphs. A
bipartite graph G = (X ∪̇ Y, E) is a chain graph if and only if its vertices can be relabeled
as x1, . . . , x|X| ∈ X and y1, . . . , y|Y | ∈ Y such that N(xi) ⊆ N(xi+1) and N(yj) ⊆ N(yj+1)
hold for all 1 ≤ i < |X| and 1 ≤ j < |Y |.

3 Local Search

As of course is well known, the central idea behind a local search algorithm is to only examine
solutions close to the current solution at every step. Hence we require a notion of distance.
For our purpose, this notion is as follows.

▶ Definition 1. Let (G, c) be a colored graph and M1, M2 ⊆ E(G) be two PMs. The distance
between M1, M2 is

dist(M1, M2) := min{r(M1 △M2), b(M1 △M2).}

For an integer s ≥ 0, the s-neighborhood of a PM M is

N s(M) := {M ′ ⊆ E(G) |M ′ is a PM, dist(M, M ′) ≤ s}.

Note that dist(M1, M2) = min{|R(M1)△R(M2)|, |B(M1)△B(M2)|}. In other words, two
PMs have small distance if and only if their two sets of red edges are almost the same, or
their two sets of blue edges are almost the same. For example, if two PMs have the same set
of red edges, i.e. R(M1) = R(M2), then dist(M1, M2) = 0, even if their set of blue edges is
completely different.
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33:8 On the Exact Matching Problem in Dense Graphs

Observe that as a consequence of this definition, for a fixed PM M even the 0-neighborhood
N 0(M) may have exponential size in n. This is a problem for us: how can we perform local
search, if the size of the neighborhood is exponential? Fortunately, there is a fix: We do not
need to know the complete neighborhood of M , all we need to know is which values of r(M ′)
are possible to achieve in the neighborhood, i.e. the set of all k′ such that there exists a PM
M ′ in the neighborhood with r(M ′) = k′. The following lemma states that this information
can be computed efficiently. The idea is to guess either the set R(M ′) or the set B(M ′) and
see if the guess can be completed to a PM using only edges of the opposite color.

▶ Lemma 2. Assume we are given a PM M in a colored graph, and an integer s ≥ 0.
There is an algorithm which runs in O(ms+3) time and computes the set {k′ ∈ N | ∃M ′ ∈
N s(M), r(M ′) = k′} and for each k′ in this set outputs at least one representative M ′′ with
r(M ′′) = k′.

Proof. Let (G, c) be the colored graph with G = (V, E), and let ER := R(E) be the set of
all red edges and EB := B(E) be the set of all blue edges. The algorithm works as follows:
1. Enumerate all (not necessarily perfect) matchings X ⊆ ER with |X △R(M)| ≤ s. For

each such X, use a classical maximum matching algorithm on the blue edges to check
whether there exists Y ⊆ EB such that X ∪̇Y =: M ′′ is a PM. If the answer is affirmative,
we add the number k′ := |X| = r(M ′′) to the output set (together with its representative
M ′′).

2. After that, we repeat the same procedure with the colors switched: Enumerate all
matchings X ⊆ EB with |X △B(M)| ≤ s. For each such X, check whether there exists
Y ⊆ ER such that X ∪̇ Y is a PM. If yes, we add the number k′ := n/2 − |X| to the
output set (together with its representative M ′′).

The enumeration of sets X can be done in O(ms) time. Note that this algorithm is sound,
in the sense that every PM M ′′ generated by it is indeed contained in N s(M). On the
other hand, the algorithm is also complete: If M ′ ∈ N s(M), then either R(M ′) or B(M ′)
appears in the enumeration. This means that not necessarily M ′, but at least some M ′′ with
r(M ′) = r(M ′′) is found by the algorithm. The total runtime of the algorithm is Θ(msfM ),
where fM denotes the time it takes to solve the perfect matching problem deterministically.
For simplification, we let fM = O(mn2) = O(m3) [10]. ◀

Algorithm 1 A simple local search algorithm, Local(s).

