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Abstract
The subpower membership problem SMP(A) of a finite algebraic structure A asks whether a given
partial function from An to A can be interpolated by a term operation of A, or not. While this
problem can be EXPTIME-complete in general, Willard asked whether it is always solvable in
polynomial time if A is a Mal’tsev algebra. In particular, this includes many important structures
studied in abstract algebra, such as groups, quasigroups, rings, Boolean algebras. In this paper we
give an affirmative answer to Willard’s question for a big class of 2-nilpotent Mal’tsev algebras. We
furthermore develop tools that might be essential in answering the question for general nilpotent
Mal’tsev algebras in the future.
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1 Introduction

It is a recurring and well-studied problem in algebra to describe the closure of a given list of
elements under some algebraic operations (let us only mention the affine and linear closure of
a list of vectors, or the ideal generated by a list of polynomials). But also in a computational
context, this problem has a rich history, appearing in many areas of computer science. In its
formulation as subalgebra membership problem, the task is to decide whether a given finite
list of elements of an algebraic structure generates another element or not.

Depending on the algebraic structures studied, a variety of different problems emerges.
One of the most well-known examples is the subgroup membership problem, in which the
task is to decide, if for a given set of permutations α1, . . . , αn on a finite set X, another
permutation β belongs to the subgroup generated by α1, . . . , αn in SX . This problem can be
solved in polynomial-time by the famous Schreier-Sims algorithm [30], whose runtime was
analysed in [15] and [19]. The existence of such efficient algorithms is however not always
guaranteed: if the symmetric group SX is for instance replaced by the full transformation
semigroup on X, the corresponding membership problem is PSPACE-complete [22].

A common feature of many algorithms for the subalgebra membership problem is to
generate canonical generating sets of some sorts (such as computing the basis of a vector
space via Gaussian elimination, or computing a Gröbner basis via Buchberger’s algorithm
to solve the ideal membership problem [6]). But, in general, this is where the similarities
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46:2 The Subpower Membership Problem of 2-Nilpotent Algebras

end - depending on the algebraic structure, and the encoding of the input, the problem can
range over a wide range of complexities, and have applications in vastly different areas such
as cryptography [28, 29], computer algebra [6, 24], or proof complexity [22, 21].

In this paper, we study a version of the subalgebra membership problem that is called
the subpower membership problem. For a fixed, finite algebraic structure A (henceforth
also just called an algebra) its subpower membership problem SMP(A) is the problem of
deciding if a given tuple b ∈ Ak is in the subalgebra of Ak generated by some other input
tuples a1, . . . , an ∈ Ak (here n and k are not fixed, but part of the input). This is equivalent
to checking, whether the n-ary partial function that maps a1, . . . , an component-wise to b
can be interpolated by a term function of A. For example, if p is a prime, SMP(Zp) is the
problem of checking whether some vector b ∈ Zk

p is in the linear closure of a1, . . . , an ∈ Zk
p;

this can easily be solved by Gaussian elimination. More general, for any finite group G,
SMP(G) can be solved in polynomial time by a version of the Schreier-Sims algorithm [32].

Besides being a natural problem in algebra, the subpower membership problem found
some applications in some learning algorithms [7, 12, 17]. Moreover, an efficient algorithm for
SMP(A) implies that it is also feasible to represent the relations invariant by some generating
set of tuples. It was in particular remarked (see e.g. [9]), that a polynomial-time algorithm
for SMP(A) would allow to define infinitary constraint satisfaction problems, in which the
constraint relations are given by some generating tuples (with respect to A). This infinitary
version of CSPs has the benefit that most of the algebraic machinery to CSPs (see e.g. [3])
still applies.

Exhaustively generating the whole subalgebra generated by a1, . . . , an in Ak gives an
exponential time algorithm for SMP(A). And, in general, we cannot expect to do better:
In [23] Kozik constructed a finite algebra A for which SMP(A) is EXP-complete. Even
semigroups can have PSPACE-complete subpower membership problem [8].

However, for so called Mal’tsev algebras, better upper bounds are known. Mal’tsev
algebras are algebras defined by having a Mal’tsev term m, i.e. a term satisfying the identities
y = m(x, x, y) = m(y, x, x) for all x, y. Mal’tsev algebras lie at the intersection of many areas
of mathematics: they include algebraic structures of ubiquitous importance (groups, fields,
vector spaces), but also appear in logic (Boolean algebras, Heyting algebras), commutative
algebra (rings, modules, K-algebras), and non-associative mathematics (quasigroups, loops).
Mayr showed in [25] that the subpower membership problem of every Mal’tsev algebra is in
NP. His proof is based on the fact that every subalgebra R ≤ An has a small generating set,
which generates every element of R in a canonical way (a so-called compact representation).
Thus, to solve the subpower membership problem, one can “guess” a compact representation
of the subalgebra generated by a1, . . . , ak, and then check in polynomial time if it generates
b. If such a compact representation can be moreover found in deterministic polynomial time,
then SMP(A) is in P; this is, in fact, the dominant strategy to prove tractability.

So far, the existence of such polynomial time algorithms was verified for groups and
rings [32, 15], supernilpotent algebras [25], and algebras that generate residually finite
varieties [9]. On the other hand, no examples of NP-hard or intermediate complexity are
known. This leads to the question whether SMP(A) ∈ P for all finite Mal’tsev algebras
A [32]. On a broader scale, this question was also posed for algebras with few subpowers [17,
Question 8].

An elementary class of Mal’tsev algebras, for which the question still remains open, are
nilpotent algebras. In fact, they can also be seen as an important stepping stone in answering
[17, Question 8], as nilpotent Mal’tsev algebras coincide with nilpotent algebras with few
subpowers. Generalizing the concept of nilpotent groups, nilpotent algebras are defined by
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having a central series of congruences. While they have several nice structural properties,
in general nilpotent algebras do not satisfy the two finiteness conditions mentioned above
(supernilpotence, residual finiteness), thus they are a natural starting point when trying to
generalize known tractability results. But even for 2-nilpotent algebras not much is known:
all polynomial-time algorithms were only constructed by ad-hoc arguments for concrete
examples (such as Vaughan-Lee’s 12-element loop [26]).

The first contribution of this paper is to prove that all 2-nilpotent algebras of size p · q

for two primes p ≠ q have a tractable subpower membership problem. In fact, we prove
an even stronger result in Theorem 20: SMP(A) is in P, whenever A has a central series
0A < ρ < 1A such that |A/ρ| = p is a prime, and the blocks of ρ have size coprime to p.

