
The 2-Attractor Problem Is NP-Complete
Janosch Fuchs #

RWTH Aachen University, Germany

Philip Whittington1 #

ETH Zürich, Switzerland

Abstract
A k-attractor is a combinatorial object unifying dictionary-based compression. It allows to compare
the repetitiveness measures of different dictionary compressors such as Lempel-Ziv 77, the Burrows-
Wheeler transform, straight line programs and macro schemes. For a string T ∈ Σn, the k-attractor
is defined as a set of positions Γ ⊆ [1, n], such that every distinct substring of length at most k is
covered by at least one of the selected positions. Thus, if a substring occurs multiple times in T , one
position suffices to cover it. A 1-attractor is easily computed in linear time, while Kempa and Prezza
[STOC 2018] have shown that for k ≥ 3, it is NP-complete to compute the smallest k-attractor by a
reduction from k-set cover.

The main result of this paper answers the open question for the complexity of the 2-attractor
problem, showing that the problem remains NP-complete. Kempa and Prezza’s proof for k ≥ 3 also
reduces the 2-attractor problem to the 2-set cover problem, which is equivalent to edge cover, but
that does not fully capture the complexity of the 2-attractor problem. For this reason, we extend
edge cover by a color function on the edges, yielding the colorful edge cover problem. Any edge
cover must then satisfy the additional constraint that each color is represented. This extension
raises the complexity such that colorful edge cover becomes NP-complete while also more precisely
modeling the 2-attractor problem. We obtain a reduction showing k-attractor to be NP-complete
and APX-hard for any k ≥ 2.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness;
Theory of computation → Approximation algorithms analysis; Theory of computation → Data
compression

Keywords and phrases String attractors, dictionary compression, computational complexity

Digital Object Identifier 10.4230/LIPIcs.STACS.2024.35

1 Introduction

Compressing text without losing information is usually achieved by exploiting structural
properties of the text. For example, dictionary-based compression works by removing
redundancy resulting from repeatedly occurring substrings. Thus, any measurement capturing
the repetitiveness of strings is directly related to the performance of dictionary compression
techniques.

In fact, Kempa and Prezza show in [16] that the solutions of famous compression
algorithms, like Lempel-Ziv 77, the Burrows-Wheeler transform or straight-line programs,
are approximations of a certain measurement for repetitiveness, the so called string attractor,
which was introduced in [23]. These results are extended by Kempa and Saha [17] to include
the LZ-End compression algorithm proposed by Kreft and Navarro [19], and Kempa and
Kociumaka [14] apply string attractors to resolve the Burrows-Wheeler transform conjecture.

Further, Kempa and Prezza [16] build a universal data structure based on string attractors
supporting random-access on any dictionary compression scheme. In [22], Navarro and Prezza
improve data access when a string attractor is known, showing that the compression-based

1 Parts of this work were produced as part of the author’s Master’s thesis at RWTH Aachen University.

© Janosch Fuchs and Philip Whittington;
licensed under Creative Commons License CC-BY 4.0

41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024).
Editors: Olaf Beyersdorff, Mamadou Moustapha Kanté, Orna Kupferman, and Daniel Lokshtanov;
Article No. 35; pp. 35:1–35:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fuchs@algo.rwth-aachen.de
https://orcid.org/0000-0003-3993-222X
mailto:philip.whittington@rwth-aachen.de
https://orcid.org/0009-0005-0910-6826
https://doi.org/10.4230/LIPIcs.STACS.2024.35
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 The 2-Attractor Problem Is NP-Complete

string attractors suffice to support fast indexed queries, that is, searching for all occurrences
of a given pattern in a text. Thus, string attractors are not only the basis of dictionary
compression, they also allow for a universal indexing data structure that works on top of every
dictionary compression scheme. Christiansen et al. continue this work in [8] by constructing
an efficient indexing algorithm that is based on the underlying string attractor, but does
not need to explicitly compute it, achieving optimal time results for locating and counting
indices.

For a string of length n, an attractor is a set of positions Γ ⊆ [1, n] covering all distinct
substrings, that is, every distinct substring has an occurrence crossing at least one of the
selected positions. If only distinct substrings up to a certain length k need to be covered, we
speak of the k-attractor. As an example, for the string

T = abbcabccac,

position 2 covers the substrings b, ab and bb, and the set of markings Γ = {2, 7, 9} forms a
2-attractor for T . It is not a valid 3-attractor and therefore not an attractor because the
substrings bca and cab are not covered. Adding either 4 or 5 to Γ results in an attractor,
and there is no smaller attractor for T .

In [16] Kempa and Prezza also show that computing the smallest k-attractor is NP-
complete for any k ≥ 3, by giving a reduction from k-set cover, and extend this proof to
non-constant k, especially for k = n. On the other hand, the problem is trivially solvable in
polynomial time for k = 1 by a greedy algorithm. The complexity for k = 2 was raised as an
open problem.

Variants of the problem have been introduced, such as the sharp k-attractor in [15], which
only considers distinct substrings of length exactly k, and the circular attractor in [20], which
also requires to cover circular substrings. Interestingly, the sharp k-attractor problem can
also be reduced from and to k-set cover and is therefore NP-complete for k ≥ 3. However,
the sharp 2-attractor problem reduces to 2-set cover, which is equivalent to edge cover and
therefore solvable in polynomial time. Notably, the sharp variant does not exhibit the same
gap as the k-attractor problem.

