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Abstract
We revisit the recent polynomial-time algorithm for the Max Weight Independent Set (MWIS)
problem in bounded-degree graphs that do not contain a fixed graph whose every component is a
subdivided claw as an induced subgraph [Abrishami, Chudnovsky, Dibek, Rzążewski, SODA 2022].

First, we show that with an arguably simpler approach we can obtain a faster algorithm with
running time nO(∆2), where n is the number of vertices of the instance and ∆ is the maximum
degree. Then we combine our technique with known results concerning tree decompositions and
provide a polynomial-time algorithm for MWIS in graphs excluding a fixed graph whose every
component is a subdivided claw as an induced subgraph, and a fixed biclique as a subgraph.
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4:2 Max Weight Independent Set in Sparse Graphs with No Long Claws

1 Introduction

A vertex-weighted graph is an undirected graph G equipped with a weight function w :
V (G) → N. For X ⊆ V (G), we use w(X) as a shorthand for

∑
x∈X w(x) and for a subgraph

H of G, w(H) is a shorthand for w(V (H)). By convention we use w(∅) = 0. Throughout
the paper we assume that arithmetic operations on weights are performed in unit time.

For a graph G, a set I ⊆ V (G) is independent or stable if there is no edge of G with both
endpoints in I. In the Max Weight Independent Set (MWIS) problem we are given
an undirected vertex-weighted graph (G, w), and ask for a maximum-weight independent
set in (G, w). MWIS is one of canonical hard problems – it is NP-hard [23], W[1]-hard [15],
hard to approximate [22]. Thus a very natural research direction is to consider restricted
instances and try to capture the boundary between “easy” and “hard” cases.

State of the art. The study of complexity of MWIS in restricted graph classes is a central
topic in algorithmic graph theory [20, 45, 27, 19, 14, 4]. A particular attention is given to
classes that are hereditary, i.e., closed under vertex deletion. Among such classes a special
role is played by ones defined by forbidding certain substructures. For graphs G and H, we
say that G is H-free if it does not contain H as an induced subgraph.

In this paper we are interested in graph classes defined by forbidding certain induced
trees. Let S be the family of subcubic trees H with at most one vertex of degree 3. In other
words, every such H is either a path or a subdivision of the claw: the three-leaf star. For
integers a, b, c ⩾ 1, by Sa,b,c we denote the claw whose edges were subdivided, respectively,
a − 1, b − 1, and c − 1 times.

As already observed by Alekseev in the early 1980s [3], if H is connected, MWIS remains
NP-hard in H-free graphs unless H ∈ S. In the past few years we have witnessed rapid progress
in development of algorithms for MWIS in these remaining cases [6, 10, 16, 42, 13, 17, 35].
In particular, it is known that for each H ∈ S, the MWIS problem can be solved in
quasipolynomial time in H-free graphs [16, 42, 17]. This is a strong indication that the problem
is not NP-hard. However, we are still very far from obtaining polynomial-time algorithms.
Such results are known only for very small forbidden paths [27, 19], subdivided claws [36, 43,
5, 28], or their disjoint unions [31, 7]. There is also a long line of research concerning graphs
excluding a fixed (but still small) path or a subdivided claw and, simultaneously, some other
small graphs, see e.g. [26, 8, 18, 32, 34, 38, 29, 30, 21, 37, 39, 40, 41, 9].

In a somewhat perpendicular direction, Abrishami, Chudnovsky, Dibek, and Rzążewski [1]
proved that for every H ∈ S, the MWIS problem can be solved in polynomial time in H-free
graphs of bounded degree (where the degre of the polynomial depends on H, and the degree
bound). Let us remark that the algorithm of [1] is very technical, and the dependency of the
complexity on the degree bound is involved.

Our results. As a warm-up, we present a polynomial-time algorithm for H-free graphs of
bounded degree, where H ∈ S. It is significantly simpler than the one by Abrishami et al. [1]
and has much better dependency on the maximum degree.

▶ Theorem 1. There exists an algorithm that, given a vertex-weighted graph (G, w) on n

vertices with maximum degree ∆ and an integer t, in time nO(t∆2) either finds an induced
St,t,t or the maximum possible weight of an independent set in (G, w).

Note that by picking appropriate t, Theorem 1 yields a polynomial-time algorithm for MWIS
for bounded-degree graphs excluding a fixed graph from S as an induced subgraph.
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Then we proceed to the main result of the paper: we show that MWIS remains polynomial-
time solvable in St,t,t-free graphs, even if instead of bounding the maximum degree, we forbid
a fixed biclique as a subgraph.

▶ Theorem 2. For every fixed integer t, and s there exists a polynomial-time algorithm that,
given a vertex-weighted graph (G, w) that does not contain St,t,t as an induced subgraph nor
Ks,s as a subgraph, returns the maximum possible weight of an independent set in (G, w).

Let us remark that by the celebrated Kövári-Sós-Turán theorem [25], classes that exclude
Ks,s as a subgraph capture all hereditary classes of sparse graphs, where by “sparse” we mean
“where every graph has subquadratic number of edges.” Furthermore, by a simple Ramsey
argument, for every positive integer r there exists an integer s such that if G is Kr-free and
Kr,r-free then G does not contain Ks,s as a subgraph. Hence, equivalently, Theorem 2 yields
a polynomial-time algorithm for MWIS for graphs that are simultaneously H-free (for some
H ∈ S), Kr-free, and Kr,r-free.

