
Online Simple Knapsack with Bounded Predictions
Matthias Gehnen #

RWTH Aachen University, Germany

Henri Lotze1 #

RWTH Aachen University, Germany

Peter Rossmanith #

RWTH Aachen University, Germany

Abstract
In the Online Simple Knapsack problem, an algorithm has to pack a knapsack of unit size as full
as possible with items that arrive sequentially. The algorithm has no prior knowledge of the length
or nature of the instance. Its performance is then measured against the best possible packing of all
items of the same instance, over all possible instances.

In the classical model for online computation, it is well known that there exists no constant
bound for the ratio between the size of an optimal packing and the size of an online algorithm’s
packing. A recent variation of the classical online model is that of predictions. In this model, an
algorithm is given knowledge about the instance in advance, which is in reality distorted by some
factor δ that is commonly unknown to the algorithm. The algorithm only learns about the actual
nature of the elements of an input once they are revealed and an irrevocable and immediate decision
has to be made. In this work, we study a slight variation of this model in which the error term, and
thus the range of sizes that an announced item may actually lay in, is given to the algorithm in
advance. It thus knows the range of sizes from which the actual size of each item is selected from.

We find that the analysis of the Online Simple Knapsack problem under this model is
surprisingly involved. For values of 0 < δ ≤ 1

7 , we prove a tight competitive ratio of 2. From there on,
we are able to prove that there are at least three alternating functions that describe the competitive
ratio. We provide partially tight bounds for the whole range of 0 < δ < 1, showing in particular
that the function of the competitive ratio depending on δ is not continuous.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases Online problem, Simple Knapsack, Predictions, Machine-Learned Advice

Digital Object Identifier 10.4230/LIPIcs.STACS.2024.37

1 Introduction

The Online (Simple) Knapsack problem has received a lot of attention since it has been
found to be non-competitive in the classical model for online computation by Marchetti-
Spaccamela and Versellis [27].

In this model, an online algorithm receives a finite sequence of requests, one item after
another. It has no knowledge of the nature of future items or the length of the sequence, and
is tasked to either pack a given item into a knapsack of unit size or to reject it. Every decision
is irrevocable. The objective of the algorithm is to maximize the sum of sizes of packed
items in the knapsack, without this sum exceeding the knapsack size of 1. Its performance is
measured against the best possible packing of the same sequence of items. The worst ratio
between this optimal packing and the packing of an algorithm over all possible sequences is
then called the competitive ratio of the algorithm, as first defined by Sleator and Tarjan [29].
For a more thorough introduction to competitive analysis, we refer to the books by Borodin
and El-Yaniv [13] and by Komm [24].

1 Corresponding author

© Matthias Gehnen, Henri Lotze, and Peter Rossmanith;
licensed under Creative Commons License CC-BY 4.0

41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024).
Editors: Olaf Beyersdorff, Mamadou Moustapha Kanté, Orna Kupferman, and Daniel Lokshtanov;
Article No. 37; pp. 37:1–37:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gehnen@cs.rwth-aachen.de
https://orcid.org/0000-0001-9595-2992
mailto:lotze@cs.rwth-aachen.de
https://orcid.org/0000-0001-5013-8831
mailto:rossmani@cs.rwth-aachen.de
https://orcid.org/0000-0003-0177-8028
https://doi.org/10.4230/LIPIcs.STACS.2024.37
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 Online Simple Knapsack with Bounded Predictions

The classical counterexample to show that even the Online Simple Knapsack problem
is not competitive, is arguably pathological: An adversary chooses between two instances
with an identical prefix of an arbitrarily small first item of size ε > 0. The first instance only
contains this small first item, while a second instance contains an item of size 1 as the second
item. Depending on whether a given algorithm deterministically discards or packs this first
item, the first or the second instance is given to the algorithm, resulting in an unbounded
competitive ratio.

Thus, many variations of the problem itself or indeed the classical online model itself
have been studied, each aiming to disallow these pathological instances. We will only give an
incomplete list of all studied variants. The variations of the problem itself include allowing
an online algorithm to pack a slightly larger knapsack than the offline counterpart, called
resource augmentation by Iwama and Zhang [22] and allowing an algorithm to intermediately
store items in a buffer of a certain size, as introduced by Han et al. [18]. Thielen, Tiedemann
and Westphal [31] studied a model in which the capacity of the knapsack increases step-wise
over a given number of discrete time periods. Iwama and Taketomi [21] introduced a variation
in which packed items could be removed (also called preempted) from the knapsack, not to
be packed again. Building on this result, Han and Makino [19] additionally allowed for a
limited number of cuts, i.e. splitting of items into two sub-items. Zhou, Chakrabarty and
Lukose [33] analyzed the online knapsack problem under the assumption that the size of
each item is much smaller than the knapsack capacity and the ratio between the value and
the weight of an item is bounded within a given range [L, U]. Further variations include
allowing for randomization and allowing for an oracle to communicate information about the
instance via so-called advice bits. These variations were studied by Böckenhauer et al. [12].
The recently introduced model by Böckenhauer et al. [11] of reservation costs allows to pay
a fee for a presented item in order to delay a decision on it for an arbitrary amount of time.

When acting in an online setting, the assumption that the future is completely unknown
is often unrealistic. When buying boxes for moving to a different house, one usually has a
pretty good idea of what one owns and can then buy a number of boxes on this estimate.
When planning to drive a group of friends home, one can already pre-plan a route with the
rough knowledge on where these persons actually live.

A common theme is thus that the knowledge of the world and the future is actually
not unknown, on the contrary: it is often known but the details are uncertain. If we want
to model this kind of behavior, we could thus assume that an instance is already given in
advance: all elements are revealed beforehand. When the elements arrive, i.e. we have to
actually pack the moving boxes or ask our friends where they live, we learn the actual nature
of the element. For the sake of a simple model, let us assume that the actual number of
elements is correctly given. We also assume that our estimates do not deviate beyond a
certain bound, i.e., that the maximum uncertainty is bounded and this bound is known in
advance.

2 Problem Definitions and Notation

We will abuse notation by using xi for both the label of an item and for the size (or gain) of
the same item.

▶ Definition 1 (The Online Simple Knapsack with Bounded Predictions Problem).
Given a constant δ ∈ [0, 1], called distortion. Given a set of items I = (x1, . . . , xn) as a
request sequence of items that arrive sequentially. Let P = (x−

1 , . . . , x−
n) be a sequence of

items called the prediction such that xi ∈ [x−
i , min(x+

i , 1)], where x+
i := 1+δ

1−δ x−
i . Let K be an

M. Gehnen, H. Lotze, and P. Rossmanith 37:3

initially empty set called the knapsack. An algorithm is given P and δ before the first item
of I is revealed. At each step i ∈ {1, . . . , n}, the item xi of the request sequence is given. An
algorithm then has one of the following options:

Pack If
∑

xk∈K xk + xi ≤ 1, set K := K ∪ xi .
Reject Do nothing.

The Online Simple Knapsack with Bounded Predictions problem (Oskp) is then
for an algorithm ALG to maximize the sum of items in K, i.e.

∑
xk∈K xk.

We will write P[i,n] to denote the infix of P from index i to n, including both endpoints.
When referring to an item x−, we will sometimes speak of the minimum (possible) size of an
item, as well as speaking of the maximum (possible) size of an item when referring to an
item x+. For every instance I with predictions P , we define b− := max P as the announced
largest item of the instance. This is of course not necessarily the item of largest actual size.
If b− is not unique, we refer to the first of such items regarding the ordering of the prediction
sequence.

Note that restricting the maximum actual size of items to 1 is necessary to ensure
competitiveness, as otherwise the classical counterexample by Marchetti-Spaccamela and
Vercellis [27] can be reconstructed by letting P = (ε, 1) for some ε > 0 and setting the second
item to a value larger than one if an algorithm rejects the first item.

Strictly speaking, any competitive ratio given in this work is a function of a fixed value δ.
To simplify notation, we will write c for c(δ), as it is always either clear from the context or
not of relevance which concrete δ the competitive ratio refers to.

3 Related Work and Our Contributions

It is important to note the difference between this model and the one of machine learned
advice, which has recently been called untrusted predictions or just predictions. The latter
has been introduced by Lykouris and Vassilvitskii [26] and works as follows. An algorithm
is given a prediction on the input, just as is in our model. However, no bound is given on
the error, which is rather treated as a variable and algorithms are designed with the aim
of them meeting three characteristics. The aim in algorithm design in this model is that
they output an optimal solution when the given prediction is correct (consistency), that
they perform as well as a regular online algorithm on the problem when the predictions
become arbitrarily bad (robustness) and that they degrade with increasing unreliability of
the prediction (smoothness).