Mantaci et. al [20] take a combinatorial approach and study the attractor sizes of infinite
families of words, such as Sturmian words, Thue-Morse words and de Bruijn words. This
lead to Schaeffer and Shallit [25] raising the definition of the string attractor problem to
infinite words by considering automatic sequences and computing attractors of every finite
prefix. Further work on attractors of infinite words, especially those generated by morphisms,
has been done by Restivo, Romana, and Sciortino [24], Gheeraert, Romana, Stipulanti [12],
and Dvořáková [11].

Akagi, Funakoshi, Inenaga [1] analyze the sensitivity of an attractor, i.e., how much can
editing a single position change the result. Bannai et. al [3] formulate the attractor and
other dictionary compressors as instances of the maximum satisfiability problem and present
computational studies showing that an attractor can be computed in reasonable time with
this approach.

A more recent development in the field of data compression is the relative substring
complexity measure δ [18], which counts the number of different substrings of length l and
scales it by l. It is efficient to compute and also smaller than the size of the optimal string
attractor by up to a logarithmic factor, but allows to use the results on string attractors
with that overhead.

J. Fuchs and P. Whittington 35:3

Our result is obtained by a technique in which we make a problem colorful by adding
colors to its edges (or vertices) and requiring all colors to appear in a solution. This idea or
similar versions of it are spread out throughout the literature and thus also known by other
names such as labeled, rainbow, tropical, or color-spanning. It is mostly used in relation to
paths in the graph [4, 10, 2] and matching problems [21, 7, 9, 5].

Our Contributions

The main result of this paper answers the open question for the complexity of the 2-attractor
problem, showing that the problem remains NP-complete and thus closing the last remaining
gap in the complexity analysis of the k-attractor problem.

We introduce a more general version of the k-attractor, where the input is a set of strings
and each distinct substring only needs to be covered by an attractor position in at least one
of the input strings. We call this a k-set attractor and show that it can be simulated by a
single k-attractor, showing the equivalence of the two problems. The ability to construct
multiple strings as input makes the proof of the main result more convenient.

Kempa and Prezza [16] give reductions for k-attractor from k-set cover and to k(k + 1)/2-
set cover, placing 2-attractor between 2-set cover and 3-set cover. A k-set cover reduction is
also used in [15] to show that sharp 2-attractor is solvable in polynomial time. Essentially,
both the k-attractor and the less restrictive sharp k-attractor problem are reduced from k-set
cover, indicating that some of the complexity of the k-attractor is lost in the process. For
this reason, we further investigate the relation between 2-attractor and 2-set cover problem,
which is equivalent to the edge cover problem.

Thus, we extend the edge cover problem with a color function on the edges, yielding the
colorful edge cover problem. Any edge cover must then satisfy the additional constraint
that each color is represented. The complexity of edge cover combined with the additional
complexity from the colorfulness condition raises the complexity of colorful edge cover to
NP-complete, although the problems each on their own are solvable in polynomial time. The
hardness is shown by a reduction from a variable-bounded SAT variant. The colors are used
to model a truth assignment of the variables and the edge cover condition verifies that this
assignment is satisfying. The colorful edge cover problem captures the constraints of the
2-attractor problem more tightly. We later use this result to extend the structure of the
reduction to the k-attractor problem. With the reduction we not only show the NP-hardness
of the 2-attractor problem, we also obtain an APX-hardness result.

Our paper is organized as follows, we introduce in Section 2 the set of strings attractor
problem and discuss its relation to the already introduced variations, showing that it is as
hard as the classical k-string attractor problem. In Section 3 we define the colorful edge
cover problem and show that it is NP-complete. The main result, the NP-completeness of
the 2-attractor problem, is presented in Section 4. Afterwards, in Section 5, we discuss the
implicit APX-hardness that results from our reduction.

2 Attractors of Strings, Circular Strings, and Sets of Strings

We start with the definition of the k-attractor and explain already introduced variations
before we define the k-set attractor. Afterwards, we discuss how to solve the corresponding
problems in polynomial time, if there exists an algorithm that solves one of the problems in
polynomial time. Thus, we show that the problems are equivalent in their complexity.

STACS 2024

35:4 The 2-Attractor Problem Is NP-Complete

▶ Definition 1 (k-attractor [16]). A set Γ ⊆ [1, n] is a k-attractor of a string T ∈ Σn if every
substring T [i . . . j] such that i ≤ j < i + k has an occurrence T [i′ . . . j′] with j′′ ∈ [i′ . . . j′] for
some j′′ ∈ Γ.

A solution Γ is called a string attractor or simply attractor if k = n. The corresponding
optimization and decision problems are the minimum-k-attractor problem and the k-attractor
problem.

For the circular k-string attractor problem, the input string is circular, resulting in
additional substrings starting at the last letters of the input string and continuing at the
beginning. Thus, there are more substrings that need to be covered compared to the k-string
attractor problem. However, these additional substrings can make the solution smaller.

It is convenient for the proof of Theorem 9 to allow k-attractors over multiple strings.
This does not change the problem much, in fact k-set attractors can be easily simulated
by unique delimiter symbols. We formally define a set attractor over m strings of possibly
different lengths n1, . . . nm as a set of tuples, with the first entry of the tuple denoting the
string and the second entry denoting the position.

▶ Definition 2 (k-set attractor). A set Γ ⊆
⋃m

x=1
⋃nx

y=1{(x, y)} is a k-set attractor of a set of
m strings T = {T1, . . . Tm} with Tx ∈ Σnx if every substring Tx[i . . . j] such that i ≤ j < i+k

has an occurrence Tx′ [i′ . . . j′] with j′′ ∈ [i′ . . . j′] for some (x′, j′′) ∈ Γ.