Our techniques. As in the previous works [1, 13, 17], the crucial tool in handling St,t,t-
free graphs is an extended strip decomposition. Its technical definition can be found in
preliminaries; for now, it suffices to say that it is a wide generalization of the preimage graph
of a line graph (recall that line graphs are S1,1,1-free) that allows for recursion for the MWIS
problem: An extended strip decomposition of a graph G identifies some induced subgraphs
of G as particles and, knowing the maximum possible weight of an independent set in each
particle, one can compute in polynomial time the maximum possible weight of an independent
set in G. (We remark that this computation involves advanced combinatorial techniques as
it relies on a reduction to the maximum weight matching problem in an auxiliary graph.)
In other words, finding an extended strip decomposition with small particles compared to
|V (G)| is equally good for the MWIS problem as splitting the graph into small connected
components.

The starting point is the following theorem of [35].

▶ Theorem 3 ([35, Corollary 12] in a semi-weighted setting). There exists an algorithm that,
given an n-vertex graph G with a set U ⊆ V (G) and an integer t, in polynomial time outputs
either:

an induced copy of St,t,t in G, or
a set X of size at most (11 log n + 6)(t + 1) and a rigid extended strip decomposition of
G − N [X] with every particle containing at most |U |/2 vertices of U .

(A rigid extended strip decomposition is an extended strip decomposition that does not
have some unnecessary empty sets. By N [X] we denote the set consisting of X and all
vertices with a neighbor in X.) Let us remark that the result stated in [35, Theorem 2] is for
unweighted graphs (i.e., U = V (G) using the notation from Theorem 3), but the statement
of Theorem 3 can be easily derived from the proof, see also [17].

Consider the setting of Theorem 1, i.e., the graph G has maximum degree ∆. Apply
Theorem 3 to G with U = V (G). If we get the first outcome, i.e., an induced St,t,t in G, we
return it and terminate. So assume that we get the second outcome, i.e., the set X. Note that
as |X| = O(t log n), we have |N [X]| = O(t∆ log n). It is now tempting to exhaustively branch
on N [X] (i.e., guess the intersection of the sought independent set with N [X]) and recurse
on the particles of the extended strip decomposition of G − N [X]. However, implementing
this strategy directly gives quasipolynomial (in n) running time bound of nO(t∆ log n), as
the branching step yields up to 2|N [X]| = nO(t∆) subcases and the depth of the recursion is
O(log n).
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Our main new idea now is to perform this branching lazily, by considering a more general
border version of the problem, where the input graph is additionally equipped with a set
of terminals and we ask for a maximum weight of an independent set for every possible
behavior on the terminals.

Input: A vertex-weighted graph (G, w) with a set T ⊆ V (G) of terminals.
Task: Compute fG,w,T : 2T → N ∪ {−∞} defined for every IT ⊆ T as

fG,w,T (IT ) = max{w(I) | I ⊆ V (G) and I is independent, and I ∩ T = IT }.

Border MWIS

A similar application of a border version of the problem to postpone branching in recursion
appeared for example in the technique of recursive understanding [24, 11].

Let us return to our setting, where we have a set X of size O(t log n) and an extended
strip decomposition of G − N [X] with particles of size at most half of the size of V (G).
We would like to remove N [X] from the graph, indicate N(N [X]) as terminals and solve
Border MWIS in (G − N [X], w, T := N(N [X])) using the extended strip decomposition
for recursion. Note that, thanks to the bounded degree assumption, the size of T = N(N [X])
is bounded by O(t∆2 log n).

This approach almost works: the only problem is that, as the recursion progresses,
the set of terminals accummulates and its size can grow beyond the initial O(t∆2 log n)
bound. Luckily, this can be remedied in a standard way: we alternate recursive steps where
Theorem 3 is invoked with U = V (G) with steps where Theorem 3 is invoked with U = T .
In this manner, we can maintain a bound of O(t∆2 log n) on the number of terminals in
every recursive call. Note that this bound also guarantees that the size of the domain of the
requested function fG,w,T is of size nO(t∆2), which is within the promised time bound.

We remark that this approach is arguably significantly simpler and more direct than the
decomposition techniques used in [1] and, furthermore, results in a much better dependency
on ∆ in the exponent in the final running time bound.

Let us now move to the more general setting of Theorem 2. Here, the starting point are
recent results of Weißauer [44] and Lozin and Razgon [33] that show that in the St,t,t-free case,
excluding a biclique as a subgraph is not that much different than bounding the maximum
degree.

A k-block in a graph is a set of k vertices, no two of which can be separated by deleting
fewer than k vertices. The following result was shown by Weißauer (we refer to preliminaries
for standard definitions of tree decompositions and torsos).

▶ Theorem 4 (Weißauer [44]). Let G be a graph and k ⩾ 2 be an integer. If G has no
(k + 1)-block, then G admits a tree decomposition with adhesion less than k, in which every
torso has at most k vertices of degree larger than 2k(k − 1).