The very important difference between this model and ours, the first one, is that the
algorithm is given knowledge about the maximum error that it can expect, namely δ, as part
of its input. Classically, this error term is unknown and an algorithm is to perform as well
as possible. We believe this model to be equally reasonable as that without bounds on the
predictions, as it is not unnatural for a person to be sure that their prediction will not be
arbitrarily far off from the truth.

The classical prediction model has seen a big influx of results in the past few years, with
the model being applied to several different online problems, such as scheduling [25, 14, 7],
metric algorithms [2, 3], matching problems [16, 23], spanning tree problems [17, 10] and
many more. Our modified model is, however, not our original modification. Azar et al. [5]
recently discussed scheduling problems based on this model, where they developed algorithms
that can learn about the maximum distortion and make decisions based upon this value. In a

STACS 2024

37:4 Online Simple Knapsack with Bounded Predictions

more recent work, they extended their analysis to the scheduling on multiple machines [6], in
which they also analyzed the case in which an algorithm is oblivious to the actual distortion
of the instance.

In order to avoid confusion, as Azar et al. still speak of problems with predictions in
their works, we name this specific model bounded predictions in the context of this work. We
believe that using this slightly modified version of the original prediction model can yield an
even more fine-grained way of worst-case analysis, when one can assume that an oracle can
only be wrong up to a known, bounded degree.

While we assume that an adversary is able to control both the predicted instance and
the actual distortion of the items, there is a related model of smoothed analysis, in which an
adversary can fix an instance, which is then subject to some random (commonly Gaussian)
distortion, or noise. This model of an adversary not having complete control over its prepared
instance was first made popular when showing that the simplex algorithm runs in expected
polynomial time when its input is subjected to such random noise [30]. Since then, there
was a large influx of results in this area for a wide range of problems, such as multi-level
feedback algorithms [8], analyzing the k-means method [4] for clustering, and especially
the 0/1 knapsack problem [9]. The model of smoothed analysis thus gives evidence that
the worst-case running time or worst-case approximation ratios often seem to suffer from
very specific and limited adversarial inputs which break down if even only a very slight
perturbation of the instance is given. This model of an announced instance being perturbed
has been studied in slight variations already. The robust knapsack problem by Monaci,
Pferschy and Serafini [28] is very similar in that it also allow for an uncertain input with
a multiplicative factor, but the authors look at offline algorithms that see the complete
permuted instance at once and are compared to the performance of a non-perturbed instance.
Im et al. [20] recently looked at the general knapsack problem, which they study under a
model predicting the frequency of items of each size. Angelopoulos, Kamali and Shadkami [1]
look at the online bin packing problem with predictions on the frequency of item sizes in the
instance. Boyar, Favrholdt and Larsen [15] very recently studied the online simple knapsack
problem with predictions, but working with predictions on the average size of the items
an optimal solution would pack. Xu and Zhang [32] recently studied the simple knapsack
problem in a learning-augmented setting, where they design algorithms that are able to learn
and use the error of prediction.

We study the behavior of the Oskp problem with a distortion of 0 < δ < 1. The difference
between the predicted size and the actual size of an item is determined by a relative error.

While we are not able to give tight bounds on the competitive ratio for all values of δ

between 0 and 1, we are able to carve out the following, partial picture, which is visualized
in Figure 1, with the bounds that we prove also given in Table 1. For reasons of readability,
we will refrain from stating these terms found in the table in the following text. They will of
course be stated in their respective theorems later.

Up to δ ≤ 1
7 , we give a tight bound of 2 on the competitive ratio. From there on, three

bounds on the competitive ratio repeat periodically, given a fixed k ∈ N: Between values
of δ between k2+k−1

k2+3k+3 and δk (as defined in Table 1), we are able to prove a tight bound of√
(2 + k) 1+δ

1−δ . From δk to −1 − k +
√

4k + k2, we are able to prove a non-matching lower
and upper bound. For the penultimate segment of −1 − k +

√
4k + k2 ≤ δ ≤ 1

k+2 , we give a
matching upper and lower bound. The final segment, which connects to the first segment for
the next higher value of k, we are again only able to prove a non-matching pair of bounds.
Noticeably, the function of the competitive ratio depending on δ is not continuous between
segments two and three.

M. Gehnen, H. Lotze, and P. Rossmanith 37:5

Table 1 Competitive ratios of the Oskp problem, given a fixed k ∈ N and distortion δ.

Distortion Competitive ratio

0 < δ ≤ 1
7 2

k2+k−1
k2+3k+3 < δ ≤ δk

√
(2 + k) 1+δ

1−δ

δk ≤ δ < −1−k+
√

4k+k2 ≥
√

(2 + k) 1+δ
1−δ

|≤ (1+δ)(
√

−1+δ2+
√

−17−16δ+δ2−16k)

4
√

−1+δ2

−1−k+
√

4k+k2 ≤ δ ≤ k
k+2

(1+δ)(
√

−1+δ2+
√

−17−16δ+δ2−16k)

4
√

−1+δ2

k
k+2 < δ < k2+k−1

k2+3k+3 ≥ 1+k
2 −

√
(−1+δ)(−5−k(2+k)+δ(−1+k)(3+k))

−2+2δ
|≤ 1+δ+

√
5+2δ−3δ2

2−2δ

where δk := 12k+8

32
2
3 (3

√
3
√

4k3+11k2+28k+44−9k−34)
1
3

+ 1
3 2

2
3 (3

√
3

√
4k3 + 11k2 + 28k + 44 − 9k − 34)

1
3 + 5/3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

2

4

6

8

10

Distortion δ

C
om

pe
tit

iv
e

R
at

io

Figure 1 Competitive ratio of the Oskp problem, depending on the distortion δ. The gray areas
signify a gap between the best known lower and upper bounds.

To the best of our knowledge, our work is the first one systematically analyzing a knapsack
problem in the setting of predictions, where the distortion (or error) is linked to the size of
the presented items. We show that the additional knowledge of a bound on the distortion
can significantly help an online algorithm to choose an appropriate strategy, as e.g. the
algorithms used for the repeating segments two and three differ in their nature. Thus, a
much more fine-grained analysis is possible. Noticeably, even for an uncertain prediction
where the actual value of an item may deviate by a factor of three from its prediction, one
can guarantee a competitive ratio of less than four. Yet, even for arbitrarily small distortions,
no competitive ratio better than two can be achieved.

The remainder of this work is structured as follows: We analyze the model of relative
errors by first proving a number of helpful structural lemmata in Section 4, followed by
upper bound proofs in Section 5 and lower bounds in Section 6. We conclude with a short
discussion of open problems and possible future work in Section 7.

STACS 2024

37:6 Online Simple Knapsack with Bounded Predictions

4 Structural Observations

When trying to design algorithms that are supposed to achieve some given competitive
ratio c ≥ 1, there are many instances for which a solution can be found more or less trivially.
Since these solutions have to be handled explicitly by almost every of our algorithms, we
handle them such that we can refer to them in our algorithm designs without risking
redundancy. We first start with four very simple cases, that nevertheless need to be explicitly
handled by our algorithms.

The first lemma deals with instances of very small total size.

▶ Lemma 2. Any instance I of the Oskp problem with predictions P , such that
∑

x−∈P x− ≤
1−δ
1+δ , can be solved optimally by packing all items greedily.

Proof. Since x+ ≤ 1+δ
1−δ x−, it holds that

∑
x∈I x ≤

∑
x−∈P

1+δ
1−δ x− = 1+δ

1−δ

∑
x−∈P x− ≤

1+δ
1−δ

1−δ
1+δ = 1. Thus, all items of the instance are guaranteed to fit into the knapsack. ◀

The second lemma explicitly deals with instances that contain a subset of items that is
both guaranteed to fit together and of sufficient size.

▶ Lemma 3. Any instance I of the Oskp problem with predictions P such that there is some
S ⊆ P such that

∑
x−∈S x− ∈ [1

c , 1−δ
1+δ] can be solved with a competitive ratio of at most c by

packing exactly S.

Proof. By definition, the items of S are both guaranteed to fit together in the knapsack and
guaranteed to be of total size at least 1

c . ◀

The third lemma ensures that we will only need to deal with instances in which no single
item yields the wanted competitive ratio.

▶ Lemma 4. Any instance I of the Oskp problem with predictions P such that x− ∈ P with
x− ≥ 1

c can be solved with a competitive ratio of at most c by packing exactly x.

