
Directed Regular and Context-Free Languages
Moses Ganardi #

Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

Irmak Sağlam #

Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

Georg Zetzsche #

Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

Abstract
We study the problem of deciding whether a given language is directed. A language L is directed
if every pair of words in L have a common (scattered) superword in L. Deciding directedness is a
fundamental problem in connection with ideal decompositions of downward closed sets. Another
motivation is that deciding whether two directed context-free languages have the same downward
closures can be decided in polynomial time, whereas for general context-free languages, this problem
is known to be coNEXP-complete.

We show that the directedness problem for regular languages, given as NFAs, belongs to AC1,
and thus polynomial time. Moreover, it is NL-complete for fixed alphabet sizes. Furthermore, we
show that for context-free languages, the directedness problem is PSPACE-complete.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness;
Theory of computation → Concurrency; Theory of computation → Formal languages and automata
theory

Keywords and phrases Subword, ideal, language, regular, context-free, equivalence, downward
closure, compression

Digital Object Identifier 10.4230/LIPIcs.STACS.2024.36

Related Version Extended Version: https://arxiv.org/abs/2307.13396 [27]

Funding Funded by the European Union (ERC, FINABIS, 101077902). Views and opinions expressed
are however those of the author(s) only and do not necessarily reflect those of the European Union
or the European Research Council Executive Agency. Neither the European Union nor the granting
authority can be held responsible for them.

1 Introduction

We study the problem of deciding whether a given language is directed. A language L is called
(upward) directed if for every u, v ∈ L, there exists a w ∈ L with u ≼ w and v ≼ w. Here, ≼
denotes the (non-contiguous) subword relation: We have u ≼ v if there are decompositions
u = u1 · · · un and v = v0u1v1 · · · unvn for some u1, . . . , un ∈ Σ∗ and v0, v1, . . . , vn ∈ Σ∗.

Downward closures and ideals. The downward closure of a language L ⊆ Σ∗ is the set
L↓ = {u ∈ Σ∗ | ∃v ∈ L : u ≼ v}. Over the last ca. 15 years, downward closures have been
used in several approaches to verifying concurrent systems. This has two reasons: First,
L↓ is a regular language for every set L ⊆ Σ∗ [32] and an NFA can often be computed
effectively [6, 21,23,30,31,47,49,50]. Second, many verification tasks are downward closure
invariant w.r.t. subsystems: This means, a (potentially infinite-state) subsystem (e.g. a
recursive program represented by a context-free language) can be replaced with another with
the same downward closure, without affecting the verified property. This has been applied
to parameterized systems with non-atomic reads and writes [46], concurrent programs with
dynamic thread creation [5, 11,13], asynchronous programs [10,41], and thread pools [14].

© Moses Ganardi, Irmak Sağlam, and Georg Zetzsche;
licensed under Creative Commons License CC-BY 4.0

41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024).
Editors: Olaf Beyersdorff, Mamadou Moustapha Kanté, Orna Kupferman, and Daniel Lokshtanov;
Article No. 36; pp. 36:1–36:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ganardi@mpi-sws.org
https://orcid.org/0000-0002-0775-7781
mailto:isaglam@mpi-sws.org
https://orcid.org/0000-0002-4757-1631
mailto:georg@mpi-sws.org
https://orcid.org/0000-0002-6421-4388
https://doi.org/10.4230/LIPIcs.STACS.2024.36
https://arxiv.org/abs/2307.13396
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 Directed Regular and Context-Free Languages

In addition to finite automata, there is a second representation of downward closed
languages: Every non-empty downward closed set can be written as a finite union of ideals.
An ideal (in the terminology of well-quasi orderings) is a non-empty downward closed set that
is directed. Moreover, ideals have a simple representation themselves: They are precisely the
products of languages of the forms {a, ε} and ∆∗, where a is a letter and ∆ is an alphabet.
Clearly, a language L is directed if and only if L↓ is itself an ideal.

Ideal decompositions of downward closed sets have recently been the center of significant
attention: They have been instrumental in computing downward closures [9, 28, 49] and
deciding separability by piecewise testable languages [29,51]. Over other orderings, ideals play
a crucial role in forward analysis of well-structured transition systems (WSTS) [16,25,26],
infinitely branching WSTS [18], well-behaved transition systems [17] for clarifying reachability
problems in vector addition systems [36–38], and for deciding regular separability [24].

Given the importance of ideals, it is a fundamental problem to decide whether a given
language is directed, in other words, whether the ideal decomposition of its downward closure
consists of a single ideal. It is a basic task for computing ideal decompositions, but also an
algorithmic lens on the structure of ideals.

Efficient comparison. Aside from being a fundamental property, checking directedness is
also useful for deciding equivalence. It is well-known that equivalence is PSPACE-complete for
NFAs and undecidable for context-free languages. However, in some situations, it suffices to
decide downward closure equivalence: Due to the aforementioned downward closure invariance
in concurrent programs, if L1, L2 ⊆ Σ∗ describe the behaviors of sequential programs inside
of a concurrent program, and we have L1↓ = L2↓, then L1 can be replaced with L2
without affecting safety, boundedness, and termination properties in concurrent [11] and
asynchronous programs [41]. Downward closure equivalence is known to be coNP-complete
for NFAs [8, Thm. 12&13] and coNEXP-complete for context-free languages [50]. This is
better than PSPACE and undecidable, but our results imply that if L1 and L2 are directed,
then deciding L1↓ = L2↓ is in polynomial time, both for NFAs and for context-free languages!
Thus, directedness drastically reduces the complexity of downward closure equivalence.

Constraint satisfaction problems. Directedness has recently also been studied in the context
of constraint satisfaction problems (CSPs) for infinite structures. If we view finite words in
the usual way as finite relational structures (as in first-order logic), then a set of words is
directed if and only if it has the joint embedding property (JEP). More generally, a class
C of finite structures has the JEP if for any two structures in C, there is a third in which
they both embed. The JEP is important for CSPs because if C is definable by a universal
first-order formula and has the JEP, then it is the age of some (potentially infinite) structure,
which then has a constraint satisfaction problem in NP [19, p. 1].

Motivated by this, it was recently shown that the JEP is undecidable for universal
formulas by Braunfeld [20] (and even for universal Horn formulas by Bodirsky, Rydval, and
Schrottenloher [19]). In the special case of finite words, the JEP (and thus directedness) was
shown to be decidable in polynomial time by Atminas and Lozin [7] for regular languages of
the form {w ∈ Σ∗ | w1, . . . , wn ̸≼ w} for given w1, . . . , wn ∈ Σ∗. However, to our knowledge,
for general regular languages (or even context-free languages), the complexity is not known.

Contribution. Our first main result is that for NFAs, directedness is decidable in AC1, a
circuit complexity class within polynomial time, defined by Boolean circuits of polynomial
size, logarithmic depth, and unbounded fan-in. If we fix the alphabet size, directedness
becomes NL-complete. Our second main result is that for context-free languages, directedness
is PSPACE-complete, and hardness already holds for input alphabets of size two.

M. Ganardi, I. Sağlam, and G. Zetzsche 36:3

The proof techniques for the main results also yield algorithms for downward closure
equivalence. Given L1 and L2, we show that deciding L1↓ = L2↓ is in AC1 if L1 and L2 are
directed and given by NFAs. As above, we obtain NL-completeness for fixed alphabets. If L1
and L2 are context-free languages, then deciding L1↓ = L2↓ becomes P-complete.

Finally, we mention that counting the number of ideals in the ideal decomposition of L↓
is #P-complete if L is given as an NFA. Here, hardness follows from #P-hardness of counting
words in NFAs of a given length, and #P-membership is a consequence of our methods.

Key ingredients. The upper bounds as well as the lower bounds in our results rely on new
techniques. With only slight extensions of existing techniques, one would obtain an NP upper
bound for regular languages and an NEXP upper bound for context-free languages. This is
because given a regular or context-free language, one can construct an acyclic graph where
every path corresponds to an ideal of its downward closure. If the input is an NFA, this
graph is polynomial-sized, and for CFGs, it is exponential-sized. One could then guess a
path and verify that the entire language is included in this candidate ideal.

To obtain our upper bounds, we introduce a weighting technique, where each ideal
is assigned a weight in the natural numbers. The weighting function has the property
that if there is an ideal that contains the entire language, it must be one with maximal
weight. Using either (i) matrix powering over the semiring (N ∪ {−∞}, max, +, −∞, 0) for
NFAs or (ii) dynamic programming for context-free grammars, this allows us to compute in
NL/AC1/polynomial time a unique candidate ideal (which is compressed in the context-free
case), which is then verified in NL resp. in PSPACE.

For the PSPACE lower bound for context-free languages, we first observe that directedness
is equivalent to deciding whether L ⊆ I, where L is a context-free language, and I is an
SLP-compressed ideal. The problem is thus a slight generalization of the compressed subword
problem, where we are given two SLP-compressed words u and v and are asked whether
u ≼ v. This problem is known to be in PSPACE and PP-hard [39, Theorem 13], but its exact
complexity is a long-standing open problem [40].

To exploit the increased generality of our problem, we proceed as follows. Our key insight
is that for a given SLP-compressed word w ∈ Σ∗, one can construct an SLP-compressed
infinite complement ideal Iw, meaning that Iw ∩ Σ|w| = Σ|w| \ {w}. To this end, we apply a
construction from definability of languages in the subword ordering [12, Lemma 3.1]. We use
the complement ideal for PSPACE-hardness follows. We reduce from the PSPACE-complete
problem of deciding, given two equal-length SLP-compressed words v, w ∈ {a, b}∗, whether
their convolution v ⊗ w belongs to a fixed regular language [40, p. 269]. We reduce this to the
problem of deciding w ∈ L, where w is SLP-compressed and L is a context-free of words of
length |w|. Then L ⊆ Iw if and only if w /∈ L, hence L ∪ Iw is directed if and only if w /∈ L.