Even though the statement of the result in [44] is just existential, the proof actually yields a
polynomial-time algorithm to compute such a tree decomposition.

It turns out that St,t,t-free graphs with no large bicliques have no large blocks.

▶ Lemma 5 (Lozin and Razgon [33]). For any t and s there exists k such that the following
holds. Every St,t,t-free graph with no subgraph isomorphic to Ks,s has no k-block.

Combining Theorem 4 and Lemma 5 we immediately obtain the following.
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▶ Corollary 6. For any t, and s there exists k such that the following holds. Given an
St,t,t-free graph with no subgraph isomorphic to Ks,s, in polynomial time one can compute a
tree decomposition with adhesion less than k, in which every torso has at most k vertices of
degree larger than 2k(k − 1).

To prove Theorem 2 using Corollary 6 we need to carefully combine explicit branching on the
(bounded number of) vertices of large degree in a single bag with – as in the bounded degree
case – applying Theorem 3 to the remainder of the graph and indicating N(N [X]) as the
terminal set of the border problem passed to the recursive calls. Finally, one requires some
care to combine this with the information passed over adhesions in the tree decomposition.

2 Preliminaries

Our algorithms take a vertex-weighted graph (G, w) as an input. In the recursion, we will be
working on various induced subgraphs of G with vertex weight inherited from w. Somewhat
abusing notation, we will keep w for the weight function in any induced subgraph of G.

Tree decompositions. Let G be a graph. A tree decomposition of G is a pair (T , β) where
T is a tree and β : V (T ) → 2V (G) is a function satisfying the following: (i) for every
uv ∈ E(G) there exists t ∈ V (T ) with u, v ∈ β(t), and (ii) for every v ∈ V (G) the set
{t ∈ V (T ) | v ∈ β(t)} induces a connected nonempty subtree of T . For every t ∈ V (T ) and
st ∈ E(T ), the set β(t) is the bag at node t and the set σ(st) := β(s) ∩ β(t) is the adhesion
at edge st. The critical property of a tree decomposition (T , β) is that if st ∈ E(T ) and Vs

and Vt are two connected components of T − {st} that contain s and t, respectively, then
σ(st) separates

⋃
x∈Vs

β(x) \ σ(st) from
⋃

x∈Vt
β(x) \ σ(st) in G.

The torso of a bag β(t) in a tree decomposition (T , β) is a graph H with V (H) = β(t)
and uv ∈ E(H) if uv ∈ E(G) or there exists a neighbor s ∈ NT (t) with u, v ∈ σ(st). That is,
the torso of β(t) is created from G[β(t)] by turning the adhesion σ(st) into a clique for every
neighbor s of t in T .

Extended strip decompositions. We follow the notation of [35, 17]. For a graph H, by
T (H) we denote the set of triangles in H. An extended strip decomposition of a graph G is a
pair (H, η) that consists of:

a simple graph H,
a vertex set η(x) ⊆ V (G) for every x ∈ V (H),
an edge set η(xy) ⊆ V (G) for every xy ∈ E(H), and its subsets η(xy, x), η(xy, y) ⊆ η(xy),
a triangle set η(xyz) ⊆ V (G) for every xyz ∈ T (H),

which satisfy the following properties:
1. The family {η(o) | o ∈ V (H) ∪ E(H) ∪ T (H)} is a partition of V (G).
2. For every x ∈ V (H) and every distinct y, z ∈ NH(x), the set η(xy, x) is complete to

η(xz, x).
3. Every uv ∈ E(G) is contained in one of the sets η(o) for o ∈ V (H) ∪ E(H) ∪ T (H), or is

as follows:
u ∈ η(xy, x), v ∈ η(xz, x) for some x ∈ V (H) and y, z ∈ NH(x), or
u ∈ η(xy, x), v ∈ η(x) for some xy ∈ E(H), or
u ∈ η(xyz) and v ∈ η(xy, x) ∩ η(xy, y) for some xyz ∈ T (H).

STACS 2024



4:6 Max Weight Independent Set in Sparse Graphs with No Long Claws

An extended strip decomposition (H, η) is rigid if for every xy ∈ E(H), the sets η(xy),
η(xy, x), and η(xy, y) are nonempty, and for every isolated x ∈ V (H), the set η(x) is
nonempty. Note that if (H, η) is a rigid extended strip decomposition of G, then |V (H)| is
bounded by |V (G)|.

For an extended strip decomposition (H, η) of a graph G, we identify five types of particles.

vertex particle: Ax := η(x) for each x ∈ V (H),

edge interior particle: A⊥
xy := η(xy) \ (η(xy, x) ∪ η(xy, y)) for each xy ∈ E(H),

half-edge particle: Ax
xy := η(x) ∪ η(xy) \ η(xy, y) for each xy ∈ E(H),

full edge particle: Axy
xy := η(x) ∪ η(y) ∪ η(xy) ∪

⋃
z : xyz∈T (H)

η(xyz) for each xy ∈ E(H),

triangle particle: Axyz := η(xyz) for each xyz ∈ T (H).

