
The AC0-Complexity of Visibly Pushdown
Languages
Stefan Göller #

School of Electrical Engineering and Computer Science, Universität Kassel, Germany

Nathan Grosshans #Ñ

Independent Scholar, Paris Region, France

Abstract
We study the question of which visibly pushdown languages (VPLs) are in the complexity class AC0

and how to effectively decide this question. Our contribution is to introduce a particular subclass of
one-turn VPLs, called intermediate VPLs, for which the raised question is entirely unclear: to the
best of our knowledge our research community is unaware of containment or non-containment in AC0

for any language in our newly introduced class. Our main result states that there is an algorithm
that, given a visibly pushdown automaton, correctly outputs exactly one of the following: that its
language L is in AC0, some m ≥ 2 such that MODm (the words over {0, 1} having a number of 1’s
divisible by m) is constant-depth reducible to L (implying that L is not in AC0), or a finite disjoint
union of intermediate VPLs that L is constant-depth equivalent to. In the latter of the three cases
one can moreover effectively compute k, l ∈ N>0 with k ̸= l such that the concrete intermediate
VPL L(S → ε | ack−1Sb1 | acl−1Sb2) is constant-depth reducible to the language L. Due to their
particular nature we conjecture that either all intermediate VPLs are in AC0 or all are not. As a
corollary of our main result we obtain that in case the input language is a visibly counter language
our algorithm can effectively determine if it is in AC0 – hence our main result generalizes a result by
Krebs et al. stating that it is decidable if a given visibly counter language is in AC0 (when restricted
to well-matched words).

For our proofs we revisit so-called Ext-algebras (introduced by Czarnetzki et al.), which are
closely related to forest algebras (introduced by Bojańczyk and Walukiewicz), and use Green’s
relations.

2012 ACM Subject Classification Theory of computation → Grammars and context-free languages;
Theory of computation → Circuit complexity

Keywords and phrases Visibly pushdown languages, Circuit Complexity, AC0

Digital Object Identifier 10.4230/LIPIcs.STACS.2024.38

Related Version Full Version, Extended Version: https://doi.org/10.48550/arXiv.2302.13116

Funding Stefan Göller : The author was supported by the Agence Nationale de la Recherche grant
no. ANR-17-CE40-0010.

1 Introduction

This paper studies the circuit complexity of formal word languages. It is well-known that
the regular word languages are characterized as the languages recognizable by finite monoids.
When restricting the finite monoids to be aperiodic Schützenberger proved that one obtains
precisely the star-free regular languages [22]. In terms of logic, these correspond to the
languages definable in first-order logic FO[<] by a result of McNaughton and Papert [23].
The more general class of regular languages expressible in FO[arb], i.e. first-order logic with
arbitrary numerical predicates, coincides with the regular languages in AC0 [13, 16]. These
can be characterized algebraically as the regular languages whose syntactic morphism is
quasi-aperiodic [5]. The latter algebraic characterization also shows that it is decidable if a
regular language is in AC0.

© Stefan Göller and Nathan Grosshans;
licensed under Creative Commons License CC-BY 4.0

41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024).
Editors: Olaf Beyersdorff, Mamadou Moustapha Kanté, Orna Kupferman, and Daniel Lokshtanov;
Article No. 38; pp. 38:1–38:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:stefan.goeller@uni-kassel.de
mailto:nathan.grosshans@polytechnique.edu
https://nathan.grosshans.me
https://orcid.org/0000-0003-3400-1098
https://doi.org/10.4230/LIPIcs.STACS.2024.38
https://doi.org/10.48550/arXiv.2302.13116
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 The AC0-Complexity of Visibly Pushdown Languages

Generalizing regular languages, input-driven languages were introduced by Mehlhorn [21].
They are described by pushdown automata whose input alphabet is partitioned into letters
that are either of type call, internal, or return. Rediscovered by Alur and Madhusudan
in 2004 [2] under the name of visibly pushdown languages (VPLs), it was shown that
they enjoy many of the desirable effective closure properties of the regular languages. For
instance, the visibly pushdown languages form an effective Boolean algebra. Algebraically,
VPLs were characterized by Alur et al. [1] by congruences on well-matched words of finite
index. Extending upon these, Czarnetzki et al. introduced so-called Ext-algebras [9]; these
involve pairs of monoids (R,O) where O is a submonoid of RR. Being tailored towards
recognizing word languages, Ext-algebras are closely connected to forest algebras, introduced
by Bojańczyk and Walukiewicz [7]: in [9] it is shown that a language of well-matched words
is visibly pushdown if, and only if, its syntactic Ext-algebra is finite. While context-free
languages are generally in LOGCFL = SAC1, the visibly pushdown languages, as the regular
languages, are known to be in NC1 [10]. By a famous result of Barrington [4], there already
exist regular languages that are NC1-hard.

Related work. Visibly pushdown languages (VPLs) were introduced [2] via deterministic
visibly pushdown automata (DVPA for short). Inspired by forest algebras [7] the paper [9]
introduces Ext-algebras. Unfortunately, the definition of Ext-algebra morphisms in [9] is
incorrect in that it provably does not lead to freeness.

The regular languages that are in AC0 were effectively characterized by Barrington et al. [5].
By an automata-theoretic approach, Krebs et al. [19] effectively characterized the visibly
counter languages that are in AC0. These are particular VPLs that are essentially accepted
by visibly pushdown automata that use only one stack symbol. In his PhD thesis [20] Ludwig
already considers the question of which VPLs are in AC0. Yet, his conjectural characterization
contains several serious flaws – a detailled discussion of these shortcomings can be found in
Section 8 in [12].

Our contribution. We reintroduce Ext-algebras, fix the notion of Ext-algebra morphisms
and define the languages they recognize. We also reintroduce the syntactic Ext-algebra of
languages of well-matched words. We rigorously prove classical results like freeness and
minimality of syntactic Ext-algebras with respect to recognition. We prove that a language of
well-matched words is a VPL if, and only if, it is recognizable by a finite Ext-algebra. While
these results essentially revisit the constructions of [9], we use Ext-algebras as a technical
tool for studying the complexity of visibly pushdown languages.

Fix a visibly pushdown alphabet Σ, i.e. Σ is partitioned into Σcall (call letters), Σint
(internal letters), and Σret (return letters). Denoting ∆(u) as the difference between the
number of occurrences of call and return letters in u ∈ Σ∗, a word w ∈ Σ∗ is well-matched if
∆(w) = 0 and ∆(u) ≥ 0 for all prefixes u of w. A context is a pair (u, v) such that uv is
well-matched – contexts have a natural composition operation: (u, v) ◦ (u′, v′) = (uu′, v′v).

A set of contexts R is length-synchronous if |u|/|v| = |u′|/|v′| for all (u, v), (u′, v′) ∈ R
with ∆(u),∆(u′) > 0 and weakly length-synchronous if u = u′ implies |v| = |v′| and v = v′

implies |u| = |u′| for all (u, v), (u′, v′) ∈ R with ∆(u),∆(u′) > 0. Any language L of well-
matched words induces a congruence ≡L on contexts: (u, v) ≡L (u′, v′) if xuwvy ∈ L ⇔
xu′wv′y ∈ L for all contexts (x, y) and all well-matched words w. We introduce the notion
of quasi-counterfreeness: a language is quasi-counterfree if for all contexts σ ∈ Σk × Σl for
arbitrary k and l at least one of the following holds: (1) there exists some n ∈ N such that
σn ≡L σ

n+1 or (2) no context in Σk × Σl is ≡L-equivalent to σ ◦ σ. Finally, we introduce

S. Göller and N. Grosshans 38:3

our central class of intermediate VPLs: a VPL is intermediate if it is quasi-counterfree and
generated by a context-free grammar containing the production S →G ε, where S is the
start nonterminal and whose other productions are of the form T →G uT ′v where uv is
well-matched, u ∈ (Σ∗

intΣcallΣ∗
int)+ and v ∈ (Σ∗

intΣretΣ∗
int)+, such that the set of contexts

{(u, v) | S ⇒∗
G uSv} is weakly length-synchronous but not length-synchronous. Note that

intermediate VPLs are particular one-turn visibly pushdown languages, that is, visibly
pushdown languages that are subsets of (Σ \ Σret)∗(Σ \ Σcall)∗. As an example, for all k, l ≥ 1
with k ̸= l, a concrete intermediate VPL, denoted by Lk,l, is the one that is generated by the
context-free grammar S → ε | ack−1Sb1 | acl−1Sb2: here a is a call letter, c is an internal
letter and b1 and b2 are return letters.

As far as we know the techniques known to our community do not directly suffice to show
whether at all there is some intermediate VPL that is provably in AC0 or provably not in AC0

– analogous remarks apply to ACC0. Our main result states that there is an algorithm that,
given a DVPA A correctly outputs exactly one of the following: L(A) ∈ AC0, some m ≥ 2
such that MODm is constant-depth reducible to L (thus witnessing that L(A) ̸∈ AC0), or a
non-empty disjoint finite union of intermediate VPLs that L(A) is constant-depth equivalent
to. In the latter of the three cases one can moreover effectively compute k, l ∈ N>0 with k ̸= l

such that the above-mentioned Lk,l is constant-depth reducible to L(A). We conjecture that
either all intermediate VPLs are in AC0 or all are not: note that together with our main result
this conjecture implies the existence of an algorithm that can effectively determine if a given
visibly pushdown language is in AC0. As a corollary of our main result we obtain that in
case the input language is a visibly counter language our algorithm can effectively determine
if it is in AC0, hence our main result generalizes a result by Krebs et al. stating that it
is decidable if a given visibly counter lanugage is in AC0 (when restricted to well-matched
words).

For our main result we extensively study Ext-algebras, the syntactic morphisms of VPLs,
and make use of Green’s relations.