2 Main results

Our first main result is that for a given NFA, one can decide directedness of its language in
polynomial time, and even in AC1 ⊆ NC.

▶ Theorem 2.1. Given an NFA, one can decide in AC1 whether its language is directed.

Recall that AC1 is the class of all languages that are accepted by a family of unbounded
fan-in Boolean circuits of polynomial size and logarithmic depth, see [48] for more details. In
particular, the directedness problem for regular languages can be efficiently parallelized.

The same techniques show that fixing the input alphabet leads to NL-completeness:

STACS 2024

36:4 Directed Regular and Context-Free Languages

▶ Theorem 2.2. For every fixed k, given an NFA over k letters, it is NL-complete to decide
whether its language is directed.

As mentioned before, slight extensions of known techniques would yield an NP upper bound
for directedness of regular languages: Given an NFA A, it is not difficult construct an acyclic
graph whose paths correspond to ideals for which L(A) = I1 ∪ · · · ∪ In. One can then guess
such a path with ideal Ii and verify L(A) ⊆ Ii in NL. Clearly, L(A) is directed iff such an Ii

exists. The key challenge is to compute in AC1 a single ideal Ii for which we check L(A) ⊆ Ii.
Note that Theorems 2.1 and 2.2 also apply to one-counter languages. Given a one-counter

language L, one can compute in logspace an NFA A with L(A) = L↓ [6, Theorem 7]1. Then
L(A) is directed iff L is directed, and we can just decide directedness for A.

Our second main result is that for context-free languages (given, e.g. by a grammar),
directedness is PSPACE-complete:

▶ Theorem 2.3. Given a context-free grammar, it is PSPACE-complete to decide whether its
language is directed. Moreover, PSPACE-hardness holds already for binary input alphabets.

Our methods also provide more efficient algorithms for downward closure equivalence in
the case of directed input languages. The downward closure equivalence (DCE) problem is to
decide, for given languages L1 and L2, whether L1↓ = L2↓. While DCE is coNP-complete for
general regular languages given as NFAs [8, Thm. 12&13], we show that for directed input
languages, the complexity drops to AC1, and NL for fixed alphabets.

▶ Theorem 2.4. For directed languages given as NFAs, DCE belongs to AC1, for fixed
alphabets even to NL.

For context-free languages, DCE is known to be coNEXP-complete [50]. For directed
input languages, our methods yield a drastic drop in complexity down to polynomial time:

▶ Theorem 2.5. For directed context-free languages, DCE is P-complete.

Since our directedness algorithms decide whether the unique decomposition of L↓ into
maximal ideals consists of a single ideal, it is natural to ask about the complexity of counting
all ideals of this decomposition. It follows easily using methods developed here that this
problem is in #P. Moreover, the well-known #P-hardness of #NFA (i.e. counting words of a
given length in an NFA) [4] provides a #P lower bound.

▶ Theorem 2.6. Given an NFA A, it is #P-complete to count the number of ideals in the
decomposition of L(A)↓ into maximal ideals.

The proof is given in [27, App. E] #P is the class of functions f computable by some
non-deterministic polynomial-time Turing machine (TM), in the sense that for a given input
x, the computed value f(x) is the number of accepting runs. #P-complete problems are very
hard, as evidenced by Toda’s well-known result that P#P (i.e. polynomial-time algorithms
with access to #P oracles) includes the entire polynomial time hierarchy [45]. This represents
an interesting contrast between the complexity of directedness and counting all ideals.

1 Theorem 7 in [6] only states a polynomial time computation, but it is clear that it can be performed in
(deterministic) logspace.

M. Ganardi, I. Sağlam, and G. Zetzsche 36:5

3 Preliminaries

Ideals. We will use the notation [m1, m2] := {i ∈ Z | m1 ≤ i ≤ m2}. Consider the context-
free languages K1 = {wcw | w ∈ {ab}∗} and K2 = {wcw | w ∈ {a}∗ ∪ {b}∗}. Note that K1
is directed, whereas K2 is not: The words aca and bcb in K2 have no common superword in
K2. However, K1 ∪ K2 is directed. Let Σ be a finite alphabet. A set D ⊆ Σ∗ is downward
closed if D↓ = D. A subset I ⊆ Σ∗ is an ideal if it is non-empty, downward closed, and
(upward) directed. Thus clearly, a non-empty L ⊆ Σ∗ is directed if and only if L↓ is an ideal
(note that taking the downward closure does not affect directedness). It is known that every
ideal can be written as products of so called atoms: We identify two types of atoms over Σ:
Single atoms: a ? where a ∈ Σ,
Alphabet atoms: ∆ ∗ where ∅ ≠ ∆ ⊆ Σ.
Formally, each atom α is a formal symbol that describes an ideal Idl(α). For a single atom
a ? , we define it as Idl(a ?) = {a, ε}, whereas for an alphabet atom ∆ ∗ , Idl(∆ ∗) = ∆∗.
By atoms(Σ), we denote the set of atoms over Σ. Note that |atoms(Σ)| = 2|Σ| − 1 + |Σ|.

An ideal representation is a finite (possibly empty) sequence r = α1 · · · αn of atoms αi.
Its language is the concatenation Idl(α1 · · · αn) = Idl(α1) · · · Idl(αn) where the empty
concatenation is interpreted as {ε}. It is a classical fact that every downward closed set can
be decomposed into a finite union of ideals. For example, observe that K1↓ = (K1 ∪ K2)↓ =
{a, b}∗{c, ε}{a, b}∗ = Idl({a, b} ∗

c ? {a, b} ∗) and K2↓ = {a}∗{c, ε}{a}∗ ∪ {b}∗{c, ε}{b}∗ =
Idl({a} ∗

c ? {a} ∗) ∪ Idl({b} ∗
c ? {b} ∗). This decomposition result was first shown by

Jullien [34] and the equivalent fact that every downward closed set can be expressed as a simple
regular expression was shown independently by Abdulla, Bouajjani, and Jonsson [1] (see [33]
for a general treatment). If R is a set of ideal representations, we set Idl(R) :=

⋃
r∈R Idl(r).

Reduced ideal representations. Note that one ideal can have multiple different representa-
tions. For instance, the representations a ∗ · a ? · b ? · b ∗ · a ? and a ∗ · b ∗ · a ? represent
the same ideal, namely all words that start with a (possibly empty) sequence of a’s, followed
by a (possibly empty) sequence of b’s, and possibly end with an a. This is because in the
first representation, all the words a ? and b ? generate are produced by their neighboring
alphabet atoms. Two representations are called equivalent if they represent the same ideal.

To achieve unique ideal representations, one can use reduced representations, which we
define next. Two atoms α and β are absorptive if Idl(αβ) = Idl(α) or Idl(αβ) = Idl(β).
In the first case we say α absorbs β and in the second case, β absorbs α. Note that two
single atoms are always non-absorptive since Idl(a ? · b ?) ⊋ Idl(a ?). An atom α is said to
contain an atom β if Idl(α) ⊇ Idl(β). α is said to strictly contain β if also Idl(α) ̸= Idl(β).
An ideal representation α1 · · · αn is said to be reduced if for all i ∈ [1, n − 1], αi and αi+1 are
non-absorptive. The following is obvious (and well-known [2, Lemma 5.4]), because we can
just repeatedly merge neighboring absorptive atom pairs:

▶ Lemma 3.1. For every ideal representation α1 · · · αn, there exists a reduced ideal repres-
entation β1 · · · βm such that Idl(α1 · · · αn) = Idl(β1 · · · βm) and m ≤ n.

Representing downward closed sets. We will use two classical facts about ideals. First,
every downward closed set D ⊆ Σ∗ can be written as a finite union of ideals. Moreover,
ideals are “prime” in the sense that if an ideal is included in a union D1 ∪ D2 of downward
closed sets, it is already included in one of them:

STACS 2024

36:6 Directed Regular and Context-Free Languages

▶ Lemma 3.2 ([26,28,35]). For every downward closed set D ⊆ Σ∗, there exist n ∈ N and
ideals I1, . . . , In ⊆ Σ∗ with D = I1 ∪ · · · ∪ In. Moreover, if I is an ideal with I ⊆ D1 ∪ D2
for downward closed D1, D2 ⊆ Σ∗, then I ⊆ D1 or I ⊆ D2.

The representation D = I1 ∪ · · · ∪ In is also called an ideal decomposition of D. Observe that
the second statement implies that this decomposition is unique (up to the order of ideals) if
we require the ideals I1, . . . , In to be pairwise incomparable. This is sometimes called the
unique decomposition into maximal ideals.

Non-deterministic finite automata. We start by formally introducing NFAs. A non-
deterministic finite automaton (NFA) is a tuple A = (Q, Σ, δ, q0, F) where Q is a finite set
of states, q0 ∈ Q is the unique initial state, F ⊆ Q is the set of final states, Σ is a finite
alphabet and δ ⊆ Q × (Σ ∪ {ε}) × Q is the set of transitions. A transition (p, a, q) ∈ δ is
usually displayed as p

a−→ q, and we write p0
w−→ pn if there exists a sequence of transitions

p0
a1−→ p1

a2−→ . . .
an−−→ pn such that w = a1 . . . an. The language accepted by an NFA A is the

set of all words w ∈ Σ∗ such that q0
w−→ q for some q ∈ F , and is denoted by L(A).

4 Solution on Regular Languages

In this section, we prove Theorem 2.1 and Theorem 2.2. Let us quickly observe the NL
lower bound of the directedness problem: We reduce from the emptiness problem for NFAs.
Given an NFA A, we may assume that there is exactly one final state that is different
from the initial state, and that all edges are labeled with a. We construct an NFA A′ with
L(A′) = L(A) ∪ {b}. Then clearly, L(A) ̸= ∅ if and only if L(A) contains some word in {a}+.
The latter is true if and only if L(A′) is not directed.