While this is still a relatively restricted class of nilpotent algebras, our methods have
the potential to generalize to all 2-nilpotent Mal’tsev algebras and beyond. Thus, our
newly developed tools to analyze SMP can be regarded as the second main contribution.
More specifically, in Theorem 11 we show that whenever L ⊗ U is a wreath product (see
Section 3), such that U is supernilpotent, then SMP(L ⊗ U) reduces to SMP(L × U) (which
is polynomial-time solvable by [25]) and a version of the subpower membership problem for
a multi-sorted algebraic object called a clonoid from U to L. This reduction in particular
applies to all 2-nilpotent algebras; an analysis of clonoids between affine algebras then
leads to Theorem 20. If, in future research, we could get rid of the condition of U being
supernilpotent, this would provide a strong tool in studying general Mal’tsev algebras, as
every Mal’tsev algebra with non-trivial center can be decomposed into a wreath product.

Our paper is structured as follows: Section 2 contains preliminaries and some background
on universal algebra. In Section 3 we discuss how Mal’tsev algebras with non-trivial center
can be represented by a wreath product and we introduce the concept of difference clonoid
of such a representation. In Section 4 we discuss some situations, in which the subpower
membership problem of a wreath product can be reduced to the membership problem of the
corresponding difference clonoid. In particular, we prove Theorem 11. Section 5 contains an
analysis of clonoids between Zp and coprime Abelian groups, which then leads to the proof
of our main result, Theorem 20. In Section 6 we discuss some possible directions for future
research.

2 Preliminaries

In the following, we are going to discuss some necessary notions from universal algebra. For
more general background we refer to the textbooks [4, 11]. For background on commutator
theory we refer to [14] and [2]. For an introduction to Malt’sev algebras and compact
representations we refer to [5, Chapters 1.7-1.9].

In this paper, we are going to denote tuples by lower case bold letters, e.g. a ∈ Ak. In
order to avoid double indexing in some situations, we are going to use the notation a(i) to
denote the i-th entry of a, i.e. a = (a(1), a(2), . . . , a(k)). However, otherwise we are going
to follow standard notation as used e.g. in [4].

2.1 Basic notions for general algebras
An algebra A = (A; (fA

i )i∈I) is a first-order structure in a purely functional language (fi)i∈I

(where each symbol fi has an associated arity). We say A is finite if its domain A is finite. A
subalgebra B = (B; (fB

i )i∈I) of an algebra A = (A; (fA
i )i∈I) (denoted B ≤ A) is an algebra

obtained by restricting all basic operations fA
i to a subset B ⊆ A that is invariant under all

fA
i ’s. The subalgebra generated by a list of elements a1, . . . , an, denoted by SgA(a1, . . . , an)
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46:4 The Subpower Membership Problem of 2-Nilpotent Algebras

is the smallest subalgebra of A that contains a1, . . . , an. The product
∏

i∈I Ai of a family
of algebras (Ai)i∈I in the same language is defined as the algebra with domain

∏
i∈I Ai,

whose basic operations are defined coordinate-wise. The power An is the product of n-many
copies of A. Subalgebras of (finite) powers of A are sometimes also called subpowers of
A, which motivates the name “subpower membership problem”. So, formally the subpower
membership problem of A can be stated as follows:

SMP(A)
Input: b, a1, . . . , an ∈ Ak for some n, k ∈ N
Question: Is b ∈ SgAk (a1, . . . , an)?

Note that the subpowers of A are exactly the relations on A that are invariant under A.
A congruence α of A is an equivalence relation on A that is invariant under A. We write
Con(A) for the lattice of all congruence of A. We denote the minimal and maximal element
of this lattice by 0A = {(x, x) | x ∈ A} and 1A = {(x, y) | x, y ∈ A}. For every congruence
α ∈ Con(A), one can form a quotient algebra A/α in the natural way.

The term operations of an algebra A are all finitary operations that can be defined
by a composition of basic operations of A. Two standard ways to represent them is by
terms or circuits in the language of A. For a term or circuit t(x1, . . . , xn) in the language
of A, we write tA(x1, . . . , xn) for the induced term operation on A. Occasionally, if it is
clear from the context, we are not going to distinguish between a term/circuit and the
corresponding term operation. The term operations of an algebra A are closed under
composition and contain all projections, therefore they form an algebraic object called
a clone. For short, we denote this term clone of an algebra A by Clo(A). Note that
SgAk (a1, . . . , an) = {t(a1, . . . , an) | t ∈ Clo(A)}.

We call a ternary operation mA(x, y, z) ∈ Clo(A) a Mal’tsev term if it satisfies the
identities mA(y, x, x) = mA(x, x, y) = y for all x, y ∈ A, and call A a Mal’tsev algebra if it
has a Mal’tsev term. For instance, every group is a Mal’tsev algebra with Mal’tsev term
m(x, y, z) = xy−1z. Mal’tsev terms are a classic topic of study in universal algebra (see e.g.
[4, Chapter 7]), and are in particular known to characterize congruence permutable varieties.

2.2 Clonoids
We are also going to rely on a multi-sorted generalisation of clones, so-called clonoids that
were first introduced in [1] (in a slightly less general way). For a set of operations between
two sets C ⊆ {f : An → B | n ∈ N}, and k ∈ N let us write C(k) = {f : Ak → B | f ∈ C} for
the subset of k-ary functions. Then, for two algebras A = (A, (fi)i∈I), B = (B, (gj)j∈J ) (in
possibly different domains and languages), a set C ⊆ {f : An → B | n ∈ N} is called a clonoid
from A to B, or (A, B)-clonoid, if it is closed under composition with term operations of A
from the inside, and B from the outside, i.e.: ∀n, k ∈ N
(1) f ∈ C(n), t1, . . . , tn ∈ Clo(A)(k) ⇒ f ◦ (t1, . . . , tn) ∈ C(k)

(2) s ∈ Clo(B)(n), f1, . . . , fn ∈ C(k) ⇒ s ◦ (f1, . . . , fn) ∈ C(k).

2.3 Commutator theory
Commutator theory is the subfield of universal algebra that tries to generalise notions such
as central subgroups, nilpotence, or solvability from group theory to general algebras. The
most commonly used framework is based on so-called term-conditions, which we outline in
the following.
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Let A be an algebra. For congruences α, β, γ ∈ Con(A) we say that α centralizes β

modulo γ (and write C(α, β; γ)) if and only if for all p(x, y) ∈ Clo(A), and all tuples a, b ∈ An,
c, d ∈ Am, such that ai ∼α bi for i = 1, . . . , n and cj ∼β dj for j = 1, . . . , m, the implication

p(a, c) ∼γ p(a, d) ⇒ p(b, c) ∼γ p(b, d)

holds. A congruence α is called central if C(α, 1A; 0A) holds. The center is the biggest
central congruence. An algebra A is called n-nilpotent if there is a central series of length n,
i.e. a series of congruences 0A = α0 ≤ α1 ≤ · · · ≤ αn = 1A, such that C(αi+1, 1A; αi) for
i = 0, . . . , n − 1. An algebra A is called Abelian, if it is 1-nilpotent, i.e. C(1A, 1A; 0A) holds.