The fourth lemma is slightly more interesting. While the previous statement upper
bounded the size of the announced largest item b− by 1

c , we are also able to lower bound the
size of this item as follows.

▶ Lemma 5. Any instance I of the Oskp problem with predictions P such that b− ≤
(1 − 1

c)/ 1+δ
1−δ admits a c-competitive, greedy algorithm.

Proof. Since b− is by definition the announced largest item of the instance, we know that the
size of the largest actual item is upper bounded by 1+δ

1−δ b−. Thus, the largest item that a greedy
algorithm can not fit into its knapsack is of size at most 1+δ

1−δ b− ≤ 1+δ
1−δ (1 − 1

c)/ 1+δ
1−δ = 1 − 1

c .
If such an item does not fit, then the knapsack is already packed to size at least 1

c . ◀

Thus, we can assume that b− ∈ [(1 − 1
c)/ 1+δ

1−δ , 1
c], which allows us to partition the

predicted items into two categories, which we will call small and large. We call an item
small if its announced size together with b− does not guarantee a packing of sufficient size,
assuming they are presented as small as possible. Formally, an item x− ∈ P is small iff
x− + b− < 1

c ⇔ x− < 1
c − b−. On the other hand, we call an item large if, together with

b−, it may be the case that the two items do not fit together in the knapsack (or if the
sum of their announced sizes already exceeds 1.) Formally, an item x− ∈ P is large iff
1+δ
1−δ x− + 1+δ

1−δ b− > 1 ⇔ x− > 1−δ
1+δ − b−.

M. Gehnen, H. Lotze, and P. Rossmanith 37:7

Note that the existence of any item that falls in neither category already implies a trivial
solution of size at least 1

c by Lemma 3, with the exception of b− itself. However, we can see
that b− exceeds the minimum size of a large item, as

b− >
1 − δ

1 + δ
− b− ⇔ 2(1 − 1

c
)/1 + δ

1 − δ
>

1 − δ

1 + δ

holds true for all δ iff c ≥ 2 – even when substituting b− by its minimum possible value –
which will be the case for all bounds that we prove in this paper. Thus, the size of b− is
always large enough to call it a large item as well.

This partition has some very useful implications, with the very central one being that an
algorithm can essentially ignore small items of the instance. To show this, we first prove
that the total sum of small items in P is limited or the instance has a trivial solution.

▶ Lemma 6. Let I be an instance of the Oskp problem with predictions P and S := {x− ∈
P | x− < 1

c − b−} for c ≥ δ2+3
2−2δ . If P does not admit a solution due to Lemmata 2, 3, 4 or 5

and if
∑

x−∈S x− ≥ 1
c − b− holds, then there exists an algorithm that is c-competitive.

Proof. The algorithm works as follows: It first selects an arbitrary subset of small items
S ⊆ P such that

∑
x−∈S x− ∈ [1

c − b−, 2(1
c − b−)]. Such a subset always exists and can be

found greedily since each individual small item is announced smaller than 1
c − b−.

The algorithm packs b− when it is revealed and small items from S greedily, but stopping
to pack further small items as soon as their total size is at least 1

c − b−. Together with b−,
the gain is obviously at least 1

c , so the only thing left to show is that such a subset is always
guaranteed to fit in the knapsack and does not exceed its capacity.

In the worst case, the algorithm packs a small item of size 1
c − b− − ε1 and is then

presented an item of size 1+δ
1−δ (1

c − b− − ε2) for some ε1, ε2 > 0. Afterwards, b− is presented
of maximum possible size 1+δ

1−δ b−. Yet even in this case, all items fit into the knapsack, as

1
c

− b− − ε1 + 1 + δ

1 − δ
(1
c

− b− − ε2) + 1 + δ

1 − δ
b−

<
1
c

− b− + 1 + δ

1 − δ
(1
c

− b−) + 1 + δ

1 − δ
b−

= 1
c

− b− 1 + δ

1 − δ

1
c

= (1 + 1 + δ

1 − δ
)1
c

− b−

< (1 + 1 + δ

1 − δ
)1
c

− (1 − 1
c

)/1 + δ

1 − δ

Solving (1 + 1+δ
1−δ) 1

c − (1 − 1
c)/ 1+δ

1−δ ≤ 1 for c yields that these items fit if c ≥ δ2+3
2−2δ , which

is lower than every upper bound proven in this work, for all δ. ◀

Thus, we can assume that the sum of all announced small items is smaller than 1
c − b−, or

else a trivial solution exists. This in turn lets us show a nice relation between small and
large items, which is that the larger the sum of small items is, the smaller any large item
may be announced or there is again a trivial solution.

▶ Lemma 7. Let I be an instance of the Oskp problem with predictions P and S := {x− ∈
P | x− < 1

c − b−} with c ≥ 1. If P does not admit a solution due to Lemmata 2, 3, 4 5 or 6
and b− ≥ 1

c −
∑

x−∈S x−, then there exists an algorithm that is c-competitive.

STACS 2024

37:8 Online Simple Knapsack with Bounded Predictions

Proof. The algorithm packs b− together with the items from S. Since
∑

x−∈S x− < 1
c −b− due

to Lemma 6, the total size is at least b− +
∑

x−∈S x− ≥ 1
c −

∑
x−∈S x− +

∑
x−∈S x− = 1

c . ◀

This lemma has the pleasant consequence that we will not have to worry about small items
in most of our algorithm design beyond checking whether they are part of a trivial solution.
Since in the upcoming analysis, we often bound the packed items of our algorithm against
the largest item of the instance, it makes no difference to us whether there are no small items
in the instance and thus a very large b−, or if b− is made smaller for the sake of additional
small items in the instance.

The next lemma allows us to lower bound the announced size of large items depending
on the size of b−.

▶ Lemma 8. Let I be an instance of the Oskp problem with predictions P and x− ∈ P be a
large item such that x− ̸= b−. If x + 1+δ

1−δ b− ≤ 1, packing x together with b guarantees a gain
of 1

c with c ≥ 1.

Proof. A large item has actual size at least 1−δ
1+δ − b−, thus x + 1+δ

1−δ b− > 1−δ
1+δ − b− + b− =

1−δ
1+δ > 1

c . ◀

This means that whenever an algorithm is guaranteed to be able to pack any large item
together with b−, its gain is sufficient.

Using these observations, we define with Algorithm 1 a small subroutine that will be
called by our other algorithms in order to rule out trivial solutions to an instance.

Algorithm 1 Subroutine filter_trivial.

1: if
∑

x−∈P x+ ≤ 1 then ▷ Lemma 2
2: Pack b. END
3: if b− ≥ 1

c then ▷ Lemma 4
4: Pack b. END
5: if b− ≤ 1

c / 1+δ
1−δ then ▷ Lemma 5

6: Greedily pack items. END
7: if ∃S ∈ 2P :

∑
x−∈S x− ∈ [1

c , 1−δ
1+δ] then ▷ Lemma 3

8: Pack all items of S. END
9: T := {x− ∈ P | x− < 1

c − b−}
10: if

∑
x−∈T x− ≥ 1

c − b− then ▷ Lemma 6
11: Pack a subset R ∈ T with

∑
x−∈R x− ∈ [1

c − b−, 2(1
c − b−)] and b. END

12: if b− ≥ 1
c −

∑
x−∈T x− then ▷ Lemma 7

13: Pack all items of T and b. END

5 Upper Bounds

The analysis of upper bound algorithms remains complicated, even with the filters of Section 4.
While we are quite confident that the lower bounds of Section 6 should not be improvable,
finding matching upper bounds is an aim that we can only fulfill for parts of the whole range
of values for δ.

We start with a simple 2-competitive algorithm for all values of δ up to 1
7 .

▶ Theorem 9. Given a fixed δ with 0 < δ ≤ 1
7 . Algorithm 2 solves the Oskp problem with a

competitive ratio of at most c = 2.

M. Gehnen, H. Lotze, and P. Rossmanith 37:9

Algorithm 2 2-competitive Algorithm for 0 < δ ≤ 1
7 .

1: filter-trivial()
2: Reveal items up to and including the first large item x1.
3: if x1 ≤ 1 − 1+δ

1−δ b− and x1 ̸= b then
4: Pack x1 with b. END
5: else
6: Greedily pack large items, including x1.

Proof. If the algorithm ends after the call of filter_trivial, the algorithm is at most 2-
competitive. Assuming the condition in line 3 is met, the algorithm is at least 2-competitive
by Lemma 8. Thus, we only have to prove that the algorithm is not worse than 2-competitive
if it ends in line 6.