Thus, the interesting part of Theorems 2.1 and 2.2 are the upper bounds. To explain
the main steps, we need some terminology. We say that a function f : {0, 1}∗ → {0, 1}∗ is
computable in NL if there exists a non-deterministic logspace TM with a write-only output
tape such that (i) on every input word x ∈ {0, 1}∗ there exists an accepting computation,
and (ii) every accepting computation on x produces the same output f(x) on the output
tape. We say that f is computable in AC1 if the language {x01i | the i-th bit of f(x) is 1}
belongs to AC1. The main difficulty in proving Theorem 2.1 is the following:

▶ Lemma 4.1. Given a non-empty NFA A, one can compute in AC1 an ideal I such that
(i) I ⊆ L(A)↓ and (ii) L(A) is directed if and only if L(A)↓ ⊆ I. Moreover, for every fixed
alphabet size, this computation can be carried out in NL.

Since the inclusion L(A)↓ ⊆ I for a given NFA A and ideal I can be decided in NL [50],
Lemma 4.1 immediately implies the upper bounds: Just compute I and check L(A)↓ ⊆ I.

Let us briefly outline the proof of Lemma 4.1. Given an NFA A for a regular language L,
we first construct an NFA Ridl accepting representations ideals in an ideal decomposition of
L↓. This is then transformed into an NFA Rred that accepts reduced ideal representations.
Reducedness of the ideal representations enables us to efficiently compute a maximal ideal
in L(Rred), by solving a maximum weight path problem. This step can be carried out in
AC1 for arbitrary alphabets and in NL for fixed alphabets. Figure 1 depicts the mentioned
transitionary automata and serves as a running example throughout the section.

4.1 Computing the ideal automaton Ridl

Our first step towards Lemma 4.1 is to transform the input NFA into one that is partially
ordered. Here, an NFA is partially ordered if the state set Q is equipped with a partial order
(Q, ≤) such that for every transition from p to q, we have p ≤ q. In particular, the automaton
does not contain any cycles except for self-loops. The following is a standard fact:

M. Ganardi, I. Sağlam, and G. Zetzsche 36:7

▶ Lemma 4.2. Given any NFA A, one can compute in NL a partially ordered NFA R such
that L(R) = L(A)↓.

Essentially, one collapses each strongly connected component (SCC) C of A into a new
state qC of R and adds a self-loop to qC for each letter that appears in C. Here, we require
non-determinism in our logspace computation, because we need to determine whether a given
letter appears in a strongly connected component. See [27, App. B] for details.

Next, we want to construct an NFA Ridl over a finite alphabet of atoms of Σ, that will
accept (as its words) the ideal representations given by the accepted paths of R.

▶ Lemma 4.3. Given any partially ordered NFA R on the finite alphabet Σ, one can compute
in NL an acyclic NFA Ridl over some polynomial-sized alphabet Γ ⊆ atoms(Σ) such that
Idl(L(Ridl)) = L(R)↓.

Since the only cycles R contains are self loops, we can write L(R) as the finite union,

L(R) =
⋃

i∈[1,r]

a1,i∆∗
1,ia2,i∆∗

2,i · · · aki,i∆∗
ki,i with an,i ∈ Σ∪{ε} and ∆n,i ⊆ Σ for n ∈ [1, ki]

Since L(R) is downward closed, it is equivalent to the following ideal decomposition of L(A)↓:

L(R) =
⋃

i∈[1,r]

{ε, a1,i}∆∗
1,i{ε, a2,i}∆∗

2,i · · · {ε, aki,i}∆∗
ki,i (1)

Proof sketch. To construct Ridl from R, for each state q in R, we add two copies q and q′

to Ridl. We keep the initial state the same, and make the final states of Ridl the copies of
final states of R. Each state q with self-loops is turned into a transition reading an alphabet

atom q
∆ ∗

−−→ q′ where ∆ contains all letters read on self-loops on q. Furthermore, each

transition p
a−→ q in R where p ̸= q is turned into a transition reading a single atom p′ a ?

−−→ q.
It is easily verified L(Ridl) is the ideal decomposition of L(R) given in equation (1). ◀

4.2 Weighting functions for ideals

Lemma 4.3 tells us that for our given NFA A, we can construct an NFA Ridl over atoms(Σ)
that is acyclic and whose paths correspond to the ideals of L(A)↓. Observe that L(A) is
directed iff there exists a path π in Ridl such that L(A) is included in the ideal of π: Clearly,
if there is such a path, then L(A)↓ must equal this ideal and is thus directed. Conversely, if
L(A) is directed and L(A)↓ = I1 ∪ · · · ∪ In, where I1, . . . , In are the ideals of the paths in
Ridl, then directedness implies that L(A)↓ is an ideal. By Lemma 3.2, we must have that
L(A)↓ coincides with some Ii for i ∈ [1, n], which lies on some path π. Therefore, to show
Lemma 4.1, it remains to pick a path π such that if there is a greatest ideal among the paths
in Ridl, then it must lie on π. This is the main challenge in our decision procedures.

Our key insight is that this can be accomplished by a weighting function. Roughly speaking,
we construct a function µ from the set of ideal representations to N such that µ is strictly
monotone, meaning (i) if Idl(α1 · · · αn) ⊆ Idl(β1 · · · βm), then µ(α1 · · · αn) ≤ µ(β1 · · · βm)
and (ii) if in addition Idl(α1 · · · αn) ̸= Idl(β1 · · · βm), then µ(α1 · · · αn) < µ(β1 · · · βm).
Moreover, the function will be additive, meaning µ(α1 · · · αn) = µ(α1) + · · · + µ(αn). Given
such a function, we can find the aforementioned path π by picking one with maximal weight.

STACS 2024

36:8 Directed Regular and Context-Free Languages

The weight function. Strictly speaking, an additive strictly monotone function as above
is impossible: It would imply n ≤ µ(a ? · · · a ?) < µ({a} ∗) for every n (here, the product
a ? · · · a ? has n factors). Therefore, we will only satisfy strict monotonicity on ideal repres-
entations of some maximal length k. Given k ∈ N, the (k-)weight of an ideal representation
α1 · · · αn is defined as µk(α1 · · · αn) =

∑n
i=1 µk(αi) where for each atom α:

µk(α) =
{

1, if α is a single atom
(k + 1)|∆|, if α = ∆ ∗ for some ∆ ⊆ Σ where ∆ ̸= ∅.

(2)

The function µk is clearly additive. However, it is not strictly monotone: For instance, the
products a ∗ · a ∗ and a ∗ · b ∗ receive the same weight, but the former represents a strict
subset of the latter. In the remainder of this subsection, we will show that µk is strictly
monotone on reduced ideal representations.

Exponential weights are needed. Before we continue with our algorithm for directedness,
let us quickly remark that µk cannot be chosen much smaller. If the alphabet Σ is not fixed,
then µk can have exponential values, because |∆| appears in the exponent. In fact, dealing
with exponentially large numbers is the reason our upper bound in the general NFA case is
AC1 rather than NL. This raises the question of whether there is a weighting function that
is strictly monotone on reduced ideal representations of length k with polynomial values.
This is not the case. To see this, consider the exponential-length chain Cℓ of ideals over the
alphabet Σ = {a0, a1, . . . , aℓ} constructed as follows. For i ∈ [1, ℓ], let Σi = {a0, . . . , ai}. Set
C0 := (a0

?). For each i ∈ [1, ℓ], assuming Ci−1 = (I1, . . . , It), define Ci as

Ci := (I1, . . . , It, (Σi−1) ∗ · ai
? · I1, . . . , (Σi−1) ∗ · ai

? · It).

Clearly, the number of ideals in each chain Cℓ is exponential in ℓ. Moreover, the maximal
length k of ideals in Cℓ is polynomial in ℓ. Since for each i, ai does not appear in Ci−1,
we know that (a) the ideal representations in Cℓ are reduced and (b) the chain Cℓ is strict.
Therefore, any weight function that is strictly monotone on ideal representations of length k

maps each ideal in Cℓ to a distinct value, requiring exponentially high values.

Strict monotonicity. We now prove our strict monotonicity property for µk:

▶ Proposition 4.4. Let α1 · · · αn and β1 · · · βm be reduced ideal representations of ideals I

and J , respectively, with m, n ≤ k. If I ⊆ J then µk(α1 · · · αn) ≤ µk(β1 · · · βm). Moreover,
if I ⊊ J , then µk(α1 · · · αn) < µk(β1 · · · βm).

To prove Proposition 4.4, we use Lemma 4.5, which roughly states that inclusion of ideals
behaves similarly to the subword ordering: Inclusion is witnessed by some embedding map.

▶ Lemma 4.5. Let α1 · · · αn and β1 · · · βm be representations of ideals I and J on Σ,
respectively. If I ⊆ J , then there exists a function f : [1, n] → [1, m] such that
1. f(i) ≤ f(i + 1) for all i ∈ [1, n − 1],
2. αi is contained in βf(i) for all i ∈ [1, n],
3. if βj is a single atom, then |f−1(j)| ≤ 1

Proof sketch. For each atom α, we generate a unique word wα. If α = a ? , then wα = a. If
α = ∆ ∗ , then we fix an order on Σ and for each ∆ ⊆ Σ let w∆ be a word that contains each
letter in ∆ once, in the increasing order and set wα = wm+1

∆ . We define f so that it sends
each i to the j for which β1 · · · βj is the shortest prefix for which wα1 · · · wαi ∈ Idl(β1 · · · βj).
Then f satisfies the premises of Item 1-3. Details can be found in [27, App. B]. ◀

M. Ganardi, I. Sağlam, and G. Zetzsche 36:9

Proof of Proposition 4.4. For the given ideal representations α1 · · · αn and β1 · · · βm, let
f : [1, n] → [1, m] be the embedding function introduced in Lemma 4.5.