We are, however, not going to work directly with these definitions. There is a rich
structural theory in the special case of Mal’tsev algebras (and, more general, in congruence
modular varieties [14]) that gives us very useful characterizations of many commutator
theoretical properties.

By a result of Herrmann [16], a Mal’tsev algebra A is Abelian if and only if it is affine,
i.e. all of its term operations are affine combination

∑n
i=1 αixi + c over some module; in

particular the Mal’tsev term is then equal to x − y + z. More generally, we are going to use
a result of Freese and McKenzie [14] that states that a Mal’tsev algebra A with a central
congruence ρ can always be written as a wreath product L ⊗ U, such that L is affine and
U = A/ρ. We are going to discuss such wreath product representations in Section 3.

Lastly, we want to mention that the definition of the relation C naturally generalizes
to higher arities C(α1, . . . , αn, β; γ). This notion was first introduced by Bulatov; we refer
to [14] and [2] to more background on higher commutators. In particular, an algebra is
called k-supernilpotent if C(1A, . . . , 1A; 0A), where 1A appears k + 1 times. There are several
known characterizations of supernilpotent Mal’tsev algebras. We are mainly going to use the
following:

▶ Theorem 1 (Proposition 7.7. in [2]). Let A be a k-supernilpotent Mal’tsev algebra, 0 ∈ A

a constant and t, s two n-ary terms in the language of A.Then tA = sA if and only if they
are equal on all tuples from the set S = {a ∈ An | |{i : a(i) ̸= 0}| ≤ k}. (In fact, A is
k-supernilpotent iff that equivalence holds for all terms t, s).

2.4 Compact representations and SMP
For any subset R ⊆ An, we define its signature Sig(R) to be the set of all triples (i, a, b) ∈
{1, . . . , n} × A2, such that there are ta, tb ∈ R that agree on the first i − 1 coordinates, and
ta(i) = a and tb(i) = b; we then also say that ta, tb are witnesses for (i, a, b) ∈ Sig(R).

If A is a Mal’tsev algebra, and R ≤ An, then it is known that R is already generated by
every subset S ⊆ R with Sig(S) = Sig(R) [5, Theorem 1.8.2.]. In fact, R is then equal to the
closure of S under the Mal’tsev operation m alone, and a tuple a is in R if a can be written
as m(. . . m(a1, b2, a2), . . . , bn, an), for some ai, bi ∈ S. For given a ∈ R such elements
ai, bi ∈ S can be found polynomial time in |S|, by picking a1 such that a1(1) = a(1), and
ai, bi ∈ S are witnesses for a(i) and m(. . . m(a1, b2, a2), . . . , bi−1, ai−1))(i) at position i.

A compact representation of R ≤ An is a subset S ⊂ R with Sig(S) = Sig(R) and
|S| ≤ 2| Sig(R)| ≤ 2n|A|2. So, informally speaking, compact representations are small
generating sets of R with the same signature. It is not hard to see that compact representations
always exist. Generalizations of compact representations exist also for relations on different
domains (R ≤ A1 × · · · × An), and relations invariant under algebras with few subpowers,
we refer to [5, Chapter 2] for more background.

STACS 2024



46:6 The Subpower Membership Problem of 2-Nilpotent Algebras

By the above, SMP(A) reduces in polynomial time to the problem of finding a compact
representation of SgAk (a1, . . . , an) for some input tuples a1, . . . , an ∈ Ak. We are going
to denote this problem by CompRep(A). Conversely, it was shown in [9] that finding a
compact representations has a polynomial Turing reduction to SMP(A). Note further that,
to solve CompRep(A) it is already enough to find a subset S ⊆ R with Sig(S) = Sig(R) of
polynomial size, since such a set S can then be thinned out to a compact representation.

Let us call a set of pairs {(c, pc) | c ∈ S} an enumerated compact representation of
SgAk (a1, . . . , an), if S is a compact representation of SgAk (a1, . . . , an), and every pc is a
circuit in the language of A of polynomial size (in n and k), such that pc(a1, . . . , an) = c.
Enumerated compact representations were already (implicitly) used in several proofs. In [9,
Theorem 4.13.] it was shown that, for algebras with few subpowers, enumerated compact
representations always exist; this was used to prove that SMP(A) ∈ NP. Moreover, all of the
known polynomial time algorithms for CompRep(A), in fact, compute enumerated compact
representations. We are in particular going to need the following result that follows from [25]:

▶ Theorem 2 ([25]). Let A be a finite supernilpotent Mal’tsev algebra. Then, there is
a polynomial time algorithm that computes an enumerated compact representations of
SgAk (a1, . . . , an), for given a1, . . . , an ∈ Ak.

Theorem 2 can be seen as a generalization of Gaussian elimination from affine to super-
nilpotent algebras. We remark that Theorem 2, although not explicitly stated as such in [25],
follows directly from Algorithm 6 in [25], which computes so-called group representations
(T1, T2, . . . , Tk) of SgAk (a1, . . . , an) and the fact that for such a group representation, there is
a constant q such that T = (T1 +q ·T2 +· · ·+q ·Tk) has the same signature as SgAk (a1, . . . , an)
(see Lemma 3.1. in [25]). Thus, T together with its defining circuits forms an enumerated
compact representation of SgAk (a1, . . . , an).

We are furthermore going to use that there is an algorithm that allows us to fix some
values of a relation given by enumerated compact representation:

▶ Lemma 3. Let A be a Mal’tsev algebra. Then, there is a polynomial-time algorithm
Fix-values(R, a1, . . . , am) that, for a given compact representation R of R = SgAk (X),
and constants a1, . . . , am ∈ A, returns a compact representation R′ of {x ∈ R | x(1) =
a1, . . . , x(m) = am} (or ∅ if the relation is empty). If R is moreover enumerated then
Fix-values also computes polynomial size circuits defining the elements of R′ from X.

The existence of such a Fix-values algorithm for compact representation is a well-known
result ([7], see also [5, Algorithm 5]); the additional statement about enumerated compact
representation follows easily from bookkeeping the defining circuits. We prove Lemma 3 in
Appendix A.

3 Wreath products and difference clonoids

In this section, we discuss how to represent Mal’tsev algebras with non-trivial center by a
so-called wreath product L ⊗ U, and associate to it its difference clonoid, which gives us a
measure on how far it is from being the direct product L × U.

▶ Definition 4. Let U = (U, (fU)f∈F ) and L = (L, (fL)f∈F ) be two algebras in the same
language F , such that L is affine. Furthermore, let 0 ∈ L and T = (f̂)f∈F be a family
of operations f̂ : Un → L, for each f ∈ F of arity n. Then we define the wreath product
L ⊗T,0 U as the algebra (L × U, (fL⊗T U)f∈F ) with basic operations

fL⊗T,0U((l1, u1), . . . , (ln, un)) = (fL(l1, . . . , ln) + f̂(u1, . . . , un), fU(u1, . . . , un)),
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(where + is the addition on L with respect to neutral element 0). For simplicity, we are going
to write L ⊗ U, if T and 0 are clear from the context.