Organization. Our paper is organized as follows. We introduce notation and give an
overview of our main result in Section 2. In Section 3 we first recall general algebraic concepts
and then revisit Ext-algebras and their correspondence to visibly pushdown languages.
Section 4 introduces central notions like length-synchronicity and weak length-synchronicity
for Ext-algebra morphisms and visibly pushdown languages. The proof of our main result is
content of Section 5. We conclude in Section 6. Full proofs can be found in [12].

2 Preliminaries

By N we denote the non-negative integers and by N>0 the positive integers. For all a ∈ Γ
and all w ∈ Γ∗ we write |w|a to denote the number of occurrences of a in w. We define
the languages EQUALITY = {w ∈ {0, 1}∗ : |w|0 = |w|1} and MODm = {w ∈ {0, 1}∗ :
m divides |w|1} for each m ≥ 2. A visibly pushdown alphabet is a finite alphabet Σ =
Σcall ∪ Σint ∪ Σret, where the alphabets Σcall,Σint, and Σret are pairwise disjoint. The set
of well-matched words over a visibly pushdown alphabet Σ, denoted by Σ△, is the smallest
set satisfying the following: ε ∈ Σ△ and c ∈ Σ△ for all c ∈ Σint, awb ∈ Σ△ for all w ∈ Σ△,
a ∈ Σcall and b ∈ Σret, and uv ∈ Σ△ for all u, v ∈ Σ△ \ {ε}. A well-matched word w ∈ Σ△ is
one-turn if w ∈ (Σ \ Σret)∗(Σ \ Σcall)∗. A language L ⊆ Σ△ is one-turn if it contains only
one-turn words. Let Σ be a visibly pushdown alphabet. We define ∆: Σ∗ → Z to be the
height monoid morphism such that ∆(w) = |w|Σcall − |w|Σret for all w ∈ Σ∗.

STACS 2024

38:4 The AC0-Complexity of Visibly Pushdown Languages

A context is a pair (u, v) ∈ Σ∗ × Σ∗ such that uv ∈ Σ△. The composition of two contexts
(u, v), (x, y) ∈ Con(Σ) is defined as (u, v) ◦ (x, y) = (ux, yv). For σ ∈ Con(Σ) by σk we denote
the k-fold composition σ ◦ · · · ◦ σ. For any context (u, v) ∈ Con(Σ) and well-matched word
w ∈ Σ△ we define (u, v)w = uwv. An equivalence relation ≡ on Con(Σ) is a congruence
if for all χ, χ′, σ, τ ∈ Con(Σ) we have that σ ≡ τ implies χ ◦ σ ◦ χ′ ≡ χ ◦ τ ◦ χ′. Given a
congruence ≡ over Con(Σ) we denote by [σ]≡ the equivalence class of σ. Given a language of
well-matched words L ⊆ Σ△ we write σ ≡L τ if for all χ ∈ Con(Σ) and all w ∈ Σ△ we have
(χ ◦ σ)w ∈ L if, and only if, (χ ◦ τ)w ∈ L. Clearly, ≡L is a congruence.

A context-free grammar is a tuple G = (V,Σ, P, S), where V is a finite set of nonterminals,
Σ is a non-empty finite alphabet, P ⊆ V × (V ∪ Σ)∗ is a finite set of productions, and S ∈ V

is the start nonterminal. We write T →G y whenever (T, y) ∈ P . The binary relation ⇒G

over (V ∪ Σ)∗ is defined as u ⇒G v if there exists a production T →G y and x, z ∈ (V ∪ Σ)∗

such that u = xTz and v = xyz. By L(G) = {w ∈ Σ∗ | S ⇒∗
G w} we denote the language of

G where ⇒∗
G is the reflexive transitive closure of ⇒G.

In the following we introduce deterministic visibly pushdown automata, remarking that
nondeterministic visibly pushdown automata are determinizable [2]. A deterministic visibly
pushdown automaton (DVPA) is a tuple A = (Q,Σ,Γ, δ, q0, F,⊥), where Q is a finite set
of states, Σ is a visibly pushdown alphabet, the input alphabet, Γ is a finite alphabet, the
stack alphabet, q0 ∈ Q is the initial state, F ⊆ Q is the set of final states, ⊥ ∈ Γ is the
bottom-of-stack symbol, and δ : Q × Σ × Γ → Q ×

(
{ε} ∪ Γ ∪ (Γ \ {⊥})Γ

)
is the transition

function such that for all q ∈ Q, a ∈ Σ, α ∈ Γ: if a ∈ Σcall, then δ(q, a, α) ∈ Q× (Γ\{⊥})α, if
a ∈ Σret, then δ(q, a, α) ∈ Q× {ε}, and if a ∈ Σint, then δ(q, a, α) ∈ Q× {α}. We define the
extended transition function δ̂ : Q× Σ∗ × Γ∗ → Q× Γ∗ inductively as δ̂(q, ε, β) = (q, β) for all
q ∈ Q and β ∈ Γ∗, δ̂(q, w, ε) = (q, ε) for all q ∈ Q and w ∈ Σ+, and δ̂(q, aw, αβ) = δ̂(p, w, γβ),
where δ(q, a, α) = (p, γ) for all q ∈ Q, a ∈ Σ, w ∈ Σ∗, α ∈ Γ and β ∈ Γ∗. The language
accepted by A is the language L(A) = {w ∈ Σ∗ | δ̂(q0, w,⊥) ∈ F × {⊥}}. We call such a
language a visibly pushdown language (VPL). We remark that visibly pushdown languages
are always subsets of Σ△.

We refer to [14] for further details on formal language theory.

2.1 Complexity and logic
We assume familiarity with standard circuit complexity, we refer to [24, 18] for an introduction
to the topic. Recall the following Boolean functions: the AND-function, the OR-function,
the majority function (that outputs 1 if the majority of its inputs are 1s), and the modm
function (that outputs 1 if the number of its inputs that are 1s is divisible by m) for all
m ≥ 2.

A circuit family (Cn)n∈N decides a binary language L ⊆ {0, 1}∗ if Cn is a circuit with
n inputs such that L ∩ {0, 1}n = {x1 . . . xn ∈ {0, 1}n | Cn(x1, . . . , xn) = 1} for all n ∈ N.
In this paper, we will consider circuits deciding languages over arbitrary finite alphabets:
to do this, we just consider implicitly that any language over an arbitrary finite alphabet
comes with a fixed binary encoding that encodes each letter as a block of bits of fixed size.
By ≤cd we mean constant-depth truth table reducibility (or just constant-depth reducibility)
as introduced in [8]. Formally for two languages K ⊆ Γ∗ and L ⊆ Σ∗ for finite alphabets
Σ,Γ, we write K ≤cd L in case there is a polynomial p, a constant d ∈ N, and circuit family
(Cn)n∈N deciding L such that each circuit Cn satisfies the following: it is of depth at most
d and size at most p(n) and its non-input gates are either AND-labeled, OR-labeled, or
so-called oracle gates, labeled by L, that are gates deciding L ∩ Σm, where m ≤ p(n), such
that there is no path from the output of an oracle gate to an input of another oracle gate.

S. Göller and N. Grosshans 38:5

We write K =cd L if K ≤cd L and L ≤cd K; we also say that K and L are constant-depth
equivalent. We say a language L is hard for a complexity class C (or just C-hard) if L′ ≤cd L

for all L′ ∈ C. We say L is C-complete if L is C-hard and L ∈ C. The following complexity
classes are relevant in this paper: AC0 is the class of all languages decided by circuit families
with NOT gates, AND, OR gates of unbounded fan-in, constant depth and polynomial size;
ACC0 is the class of all languages decided by circuit families with NOT gates, AND, OR and
modular gates (for some fixed m) of unbounded fan-in, constant depth and polynomial size;
TC0 is the class of all languages decided by circuit families with NOT gates, AND, OR and
majority gates of unbounded fan-in, constant depth and polynomial size; NC1 is the class of
all languages decided by circuit families with NOT gates, AND, OR gates of bounded fan-in,
logarithmic depth and polynomial size.

We also consider the framework of first order logic over finite words. (See [17, 23] for
a proper introduction to the topic.) A numerical predicate of arity r ∈ N>0 is a symbol
of arity r associated to a subset of N>0

r. Given a class C of numerical predicates and a
finite alphabet Σ, we call FOΣ[C]-formula a first order formula over finite words using the
alphabet Σ and numerical predicates from the class C. On occasions, we might also consider
FOΣ,↭[C]-formulas that in comparison to the previous ones can use an additional binary
predicate ↭ and are interpreted on structures (w,M) with w ∈ Σ∗ and M ⊆ [1, |w|]2, where
everything is interpreted as for FOΣ[C]-formulas on w excepted for ↭ that is interpreted by
M . Given a class C of numerical predicates, by FO[C] we denote the class of all languages
over any finite alphabet Σ defined by a FOΣ[C]-sentence. A classical result at the interplay of
circuit complexity and logic is that AC0 = FO[arb], where arb denotes the class of all numerical
predicates (see [23, Theorem IX.2.1] or [17, Corollary 5.32]). The other numerical predicates
that we will encounter in this paper are <, + and MODm for all m ∈ N>0, where MODm
tests if m divides the number of 1’s (gathered together in the set MOD = {MODm | m > 0}).

2.2 Main result
The notion of length-synchronicity and weak length-synchronicity will be a central notion in
our main result. In the following Σ always denotes a visibly pushdown alphabet.

▶ Definition 1 ((Weak) Length-Synchronicity). Let R ⊆ Con(Σ) be a set of contexts. We say R
is length-synchronous if |u| / |v| = |u′| / |v′| for all (u, v), (u′, v′) ∈ R with ∆(u),∆(u′) > 0;
we say R is weakly length-synchronous if u = u′ implies |v| = |v′| and v = v′ implies
|u| = |u′| for all (u, v), (u′, v′) ∈ R with ∆(u),∆(u′) > 0.

Note that a set of contexts R is weakly length-synchronous if R is length-synchronous.
Indeed, if, say (u, v), (u, v′) ∈ R, where |v| ≠ |v′| and ∆(u) > 0, then |u| , |v| , |v′| > 0 and so
the quotients |u|

|v| and |u|
|v′| are distinct, thus violating length-synchronicity of R.