▷ Claim. For all j ∈ [1, m], µk(βj) ≥
∑

i∈f−1(j) µk(αi)

Proof of claim. If βj is a single atom, then by Item 3, there exists at most one αi embedded
in βj and by Item 2, βj contains αi; thus αi = βj is a single atom. In this case, µk(βj) =
µk(αi) = 1. Otherwise, βj = ∆ ∗ . By Item 1, the elements of f−1(j) have to be consecutive
numbers, i.e. f−1(j) = [i1, i2]. Then f embeds αi1 , . . . , αi2 in βj . Since α1 · · · αn is reduced,
each pair αi, αi+1 is non-absorptive. Since they are all contained in βj , either |f−1(j)| = 1,
or for all i ∈ [i1, i2], |αi| < |βj | where |αi| = 0 if αi is a single atom; otherwise it is the size
of the alphabet of αi. In the case |f−1(j)| = 1, since the only atom in f−1(j) is contained in
βj , the claim trivially holds. In the latter case, the inequality (3)∑

i∈f−1(j)

µk(αi) ≤ n · (k + 1)|∆|−1
< (k + 1)|∆| = µk(βj) (3)

follows from the fact that f can embed at most n many atoms into βj and that n ≤ k. ◁

µk(β1 · · · βm) ≥ µk(α1 · · · αn) follows from the claim due to the weight of an ideal
representation being defined additively. This concludes the first part of the proof.

Assume I ⊊ J . Then there exists an αi strictly contained in βf(i), or f is not surjective.
In the latter case, equation (4) follows from our previous argument.

µk(α1 · · · αn) < µk(β1 · · · βm) (4)

In the former case, βf(i) is an alphabet atom, otherwise it cannot strictly contain αi. If αi is
a single atom, (4) follows from µk(αi) = 1. If it is an alphabet atom, (4) follows from (3). ◀

4.3 Reducing ideals
We will apply the weighting function with k being an upper bound on the path length in Ridl

(e.g. the number of states). We have seen that the weighting function is strictly monotone
on reduced ideal representations. Therefore, if all paths in Ridl had reduced ideals, we could
prove Lemma 4.1 by picking the path with the largest weight. This is because, if I1, . . . , In

are the ideals on paths of Ridl and Im has maximal µk among them, then Proposition 4.4
implies that L(A) is directed if and only if L(A) ⊆ Im: Here, the “if” is trivial. Conversely,
if L(A) is directed, then L(A)↓ = I1 ∪ · · · ∪ In is an ideal and hence I1 ∪ · · · ∪ In = Ii for
some i by Lemma 3.2. But then we must have Ii = Im, because Im ⊆ Ii by the choice of Ii,
and if Ii were a strict superset of Im, µk(Im) would not be maximal. Thus, L(A) ⊆ Im.

Thus, our next task is to transform Ridl so as to make all ideal representations reduced:

▶ Lemma 4.6. Given any partially ordered NFA R on the finite alphabet Σ, one can compute
in NL an acyclic NFA Rred over some polynomial-sized alphabet Γ ⊆ atoms(Σ) such that
Idl(L(Rred)) = L(R)↓ and the ideal representations Rred accepts are reduced.

Reducing an individual ideal representation is easy: repeatedly merge consecutive atoms, as
briefly sketched in Lemma 3.1. Reducing all ideal representations accepted by an NFA at the

same time is not obvious: For example, we cannot just merge two transitions p
{a} ∗

−−−→ q
a ?

−−→ r,
since each of them might be needed for other paths. We achieve this using transducers.

STACS 2024

36:10 Directed Regular and Context-Free Languages

Transducers. A transducer is a tuple T = ⟨Q, Γi, Γo, t0, F, E⟩ where Q is a finite set of states,
Γi and Γo are finite (input and output) alphabets, t0 ∈ Q is the initial state, F ⊆ Q is the set
of final states and E ⊆ Q×(Γi∪{ε})×(Γo∪{ε})×Q is the transition relation. Each transition,
reads a letter (or ε) from the input alphabet, writes a letter (or ε) from the output alphabet
and moves to a new state. A sequence r = (q1, a1, b1, q2)(q2, a2, b2, q3) · · · (qm, am, bm, qm+1)
is called a run of T if each (qi, ai, bi, qi+1) is in E for i ∈ [1, m] with t0 = q1 and qm+1 ∈ F .
For such a run, let the projection of the transitions to the input (similarly, output) alphabet
be denoted by inp(r) (similarly, out(r)). That is, for the r defined above inp(r) is the subword
of a1a2 . . . am and out(r) is the subword of b1b2 . . . bm. Then, the set of (inp(r), out(r)) over
runs r of T is called the language of T , is denoted by L(T), and defines a rational relation
on Γi × Γo. For a set Y ⊆ (Γi)∗, T (Y) denotes the set of words T outputs upon a run from
Y , i.e. T (Y) = {b | a ∈ Y and (a, b) ∈ L(T)}.

Composition of two transducers is again a transducer [15,44].

Left- and right-reduced representations. We will later define two transducers TL and TR
the composition of which will take an ideal representation α1 · · · αn produced by Ridl and
return an equivalent reduced ideal representation β1 · · · βm with m ≤ n. In particular, TL will
turn α1 · · · αn into an equivalent ideal representation that is left-reduced, and TR will turn it
into an equivalent ideal representation that is right-reduced. Left- and right-reducedness are
defined as follows. An ideal representation α1 · · · αn is called left-reduced if for all i ∈ [1, n−1],
αi does not absorb αi+1. Similarly, it is called right-reduced if αi+1 does not absorb αi.
Clearly, if a representation is both left- and right-reduced, then it is reduced.

Building the transducers. Intuitively, the transducer TL scans an ideal representation
and after reading its first alphabet atom ∆ ∗ , it outputs ∆ ∗ , but then skips (i.e. reads
without producing output) all atoms that are absorbed by ∆ ∗ . Formally, we have TL =
⟨QL, Γi

L, Γo
L, t0

L, FL, EL⟩. QL contains a state corresponding to each alphabet atom in
Γ ⊆ atoms(Σ) (as given in Lemma 4.3), with a new initial state t0

L and a state t1 for all of
the single atoms. We set Γi

L = Γo
L = Γ. Let Φ be a mapping from Γ to QL, which sends

each alphabet atom to its corresponding state, and each single atom to t1. FL = QL \ {t0
L}

and EL is defined as follows;
For all α ∈ Γ, (t0

L, α, α, Φ(α)) and (t1, α, α, Φ(α)) are in EL,
For each t ∈ QL \ {t0

L, t1} and each atom α ∈ Γ, if t (as an alphabet atom) does not
absorb α (as an atom), then (t, α, α, Φ(α)) is in EL.
For each t ∈ QL \ {t0

L, t1} and each atom α ∈ Γ, if t absorbs α, then (t, α, ε, t) is in EL.

It is easy to see that for an ideal representation α1 · · · αn, TL(α1 · · · αn) is left-reduced
and represents the same ideal. Clearly the size of QL, as well as the sizes of the alphabets is
polynomial. Furthermore, for a word w and all (inp(w), out(w)), | out(w)| ≤ | inp(w)|.

Reversing the edges and flipping the initial and final states of TL we obtain the reverse
transducer TR. It can be inductively shown that for any ideal representation α1 · · · αn,
TR(α1 · · · αn) is right-reduced. To show Lemma 4.6, we will apply the composition TL ◦TR to
L(Ridl). Here, we need to show that applying TL after TR does not spoil right-reducedness:

▶ Lemma 4.7. If α1 · · · αn is right-reduced, then TL(α1 · · · αn) is also right-reduced.

Proof. Since α1 · · · αn is right-reduced, for i ∈ [1, n], αi+1 does not absorb αi. By construc-
tion, TL(α1 · · · αn) is a subword of α1 · · · αn, say αi1 · · · αik

. We show that for all j ∈ [1, k],
αij+1 does not absorb αij . Let ij = k and ij+1 = k′. If k′ = k +1, then the claim follows from
the right-reducedness of α1 . . . αn. Otherwise, αk absorbs all atoms between itself and αk′ .
In particular it absorbs αk′−1. Since αk′ does not absorb αk′−1, it cannot absorb αk. ◀

M. Ganardi, I. Sağlam, and G. Zetzsche 36:11

Thus, by applying TL ◦ TR to L(Ridl), we obtain an NFA that reads ideal representations
of the same set of ideals (i.e. L(A)↓) and every ideal representation is reduced. The resulting
NFA Rred can be computed in NL. For details of the construction, see [27, Corollary B.5].

4.4 Deciding directedness
We now present our algorithms to decide directedness for a given NFA. We first complete
the proof of Lemma 4.1. For this, in light of Lemma 4.6 and Proposition 4.4, it remains to
compute a path of Rred of maximal weight.

Computing the maximal weight. It is well known that the maximum weight path problem
can be reduced to matrix multiplication over the max-plus semiring [3, Lemma 5.11]. This
yields AC1 (resp. NL) algorithms for binary (unary) encoded weights [22]. For completeness
sake we provide a proof of this fact. Let Rred = (Qred, Γ, δred, q0

red, F red) be the NFA from
Lemma 4.6. We may assume Rred has a unique final state qf

red, is acyclic except for an ε

self-loop in qf
red, and between each pair of states, there is at most one edge. The goal is to

compute, for each state q, the maximal weight of any path starting in q.
Let m = |Qred|. Since Rred is acyclic apart from the self-loop on qf

red, any ideal
representation accepted by Rred has length ≤ m. Observe that due to the ε-loop on qf

red,
every ideal α1 · · · αn ∈ L(Rred) is read on some path of length exactly m. We want to find
an accepted path with the maximum summation of m-weights of each transition (recall
that µm(ε) = 0). To do so, we fix an order {q1, . . . , qm} on the states of Qred such that
q1 := q0

red and qm := qf
red and construct a m × m-matrix M, the elements of which takes

values from the max-plus semiring (N ∪ {−∞}, +, max, 0, −∞). For each i, j ∈ [1, m], we
set M(i, j) to (i) µm(x), if there is an edge (qi, x, qj) ∈ δred with x ∈ atoms(Σ) ∪ {ε}, (ii)
−∞, otherwise. We can now apply the standard fact from weighted automata that for every
n ≥ 0, in the matrix power Mn, the entry (i, j) is the maximum weight of all paths of length
exactly n from qi to qj [3]. Therefore, the largest weight among all paths from qs to qm is
the entry (s, m) in the matrix power Mm. A single matrix product can be computed in
AC0 since binary addition and the maximum of multiple numbers can be computed in AC0.
Moreover, for n given in unary, a matrix power Mn can be computed in AC1 by repeated
squaring: One writes n =

∑ℓ
i=0 bi2i with b0, . . . , bℓ ∈ {0, 1} and computes M′

0 = Mbℓ ,
M′

i = (M′
i−1)2 · Mbℓ−i , yielding Mn = M′

ℓ. Thus, by applying the (constant depth) AC0

circuit for matrix multiplication ℓ ∈ O(log n) times, we obtain a circuit of logarithmic depth.
In particular, we can compute Mm, and hence the maximal path weights Mm(s, m), in AC1.