Let us first assume that x1 ̸= b. Then x1 is packed and x1 > 1 − 1+δ
1−δ b−. If any other

large item xi can be packed by the algorithm, the knapsack will be filled up to at least 1
2 ,

since

x1 + xi > 1 − 1 + δ

1 − δ
b− + 1 − δ

1 + δ
− b− > 1 − 1 + δ

1 − δ

1
2 + 1 − δ

1 + δ
− 1

2 ≥ 1
2 ,

where the last inequality holds for δ ≤ 3 − 2
√

2 ∼ 0.171.
If no second large item fits into the algorithm’s knapsack, an optimal solution cannot

contain more than one large item either. This item of the optimal solution is bounded by
1+δ
1−δ b− < 1+δ

1−δ
1
2 . The remaining items of an optimal solution then consist of all small items

that the algorithm has ignored. We can bound the total announced size of these small items,
by 1

2 − b−, using Lemma 6 and in consequence their actual size by 1+δ
1−δ (1

2 − b−). Putting
it all together, in the worst case Algorithm 2 packs exactly one large item of size slightly
larger than 1 − 1+δ

1−δ b−. The optimal solution packs one large item of size slightly smaller
than 1+δ

1−δ
1
2 and the maximum sum of small items. This results in a competitive ratio of

1+δ
1−δ b− + 1+δ

1−δ (1
2 − b−)

1 − 1+δ
1−δ b−

=
1+δ
1−δ

1
2

1 − 1+δ
1−δ b−

<
1+δ
1−δ

1
c

1 − 1+δ
1−δ

1
c

≤ 2 ,

for δ ≤ 1
7 .

The only case left to handle is that x1 = b. If b ≥ 1 − 1+δ
1−δ b−, we can use the same

argumentation as before. If however b < 1 − 1+δ
1−δ b−, then, since b is by definition the

announced largest item, all large items are announced smaller or equal than 1 − 1+δ
1−δ b−

and thus of actual size at most 1+δ
1−δ (1 − 1+δ

1−δ b−) < 1+δ
1−δ (1 − 1+δ

1−δ
1
2 / 1+δ

1−δ) = 1+δ
1−δ

1
2 . As each

large item is of size at least 1−δ
1+δ − b−, packing a second large item is still sufficient, since

2(1−δ
1+δ − b−) > 2 1−δ

1+δ − 1 ≥ 1/2 for δ ≤ 1
7 . Since no large item can exceed an actual size of

1+δ
1−δ b− and since x1 < 1 − 1+δ

1−δ b−, we are guaranteed that a second large item fits into the
knapsack of the algorithm. The only case left is that there is no second large item. Then the
algorithm and the optimal solution both pack the same large item x1 = b, while the optimal
solution can still add the maximum number of small items. The resulting competitive ratio
is then b−+ 1+δ

1−δ (1
2 −b−)

b− < 2 for all δ in the given range. ◀

The second repeating upper bound matches the lower bound of Theorem 14 for al-
most the complete range of δ. For brevity, let δk := 12k+8

32
2
3 (3

√
3

√
4k3+11k2+28k+44−9k−34)

1
3

+
1
3 2 2

3 (3
√

3
√

4k3 + 11k2 + 28k + 44 − 9k − 34) 1
3 + 5/3.

STACS 2024

37:10 Online Simple Knapsack with Bounded Predictions

Algorithm 3
√

(2 + k) 1+δ
1−δ

-competitive Algorithm for a k ∈ N and δ < δk.

1: filter_trivial()
2: Reveal items up to and including the first large item x1.
3: if x1 ≥ 1

k+2 or x1 = b then
4: Greedily pack large items, including x1. END
5: if x1 ≤ 1 − 1+δ

1−δ b− then
6: Pack x1 with b. END
7: Let B := {x− ∈ P | x− > 1−δ

1+δ − b−}
8: if ∃x−

j ∈ B : x−
j ≤ (1 − x1)/ 1+δ

1−δ then
9: Pack x1 and xj . END

10: for Reveal next xi ∈ P[i,n−1] do
11: if ∃S ⊆ P[i,n−1] : x1 +

∑
x−∈S x− ≥ 1

ck
∧ x1 +

∑
x−∈S x+ ≤ 1 then

12: Pack x1 and S. END
13: Pack xn.

▶ Theorem 10. Given a fixed k ∈ N and a fixed δ with δ < δk. Algorithm 3 solves the Oskp
problem with a competitive ratio of at most ck =

√
(2 + k) 1+δ

1−δ .

Proof. If the algorithm ends after the call of filter_trivial, the algorithm is at most ck-
competitive. The algorithm first reveals and discards small items and reveals the first large
item x1. If x1 ≥ 1

k+2 , the algorithm packs x1 and from there on greedily any large item that
still fits into the knapsack. If any second large item fits into the knapsack of the algorithm,
its gain is at least 1

k+2 + 1−δ
1+δ − b− > 1

ck
. Thus, an optimal solution consists of at most one

large item of maximum size or a sum of large and small items adding up to at most the same
size, due to Lemma 7. The competitive ratio is then 1+δ

1−δ
1

ck
/ 1

k+2 = ck.
Assuming x1 = b, we know from Lemma 8 that any large item that is guaranteed to

fit with b yields a ratio of at most ck. Again, the algorithm packs x1 and large items
greedily. If any second large item fits into the knapsack of the algorithm, its gain is at least
b + (1 − b)/ 1+δ

1−δ > 1
ck

for the complete range of δ. Thus, an optimal solution consists of at
most one large item of maximum size. The competitive ratio is then at worst 1+δ

1−δ b/b < ck

for the complete range of α.
Finally, if x1 ≤ 1 − 1+δ

1−δ b−, the algorithm packs x1 together with b and has sufficient gain
by Lemma 8.

Thus, we assume that 1 − 1+δ
1−δ b− < x1 < 1

k+2 . The algorithm next checks whether any
other large item is of announced size such that it is both guaranteed to fit together with
x1 and guaranteed to fit into the knapsack together with x1, i.e. if any x−

j ∈ B exists with
x−

j ∈ [1
ck

− x1, 1−x1
1+δ
1−δ

]. Note that 1
ck

− x1 < 1−δ
1+δ − b−, i.e. there exists no large item on the

lower end of this bound if δ < δk. Thus, each large item apart from x1 is of actual size larger
than (1 − x1)/ 1+δ

1−δ .
If all of these bounds hold and thus do not admit a solution, the algorithm discards x1

and continues to reveal large items. It only packs anything before the last large item if either
the revealed item itself is of size 1

ck
or if it admits a packing that is guaranteed to fit and of

size at least 1
ck

. If neither is the case, the algorithm packs the last large item of size larger
than (1 − x1)/ 1+δ

1−δ .

M. Gehnen, H. Lotze, and P. Rossmanith 37:11

In the worst case, the optimal solution then consists of k + 1 large items of size slightly
smaller than 1

ck
each. The competitive ratio is then bounded by

k + 1√
(2 + k) 1+δ

1−δ

/
1 − 1

k+2
1+δ
1−δ

=
√

(2 + k)1 + δ

1 − δ
.

Note that the first item is too large to be packed on top of the k + 1 items as

k + 1√
(2 + k) 1+d

1−d

+ (1 − 1 + d

1 − d

1√
(2 + k) 1+d

1−d

) > 1

for δ < k
k+2 . ◀

The next segment’s proof is the most involved one. It tightly matches the lower bound of
Theorem 15 for −1 − k +

√
4k + k2 ≤ δ ≤ k

k+2 , for any k ∈ N.

Algorithm 4 (1+δ)(
√

−1+δ2+
√

−17−16δ+δ2−16k)

4
√

−1+δ2
-competitive Algorithm for a k ∈ N and δ ≤ k

k+2 .

1: filter_trivial()
2: Reveal items up to and including the first large item x1.
3: Let ℓk := 8

9+8δ−δ2−
√

−1+δ2
√

−17−16δ+δ2−16k+8k
4: if x1 ≥ ℓk or x1 = b then
5: Greedily pack large items, including x1. END
6: if x1 ≤ 1 − 1+δ

1−δ b− then
7: Pack x1 with b. END
8: Let B := {x− ∈ P | x− > 1−δ

1+δ − b−}
9: if ∃x−

j , x−
l ∈ B : x1 + x+

j + x+
l ≤ 1 then

10: Pack x1, xj and xl. END
11: else if ∃x−

L ∈ B : x1 + x−
L ≥ 1

ck
∧ x1 + x+

L ≤ 1 then
12: Pack x1 and xL. END
13: for Reveal next xi ∈ P[i,n−1] do
14: if ∃S ⊆ P[i,n−1] : x1 +

∑
x−∈S x− ≥ 1

ck
∧ x1 +

∑
x−∈S x+ ≤ 1 then

15: Pack x1 and S. END
16: Pack xn.