The name wreath product refers to the fact that this is a special case of VanderWerf’s
wreath products [31]. We remark that recently also alternative names for L ⊗ U were
suggested, such as central extension (by Mayr) and semidirect product (by Zhuk). By a
result of Freese and McKenzie we can represent Mal’tsev algebras with non-trivial centers as
wreath products:

▶ Theorem 5 (Proposition 7.1. in [14]). Let A be a Mal’tsev algebra with a central congruence
α, and let U = A/α. Then there is an affine algebra L, an element 0 ∈ L and a set of
operations T , such that A ∼= L ⊗T,0 U.

Note that, for a fixed quotient U = A/α, there is still some freedom in how to choose the
operations fL of L, and the operations f̂ : Un → L in T (by adding/subtracting constants).
To get rid of this problem, we are from now on always going to assume that L preserves 0, i.e.
fL(0, 0, . . . , 0) = 0 for all f ∈ F . It is then easy to observe that wreath products L ⊗T,0 U
behaves nicely with respect to the direct product L × U in the same language:

▶ Observation 6. Let A be a Mal’tsev algebra with wreath product representation A =
L ⊗T,0 U. Then tA = sA ⇒ tL×U = sL×U.

Proof. Note that, for every term t in the language of A:

tA((l1, u1), . . . , (ln, un)) = (tL(l1, . . . , ln) + t̂(u1, . . . , un), tU(u1, . . . , un)),

for some t̂ : Un → L (this can be shown by induction over the height of the term tree).
Clearly tA = sA implies tU = sU, and tL − sL = c, t̂ − ŝ = −c for some constant c ∈ L.
Since, by our assumptions, the operations of L preserve 0, we get tL = sL and t̂ = ŝ. Thus
tL×U = sL×U. ◀

In other terminology, the map tA 7→ tL×U is a surjective clone homomorphism from
Clo(A) to Clo(L × U), i.e. a map that preserves arities, projections and compositions. The
converse of Observation 6 does however not hold, since this map is usually not injective.
We define the difference clonoid Diff0(A) as the kernel of the clone homomorphisms in the
following sense:

▶ Definition 7. Let A = L ⊗T,0 U be a Mal’tsev algebra given as a wreath product.
(1) We define the equivalence relation ∼ on Clo(A) by

tA ∼ sA :⇔ tL×U = sL×U

(2) the difference clonoid Diff0(A) is defined as the set of all operation r̂ : Un → L, such
that there are tA ∼ sA ∈ Clo(A) with:

tA((l1, u1), . . . , (ln, un)) = (tL(l) + t̂(u), tU(u)) (1)
sA((l1, u1), . . . , (ln, un)) = (tL(l) + t̂(u) + r̂(u), tU(u)) (2)

▶ Notation 8. In the following, we will stick to the following convention: Function symbols
with a hat will always denote operations from some power of U to L. For operations
t, s : An → A, and r̂ : Un → L such as in (1) and (2) we are slightly going to abuse notation,
and write s = t + r̂ and r̂ = (s − t).

We next show that Diff0(A) is indeed a clonoid from U to L (extended by the constant 0).

STACS 2024



46:8 The Subpower Membership Problem of 2-Nilpotent Algebras

▶ Lemma 9. Let A = L ⊗0,T U be a Mal’tsev algebra given as wreath product. Then:
(1) For all t ∈ Clo(A), r̂ ∈ Diff0(A) also t + r̂ ∈ Clo(A),
(2) Diff0(A) is a (U, (L, 0))-clonoid.
Here (L, 0) denotes the extension of L by the basic operation 0.

Proof. To prove (1), let t ∈ Clo(A) and r̂ ∈ Diff0(A). By definition of the difference clonoid,
r̂ = s1 − s2 for two terms s1, s2 ∈ Clo(A), with s1 ∼ s2. In particular, sU

1 = sU
2 . For any

Mal’tsev term m ∈ Clo(A), necessarily m̂(u, u, v) = m̂(v, u, u) = 0 holds. This implies that

t + r̂ = m(t, s2, s1) ∈ Clo(A).

We next prove (2). So we only need to verify that Diff0(A) is closed under composition
with Clo(U) (from the inside), respectively Clo((L, 0)) (from the outside).

To see that Diff0(A) is closed under (L, 0), note that 0 ∈ Diff0(A), as t − t = 0, for
every term t ∈ Clo(A). Further Diff0(A) is closed under +; for this, let r̂1, r̂2 ∈ Diff0(A).
By (1), we know that t + r̂1 ∈ Clo(A), for some term t ∈ Clo(A). Again, by (1) also
(t + r̂1) + r̂2)) ∈ Clo(A), which shows that r̂1 + r̂2 ∈ Diff0(A). For all unary eL ∈ Clo(L),
and t ∼ s with r̂ = t − s, note that eAt − eAs = eL ◦ r̂ ∈ Diff0(A). Since L is affine, Clo(L, 0)
is generated by + and its unary terms, thus Diff0(A) is closed under (L, 0).

To see that Diff0(A) is closed under U from the inside, simply notice that t(x1, . . . , xn) ∼
s(x1, . . . , xn) implies t(f1(x), . . . , fn(x)) ∼ s(f1(x), . . . , fn(x)), for all terms f1, . . . , fn. If
r̂ = tA − sA, then r̂ ◦ (fU

1 , . . . , fU
n ) = t ◦ (fU

1 , . . . , fU
n ) − s ◦ (fU

1 , . . . , fU
n ) ∈ Diff0(A). ◀

We remark that the choice of the constant 0 ∈ L is not relevant in this construction:
since for every c ∈ L the map r̂ 7→ r̂ + c is an isomorphism between the (U, (L, 0))-clonoid
Diff0(A) and the (U, (L′, c))-clonoid Diffc(A) (where fL′(l) = fL(l − (c, c . . . , c)) + c).

Our goal in the next section is to reduce the subpower membership problem to a version of
the subpower membership problem for the difference clonoid in which we ask for membership
of a tuple l ∈ Lk in the subalgebra of L given by the image of u1, . . . , un ∈ Uk under the
clonoid. In fact, it will be more convenient for us to ask for a compact representation, that’s
why we define the following problem, for a clonoid C from U to L.

CompRep(C):
Input: A list of tuples u1, . . . , un ∈ Uk.
Output: A compact representation of C(u1, . . . , un) = {f(u1, . . . , un) | f ∈ C} ≤ Lk

In the case of the difference clonoid C = Diff0(A) the image algebra L is affine and
contains a constant 0. Thus then this problem is then equivalent to finding generating set of
C(u1, . . . , un) as a subgroup of (L, +, 0, −)k of polynomial size. By then running Gaussian
elimination (generalized to finite Abelian groups), or simply applying Theorem 2 one can
then compute a compact representation of C(u1, . . . , un).