A string is a circular string cut once, applying more cuts gives a set of strings. Therefore,
if we can describe the behavior of attractors under cuts, we can show those three to be the
same. The equivalence of circular k-attractors and k-attractors is already shown in [20].
We extend the idea of adding a delimiter, which must be part of any solution, to remove
the impact of circularity and thereby acting as a cut, i.e., substrings that stretch over the
delimiter are already covered. The remaining substrings are then the same as the substrings
of two separate strings.

▶ Lemma 3. An algorithm solving the k-attractor problem can solve the k-set-attractor
problem with linear overhead in the input size, and vice versa.

Proof. Given a set of strings T = {T1, . . . , Tm} over an alphabet Σ, create m−1 new symbols
#1, . . . #m−1 ̸∈ Σ and use them to stitch the strings together as T = T1#1T2#2 . . . #m−1Tm.
Then, T has a k-attractor of size p + m − 1 if and only if T has a k-set attractor of size
p, because any attractor for T has to mark each position of the unique delimiter symbols.
The remaining markings induce a k-set attractor for T, and a k-set attractor combined with
those markings yields a k-attractor for T .

For the other direction, given a string T just use the singleton {T} as input for k-set
attractor problem. ◀

Table 1 shows the combined results of [20] and our proof. Given an input string T , T ∗ or
T and solution size p for the k-attractor, circular k-attractor or k-set attractor problem and
a function solving one of the problems, potentially a different one, the corresponding entry
describes how to modify the input to decide the problem corresponding to the input with
the given function. Transforming a circular string into a set of strings or vice versa is done
using strings as an intermediate step. A variant of the problem on a set of circular strings is
also equivalent by transforming each circular string into a string with the given operations,
obtaining a set of strings which can be further transformed as desired.

J. Fuchs and P. Whittington 35:5

Table 1 Equivalence of different attractor problems.

input ⟨T, p⟩ ⟨T ∗, p⟩ ⟨T, p⟩

string ⟨T, p⟩ ⟨T ∗T ∗T ∗, p⟩ ⟨T1#1T2 . . . #m−1Tm, p + m − 1⟩

circular ⟨T #, p + 1⟩ ⟨T ∗, p⟩ ⟨T1#1T2 . . . #m−1Tm#m, p + m⟩

set ⟨{T }, p⟩ ⟨{T ∗T ∗T ∗}, p⟩ ⟨T, p⟩

3 The Colorful Edge Cover Problem

The key idea behind colorfulness is to extend a problem in P, i.e. edge cover, by a color
function on the set of solution elements to raise the complexity to NP-complete. Any solution
to the initial problem must then satisfy the additional condition that each color is represented.
The colors can be used to model guessing a certificate for an NP-complete problem, and the
structure of the initial problem is used to verify that certificate.

We define an edge coloring on a set of colors C as a surjective function col : E → C.
It is required that col is surjective to avoid trivially unsolvable instances. Note that this
is different from the edge coloring problem where the colors are subject to the constraint
that no two edges of the same color are adjacent. The set of edges E is allowed to contain
self-loops, i.e., an edge of the form {v, v}. Normally, self-loops are not of interest for the edge
cover problem, because they only cover one vertex, making every other adjacent edge more
desirable. However, the additional colorfulness constraint can make the self-loops necessary
as part of an optimal solution.

▶ Definition 4 (Colorful Edge Cover). For an undirected edge-colored graph G = (V, E, col),
with col : E → C, a subset E′ ⊆ E is called a colorful edge cover of G, if for each vertex
v ∈ V there is an edge {v, w} ∈ E′, and for each color c ∈ C there is an edge e ∈ E′ with
col(e) = c.

By minimum colorful edge cover, we denote the optimization problem of finding a
smallest colorful edge cover. The set {⟨G, p⟩ : G has a colorful edge cover of size p} defines
the corresponding decision problem, the colorful edge cover problem. Before we show its
hardness, we prove that any algorithm that solves the minimum colorful edge cover problem
on simple graphs, also solves the problem on graphs with self-loops. We achieve this by
constructing a gadget of constant size replacing all self-loops.

▶ Lemma 5. An algorithm solving the colorful edge cover problem on simple graphs also
solves the colorful edge cover problem on graphs with self-loops.

Proof. Self-loops can be simulated by a gadget consisting of two new vertices and a new
color. Introduce a new color b and two new vertices x, y that are connected by an edge of
color b. For any vertex v with a self-loop of color a, instead connect v and x with color a.
Any valid solution contains the unique edge of color b such that x and y are always covered.
Choosing the edge {v, x} then only covers v and color a, which is the same behaviour as for
the self-loop. The resulting graph does not contain self-loops and has a colorful edge cover
on C + 1 colors of size p + 1 if and only if the original graph has a colorful edge cover on C
colors of size p. ◀

In the following, we introduce a special, balanced version of the satisfiability problem
that enables us to show the NP-hardness of the colorful edge cover problem.

STACS 2024

35:6 The 2-Attractor Problem Is NP-Complete

ci1 ci1,j1 li1,j1 li2,j2
ci2,j2 ci2

0 0 a 0 0

ci3 ci3,j3 li3,j3 li4,j4
ci4,j4 ci4

0 0 a 0 0

Figure 1 Gadgets for a variable xa in the colorful edge cover reduction.

