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Abstract
Generalised hypertree width (ghw) is a hypergraph parameter that is central to the tractability of
many prominent problems with natural hypergraph structure. Computing ghw of a hypergraph
is notoriously hard. The decision version of the problem, checking whether ghw(H) ≤ k, is
paraNP-hard when parameterised by k. Furthermore, approximation of ghw is at least as hard as
approximation of Set-Cover, which is known to not admit any FPT approximation algorithms.

Research in the computation of ghw so far has focused on identifying structural restrictions to
hypergraphs – such as bounds on the size of edge intersections – that permit XP algorithms for ghw.
Yet, even under these restrictions that problem has so far evaded any kind of FPT algorithm. In this
paper we make the first step towards FPT algorithms for ghw by showing that the parameter can be
approximated in FPT time for graphs of bounded edge intersection size. In concrete terms we show
that there exists an FPT algorithm, parameterised by k and d, that for input hypergraph H with
maximal cardinality of edge intersections d and integer k either outputs a tree decomposition with
ghw(H) ≤ 4k(k + d + 1)(2k − 1), or rejects, in which case it is guaranteed that ghw(H) > k. Thus, in
the special case of hypergraphs of bounded edge intersection, we obtain an FPT O(k3)-approximation
algorithm for ghw.
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1 Introduction

A tree decomposition of a hypergraph H is a pair (T, B) where T is a tree and B : V (T )→
2V (H) assigns a bag to each node, that satisfies certain properties. The treewidth of a
decomposition is maxu∈V (T ) |B(u)| − 1 and the treewidth of H is the least treewidth taken
over all decompositions. In many graph algorithms, treewidth is the key parameter that
determines the complexity of the problem. However, for many problems whose underlying
structure is naturally expressed in terms of hypergraphs the situation is different. The
treewidth of a hypergraph is always at least as large as its rank (−1), i.e., the maximal size
of an edge. Yet, many standard hypergraph problems can be tractable even with unbounded
rank. To counteract this problem, generalised hypertree width (ghw) often takes the place of
treewidth in these cases. The definition of ghw is also based on tree decompositions, with the
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48:2 FPT Approximation of Generalised Hypertree Width for Bounded Intersection

only difference being that the ghw of a decomposition is maxu∈V (T ) ρ(B(u)), where ρ(U) is
the least number of edges required to cover U ⊆ V (H). Parallel to treewidth in graphs, low
ghw is a key criterion for tractability in the hypergraph setting. Prominent examples include
the evaluation of conjunctive queries, database factorisation [19], winner determination in
combinatorial auctions [7], and determining Nash Equilibria in strategic games [8].

Computation of ghw is computationally challenging. The problem is known to be paraNP-
hard [13, 6] and W[2]-hard [9] in the parameterised setting1 (see the discussion of related
work below for details). This is shown by reduction from Set-Cover, which together with
recent breakthrough results on the approximability of Set-Cover [16], also implies that
there can be no FPT approximation algorithms for ghw under standard assumptions. In this
paper, we introduce the first FPT algorithm for approximation of ghw in unbounded rank
hypergraphs. Notably, this comes over 20 years after the parameter was first introduced [12].
As there can be no such algorithm in the general case, we instead consider the restriction
of the cardinality of the intersections of any two edges. Formally, a (2, d)-hypergraph is a
hypergraph where the intersection of any pair of edges has cardinality at most d. We will
study the following problem f -ApproxGHW.

f-ApproxGHW
Input (2, d)-hypergraph H, positive integer k

Parameters k and d

Output A tree decomposition of H with ghw at most f(k, d),
or Reject, in which case ghw(H) > k.

Let α(k, d) refer to the term k(3k + d + 1)(2k − 1). Our main result is the following.

▶ Theorem 1. 4α(k, d)-ApproxGHW is fixed-parameter tractable.

Our algorithm follows classic ideas for FPT algorithms for treewidth but requires significant
new developments. Most critically, we propose an FPT algorithm for computing approximate
(A, B)-separators in (2, d)-hypergraph, i.e., set of vertices S such that sets of vertices A and
B are not connected in H without S.

Related Work. Despite the close relationship between ghw and treewidth, there is a stark
difference in the complexity of recognising the respective widths. While it is famously possible
to decide tw(·) ≤ k in fixed-parameter linear time [2], deciding ghw(·) ≤ k is significantly
harder. Intuitively, this is because techniques for efficiently deciding treewidth fundamentally
rely on bounding the number of vertices in the bag, yet even α-acyclic hypergraphs (those
with ghw 1) can require decompositions with arbitrarily large bags to achieve minimal ghw.
In concrete terms, deciding ghw(·) ≤ k has been shown to be NP-hard for all fixed k > 1 (or
paraNP-hard in terms of parameterised complexity) [13, 6]. Additionally, deciding ghw(·) ≤ k

is known to be W[2]-hard by a reduction from Set Cover [9].
In response, significant effort has been invested in identifying conditions under which

deciding ghw(·) ≤ k is tractable [13, 11] for fixed k (i.e., the problem is in XP). Of particular
note here is the observation that the problem is in XP if we restrict the problem to so-
called (c, d)-hypergraphs, i.e., hypergraphs where any intersection of at least c edges has
cardinality at most d. Notably, this coincides with the most general condition known to
allow kernelization for Set-Cover [20].