In case the alphabet is fixed, we compute the maximal weights in NL. Observe that in
this case, all weights µm(α) for atoms α ∈ atoms(Σ) have µm(α) ≤ (m + 1)|Σ|, which is
polynomial as |Σ| is constant. In particular, all the maximal path weights from qs to qm, are
bounded by m · (m + 1)|Σ| and can be stored in logarithmic space. Thus we can proceed
as follows. Given s ∈ [1, m], for every ℓ = m · (m + 1)|Σ|, . . . , 0, we decide in NL whether
there exists a path of weight ℓ from qs to qm. If so, then ℓ is the maximal weight. Since
NL = coNL, we can also determine the non-existence of such a path and continue with ℓ − 1.

Computing a maximal-weight ideal representation. We have now computed, for each
s, the maximal weight Ms of any path from qs to the final state qm. For Lemma 4.1, we
now need to compute in NL a path from q1 to qm of maximal weight. Here, it is important
that this computation only depends on the input (even though our NL computation is
non-deterministic). Starting from q1, we successively compute the next transition in our
path. If qi is the current state, then we compute the next state qj as follows. We compute

STACS 2024

36:12 Directed Regular and Context-Free Languages

a, c, f
c, ε

c, ε

a, b

b, c
f, ε

c, ε

e, ε
d, e

a, f

a

b

c

c

d, e

b, c

f
f a

c

a c, f

e

e ?

f
?

c ?

c ?

c ?

{a, c, f}{d, e}*

{a, f}{b, c}

{a, b}
*

* *

*

c ?
{a, c, f}{d, e}

{b, c}

{a, b}

ε

ε
ε ε

ε
*

*

*

*

A R

Ridl Rred

Figure 1 Initial automaton A on alphabet {a, b, c, d, e, f} and the corresponding R, Ridl and
Rred are depicted. The initial states of the automata are marked with a half arrow sign and the
final states are encircled. Since Rred has 10 states all ideal representations in L(Rred) contain
≤ 10 atoms. Therefore, m is set to 10 and we calculate the maximal 10-weight ideal, which is
I = Idl({a, b} ∗ · c ? · {d, e} ∗ · {a, c, f} ∗) with the 10-weight 113 + 2 · 112 + 1. L(A) ↓̸⊆ I witnessed
by cb ∈ L(A) ↓ \I; proving that L(A) is not directed.

M as the maximal Mℓ, where qℓ ranges over all states reachable in one step from qi. Then,
we pick the smallest j with Mj = M . This way, we successively output a path of maximal
weight, such that the path only depends on the input. This completes Lemma 4.1.

Deciding directedness. The upper bounds in Theorems 2.1 and 2.2 follow by applying
Lemma 4.1 to obtain an ideal α1 · · · αn, either in AC1 if Σ is part of the input, or in NL for
fixed Σ. Finally, checking whether L(A)↓ ⊆ Idl(α1 · · · αn) can be done in NL [50].

5 Solution on Context-free Languages

We now prove Theorem 2.3. As in Section 4, the upper bound uses the weighting function to
compute a candidate ideal in L(G)↓. However, the ideal representation may be exponentially
long and will thus be compressed by a straight-line program. For the lower bound, the key
idea is to employ a construction from [12] to compute a compressed ideal that contains all
words of some length N (given in binary), except a particular word specified as an SLP.

5.1 Deciding directedness of context-free languages
We begin with the PSPACE upper bound, which requires some terminology. A context-free
grammar (CFG) is a tuple G = ⟨N, Σ, P, S⟩ where N is the finite set of nonterminals, Σ
is the finite set of terminals, or the finite alphabet, S ∈ N is the start nonterminal and
P ⊆ N × (N ∪ Σ)∗ is the finite set of productions. We use the arrow notation to denote
productions. A → w denotes (A, w) ∈ P . We write w →∗ w′ for some w, w′ ∈ (N ∪ Σ)∗ to
express that w′ can be produced by w through a finite sequence of productions.

For w ∈ (N ∪ Σ)∗, we denote by L(w) = {w′ ∈ Σ∗ | w →∗ w′} all sequences of terminals
w can produce and call it the language of w. We define the language of a grammar to be
the language of its start nonterminal. That is, L(G) := L(S). WLOG we assume that all
nonterminals are reachable from S. A CFG is said to be in Chomsky Normal Form (CNF), if

M. Ganardi, I. Sağlam, and G. Zetzsche 36:13

all its productions are of the form A → BC, A → a or S → ε, where A, B, C, S ∈ N , a ∈ Σ
and B, C ̸= S. It is well known that one can bring a given grammar into CNF in polynomial
time. A CFG G is called acyclic, if non of its nonterminals produce itself.

A straight line program (SLP) is a CFG that produces a single word. Formally, an SLP
is a CFG G = ⟨N, Σ, P, S⟩ where (i) for each A ∈ N , there is exactly one production A → w

in P , (ii) G is acyclic. We denote the unique word a1 · · · an an SLP A produces by val(A). If
the letters of A belong to atoms(Σ), val(A) is an ideal representation over Σ. Thus A is a
compressed ideal representation for I = Idl(val(A)), or shortly compressed ideal I.

Our algorithm is analogous to the one for NFAs. First, an analogue of Lemma 4.1:

▶ Lemma 5.1. There is a polynomial time algorithm that given a non-empty CFG G,
computes a compressed ideal I ⊆ L(G)↓ such that L(G)↓ is directed if and only if L(G)↓ ⊆ I.

And given Lemma 5.1, it remains to decide whether L(G) ⊆ I:

▶ Lemma 5.2. Given any CFG G and a compressed ideal I, one can decide in PSPACE
whether L(G) ⊆ I.

A grammar of ideals. The remainder of this subsection is devoted to Lemmas 5.1 and 5.2.
Analogously to Lemma 4.3, we first transform G into an acyclic grammar Gidl that produces
ideal representations of an ideal decomposition of L(G)↓.

▶ Lemma 5.3. Given any CFG G in CNF over Σ, one can compute in polynomial time an
acyclic CFG Gidl over a polynomial-sized alphabet Γ ⊆ atoms(Σ) with Idl(L(Gidl)) = L(G)↓.

The procedure is similar to Courcelle’s construction [23] (see [27, App. C] for details).

Reducing ideals. The next step is analogous to Lemma 4.6: We want to transform Gidl

so as to only produce reduced ideal representations. Luckily, we can directly apply the
transducers TL and TR constructed for Lemma 4.6: Since for a given CFL K and a transducer
T , one can compute in polynomial time a grammar for T (K) [44], we obtain the following:

▶ Lemma 5.4. Given any CFG G in CNF over alphabet Σ, one can compute in polynomial
time an acyclic CFG Gred in CNF over some polynomial-sized alphabet Γ ⊆ atoms(Σ) such
that (i) Idl(L(Gred)) = L(G)↓ and (ii) all ideal representations in L(Gred) are reduced.

Similar to Lemma 4.6, we apply TL ◦ TR to L(Gidl) (see [27, Lem. C.1]) and convert to CNF.

Calculating the maximum weight ideal. Similar to Section 4, the next step is to compute
for each nonterminal A of Gred the maximal weight of any ideal representation produced by
A. Let Gred = ⟨Nred, Γ, P red, Sred⟩ denote the grammar from Lemma 5.4. With the same
argument as in Section 4, an ideal of maximal weight will be as desired in Lemma 5.1. We
use the weighting function µm, where m = 3 · 22|Nred| is an upper bound on the length of
words in Gred. A notable difference to Section 4 is that here m is exponential.

For each nonterminal A of Gred, we denote by µm(A) the maximal possible weight of any
ideal representation generated by A. To calculate µm(A) for each A, we employ a simple
dynamic programming approach. We maintain a table T that contains for each nonterminal A

a number T (A) ∈ N, which is the maximal weight of a derivable ideal representation observed
so far. We initialize T (A) = −∞ for every A. Then, we set T (A) to the maximal value of
µm(a), where a ranges over all a ∈ atoms(Σ) for which A → a is a production. Finally, we
perform the following update step. For each nonterminal A, if there is a production A → BC

STACS 2024

36:14 Directed Regular and Context-Free Languages

such that currently T (A) is smaller than T (B)+T (C), then we update T (A) := T (B)+T (C).
It can be shown by induction that after i update steps, T (A) contains the correct value µm(A)
for each nonterminal A that has a depth ≤ i derivation tree that attains µm(A). When we
apply the update step |Nred| times, we arrive at T (A) = µm(A) for every nonterminal A.