▶ Definition 6 ((3, B2)-SAT). A Boolean formula ϕ =
∧m

i=1 ci =
∧m

i=1
∨L(ci)

j=1 li,j over the
variables Xn = {x1, . . . , xn} is a (3, B2)-SAT instance if each clause consists of exactly three
literals and each literal occurs exactly two times, thus each variable occurs exactly four times.
We denote the satisfiability problem for (3, B2)-SAT instances by (3, B2)-SAT.

By a result from Berman, Karpinski and Scott [6], (3, B2)-SAT is NP-complete.

▶ Theorem 7. The colorful edge cover problem is NP-complete.

Proof. The problem is in NP, as a subset E′ ⊆ E forming a colorful edge cover can be
encoded and verified in polynomial space and time. We show its hardness by a reduction
from (3, B2)-SAT.

Given a (3, B2)-SAT formula ϕ, for each clause ci =
∨3

j=1 lj , construct a clause vertex
ci, and for each j ∈ [1, 3] construct an intermediate vertex ci,j connected to ci, and a literal
vertex li,j connected to ci,j . All those edges are assigned the color 0. Further, for each
variable xa, connect the two vertices li1,j1 , li2,j2 corresponding to its positive literal with an
edge of color a, and the two vertices li3,j3 , li4,j4 corresponding to its negative literals with
another edge of color a. Figure 1 shows the subgraph for a variable xa. Note that the clause
vertices of the form ci have two more neighbors ci,j′ , ci,j′′ not depicted here as they also
belong to the gadgets of their other literals. The dashed lines form a solution representing a
false assignment to the variable xa, whereas the solid lines represent setting the variable to
true. We claim that the constructed graph has a colorful edge cover of size n + |ϕ| = 5n if
and only if ϕ is satisfiable.

Assume a colorful edge cover of size n + |ϕ| = 5n exists. These costs are always a lower
bound for the colorful edge cover, as there has to be one chosen edge for each color other
than 0, and one edge for each intermediate vertex ci,j , as they are pairwise non-adjacent and
all their incident edges have color 0.

Another way to see this is to consider the vertices unique to each variable xa, which are
four pairs of the form ci,j , li,j . Because only the edges {li1,j1 , li2,j2} and {li3,j3 , li4,j4} have
the color a, it is not possible to cover all the intermediate vertices ci,j and the color with less
than five edges. The dashed and solid lines in Figure 1 each refer to one way to cover all
unique elements with five edges, while also covering either ci1 and ci2 or ci3 and ci4 . Without
loss of generality, we assume that the edges adjacent to the included edge of color a are not
included, so our solution follows this form. Then, a clause vertex ci is only covered by an
edge {ci, ci,j} if the edge {ci,j , li,j} is not included. In turn, this means that the edge of
color a incident to li,j is included, indicating that variable Xa is assigned a truth value that
satisfies ci.

J. Fuchs and P. Whittington 35:7

Given a satisfying assignment of Xn for ϕ, construct a colorful edge cover for G

as follows. For each variable xa, consider the two gadgets ci1ci1,j1 li1,j1 li2,j2ci2,j2ci2 and
ci3ci3,j3 li3,j3 li4,j4ci4,j4ci4 . If xa is positive, choose the edges

{ci1 , ci1,j1}, {li1,j1 , li2,j2}, {ci2,j2 , ci2}, {ci3,j3 , li3,j3}, {li4,j4ci4,j4}.

Note that {li1,j1 , li2,j2} has color a. If xa is negative, choose the edges

{ci1,j1 , li1,j1}, {li2,j2 , ci2,j2}, {ci3 , ci3,j3}, {li3,j3 , li4,j4}, {ci4,j4ci4}.

Note that {li3,j3 , li4,j4} has color a. In both cases, we infer a cost of 5n. It is clear for all
vertices except the clause vertices ci that they are covered. Because ϕ is satisfied by the given
assignment, any clause ci is satisfied by some literal lj , so by our choice the edge {ci, ci,j}
is included, covering ci. Further, the color 0 is covered 4n times, and each other color is
covered exactly once. ◀

4 NP-Completeness of the 2-Attractor Problem

We now give a formal definition of a graph interpretation of strings and their substrings of
length 2 which we call the 2-substring graph. Each position in a string corresponds to an
edge in this graph. This interpretation was used to show that computing sharp 2-attractors
can be done in time O(n

√
n) [15] by solving the edge cover problem on this graph. However,

we additionally use symbols to label the edges, yielding instances of the colorful edge cover
problem instead.

▶ Definition 8. Given a set of strings T = {T1, . . . Tm} with Ti ∈ Σni , we define the
2-substring graph of T by G(T) = (V, E = E1 ∪ E2 ∪ E3, σ) with V = {xy ∈ Σ2 |
xy is a substring of any Ti ∈ T},

E1 ={(xy, yz) ∈
(
Σ2)2 | xyz is a substring of any Ti ∈ T}

E2 ={(xy, xy) ∈
(
Σ2)2 | xy is the prefix of any Ti ∈ T}

E3 ={(yz, yz) ∈
(
Σ2)2 | yz is the suffix of any Ti ∈ T}

and σ : E → Σ is a labeling function on the edges defined by

σ(e) =

y, if e = (xy, yz) ∈ E1,

x, if e = (xy, xy) ∈ E2,

z, if e = (yz, yz) ∈ E3.

Figure 2 shows the 2-substring graph of a set of strings {abbbcd, bca, dec}, where the solid
lines are from E1, the dashed lines are the prefix self-loops from E2 and the dotted lines
are the suffix self-loops from E3. Note that the 2-substring graph does not capture words
of length 1, as they do not have a substring of length 2 and therefore no associated vertex.
However, these are not relevant to our problem. In a preprocessing step, we can remove
the word of length 1 if its symbol also occurs in a longer string, or we have to add it to the
solution if this is the only occurrence of the symbol.