4 The subpower membership problem of wreath products

In this section we discuss our main methodological results. We show that, in some cases
the subpower membership problem SMP(L ⊗ U) of a wreath product can be reduced to
CompRep(L × U) and CompRep(C). We first show how such a reduction can be achieved
relatively easily in the case where Clo(L ⊗ U) contains Clo(L × U) (i.e. the identity map is a
retraction of the clone homomorphism from Observation 6):
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▶ Theorem 10. Let A = L⊗T,0 U be a finite Mal’tsev algebra, and let C = Diff0(A). Further
assume that Clo(L × U) ⊆ Clo(A). Then CompRep(A) (and hence also SMP(A)) reduces in
polynomial time to CompRep(L × U) and CompRep(C).

Proof. Let a1, . . . , an ∈ Ak an instance of CompRep(A); our goal is to find a compact
representation of B = SgAk (a1, . . . , an). Let us write li and ui for the projection of ai to Lk

and Uk respectively. Let us further define B+ = Sg(L×U)k (a1, . . . , an). Then

B = {(tL(l1, . . . , ln) + t̂(u1, . . . , un), tU(u1, . . . , un) | t is F -term}, and
B+ = {(tL(l1, . . . , ln), tU(u1, . . . , un) | t is F -term}.

Since Clo(L × U) ⊆ Clo(A), we can pick a Mal’tsev term of A that is of the form
mA((l1, u1), (l2, u2), (l3, u3)) = (l1 − l2 + l3, mU(u1, u2, u3)). Moreover, by Lemma 9, every
term tA ∈ Clo(A) can be uniquely written as the sum of tL×U (which by assumption is also
in Clo(A)) and some t̂ ∈ C. Thus, every element of B is equal to the sum of an element of
B+ and an expression t̂(u1, . . . , un).

Let C+ be a compact representation of B+, and Ĉ a compact representation of
C(u1, . . . , un). Then, it follows that every tuple in B can be written as

m(. . . , m(c1, d2, c2), . . . dn, cn) + r̂1 − ŝ2 + r̂2 − . . . − ŝn + r̂n, (3)

for ci, di ∈ C+ and r̂i, ŝi ∈ Ĉ. (We are aware that tuples in C+ an Ĉ have different domains;
here we follow the same convention as in Notation 8). Moreover, in formula (3), any pair
ci, di (respectively r̂i, ŝi) witnesses a fork in the i-th coordinate. By our choice of m it is
easy to see that formula (3) can be rewritten to

m(. . . , m(c1 + r̂1, d2 + ŝ2, c2 + r̂2), . . . dn + ŝn, cn + r̂n),

Thus the elements ci + r̂i, di + ŝi witness forks of B in the i-th coordinate. If we define
D = {c + r̂ | c ∈ C, r̂ ∈ Ĉ}, then it follows that Sig(D) = Sig(B). Moreover D ⊂ B, and it is
of polynomial size in n and k, as |D| ≤ |C| · |Ĉ|. Thus D can be thinned out in polynomial
time to a compact representation of B, which finishes our proof. ◀

We remark that, by following the proof of Theorem 10, also finding enumerated compact
representations in A can be reduced to finding enumerated compact representations in L × U
and C (if C is given by some finite set of operations that generate it as a clonoid).

Unfortunately, the conditions of Theorem 10 are not met for general wreath-products, not
even if both U and L are affine (the dihedral group D4 can be shown to be a counterexample).
But, if U is supernilpotent, then we are able to prove the following reduction, independent
of the conditions of Theorem 10:

▶ Theorem 11. Let A = L ⊗ U be a finite Mal’tsev algebra, and let C = Diff0(A) for some
0 ∈ A. Further, assume that U is supernilpotent. Then SMP(A) reduces in polynomial time
to CompRep(C).

Proof. Let a1, . . . , an, b ∈ Ak an instance of SMP(A); our goal is to check whether b ∈ B =
SgAk (a1, . . . , an). Let us write li and ui for the projection of ai to Lk and Uk respectively,
and lb and ub for the projections of b to Lk and Uk. Let F be the signature of A and L × U,
and let B+ = Sg(L×U)k (a1, . . . , an). Then

B = {(tL(l1, . . . , ln) + t̂(u1, . . . , un), tU(u1, . . . , un) | t is F -term}, and
B+ = {(tL(l1, . . . , ln), tU(u1, . . . , un) | t is F -term}.
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Recall the definition of tA ∼ sA from Definition 7. If T is a ∼-transversal set of
{tA ∈ Clo(A) | tU(u1, . . . , un) = ub}, then clearly b ∈ B iff ∃t ∈ T and d ∈ C(u1, . . . , un),
with b = t(a1, . . . , an) + d. So, intuitively speaking, the goal of this proof is to first
compute such a transversal set, by computing an enumerated compact representation of
{(l, u) ∈ B+ | u = ub} and then use it together with a compact representation of C(u1, . . . , un)
to check membership of b in B.

In practice we need however to consider a relation of higher arity than B+, since term
operations of L × U are not uniquely determined by their value on a1, . . . , an. So let S be
the degree of supernilpotence of U (and hence also L × U). If we think about a1, . . . , an

as the columns of a matrix of dimension k × n, then let ã1, . . . , ãn ∈ Al be its extension by
rows that enumerate H = {(a1, . . . , an) ∈ An | |{i : ai ̸= 0}| ≤ S} (hence l ≤ k + |A|S

(
n
S

)
).

It follows from Theorem 2 that we can compute an enumerated compact representa-
tion C̃ of Sg(L×U)l(ã1, . . . , ãn) in polynomial time in n and l. So, every element in B̃ =
Sg(L×U)l(ã1, . . . , ãn) can be written as m(. . . m(c̃1, d̃2, c̃2) . . . d̃l, c̃l), for (c̃i, pc̃i), (d̃i, pd̃i

) ∈
C̃, where C̃ is of size at most 2l|A|2, and every element of c̃ ∈ C̃ is equal to pc̃(ã1, . . . , ãn) = c̃
for the given circuit pc̃ of polynomial size.

By Theorem 1, in an S-supernilpotent algebra, every term operation is already completely
determined by its values on the subset H. It follows, that every n-ary term operation of
L×U can be uniquely described by a circuit m(. . . m(pc̃1 , pd̃2

, pc̃2), . . . pd̃l
, pc̃l

) for c̃i, d̃i ∈ C̃.
By definition of ∼, it follows that also every n-ary term operation of A is ∼-equivalent to
the operation given by the circuit described by a circuit m(. . . m(pc̃1 , pd̃2

, pc̃2), . . . pd̃l
, pc̃l

)
for c̃i, d̃i ∈ C̃.