Computing the candidate ideal. Given the numbers µm(A), it is easy to prove Lemma 5.1.
For each nonterminal A, there must exist a “max-weight” production A → BC, resp. A → a,
such that µm(A) = µm(B) + µm(C), resp. µm(A) = µm(a). We build a new grammar S
by selecting for each nonterminal A of Gred this max-weight production. Then S contains
at most one production for each nonterminal and is thus an SLP. Moreover, it clearly
generates an ideal representation val(S) of maximal weight. We only need to argue that
L(G) is directed iff L(G) ⊆ Idl(val(S)). As before, the “if” direction is obvious, because
L(G) ⊆ Idl(val(S)) implies that L(G) is an ideal. Conversely, suppose L(G) is directed and
let L(G)↓ = I1 ∪ · · · ∪ In be the ideal decomposition given by L(Gred) with Idl(val(S)) = Ii.
Since L(G) is directed, L(G)↓ is an ideal and thus I1 ∪ · · · ∪ In = Ij for some j by Lemma 3.2.
In particular, we have Ii ⊆ Ij . Moreover, if the inclusion were strict, Ii would not have
maximal weight. Hence, Ii = Ij and thus L(G) ⊆ Ii = Idl(val(S)) as required.

Deciding directedness. With Lemma 5.1 in hand, it remains to prove Lemma 5.2. Suppose
we are given a grammar G and an SLP S for I = Idl(val(S)), and we want to check
L(G) ⊆ val(S). Since this is equivalent to L(G)↓ ⊆ val(S), we first construct Gred given
in Lemma 5.4. Recall that L(Gred) generates representations of ideals of L(G)↓. The
algorithm guesses an ideal representation in L(Gred) whose ideal does not embed in I.

We guess an ideal representation generated by Gred, atom by atom, via its leftmost
derivation. This word can be exponentially long, but we only store one (polynomial-length)
path in the derivation tree, leading to the terminal atom that we are currently guessing
(see [27, App.D] for an example). While guessing the representation, we simultaneously
maintain a (binary encoded) pointer into val(S). Suppose α1 · · · αj−1 is guessed so far. While
αj is being guessed, the pointer holds the length of the shortest prefix of val(S), α1 · · · αj−1
embeds in. Let val(S)[i] denote the ith index of val(S). If there is an atom val(S)[i′] with
i′ ≥ i (if val(S)[i] is an alphabet atom) or i′ > i (if val(S)[i] is a single atom) that αj embeds
in, we update the pointer to the smallest such i′. If there is no such atom, the guessed ideal
does not embed in I. On the other hand, if j − 1 is the last atom guessed, then the guessed
ideal embeds in I. Details are in [27]. This establishes Lemma 5.2 and thus Theorem 2.3.

5.2 PSPACE Lower Bound
Let us now come to the lower bound in Theorem 2.3. It remains to show:

▶ Lemma 5.5. Given a CFG G over {0, 1}, directedness of L(G) is PSPACE-hard.

To this end, we reduce from compressed membership in automatic relations. Given
two words u = a1 · · · an, v = b1 · · · bn ∈ {0, 1}∗, their convolution is defined as u ⊗ v =
(a1, b1) · · · (an, bn) ∈ ({0, 1} × {0, 1})∗. The following was shown in [39, Corollary 8]:

▶ Lemma 5.6. There exists a regular language R ⊆ ({0, 1} × {0, 1})∗ such that for given
two SLPs A and B with | val(A)| = | val(B)|, deciding val(A) ⊗ val(B) ∈ R is PSPACE-hard.

From Lemma 5.6, we deduce the following:

▶ Lemma 5.7. Given an SLP B and a CFG G such that all words in L(G) have length
exactly | val(B)|, both over the alphabet Σ = {0, 1}, deciding val(B) ∈ L(G) is PSPACE-hard.

M. Ganardi, I. Sağlam, and G. Zetzsche 36:15

Proof. We reduce from the PSPACE-complete problem in Lemma 5.6. Let R be the regular
language from Lemma 5.6, and let A and B be SLPs with n = | val(A)| = | val(B)|. Observe
that val(A) ⊗ val(B) ∈ R if and only if val(B) belongs to the language K = {w ∈ {0, 1}n |
val(A) ⊗ w ∈ R}. We can construct a context-free grammar G for K in polynomial-time by
viewing an automaton for R as a transducer and applying it to the SLP A. ◀

Now in order to reduce the compressed membership problem val(B) ∈ L(G) in Lemma 5.7
to an inclusion L(G) ⊆ I, the key trick is to construct an ideal I that acts like a complement
of {val(B)}. We expect that this will be of independent interest.

▶ Lemma 5.8. Given an SLP B over Σ, one can construct in polynomial time an SLP I over
atoms(Σ) so that Idl(val(B)) is infinite and Idl(val(I)) ∩ Σ| val(B)| = Σ| val(B)| \ {val(B)}.

The proof uses a construction from [12]. The authors of the latter were interested in defining
languages in the existential fragment of first-order logic over the structure the set Σ∗, ordered
by ≼. In one step [12, Lemma 3.1], given a word u ∈ Σ∗, they construct a word w̄ ∈ Σ∗

such that {w̄}↓ ∩ Σ|w| = Σ|w| \ {w}. To this end, they write w = a1 · · · an and define
ui to be a word that contains every letter from Σ, except for ai. Then, they argue that
w̄ = u1a1 · · · un−1an−1un is as desired. Here, we cannot use w̄ directly, because we want I

to be infinite. However, we can use a similar construction.

Proof of Lemma 5.8. Suppose val(B) = b1 · · · bn and define I = Idl(w) with

w = (Σ \ {b1}) ∗ · b1
? · (Σ \ {b2}) ∗ · b2

? · · · (Σ \ {bn−1}) ∗ · bn−1
? · (Σ \ {bn}) ∗

.

We first show I ∩ Σn = Σn \ {val(B)}. Clearly, b1 · · · bn ̸∈ I: Let ji be length of the
shortest prefix of w whose ideal contains b1 · · · bi. Clearly j1 = 2, since the first atom
(Σ \ {b1}) ∗ does not embed b1. Inductively we get j2 = 4, . . . , jn−1 = 2n − 2, which
leaves only the last atom (Σ \ {bn}) ∗ to embed bn, but this is not possible. We now
prove Σn \ {b1 · · · bn} ⊆ I. Let c1 · · · cn ≠ b1 · · · bn and choose d minimally with cd ≠ bd.
Let hi to be the length of the of shortest prefix of w whose ideal contains c1 · · · ci. Then
hd−1 = jd−1 = 2d−2. Since cd differs from bd, it embeds in the (2d−1)-th atom (Σ \ {bd}) ∗ ,
i.e. hd = 2d − 1. The remaining (n − d)-length suffix cd+1 · · · cn embeds in the 2(n − i) length
suffix (Σ \ {bd}) ∗ · bd

? · · · (Σ \ {bn−1}) ∗ · bn−1
? : Indeed, since (Σ \ {bk}) ∗ · bk

? embeds
every letter, the aforementioned suffix even embeds every word from Σn−d.

It remains to be shown that we can compute an SLP for w. Note that w is almost a homo-
morphic image of val(B). Given SLP B, we obtain an SLP I′ for w by replacing each production
A → b with A → (Σ \ {b}) ∗

b ? . Then, val(I′) = (Σ \ {b1}) ∗ · b1
? · · · (Σ \ {bn}) ∗ · bn

? . To
get w exactly, we construct I so that val(I) is val(I′) without its last letter. It is easy to see
that this can be done in polynomial time (it follows, e.g. from [43, Theorem 7.1]). ◀

We are now ready to prove Lemma 5.5. Given a grammar G and an SLP B as in Lemma 5.7,
we use Lemma 5.8 to construct an SLP I with Idl(I)∩Σ| val(I)| = Σ| val(I)| \{val(B)}. Observe
that now val(B) /∈ L(G) if and only if L(G) ⊆ Idl(I). Moreover, observe that L(G) is finite
and Idl(I) is infinite. Therefore, the following lemma implies that val(B) /∈ L(G) if and only
if the context-free language L(G) ∪ Idl(val(I)) is directed, yielding PSPACE-hardness.

▶ Lemma 5.9. For finite L ⊆ Σ∗ and an infinite ideal I, we have L ⊆ I iff L ∪ I is directed.

STACS 2024

36:16 Directed Regular and Context-Free Languages

Proof. Clearly, if L ⊆ I, then L ∪ I = I is an ideal and thus directed. Conversely, suppose
L ∪ I is directed. Consider an ideal decomposition L↓ = I1 ∪ . . . ∪ In. Here, all Ii are finite
since L is finite. Since L ∪ I is directed, the downward closure (L ∪ I)↓ must coincide with
one of the ideals in the ideal decomposition (L ∪ I)↓ = I1 ∪ . . . ∪ In ∪ I. Since I is the only
infinite ideal, this is only possible with (L ∪ I)↓ = I. In particular, L ⊆ I. ◀

6 Downward closure comparison

Regular languages. We now show how to obtain Theorem 2.4 as a byproduct of our results.
For the upper bounds, we use Lemma 4.1 to compute, in AC1 resp. NL, a candidate ideal Ii

for each input language Li. Since L1 and L2 are directed, we must have Li↓ = Ii and we
can decide in deterministic logspace whether I1 = I2 [50]. This yields an NL upper bound
for fixed alphabets and an AC1 upper bound for arbitrary alphabets.

For the NL lower bound, we reduce from emptiness of NFAs: Given an NFA A, we may
assume that all transitions are labeled with the empty word ε. We take an NFA A′ that just
accepts {ε}. Then L(A) ̸= ∅ if and only if L(A′)↓ = L(A)↓, proving NL-hardness.

Context-free languages. We now show Theorem 2.5. We first use Lemma 5.1 to compute
an SLP Ai for a candidate ideal for each Li. By directedness, Li↓ = Idl(val(Ai)). To decide
Idl(val(A1)) = Idl(val(A2)), we use the fact that two reduced ideal representations yield
the same ideal if and only if they are syntactically identical [33, Theorem 6.1.12]. To check
val(A1) = val(A2) we may apply the well-known result of Plandowski [42] that equality of
SLPs can be decided in polynomial time (see also [40]).

For the P lower bound, we reduce from emptiness of CFL: Given a CFG G, we may
assume that the only word G can produce is the empty word (otherwise, just replace all
occurrences of terminal letters with the empty word). We also take a grammar G′ with
L(G′) = {ε}. Then clearly, L(G) ̸= ∅ if and only if L(G)↓ = L(G′)↓, yielding P-hardness.