1 When discussing the parameterised complexity of deciding whether a width parameter is at most k, we
always refer to the parameterisation by k if not specified otherwise.
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As mentioned above, negative results for FPT approximation of Set-Cover apply also to
approximating ghw. Nonetheless, some approximation results are known when looking beyond
FPT. Importantly, ghw is 3-approximable in XP via the notion of (not generalised) hypertree
width (hw) [12, 1]. Despite this improvement in the case of fixed k, deciding hypertree width
is also W[2]-hard [9] by the same reduction from Set-Cover as ghw. Fractional hypertree
width fhw generalises ghw in the sense that the width is determined by the fractional cover
number of the bags [15]. This width notion is strictly more general than ghw and allows
for cubic approximation on XP [18]. Recently, Razgon [21] proposed an FPT algorithm for
constant factor approximation of ghw for hypergraphs of bounded rank. While we consider
this to be an important conceptual step towards our result, it should be noted that for any
hypergraph H it holds that ghw(H) ≤ tw(H) · rank(H), i.e., assuming bounded rank tightly
couples the problem to deciding treewidth.

Structure of the paper. Our main result combines on multiple novel combinatorial ob-
servations and FPT algorithms and the main body of this paper is therefore focused on
presenting the main ideas and how these parts interact. Full proof details are provided in
the appendix of the full version [17]. After basic technical preliminaries in Section 2, we give
a high-level overview of the individual parts that lead to the main result in Section 3. After
the initial overview, Section 4 presents the key algorithms formally, together with sketches of
their correctness and complexity. Similarly, the main combinatorial ideas are discussed in
Section 5. We discuss potential avenues for future research in Section 6.

2 Preliminaries

We will frequently write [n] for the set {1, 2, . . . , n}. We say that (possibly empty) pairwise
disjoint sets X1, X2, . . . , Xn are a weak partition of set X if their union equals X. We assume
familiarity with standard concepts of parameterised algorithms and refer to [3] for details. We
use poly(·) to represent some polynomial function in the representation size of the argument.

A hypergraph H is a pair of sets (V (H), E(H)) where we call V (H) the vertices of H and
E(H) ⊆ 2V (H) the (hyper)edges of H. We assume throughout that H has no isolated vertices,
i.e., vertices that are not in any edge. For v ∈ V (H), define I(v) := {e ∈ E(H) | v ∈ e}, i.e.,
the set of edges incident to v. We say that H is a (c, d)-hypergraph if for any set {e1, . . . , ec} ⊆
E(H) of c edges, it holds that |

⋂c
i ei| ≤ d. We will refer to the set of (maximal) connected

components of a hypergraph H as CComp(H). The induced subhypergraph of H induced by
U ⊆ V (H) is the hypergraph H ′ with V (H ′) = U and E(H ′) = {e ∩ U | e ∈ E(H)} \ ∅. We
use the notation H[U ] to mean the induced subhypergraph of H induced by U . For tree T

and v ∈ V (T ) we sometimes write T − v to mean the subgraph of T obtained by deleting
v and its incident edges. Let A, B ⊆ V (H). An (A, B)-separator is a set S ⊆ V (H) such
that there is no path from an a ∈ A \ S to a b ∈ B \ S in H[V (H) \ S]. For e ∈ E(H),
U1, . . . , Un ⊆ V (H) we say that e touches U1, . . . , Un if e ∩ Ui ̸= ∅ for all i ∈ [n].

An edge cover µ for U ⊆ V (H) is a subset of E(H) such that U ⊆
⋃

µ. We sometimes
refer to the cardinality of an edge cover as its weight. The edge cover number ρ(U) for set
U ⊆ V (H) is the minimal weight over all edge covers for U . We sometimes say that µ is an
edge cover of H to mean an edge cover of V (H). Similarly, we use ρ(H) instead of ρ(V (H)).
A set of edges E′ ⊆ E(H) is ρ-stable if E′ is a minimal weight cover for

⋃
E′.

A set of sets S1, . . . can naturally be interpreted as a hypergraph, by considering each
set Si as an edge. In that light, it is clear that deciding ρ(H) ≤ k is precisely the same as
deciding whether a set system admits a set cover of size k.

STACS 2024
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▶ Proposition 2 ([4]). There is an FPT algorithm parameterised by k + c + d that decides
for a given (c, d)-hypergraphs H and k ≥ 1 whether ρ(H) ≤ k.

A tree decomposition (TD) of hypergraph H is a pair (T, B) where T is a tree and
B : V (T )→ 2V (H) labels each node of T with its so-called bag, such that the following hold:

(i) for each e ∈ E(H), there is a u ∈ V (T ) such that e ⊆ B(u), and
(ii) for each v ∈ V (H), the set {u ∈ V (U) | v ∈ B(u)} induces a non-empty subtree of T .

We refer to the first property as the containment property and to the second as the con-
nectedness condition. For a set U ⊆ V (T ) we use B(U) as a shorthand for

⋃
u∈U B(u),

i.e., all the vertices that occur in bags of nodes in U . Similarly, for subtree T ′ of T , we
sometimes use B(T ′) instead of B(V (T ′)). The generalised hypertree width (ghw) of a tree
decomposition is maxu∈V (T ) ρ(B(u)), and the generalised hypertree width of H (we write
ghw(H)) is the minimal ghw over all tree decompositions for H. It will be important to
remember at various points that ghw is monotone under taking induced subhypergraphs, i.e.,
ghw(H[U ]) ≤ ghw(H) for all U ⊆ V (H).

3 High-level Overview of Algorithm

The algorithm for 4α(k, d)-ApproxGHW is based on a standard approach for treewidth
computation [22]. However, this approach is in fact applied for a tree decomposition
compression rather than approximation from scratch. In other words, the actual problem
being solved is the following one.