We are however only interested in terms t such that tU maps u1, . . . , un to the value
ub. By Lemma 3, we can also compute an enumerated compact representation C̃ ′ of
{(̃l, ũ) ∈ SgL×U(ã1, . . . , ãn) | ũ(i) = ub(i) for all i = 1, . . . , k} in polynomial time. Note
that this is possible, as {(̃l, ũ) ∈ SgL×U(ã1, . . . , ãn) | ũ(i) = ub(i) for all i = 1, . . . , k} is
closed under the Mal’tsev operation mL×U. Also, although we only prove Lemma 3 for
fixing variables to constants, we remark that it can straightforwardly be generalized to fixing
the value of the variables to domains L × {u} (alternatively, this can also be achieved by
regarding Sg(L×U)l(ã1, . . . , ãn) as a subalgebra of Ul × Ll, which however would require us
to work with relations on different domains).

If C̃ ′ = ∅, then we output “False”, as then ub /∈ SgUk (u1, . . . , un). Otherwise, let
C = {pA

c̃ (a1, . . . , an) | c̃ ∈ C̃ ′}. Also, let Ĉ be a compact representation of C(u1, . . . , un).
By our proof, every element of {(l, u) ∈ B | u = ub} is equal to the sum of an element
mA(. . . , mA(c1, d2, c2), . . . dn, cn) with ci, di ∈ C and an element of C(u1, . . . , un). Since
m is an affine Malt’sev operation when restricted to {(l, u) ∈ B | u = ub} this means that
b ∈ B iff lb is in the affine closure of all elements c + r̂ with c ∈ C and r̂ ∈ Ĉ. But this can
be checked in polynomial time (by generalized Gaussian elimination, or Theorem 2), which
finishes the proof. ◀

5 Clonoids between affine algebras

We continue our paper with an analysis of clonoids between affine algebras to prove our main
result, Theorem 20.

For a prime p, let us write Zp for the cyclic group of order p, i.e. Zp = ({0, 1, . . . , p −
1}, +, 0, −). Let us further define the idempotent reduct Zid

p = ({0, 1, . . . , p − 1}, x − y + z).
Using the unary terms ax = x + · · · + x (a-times), for a ∈ Zp, we can regard Zp as a vector
space over the p-element field. More general, using this notation, we will also consider finite
Abelian groups (L, +, 0, −) as modules over Z|L|.



M. Kompatscher 46:11

For short, we are going to denote constant 1-tuples by 1 = (1, 1, . . . , 1) ∈ Zn
p . For two

vectors a, x ∈ Zn
p , we further denote by a · x =

∑n
i=1 a(i) · x(i) the standard inner product.

Then Clo(Zp) = {x 7→ a · x | a ∈ Zn
p } and Clo(Zid

p ) = {x 7→ a · x | a ∈ Zn
p , a · 1 = 1}.

In this section, we are going to study clonoids between affine algebras U and L, such that
|U | = p for some prime p, and p ∤ |L|. Since every such affine algebra U has x − y + z as a
term operation, it makes sense to study the special case U = Zid

p . As we are in particular
interested in difference clonoids, we furthermore can assume that L contains a constant
operation 0 (see Lemma 9), and hence the operations of the Abelian group (L, +, 0, −).
We remark that our analysis is structurally similar to (but not covered by) Fioravanti’s
classification of (Zp,Zq)-clonoids [13].

5.1 (Zid
p , L)-clonoids satisfying p ∤ |L| and f(x, x, . . . , x) = 0

Throughout this subsection, let p be a prime, and L = (L, +, 0, −) an Abelian group with
p ∤ |L|, and C be a (Zid

p , L)-clonoid satisfying f(x, x, . . . , x) = 0 for all f ∈ C and x ∈ Zp. In
other words, for every n ∈ N, C maps all tuples from the diagonal ∆n = {(x, x . . . , x) ∈ Zn

p }
to 0. We are going to prove that C is generated by its binary elements, and therefore by any
set of generators B of C(2) ≤ LZ2

p . Moreover, from B, we are going to construct a canonical
generating set of the n-ary functions C(n) ≤ LZn

p . We are, in particular going to use the
following set of coefficient vectors for every n > 2:

Cn = {a ∈ Zn
p | ∃i > 1: a(1) = a(2) = . . . = a(i − 1) = 0, a(i) = 1}.

▶ Observation 12. Every 2-dimensional subspace V ≤ Zn
p containing the diagonal ∆n has a

unique parameterization by the map

ec(x, y) = x(1 − c) + yc = (x, c(2)x + (1 − c(2))y, . . . , c(n)x + (1 − c(n))y),

for some c ∈ Cn, i.e. it is equal to the range of a unique such map.

Proof. To see this, note that V contains 1, and can be therefore parameterized by ed(x, y),
for some d /∈ ∆n. So there is an index i with d(1) = . . . = d(i − 1) ̸= d(i). If d /∈ Cn, then
we define c = (d(i) − d(1))−1(d − d(1)1); clearly c ∈ Cn, and c and 1 still generate V . It is
further not hard to see that different elements of Cn generate different planes together with
1, thus we obtain a unique parameterization of V by ec(x, y). ◀

▶ Lemma 13. Let f ∈ C(2). Then, there is a function fn ∈ C(n), such that

fn(x1, x2, . . . , xn) =
{

f(x1, x2) if x2 = x3 = . . . = xn

0 else.

Proof. We prove the lemma by induction on n. For n = 2, we simply set f2 = f . For an
induction step n → n + 1, we first define tn+1(x1, x2, . . . , xn, xn+1) as the sum∑

a∈Zn−1
p

fn(x1, x2 + a(1)(xn+1 − xn), . . . , xn + a(n − 1)(xn+1 − xn))

−
∑

a∈Zn−1
p

fn(x1, x1 + a(1)(xn+1 − xn), . . . , x1 + a(n − 1)(xn+1 − xn)).

Note that, if xn+1 ̸= xn, then tn+1 evaluates to
∑

a∈Zn−1
p

f(x1, a) −
∑

a∈Zn−1
p

f(x1, a) = 0.
On the other hand, if xn = xn+1, then the second sum is equal to 0, while the first one is equal
to pn−1fn(x1, x2, . . . , xn). By the induction hypothesis, the function fn+1 = p−(n−1)tn+1
satisfies the statement of the lemma (note that p−(n−1) exist modulo |L|, since p ∤ |L|). ◀
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We can prove an analogue statement for all 2-dimensional subspaces of Zn
p containing ∆n:

▶ Lemma 14. Let f ∈ C(2), and c ∈ Cn. Then there is a function fc ∈ C(n), such that

fc(x1, x2, . . . , xn) =
{

f(x, y) if (x1, x2, . . . , xn) = ec(x, y)
0 else.