As announced in the introduction, to solve MWIS in G it suffices to know the solution
to MWIS in particles. The proof of the following lemma follows closely the lines of proofs of
analogous statements of [1, 13] and is included for completeness in Appendix A.

▶ Lemma 7. Given a Border MWIS instance (G, w, T ), an extended strip decomposition
(H, η) of G, and a solution fG[A],w,T ∩A to the Border MWIS instance (G[A], w, T ∩ A)
for every particle A of (H, η), one can in time 2|T | times a polynomial in |V (G)| + |V (H)|
compute the solution fG,w,T to the input (G, w, T ).

We need the following simple observations.

▶ Lemma 8. Let G be a Kt-free graph and let (H, η) be a rigid extended strip decomposition
of G. Then the maximum degree of H is at most t − 1.

Proof. Let x ∈ V (H). Observe that the sets {η(xy, x) | y ∈ NH(x)} are nonempty and
complete to each other in G. Hence, G contains a clique of size equal to the degree of x

in H. ◀

▶ Lemma 9. Let G be a graph and let (H, η) be an extended strip decomposition of G

such that the maximum degree of H is at most d. Then, every vertex of G is in at most
max(4, 2d + 1) particles.

Proof. Pick v ∈ V (G) and observe that:
If v ∈ η(x) for some x ∈ V (H), then v is in the vertex particle of x and in one half-edge
and one full-edge particle for every edge of H incident with x. Since there are at most d

such edges, v is in at most 2d + 1 particles.
If v ∈ η(xy) for some xy ∈ E(H), then v is in at most four particles for the edge xy.
If v ∈ η(xyz) for some xyz ∈ T (H), then v is in the triangle particle for xyz and in three
full edge particles, for the three sides of the triangle xyz. ◀

3 Bounded-degree graphs: Proof of Theorem 1

This section is devoted to the proof of Theorem 1.
Let t be a positive integer and let (G, w) be the input vertex-weighted graph. We denote

n := |V (G)| and ∆ to be the maximum degree of G. Let

ℓ := ⌈11 log n + 6⌉(t + 2) = O(t log n)

be an upper bound on the size of X for any application of Theorem 3 for any induced
subgraph of G.
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We describe a recursive algorithm that takes as input an induced subgraph G′ of G with
weights w and a set of terminals T ⊆ V (G′) of size at most 4ℓ∆2 and solves Border MWIS
on (G′, w, T ). The root call is for G′ := G and T := ∅; indeed, note that fG,w,∅(∅) is the
maximum possible weight of an independent set in G.

Let (G′, w, T ) be an input to a recursive call. First, the algorithm initializes fG′,w,T (IT ) :=
−∞ for every IT ⊆ T .

If |V (G′)| ⩽ 4∆2ℓ, the algorithm proceeds by brute-force: it enumerates independent sets
I ⊆ V (G′) and updates fG′,w,T (I ∩ T ) with w(I) whenever the previous value of that cell
was smaller. As ℓ = O(t log n), this step takes nO(t∆2) time. This completes the description
of the leaf step of the recursion.

If |V (G′)| > 4∆2ℓ, the algorithm proceeds as follows. If |T | ⩽ 3∆2ℓ, let U := V (G′), and
otherwise, let U := T . The algorithm invokes Theorem 3 on G′ and U . If an induced St,t,t is
returned, then it can be returned by the main algorithm as it is in particular an induced
subgraph of G. Hence, we can assume that we obtain a set X ⊆ V (G) of size at most ℓ and
an extended strip decomposition (H, η) of G∗ := G′ − NG′ [X] whose every particle contains
at most |U |/2 vertices of U .

Observe that as |X| ⩽ ℓ and the maximum degree of G is ∆, we have |NG′(NG′ [X])| ⩽ ∆2ℓ.
Let T ∗ := (T ∩ V (G∗)) ∪ NG′(NG′ [X]). Note that we have T ∗ ⊆ V (G∗) and |T ∗| ⩽ 5∆4ℓ.
For every particle A of (H, η), invoke a recursive call on (G∗

A := G∗[A], w, T ∗
A := T ∗ ∩ A),

obtaining fG∗
A

,w,T ∗
A

(or an induced St,t,t, which can be directly returned). Use Lemma 7 to
obtain a solution fG∗,w,T ∗ to Border MWIS instance (G∗, w, T ∗).

Finally, iterate over every IT ⊆ T ∗ ∪ NG′ [X] (note that T ⊆ T ∗ ∪ NG′ [X]) and, if IT is
independent, update the cell fG′,w,T (IT ∩ T ) with the value w(IT \ T ∗) + fG∗,w,T ∗(IT ∩ T ∗),
if this value is larger than the previous value of this cell. This completes the description of
the algorithm.

The correctness of the algorithm is immediate thanks to Lemma 7 and the fact that
NG′ [X] is adjacent in G′ only to NG′(NG′ [X]) which is a subset of T ∗.