Compress
Input A (2, d)-hypergraph H, integer k,

a TD (T, B) of H with ghw 4α(k, d) + 1 ,
W ⊆ V (H) with ρ(W ) ≤ 3α(k, d)

Parameters k and d

Output A tree decomposition (T ∗, B∗) of H with ghw at most 4α(k, d) such that
W ⊆ B∗(u) for some u ∈ V (T ∗),
or Reject, in which case ghw(H) > k.

▶ Theorem 3. Compress is fixed-parameter tractable.

One natural question is how the Compress being FPT implies 4α(k, d)-ApproxGHW.
This is done through the use of iterative compression, a well known methodology for the
design of FPT algorithms. The resulting algorithm for Theorem 1 is presented in Algorithm 1.
In particular, we let V (H) = {v1, . . . , vn}, set Vi = {v1, . . . , vi} and Hi = H[Vi] and solve
the 4α(k, d)-ApproxGHW for graphs H1, . . . , Hn. If some intermediate Hi is rejected, the
whole H can be rejected. Otherwise, the application to Hi results in a tree decomposition
(Ti, Bi) of ghw at most 4α(k, d). Add vi+1 to each bag of (Ti, Bi). If the ghw of the resulting
decomposition is still at most 4α(k, d) simply move on to the next iteration. Otherwise,
apply the algorithm for Compress rejecting if the algorithm rejects and moving to the next
iteration if a compressed tree decomposition is returned.

Let us turn our attention to the algorithm for Compress. A central ingredient of the
algorithm [22] considers a set S of size O(k) goes through all partitions of S into two balanced
subsets and for each such a partition checks existence of a small separator. However, in our
setting the set S can contain arbitrarily many vertices, as long as it can be covered by a
bounded number of hyperedges. The following statement provides us with an appropriate
variant of the classic result for treewidth that is applicable to our setting.
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Algorithm 1 An FPT algorithm for 4α(k, d)-ApproxGHW.

Input : (2, d)-hypergraph H, positive integer k

1 {v1, . . . , vn} ← V (H)
2 Let T1 be the tree with a single node r

3 Let B1 be the function r 7→ {v1}
4 for 1 < i ≤ n do
5 Vi ← {v1, . . . , vi}
6 Hi ← H[Vi]
7 Ti ← Ti−1
8 Bi ← {t 7→ Bi−1(t) ∪ {vi} | t ∈ Ti}
9 if ghw((Ti, Bi)) > 4α(k, d) then

10 X ← Compress(Hi, k, (Ti, Bi), ∅)
11 if X is Reject then
12 return Reject
13 (Ti, Bi)← X

14 return (Tn, Bn)

▶ Theorem 4. Let H be a hypergraph with ghw(H) ≤ k and let E′ ⊆ E(H). Then there
exists a weak partition of E′ into three sets E′

0, E′
1, E′

2 such that
1. there is a (

⋃
E′

1,
⋃

E′
2)-separator S such that

⋃
E′

0 ⊆ S and ρ(S) ≤ k,
2. |E′

1| ≤ 2
3 |E

′|, and |E′
2| ≤ 2

3 |E
′|.

Theorem 4 allows us to consider all partitions of a small set of hyperedges covering the
given potentially large set of vertices thus guaranteeing an FPT upper bound for the number
of such partitions.

The other obstacle in upgrading the result [22] is that a balanced separator is no longer
required to be small but rather to have a small edge cover number. In order to compute such
a separator we will need a witnessing tree decomposition of H of a small ghw. This is also
the reason why we employ iterative compression rather than providing a direct algorithm for
approximation. However, even in presence of the tree decomposition, we were still unable to
design a ’neat’ algorithm that would either produce an (approximately) small separator or
reject, implying that a small separator does not exist. Instead, we propose an algorithm for
the following problem with a nuanced reject that is still suitable for our purposes.

ApproxSep
Input A (2, d)-hypergraph H, sets A1, A2 ⊆ V (H),

TD (T, B) of H with ghw p, integers 0 ≤ k0 ≤ k ≤ p

Parameters p and d

Output An (A1, A2)-separator with edge cover number
at most (3k + d + 1)(2k − 1)k0,
or Reject, in which case there either exists no (A1, A2)-separator with
edge cover number at most k0 or ghw(H) > k.

▶ Theorem 5. ApproxSep is fixed-parameter tractable.

We postpone to the next section a more detailed consideration of the algorithm for
ApproxSep. In the rest of this section we discuss the criterion for large ghw used by the
algorithm and the context in which the critetion is checked. For this purpose, we will require

STACS 2024
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some technical definitions. For hypergraph H, let us call U ⊆ V (H) a subedge (of H) if there
is e ∈ E(H) such that U ⊆ e. We say that two subedges U1, U2 are incompatible if their
union U1 ∪ U2 is not a subedge.

▶ Definition 6. An (a, b) subedge hypergrid (or (a, b)-shyg) consists of pairwise incompatible
subedges U1, . . . , Ua, S1, . . . , Sb such that:
1. U1, . . . , Ua are pairwise disjoint, and
2. for each j ∈ [b], Sj touches U1, . . . , Ua.

Throughout this paper we will be interested in a specific dimension of subedge hypergrid.
Namely for deciding width k in (2, d)-hypergraphs, we will be interested in the existence of
(3k + d + 1, ξ(k, d)) subedge hypergrids, where ξ is a function in O((kd)d) (refer to Section 5
for details). We will denote the set of all subedge grids of H of this dimension by Sk,d(H).
The reason we care about these subedge hypergrids in particular is that their existence is a
sufficient condition for high ghw.

▶ Theorem 7. Let H be a (2, d)-hypergraph such that Sk,d(H) ̸= ∅. Then ghw(H) > k.