Proof. Let c ∈ C(n). It is easy to see that there is an invertible matrix T ∈ Zn×n
p , such

that T · 1 = 1 and T · (1 − c) = e1. Let T : Zn
p → Zn

p be the corresponding linear map
T (x) = T · x. Let fn as in Lemma 13 and fc(x) := fn ◦ T . Note that by the first
condition, all rows of T sum up to 1, hence T can be expressed by terms of Zid

p . Then
fc(ec(x, y)) = fn(T (x(1 − c) + yc)) = fn(xe1 + y(1 − e1)) = f(x, y), and fc(x) = 0 for
x /∈ ec(Z2

p). ◀

We are now ready to prove the main result of this section:

▶ Lemma 15. Let C be a (Zid
p , L)-clonoid satisfying ∀f ∈ C, x ∈ Zp : f(x, . . . , x) = 0, and let

B be a generating set of C(2) ≤ LZ2
p . Then

(1) C is the (Zid
p , L)-clonoid generated by B, and

(2) Bn := {fc | f ∈ B, c ∈ Cn} is a generating set of C(n) in LZn
p ,

Proof. For any g ∈ C(n) and c ∈ C(n), let us define the binary operation gc = f(ec(x, y)) ∈
C(2). By Lemma 14, gc generates a function gc

c ∈ C(n), that agrees with f(x, y) on all tuples
of the form ec(x, y), and that is 0 else. Since every point of Zn

p \ ∆n is in the image of a
unique map ec, we get g =

∑
c∈Cn

gc
c . Every element of the form gc

c can be clearly written
as a linear combination of elements fc, where f ∈ B. It follows that Bn generates C(n) in
LZn

p , and that the clonoid generated by B is C. ◀

We remark that if L = Zq for a prime q ̸= p, and B is a basis of the vector space
C(2) ≤ LZ2

p , then Bn is a basis of C(n). The generating set Bn can be used to decide efficiently
the following version of the subpower membership problem for C:

▶ Lemma 16. Let C be a (Zid
p , L)-clonoid satisfying ∀f ∈ C, x ∈ Zp : f(x, . . . , x) = 0. Then

we can solve CompRep(C) in polynomial time.

Proof. By Lemma 15, C(n) is the linear closure of Bn. Thus C(u1, . . . , un) is equal to the
linear closure of Bn(u1, . . . , un) := {fc(u1, . . . , un) | f ∈ B, c ∈ Cn}.

Note that the i-th entry fc(u1, . . . , un)(i) of such a generating element can only be different
from 0 if (u1, . . . , un)(i) lies in the 2-dimensional subspace generated by the diagonal ∆n and
c. Thus, there are at most k many vectors c ∈ Cn such that fc(u1, . . . , un) ̸= 0, let c1, . . . , cl

be an enumeration of them. Clearly D = {fc(u1, . . . , un) | f ∈ B, c ∈ {c1, . . . , cl}} generates
C(u1, . . . , un); note that we can compute it in linear time O(kn). From the generating set D

we can compute a compact representation of C(u1, . . . , un) in polynomial time (by generalized
Gaussian elimination, or Theorem 2). ◀

5.2 General (Zid
p , L)-clonoids satisfying p ∤ |L|

For an arbitrary (Zid
p , L)-clonoid C, let us define the subclonoid C∆ = {f ∈ C : f(x, . . . , x) = 0}.

We then show, that every f ∈ C can be written in a unique way as the sum of an element of
C∆, and a function that is generated by C(1). For this, we need the following lemma:

▶ Lemma 17. For any f ∈ C(n), let us define f ′(x) = f(x1, x1, . . . , x1). Then f − f ′ ∈ C∆,
and f ′ is generated by C(1).
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Proof. trivial. ◀

It follows in particular from Lemma 17 and Lemma 15 that every (Zid
p , L)-clonoid C is

generated by any set A ∪ B, such that A generates C(1) in LZp and B generates C(2)
∆ in LZ2

p .
Note that the clonoid generated by A does not need to be disjoint from C∆. We can, however,
still prove results analogous to the previous section.

▶ Lemma 18. Let C be a (Zid
p , L)-clonoid, let A be a generating set of C(1) ≤ LZp and B a

generating set of C(2)
∆ ≤ LZ2

p . For every n, let us define An = {
∑

a∈Zn
p ,a·1=1 f(a · x) | f ∈ A}

and let Bn be defined as in Lemma 15. Then An ∪ Bn is a generating set of C(n) in LZn
p .

Proof. We already know from Lemma 15 that Bn, generates C(n)
∆ ≤ LZn

p .
By Lemma 17, every element f ∈ C(n) can be uniquely written as the sum f ′ and f − f ′.

Furthermore f ′, by definition, is generated by An, and f − f ′ is in C(n)
∆ , which finishes our

proof. ◀

Lemma 18 allows us to straightforwardly generalize Lemma 16 to arbitrary (Zid
p , L)-

clonoids:

▶ Lemma 19. Let C be a (Zid
p , L)-clonoid. Then CompRep(C) ∈ P.

Proof. Let An and Bn be defined as in Lemma 18. Our goal is to compute a compact
representation of C(u1, . . . , un) for some given u1, . . . , un ∈ Zk

p. By Lemma 18, every g ∈ C
decomposes into the sum of g′ and g − g′, where g′ is generated by An and g − g′ is generated
by Bn. Thus any image g(u1, . . . , un) is in the linear closure of all tuples f(u1, . . . , un), for
f ∈ An and Bn(u1, . . . , un) = {f (u1, . . . , un) | f ∈ B, ∈ Cn} in Lk. There are at most
|A|-many tuples of the first form. Furthermore, as in the proof of Lemma 16 we can compute
a generating set of Bn(u1, . . . , un) in polynomial time. By generalized Gaussian elimination
(or Theorem 2), we can obtain a compact representation from these generators in polynomial
time. ◀

Lemma 19 allows us to finish the proof of our main result:

▶ Theorem 20. Let A be a finite Mal’tsev algebra, with a central series 0A < ρ < 1A such
that |A/ρ| = p is a prime, and the blocks of ρ are of size coprime to p. Then SMP(A) ∈ P.

Proof. By Theorem 5, A is isomorphic to a wreath product L ⊗ U, such that U, L are affine
with |U | = p and |L| coprime to p (as |L| is the size of every block of ρ). By Theorem 11,
SMP(A) reduces to CompRep(Diff0(A)) in polynomial time. The difference clonoid is a
clonoid from U to (L, 0). Since both L and U are affine, and therefore have term operations
describing x − y + z, Diff0(A) is also a clonoid from Zid

p to (L, +, 0, −). By Lemma 19,
CompRep(Diff0(A)) is solvable in polynomial time, which finishes the proof. ◀

▶ Corollary 21. For every nilpotent Mal’tsev algebra A with |A| = pq for distinct primes
p ̸= q, we have SMP(A) ∈ P.