The 2-attractor problem as a special case of the k-attractor problem is in NP [16]. To
show NP-hardness, we essentially consider the reduction for colorful edge cover and find
an assignment of symbols to the edges such that the resulting graph is a 2-substring graph
representing a set of strings. The key idea is that this 2-substring graph with the edge labels

STACS 2024

35:8 The 2-Attractor Problem Is NP-Complete

ab bb bc cd ca de ec

a

b

b

b c

db

c

a

e

d c

Figure 2 The 2-substring graph for {abbbcd, bca, dec}.

interpreted as a set of colors has a colorful edge cover of a fixed size p if and only if the
underlying set of strings has a k-attractor of size p. Towards this step, we assign a 2-substring
to each vertex created in the proof of Theorem 7 and exchange colors with symbols. It
is vital that each vertex has a unique label so that each vertex uniquely corresponds to a
2-substring. For that reason, we need to introduce more symbols and pay attention that they
are all covered. The 2-substring graph representation of the constructed gadgets is shown in
Figure 3. Comparing this to Figure 1 shows the similarities in the proofs.

Note that we do not give a reduction from the colorful edge cover problem to the 2-
attractor problem, but use the structure of the colorful edge cover to give a reduction directly
from (3, B2)-SAT to the 2-attractor problem on sets. Combined with Lemma 3, this shows
the NP-completeness of the 2-attractor problem.

▶ Theorem 9. The 2-attractor problem is NP-complete.

Proof. We again start with a (3, B2)-SAT formula ϕ. We create a set of strings based on an
alphabet Σ = C ∪ L ∪ L ∪ X = {C1, . . . , Cm} ∪ {L1, L2, L3} ∪ {L1, L2, L3} ∪ {X1, . . . , Xn}.
Note that the symbols for the literals L, L only indicate the position of the literal in its
clause and whether it is negated, but not the clause itself.

We now construct a set of strings T. For every variable Xa that appears positively
in clauses ci1 and ci2 at literals li1,j1 and li2,j2 respectively with i1 ≤ i2 (and j1 < j2
if i1 = i2), we add a string Ci1Ci1Lj1XaLj2Ci2Ci2 . For every variable Xa that appears
negatively in clauses ci3 and ci4 at literals li3,j3 and li4,j4 respectively with i3 ≤ i4 (and
j3 < j4 if i3 = i4), we add a string Ci3Ci3Lj3XaLj4Ci4Ci4 . We also add six auxiliary strings
L1L1, L1L1, L2L2, L2L2, L3L3, L3L3 to make sure all symbols Lj and Lj are covered.

This construction is shown in Figure 3 as subgraphs of the 2-substring graph. Note that
the clause vertices of the form CiCi have two more adjacent edges that are not shown here,
and the auxiliary strings are not shown. The dashed lines form a solution representing a
false assignment to the variable xa, whereas the solid lines represent setting the variable
to true. Note that there is always an optimal solution that does not use the self-loops at
vertices of the form CiCi which are represented by dotted lines.

The set of 2-substrings that need to be covered consists of CiCi, CiL1,CiL2 and CiL3 for
each clause Ci, as well as Lj1Xa, XaLj2 , Lj3Xa, XaLj4 for each variable Xa. Note that each
of these 2-substrings except for CiCi appears only once in T, so they need to be covered at
that occurrence. The auxiliary strings each add one unique 2-substring LjLj or LjLj for
j ∈ {1, 2, 3} that also need to be covered in the respective string. Of course, all 1-substrings,
i.e. Σ, also need to be covered.

We claim that T has a 2-set attractor of size n + |ϕ| + 6 = 5n + 6 if and only if ϕ is
satisfiable. The proof follows the same arguments as the proof of Theorem 7 as the 2-substring
graph G(T) has a colorful edge cover if and only if T has a 2-set attractor.

J. Fuchs and P. Whittington 35:9

Assume that a 2-set attractor of size 5n+6 for T exists. We first show that the n symbols
X corresponding to the variables, which all appear twice, are covered exactly once each. The
substrings LjLj and LjLj for j ∈ {1, 2, 3} are unique to the six auxiliary strings, so they
always induce a cost of six and ensure that all Li,Li are covered independent of the remaining
strings. It is also necessary to expend 4n markings to cover the substrings of the form CiLj ,
LjCi, CiLj and LjCi, as each of these are pairwise non-overlapping with each other. The
remaining n markings are then needed to cover all n symbols X, so each is covered once.

We can therefore deduce a truth assignment by considering where each symbol Xa

corresponding to a variable is covered. We show that this assignment satisfies ϕ. Consider
any substring CiCi. Without loss of generality it is covered at the position adjacent to some
Lj or Lj , not at the position corresponding to the start or the end of a string. Therefore,
the substrings and markings are of the form CiCiLj , LjCiCi or CiCiLj , LjCiCi. This also
covers the substrings of the form CiLj , LjCi, CiLj and LjCi. By our counting argument,
each of these substrings is covered only once, so Lj respectively Lj is not marked. To then
cover LjXa, XaLj or LjXa, Xa must be marked, which means the variable xa is assigned a
truth value such that it satisfies ci. This holds for all ci, so ϕ is satisfied.