▶ Definition 2 (Quasi-Counterfree). A VPL L ⊆ Σ△ is quasi-counterfree if for all σ =
(u, v) ∈ Con(Σ) at least one of the following holds: (1) there exists some n ∈ N such that
σn ≡L σ

n+1 or (2) for all τ ∈ Σ|u| × Σ|v| ∩ Con(Σ) we have τ ̸≡L σ ◦ σ.

We will later show that quasi-counterfreeness of a VPL L ⊆ Σ△ is equivalent to the condition
that there is no k, l ∈ N such that there is a subset of Con(Σ) ∩ Σk × Σl that forms a
non-trivial group when considering the associated equivalence classes with respect to ≡L.

▶ Example 3. Consider the visibly pushdown alphabet Σ, where Σcall = {a}, Σint = {c}
and Σret = {b1, b2}. For all k, l ∈ N>0 satisfying k ̸= l, consider the language Lk,l generated
by the context-free grammar S → ack−1Sb1 | acl−1Sb2 | ε . We have that the set of contexts

STACS 2024

38:6 The AC0-Complexity of Visibly Pushdown Languages

{(u, v) ∈ Con(Σ) | S ⇒∗
G uSv} is weakly length-synchronous since both the relation and its

reverse is a partial function – however, it is not length-synchronous. It is also not hard to
see that Lk,l is quasi-counterfree. Indeed, given (u, v) ∈ Con(Σ), if u contains the letter b1
or b2, or v contains the letter a or the letter c along with the letter b1 or b2, we have that
(χ ◦ (u, v))w /∈ Lk,l for all χ ∈ Con(Σ) and all w ∈ Σ△, so (u, v)2 ≡Lk,l (u, v)3. If u and
v happen to contain the letter c and only this letter, we can argue similarly. In the cases
remaining, u contains only letters from {a, c} and v letters from {b1, b2}.

We say a context-free grammar G = (V,Σ, P, S) is vertically visibly pushdown if the
underlying alphabet Σ is a visibly pushdown alphabet, S →G ε, and all other productions
of G are of the form T →G uT ′v, where uv ∈ Σ△ is one-turn such that u ∈ (Σ∗

intΣcallΣ∗
int)+

and v ∈ (Σ∗
intΣretΣ∗

int)+. Note that each grammar generating Lk,l in Example 3 is vertically
visibly pushdown. Note that languages generated by vertically visibly pushdown grammars
are obviously one-turn VPLs.

▶ Definition 4 (Intermediate VPL). A VPL L is intermediate if it is quasi-counterfree and
L = L(G) for some vertically visibly pushdown grammar G for which R(G) = {(u, v) ∈
Con(Σ) | S ⇒∗

G uSv} is weakly length-synchronous but not length-synchronous.

We remark that every intermediate languages is in TC0. Thus the languages Lk,l from
Example 3 are all intermediate VPLs. Loosely speaking, they are the simplest intermediate
VPLs. We have the following conjecture.

▶ Conjecture 5. There is no intermediate VPL that is in ACC0 or TC0-hard.

In fact, the authors are not even aware of any intermediate VPL that is provably not in AC0.
An indication for the inadequacy of known techniques to prove it is that the robustness [18] of
intermediate VPLs can be proven to be constant. Further techniques, based for instance on
the switching lemma [15] or on the polynomial method [6] also do not seem to be applicable.

Our main result is the following theorem.

▶ Theorem 6. There is an algorithm that, given a DVPA A, correctly outputs either
L(A) ∈ AC0,
m ≥ 2 such that MODm ≤cd L(A) (hence implying L(A) ̸∈ AC0),
vertically visibly pushdown grammars G1, . . . , Gm each generating intermediate VPLs
such that L =cd

⊎m
i=1 L(Gi). In this case one can moreover effectively compute k, l ∈ N

with k ̸= l such that Lk,l ≤cd L(A).

Theorem 6 and the following conjecture imply the existence of an algorithm that decides
if a given visibly pushdown language is in AC0.

▶ Conjecture 7. Either all intermediate VPLs are in AC0 or all are not.

We refer the reader to [3] for the definition of visibly counter automata. Visibly counter
automata (m-VCA) are essentially restricted visibly pushdown automata manipulating a
counter which can moreover explicitly test if the current counter has a value in [0,m− 1]
or at least m. The following corollary of Theorem 6 implies the main result of [19] when
restricted to well-matched words.

▶ Corollary 8. There is an algorithm that, given an m-VCA A, correctly outputs either that
L(A) is in AC0 or some m ≥ 2 such that MODm ≤cd L(A) (hence implying L(A) ̸∈ AC0).

S. Göller and N. Grosshans 38:7

3 Ext-Algebras

This section builds on [9], but identifies an inaccuracy in the definition of Ext-algebra
morphisms to establish freeness.

Let (M, ·, 1M) be a monoid. For each m ∈ M , we shall respectively denote by leftm and
rightm the left-multiplication map x 7→ m · x and the right-multiplication map x 7→ x ·m.

An Ext-algebra (R,O, ·, ◦) consists of a monoid (R, ·, 1R) and a monoid (O, ◦, 1O) that is
a submonoid of (RR, ◦) containing the maps leftr and rightr for each r ∈ R. An Ext-algebra
morphism from Ext-algebra (R,O) to Ext-algebra (S, P) is a pair (φ,ψ) of monoid morphisms
φ : R → S and ψ : O → P such that: for all e ∈ O and r ∈ R we have ψ(e)(φ(r)) = φ(e(r))
and for all r ∈ R we have ψ(leftr) = leftφ(r) and ψ(rightr) = rightφ(r). When it is clear
from the context, we shall write morphism to mean Ext-algebra morphism. We remark
that in the above definition, φ is totally determined by ψ, because for each r ∈ R, we have
φ(r) = φ(leftr(1R)) = ψ(leftr)(φ(1R)) = ψ(leftr)(1S).

For the rest of this section, let us fix some visibly pushdown alphabet Σ. For all
(u, v) ∈ Con(Σ), consider the function extu,v : Σ△ → Σ∗ such that extu,v(x) = uxv for all
x ∈ Σ△. It is not hard to prove that extu,v is a function from Σ△ to Σ△. Consider now the
set O(Σ△) of all functions extu,v for (u, v) ∈ Con(Σ): it is a subset of (Σ△)Σ△ closed under
composition. Thus, (O(Σ△), ◦) is a submonoid of ((Σ△)Σ△

, ◦). As for all w ∈ Σ△ we have
leftw = extw,ε and rightw = extε,w, the set O(Σ△) contains leftw and rightw for all w ∈ Σ△.
Thus, (Σ△,O(Σ△), ·, ◦) is an Ext-algebra.

The following important proposition establishes freeness of (Σ△,O(Σ△)).

▶ Proposition 9. Let (R,O) be an Ext-algebra and consider two functions φ : Σint → R

and ψ : {exta,b | a ∈ Σcall, b ∈ Σret} → O. Then there exists a unique Ext-algebra morphism
(φ,ψ) from (Σ△,O(Σ△)) to (R,O) satisfying φ(c) = φ(c) for each c ∈ Σint and ψ(exta,b) =
ψ(exta,b) for each a ∈ Σcall, b ∈ Σret.

We remark that the requirement that for all r ∈ R we have ψ(leftr) = leftφ(r) and
ψ(rightr) = rightφ(r) does not appear in the definition of Ext-algebra morphisms given in [9].
But this is actually problematic, because then Proposition 9 would not hold in general. A
counter-example is given in [12].

A language L ⊆ Σ△ is recognized by an Ext-algebra (R,O) whenever there exists a
morphism (φ,ψ) : (Σ△,O(Σ△)) → (R,O) such that L = φ−1(F) for some F ⊆ R. The
syntactic Ext-algebra congruence of a language L ⊆ Σ△ is the congruence ∼L on Σ△ defined
by u ∼L v for u, v ∈ Σ△ whenever xuy ∈ L ⇔ xvy ∈ L for all (x, y) ∈ Con(Σ). By [x]∼L we
denote the congruence class of x ∈ Σ△.

▶ Example 10. Consider the language L = L1,2 = L(S → aSb1 | acSb2 | ε) from Example 3
over the visibly pushdown alphabet Γ, where Γint = {c}, Γcall = {a} and Γret = {b1, b2}.
Set RL = {[acb1]∼L , [ε]∼L , [c]∼L , [cab1]∼L , [ab1]∼L}, and, given for all (u, v) ∈ Con(Σ) the
function fu,v ∈ (RL)RL satisfying fu,v([x]∼L]) = [uxv]∼L for all x ∈ Σ△, set

OL = {facb1,ε, fε,ε, fc,ε, fε,c, fab1,ε, fε,ab1 , fcab1,ε, fa,b2 , fca,b2 , fca,ab1b2 , fca,b1 , fa,ab1b2 , fa,b1 } .

For instance, note that [ab1]∼L = [acb2]∼L , that [acb1]∼L is the zero of RL and that
facb1,ε is the zero of OL. Then (RL, OL) is an Ext-algebra recognizing L thanks to the
morphism (φL, ψL) : (Γ△,O(Γ△)) → (RL, OL) satisfying φL(c) = [c]∼L , ψL(exta,b1) =
fa,b1 and ψL(exta,b2) = fa,b2 . Note that L = φ−1

L ({[ε]∼L , [ab1]∼L}). Finally, note
that for instance ψL(extca,ab1b2) = fca,ab1b2 ̸= fa,ab1b2 = ψL(exta,ab1b2) since we have
ψL(exta,b2) ◦ ψL(extca,ab1b2)([c]∼L) = [acacab1b2b2]∼L = [ab1]∼L whereas ψL(exta,b2) ◦
ψL(exta,ab1b2)([c]∼L) = [aacab1b2b2]∼L = [acb1]L.

STACS 2024

38:8 The AC0-Complexity of Visibly Pushdown Languages

The following lemma is proven in several steps. For this, classical notions like sub-Ext-
algebra, division and quotients are introduced.