Input: Colored graph (G, c), integer k ≥ 0, local search parameter s ≥ 0
Result: Either a PM M with r(M) = k, or the info that local search was

unsuccessful.
Mmin ←PM in G with minimum number of red edges among all PMs ;
M ←Mmin;
while r(M) ̸= k do

Try to find M ′ ∈ N s(M) s.t. r(M) < r(M ′) ≤ k using Lemma 2;
if successful then

M ←M ′;
else

return “local search failed.”;

return M ;
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With Lemma 2 in mind, we introduce Algorithm 1 as the most natural local search
algorithm. It starts with a PM with the minimum number of red edges and iteratively tries
to increase r(M). Note that the PM Mmin in the first line of the algorithm can be computed
in polynomial time (one can run a classical maximum weight perfect matching algorithm,
where red edges receive weight -1, and blue edges receive weight 0). Algorithm 1 can return
false negatives, in the sense that given a yes-instance of Em it is possible for the algorithm to
get stuck in a local optimum and return “false”. Algorithm 1 can not return false positives.
If we increase the search parameter s, we expect Algorithm 1 to be correct more often on
average, but we also expect a longer runtime. We denote Algorithm 1 with parameter s by
the name Local(s). Since every successful iteration increases r(M), the running time of
Local(s) is bounded by O(ms+4). It is desirable to understand when Local(s) correctly
solves Em. This is partially answered in the next subsection.

3.1 A Sufficient Condition for Local Search
We present a sufficient condition for Local(s) to correctly solve Em. Although the algorithm
Local(s) is quite simple, the proof that our condition suffices for correctness of the algorithm
is involved. The main idea is the observation that in certain dense and highly structured
graphs, it is possible to prove strong locality properties for the set of all perfect matchings.
In particular, we consider graphs which have the following technical property:

▶ Definition 3. Let t ≥ 2 be an integer. A graph G has the so-called path-shortening property
Pshort(t), if for all PMs M ⊆ G, and for all M-alternating paths P the following holds:
If F ⊆ P ∩M is a subset of matching edges of size |F | = t and F = {{a1, b1}, . . . , {at, bt}},
where the vertices a1, b1, a2, b2, . . . , at, bt appear in this order along the path, then the graph G

contains an edge {ai, bj} for some indices 1 ≤ i < j ≤ t or both the edges {ai1 , ai3}, {bi2 , bi4}
for some indices 1 ≤ i1 < i2 < i3 < i4 ≤ n.

a1 b1 a2 b2 a3 b3 a4 b4

Figure 1 An example of the property Pshort(4) on a path of length 11. Matching edges are
bold. Both possibilities of path shortening are highlighted.

An illustration of this property is provided in Figure 1. Note that the property is monotone
in t, i.e. Pshort(t) implies Pshort(t′) for all t′ > t. Our main result is the insight that the
property Pshort is sufficient for local search to be correct.

▶ Theorem 4. If a graph G has property Pshort(t), then the deterministic algorithm
Local(O(t12)) solves Em on graph G in time nO(t12) (for all possible edge colorings c :
E(G)→ {red, blue} and all target values k ∈ N).

In particular, if t = O(1), then the algorithm above is polynomial-time. Such a theorem
is only useful of course, if we can show that many different graphs have this mysterious
property Pshort. Indeed, we can show (proofs can be found in the appendix of the full
version of this paper):
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Complete r-partite graphs have the property Pshort(3) for all integers r ≥ 1.
Graphs of bounded neighborhood diversity d have the property Pshort(d + 1).
Graphs of bounded independence number α have the property Pshort(2 Ram(α + 1)),
where Ram(x) ≤ 4x is the diagonal Ramsey number.
Graphs of bounded bipartite independence number β have property Pshort(2β + 2).
If a graph G has no complete bipartite t-hole (i.e. the complement G does not contain
Kt,t as subgraph), then G has the property Pshort(2t).
The random graph G(n, p) has property Pshort(2 log(n)/p) with high probability.

The proof of Theorem 4 is quite technical and requires many steps. The complete proof
is given in the full version of this paper. The main insight is the observation that in graphs
with property Pshort, the set of all perfect matchings must obey strong locality guarantees.
For the proof of this locality statement, we introduce the new idea of local modifiers. Each
local modifier has a weight associated to it, and the goal becomes to combine the weights in
such a way, that they cancel out to be 0. The proof uses ideas and tools from Combinatorics,
like an argument similar to the Erdős-Szekeres theorem, and a helpful lemma from number
theory about 0-sum subsequences.

3.2 Limitation of Local Search
A natural question is whether the approach we presented in this section extends to more
graph classes, in particular to all dense graph classes. Here we show that our local search
approach fails even for some very dense and very structured classes of graphs. We consider
the case of chain graphs.