Assume ϕ is satisfiable by some truth assignment of the variables X. If xa is set to true,
mark its two strings by

Ci1Ci1Lj1XaLj2Ci2Ci2 , Ci3Ci3Lj3XaLj4Ci4Ci4

otherwise mark

Ci1Ci1Lj1XaLj2Ci2Ci2 , Ci3Ci3Lj3XaLj4Ci4Ci4 .

Both ways of marking the strings cover all eight substrings unique to xa. The solid edges
in Figure 3 show the included positions in the 2-substring graph for a positively assigned
variable, and the dashed lines refer to a negative assignment. Each substring CiCi is covered
in the substring corresponding to the variable satisfying it. Further, each symbol of Σ is
also covered. Each Ci is covered just as CiCi is covered, each Lj is covered due to the six
auxiliary strings, and Xa is covered by definition of our chosen markings.

In total, given a formula with m clauses and n variables, we compute for a set of 2n + 6
strings whether it has a 2-set attractor of size 5n + 6. Each string has a size of 7 except for
the auxiliary strings of size 2, and all strings in total have length 14n + 12. The reduction
can be computed naively in time O(n2). By Lemma 3, the set of strings can be condensed
into a single string of linear size in polynomial time. ◀

This reduction can be used for all k ≥ 2 and for the general attractor problem, as there
is a delimiter symbol or unique substring at least every 3 symbols. Any valid k-attractor
then needs to put a marking every 3 symbols, such that any possibly uncovered substring
has length at most 2. This enforces that there is a 2-attractor of any fixed size p if and only
if there is a k-attractor of size p for any k ≥ 3.

5 APX-Hardness

Our reduction to prove Theorem 9 also suffices to show the APX-hardness of the k-attractor
problem for k ≥ 2, which was shown for k ≥ 3 by Kempa and Prezza [16]. The same paper
also shows containment in APX for constant k. We also slightly improve the explicit lower
bound to which k-attractor cannot be approximated. To this end, we analyse the behavior
of the reduction’s output string for unsatisfiable formulas.

STACS 2024

35:10 The 2-Attractor Problem Is NP-Complete

Ci1Ci1 Ci1Lj1 Lj1Xa XaLj2 Lj2Ci2 Ci2Ci2

Ci1 Lj1 Xa Lj2 Ci2

Ci3Ci3 Ci3Lj3 Lj3Xa XaLj4 Lj4Ci4 Ci4Ci4

Ci3 Lj3 Xa Lj4 Ci4

Ci1 Ci2

Ci3 Ci4

Figure 3 Gadgets for a variable xa in the 2-attractor reduction in the 2-substring graph.

▶ Lemma 10. For a MAX-(3, B2)-SAT formula ϕ with m clauses and an optimal assignment
satisfying m−u clauses, u ≥ 0, the optimal attractor for T (ϕ) has size between 21

4 m+11+⌈u/2⌉
and 21

4 m + 11 + u.

Proof. A MAX-(3, B2)-SAT formula ϕ with m clauses contains n = (3/4)m variables, thus
the resulting set of strings is of size 2m + 6 including auxiliary strings, inducing 2m + 5
delimiter symbols to combine those strings into a single string T . Each variable induces
a cost of at least 5 to cover its unique substrings, also each auxiliary string and delimiter
induces a cost of 1. In total, we obtain a lower bound of 5n + 6 + 2n + 5 = 21

4 m + 11 that can
be matched if and only if ϕ is satisfiable with the markings given in the proof of Theorem 9.

If ϕ is not satisfiable, this marking still yields the most efficient way to cover the unique
substrings. Then, all substrings are covered except for CiCi (and Ci, which will always
be covered implicitly) for clauses ci that are not covered by the assignment. This gives u

many 2-substrings that are not covered, which can be covered one by one using u additional
positions, yielding the upper bound.

Consider a variable xa such that in the optimal assignment two of the four clauses
it appears in are not satisfied. Then, without loss of generality xa is set to true and
appears negatively in clauses ci1 , ci2 which are not satisfied. The corresponding string is
then Ci1Ci1Lj1XaLj2Ci2Ci2 but remarking it to Ci1Ci1Lj1XaLj2Ci2Ci2 covers both Ci1Ci1

and Ci2Ci2 with just one additional position. If this can be done for all clauses, only u/2
additional markings are needed. Each variable still has to induce a cost of at least 5 and
now induces a cost of at most 6, so this is optimal, otherwise the assignment we started with
was not optimal. ◀

In [6], Berman, Karpinski and Scott show the APX-hardness of MAX-(3, B2)-SAT by
a reduction from the MAX-E3-Lin-2 problem on linear equations, which was studied by
Håstad [13]. We extend the given reduction to the k-attractor problem.

▶ Theorem 11. For every k ≥ 2 and 0 < ε < 1, it is NP-hard to approximate the k-attractor
problem to within an approximation ratio smaller than (10669 − ε)/10668.

Proof. Berman, Karpinski and Scott [6] show that it is NP-hard to distinguish MAX-(3, B2)-
SAT instances with 1016n clauses of which at least (1016 − ϵ)n are satisfiable, and instances
with 1016n clauses of which at most (1015 + ϵ)n are satisfiable.