In fact, the algorithm for the ApproxSep problem either constructs a required separator
or discovers that Sk,d(H) ̸= ∅. More precisely, the identification of an element of Sk,d(H)
takes place within the procedure described in Theorem 9 below. The central part the
algorithm for ApproxSep is to pick a vertex t ∈ T (recall that (T, B) is the input tree
decomposition for H) and then guess a set W ⊆ B(t) that shall be part of the separator
being constructed. Technically, the guessing means a loop exploring a family of subsets of
B(t). This family must be of an FPT size and the edge cover of each element of the family
must not be too large compared to k0 This idea is formalised in the notion of gap cover
approximator formally defined below.

▶ Definition 8. For hypergraph H and set U ⊆ V (H) a (β, γ)-gap cover approximator
(for U) is a set X ⊆ 2V (H) such that

(i) For each X ∈ X, ρ(X) ≤ β.
(ii) For each U ′ ⊆ U with ρ(U ′) ≤ γ, there is a X ∈ X such that U ′ ⊆ X.

In order to produce the desired gap cover approximator, the algorithm solving the
ApproxSep problem runs a function GapCoverApprox. The function computes either an
gap cover approximator or an element of Sk,d(H) and, in the latter case, rejects. In particular,
when the algorithm rejects, we know (implicitly) that Sk,d(H) ̸= ∅, which in turn guarantees
that ghw is greater than k in this case and the rejection can be propagated to the top-level.
A formal description of the behaviour of GapCoverApprox is provided below.

▶ Theorem 9. There is an algorithm GapCoverApprox(H, U, p, k, k0) whose input is a (2, d)-
hypergraph H, U ⊆ V (H) with ρ(U) ≤ p, and integers k0 ≤ k ≤ p. The algorithm returns a
((3k + d + 1)k0, k0)-gap cover approximator of U or Reject, in which case it is guaranteed
that ghw(H) > k. The algorithm is in FPT when parameterised in p and d.

4 Algorithmic Details

In this section we sketch proofs of Theorems 3 and 5. In particular, we provide pseudocodes
of the corresponding algorithms and intuitive justification of their correctness and FPT
membership. Algorithm 2 uses as a subroutine the algorithm AppSep, which is discussed
afterwards in Section 4.2.
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4.1 An FPT Algorithm for the Compression Step (Theorem 3)
To prove Theorem 3 we define Algorithm 2, prove that it is correct, and that the algorithm
works FPT time. In general principle the algorithm follows similar ideas to previous algorithms
for checking ghw (e.g., [5]) in that, at each stage, we separate the problem into subproblems
for each connected component, and recurse. The set W provides an interface to how
the subproblem connects to the rest of the decomposition. By guaranteeing that W is
covered in the root of the decomposition for the subproblem (line 8), we guarantee that the
decompositions for all the subproblems can be assembled into a decomposition for the parent
call in lines 8 to 22. (see also [10] where a similar idea is formalised in terms of extended
hypergraphs in the context of checking plain hypertree width).

We move on to giving an overview of the argument for the runtime and correctness of
the algorithm. For the overall time complexity of the algorithm, we first observe that a
single recursive application of the algorithm runs in FPT time. The search for EW in line 1
is FPT by using Proposition 2 to find a cover for W (the procedure from the proposition
is constructive). If the produced cover is smaller than 3α(k, d) + 1 we can incrementally
increase the size of the cover by searching for covers for W ′ ⊇W created by adding a vertex
outside of the cover to W . For line 2 we can naively iterate through all possible partitions of
EW intro three sets and call AppSep, which itself is in FPT by Theorem 5. For line 7 we note
again that testing ρ is FPT by Proposition 2. From line 8 onward, except for the recursion,
the algorithm performs straightforward manipulations of sets and hypergraphs that are of no
deeper interest to our time bound.

Next, we observe that the number of recursive applications is, in fact, polynomial in H.
We naturally organise recursive applications into a successors (recursion) tree and upper
bound the number of nodes of the tree by the product of the height of the tree and the
number of leaves. We observe that the height of the tree is at most |V (H)|. For this we
prove two auxiliary statements. The first is that for X, as computed in line 6, H \X has at
least two connected components. The second, immediately following from the first one is
that for each Hi, created in line 10, |V (Hi)| < |V (H)|. Thus it follows that the number of
vertices of the input hypergraph decreases as we go down the recursion tree thus implying
the upper bound on the height of the tree.

Additionally, we prove that the number of leaves is no larger than ρ(H)2. The main part
of this proof is an induction for the case where the number of sets U1, . . . , Uq obtained at
line 7 is at least 2. In particular, we notice that since ρ(Ui) ≥ 3ρ(X) for each i ∈ [q] and
since ρ(

⋃q
i=1 Ui) =

∑q
i=1 ρ(Ui), it holds that

ρ(Ui ∪X)2 ≤ (ρ(Ui) + ρ(X))2 ≤ (
q∑

i=1
ρ(Ui))2 = ρ(

q⋃
i=1

Ui)2 ≤ ρ(H)2.

To prove correctness of the Reject output, we observe that return of Reject by the
whole algorithm is triggered by return of Reject on line 4, failure to find an appropriate
weak partition, or by rejection in one of its recursive applications. By Theorem 4 and the
ρ-stability of E′, the Reject on line 4 implies that either H, or one of its induced subgraphs
have ghw greater than k. In the latter case, of course also ghw(H) > k.

Finally, the two main aspects of correctness of the non-rejection output are the upper
bound on the ghw of the resulting tree decomposition and that the properties of the tree
decomposition are not lost by the ’gluing’ procedure as specified in lines 8-22 of the algorithm.
The requirement that EW must cover W is essential for ensuring that the properties of the
tree decomposition are not destroyed by the gluing. Intuitively, the parameter Wi in the
recursion on Line 13 represents the connection of the component Hi with the rest of the
decomposition.