Recall the definition of a chain graph from Section 2.1. Note that chain graphs can
be sparse (e.g. an empty graph is a chain graph), but when required to contain a perfect
matching, the graph has to be dense. This can be seen by considering the vertex of highest
label on one side and observing that it must be connected to all vertices on the other side.
By recursively applying this observation, we can see that the number of edges in the graph
must be at least n2/8.

The following is an example of a chain graph that does not satisfy the property Pshort(t)
even for t = n. Let G = (X ∪̇ Y, E) be the chain graph defined by |X| = |Y | = n,
N(xi) := {yn−i+1, . . . , yn} for all 1 ≤ i ≤ |X| (see Figure 2). Observe that it is a valid chain
graph and that M := {{xi, yn−i+1}, for 1 ≤ i ≤ |X|} is a perfect matching. Also observe
that there is no edge of the form {xi, yj} for 1 ≤ i ≤ n− j ≤ n as required for the property
Pshort(t) (since the graph is bipartite, no edges of the form {xi, xj} or {yi, yj} exist either).

ynx1 yn−1x2 y1xnyn−2x3 yn−3x4

ynx1

yn−1x2

yn−2x3

yn−3x4

y1xn

Figure 2 An example of a chain graph G and a perfect matching M in G (left figure), where
there exists an M -alternating path with n edges from M (right figure). Edges in M are bold. The
property Pshort(n) is violated on this path.
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4 Extending Karzanov’s Characterization

In this section, we extend the characterization of exact matchings given by Karzanov [27] for
complete and complete bipartite graphs to chain graphs, unit interval graphs, and complete
r-partite graphs. Moreover, we exploit this to give deterministic polynomial-time algorithms
for Em on those graph classes. This complements the results of Section 3, as chain graphs
and unit interval graphs are not captured by the local search approach. On the other hand,
complete r-partite graphs actually fit both frameworks. Note that we only provide a coarse
outline here and defer many of the proofs and details to the appendix of the full version of
this paper.

Given a colored graph (G, c), we denote by kmin(G) the smallest integer k such that there
is a PM M in G with r(M) = k, and by kmax(G) the largest integer k such that there is a
PM M in G with r(M) = k. Assuming that G admits at least one PM, both kmin(G) and
kmax(G) exist.

Karzanov [27] proved that unless a given colored complete or balanced complete bipartite
graph (G, c) has a very specific structure, there must be a PM M in G with r(M) = k for
all kmin(G) ≤ k ≤ kmax(G). Moreover, he also characterized the special cases where this is
violated. In particular, even in those special cases the following property still holds. (We use
the symbol ≡2 to denote equivalence modulo 2).

▶ Definition 5 (Karzanov’s Property). A colored graph (G, c) satisfies Karzanov’s property if
for any two PMs M and M ′ with r(M) ≡2 r(M ′) and any integer k with r(M) ≤ k ≤ r(M ′)
and k ≡2 r(M) ≡2 r(M ′), G admits a PM M ′′ with r(M ′′) = k.

In other words, if a graph has Karzanov’s property, then if we go in steps of two we always
find all possible values of red edges between two given PMs of the same parity. We extend
this line of work by proving that all colored chain graphs, unit interval graphs, and complete
r-partite graphs satisfy Karzanov’s Property too. This allows us to decide Em on these
graph classes by using an algorithm for Bounded Correct-Parity Perfect Matching (Bcpm)
introduced by [13].

Problem Bcpm
Input: Colored graph (G, c), integer k ≥ 0.
Question: Is there a PM M in G with r(M) ≤ k and r(M) ≡2 k?

We claim that if a graph has Karzanov’s property, then Em reduces to Bcpm. Indeed,
let A be an algorithm for Bcpm. Given a colored graph (G, c) and an integer k, we can
call A with input (G, c) and k to check whether there exists a PM M with r(M) ≤ k and
r(M) ≡2 k. Next, assume we compute the inverse coloring c with c(e) = red if c(e) = blue,
and c(e) = blue if c(e) = red for all e ∈ E. By calling A with input (G, c) and k′ = n

2 − k,
we can check the existence of a PM M with r(M) ≥ k and r(M) ≡2 k in (G, c). If we know
that Karzanov’s property holds in (G, c), these two pieces of information are sufficient to
decide Em. (Note that instead of using the algorithm for Bcpm twice, we can first use an
algorithm for the simpler problem Cpm which is defined similarly to Bcpm but without the
bound on the number of red edges. Depending on the number of red edges in the output
matching we then set the Bcpm input appropriately. Cpm has been shown to be solvable in
deterministic polynomial time on general graphs [13].)