7 Conclusion

We have initiated the investigation of the directedness problem and determined the exact
complexity for context-free languages and for NFAs over fixed alphabets. Over variable
alphabets, we show an AC1 upper bound for NFAs. Despite serious efforts, we leave the exact
complexity open. Note that the complexity of directedness is the same for DFAs and NFAs
[27, App.F]. Also, the complexity of the maximum weight path problem is not known [22].

The developed techniques could be of independent interest. The idea to analyze ideals by
their weights might apply to other procedures for reachability involving ideals [16–18,25, 26,
36–38]. Furthermore, our PSPACE lower bound can be viewed as progress towards resolving
the complexity of the compressed subword problem: Our lower bound applies in particular to
deciding L ⊆ I for context-free L and a compressed ideal I. Compressed subword, on the
other hand, is equivalent to deciding I ⊆ J for compressed ideals I, J . As mentioned before,
it is a long-standing open problem to close the gap between the PP lower bound and the
PSPACE upper bound [39] (see [40] for a survey) for compressed subword.

The surprisingly low complexity of downward closure equivalence (DCE) for directed CFL
calls for an investigation of further applications of directed CFL. As previously stated, safety
properties of concurrent programs only depend on the downward closure of the participating
threads [5, 11,41]. It is conceivable that deciding safety [5, 13] or other notoriously difficult
problems such as refinement [10] are more tractable for directed threads as well.

M. Ganardi, I. Sağlam, and G. Zetzsche 36:17

References
1 Parosh Aziz Abdulla, Ahmed Bouajjani, and Bengt Jonsson. On-the-fly analysis of systems

with unbounded, lossy FIFO channels. In Alan J. Hu and Moshe Y. Vardi, editors, Computer
Aided Verification, 10th International Conference, CAV ’98, Vancouver, BC, Canada, June 28
- July 2, 1998, Proceedings, volume 1427 of Lecture Notes in Computer Science, pages 305–318.
Springer, 1998. doi:10.1007/BFb0028754.

2 Parosh Aziz Abdulla, Aurore Collomb-Annichini, Ahmed Bouajjani, and Bengt Jonsson. Using
forward reachability analysis for verification of lossy channel systems. Formal Methods Syst.
Des., 25(1):39–65, 2004. doi:10.1023/B:FORM.0000033962.51898.1a.

3 Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974.

4 Carme Àlvarez and Birgit Jenner. A very hard log-space counting class. Theor. Comput. Sci.,
107(1):3–30, 1993. doi:10.1016/0304-3975(93)90252-O.

5 Mohamed Faouzi Atig, Ahmed Bouajjani, and Shaz Qadeer. Context-bounded analysis for
concurrent programs with dynamic creation of threads. Log. Methods Comput. Sci., 7(4), 2011.
doi:10.2168/LMCS-7(4:4)2011.

6 Mohamed Faouzi Atig, Dmitry Chistikov, Piotr Hofman, K. Narayan Kumar, Prakash Saivasan,
and Georg Zetzsche. The complexity of regular abstractions of one-counter languages. In
Martin Grohe, Eric Koskinen, and Natarajan Shankar, editors, Proceedings of the 31st Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, New York, NY, USA, July
5-8, 2016, pages 207–216. ACM, 2016. doi:10.1145/2933575.2934561.

7 Aistis Atminas and Vadim V. Lozin. Deciding atomicity of subword-closed languages. In Volker
Diekert and Mikhail V. Volkov, editors, Developments in Language Theory - 26th International
Conference, DLT 2022, Tampa, FL, USA, May 9-13, 2022, Proceedings, volume 13257 of Lecture
Notes in Computer Science, pages 69–77. Springer, 2022. doi:10.1007/978-3-031-05578-2_5.

8 Georg Bachmeier, Michael Luttenberger, and Maximilian Schlund. Finite automata for the sub-
and superword closure of CFLs: Descriptional and computational complexity. In Adrian-Horia
Dediu, Enrico Formenti, Carlos Martín-Vide, and Bianca Truthe, editors, Language and
Automata Theory and Applications - 9th International Conference, LATA 2015, Nice, France,
March 2-6, 2015, Proceedings, volume 8977 of Lecture Notes in Computer Science, pages
473–485. Springer, 2015. doi:10.1007/978-3-319-15579-1_37.

9 David Barozzini, Lorenzo Clemente, Thomas Colcombet, and Pawel Parys. Cost automata,
safe schemes, and downward closures. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli,
editors, 47th International Colloquium on Automata, Languages, and Programming, ICALP
2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs,
pages 109:1–109:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/
LIPIcs.ICALP.2020.109.

10 Pascal Baumann, Moses Ganardi, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg
Zetzsche. Checking refinement of asynchronous programs against context-free specifications.
In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th International Colloquium
on Automata, Languages, and Programming, ICALP 2023, July 10-14, 2023, Paderborn,
Germany, volume 261 of LIPIcs, pages 110:1–110:20. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2023. doi:10.4230/LIPIcs.ICALP.2023.110.

11 Pascal Baumann, Moses Ganardi, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg
Zetzsche. Context-bounded analysis of concurrent programs (invited talk). In Kousha Etes-
sami, Uriel Feige, and Gabriele Puppis, editors, 50th International Colloquium on Automata,
Languages, and Programming, ICALP 2023, July 10-14, 2023, Paderborn, Germany, volume
261 of LIPIcs, pages 3:1–3:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.
doi:10.4230/LIPIcs.ICALP.2023.3.

12 Pascal Baumann, Moses Ganardi, Ramanathan S. Thinniyam, and Georg Zetzsche. Existential
definability over the subword ordering. In Petra Berenbrink and Benjamin Monmege, editors,
39th International Symposium on Theoretical Aspects of Computer Science, STACS 2022, March
15-18, 2022, Marseille, France (Virtual Conference), volume 219 of LIPIcs, pages 7:1–7:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.STACS.2022.7.

STACS 2024

https://doi.org/10.1007/BFb0028754
https://doi.org/10.1023/B:FORM.0000033962.51898.1a
https://doi.org/10.1016/0304-3975(93)90252-O
https://doi.org/10.2168/LMCS-7(4:4)2011
https://doi.org/10.1145/2933575.2934561
https://doi.org/10.1007/978-3-031-05578-2_5
https://doi.org/10.1007/978-3-319-15579-1_37
https://doi.org/10.4230/LIPIcs.ICALP.2020.109
https://doi.org/10.4230/LIPIcs.ICALP.2020.109
https://doi.org/10.4230/LIPIcs.ICALP.2023.110
https://doi.org/10.4230/LIPIcs.ICALP.2023.3
https://doi.org/10.4230/LIPIcs.STACS.2022.7

36:18 Directed Regular and Context-Free Languages

13 Pascal Baumann, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche. The
complexity of bounded context switching with dynamic thread creation. In Artur Czumaj,
Anuj Dawar, and Emanuela Merelli, editors, 47th International Colloquium on Automata,
Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual
Conference), volume 168 of LIPIcs, pages 111:1–111:16. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020. doi:10.4230/LIPIcs.ICALP.2020.111.

14 Pascal Baumann, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche. Context-
bounded verification of thread pools. Proc. ACM Program. Lang., 6(POPL):1–28, 2022.
doi:10.1145/3498678.

15 Jean Berstel. Transductions and Context-Free Languages. Teubner, 1979.
16 Michael Blondin, Alain Finkel, and Jean Goubault-Larrecq. Forward analysis for WSTS, part

III: Karp-Miller trees. In Satya V. Lokam and R. Ramanujam, editors, 37th IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS
2017, December 11-15, 2017, Kanpur, India, volume 93 of LIPIcs, pages 16:1–16:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.FSTTCS.2017.16.

17 Michael Blondin, Alain Finkel, and Pierre McKenzie. Well behaved transition systems. Log.
Methods Comput. Sci., 13(3), 2017. doi:10.23638/LMCS-13(3:24)2017.

18 Michael Blondin, Alain Finkel, and Pierre McKenzie. Handling infinitely branching well-
structured transition systems. Inf. Comput., 258:28–49, 2018. doi:10.1016/j.ic.2017.11.
001.

19 Manuel Bodirsky, Jakub Rydval, and André Schrottenloher. Universal Horn sentences and the
joint embedding property. Discret. Math. Theor. Comput. Sci., 23(2), 2021. doi:10.46298/
dmtcs.7435.

20 Samuel Braunfeld. The undecidability of joint embedding and joint homomorphism for
hereditary graph classes. Discret. Math. Theor. Comput. Sci., 21(2), 2019. doi:10.23638/
DMTCS-21-2-9.

21 Lorenzo Clemente, Pawel Parys, Sylvain Salvati, and Igor Walukiewicz. The diagonal problem
for higher-order recursion schemes is decidable. In Martin Grohe, Eric Koskinen, and Natarajan
Shankar, editors, Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’16, New York, NY, USA, July 5-8, 2016, pages 96–105. ACM, 2016. doi:
10.1145/2933575.2934527.

22 Stephen A. Cook. A taxonomy of problems with fast parallel algorithms. Inf. Control.,
64(1-3):2–21, 1985. doi:10.1016/S0019-9958(85)80041-3.

23 Bruno Courcelle. On constructing obstruction sets of words. Bulletin of the EATCS, 44:178–186,
January 1991.

24 Wojciech Czerwinski, Slawomir Lasota, Roland Meyer, Sebastian Muskalla, K. Narayan Kumar,
and Prakash Saivasan. Regular separability of well-structured transition systems. In Sven
Schewe and Lijun Zhang, editors, 29th International Conference on Concurrency Theory,
CONCUR 2018, September 4-7, 2018, Beijing, China, volume 118 of LIPIcs, pages 35:1–35:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.CONCUR.2018.
35.