STACS 2024
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Algorithm 2 The algorithm Compress(H, k, (T, B), W ).

Input : (2, d)-hypergraph H, a positive integer k, a TD (T, B) of H with ghw
4α(k, d) + 1, W ⊆ V (H) wih ρ(W ) ≤ 3α(k, d)

1 EW ← any ρ-stable subset of E(H) covering W of cardinality 3α(k, d) + 1
2 Find a weak partition E0, E1, E2 of EW s.t. ρ(E0) ≤ k, ρ(E1), ρ(E2) ≤ 2α(k, d), and

AppSep(H,
⋃

E1,
⋃

E2, (T, B), k, k, p, V (T )) does not return Reject
3 if no such weak partition exists then
4 return Reject
5 else
6 X ← AppSep(H,

⋃
E1,

⋃
E2, (T, B), k, k, p, V (T ))

7 U1, . . . , Uq ← {C ∈ CComps(H \X) | ρ(C ∪X) > 4α(k, d)}
8 Let T ∗ be a tree with a new node r and B∗(r) = W ∪X

9 for i ∈ [q] do
10 Hi ← H[Ui ∪X]
11 Wi ← (

⋃
EW ∩ Ui) ∪X

12 Bi ← {t 7→ B(t) ∩ (Ui ∪X) | t ∈ V (T )}
13 Oi ← Compress(Hi, k, (T, Bi), Wi)
14 if Oi is Reject then
15 return Reject
16 else
17 (T ′

i , B′
i)← Oi

18 ti ← a node u of T ′
i s.t. Wi ⊆ B′

i(u)
19 Add T ′

i to T ∗ by making ti a neighbour of r and let B∗(u) = B′
i(u) for all

u ∈ T ′
i .

20 for U ∈ CComps(H \X) where ρ(U ∪X) ≤ 4α(k, d) do
21 Add new node u as a neighbour of r to T ∗.
22 Set B∗(u) = U ∪X.
23 return (T ∗, B∗)

4.2 Finding Approximate Separators in FPT (Theorem 5)
The proof of Theorem 5 requires significant extension of notation. First, for a tree decom-
position (T, B) of a hypergraph and X ⊆ V (T ), we denote by ghw(T, B, X) the maximum
of ρ(B(t)) among t ∈ X. We are looking for a separator subject to several constraints.
Repeating these constraints every time we refer to a separator is somewhat distracting and
we therefore define the set of separators that we need to consider for this overview. Define
sep(H, A, B, k0, (T, B), X) as the set of all (A, B)-separators W of H with ρ(W ) ≤ k0 and
W ⊆ B(X) where (T, B) is a tree decomposition of H and X ⊆ V (T ).

The following theorem is a generalisation of Theorem 5.

▶ Theorem 10. There is an algorithm AppSep(H, A, B, (T, B), k0, k, p, X) whose input is
a (2, d)-hypergraph H, A, B ⊆ V (H), three positive integers k0 ≤ k ≤ p, a tree decompos-
ition (T, B) of H and X ⊆ V (T ) such that all the elements of V (T ) \ X are leaves and
ghw(T, B, X) ≤ p. The algorithm either returns an element of sep(H, A, B, (3k + d + 1)(2k−
1)k0, (T, B), X) or Reject. In the latter case, it is guaranteed that either ghw(H) > k or
sep(H, A, B, k0, (T, B), X) = ∅
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Clearly, Theorem 10 implies Theorem 5 by setting X = V (T ). The reason we need this
extra parameter is that in the recursive applications of AppSep some bags may have the edge
cover number larger than p, so we keep track of the set of nodes whose bags are ’small’.

To present the pseudocode, we define a specific choice of a subtree of the given tree. Let T

be a tree, t ∈ V (T ), Y ⊂ V (T ). Then Tt,Y is the subtree of T which is the union of all paths
starting from t whose second vertex belongs to Y . The notion of Tt,Y naturally extends to
subsets of V (T ) and to tree decompositions where T is the underlying tree. In particular, for
X ⊆ V (T ), we denote X∩V (Tt,Y ) by Xt,Y . Next, if (T, B) is a tree decomposition of H then
by denote by Bt,Y the restriction to B to V (Tt,Y ) and by Ht,Y the graph H[B(V (Tt,Y ))].

We also introduce a variant T +
t,Y of Tt,Y which will be needed for recursive applications of

AppSep. The tree T +
t,Y is obtained from Tt,Y by introducing a new node r and making it adja-

cent to t. The function B+
t,Y is obtained from Bt,Y by setting B+

t,Y (r) =
⋃

t′∈V (T )\V (Tt,Y ) B(t′).
One final notational convention concerns adjusting a tree decomposition (T, B) of H in case
a set W ⊆ V (H) is removed from H. In this case we set B−W (t′) = B(t′) \W for each
t′ ∈ V (T ).

The following statement is important for verifying that these recursive applications are
well-formed.

▶ Theorem 11. Let H be a hypergraph, (T, B) a TD of H, t ∈ V (T ), Y ⊆ NT (t). Then
(Tt,Y , Bt,Y ) is a TD of Ht,Y , (T +

t,Y , B+
t,Y ) is a TD of H and (T, B−W ) is a TD of H \W .

Moreover, let X ⊆ V (T ) such that all the vertices of V (T ) \X are leaves of T . Then all the
vertices of V (Tt,Y ) \Xt,Y are leaves of Tt,Y .