▶ Observation 6. Em reduces to Bcpm in colored graphs that satisfy Karzanov’s property.
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Recall that our goal is to give deterministic polynomial-time algorithms for Em in unit
interval graphs, chain graphs, and complete r-partite graphs. Observation 6 provides a
possible strategy to achieve this. In particular, we will now proceed to give a condition on
graphs that implies Karzanov’s property. As it turns out, the same condition is also sufficient
to give deterministic polynomial-time algorithms for Bcpm.

4.1 A Sufficient Condition for Karzanov’s Property
We will now present a sufficient condition for Karzanov’s property. As it turns out, the
condition is also sufficient to give deterministic polynomial-time algorithms for Bcpm. Our
condition is based on the existence of certain chord structures in all even-length cycles of a
given graph. To state it, we first need to introduce some terminology for chords.

▶ Definition 7 (Odd Chord, Even Chord, Split of a Chord). Let C be a cycle in a graph
G = (V, E). An edge e ∈ E is a chord of C if and only if both endpoints of e are on C but
e /∈ C. Let now e = {u, v} be a chord of C and consider the paths P1, P2 obtained by splitting
C at u and v i.e. C = P1 ∪̇ P2. We call e an odd chord of C if and only if either P1 or P2
has odd length. Otherwise, e is called an even chord of C. The split of e is the minimum of
the lengths of P1 and P2.

Note that the above definition technically allows C to have even or odd length, but in general
we will only be interested in chords of even-length cycles here.

▶ Definition 8 (Adjacent Chords). Let C be a cycle in a graph G with chords e = {x, y} ∈ E

and f = {u, v} ∈ E whose endpoints appear on C in the order u, v, x, y. Then e and f are
said to be adjacent chords of C if additionally, we have {v, x} ∈ C and {u, y} ∈ C.

y u a

b

vx

Figure 3 An example of a 10-cycle with three chords. The chords {x, y} and {u, v} are adjacent
and they are both odd chords. Conversely, {a, b} is an even chord with split 2. The split of {x, y} is
3 and the split of {u, v} is 5.

An example of these definitions is found in Figure 3. Given these definitions, we are now
ready to state our sufficient condition. Note that the condition is only about the graph
structure, i.e. the coloring is irrelevant here.

▶ Definition 9 (Chord Property). A simple graph G = (V, E) satisfies the chord property if
1. every even cycle C of length at least 6 either has an odd chord or all possible even chords,

and
2. every even cycle C of length at least 8 either has two adjacent odd chords or all possible

even chords with split at least 4.

As it turns out (see appendix of the full version of this paper), chain graphs, unit interval
graphs, and complete r-partite graphs all satisfy the chord property. In fact, the even chords
are only needed in complete r-partite graphs. In other words, chain graphs and unit interval
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graphs satisfy the chord property without making use of the parts about even chords. By
our next lemma, this means that all three graph classes satisfy Karzanov’s property for every
possible coloring.

▶ Lemma 10 (Chord Property is Sufficient). Let G be an arbitrary graph satisfying the chord
property and let c be an arbitrary coloring of G. Then the colored graph (G, c) satisfies
Karzanov’s property.

Proof. Deferred to the appendix of the full version of this paper. ◀

Note that the reverse is not true, i.e. given a colored graph (G, c) with Karzanov’s property,
it is not necessarily the case that G has the chord property.

In order to solve Em on graphs satisfying the chord property, it remains to give a
deterministic polynomial-time algorithm for Bcpm on those graphs.

▶ Lemma 11 (Bcpm on Graphs with the Chord Property). There is a deterministic polynomial-
time algorithm that decides Bcpm correctly for all inputs where the graph satisfies the chord
property.

Proof. Deferred to the appendix of the full version of this paper. ◀

Finally, we can combine Observation 6 with Lemma 10 and Lemma 11 to get the main result
of this section.

▶ Theorem 12. There is a deterministic polynomial-time algorithm that decides Em on all
colored graphs (G, c) where G satisfies the chord property.