▶ Lemma 11. Let L ⊆ Σ△. The pair (RL, OL) = (Σ△,O(Σ△))/∼L, where RL = Σ△/∼L

and where OL = {e′ ∈ (RL)RL | ∃ extu,v ∈ O(Σ△)∀x ∈ Σ△ : e′([x]∼L) = [extu,v(x)]∼L} is an
Ext-algebra. Moreover the pair (φL, ψL) of functions φL : Σ△ → RL and ψL : O(Σ△) → OL
satisfying φL(x) = [x]∼L for all x ∈ Σ△ and ψ(extu,v)([x]∼L) = [extu,v(x)]∼L for all
extu,v ∈ O(Σ△) and x ∈ Σ△ is an Ext-algebra morphism. We have L = φ−1

L (φL(L)).

We call (RL, OL) the syntactic Ext-algebra of L along with its unique associated morphism
(φL, ψL) : (Σ△,O(Σ△)) → (RL, OL), the syntactic Ext-algebra morphism of L. (An example
of each of these is already given in Example 10.)

We say that an Ext-algebra (R,O) is finite whenever R is finite (which is the case if
and only if O is finite). The following theorem establishes the equivalence between visibly
pushdown languages and languages recognizable by finite Ext-algebras. Its proof provides
effective translations from DVPAs to Ext-algebras and vice versa.

▶ Theorem 12. A language L ⊆ Σ△ is a VPL if, and only if, it is recognized by a finite
Ext-algebra.

4 (Weak) length-synchronicity, nesting depth, and quasi-aperiodicity

For the rest of this section let us fix a visibly pushdown alphabet Σ, a finite Ext-algebra
(R,O) and consider a morphism (φ,ψ) : (Σ△,O(Σ△)) → (R,O).

In this section we introduce the notions of weak length-synchronicity and length-
synchronicity for Ext-algebra morphisms and visibly pushdown languages. Before we do
that, let us give some motivation how TC0-hardness can be proven if the syntactic morphism
maps certain extu,v, extu′,v with |u| ≠ |u′| to particular idempotents. For these we require
the following notion of reachability.

For F ⊆ R we say that an element r ∈ R is F -reaching if e(r) ∈ F for some e ∈ O. We
say e ∈ O is F -reaching if e(r) is F -reaching for some r ∈ R. Fix any VPL L, its syntactic
Ext-algebra (RL, OL) along with its syntactic morphism (φL, ψL). Assume there exists some
idempotent e ∈ OL that is φL(L)-reaching.

We claim that if ψL(extu,v) = ψL(extu′,v) = e and ∆(u),∆(u′) > 0 for some
extu,v, extu′,v ∈ O(Σ△) with |u| ≠ |u′|, then L is TC0-hard. We remark that we must
have ∆(u) = ∆(u′). Exploiting the fact that |u| ≠ |u′| we give a constant-depth reduction
from the TC0-complete language EQUALITY to L. As ψL(extu,v) is φ(L)-reaching, we
can fix some x, y, z ∈ Σ∗ such that xuyvz ∈ L. Given a word w ∈ {0, 1}∗ of length 2n
(binary words of odd length can directly be rejected) we map it to xh(w)yvn·(|u|+|u′|)z, where
h : {0, 1}∗ → Σ∗ is the length-multiplying morphism (i.e. ∃l ∈ N : h(0), h(1) ∈ Σl) satisfiying
h(0) = u|u′| and h(1) = u′|u|. We have w ∈ EQUALITY if, and only if, |w|0 = |w|1 = n

if, and only if, ∆(h(w)) = n · (|u| + |u′|) · ∆(u) = −n · (|u| + |u′|) · ∆(v) if, and only if,
h(w)vn·(|u|+|u′|) ∈ Σ△. Hence, since ψL(extus,vs) = ψL(ext(u′)t,vt) = e for all s, t ≥ 1
it follows that w ∈ EQUALITY if, and only, if xh(w)yvn·(|u|+|u′|)z ∈ Σ△ if, and only if,
xh(w)yvn·(|u|+|u′|)z ∈ L.

Dually, one can show that L is TC0-hard in case ψL(extu,v) = ψL(extu,v′) = e and
∆(u) > 0 for some extu,v, extu,v′ ∈ O(Σ△) with |v| ≠ |v′|.

The following definition of weak length-synchronicity captures the situation when such
idempotents do not exist – it adapts the notion of weak length-synchronicity of sets of
contexts, given in Definition 1, to morphisms and VPLs, respectively.

S. Göller and N. Grosshans 38:9

The morphism (φ,ψ) : (Σ△,O(Σ△)) → (R,O) is F -weakly-length-synchronous (where
F ⊆ R) if for all F -reaching idempotents e ∈ O the set of contexts Re := {(u, v) ∈
Con(Σ) | ψ(extu,v) = e} is weakly length-synchronous. We call a VPL L ⊆ Σ△ weakly
length-synchronous if its syntactic morphism (φL, ψL) is φL(L)-weakly-length-synchronous.

Instead of considering those pairs (u, v) such that extu,v is being mapped to an F -reaching
idempotent, the following characterization of weak length-synchronicity consider pairs (u, v)
such that extu,v is being mapped to an element that behaves neutrally with respect to right
multiplication with an F -reaching element that is not necessarily idempotent.

▶ Proposition 13. For all F ⊆ R we have that (φ,ψ) is F -weakly-length-synchronous if, and
only if, for all F -reaching e ∈ O the set of contexts Ue := {(u, v) ∈ Con(Σ) | e◦ψ(extu,v) = e}
is weakly length-synchrononous.

One can prove that each extu,v has a unique stair factorization extu,v =
extx1,y1 ◦ exta1,b1 ◦ · · · ◦ extxh−1,yh−1 ◦ extah−1,bh−1 ◦ extxh,yh satisfying h ≥ 1, xi, yi ∈ Σ△

for all i ∈ [1, h], ai ∈ Σcall, and bi ∈ Σret for all i ∈ [1, h− 1]. We refer to the xi and yi as
hills of the stair factorization. From the following proposition it follows that weak length-
synchronicity of a VPL L implies that for all φL(L)-reaching e ∈ OL and all (u, v) ∈ Ue, the
stair factorization of extu,v has small hills of constant size.

▶ Proposition 14. There is a constant n ∈ N such that for all F ⊆ R, all F -reaching e ∈ O,
and all (u, v) ∈ Ue, if (φ,ψ) is F -weakly-length-synchronous, then the stair factorization
extu,v = extx1,y1 ◦ exta1,b1 ◦ · · · ◦ extxh−1,yh−1 ◦ extah−1,bh−1 ◦ extxh,yh satisfies |xi|, |yi| ≤ n

for all i ∈ [1, h].

As above, the following definition adapts the notion of length-synchronicity of sets of
contexts, given in Definition 1, to Ext-algebra morphisms and VPLs, respectively.

The morphism (φ,ψ) : (Σ△,O(Σ△)) → (R,O) is F -length-synchronous (where F ⊆ R) if
for all F -reaching idempotents e ∈ O the set of contexts Re = {(u, v) ∈ Con(Σ) | ψ(extu,v) =
e} is length-synchronous. We call a VPL L ⊆ Σ△ length-synchronous if its syntactic morphism
(φL, ψL) is φL(L)-length-synchronous.

Consider our running example L1,2 = L(S → aSb1 | acSb2 | ε). Recall that the monoid
OL1,2 of the syntactic Ext-algebra (RL1,2 , OL1,2) and syntactic morphism (φL1,2 , ψL1,2) of
L1,2, given in Example 10, has the idempotents fε,ε, facb1,ε and fa,b1 . Also recall that
φL1,2(L1,2) = {[ε]∼L1,2

, [ab1]∼L1,2
}. Since ψ−1

L1,2
(fε,ε) = {extε,ε} and facb1,ε is a zero we have

that OL1,2 ’s only idempotent that is {[ε]∼L1,2
, [ab1]∼L1,2

}-reaching and whose pre-image under
ψL1,2 contains at least one extu,v with ∆(u) > 0 is the idempotent fa,b1 . However, both exta,b1

and extac,b2 , where ∆(a) = ∆(ac) = 1 > 0, are sent to the idempotent fa,b1 = fa,b2 ◦ fc,ε.
Since |a|/|b1| = 1 ̸= 2 = |ac|/|b2|, we have that L1,2 is not length-synchronous. On the
other hand, note that if any extu,v and extu′,v (resp. extu,v and extu,v′) are sent to fa,b1

then u = u′ and thus |u| = |u′| (resp. v = v′ and thus |v| = |v′|). Hence, L1,2 is weakly
length-synchronous.

The two following propositions characterize length-synchronicity of Ext-algebra morphisms
and of the set of contexts Ue, which will be of particular importance when approximating the
matching relation of a length-synchronous VPL in terms of FO[+]. This will be an important
ingredient to proving that VPLs that both are length-synchronous and have a quasi-aperiodic
syntactic morphism (a notion to be defined below) are in FO[+] and thus in AC0.

▶ Proposition 15. For all F ⊆ R we have that (φ,ψ) is F -length-synchronous if, and only
if, for all F -reaching e ∈ O the set of contexts Ue = {(u, v) ∈ Con(Σ) | e ◦ ψ(extu,v) = e} is
length-synchronous.

STACS 2024

38:10 The AC0-Complexity of Visibly Pushdown Languages

▶ Proposition 16. Let F ⊆ R and assume (φ,ψ) is F -weakly-length-synchronous. Then for
all F -reaching e ∈ O the following two statements are equivalent.
1. Ue = {(u, v) ∈ Con(Σ) | e ◦ ψ(extu,v) = e} is length-synchronous.
2. There exist α ∈ Q>0, β ∈ N, γ ∈ N>0 such that for all (u, v) ∈ Ue with ∆(u) > 0 we have:

(a) |u|
|v| = α, (b) for all u′, v′ ∈ Σ+ with u′ prefix of u and v′ suffix of v such that |u′|

|v′| = α,
we have that −∆(v′) −β ≤ ∆(u′) ≤ −∆(v′) +β, (c) for all factors u′ ∈ Σ∗ of u such that
|u′| = γ, we have ∆(u′) ≥ 1, and (d) for all factors v′ ∈ Σ∗ of v such that |v′| = γ, we
have ∆(v′) ≤ −1.