For the complexity analysis, consider a recursive call to (G∗
A, w, T ∗

A) for a particle A. If
|T | ⩽ 3∆2ℓ, then |T ∗

A| ⩽ |T ∗| ⩽ 4∆2ℓ. Otherwise, U = T and |T ∩ A| ⩽ |T |/2 ⩽ 2∆2ℓ. As
|NG′(NG′ [X])| ⩽ ∆2ℓ, we have |T ∗

A| ⩽ 3∆2ℓ. Hence, in the recursive call the invariant of at
most 4∆2ℓ terminals is maintained and, moreover:

if |T | ⩽ 3∆2ℓ, then U = |V (G′)| and |V (G∗
A)| = |A| ⩽ |V (G′)|/2;

otherwise, V (G∗
A) ⊆ V (G′) and |T ∗

A| ⩽ 3∆2ℓ, hence the recursive call will fall under the
first bullet.

We infer that the depth of the recursion is at most 2⌈log n⌉.
At every non-leaf recursive call, we spend nO(1) time on invoking the algorithm from

Theorem 3, nO(t∆2) time to compute fG∗,w,T ∗ using Lemma 7, and nO(t∆2) time for the final
iteration over all subsets IT ⊆ T ∗ ∪ NG′ [X]. Hence, the time spent at every recursive call is
bounded by nO(t∆2).

At every non-leaf recursive call, we make subcalls to (G∗
A, w, T ∗

A) for every particle A of
(H, η). Lemmata 8 and 9 ensure that the sum of |V (G∗

A)| over all particles A is bounded
by (2∆ + 3)|V (G′)|. Hence, the total size of all graphs in the i-th level of the recursion is
bounded by n · (2∆ + 3)i. Since the depth of the recursion is bounded by 2⌈log n⌉, the total
size of all graphs in the recursion tree is bounded by nO(log ∆). Since this also bounds the
size of the recursion tree, we infer that the whole algorithm runs in time nO(t∆2).

This completes the proof of Theorem 1.
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4 Graphs with no large bicliques: Proof of Theorem 2

This section is devoted to the proof of Theorem 2.
Let t be a positive integer and let k be the constant depending on t from Corollary 6.

Again, let (G, w) be the input vertex-weighted graph, let n := |V (G)|, and let

ℓ := ⌈11 log n + 6⌉(t + 2) = O(t log n)

be an upper bound on the size of X for any application of Theorem 3 for any induced
subgraph of G.

The general framework and the leaves of the recursion are almost exactly the same as in
the previous section, but with different thresholds. That is, we describe a recursive algorithm
that takes as input an induced subgraph G′ of G with weights w and a set of terminals
T ⊆ V (G′) of size at most 32k5ℓ and solves Border MWIS on (G′, w, T ). The root call is
for G′ := G and T := ∅ and the algorithm returns fG,w,∅(∅) as the final answer.

Let (G′, w, T ) be an input to a recursive call. The algorithm initiates first fG′,w,T (IT ) =
−∞ for every IT ⊆ T .

If |V (G′)| ⩽ 32k5ℓ, the algorithm proceeds by brute-force: it enumerates independent
sets I ⊆ V (G′) and updates fG′,w,T (I ∩ T ) with w(I) whenever the previous value of that
cell was smaller. As ℓ = O(t log n) and k is a constant depending on t and s, this step takes
polynomial time. This completes the description of the leaf step of the recursion.

Otherwise, if |V (G′)| > 32k5ℓ, we invoke Corollary 6 on G′, obtaining a tree decomposition
(T , β) of G′. If |T | ⩽ 24k5ℓ, let U := V (G′) \ T , and otherwise, let U := T .

For every t1t2 ∈ E(T ), proceed as follows. For i = 1, 2, let Ti be the connected component
of T − {t1t2} that contains ti and let Vi =

⋃
x∈Ti

β(x) \ σ(t1t2). Clearly, σ(t1t2) separates
V1 from V2. Orient the edge t1t2 towards ti with larger |U ∩ Vi|, breaking ties arbitrarily.

There exists t ∈ V (T ) of outdegree 0. Then, for every connected component C of G′ −β(t)
we have |C ∩ U | ⩽ |U |/2. Fix one such node t and let B := β(t) and let C be the set of
connected components of G′ − B. Let GB be a supergraph of G′[B] obtained from G′[B]
by turning, for every C ∈ C, the neighborhood NG′(C) into a clique. Note that GB is a
subgraph of the torso of β(t). Hence, by the properties promised by Corollary 6, for every
C ∈ C we have |NG′(C)| < k (as this set is contained in a single adhesion of an edge incident
with t in T ) and GB contains at most k vertices of degree larger than 2k(k − 1). Let Q be
the set of vertices of GB of degree larger than 2k(k − 1).

We perform exhaustive branching on Q. That is, we iterate over all independent sets
J ⊆ Q and denote GJ := G′ − Q − NG′(J), T J := T ∩ V (GJ ), UJ := U ∩ V (GJ ). For one J ,
we proceed as follows.

We invoke Theorem 3 to GJ with set UJ , obtaining a set XJ of size at most ℓ and an
extended strip decomposition (HJ , ηJ) of GJ − NGJ [XJ ] whose every particle has at most
|UJ |/2 ⩽ |U |/2 vertices of U . Note that GJ is an induced subgraph of G′, which is an
induced subgraph of G, so there is no induced dSt,t,t in GJ .