Proof. If A is affine, then the result holds by (generalized) Gaussian elimination. So assume
that A is 2-nilpotent, but not affine. So A is isomorphic to L ⊗ U, and wlog. |L| = q and
|U | = p. Then the result follows directly from Theorem 20. ◀
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6 Discussion

In Theorem 20 we proved that every Mal’tsev algebra, which can be written as a wreath
product L ⊗ U with |U | = p and p ∤ |L| has a tractable subpower membership problem. But,
since the reduction discussed in Theorem 11 extends beyond this case, it is natural to ask,
whether we can also extend the tractability also extends to all those cases:

▶ Question 22. Is SMP(L ⊗ U) ∈ P for every supernilpotent Mal’tsev algebra U?

In particular, if U is affine, Question 22 asks, whether the subpower membership problem
of all finite 2-nilpotent Mal’tsev algebras can be solved in polynomial time. By Theorem 11,
this reduces to computing compact representations with respect the clonoids between affine
algebras. Thus answering the question requires a better understanding of such clonoids.

The recent preprint [27] studies such clonoids in the case where U has a distributive
congruence lattice, and L is coprime to U. Such clonoids are always generated by functions of
bounded arity (as in Lemma 14), thus we expect a similar argument as in Lemma 19 to work
in solving CompRep(C). We remark that, in the case of the clonoid of all operations from U
and L this was already implicitly shown in [18] to obtain a polynomial time algorithm for
checking whether two circuits over a 2-nilpotent algebra are equivalent. However [27] does
not cover all clonoids between affine algebras; e.g. for the case U = Zp × Zp and coprime L
nothing is known so far.

A reason why much emphasis is placed on coprime U and L is, that their wreath products
L ⊗T,0 U are not supernilpotent (for non-trivial operations T ), and therefore not covered by
Theorem 2. In fact, finite Mal’tsev algebras in finite language are supernilpotent if and only
if they decompose into the direct product of nilpotent algebras of prime power size (see e.g.
[2, Lemma 7.6.]). It is further still consistent with our current knowledge that the conditions
of Theorem 10 are always met, for coprime L and U. This naturally leads to the question:

▶ Question 23. Is Clo(L × U) ⊆ Clo(L ⊗ U), for all finite nilpotent Mal’tsev algebras L ⊗ U
where L and U have coprime size?

In fact, in an unpublished proof [20], a positive answer to Question 23 is given in the
case that Clo(L ⊗ U) contains a constant operation. A more general version of Question 23
would ask, whether every finite nilpotent Mal’tsev algebra A has a Mal’tsev term m, such
that (A, m) is supernilpotent.

Lastly we would like to mention that recently the property of short pp-defitions was
suggested as a witnesses for SMP(A) ∈ coNP. While Mal’tsev algebras that generate
residually finite varieties have short pp-definitions [10], it is not know whether this is true in
the nilpotent case. Thus we ask:

▶ Question 24. Does every finite nilpotent Mal’tsev algebras A have short pp-definitions
(and hence SMP(A) ∈ NP ∩ coNP)?

Studying Question 24 might especially be a useful approach to discuss the complexity for
algebras of high nilpotent degree, if studying the corresponding difference clonoids turns out
to be too difficult or technical.
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A Proof of Lemma 3
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algebra, we can obtain an enumerated compact representation R′ of R ∩ {x ∈ Ak | x(1) =
a1, . . . , x(k) = ak} for a given list of constants a1, . . . , ak. In Algorithm 1 we describe the
algorithm Fix-value(R, a) that fixes the first coordinate of R to a; iterating this algorithm
m times results in the statement of the Lemma.

We remark that Fix-value(R, a) is based on the Fix-values algorithm in [5, Al-
gorithm 5]); although, for simplicity, we only fix the value of one coordinate. Line 7
and 8 corresponds to the call of the subroutine Nonempty in [5, Algorithm 5]), with the
difference that we compute all the elements of the set Tj = {(x, y) ∈ pr1,j R | x = a}, instead
of computing a witness for (a, y) ∈ Tj once at a time.
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until the set is closed under m, and then select all values with x1 = a. Since | pr1,j R| ≤ A2

this takes at most |A|2 steps. For this reason also the size of the defining circuits Cj (when
e.g. stored all together as a circuit with multiple out-gates) is bounded by |R| + |A|2. Since
the for-loop of line 6 has at most n iterations, it follows that both the running time of the
algorithm and the size of the defining circuits in R′ are bounded by O(|A|2 · n).
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If we then repeatedly call Fix-value to fix the value of the first m-many values of R,
this results in an algorithm that runs in time O(|A|2 · nm)).

Thus, the only thing that remains to prove is that the algorithm Fix-Value is correct.
i.e. it indeed outputs an enumerated R′ with Sig(R′) = Sig(R ∩ {x ∈ Ak | x(1) = a}) (if the
output is not empty). So assume that (i, b, c) ∈ Sig(R ∩ {x ∈ Ak | x(1) = a}). If i = 1, then
clearly (i, b, c) = (1, a, a), which is in Sig(R′). So let us assume wlog. that i > 1. Since R is
a compact representation of R, there exist tuples rb, rc ∈ R (and defining circuits prb

and
prc), witnessing that (i, b, c) ∈ Sig(R). Then R′ contains the tuples t and s = m(t, rb, rc),
as constructed in line 12 and 13 of Algorithm 1. Since rb and rc agree on the first i − 1
coordinates also t and s do. Moreover t(1) = a, t(i) = b, and s(i) = m(b, b, c) = c, thus t and
s witness (i, b, c) ∈ Sig(R ∩x(1) = a). It follows that Sig(R′) = Sig(R ∩{x ∈ Ak | x(1) = a}),
which is what we wanted to prove.

Algorithm 1 An algorithm that, for a given enumerated compact representations R of R =
SgAk (X) outputs an enumerated compact representation R′ of the relation that fixes x1 = a, (where
the defining circuits of R′ are evaluated on X).

1: procedure Fix-Value(a ∈ A, R (enum. c.r. of R = SgAk (X)), Mal’tsev term m)
2: if (1, a, a) ̸∈ Sig(R) then return ∅
3: else
4: Let (t, pt) ∈ R be such that (t, t) is a witness of (1, a, a) ∈ Sig(R).
5: R′ = {(t, pt)}
6: for j > 1 do
7: Recursively apply m to pr1,j(R) to compute Tj = {(x, y) ∈ pr1,j(R) | x = a},
8: and circuits Cj = {p(x,y) | (x, y) ∈ Tj} such that pr1,j(p(x,y)(X)) = (x, y).
9: for (j, b, c) ∈ Sig(R) do

10: Let (rb, prb
), (rc, prc) ∈ R be witnesses of (j, b, c) ∈ Sig(R)

11: if (a, b) ∈ Tj then
12: Let t = p(a,b)(X)
13: s = m(t, rb, rc) and ps = m(p(a,b), prb

, prc
)

14: R′ = R′ ∪ {(t, p(a,b)), (s, ps)}
15: return R′
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