The nesting depth of visibly pushdown languages. Another central notion is the nesting
depth of well-matched words, which is the Horton-Strahler number [11] of the underlying
trees. The nesting depth of well-matched words is inductively defined as follows: nd(ε) = 0;
nd(c) = 0 for all c ∈ Σint; nd(uv) = max{nd(u),nd(v)} for all u ∈ ΣcallΣ△Σret ∪ Σint and
v ∈ Σ△ \{ε}; nd(awb) = nd(w)+1 if w = uv for some u, v ∈ Σ△ with nd(w) = nd(u) = nd(v)
and nd(w) otherwise, for all a ∈ Σcall, b ∈ Σret and w ∈ Σ△.

An important property of weakly length-synchronous VPLs is that their words have
bounded nesting depth. Assume any weakly length-synchronous VPL L ⊆ Σ△. Let n be the
constant of Proposition 14. One can prove that if there exists w ∈ L with nd(w) > d = n+ 1,
then there exists a factorization w = uv = extu,v(ε) such that for stair factorization extu,v =
extx1,y1 ◦ exta1,b1 ◦ · · · ◦ extxh−1,yh−1 ◦ extah−1,bh−1 ◦ extxh,yh we must have max{|xi|, |yi| : i ∈
[1, h]} > n, clearly contradicting Proposition 14. We obtain the following proposition.

▶ Proposition 17. For each weakly length-synchronous VPL L ⊆ Σ△ there exists a constant
d ∈ N such that L ⊆ {w ∈ Σ△ | nd(w) ≤ d}.

Quasi-aperiodicity. Towards characterizing the circuit complexity of visibly pushdown
languages the notion of quasi-aperiodicity has already been defined for visibly pushdown
languages in [20]. Let (φ,ψ) : (Σ△,O(Σ△)) → (R,O) for a visibly pushdown alphabet Σ and
a finite Ext-algebra (R,O). We define O(Σ△)k,l = {extu,v ∈ O(Σ△) : |u| = k, |v| = l} for all
k, l ∈ N. We say (φ,ψ) is quasi-aperiodic if all semigroups contained in the set ψ(O(Σ△)k,l)
are aperiodic for all k, l ∈ N.

5 Proof of the main theorem

The following proposition implies that the syntactic Ext-algebra and the syntactic morphism
of a given visibly pushdown language L is computable and that it is decidable if L is
quasi-aperiodic, length-synchronous, and weakly length-synchronous, respectively.

▶ Proposition 18. The following computability and decidability results hold:
1. Given a DVPA A, one can effectively compute the syntactic Ext-algebra of L = L(A), its

syntactic morphism (φL, ψL) and φL(L).
2. Given a morphism (φ,ψ) : (Σ△,O(Σ△)) → (R,O) for a visibly pushdown alphabet Σ

and a finite Ext-algebra (R,O), all of the following are decidable for (φ,ψ): (a) Quasi-
aperiodicity: in case (φ,ψ) is not quasi-aperiodic, one can effectively compute k, l ∈ N such
that ψ(O(Σ△)k,l) is not aperiodic; (b) F -length-synchronicity for a given F ⊆ R: in case
(φ,ψ) is not F -length-synchronous, one can effectively compute a quadruple (k, l, k′, l′) ∈
N4
>0 such that there exist uv, u′v′ ∈ Σ△ and some F -reaching idempotent e ∈ O such that

ψ(extu,v) = ψ(extu′,v′) = e, ∆(u) > 0, ∆(u′) > 0, k = |u|, l = |v|, k′ = |u′|, l′ = |v′|, and
k
l ̸= k′

l′ ; (c) F -weakly-length-synchronicity for a given F ⊆ R.

S. Göller and N. Grosshans 38:11

Proof outline for Theorem 6. Towards proving our main result (Theorem 6), given a DVPA
A, where L = L(A) is a VPL over a visibly pushdown alphabet Σ, we apply Proposition 18
and compute its syntactic Ext-algebra (RL, OL) along with its syntactic morphism (φL, ψL)
and the subset φL(L). Then the following effective case distinction implies Theorem 6.
1. If L is not weakly length-synchronous, then L is TC0-hard and hence not in AC0 (Propos-

ition 19 in Section 5.1). We output some m > 1 since MODm ≤cd EQUALITY ≤cd L.
2. If L is not quasi-aperiodic, then one can compute some m ≥ 2 such that MODm ≤cd L

(Proposition 20 in Section 5.1).
3. If L is length-synchronous and (φL, ψL) is quasi-aperiodic, then L ∈ AC0 (Theorem 22 in

Section 5.2).
4. If L that is weakly length-synchronous, not length-synchronous, and its syntactic morphism

(φL, ψL) is quasi-aperiodic, one can compute vertically visibly pushdown grammars
G1, . . . , Gm generating intermediate VPLs such that L =cd

⊎m
i=1 L(Gi) (Theorem 29 in

Section 5.3). Already if L is weakly length-synchronous but not length-synchronous,
one can compute k, l ∈ N>0 with k ̸= l such that Lk,l ≤cd L (Proposition 30 in
Section 5.3). ◀

5.1 Lower bounds
The following lower bound has already been given in Section 4.

▶ Proposition 19. If L is not weakly length-synchronous, then L is TC0-hard.

The following proposition has essentially already been shown in [20, Proposition 135],
yet with some inaccuracies (we refer to Section 8 in [12]) that we fix. The idea is again a
standard reduction from the word problem of non-trivial cyclic subgroups of ψL(O(Σ)k,l), in
case the latter set contains a non-trivial group.

▶ Proposition 20. If L is not quasi-aperiodic, then one can compute some m ≥ 2 such that
MODm ≤cd L.

As final lower bound result we prove a stronger lower bound, namely when the syntactic
morphism not only is not quasi-aperiodic but the syntactic Ext-algebra is not solvable. We
say the Ext-algebra (R,O) is solvable if all subsets of R or O that are groups (under the
multiplication of R, resp. of O) are solvable. It is worth mentioning that one can prove that
if (φ,ψ) : (Σ△,O(Σ△)) → (R,O) is quasi-aperiodic, then (R,O) is solvable.

Our proof that L is NC1-hard (and thus TC0-hard) when (RL, OL) is not solvable can
essentially be reduced to the case for words [4], by showing that already ψL(O(Σ△)k,l)
contains such a non-solvable group for some fixed k, l ≥ 0.

▶ Proposition 21. If (RL, OL) is not solvable, then L is NC1-hard and thus not in AC0.

5.2 In AC0: Length-synchronous and quasi-aperiodic
In this section we concern ourselves with the following result.

▶ Theorem 22. If L is length-synchronous and (φL, ψL) is quasi-aperiodic, then L is in
FO[+] and thus in AC0.

For the rest of this section let us fix a VPL L, its syntactic Ext-algebra (RL, OL), and its
syntactic morphism (φL, ψL) : (Σ△,O(Σ△)) → (RL, OL). We first introduce suitably padded
word languages mimicking the evaluation problem of the monoid RL and the monoid OL,
respectively.

STACS 2024

38:12 The AC0-Complexity of Visibly Pushdown Languages

For all k ∈ N, we define O(Σ△)k,∗ = {extu,v ∈ O(Σ△) : |u| = k} and O(Σ△)∗,k =
{extu,v ∈ O(Σ△) : |v| = k}. We also define O(Σ△)↑ = {extu,v ∈ O(Σ△) | ∆(u) > 0}
and finally for all k ∈ N, we define O(Σ△)k,∗↑ = O(Σ△)k,∗ ∩ O(Σ△)↑ and O(Σ△)∗,k

↑ =
O(Σ△)∗,k ∩ O(Σ△)↑. Consider the alphabets ΓφL = φL(Σ△ \ {ε}) ∪ {$} and ΓψL =
ψL

(
O(Σ△)↑

)
∪ {$} for a letter $ /∈ RL ∪ OL. We also define VφL = {$ks | k ∈ N, s ∈

φL(Σk+1)}∗ and VψL =
{

$kf
∣∣ k ∈ N, f ∈ ψL

(
O(Σ△)k+1,∗

↑
)}∗. The following lemma holds

irrespective of whether the syntactic morphism (φL, ψL) of L is quasi-aperiodic or not.

▶ Lemma 23. VφL , VψL are regular languages whose syntactic morphisms are quasi-aperiodic.

Define the φL-evaluation morphism evalφL : Γ∗
φL → RL by evalφL(s) = s for all s ∈

φL(Σ△ \{ε}) and evalφL($) = 1R. Similarly, let the morphism evalψL : Γ∗
ψL

→ OL be defined
as evalψL(f) = f for all f ∈ ψL

(
O(Σ△)↑

)
and evalψL($) = 1OL . Finally, for all r ∈ RL, we

set EφL,r = VφL ∩ eval−1
φL(r) and for all e ∈ OL, EψL,e = VψL ∩ eval−1

ψL
(e).

The following proposition states that the respective evaluation languages EφL,r and EψL,e
are all quasi-aperiodic if the syntactic morphism (φL, ψL) of L is and L is additionally
length-synchronous.

▶ Proposition 24. Let L be a VPL for which (φL, ψL) is quasi-aperiodic. Then EφL,r is a
regular language whose syntactic morphism is quasi-aperiodic for all r ∈ RL. If L is length-
synchronous, then EψL,e is a regular language whose syntactic morphism is quasi-aperiodic
for all e ∈ OL.