▶ Theorem 11. Given a fixed k ∈ N and a fixed δ with δ ≤ k/(k + 2). Algorithm 4 solves
the Oskp problem with a competitive ratio of at most ck = (1+δ)(

√
−1+δ2+

√
−17−16δ+δ2−16k)

4
√

−1+δ2 .

Proof. If the algorithm ends after the call of filter_trivial, the algorithm is at most ck-
competitive. Let ℓk = 8

9+8δ−δ2−
√

−1+δ2
√

−17−16δ+δ2−16k+8k
, which is the solution to the

equation 1+δ
1−δ

1
ck

/ℓk = ck.
The algorithm first reveals and discards small items and reveals the first large item x1. If

x1 ≥ ℓk, the algorithm packs x1 and from there on greedily any large item that still fits into
the knapsack. If any second large item fits into the knapsack of the algorithm, its gain is at
least ℓk + 1−δ

1+δ − b− > 1
ck

. Thus, an optimal solution consists of at most one large item of
maximum size. The competitive ratio is then 1+δ

1−δ
1

ck
/ℓk = ck.

Assuming x1 = b, we know from Lemma 8 that any large item that is guaranteed to
fit with b yields a ratio of at most ck. Again, the algorithm packs x1 and large items
greedily. If any second large item fits into the knapsack of the algorithm, its gain is at least

STACS 2024

37:12 Online Simple Knapsack with Bounded Predictions

b + (1 − b)/ 1+δ
1−δ > 1

ck
for the complete range of δ. Thus, an optimal solution consists of at

most one large item of maximum size. The competitive ratio is then at worst 1+δ
1−δ b/b < ck

for the complete range of α.
Finally, if x1 ≤ 1 − 1+δ

1−δ b−, the algorithm packs x1 together with b and has sufficient gain
by Lemma 8.

Thus, we assume that 1 − 1+δ
1−δ b− < x1 < ℓk. If another two large items are guaranteed to

fit together with x1, the gain of the algorithm is again sufficient: 1 − 1+δ
1−δ b− + 2(1−δ

1+δ − b−) >

1− 1+δ
1−δ

1
ck

+2(1−δ
1+δ − 1

ck
) > 1

ck
. Thus, we may assume that there is at most one other large item

xj that is guaranteed to fit into the knapsack together with x1. Its announced size is then in
between 1−δ

1+δ − b− and 1
ck

− x1 < 1
ck

− (1 − 1+δ
1−δ b−) < 1

ck
− (1 − 1+δ

1−δ
1

ck
) = (1 + 1+δ

1−δ) 1
ck

− 1.
Obviously, it has to hold that x1 + xj < 1

ck
, otherwise the two items together are sufficient.

Since the remaining large items xL ∈ I must not be announced with a size that guarantees
that they fit into the knapsack together with x1 and guarantee a packing of at least 1

ck
, they

have to be of announced size x−
L > 1−x1

1+δ
1−δ

. Since x1 < ℓk < 1
k+2 , we can lower bound the size

of these large items by x−
L > (1 − x1)/ 1+δ

1−δ > (1 − 1
k+2)/ 1+δ

1−δ ≥ 1
k+2 , for all δ ≤ 1

k+2 . Since
1

k+2 + 1−δ
1+δ − b− > 1

ck
, the item xj that was guaranteed to fit together with x1 must not be

guaranteed to fit together with any other large item as well. This lower bounds its size by
x−

j > (1 − 1
ck

)/(1+δ
1−δ) > x1/ 1+δ

1−δ .
If all of these bounds hold and thus do not admit a solution, the algorithm discards x1

and continues to reveal large items. It only packs anything before the last large item if either
the revealed item itself is of size 1

ck
or if it admits a packing that is guaranteed to fit and of

size at least 1
ck

. If neither is the case, the algorithm packs the last large item of size larger
than (1 − x1)/ 1+δ

1−δ .
Recall that x−

L > (1 − x1)/ 1+δ
1−δ , which means that (k + 1)x−

L + x1 > 1 for δ ≤ 1
k+2 . Since

also x1 + xj > 1
ck

> x−
L , the largest packing of a knapsack consists of k items xL or size

slightly smaller than 1
ck

, together with both items x1 and xj . The competitive ratio is then
bounded by

(x1 + xj + k
1
ck

)/1 − x1
1+δ
1−δ

.

We are now interested in maximizing this ratio by choosing appropriate values for x1 and xj .
The gain of the algorithm is minimized if the value of x1 is maximized. Since x−

j > x1/ 1+δ
1−δ

and x1 + xj < 1
ck

both have to hold, the ratio is maximized to a value of ck when choosing
x1 = 2

√
−1+δ2

√
−1+δ2+

√
−17−16δ+δ2−16k

and thus xj = 1+δ
1−δ x1. ◀

For the remainder of unmatched lower bounds, we re-use Algorithm 2 that was used to
prove the upper bound of 2 for 0 < δ ≤ 1

7 . The only difference is the competitive ratio that
is aimed for, which is 1+δ+

√
5+2δ−3δ2

2−2δ for 1
7 ≤ δ. The proof is almost identical to that of

Theorem 9.

▶ Theorem 12. Given a fixed k ∈ N and a fixed δ with 1
7 ≤ δ. Algorithm 2 solves the Oskp

problem with a competitive ratio of at most c = 1+δ+
√

5+2δ−3δ2

2−2δ .

Proof in Appendix. ◀

M. Gehnen, H. Lotze, and P. Rossmanith 37:13

6 Lower Bounds

We are able to provide lower bounds for all values of δ. We can observe that different bounds
dominate one another in an alternating fashion, which is a consequence of the scaling factor
1+δ
1−δ crossing certain thresholds.

Intuitively, the lower bounds – after the initial one of 2 – each work once sufficient
distance between the lowest possible size and the largest possible size of an announced item
crosses certain thresholds. They are then valid for higher values of δ as well, but are quickly
dominated by yet other lower bounds, that again use certain thresholds between the range
of possible sizes of an item. These bounds turn out to be rather tricky to find but easy to
verify with the assistance of computer algebra systems. We found them by fixing concrete
values of δ and carefully building a decision tree regarding an announced instance of variable
values. We were then able to generalize them to surrounding values of δ using computer
algebra systems.

We start with a simple lower bound of 2 for all values of 0 < δ < 1. This lower bound
works quite similar to the bound by Marchetti-Spaccamela and Vercellis [27] used to show
non-competitiveness. The main difference is that the predictions have to be almost correct
for very small δ, thus presenting two items that have a large size difference allow an algorithm
to gravitate towards the larger one.

▶ Theorem 13. Given a fixed δ with 0 < δ < 1. There exists no algorithm solving the Oskp
problem with a competitive ratio better than 2.

Proof. Let ε > 0 such that ε < δ
4 . The algorithm is given the following prediction:

P = (1
2 + ε,

1
2 − ε,

1
2)

We do a full case distinction on the possible behaviors of an algorithm. The first item is
revealed to be of size x1 = 1

2 + ε.

Case 1: An algorithm packs x1 with x1 = 1
2 + ε. The next two items are presented of

size x2 = x3 = 1
2 , fitting together with one another but not with x1. The competitive ratio

is then 1
1
2 +ε

= 2 1
1+2ε .

Case 2: An algorithm rejects x1 with x1 = 1
2 + ε. The second item is then presented

to be of size x2 = 1
2 − ε, with the last item presented of size x3 = 1

2 + 2ε, independent of
the algorithm’s decision on the item x2. The optimal solution consists of the first two items,
while the biggest packing an algorithm can achieve is 1

2 + 2ε. The competitive ratio is then
1

1
2 +2ε

= 2 1
1+4ε . ◀

The next bound connects seamlessly to the previous bound of 2. As with all following
bounds, the following theorem describes a set of bounds that only become valid once a certain
value of δ is reached.

▶ Theorem 14. For every k ∈ N and k2+k−1
k2+3k+3 ≤ δ, there exists no algorithm solving the

Oskp problem with a competitive ratio better than ck =
√

(2 + k) 1+δ
1−δ -competitive.