Proof. The colored graph (G, c) satisfies Karzanov’s property by Lemma 10. By Observa-
tion 6, this reduces deciding Em for (G, c) to deciding Bcpm. Moreover, the graph G remains
unaltered in this reduction. Hence, this can be achieved in deterministic polynomial-time
with the algorithm from Lemma 11. ◀

We prove in the appendix of the full version of this paper that unit interval graphs, chain
graphs, and complete r-partite graphs satisfy the chord property. We conclude that Em
restricted to those graph classes can be decided in deterministic polynomial-time.

4.2 Limitation of Karzanov’s Property
A natural question is whether the approach we presented in this section extends to more
graph classes. In particular, interval graphs and bipartite interval graphs would be suitable
candidates as they are superclasses of unit interval graphs and chain graphs, respectively.

Unfortunately, it turns out that Karzanov’s Property is violated on both graph classes.
Concrete counterexamples are given in Figures 4 and 5.

While our approach fails to generalize to these graph classes, there still seems to be some
hope. Consider the following property of colored graphs, which we coined Karzanov’s weak
property.

▶ Definition 13 (Karzanov’s Weak Property). A colored graph (G, c) satisfies Karzanov’s
weak property if for any two PMs M and M ′ and integer k with r(M) ≤ k ≤ r(M ′), there is
a PM M ′′ with r(M ′′) ∈ {k, k + 1}.
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v

I(v)

Figure 4 On the left we have a colored interval graph on eight vertices which does not satisfy
Karzanov’s property. In particular, there are PMs with 0, 1, 3, and 4 red edges but there is no PM
with exactly 2 red edges. The interval representation of the graph is given on the right. Interval I(v)
corresponds to vertex v from the left. Note that the vertical position of the intervals is irrelevant,
only the relative horizontal position of the intervals matters.

Figure 5 By deleting the even chords from the graph in Figure 4, we obtain a bipartite interval
graph. It admits the same PMs as the interval graph in Figure 4. Hence, this colored graph also
violates Karzanov’s property.

The main difference to Karzanov’s property is that we are missing the constraint on the
parity of the number of red edges. Consider e.g. a graph with exactly two PMs with 0
and 3 red edges, respectively. Such a graph would satisfy Karzanov’s property but violate
Karzanov’s weak property. In particular, Karzanov’s property does not imply Karzanov’s
weak property. Still, compared to Karzanov’s property, Karzanov’s weak property gives us
less structure to work with and typically holds on larger graph classes. Unfortunately, we
have not yet been able to solve Em using Karzanov’s weak property.

As it turns out, all colored bipartite chordal and strongly chordal graphs satisfy Karzanov’s
weak property.

▶ Lemma 14. All colored bipartite chordal and strongly chordal graphs satisfy Karzanov’s
weak property.

Proof. Deferred to the appendix of the full version of this paper. ◀

In particular, the same observation holds in all colored interval and bipartite interval
graphs as they are subclasses of strongly chordal and bipartite chordal graphs, respectively.

5 Conclusion

In this paper we made substantial progress towards solving the notoriously difficult Exact
Matching problem, in particular in the regime of dense graphs. We provide general frameworks
that not only encompass all previously known results for these types of graphs, but also
include a multitude of graph classes for which the problem is now solved. We remark that it
is inherent to our techniques that they will fail on sparse graphs: It seems very unlikely that
a local search on a sparse graph is successful (since changing one edge of a PM in a sparse
graph often times requires changing many more edges). It is also unlikely that a sparse graph
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has Karzanov’s property: On sparse graphs, we do not expect the solution landscape to be
dense. Still, we hope that our approach sheds further light onto these questions. One could
imagine, for example, to split a graph into a dense and a sparse part, and apply different
techniques to different parts.

In this paper, we also provided some open questions that are reasonable to attack next,
since they seem to be in reach of current methods. In particular, is it possible to have a
deterministic poly-time algorithm for G(n, 1/2)? Can one find a deterministic poly-time
algorithm for those graph classes where the weak Karzanov property holds? (Interval graphs,
bipartite interval graphs, strongly chordal graphs, bipartite chordal graphs.) Note that for
graphs with the weak Karzanov property, we can always find a PM with either k − 1 or k

red edges, but the final decision if k can be achieved still seems difficult.
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