The following remark states that the length-synchronicity condition in the second point of
Proposition 24 is important. In fact it shows that weak length-synchronicity is not sufficient.
▶ Remark 25. For the second point of Proposition 24 it is generally not sufficient to assume
that L is weakly length-synchronous. Indeed, the VPL K generated by the grammar with
rules S → aSb1 | acTb2 | ε and T → aTb1 | acSb2 using S as start symbol is not length-
synchronous (but weakly length-synchronous) and has a quasi-aperiodic syntactic morphism.
However, for the syntactic Ext-algebra (RK , OK) and the syntactic morphism (φK , ψK) of
K, one can prove that that there exists e ∈ OK such that EψK ,e is a regular language whose
syntactic morphism is not quasi-aperiodic. Details can be found in [12].

Approximate matchings generalize the classical matching relation on well-matched words
with respect to our VPL L in the sense that they are subsets of the matching relation but
must equal the matching relation on all those words that are in L. Approximate matchings
in the context of visibly pushdown languages were introduced by Ludwig [20].

For any word w ∈ Σ∗, we say that two positions i, j ∈ [1, |w|] in w are matched whenever
i < j, wi ∈ Σcall, wj ∈ Σret and wi+1 · · ·wj−1 ∈ Σ△; we also say that i is matched to j in
w. Given a word w ∈ Σ△, we denote by M△ (w) its matching relation (or matching), that
is the relation {(i, j) ∈ [1, |w|]2 | i is matched to j in w}. An approximate matching relative
to L ⊆ Σ△ is a function M : Σ∗ → N>0

2 such that M(w) = M△ (w) for all w ∈ L and
M(w) ⊆ M△ (w) for all w ∈ Σ∗ \ L.

The next lemma is an important tool for defining an approximate matching relation.

▶ Lemma 26. Assume that (φL, ψL) is weakly length-synchronous. Let e ∈ OL be φL(L)-
reaching and let Ue = {(u, v) ∈ Con(Σ) | e ◦ ψL(extu,v) = e} be length-synchronous. Then
there exists an FOΣ[+]-formula πe(x, x′, y′, y) such that for all w ∈ Σ+ and i, i′, j′, j ∈
[1, |w|], i ≤ i′ < j′ ≤ j the following holds:

if w |= πe(i, i′, j′, j), then wi · · ·wi′wj′ · · ·wj ∈ Σ△ and
if wi · · ·wi′wj′ · · ·wj ∈ Σ△ and (wi . . . wi′ , wj′ . . . wj) ∈ Re, then w |= πe(i, i′, j′, j).

S. Göller and N. Grosshans 38:13

The proof of Lemma 26 takes several steps. The formula πe expresses the characterization
of length-synchronicity given by Proposition 16 via an FOΣ[+]-formula. To realize these
we make use of aperiodicity of the following languages Lp,q. For each p ∈ N let Γp =
{a−p, . . . , a−1, a0, a1, . . . , ap} and let ∆p : Γ∗

p → Z be the morphism satisfying ∆p(ah) = h for
all ah ∈ Γp. Let Lp,q = {w ∈ Γ∗

p | ∆p(w) = 0∧∀i ∈ [1, |w|],−q ≤ ∆p(w1 · · ·wi) ≤ q}. One can
prove that this language is recognized by a finite aperiodic monoid. This implies, by a theorem
by McNaughton and Papert (see [23, Theorem VI.1.1]), that there exists an FOΓn+d [<]-
sentence defining Lp,q. These ingredients are central for expressing the characterization of
length-synchronicity given by Proposition 16 via an FOΣ[+]-formula.

With the help of the predicates πe provided by Lemma 26 one can build an FOΣ[+]-
definable approximate matching relative to any length-synchronous visibly pushdown language.
The proof is by induction on the nesting depth.

▶ Proposition 27. If L ⊆ Σ△ is length-synchronous, then there exists an FOΣ[+]-formula
η(x, y) such that M : Σ∗ → N>0

2 defined by M(w) = {(i, j) ∈ [1, |w|]2 | w |= η(i, j)} for all
w ∈ Σ∗ is an approximate matching relative to L.

The following proposition states that a VPL L is definable by some FOΣ,↭[+] sentence
in case L has bounded nesting depth, the evaluation languages EφL,r and EψL,e are all
quasi-aperiodic, and any approximate matching is present as built-in predicate.

▶ Proposition 28. Assume a VPL L has bounded nesting depth and EφL,r and EψL,e are
regular languages whose syntactic morphisms are quasi-aperiodic for all r ∈ RL and for all
e ∈ OL. Then there exists an FOΣ,↭[+]-sentence η such that for all approximate matchings
M relative to L, we have w ∈ L if, and only if, (w,M(w)) |= η for all w ∈ Σ∗.

Proof (Sketch). By hypothesis, there exists dL ∈ N bounding the nesting depth of the words
in L. By hypothesis also, for each r ∈ RL, the language EφL,r is regular and its syntactic
morphism is quasi-aperiodic. This implies, by [23, Theorem VI.4.1], that for each r ∈ RL,
there exists an FOΓφL [<,MOD]-sentence νφL,r defining EφL,r. Finally, by hypothesis, for
each e ∈ OL, the language EψL,e is regular and its syntactic morphism is quasi-aperiodic.
Analogously, for each e ∈ OL, there exists an FOΓψL [<,MOD]-sentence νψL,e defining EψL,e.

To build the FOΣ,↭[+]-sentence η, we build FOΣ,↭[+]-formulas η↑
d,r(x, y) and ηd,r(x, y)

for all d ∈ [0, dL] and all r ∈ RL. They will have the following properties for all w ∈ Σ△

and all i, j ∈ [1, |w|], where M△ is the full matching relation: (1) if i is matched to j in
w, then (w,M△ (w)) |= η↑

d,r(i, j) if, and only if, nd(wi · · ·wj) ≤ d and φL(wi · · ·wj) = r

and (2) if wi · · ·wj ∈ Σ△, then (w,M△ (w)) |= ηd,r(i, j) if, and only if, nd(wi · · ·wj) ≤ d

and φL(wi · · ·wj) = r. It is not difficult to construct a formula Nd(x, y) (that also accesses
the full matching relation) such that for all w ∈ Σ∗ and all infixes wi . . . wj ∈ Σ△ we
have w |= Nd(i, j) if, and only if, nd(wi . . . wj) ≤ d. Let the formula E be ∀x(x ̸= x) if
ε ∈ L and ⊥ = ∃x(x ≠ x) otherwise. Observe that w |= ∀x(x ≠ x) if, and only if, w = ε.
Letting ↭ being interpreted over any approximate matching relation, the formula η is
then defined as the conjunction of ∀z∃t

(
(Σcall(z) → z ↭ t) ∧ (Σret(z) → t ↭ z)

)
and

E ∨ ∃x∃y
(
¬∃x′(x′ < x) ∧ ¬∃y′(y < y′) ∧

∨
r∈φL(L) ηdL,r(x, y)

)
.

Let us give some intuition on how to build η↑
d,r(x, y) and ηd,r(x, y) for all d ∈ N and

r ∈ RL. The construction is by induction on d. Let r ∈ RL. We define η↑
0,r(x, y) = ⊥. We

define η0,r as η0,r(x, y) = ¬N1(x, y) ∧ τ0(νφL,r), where the translation τ0 is defined as follows:
τ0(z < z′) = z < z′, τ0(s(z)) =

∨
c∈φ−1

L
(s)∩Σint

c(z) for all s ∈ φL(Σ△ \ {ε}), τ0(MODm(z)) =
∃t(z−x+1 = t·m) for all m ∈ N>0, τ0($(z)) = ⊥, τ0(ρ1(z1)∧ρ2(z2)) = τ0(ρ1(z1))∧τ0(ρ1(z2)),
τ0(¬ρ(z)) = ¬τ0(ρ(z)), and τ0(∃zρ(z, z)) = ∃z

(
x ≤ z ≤ y ∧ τ0(ρ(z, z))

)

STACS 2024

38:14 The AC0-Complexity of Visibly Pushdown Languages

Now let d > 0. Define the formula A(x, y, z) = ∃x′∃y′(x ≤ x′ ≤ z < y′ ≤ y ∧ x′ ↭ y′)
that expresses that for all w ∈ Σ△ and i, j, k ∈ [1, |w|] satisfying wi · · ·wj ∈ Σ△, we have
(w,M△ (w)) |= A(i, j, k) if, and only if, i ≤ k < j and ∆(wi · · ·wk) > 0. Let us first define
ηd,r when assuming that we have already defined η↑

d,r. Note that in case nd(u) ≤ d, then
one can factorize u as u = u1 · · ·um such that ui ∈ Σ+

int ∪ ΣcallΣ△Σret and nd(ui) ≤ d for all
i ∈ [1,m]. Using this observation we define ηd,r(x, y) = ¬Nd+1(x, y) ∧ τ1(νφL,r), where the
translation τ1 agrees with the above translation τ0 (where, as expected, occurrences of τ0
are replaced by τ1) except for the following kinds of subformulas: τ1($(z)) = A(x, y, z) and
τ1(s(z)) = ¬A(x, y, z) ∧

(∨
c∈φ−1

L
(s)∩Σint

c(z) ∨ ∃t
(
x ≤ t ≤ y ∧ t↭ z ∧ η↑

d,s(t, z)
))

.
Similarly, in the definition of η↑

d,r we make use of our sentences νψL,e for the evaluation
languages EψL,e for all e ∈ OL. For these however we make use of an auxiliary formula U
such that for all w ∈ Σ△ and i, i′, k ∈ [1, |w|] we have (w,M△ (w)) |= U(i, i′, k) if, and only
if, i ≤ k ≤ i′ and k is matched with some position larger than i′, thus expressing that for
some positions j, j′ the position k is an “upward stair position” in the stair factorization of
extui···ui′ ,uj′ ···uj = extx1,y1 ◦ · · · extah−1,bh−1 ◦ extxh,yh : more precisely k is one of the positions
{i+ |x1a1| − 1, i+ |x1a1x2a2| − 1, . . . , i+ |x1a1 . . . xh−1ah−1| − 1}. These positions k will be
precisely the ones where the predicate $ does not hold in a suitable translation of νψL,e. ◀

Proof of Theorem 22. Proposition 24 implies that EφL,r and EψL,e are regular languages
whose respective syntactic morphisms are quasi-aperiodic for all r ∈ RL and all e ∈ OL,
respectively. Thus, the first two conditions of Proposition 28 are satisfied. Moreover,
Proposition 27 provides a first-order definable approximate matching relation relative to L,
being a predicate assumed by Proposition 28. Finally, Proposition 28 implies Theorem 22. ◀

5.3 The intermediate case
The following theorem effectively characterizes the remaining case, namely those VPLs that
are weakly length-synchronous but not length-synchronous and whose syntactic morphism
is quasi-aperiodic: such VPLs are shown to be constant-depth equivalent to a non-empty
disjoint union of intermediate languages.