Proof. Let ε > 0. The algorithm is given the following prediction:

P = (1
2 + k

,
1
ck

, . . . ,
1
ck

,︸ ︷︷ ︸
k+1 many

1 − 1
2+k

1+δ
1−δ

)

STACS 2024

37:14 Online Simple Knapsack with Bounded Predictions

We do a full case distinction on the possible behaviors of an algorithm. The first item is
presented as 1

2+k + ε.

Case 1: An algorithm packs 1
2+k

+ ε. The next items are all presented of maximum
possible size. Since 1+δ

1−δ
1
c k

+ 1
2+k + ε > 1 for each choice of k and all δ ≥ k2+k−1

k2+3k+3 , this means
that no two items fit together into the knapsack. The biggest item of an optimal packing is
then 1

ck

1+δ
1−δ . The competitive ratio is then 1+δ

1−δ
1

ck
/(1

2+k + ε) ε→0= ck.

Case 2: An algorithm rejects 1
2+k

+ ε. The next item is presented of size 1
ck

.

Case 2.1: An algorithm packs 1
ck

. The next items are each presented of size 1 − 1
2+k − ε <

1+δ
1−δ

1
ck

, allowing an optimal packing to reach a size of 1. Since 1
ck

> 1
2+k for all values of δ in

the given range for the given k, the algorithm cannot pack either of these items, resulting in
the target competitive ratio.

Case 2.2: An algorithm rejects 1
ck

. The next items, up to and including the penultimate
one, are presented to be of size 1

ck
as well. If an algorithm packs one of these items, Case 2.1

applies. We thus assume that all these items are rejected. The last item is then presented to
be of size 1− 1

2+k
1+δ
1−δ

.
If the algorithm does not pack this item, it is not competitive. An optimal solution can pack

all k + 1 items of size 1
ci

if δ ≥ k2+k−1
k2+3k+3 . The competitive ratio is then k+1

ck
/

1− 1
2+k

1+δ
1−δ

= ck. ◀

We continue with a lower bound superseding the previous ones for (relative) higher values
of δ.

▶ Theorem 15. For every k ∈ N and −1−k+
√

4k + k2 ≤ δ, there exists no algorithm solving
the Oskp problem with a competitive ratio better than ck = (1+δ)(

√
−1+δ2+

√
−17−16δ+δ2−16k)

4
√

−1+δ2 .

Proof. Let ik = 2
√

−1+δ2
√

−1+δ2+
√

−17−16δ+δ2−16k
, which is the solution to the equation ik + ik

1+δ
1−δ

=
1
c k

and ε > 0. The algorithm is given the following prediction:

P = (ik,
ik

1+δ
1−δ

+ ε,
1 − ik

1+δ
1−δ

+ ε, . . . ,
1 − ik

1+δ
1−δ

+ ε︸ ︷︷ ︸
i many

)

Note that 1−ik
1+δ
1−δ

≤ 1
ck

only if δ ≥ −1 − k +
√

4k + k2.
We do a full case distinction on the possible behaviors of an algorithm. The first item is

presented as ik.

Case 1: An algorithm packs ik. The next item is revealed as ik/ 1+δ
1−δ + ε.

Case 1.1: An algorithm packs ik/ 1+δ
1−δ

+ ε. The next item is revealed as 1 − ik, thus fitting
together with the first item, but not into the knapsack of the algorithm. All subsequent items
are presented as 1 − ik as well. The optimal packing is thus of size 1, while the algorithm
only achieves a gain of ik + ik/ 1+δ

1−δ + ε = 1
ck

+ ε.

M. Gehnen, H. Lotze, and P. Rossmanith 37:15

Case 1.2: An algorithm rejects ik/ 1+δ
1−δ

+ ε. All subsequent items are each revealed to be
of size 1 − ik + ε, thus not fitting into the knapsack of the algorithm. An optimal strategy
packs the items ik/ 1+δ

1−δ + ε and 1 − ik + ε, while the algorithm only has the first item of size
ik in its knapsack, resulting in a ratio of (ik

1+δ
1−δ

+ 1 − ik + 2ε)/(ik) > ck.

Case 2: An algorithm rejects ik. The second item is revealed of size ik + ε.

Case 2.1: An algorithm packs ik + ε. The remaining items are each revealed to be of size
1 − ik, thus not fitting into the knapsack of the algorithm. An optimal packing is the first
item together with one of the last items, adding up to a gain of 1. The algorithm can only
pack ik + ε, resulting in a ratio of 1

ik
≥ ci.

Case 2.2: An algorithm rejects ik + ε. The next item is revealed of size 1
ck

.

Case 2.2.1: An algorithm packs 1
ck

. The remaining items are revealed of size 1 − ik, not
fitting into the knapsack of the algorithm but fully filling an optimal knapsack together with
the first item, resulting exactly in a ratio of ck.

Case 2.2.2: An algorithm rejects 1
ck

. Up to and including the penultimate item, the next
items are also revealed as 1

ck
. If an algorithm packs any of them, the rest of the instance

behaves as in Case 2.2.1.
Assuming this is not the case, the last item is presented as (1 − ik)/(1+δ

1−δ) + ε, which is the
only item the algorithm can pack. An optimal algorithm packs all items except the last one.
These items are of sum at most one if δ ≥ −1 − k +

√
4k + k2. The resulting competitive

ratio is

2ik + ε + (k − 1) 1
ck

1−ik
1+δ
1−δ

+ ε
,

which converges to ck for ε going to 0. ◀

Just like with the two previous bounds, the last lower bound dominates the other two for
yet (relative) higher values of δ.

▶ Theorem 16. For every k ∈ N>1 and k−1
k+1 < δ < k

k+2 , there exists no al-
gorithm solving the Oskp problem with a competitive ratio better than ck = 1+k

2 −√
(−1+δ)(−5−k(2+k)+δ(−1+k)(3+k))

−2+2δ .

Proof. Let ik = 2(δ−1)
3δ−

√
−(δ−1)(−4δ(k−1)+k2+2k+5)+δk−k−3

be the solution to the equation

ck = 1
ik

− 1 and let jk = i2
k

1−(k+2)ik
. The algorithm is given the following prediction:

P = (ik + ε, jk︸︷︷︸
i many

)

We do a full case distinction on the possible behaviors of an algorithm. The first item is
presented as ik.

STACS 2024

37:16 Online Simple Knapsack with Bounded Predictions

Case 1: An algorithm packs ik + ε. Each of the next items are presented of maximum
possible size 1+δ

1−δ jk = 1 − ik, which is the counterpart to the first item, except for the
additional ε. Since 1 − ik > 1

2 , no two items fit into the knapsack in this case. The optimal
solution thus packs an item of size 1 − ik. The competitive ratio is then 1−ik

ik+ε

ε→0= ck.

Case 2: An algorithm rejects ik + ε. The next items is presented to be of size jk.

Case 2.1: An algorithm packs jk. If an algorithm packs such an item before the last item,
each subsequent item is presented to be of almost maximum size 1+δ

1−δ jk − ε. For δ < k
k+2 it

holds that jk + 1+δ
1−δ jk − ε > 1. Thus, the algorithm only packs an item of size jk, while the

optimal solution is 1, as such an item of almost maximum size perfectly fits together with
the first item of the instance. The competitive ratio is then 1

jk
> ck, as jk < 1

ck
for δ > 1

3 .

Case 2.2: An algorithm rejects jk. Up to and including the penultimate item, the next
items are also revealed as jk. If an algorithm packs any of them, the rest of the instance
behaves as in Case 2.1.

Assuming this is not the case, the last item is presented as jk, which is the only item the
algorithm can pack. An optimal algorithm packs all items except the last one. These items
are of sum at most 1 if δ > 1

3 . The competitive ratio is then ik+ε+kjk

jk

ε→0= ck. ◀

7 Open Problems

The Oskp problem turns out to be very involved problem. While we were able to give
tight bounds on the competitive ratio for some values of δ, the analysis is not complete.
We are quite confident that the lower bounds that we determined should reflect the actual
competitive ratio in the remaining open segments, but finding a proof to do so is beyond our
capability.

A logical next step would be to look at the general Online Knapsack problem in the
setting of predictions. However, one would first have to determine which part of the input is
predicted: The size, the weight or the density of the items. The model of predictions offers to
be applied to – and already has been applied to – further problems beyond knapsack problems.
To our knowledge, more discretized problems, such as graph problems like the Minimum
Vertex Cover problem have not been studied in the setting of predictions. Finding an
appropriate, unifying model on what to predict in such problems would be interesting.