J. Fuchs and P. Whittington 35:11

Let ϕ be a (3, B2)-SAT formula with 1016n clauses, and T (ϕ) the string resulting from
applying the reduction in Theorem 9 to this formula. The formula ϕ has 1016n · 3/4 = 762n

variables and thus T (ϕ) consists of 2 · 762n + 6 substrings with 2 · 762n + 5 delimiter symbols
between them. If ϕ is satisfiable, T (ϕ) has an optimal k-attractor of size (5 · 762n + 6) + (2 ·
762n + 5) = 5334n + 11 by Lemma 10. Further, if we can satisfy at least (1016 − ϵ)n clauses
in ϕ, we need at most

(5334 + ϵ)n + 11 = (10668 + 2ϵ)n/2 + 11

many positions to find a 2-attractor for T (ϕ). Otherwise, we can satisfy at most (1015 + ϵ)n
clauses and thus need at least 5334n+ 1−ϵ

2 n+11 = (10669−ϵ)n/2+11 > (10669−2ϵ)n/2+11
many positions to find a 2-attractor for T (ϕ).

If we could approximate k-attractor better than (10669 − ε)/10668, we could plug in ϕ

and see if we get a result within

10669 − ε

10668

(
(10668 + 2ϵ)

2 n + 11
)

=
(

10669
2 + 10669ϵ

10668 − ε

2 − 2εϵ

10668

)
n + 10669 · 11

10668

and accept if and only if this is true. For large enough n and ε, it holds that(
10669

2 + 10669ϵ

10668 − ε

2 − 2εϵ

10668

)
n + 10669 · 11

10668 <
10669 − 2ϵ

2 n + 11

⇐⇒ 21337ϵ

10668 − 2εϵ

10668 + 11
10668n

<
ε

2

and thus we are able to distinguish whether (1016 − ϵ)n clauses or (1015 + ϵ)n clauses in ϕ

are satisfiable, which is NP-hard. Note that ε can converge to 0 as ϵ converges to 0, thus the
proof works for all ε > 0. ◀

A similar construction can be used to show that the colorful edge cover problem is APX-
hard and cannot be approximated by a factor smaller than (7621 − ε)/7620 for 0 < ε < 1.

6 Conclusion

In this paper, we have answered the open problem of the complexity of the 2-attractor problem
and discussed the implicit APX-hardness that results from our reduction. Additionally, we
introduced a more general variation of the k-attractor problem, the k-set attractor problem,
to make our reduction more convenient. Moreover, motivated by the previous reductions
between the k-set cover problem and the k-attractor problem, we introduced the colorful
edge cover problem. Although it is not contained in the reduction chain for the main result,
it shows where the sharp 2-attractor problem and the 2-attractor problem differ in their
complexity.

In general, adding colorfulness to a problem solvable in polynomial time, like matching,
network flow or spanning tree can help to find a different perspective on problems of
unresolved complexity that are close to the mentioned problems, but not properly modeled
by their unmodified variants. In the best case, it helps to understand where the borderline of
complexity is and which combination of constraints make a problem hard. Colorful problems
may also be of interest in the context of parameterized complexity or approximability.

STACS 2024

35:12 The 2-Attractor Problem Is NP-Complete

References

1 Tooru Akagi, Mitsuru Funakoshi, and Shunsuke Inenaga. Sensitivity of string compressors and
repetitiveness measures. Inf. Comput., 291:104999, 2021. doi:10.1016/j.ic.2022.104999.

2 Saieed Akbari, Vahid Liaghat, and Afshin Nikzad. Colorful paths in vertex coloring of graphs.
Electr. J. Comb., 18, January 2011. doi:10.37236/504.

3 Hideo Bannai, Keisuke Goto, Masakazu Ishihata, Shunsuke Kanda, Dominik Köppl, and
Takaaki Nishimoto. Computing np-hard repetitiveness measures via MAX-SAT. In Shiri
Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman, editors, 30th Annual
European Symposium on Algorithms, ESA 2022, September 5-9, 2022, Berlin/Potsdam, Ger-
many, volume 244 of LIPIcs, pages 12:1–12:16. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2022. doi:10.4230/LIPIcs.ESA.2022.12.

4 Matthias Bentert, Leon Kellerhals, and Rolf Niedermeier. Fair short paths in vertex-colored
graphs. Proceedings of the AAAI Conference on Artificial Intelligence, 37:12346–12354, June
2023. doi:10.1609/aaai.v37i10.26455.

5 Sergey Bereg, Feifei Ma, Wencheng Wang, Jian Zhang, and Binhai Zhu. On some matching
problems under the color-spanning model. Theoretical Computer Science, 786:26–31, 2019.
Frontiers of Algorithmics. doi:10.1016/j.tcs.2018.08.008.

6 Piotr Berman, Marek Karpinski, and Alex D. Scott. Approximation hardness of short
symmetric instances of max-3sat. Electron. Colloquium Comput. Complex., TR03, 2003. URL:
https://api.semanticscholar.org/CorpusID:40181844.

7 Christina Büsing and Martin Comis. Budgeted colored matching problems. Electronic Notes in
Discrete Mathematics, 64:245–254, 2018. 8th International Network Optimization Conference -
INOC 2017. doi:10.1016/j.endm.2018.01.026.

8 Anders Roy Christiansen, Mikko Berggren Ettienne, Tomasz Kociumaka, Gonzalo Navarro,
and Nicola Prezza. Optimal-time dictionary-compressed indexes. ACM Trans. Algorithms,
17(1), December 2021. doi:10.1145/3426473.

9 J. Cohen, Y. Manoussakis, H.P. Phong, and Zs. Tuza. Tropical matchings in vertex-colored
graphs. Electronic Notes in Discrete Mathematics, 62:219–224, 2017. LAGOS’17 – IX Latin
and American Algorithms, Graphs and Optimization. doi:10.1016/j.endm.2017.10.038.