▶ Theorem 29. If a VPL L is weakly length-synchronous, not length-synchronous, and its
syntactic morphism (φL, ψL) is quasi-aperiodic, one can compute vertically visibly pushdown
grammars G1, . . . , Gm generating intermediate VPLs such that L =cd

⊎m
i=1 L(Gi).

Let L ⊆ Σ△ be a weakly length-synchronous VPL that is not length-synchronous, and
whose syntactic morphism (φL, ψL) is quasi-aperiodic. By Proposition 18 one can compute
its syntactic Ext-algebra (RL, OL), (φL, ψL) and φL(L) from (a given DVPA for) L. For
all φL(L)-reaching e ∈ OL and some fresh internal letter # ̸∈ Σ let Me = {u#v | ∆(u) >
0, (u, v) ∈ Ue}, which can be shown to be a computable VPL.

The set Z = {e ∈ OL | e is φL(L)-reaching and Ue is not length-synchronous} can be
proven to be computable. Observe that as L is not length-synchronous by assumption, we
have Z ̸= ∅ (Proposition 15). Next make use of Lemma 14 stating that the hills in the stair
factorization of any extu,v ∈ ψ−1

L (e) are constantly bounded for all φL(L)-reaching e ∈ OL.
This gives rise to computable intermediate languages Ne such that Ne =cd Me for all e ∈ Z.
Letting Lf = {u#v | ψ(extu,v) = f} for all f ∈ OL, it is standard to show Lf ≤cd L for all
φL(L)-reaching f ∈ OL. Finally, one proves Me ≤cd

⊎
f ∈ OL is φL(L)-reaching Lf for all e ∈ Z

and L ≤cd
⊎
e∈Z Me thus establishing L =cd

⊎
e∈Z Ne. The proof of L ≤cd

⊎
e∈Z Me is the

technically most demanding and is an adaption of the proof of Proposition 28: alas, one

S. Göller and N. Grosshans 38:15

cannot assume presence of the evaluation FOΓψL [<,MOD]-sentence νψL,e for each e ∈ OL
since EψL,e can possibly have a non-quasi-aperiodic syntactic morphism by Remark 25. Yet,
one can realize evaluation via access to the oracle

⊎
e∈Z Me.

The following proposition implies the computability of k, l ∈ N>0 such that Lk,l ≤cd L

already when a VPL L is weakly length-synchronous but not length-synchronous.

▶ Proposition 30. If a VPL L is weakly length-synchronous but not length-synchronous, one
can compute k, l ∈ N>0 with k ̸= l such that Lk,l ≤cd L .

Proof. Let L ⊆ Σ△ be a weakly length-synchronous VPL that is not length-synchronous.
According to Point 2 (b) of Proposition 18 one can compute a quadruple (k0, l0, k

′
0, l

′
0) ∈ N4

>0
for which there exist extu,v, extu′,v′ ∈ O(Σ△) such that |u| = k0, |v| = l0, |u′| = k′

0,
|v′| = l′0, ψL(extu,v) = ψL(extu′,v′) is a φL(L)-reaching idempotent, ∆(u),∆(u′) > 0, and
k0
l0

= |u|
|v| ̸= |u′|

|v′| = k′
0
l′0

. We can compute such extu,v and extu′,v′ by just doing an exhaustive
search. This enables us to assume without loss of generality that ∆(u) = ∆(u′): indeed, in case
∆(u) ̸= ∆(u′), we can consider extu1,v1 = extu∆(u′),v∆(u′) and extu2,v2 = ext(u′)∆(u),(v′)∆(u) .

Let us now define Green’s relations on OL. Let us consider two elements x, y of OL. We
write x ≤J y whenever there are elements e, f of OL such that x = e ◦ y ◦ f . We write x J y

if x ≤J y and y ≤J x. We write x <J y if x ≤J y and x ̸J y. We write x ≤R y whenever
there is an element e of OL such that x = y ◦ e. We write x R y if x ≤R y and y ≤R x. We
write x ≤L y whenever there is an element e of OL such that x = e ◦ y. We write x L y if
x ≤L y and y ≤L x. We write x H y if x R y and x L y.

Observe that because ∆(u) = ∆(u′), we have that uv′ ∈ Σ△ and u′v ∈ Σ△, so
that we can consider the elements extuuu,vv′v = extu,v ◦ extu,v′ ◦ extu,v and extuu′u,vvv =
extu,v ◦ extu′,v ◦ extu,v in O(Σ△). These elements satisfy ψL(extuuu,vv′v) ≤J ψL(extu,v)
and ψL(extuu′u,vvv) ≤J ψL(extu,v). We claim that we actually have ψL(extuuu,vv′v) <J

ψL(extu,v) and ψL(extuu′u,vvv) <J ψL(extu,v). Indeed, assume we had ψL(extuu′u,vvv) J

ψL(extu,v). Set x = ψL(extu,v) and y = ψL(extu′,v). Since it would hold that x ◦ y ◦ x ≤R x

and x◦y◦x J x, we would have x◦y◦x R x and dually, since it would hold that x◦y◦x ≤L x

and x ◦ y ◦ x J x, we would have x ◦ y ◦ x L x. Therefore, we would have x ◦ y ◦ x H x.
As x is an idempotent, its H-class is a group, hence for ω ∈ N>0 the idempotent power of
OL, we would have (x ◦ y ◦ x)ω = xω = x (as the only idempotent element in a group is
the identity). This would finally entail that ψL(ext(uu′u)ω,(vvv)ω) = ψL(ext(uuu)ω,(vvv)ω) is a
φL(L)-reaching idempotent and ∆((uu′u)ω) = ∆((uuu)ω) > 0 but |(uu′u)ω| ≠ |(uuu)ω|, a
contradiction to the fact that (φL, ψL) is φL(L)-weakly-length-synchronous. Symmetrically,
we can prove that if we had ψL(extuuu,vv′v) J ψL(extu,v), this would contradict the fact that
(φL, ψL) is φL(L)-weakly-length-synchronous.

Here we only treat the case when |v| = |v′| and refer to [12] for the full proof of the
other cases. We prove that there exist k, l ∈ N>0, k ̸= l such that Lk,l ≤cd LψL(extu,v), so
that since LψL(extu,v) ≤cd L (as already mentioned in Section 5.3 this is standard) and by
transitivity of ≤cd we have Lk,l ≤cd L. In that case, we necessarily have |u| ≠ |u′|. Then,
we can exploit the fact that matching u3 with vv′v or uu′u with v3 makes us fall down to a
smaller J-class to reduce L3|u|,2|u|+|u′| to LψL(extu,v). The constant-depth reduction works
as follows on input w ∈ Σ∗: (i) check if w = xy with x ∈ (ac3|u|−1 + ac2|u|+|u′|−1)∗ and
y ∈ (b1 + b2)∗, reject otherwise; (ii) build x′ by sending ac3|u|−1 to u3, ac2|u|+|u′|−1 to uu′u

and y′ by sending b1 to v3 and b2 to vv′v; (iii) accept whenever x′#y′ ∈ LψL(extu,v). This
forms a valid reduction. Indeed, take a word w = xy with x ∈ (ac3|u|−1 + ac2|u|+|u′|−1)n for
n ∈ N and y ∈ (b1 + b2)m for m ∈ N and consider x′#y′ produced by the reduction with
x′ ∈ (u3 + uu′u)n and y′ ∈ (v3 + vv′v)m. If w ∈ L3|u|,2|u|+|u′|, then it easily follows that

STACS 2024

38:16 The AC0-Complexity of Visibly Pushdown Languages

x′#y′ ∈ LψL(extu,v). Otherwise, if w /∈ L3|u|,2|u|+|u′|, then either n ̸= m and thus x′y′ is not
well-matched because ∆(x′) = n · 3 · ∆(u) and ∆(y′) = m · 3 · ∆(v), or n = m and thus x′y′ is
well-matched, so extx′,y′ = extz′

1,t
′
1

◦ · · ·◦extz′
n,t

′
n

with z′
1, . . . , z

′
n ∈ {u3, uu′u} and t′1, . . . , t′n ∈

{v3, vv′v} such that there exists i ∈ [1, n] satisfying extz′
i
,t′
i

∈ {extu3,vv′v, extuu′u,v3}, thereby
implying ψL(extx′,y′) ≤J ψL(extz′

i
,t′
i
) <J ψL(extu,v). Hence, our algorithm outputs the pair

(k, l) = (3k0, 2k0 + k′
0). ◀

6 Conclusion

In this paper we have studied the question of which visibly pushdown languages lie in the
complexity class AC0. We have introduced the notions of length-synchronicity, weak length-
synchronicity and quasi-counterfreeness. We have introduced intermediate VPLs: these are
quasi-counterfree VPLs generated by context-free grammars G involving the production
S →G ε for the start nonterminal S and whose further productions are all of the form
T →G uT ′v, where uv is well-matched, u ∈ (Σ∗

intΣcallΣ∗
int)+, v ∈ (Σ∗

intΣretΣ∗
int)+, and the

set of contexts {(u, v) ∈ Con(Σ) | S ⇒∗
G uSv} is weakly length-synchronous but not length-

synchronous. To the best of our knowledge it is unclear whether at all there is an intermediate
VPL that is provably in AC0 (even in ACC0) or provably not in AC0. We conjecture that none
of the intermediate VPLs are in ACC0 nor TC0-hard. Our main result states that there is an
algorithm that, given a visibly pushdown language L, outputs if L surely lies in AC0, surely
does not lie in AC0 (by providing some m > 1 such that MODm is constant-depth reducible
to L), or outputs a disjoint finite union of intermediate VPLs that L is constant-depth
equivalant to. In the latter of the three cases one can moreover compute distinct k, l ∈ N>0
such that already Lk,l = L(S → ε | ack−1Sb1 | acl−1Sb2) is constant-depth reducible to L.
We conjecture that due to the particular nature of intermediate VPLs, either all of them are
in AC0 or all are not: this conjecture together with our main result indeed implies that there
is an algorithm that decides if a given visibly pushdown language is in AC0. As main tools
we carefully revisited Ext-algebras, introduced by Czarnetzki et al. [9], being closely related
to forest algebras, introduced by Bojańczyk and Walukiewicz [7]. For the reductions from
Lk,l we made use of Green’s relations.