References
1 Spyros Angelopoulos, Shahin Kamali, and Kimia Shadkami. Online bin packing with predic-

tions. In Luc De Raedt, editor, Proceedings of the Thirty-First International Joint Conference
on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, pages 4574–4580.
ijcai.org, 2022. doi:10.24963/ijcai.2022/635.

2 Antonios Antoniadis, Christian Coester, Marek Eliás, Adam Polak, and Bertrand Simon.
Online metric algorithms with untrusted predictions. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119
of Proceedings of Machine Learning Research, pages 345–355. PMLR, 2020. URL: http:
//proceedings.mlr.press/v119/antoniadis20a.html.

3 Antonios Antoniadis, Christian Coester, Marek Eliás, Adam Polak, and Bertrand Simon.
Mixing predictions for online metric algorithms. CoRR, abs/2304.01781, 2023. doi:10.48550/
arXiv.2304.01781.

https://doi.org/10.24963/ijcai.2022/635
http://proceedings.mlr.press/v119/antoniadis20a.html
http://proceedings.mlr.press/v119/antoniadis20a.html
https://doi.org/10.48550/arXiv.2304.01781
https://doi.org/10.48550/arXiv.2304.01781

M. Gehnen, H. Lotze, and P. Rossmanith 37:17

4 David Arthur, Bodo Manthey, and Heiko Röglin. k-means has polynomial smoothed complexity.
In 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009, October
25-27, 2009, Atlanta, Georgia, USA, pages 405–414. IEEE Computer Society, 2009. doi:
10.1109/FOCS.2009.14.

5 Yossi Azar, Stefano Leonardi, and Noam Touitou. Flow time scheduling with uncertain
processing time. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC ’21: 53rd
Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25,
2021, pages 1070–1080. ACM, 2021. doi:10.1145/3406325.3451023.

6 Yossi Azar, Eldad Peretz, and Noam Touitou. Distortion-oblivious algorithms for scheduling on
multiple machines. In Sang Won Bae and Heejin Park, editors, 33rd International Symposium
on Algorithms and Computation, ISAAC 2022, December 19-21, 2022, Seoul, Korea, volume
248 of LIPIcs, pages 16:1–16:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPIcs.ISAAC.2022.16.

7 Eric Balkanski, Vasilis Gkatzelis, and Xizhi Tan. Strategyproof scheduling with predictions.
In Yael Tauman Kalai, editor, 14th Innovations in Theoretical Computer Science Conference,
ITCS 2023, January 10-13, 2023, MIT, Cambridge, Massachusetts, USA, volume 251 of
LIPIcs, pages 11:1–11:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. doi:
10.4230/LIPIcs.ITCS.2023.11.

8 Luca Becchetti, Stefano Leonardi, Alberto Marchetti-Spaccamela, Guido Schäfer, and Tjark
Vredeveld. Average case and smoothed competitive analysis of the multi-level feedback
algorithm. In 44th Symposium on Foundations of Computer Science (FOCS 2003), 11-14
October 2003, Cambridge, MA, USA, Proceedings, pages 462–471. IEEE Computer Society,
2003. doi:10.1109/SFCS.2003.1238219.

9 René Beier and Berthold Vöcking. Random knapsack in expected polynomial time. In
Lawrence L. Larmore and Michel X. Goemans, editors, Proceedings of the 35th Annual ACM
Symposium on Theory of Computing, June 9-11, 2003, San Diego, CA, USA, pages 232–241.
ACM, 2003. doi:10.1145/780542.780578.

10 Magnus Berg, Joan Boyar, Lene M. Favrholdt, and Kim S. Larsen. Online minimum spanning
trees with weight predictions. CoRR, abs/2302.12029, 2023. doi:10.48550/arXiv.2302.12029.

11 Hans-Joachim Böckenhauer, Elisabet Burjons, Juraj Hromkovic, Henri Lotze, and Peter
Rossmanith. Online simple knapsack with reservation costs. In Markus Bläser and Benjamin
Monmege, editors, 38th International Symposium on Theoretical Aspects of Computer Science,
STACS 2021, March 16-19, 2021, Saarbrücken, Germany (Virtual Conference), volume
187 of LIPIcs, pages 16:1–16:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.STACS.2021.16.

12 Hans-Joachim Böckenhauer, Dennis Komm, Richard Královic, and Peter Rossmanith. The
online knapsack problem: Advice and randomization. Theor. Comput. Sci., 527:61–72, 2014.
doi:10.1016/j.tcs.2014.01.027.

13 Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. Cambridge
University Press, 1998.

14 Joan Boyar, Lene M. Favrholdt, Shahin Kamali, and Kim S. Larsen. Online interval scheduling
with predictions. CoRR, abs/2302.13701, 2023. doi:10.48550/arXiv.2302.13701.

15 Joan Boyar, Lene M. Favrholdt, and Kim S. Larsen. Online unit profit knapsack with
untrusted predictions. In Artur Czumaj and Qin Xin, editors, 18th Scandinavian Symposium
and Workshops on Algorithm Theory, SWAT 2022, June 27-29, 2022, Tórshavn, Faroe Islands,
volume 227 of LIPIcs, pages 20:1–20:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2022. doi:10.4230/LIPIcs.SWAT.2022.20.

16 Michael Dinitz, Sungjin Im, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvit-
skii. Faster matchings via learned duals. In Marc’Aurelio Ranzato, Alina Beygelzi-
mer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan, editors, Ad-
vances in Neural Information Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
pages 10393–10406, 2021. URL: https://proceedings.neurips.cc/paper/2021/hash/
5616060fb8ae85d93f334e7267307664-Abstract.html.

STACS 2024

https://doi.org/10.1109/FOCS.2009.14
https://doi.org/10.1109/FOCS.2009.14
https://doi.org/10.1145/3406325.3451023
https://doi.org/10.4230/LIPIcs.ISAAC.2022.16
https://doi.org/10.4230/LIPIcs.ITCS.2023.11
https://doi.org/10.4230/LIPIcs.ITCS.2023.11
https://doi.org/10.1109/SFCS.2003.1238219
https://doi.org/10.1145/780542.780578
https://doi.org/10.48550/arXiv.2302.12029
https://doi.org/10.4230/LIPIcs.STACS.2021.16
https://doi.org/10.1016/j.tcs.2014.01.027
https://doi.org/10.48550/arXiv.2302.13701
https://doi.org/10.4230/LIPIcs.SWAT.2022.20
https://proceedings.neurips.cc/paper/2021/hash/5616060fb8ae85d93f334e7267307664-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/5616060fb8ae85d93f334e7267307664-Abstract.html

37:18 Online Simple Knapsack with Bounded Predictions

17 Thomas Erlebach, Murilo Santos de Lima, Nicole Megow, and Jens Schlöter. Learning-
augmented query policies for minimum spanning tree with uncertainty. In Shiri Chechik,
Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman, editors, 30th Annual European
Symposium on Algorithms, ESA 2022, September 5-9, 2022, Berlin/Potsdam, Germany,
volume 244 of LIPIcs, pages 49:1–49:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2022. doi:10.4230/LIPIcs.ESA.2022.49.

18 Xin Han, Yasushi Kawase, Kazuhisa Makino, and Haruki Yokomaku. Online knapsack problems
with a resource buffer. In Pinyan Lu and Guochuan Zhang, editors, 30th International
Symposium on Algorithms and Computation, ISAAC 2019, December 8-11, 2019, Shanghai
University of Finance and Economics, Shanghai, China, volume 149 of LIPIcs, pages 28:1–28:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ISAAC.2019.
28.

19 Xin Han and Kazuhisa Makino. Online removable knapsack with limited cuts. Theor. Comput.
Sci., 411(44-46):3956–3964, 2010. doi:10.1016/j.tcs.2010.08.009.

20 Sungjin Im, Ravi Kumar, Mahshid Montazer Qaem, and Manish Purohit. Online knapsack with
frequency predictions. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy
Liang, and Jennifer Wortman Vaughan, editors, Advances in Neural Information Processing
Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS
2021, December 6-14, 2021, virtual, pages 2733–2743, 2021. URL: https://proceedings.
neurips.cc/paper/2021/hash/161c5c5ad51fcc884157890511b3c8b0-Abstract.html.

21 Kazuo Iwama and Shiro Taketomi. Removable online knapsack problems. In Peter Widmayer,
Francisco Triguero Ruiz, Rafael Morales Bueno, Matthew Hennessy, Stephan J. Eidenbenz,
and Ricardo Conejo, editors, Automata, Languages and Programming, 29th International
Colloquium, ICALP 2002, Malaga, Spain, July 8-13, 2002, Proceedings, volume 2380 of Lecture
Notes in Computer Science, pages 293–305. Springer, 2002. doi:10.1007/3-540-45465-9_26.