25 Alain Finkel and Jean Goubault-Larrecq. Forward analysis for WSTS, part II: complete
WSTS. In Susanne Albers, Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris E. Nikoletseas,
and Wolfgang Thomas, editors, Automata, Languages and Programming, 36th Internatilonal
Colloquium, ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part II, volume
5556 of Lecture Notes in Computer Science, pages 188–199. Springer, 2009. doi:10.1007/
978-3-642-02930-1_16.

26 Alain Finkel and Jean Goubault-Larrecq. Forward analysis for WSTS, part I: completions. In
Susanne Albers and Jean-Yves Marion, editors, 26th International Symposium on Theoretical
Aspects of Computer Science, STACS 2009, February 26-28, 2009, Freiburg, Germany, Proceed-
ings, volume 3 of LIPIcs, pages 433–444. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
Germany, 2009. doi:10.4230/LIPIcs.STACS.2009.1844.

https://doi.org/10.4230/LIPIcs.ICALP.2020.111
https://doi.org/10.1145/3498678
https://doi.org/10.4230/LIPIcs.FSTTCS.2017.16
https://doi.org/10.23638/LMCS-13(3:24)2017
https://doi.org/10.1016/j.ic.2017.11.001
https://doi.org/10.1016/j.ic.2017.11.001
https://doi.org/10.46298/dmtcs.7435
https://doi.org/10.46298/dmtcs.7435
https://doi.org/10.23638/DMTCS-21-2-9
https://doi.org/10.23638/DMTCS-21-2-9
https://doi.org/10.1145/2933575.2934527
https://doi.org/10.1145/2933575.2934527
https://doi.org/10.1016/S0019-9958(85)80041-3
https://doi.org/10.4230/LIPIcs.CONCUR.2018.35
https://doi.org/10.4230/LIPIcs.CONCUR.2018.35
https://doi.org/10.1007/978-3-642-02930-1_16
https://doi.org/10.1007/978-3-642-02930-1_16
https://doi.org/10.4230/LIPIcs.STACS.2009.1844

M. Ganardi, I. Sağlam, and G. Zetzsche 36:19

27 Moses Ganardi, Irmak Sağlam, and Georg Zetzsche. Directed regular and context-free languages,
2024. arXiv:2401.07106.

28 Jean Goubault-Larrecq, Simon Halfon, Prateek Karandikar, K. Narayan Kumar, and Philippe
Schnoebelen. The ideal approach to computing closed subsets in well-quasi-ordering. CoRR,
abs/1904.10703, 2019. arXiv:1904.10703.

29 Jean Goubault-Larrecq and Sylvain Schmitz. Deciding piecewise testable separability for regular
tree languages. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide
Sangiorgi, editors, 43rd International Colloquium on Automata, Languages, and Programming,
ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages 97:1–97:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.ICALP.2016.97.

30 Peter Habermehl, Roland Meyer, and Harro Wimmel. The downward-closure of Petri
net languages. In Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer
auf der Heide, and Paul G. Spirakis, editors, Automata, Languages and Programming, 37th
International Colloquium, ICALP 2010, Bordeaux, France, July 6-10, 2010, Proceedings,
Part II, volume 6199 of Lecture Notes in Computer Science, pages 466–477. Springer, 2010.
doi:10.1007/978-3-642-14162-1_39.

31 Matthew Hague, Jonathan Kochems, and C.-H. Luke Ong. Unboundedness and downward
closures of higher-order pushdown automata. In Rastislav Bodík and Rupak Majumdar,
editors, Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016,
pages 151–163. ACM, 2016. doi:10.1145/2837614.2837627.

32 Leonard H. Haines. On free monoids partially ordered by embedding. Journal of Combinatorial
Theory, 6(1):94–98, 1969. doi:10.1016/S0021-9800(69)80111-0.

33 Simon Halfon. On Effective Representations of Well Quasi-Orderings. PhD thesis, Université
Paris Saclay, 2018. URL: https://theses.hal.science/tel-01945232.

34 P. Jullien. Sue un théorème d’extension dans la théorie des mots. C. R. Acad. Sci. Paris, Ser.
A, 266:851–854, 1968.

35 Mustapha Kabil and Maurice Pouzet. Une extension d’un théorème de p. jullien sur les âges de
mots. RAIRO Theor. Informatics Appl., 26:449–482, 1992. doi:10.1051/ita/1992260504491.

36 Ranko Lazic and Sylvain Schmitz. The ideal view on Rackoff’s coverability technique. Inf.
Comput., 277:104582, 2021. doi:10.1016/j.ic.2020.104582.

37 Jérôme Leroux and Sylvain Schmitz. Demystifying reachability in vector addition systems. In
30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan,
July 6-10, 2015, pages 56–67. IEEE Computer Society, 2015. doi:10.1109/LICS.2015.16.

38 Jérôme Leroux and Sylvain Schmitz. Ideal decompositions for vector addition systems (invited
talk). In Nicolas Ollinger and Heribert Vollmer, editors, 33rd Symposium on Theoretical
Aspects of Computer Science, STACS 2016, February 17-20, 2016, Orléans, France, volume 47
of LIPIcs, pages 1:1–1:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:
10.4230/LIPIcs.STACS.2016.1.

39 Markus Lohrey. Leaf languages and string compression. Inf. Comput., 209(6):951–965, 2011.
doi:10.1016/j.ic.2011.01.009.

40 Markus Lohrey. Algorithmics on SLP-compressed strings: A survey. Groups Complex. Cryptol.,
4(2):241–299, 2012. doi:10.1515/gcc-2012-0016.

41 Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche. General decidability
results for asynchronous shared-memory programs: Higher-order and beyond. Log. Methods
Comput. Sci., 18(4), 2022. doi:10.46298/lmcs-18(4:2)2022.

42 Wojciech Plandowski. Testing equivalence of morphisms on context-free languages. In Jan van
Leeuwen, editor, Algorithms - ESA ’94, Second Annual European Symposium, Utrecht, The
Netherlands, September 26-28, 1994, Proceedings, volume 855 of Lecture Notes in Computer
Science, pages 460–470. Springer, 1994. doi:10.1007/BFb0049431.

43 Saul Schleimer. Polynomial-time word problems. Commentarii mathematici helvetici, 83(4):741–
765, 2008.

STACS 2024

https://arxiv.org/abs/2401.07106
https://arxiv.org/abs/1904.10703
https://doi.org/10.4230/LIPIcs.ICALP.2016.97
https://doi.org/10.1007/978-3-642-14162-1_39
https://doi.org/10.1145/2837614.2837627
https://doi.org/10.1016/S0021-9800(69)80111-0
https://theses.hal.science/tel-01945232
https://doi.org/10.1051/ita/1992260504491
https://doi.org/10.1016/j.ic.2020.104582
https://doi.org/10.1109/LICS.2015.16
https://doi.org/10.4230/LIPIcs.STACS.2016.1
https://doi.org/10.4230/LIPIcs.STACS.2016.1
https://doi.org/10.1016/j.ic.2011.01.009
https://doi.org/10.1515/gcc-2012-0016
https://doi.org/10.46298/lmcs-18(4:2)2022
https://doi.org/10.1007/BFb0049431

36:20 Directed Regular and Context-Free Languages

44 Jeffrey O. Shallit. A Second Course in Formal Languages and Automata Theory. Cambridge
University Press, 2008. URL: http://www.cambridge.org/gb/knowledge/isbn/item1173872/
?site_locale=en_GB.

45 Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on Computing,
20(5):865–877, 1991. doi:10.1137/0220053.

46 Salvatore La Torre, Anca Muscholl, and Igor Walukiewicz. Safety of parametrized asynchronous
shared-memory systems is almost always decidable. In Luca Aceto and David de Frutos-Escrig,
editors, 26th International Conference on Concurrency Theory, CONCUR 2015, Madrid, Spain,
September 1.4, 2015, volume 42 of LIPIcs, pages 72–84. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2015. doi:10.4230/LIPIcs.CONCUR.2015.72.

47 Jan van Leeuwen. Effective constructions in well-partially-ordered free monoids. Discrete
Mathematics, 21(3):237–252, 1978.

48 Heribert Vollmer. Introduction to Circuit Complexity - A Uniform Approach. Texts in Theoret-
ical Computer Science. An EATCS Series. Springer, 1999. doi:10.1007/978-3-662-03927-4.

49 Georg Zetzsche. An approach to computing downward closures. In Magnús M. Halldórsson,
Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, Automata, Languages,
and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10,
2015, Proceedings, Part II, volume 9135 of Lecture Notes in Computer Science, pages 440–451.
Springer, 2015. doi:10.1007/978-3-662-47666-6_35.

50 Georg Zetzsche. The complexity of downward closure comparisons. In Ioannis Chatzigiannakis,
Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, 43rd International
Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016,
Rome, Italy, volume 55 of LIPIcs, pages 123:1–123:14. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2016. doi:10.4230/LIPIcs.ICALP.2016.123.

51 Georg Zetzsche. Separability by piecewise testable languages and downward closures beyond
subwords. In Anuj Dawar and Erich Grädel, editors, Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages
929–938. ACM, 2018. doi:10.1145/3209108.3209201.

http://www.cambridge.org/gb/knowledge/isbn/item1173872/?site_locale=en_GB
http://www.cambridge.org/gb/knowledge/isbn/item1173872/?site_locale=en_GB
https://doi.org/10.1137/0220053
https://doi.org/10.4230/LIPIcs.CONCUR.2015.72
https://doi.org/10.1007/978-3-662-03927-4
https://doi.org/10.1007/978-3-662-47666-6_35
https://doi.org/10.4230/LIPIcs.ICALP.2016.123
https://doi.org/10.1145/3209108.3209201

	1 Introduction
	2 Main results
	3 Preliminaries
	4 Solution on Regular Languages
	4.1 Computing the ideal automaton R^{{idl}}
	4.2 Weighting functions for ideals
	4.3 Reducing ideals
	4.4 Deciding directedness

	5 Solution on Context-free Languages
	5.1 Deciding directedness of context-free languages
	5.2 PSPACE Lower Bound

	6 Downward closure comparison
	7 Conclusion