Natural questions arise. Is there any concrete intermediate VPL that is provably in
ACC0, provably not in AC0, or hard for TC0? Another exciting question is whether one can
effectively compute those visibly pushdown languages that lie in the complexity class TC0. Is
there is a TC0/NC1 complexity dichotomy? For these questions new techniques seem to be
necessary. In this context it is already interesting to mention there is an NC1-complete visibly
pushdown language whose syntactic Ext-algebra is aperiodic. Another exciting question is
to give an algebraic characterization of the visibly counter languages.

References
1 Rajeev Alur, Viraj Kumar, P. Madhusudan, and Mahesh Viswanathan. Congruences for visibly

pushdown languages. In Luís Caires, Giuseppe F. Italiano, Luís Monteiro, Catuscia Palamidessi,
and Moti Yung, editors, Automata, Languages and Programming, 32nd International Col-
loquium, ICALP 2005, Lisbon, Portugal, July 11-15, 2005, Proceedings, volume 3580 of Lecture
Notes in Computer Science, pages 1102–1114. Springer, 2005. doi:10.1007/11523468_89.

2 Rajeev Alur and P. Madhusudan. Visibly pushdown languages. In László Babai, editor,
Proceedings of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA,
June 13-16, 2004, pages 202–211. ACM, 2004. doi:10.1145/1007352.1007390.

https://doi.org/10.1007/11523468_89
https://doi.org/10.1145/1007352.1007390

S. Göller and N. Grosshans 38:17

3 Vince Bárány, Christof Löding, and Olivier Serre. Regularity problems for visibly pushdown
languages. In Bruno Durand and Wolfgang Thomas, editors, STACS 2006, 23rd Annual
Symposium on Theoretical Aspects of Computer Science, Marseille, France, February 23-25,
2006, Proceedings, volume 3884 of Lecture Notes in Computer Science, pages 420–431. Springer,
2006. doi:10.1007/11672142_34.

4 David A. Mix Barrington. Bounded-Width Polynomial-Size Branching Programs Recognize
Exactly Those Languages in NC1. J. Comput. Syst. Sci., 38(1):150–164, 1989. doi:10.1016/
0022-0000(89)90037-8.

5 David A. Mix Barrington, Kevin J. Compton, Howard Straubing, and Denis Thérien. Regular
languages in nc1. J. Comput. Syst. Sci., 44(3):478–499, 1992. doi:10.1016/0022-0000(92)
90014-A.

6 Richard Beigel. The polynomial method in circuit complexity. In Proceedings of the Eigth
Annual Structure in Complexity Theory Conference, San Diego, CA, USA, May 18-21, 1993,
pages 82–95. IEEE Computer Society, 1993. doi:10.1109/SCT.1993.336538.

7 Mikolaj Bojanczyk and Igor Walukiewicz. Forest algebras. In Jörg Flum, Erich Grädel, and
Thomas Wilke, editors, Logic and Automata: History and Perspectives [in Honor of Wolfgang
Thomas], volume 2 of Texts in Logic and Games, pages 107–132. Amsterdam University Press,
2008.

8 Ashok K. Chandra, Larry J. Stockmeyer, and Uzi Vishkin. Constant depth reducibility. SIAM
J. Comput., 13(2):423–439, 1984. doi:10.1137/0213028.

9 Silke Czarnetzki, Andreas Krebs, and Klaus-Jörn Lange. Visibly pushdown languages and free
profinite algebras. CoRR, abs/1810.12731, 2018. arXiv:1810.12731.

10 Patrick W. Dymond. Input-driven languages are in log n depth. Inf. Process. Lett., 26(5):247–
250, 1988. doi:10.1016/0020-0190(88)90148-2.

11 Javier Esparza, Michael Luttenberger, and Maximilian Schlund. A brief history of strahler
numbers. In Adrian-Horia Dediu, Carlos Martín-Vide, José Luis Sierra-Rodríguez, and Bianca
Truthe, editors, Language and Automata Theory and Applications - 8th International Confer-
ence, LATA 2014, Madrid, Spain, March 10-14, 2014. Proceedings, volume 8370 of Lecture
Notes in Computer Science, pages 1–13. Springer, 2014. doi:10.1007/978-3-319-04921-2_1.

12 Stefan Göller and Nathan Grosshans. The ac0-complexity of visibly pushdown languages.
CoRR, abs/2302.13116, 2023. doi:10.48550/ARXIV.2302.13116.

13 Yuri Gurevich and Harry R. Lewis. A logic for constant-depth circuits. Inf. Control., 61(1):65–
74, 1984. doi:10.1016/S0019-9958(84)80062-5.

14 Michael A. Harrison. Introduction to Formal Language Theory. Addison-Wesley, 1978.
15 Johan Håstad. Almost optimal lower bounds for small depth circuits. In Juris Hartmanis,

editor, Proceedings of the 18th Annual ACM Symposium on Theory of Computing, May 28-30,
1986, Berkeley, California, USA, pages 6–20. ACM, 1986. doi:10.1145/12130.12132.

16 Neil Immerman. Languages that capture complexity classes. SIAM J. Comput., 16(4):760–778,
1987. doi:10.1137/0216051.

17 Neil Immerman. Descriptive complexity. Graduate texts in computer science. Springer, 1999.
doi:10.1007/978-1-4612-0539-5.

18 Stasys Jukna. Boolean Function Complexity - Advances and Frontiers, volume 27 of Algorithms
and combinatorics. Springer, 2012. doi:10.1007/978-3-642-24508-4.

19 Andreas Krebs, Klaus-Jörn Lange, and Michael Ludwig. Visibly counter languages and
constant depth circuits. In Ernst W. Mayr and Nicolas Ollinger, editors, 32nd International
Symposium on Theoretical Aspects of Computer Science, STACS 2015, March 4-7, 2015,
Garching, Germany, volume 30 of LIPIcs, pages 594–607. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2015. doi:10.4230/LIPIcs.STACS.2015.594.

20 Michael Ludwig. Tree-Structured Problems and Parallel Computation. PhD thesis, Univer-
sity of Tübingen, Germany, 2019. URL: https://publikationen.uni-tuebingen.de/xmlui/
handle/10900/85960/.

STACS 2024

https://doi.org/10.1007/11672142_34
https://doi.org/10.1016/0022-0000(89)90037-8
https://doi.org/10.1016/0022-0000(89)90037-8
https://doi.org/10.1016/0022-0000(92)90014-A
https://doi.org/10.1016/0022-0000(92)90014-A
https://doi.org/10.1109/SCT.1993.336538
https://doi.org/10.1137/0213028
https://arxiv.org/abs/1810.12731
https://doi.org/10.1016/0020-0190(88)90148-2
https://doi.org/10.1007/978-3-319-04921-2_1
https://doi.org/10.48550/ARXIV.2302.13116
https://doi.org/10.1016/S0019-9958(84)80062-5
https://doi.org/10.1145/12130.12132
https://doi.org/10.1137/0216051
https://doi.org/10.1007/978-1-4612-0539-5
https://doi.org/10.1007/978-3-642-24508-4
https://doi.org/10.4230/LIPIcs.STACS.2015.594
https://publikationen.uni-tuebingen.de/xmlui/handle/10900/85960/
https://publikationen.uni-tuebingen.de/xmlui/handle/10900/85960/

38:18 The AC0-Complexity of Visibly Pushdown Languages

21 Kurt Mehlhorn. Pebbling Moutain Ranges and its Application of DCFL-Recognition.
In J. W. de Bakker and Jan van Leeuwen, editors, Automata, Languages and Program-
ming, 7th Colloquium, Noordweijkerhout, The Netherlands, July 14-18, 1980, Proceed-
ings, volume 85 of Lecture Notes in Computer Science, pages 422–435. Springer, 1980.
doi:10.1007/3-540-10003-2_89.

22 Marcel Paul Schützenberger. On finite monoids having only trivial subgroups. Inf. Control.,
8(2):190–194, 1965. doi:10.1016/S0019-9958(65)90108-7.

23 Howard Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser
Boston, 1994. doi:10.1007/978-1-4612-0289-9.

24 Heribert Vollmer. Introduction to Circuit Complexity - A Uniform Approach. Texts in Theoret-
ical Computer Science. An EATCS Series. Springer, 1999. doi:10.1007/978-3-662-03927-4.

https://doi.org/10.1007/3-540-10003-2_89
https://doi.org/10.1016/S0019-9958(65)90108-7
https://doi.org/10.1007/978-1-4612-0289-9
https://doi.org/10.1007/978-3-662-03927-4

	1 Introduction
	2 Preliminaries
	2.1 Complexity and logic
	2.2 Main result

	3 Ext-Algebras
	4 (Weak) length-synchronicity, nesting depth, and quasi-aperiodicity
	5 Proof of the main theorem
	5.1 Lower bounds
	5.2 In AC0: Length-synchronous and quasi-aperiodic
	5.3 The intermediate case

	6 Conclusion