10 Riccardo Dondi and Mohammad Mehdi Hosseinzadeh. Finding colorful paths in temporal
graphs. In Rosa Maria Benito, Chantal Cherifi, Hocine Cherifi, Esteban Moro, Luis M. Rocha,
and Marta Sales-Pardo, editors, Complex Networks & Their Applications X, pages 553–565,
Cham, 2022. Springer International Publishing.

11 Lubomíra Dvořáková. String attractors of episturmian sequences. CoRR, abs/2211.01660v2,
2022. doi:10.48550/arXiv.2211.01660.

12 France Gheeraert, Giuseppe Romana, and Manon Stipulanti. String attractors of fixed points
of k-bonacci-like morphisms. CoRR, abs/2302.13647, 2023. doi:10.48550/arXiv.2302.13647.

13 Johan Håstad. Some optimal inapproximability results. Electron. Colloquium Comput.
Complex., TR97, 2001. URL: https://api.semanticscholar.org/CorpusID:5120748.

14 Dominik Kempa and Tomasz Kociumaka. Resolution of the burrows-wheeler transform
conjecture. Commun. ACM, 65(6):91–98, 2022. doi:10.1145/3531445.

15 Dominik Kempa, Alberto Policriti, Nicola Prezza, and Eva Rotenberg. String attractors:
Verification and optimization. In Yossi Azar, Hannah Bast, and Grzegorz Herman, editors,
26th Annual European Symposium on Algorithms, ESA 2018, August 20-22, 2018, Helsinki,
Finland, volume 112 of LIPIcs, pages 52:1–52:13. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2018. doi:10.4230/LIPIcs.ESA.2018.52.

16 Dominik Kempa and Nicola Prezza. At the roots of dictionary compression: string attractors.
In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, Proceedings of the 50th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA,
USA, June 25-29, 2018, pages 827–840. ACM, 2018. doi:10.1145/3188745.3188814.

https://doi.org/10.1016/j.ic.2022.104999
https://doi.org/10.37236/504
https://doi.org/10.4230/LIPIcs.ESA.2022.12
https://doi.org/10.1609/aaai.v37i10.26455
https://doi.org/10.1016/j.tcs.2018.08.008
https://api.semanticscholar.org/CorpusID:40181844
https://doi.org/10.1016/j.endm.2018.01.026
https://doi.org/10.1145/3426473
https://doi.org/10.1016/j.endm.2017.10.038
https://doi.org/10.48550/arXiv.2211.01660
https://doi.org/10.48550/arXiv.2302.13647
https://api.semanticscholar.org/CorpusID:5120748
https://doi.org/10.1145/3531445
https://doi.org/10.4230/LIPIcs.ESA.2018.52
https://doi.org/10.1145/3188745.3188814

J. Fuchs and P. Whittington 35:13

17 Dominik Kempa and Barna Saha. An upper bound and linear-space queries on the lz-end
parsing. In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA,
USA, January 9 - 12, 2022, pages 2847–2866. SIAM, 2022. doi:10.1137/1.9781611977073.
111.

18 Tomasz Kociumaka, Gonzalo Navarro, and Nicola Prezza. Towards a definitive measure
of repetitiveness. In Yoshiharu Kohayakawa and Flávio Keidi Miyazawa, editors, LATIN
2020: Theoretical Informatics - 14th Latin American Symposium, São Paulo, Brazil, January
5-8, 2021, Proceedings, volume 12118 of Lecture Notes in Computer Science, pages 207–219.
Springer, 2020. doi:10.1007/978-3-030-61792-9_17.

19 Sebastian Kreft and Gonzalo Navarro. Lz77-like compression with fast random access. In
2010 Data Compression Conference, pages 239–248, 2010. doi:10.1109/DCC.2010.29.

20 Sabrina Mantaci, Antonio Restivo, Giuseppe Romana, Giovanna Rosone, and Marinella
Sciortino. A combinatorial view on string attractors. Theor. Comput. Sci., 850:236–248, 2021.
doi:10.1016/j.tcs.2020.11.006.

21 Jérôme Monnot. The labeled perfect matching in bipartite graphs. Inf. Process. Lett.,
96(3):81–88, 2005. doi:10.1016/J.IPL.2005.06.009.

22 Gonzalo Navarro and Nicola Prezza. Universal compressed text indexing. Theoretical Computer
Science, 762:41–50, 2019. doi:10.1016/j.tcs.2018.09.007.

23 Nicola Prezza. String attractors. CoRR, abs/1709.05314, 2017. arXiv:1709.05314.
24 Antonio Restivo, Giuseppe Romana, and Marinella Sciortino. String attractors and infinite

words. CoRR, abs/2206.00376, 2022. doi:10.48550/arXiv.2206.00376.
25 Jeffrey O. Shallit and Luke Schaeffer. String attractors for automatic sequences. CoRR,

abs/2012.06840, 2020. arXiv:2012.06840.

STACS 2024

https://doi.org/10.1137/1.9781611977073.111
https://doi.org/10.1137/1.9781611977073.111
https://doi.org/10.1007/978-3-030-61792-9_17
https://doi.org/10.1109/DCC.2010.29
https://doi.org/10.1016/j.tcs.2020.11.006
https://doi.org/10.1016/J.IPL.2005.06.009
https://doi.org/10.1016/j.tcs.2018.09.007
https://arxiv.org/abs/1709.05314
https://doi.org/10.48550/arXiv.2206.00376
https://arxiv.org/abs/2012.06840

	1 Introduction
	2 Attractors of Strings, Circular Strings, and Sets of Strings
	3 The Colorful Edge Cover Problem
	4 NP-Completeness of the 2-Attractor Problem
	5 APX-Hardness
	6 Conclusion