A component C ∈ C is dirty if NGJ [XJ ] ∩ NG′ [C] ̸= ∅ and clean otherwise. Let

Y J := (NGJ [XJ ] ∩ B) ∪
⋃

C∈C:C is dirty
(NG′(C) ∩ V (GJ)).

The following bounds will be important for further steps.

|NGJ [XJ ] ∩ B| ⩽ (2k(k − 1) + 1)|XJ |. (1)
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To see (1) observe that a vertex v ∈ XJ ∩ B has at most 2k(k − 1) neighbors in B (as every
vertex of B \ Q has degree at most 2k(k − 1) in GB) while every vertex v ∈ XJ \ B has at
most k neighbors in B, as every component of G′ − B has at most k neighbors in B. This
proves (1).

|Y J | ⩽ (k + (2k(k − 1) + 1)2)|XJ | ⩽ 4k4|XJ | ⩽ 4k4ℓ = O(k4t log n). (2)

To see (2), consider a dirty component C ∈ C. Observe that either C contains a vertex of
XJ or NG′(C) ∩ V (GJ) contains a vertex of NGJ [XJ ] ∩ B. There are at most |XJ | dirty
components of the first type, contributing in total at most k|XJ | vertices to Y J . For the
dirty components of the second type, although there can be many of them, we observe that
if v ∈ NG′(C) ∩ NGJ [XJ ] ∩ B, then NG′(C) ∩ V (GJ) ⊆ NGB

[v]. Hence, for every dirty
component of the second type, it holds that NG′(C) ∩ V (GJ) ⊆ NGB

[NGJ [XJ ] ∩ B]. Since
the degree of each vertex of GB is at most 2k(k − 1), by (1) we have∣∣NGB

[
NGJ [XJ ] ∩ B

]∣∣ ⩽ (2k(k − 1) + 1)2|XJ |.

The bound (2) follows.
A component C ∈ C is touched if it is dirty or NG′(C) contains a vertex of Y J . Let

ZJ := (NGJ [Y J ] ∩ B) ∪
⋃

C∈C:C is touched
NG′(C) ∩ V (GJ).

Using similar arguments as before, we can prove

|ZJ | ⩽ (2k(k − 1) + 1)|Y J | ⩽ 8k5|XJ | ⩽ 8k5ℓ = O(k5t log n). (3)

Indeed, if C is touched, then NG′(C) contains a vertex v ∈ Y J (if C is dirty, NG′(C) ∩ V (GJ )
is contained in Y J), and then NG′(C) is contained in NGB

[v]. Also, for v ∈ Y J we have
NGJ [v] ∩ B ⊆ NGB

[v]. Hence, ZJ ⊆ NGB
[Y J ]. Since the maximum degree of a vertex of

B \ Q is 2k(k − 1), this proves (3).
For every touched C ∈ C, denote GC := GJ [NG′ [C] ∩ V (GJ)] and TC := ((T ∩ C) ∪

NG′(C)) ∩ V (GJ). Recurse on (GC , w, TC), obtaining fGC ,w,TC
.

Let

GY := GJ − Y J −
⋃

C∈C:C is touched
C.

Note that, by the definition of dirty and touched, GY is an induced subgraph of GJ −NGJ [XJ ].
Hence, (HJ , ηJ) can be restricted to a (not necessarily rigid) extended strip decomposition
(HJ , ηJ,Y ) of GY .

Let T Y := (T ∪ ZJ) ∩ V (GY ). For every particle A of (HJ , ηJ,Y ), recurse on
(GY [A], w, T Y ∩ A), obtaining fGY [A],w,T Y ∩A. Then, use these values with Lemma 7 to
solve a Border MWIS instance (GY , w, T Y ), obtaining fGY ,w,T Y .

Iterate over every independent set IT ⊆ (T ∩ V (GJ )) ∪ T Y ∪ Y J . Observe that G′ admits
an independent set I with I ∩ (Q ∪ T ∪ T Y ∪ Y J) = J ∪ IT and weight:

w(J) + w(IT \ T Y ) + fGY ,w,T Y (IT ∩ T Y )+∑
C∈C:C is touched

(fGC ,w,TC
(NG′ [C] ∩ IT ) − w(IT ∩ NG′(C))) .

Update the cell fG′,w,T ((IT ∪ J) ∩ T ) with this value if it is larger than the previous value of
this cell. This finishes the description of the algorithm.

STACS 2024
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For correctness, it suffices to note that for every touched component C, the whole
NG′(C) ∩ V (GJ) is in the terminal set for the recursive call (GC , w, TC) and the whole
NG′(C) ∩ V (GY ) is in ZJ and thus in the terminal set for the Border MWIS instance
(GY , w, T Y ).

For the sake of analysis, consider a recursive call on (GC , w, TC) for a touched component
C. If |T | ⩽ 24k5ℓ and U = V (G′)\T , then |TC | ⩽ |T |+k ⩽ 32k5ℓ and |V (GC)\TC | ⩽ |C\T | ⩽
|V (G′)\T |/2. Otherwise, if |T | > 24k5ℓ and U = T , then |TC | ⩽ |T |/2+k ⩽ 16k5ℓ+k ⩽ 24k5ℓ.
Thus, the recursive call on (GC , w, TC) will fall under the first case of at most 24k5ℓ terminals.