The algorithm (roughly speaking) chooses a vertex t ∈ V (T ), partitions N(t) into Y1 and
Y2 and applies recursively to Ht,Y1 and Ht,Y2 . However, the triple (t, Y1, Y2) is chosen not
arbitrarily but in a way that both Xt,Y1 and Xt,Y2 are significantly smaller than X. The
possibility of such a choice is guaranteed by the following theorem.

▶ Theorem 12. Let T be a tree, X ⊆ V (T ) such that all |X| ≥ 3 and all the vertices of
V (T )\X are leaves. Then there is t ∈ X with degT [X](t) ≥ 2 and a partition Y1, Y2 on NT (t)
so that for each i ∈ {1, 2}, |Xt,Yi

| ≤ 3/4|X|. Moreover, the triple (t, Y1, Y2) can be computed
in a polynomial time.

Theorem 12 can be seen as a variant of a classical statement that a rooted tree has a
descendant rooting a subtree with the number of leaves between one third to two third of
the total number of leaves. The proof is based on a similar argument of picking a root and
gradually descending towards a ’large’ subtree until the desired triple is found.

For the validity of AppSep, it is important to note that each Xt,Yi
preserves for Tt,Yi

the
invariant that all the V (Tt,Yi

) \Xt,Yi
are leaves of Tt,Yi

. We are almost ready to consider the
pseudocode, it only remains to identify auxiliary functions. In particular GetBalVert(T, X)
is a polynomial time algorithm as specified in Theorem 12. Also recall that GapCoverApprox
is an FPT algorithm constructing a ((3k + d + 1)k0, k0)-gap cover approximator in the way
specified by Theorem 9.

The pseudocode of AppSep is presented in Algorithm 1. For the sake of readability, we
make two notational conventions. First, since parameters p and k do not change when passed
through recursive calls, we consider them fixed and do not mention them as part of the input
when recursing. Second, we move consideration of the case with |X| ≤ 2 into a separate
function SmallSep provided in Algorithm 3 and use it as an auxiliary function in Algorithm 4.
Here the idea is straightforward, we naively test for all gap cover approximators whether
they are (A, B)-separators.
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Algorithm 3 The algorithm SmallSep(H, A, B, p, k, k0, (T, B), X).

Input : (2, d)-hypergraph H, A, B ⊆ V (H), positive integers k0 ≤ k ≤ p, a TD
(T, B) of H, X ⊆ V (T ), |X| ≤ 2 all the elements of V (T ) \X are leaves

1 if |X| = 1 then
2 {t} ← X

3 Sets← GapCoverApprox(H, B(t), p, k, k0)
4 else
5 {t1, t2} ← X

6 Sets← GapCoverApprox(H, B(t1) ∪B(t2), p, k, k0)
7 if Sets is Reject then
8 return Reject
9 for W ∈ Sets do

10 if W is an (A, B)-separator then
11 return U

12 return Reject

The general case in AppSep is considerably more complex. Intuitively, the algorithm
searches for separators in small local parts of the tree decomposition by searching through the
output of GapCoverApprox called on the component of that local part of the decomposition
(Lines 1 and 2 of the algorithm). In general this is of course not sufficient to find (A, B)-
separators. What we do instead is to try and find partial separators that ultimately
combine into a single (A, B)-separator. To that end we split the tree decomposition into two
decompositions in a balanced fashion (Line 3). The two cases handled from Lines 4 to 9
cover the special case where the search is propagated to one part of the tree decomposition,
while the body of the loop at Line 13 considers (roughly speaking) all possibilities of splitting
up the separator over both parts.

The first step of proving Theorem 10 is to prove the FPT runtime of AppSep. We first
observe that a single application of AppSep takes FPT time. The efficiency of GetBalVert
and GapCoverApprox has been discussed above. SmallSep is effectively a loop over the
output of GapCoverApprox with polynomial time spent per element. Note that since
GapCoverApprox is computed in FPT time we also obtain a corresponding bound on the size
of the ((3k + d + 1)k0, k0)-gap cover approximator to iterate over. Finally, in the loop of
Line 13, we only need to observe that the number of connected components of B(t) \W is at
most p as otherwise the edge cover number of B(t) is greater than p. Hence, the number of
partitions C1, C2 considered in the loop is O(2p).

Next, we need to demonstrate that the number of recursive applications of AppSep is
FPT. We present the number of applications as a recursive function F (k0, m) where m = |X|.
If m ≤ 2 then there is only a single application through running SmallSep. Otherwise, there
is one recursive application at Line 4 and one at Line 7 where the first parameters remains
the same and the second parameter is at most 3/4m (by selection of t, Y1, Y2). Additionally,
there are also the recursive applications in Lines 14 and 15 where the first parameter is at
most k0 − 1 and the second parameter is at most 3/4m. As a result, we obtain a recursive
formula F (k0, m) ≤ 2F (k0, 3/4m) + g(p)F (k0 − 1, 3/4m). We note that this function can
be bounded above by a fixed-parameter cubic function (see Lemma 43 in the full version
appendix for details) thus establishing the FPT runtime of AppSep.
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Algorithm 4 The algorithm AppSep(H, A, B, (T, B), k0, k, p, X).