22 Kazuo Iwama and Guochuan Zhang. Online knapsack with resource augmentation. Inf.
Process. Lett., 110(22):1016–1020, 2010. doi:10.1016/j.ipl.2010.08.013.

23 Billy Jin and Will Ma. Online bipartite matching with advice: Tight robustness-consistency
tradeoffs for the two-stage model. In NeurIPS, 2022. URL: http://papers.nips.cc/paper_
files/paper/2022/hash/5d68a3f05ee2aae6a0fb2d94959082a0-Abstract-Conference.
html.

24 Dennis Komm. An Introduction to Online Computation - Determinism, Randomization,
Advice. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2016. doi:
10.1007/978-3-319-42749-2.

25 Silvio Lattanzi, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Online
scheduling via learned weights. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020,
pages 1859–1877. SIAM, 2020. doi:10.1137/1.9781611975994.114.

26 Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned advice.
In Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
volume 80 of Proceedings of Machine Learning Research, pages 3302–3311. PMLR, 2018. URL:
http://proceedings.mlr.press/v80/lykouris18a.html.

27 Alberto Marchetti-Spaccamela and Carlo Vercellis. Stochastic on-line knapsack problems.
Math. Program., 68:73–104, 1995. doi:10.1007/BF01585758.

28 Michele Monaci, Ulrich Pferschy, and Paolo Serafini. Exact solution of the robust knapsack
problem. Comput. Oper. Res., 40(11):2625–2631, 2013. doi:10.1016/j.cor.2013.05.005.

29 Daniel Dominic Sleator and Robert Endre Tarjan. Amortized efficiency of list update rules.
In Richard A. DeMillo, editor, Proceedings of the 16th Annual ACM Symposium on Theory
of Computing, April 30 - May 2, 1984, Washington, DC, USA, pages 488–492. ACM, 1984.
doi:10.1145/800057.808718.

https://doi.org/10.4230/LIPIcs.ESA.2022.49
https://doi.org/10.4230/LIPIcs.ISAAC.2019.28
https://doi.org/10.4230/LIPIcs.ISAAC.2019.28
https://doi.org/10.1016/j.tcs.2010.08.009
https://proceedings.neurips.cc/paper/2021/hash/161c5c5ad51fcc884157890511b3c8b0-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/161c5c5ad51fcc884157890511b3c8b0-Abstract.html
https://doi.org/10.1007/3-540-45465-9_26
https://doi.org/10.1016/j.ipl.2010.08.013
http://papers.nips.cc/paper_files/paper/2022/hash/5d68a3f05ee2aae6a0fb2d94959082a0-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/5d68a3f05ee2aae6a0fb2d94959082a0-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/5d68a3f05ee2aae6a0fb2d94959082a0-Abstract-Conference.html
https://doi.org/10.1007/978-3-319-42749-2
https://doi.org/10.1007/978-3-319-42749-2
https://doi.org/10.1137/1.9781611975994.114
http://proceedings.mlr.press/v80/lykouris18a.html
https://doi.org/10.1007/BF01585758
https://doi.org/10.1016/j.cor.2013.05.005
https://doi.org/10.1145/800057.808718

M. Gehnen, H. Lotze, and P. Rossmanith 37:19

30 Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: why the simplex
algorithm usually takes polynomial time. In Jeffrey Scott Vitter, Paul G. Spirakis, and
Mihalis Yannakakis, editors, Proceedings on 33rd Annual ACM Symposium on Theory of
Computing, July 6-8, 2001, Heraklion, Crete, Greece, pages 296–305. ACM, 2001. doi:
10.1145/380752.380813.

31 Clemens Thielen, Morten Tiedemann, and Stephan Westphal. The online knapsack problem
with incremental capacity. Math. Methods Oper. Res., 83(2):207–242, 2016. doi:10.1007/
s00186-015-0526-9.

32 Chenyang Xu and Guochuan Zhang. Learning-augmented algorithms for online subset sum. J.
Glob. Optim., 87(2):989–1008, 2023. doi:10.1007/S10898-022-01156-W.

33 Yunhong Zhou, Deeparnab Chakrabarty, and Rajan M. Lukose. Budget constrained bidding
in keyword auctions and online knapsack problems. In Christos H. Papadimitriou and
Shuzhong Zhang, editors, Internet and Network Economics, 4th International Workshop, WINE
2008, Shanghai, China, December 17-20, 2008. Proceedings, volume 5385 of Lecture Notes in
Computer Science, pages 566–576. Springer, 2008. doi:10.1007/978-3-540-92185-1_63.

A Additional Proofs

Proof of Theorem 12. If the algorithm ends after the call of filter_trivial, the algorithm
is at most c-competitive. Assuming the condition in line 3 is met, the algorithm is at least
c-competitive by Lemma 8. Thus, we only have to prove that the algorithm is not worse
than c-competitive if it ends in line 6.

Let us first assume that x1 ̸= b. Then x1 is packed and x1 > 1 − 1+δ
1−δ b−. If any other

large item xi can be packed by the algorithm, the knapsack will be filled up to at least 1
2 ,

since

x1 + xi > 1 − 1 + δ

1 − δ
b− + 1 − δ

1 + δ
b− > 1 − 1 + δ

1 − δ

1
c

+ 1 − δ

1 + δ

1
c

≥ 1
c

,

where the last inequality holds for all values of δ between 0 and 1.
If no second large item fits into the algorithm’s knapsack, an optimal solution cannot

contain more than one large item either. This item of the optimal solution is bounded by
1−δ
1+δ b− < 1−δ

1+δ
1
c . The remaining items of an optimal solution then consist of all small items

that the algorithm has ignored. We can bound the total announced size of these small items,
by 1

c − b−, using Lemma 6 and in consequence their actual size by 1+δ
1−δ (1

c − b−). Putting
it all together, in the worst case Algorithm 2 packs exactly one large item of size slightly
larger than 1 − 1+δ

1−δ b−. The optimal solution packs one large item of size slightly smaller
than 1−δ

1+δ
1
c and the maximum sum of small items. This results in a competitive ratio of

1+δ
1−δ b− + 1+δ

1−δ (1
c − b−)

1 − 1+δ
1−δ b−

=
1+δ
1−δ

1
c

1 − 1+δ
1−δ b−

<
1+δ
1−δ

1
c

1 − 1+δ
1−δ

1
c

= c ,

for δ ≤ 1
7 .

The only case left to handle is that x1 = b. If b ≥ 1 − 1+δ
1−δ b−, we can use the same

argumentation as before. If however b < 1 − 1+δ
1−δ b−, then, since b is by definition the

announced largest item, all large items are announced smaller than 1 − 1+δ
1−δ b− and thus of

actual size at most 1+δ
1−δ (1 − 1+δ

1−δ b−) < 1+δ
1−δ (1 − 1+δ

1−δ
1
c / 1+δ

1−δ) = 1+δ
1−δ

1
c . Since no large item can

exceed an actual size of 1+δ
1−δ b− and since x1 < 1 − 1+δ

1−δ b−, we are guaranteed that a second
large item fits into the knapsack of the algorithm. In the worst case, an optimal solution

STACS 2024

https://doi.org/10.1145/380752.380813
https://doi.org/10.1145/380752.380813
https://doi.org/10.1007/s00186-015-0526-9
https://doi.org/10.1007/s00186-015-0526-9
https://doi.org/10.1007/S10898-022-01156-W
https://doi.org/10.1007/978-3-540-92185-1_63

37:20 Online Simple Knapsack with Bounded Predictions

packs b and an item of size 1+δ
1−δ b−, while the algorithm only packs b and a large item of

minimal size. The competitive ratio is then

(1 + δ

1 − δ
b− + b−)/(b− + 1 − δ

1 + δ
− b−) < c ,

where the last inequality holds for all values of δ between 0 and 1.
The only case left is that there is no second large item. Then the algorithm and the

optimal solution both pack the same large item x1 = b, while the optimal solution can
still add the maximum number of small items. The resulting competitive ratio is then
b−+ 1+δ

1−δ (1
c −b−)

b− < c for all δ between 0 and 1. ◀

	1 Introduction
	2 Problem Definitions and Notation
	3 Related Work and Our Contributions
	4 Structural Observations
	5 Upper Bounds
	6 Lower Bounds
	7 Open Problems
	A Additional Proofs