Analogously, consider a recursive call on (GY [A], w, T Y ∩A) for a particle A of (HJ , ηJ,Y ).
If |T | ⩽ 24k5ℓ and U = V (G′) \ T , then |T Y ∩ A| ⩽ |T Y | ⩽ |T | + |ZJ | ⩽ 32k5ℓ due to (3).
Furthermore, |V (GY [A]) \ T Y | ⩽ |V (G′) \ T |/2. Otherwise, if |T | > 24k5ℓ and U = T , then
|T Y ∩ A| ⩽ |T |/2 + |ZJ | ⩽ 16k5ℓ + 8k5ℓ ⩽ 24k5ℓ again due to (3). Thus, the recursive call
on (GY [A], w, T Y ∩ A) will fall under the first case of at most 24k5ℓ terminals.

Finally, note that a recursive call (G′, w, T ) without nonterminal vertices (i.e., with
T = V (G′)) is a leaf call.

We infer that all recursive calls satisfy the invariant of at most 32k5ℓ terminals and the
depth of the recursion tree is bounded by 2⌈log n⌉ (as every second level the number of
nonterminal vertices halves).

At each recursive call, we iterate over at most 2k subsets J ⊆ Q. Lemma 8 ensures that
the maximum degree of HJ is at most 2t − 1, while Lemma 9 ensures that every vertex
of GY is used in at most 4t particles of (HJ , ηJ,Y ). In a subcall (GC , w, TC) for a touched
component C, vertices of C are not used in any other call for the current choice of J , while
all vertices of V (GC) \ C are terminals. Consequently, every nonterminal vertex v of G′ is
passed as a nonterminal vertex to a recursive subcall at most 2k · 4t number of times (and a
terminal is always passed to a subcall as a terminal). Furthermore, a recursive call without
nonterminal vertices is a leaf call. As the depth of the recursion is O(log n), we infer that,
summing over all recursive calls in the entire algorithm, the number of nonterminal vertices
is bounded by nO(log t+k) and the total size of the recursion tree is nO(log t+k).

At each recursive call, we iterate over all 2k subsets J ⊆ Q and then we invoke Theorem 3
and iterate over all independent sets IT in (T ∩ V (GJ )) ∪ T Y ∪ Y J . Thanks to the invariant
|T | ⩽ 32k5ℓ and bounds (2), and (3), this set is of size O(k5ℓ). Hence, every recursive call
runs in time nO(k5t)+k·ct , where ct is a constant depending on t. As k is a constant depending
on t and s, the final running time bound is polynomial.

This completes the proof of Theorem 2.

5 Conclusion

While it is generally believed that MWIS is polynomial-time-solvable in St,t,t-free graphs
(with no further assumptions), such a result seems currently out of reach. Thus it is interesting
to investigate how further can we relax the assumptions on instances, as we did when going
from Theorem 1 to Theorem 2. In particular, we used the assumption of Kr-freeness twice:
once in Lemma 5 and then to argue that H (the pattern of an extended strip decomposition
we obtain) is of bounded degree. On the other hand, the assumption of Kr,r-freeness was
used just once: in Lemma 5. Thus it seems natural to try to prove the following conjecture.

▶ Conjecture 10. For every integers t, r there exists a polynomial-time algorithm that, given
an St,t,t-free and Kr-free vertex-weighted graph (G, w) computes the maximum possible weight
of an independent set in (G, w).
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A Appendix: Proof of Lemma 7

Iterate over every IT ⊆ T . For fixed IT , we aim at computing fG,w,T (IT ). If IT is not
independent, we set fG,w,T (IT ) = −∞. In the remainder of the proof, we show how to
compute in polynomial time the value fG,w,T (IT ) for fixed independent IT ⊆ T .

For a particle A of (H, η), let a(A) := fG[A],w,T ∩A(IT ∩A) and let I(A) be an independent
set witnessing this value, that is, an independent set in G[A] of weight w(a(A)) with
I(A) ∩ T ∩ A = IT ∩ A. Note that as IT is independent, the value a(A) is not equal to −∞
and such an independent set exists.

We say that x ∈ V (H) is forced if IT ∩
⋃

y∈NH (x) η(xy, x) ̸= ∅. Note that since IT is
independent, if x is forced, then η(xy, x) ∩ IT ≠ ∅ for exactly one edge xy incident with x.
We call such an edge xy the enforcer of x. Note that an edge xy may be the enforcer of both
x and y.

The arguments now follow very closely the outline of Section 3.3 of [12].
We construct a set P of particles and an edge-weighted graph (H ′, w′) as follows. We

start with P = ∅, V (H ′) = V (H), and E(H ′) = ∅.
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4:14 Max Weight Independent Set in Sparse Graphs with No Long Claws

For every x ∈ V (H) that is not forced, add Ax to P. For every xyz ∈ T (H) such that
neither of the edges xy, yz, or xz is the enforcer of both its endpoints, add Axyz to P. For
every e = xy ∈ E(H), proceed as follows.
1. If neither x nor y is forced, we add to H ′ a new vertex te and edges tex, tey, xy, and set

the edge weights w′ as follows:

w′(tex) := a(Ax
xy) − a(A⊥

xy) − a(Ax),
w′(tey) := a(Ay

xy) − a(A⊥
xy) − a(Ay),

w′(xy) := a(Axy
xy) − a(A⊥

xy) − a(Ax) − a(Ay) −
∑

z, s.t. xyz∈T (H)

a(Axyz).