Input : (2, d)-hypergraph H, A, B ⊆ V (H), a TD (T, B) of H, positive integers
0 ≤ k0 ≤ k ≤ p, X ⊆ V (T ) s.t. all the elements of V (T ) \X are leaves

1 if |X| ≤ 2 then
2 return SmallSep(H, A, B, p, k, k0, (T, B), X)
3 (t, Y1, Y2)← GetBalVert(T, X)
4 Out← AppSep(H, A, B, (T +

t,Y1
, B+

t,Y1
), k0, Xt,Y1)

5 if Out is not Reject then
6 return Out

7 Out← AppSep(H, A, B, (T +
t,Y2

, B+
t,Y2

), k0, Xt,Y2)
8 if Out is not Reject then
9 return Out

10 Sets← GapCoverApprox(H, B(t), p, k, k0)
11 if Sets is Reject then
12 return Reject
13 for each W ∈ Sets, each k1, k2 > 0 s.t. k1 + k2 ≤ k0, and each weak partition C1, C2

of B(t) \W into unions of connected components of H[B(t) \W ] do
14 Out1 ← AppSep(Ht,Y1\W, (At,Y1∪C1)\W, (Bt,Y1∪C1)\W, (Tt,Y1 , B−W

t,Y1
), k1, Xt,Y1)

15 Out2 ← AppSep(Ht,Y2\W, (At,Y2∪C2)\W, (Bt,Y2∪C2)\W, (Tt,Y2 , B−W
t,Y2

), k2, Xt,Y2)

16 if neither of Out1, Out2 is Reject then
17 return Out1 ∪Out2 ∪W

18 return Reject

Next, we need to demonstrate correctness of the non-rejection output. It is straightforward
to see by construction that the returned set S is a subset of B(X): ultimately, the set S

is comprised of unions of outputs of GapCoverApprox(H, U, . . . ), either directly in Line 10,
or indirectly via SmallSep. In the first case, the returned sets are a subset of B(t), where
t ∈ X by definition of GetBalVert. In the second case, U ⊆ B(Xt,Yi) for i = 1 or i = 2 by
definition of SmallSep. By definition, both Xt,Yi

are subsets of X and thus B(Xt,Yi
) is a

subset of B(X). Since the recursion always restricts parameter X to either Xt,Y1 or Xt,Y2

the inductive application of this observation is immediate.
We need to show S is an (A, B)-separator and that its edge cover number is within a

specified upper bound. Both claims are established by induction. The main part of proving
that S is an (A, B)-separator is showing that if S as returned on Line 17 then it is an
(A, B)-separator. This follows from the induction assumption applied to Out1 and Out2 and
the following statement.

▶ Lemma 13. Let H be a hypergraph, V1, V2 ⊆ V (H) be such that V1 ∪ V2 = V (H) and
Y = V1 ∩ V2 is a (V1, V2)-separator. Let W ⊆ Y and let C1, C2 be a weak partition of Y \W .
Let H1 = H[V1 \ W ] and H2 = H[V2 \ W ]. Let A, B ⊆ V (H). For each i ∈ {1, 2} let
Ai = (A ∩ V (Hi)) ∪ C1, let Bi = (B ∩ V (Hi)) ∪ C2, and let Wi be an (Ai, Bi)-separator of
Hi. Then W1 ∪W2 ∪W is an (A, B)-separator of H.
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To prove that the size of the output S of AppSep matches the required upper bound, we
observe that the output is the union of several sets S1, . . . , Sq each of which is in a family
returned by an application of GapCoverApprox . This guarantees that ρ(Si) ≤ (3k + d + 1)k0.
It only remains to show that q ≤ 2k0−1 (q is the number of sets S1, . . . , Sq whose union make
up S). To this end we observe that the recursive applications invoking GapCoverApprox can
be naturally organised into a recursion tree where each node has two children, accounting for
the recursive applications in Lines 14 and 15 (the applications on Lines 4 and 7 are not relevant
since there is no invocation of GapCoverApprox associated with them). Then q is simply the
number of nodes of the tree. By a simple induction we observe that if k1 and k2 are the
numbers as obtained in Line 13 then k1 +k2 ≤ k0 and the number of nodes rooted by children
of the tree is at most 2k1 − 1 and 2k2 − 1, respectively. Hence, the total number of nodes,
accounting for the root, is at most (2k1−1)+(2k2−1)+1 ≤ 2(k1+k2)−1 ≤ 2k0−1 as required.
For the correctness of the Reject output we first recursively define the Reject triggered by
GapCoverApprox . This happens when AppSep runs SmallSep and the latter returns Reject
in Lines 5 or 10 of Algorithm 3, or Reject is returned in Line 12 of Algorithm 4, or when
Reject is returned in Line 18 of Algorithm 4 and one of recursive applications leading
to this output returns Reject triggered by GapCoverApprox. By inductive application of
Theorem 9 we observe that Reject triggered by GapCoverApprox implies that the ghw of
some induced subgraph of H (and hence of H itself) is greater than k.

Finally, we demonstrate that if the Reject output is not triggered by GapCoverApprox
then sep(H, A, B, k0, (T, B), X) = ∅. First, we assume that |X| ≤ 2 and demonstrate this
for Algorithm 3. It follows from the description that, in the considered case, no element
of Sets is an (A, B) separator. As each W ′ ⊆ B(X) with ρ(W ′) ≤ k0 is a subset of some
element of Sets, it follows that no such W ′ is an (A, B)-separator of H. In the case where
|X| ≥ 3, a Reject not inherited from GapCoverApprox can only be returned in Line 18 of
Algorithm 1. This, in particular, requires Reject to be returned by recursive applications
in Lines 4 or 7. By the induction assumption, sep(H, A, B, k0, (T +

t,Yi
, B+

t,Yi
), Xt,Yi

) = ∅ for
each i ∈ {1, 2}. This means that if there is W ∗ ∈ sep(H, A, B, k0, (T, B), X) then W ∗ is not
a subset of B(Xt,Y1) nor of B(Xt,Y2). We conclude that by the induction assumption, such a
W ∗ would cause a non-rejection output in one of iterations of the loop in Line 13. Since the
algorithm passes through to Line 18, such an iteration does not happen so we conclude that
such a W ∗ does not exist.