Furthermore, add A⊥
xy to P.

2. If exactly one of x and y is forced, say w.l.o.g. x is forced and y is not forced, proceed as
follows.
a. If xy is the enforcer of x, then add to H ′ an edge xy with weight

w′(xy) := a(Axy
xy) − a(Ax

xy) − a(Ay) −
∑

z, s.t. xyz∈T (H)

a(Axyz).

Furthermore, add Ax
xy to P.

b. If xy is not the enforcer of x, then add to H ′ a new vertex te and an edge tey with
weight

w′(tey) := a(Ay
xy) − a(A⊥

xy) − a(Ay).

Furthermore, add A⊥
xy to P.

3. If both x and y are forced, proceed as follows.
a. If xy is neither the enforcer of x nor of y, add A⊥

xy to P.
b. If xy is the enforcer of x but not of y add Ax

xy to P.
c. If xy is the enforcer of y but not of x add Ay

xy to P.
d. If xy is the enforcer of both x and y, add Axy

xy to P.

This finishes the description of the construction of P and (H ′, w′). In the next two
paragraphs we make two observations that follow by a direct check from the definitions.

Observe that I0 :=
⋃

A∈P I(A) is independent in G and has weight a0 :=
∑

A∈P a(A).
Furthermore, for every A ∈ P , we have I0 ∩ A ∩ T = IT ∩ A and I0 ∩ T = IT . We think of I0
as the “base” solution for fG,w,T (IT ).

Observe also that all weights w′ of H ′ are nonnegative, as Ax
xy contains both A⊥

xy and
Ax while Axy

xy contains A⊥
xy, Ax, Ay, as well as all Axyz for all triangles xyz containing the

edge xy.
We will be asking for a maximum weight matching in (H ′, w′). Intuitively, taking an

edge tex to such a matching corresponds to replacing in I0 the parts I(A⊥
xy) and I(Ax) with

the part I(Ax
xy) while taking an edge xy to such a matching corresponds to replacing in I0

the parts I(A⊥
xy), I(Ax), I(Ay) and all parts I(Axyz) for triangles xyz containing the edge

xy with part I(Axy
xy).

From another perspective, fix x ∈ V (H) and recall that the sets η(xy, x) for y ∈ NH(x)
are complete to each other. Hence, any independent set in G can contain vertices in at most
one of such sets. For an edge e = xy ∈ E(H), taking an edge xy or tex in a matching in
H ′ corresponds to choosing that, among all neighbors of x in H, the neighbor y is such
that the set η(xy, x) is allowed to contain vertices of the sought independent set. (Choosing
xy ∈ E(H ′) to the matching corresponds to allowing both η(xy, x) and η(yx, y) to contain
vertices of the sought independent set.)
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However, there is a delicacy if IT contains a vertex of some interface η(xy, x). Then, in
some sense IT already forces some choices in the corresponding matching in H ′. This is
modeled above by having alternate construction for vertices x ∈ V (H) that are forced.

The following two claims prove that fG,w,T (IT ) equals a0 plus the maximum possible
weight of a matching in (H ′, w′) and thus complete the proof of Lemma 7. Their proofs
follow exactly the lines of the proofs of Claims 3.7 and 3.8 of Section 3.3 of [12] and are thus
omitted.

▷ Claim 11. Let I be an independent set in G with I ∩ T = IT . Let M be the set of edges
of H ′ defined as follows: for every e = xy ∈ E(H), if η(xy, x) ∩ I ≠ ∅ and η(xy, y) ∩ I ̸= ∅,
then xy ∈ M , if η(xy, x) ∩ I ̸= ∅ and η(xy, y) ∩ I = ∅, then tex ∈ M , and if η(xy, x) ∩ I = ∅
and η(xy, y) ∩ I ̸= ∅, then tey ∈ M . Then, all the above edges indeed exist in H ′ and M is a
matching. Furthermore, the weight of I is at most a0 +

∑
e∈M w′(e).

▷ Claim 12. Let M be a matching in H ′. Let PM be the set of particles of (H, η) defined
as follows. Start with PM := P and then for every edge e = xy ∈ E(H),

if xy ∈ M , insert Axy
xy into PM and remove from PM the following particles if present:

Ax
xy, Ay

xy, A⊥
xy, Ax, Ay, Axyz for any z ∈ V (H) such that xyz ∈ T (H).

if tex ∈ M (resp. tey ∈ M), insert Ax
xy (resp. Ay

xy) into PM , and remove from PM the
following particles if present: A⊥

xy and Ax (resp. Ay).
Then IM :=

⋃
A∈PM

is an independent set in G with IM ∩ T = IT and of weight at least
a0 +

∑
e∈M w′(e).
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