5 Combinatorial Statements

In this section we prove Theorem 4 and sketch the proofs for Theorems 7 and 9. While
Theorem 9 also refers to the existence of an algorithm, we consider the nature of the theorem
to be purely combinatorial. The resulting algorithm is simply a naive enumeration of all
possibilities of combining certain sets.

5.1 Theorem 4
For Theorem 4 we can make use of a result from the literature and prove the statement in
full here. We first recall key terminology from Adler et al. [1], who proved the result that we
will use. For a set E′ ⊆ E(H), and C ⊆ V (H) define ext(C, E′) := {e ∈ E′ | e∩C ≠ ∅}. We
say that C is E′-big if |ext(C, E′)| > |E′|

2 . A set E′ ⊆ E(H) is k-hyperlinked if for every set
S ⊆ E(H) with |S| < k, H \

⋃
S has an E′-big connected component. The hyperlinkedness

hlink(H) of H is the maximal k such that H contains a k-hyperlinked set. From another
perspective, if hlink(H) ≤ k, then for any set E′ ⊆ E(H), there is an S ⊆ E(H) with |S| ≤ k

such that no connected component of H \
⋃

S is E′-big. Adler et al. [1] showed the following.
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▶ Proposition 14 ([1]). For every hypergraph H, hlink(H) ≤ ghw(H).

Proof of Theorem 4. By assumption and Proposition 14, we have hlink(H) ≤ k. Then for
E′, there is a set of k edges S ⊆ E(H) such that no connected component of H \ S is E′-big.
Let C1, . . . , Cℓ be the connected components of H \

⋃
S. First, observe that ext(Ci, E′) ∩

ext(Cj , E′) = ∅ for any distinct i, j ∈ [ℓ]. Suppose, w.l.o.g., that |ext(Ci, E′)| ≥ |ext(Ci+1, E′)|
for i ∈ [ℓ − 1]. Let m be the highest integer such that

∑m
i=1 |ext(Ci, E′)| < 2

3 |E
′|. Such

an m ≥ 1 always exists because no component is E′-big. We claim that E′
0 = S ∩ E′,

E′
1 =

⋃m
i=1 ext(Ci, E′), and E′

2 =
⋃ℓ

i=m+1 ext(Ci, E′) are as desired by the statement.
It is clear that E′

0 satisfies the condition of the lemma (for separator
⋃

S). Furthermore,⋃
S is an (

⋃
E′

1,
⋃

E′
2)-separator as the two sets touch unions of different H \

⋃
S components.

The size bound |E′
1| ≤ 2

3 |E
′| holds by construction.

What is left to show is that the size bound also holds for E′
2. To that end we first observe

that |E′
1| ≥ 1

3 |E
′|. Indeed, by the ordering of components by the size of ext, we have that

ext(Cm+1, E′) ≤ |E′
1|. Thus, |E′

1| < 1
3 |E

′| would contradict the choice of m. Since E′
1 and

E′
2 are disjoint, this leaves at most |E′| − |E′

1| ≤ 2
3 |E

′| edges for E′
2. ◀

Proposition 14 already plays an important role in the state of the art of ghw computation.
The implication of a so-called balanced separator of size k has been a key ingredient for
various practical implementations for computing ghw and related parameters [6, 14, 10].
Our application of this idea is somewhat different from this prior work. There, balanced
separators are used to reduce the search space of separators that need to be checked, and to
split up the problem into small subproblems. Our applications of Theorem 4 is different: in
Algorithm 2 for Compress we use it to find a way to separate the interface to the parent
node in the decomposition. Notably, this search requires the split into only a constant number
of sets (rather than the possibly linear number of connected components) which is part of
why we require our variation of the previous hyperlinkedness result.

5.2 Large Subedge Hypergrids (Theorem 7)
Recall from Definition 6 that an (a, b) subedge hypergrid (or (a, b)-shyg) consists of pairwise
incompatible subedges U1, . . . , Ua, S1, . . . , Sb such that: U1, . . . , Ua are pairwise disjoint, and
for each j ∈ [b], Sj touches U1, . . . , Ua. Our proof of Theorem 7 first relates (a, b)-shygs to
more restricted structures that we call strong (a, b)-shygs.

▶ Definition 15. An (a, b)-shyg U1, . . . , Ua, S1, . . . , Sb is strong if Sj ∩ Sj′ ∩
⋃

i∈[a] Ui = ∅
for each j ̸= j′ ∈ [b].

▶ Theorem 16. Let H be a (2, d) hypergraph having a strong (3k + 1, (3k + 1)d + 1)-shyg.
Then ghw(H) > k.

To prove Theorem 7, we first prove Theorem 16 and then demonstrate that non-emptiness
of Sk,d implies existence of a strong (3k + 1, (3k + 1)d + 1)-shyg. We continue with an
overview of our proof of Theorem 16.

An important observation for subedges in (2, d)-hypergraphs is that if a subedge U is
large enough, and in particular if |U | > d, then this will uniquely determine the edge e such
that U ⊆ e. In this section we will refer to this uniquely determined e as e(U). Using this we
state the following auxiliary lemma that gives us a lower bound for separating two subedges
that are part of a shyg.
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▶ Lemma 17. Let U1, U2, S1, . . . , Sb be a strong (2, b)-shyg of a (2, d)-hypergraph H. Let
{e1, . . . , eq} ⊆ E(H) be such that {e(U1), e(U2)} ∩ {e1, . . . , eq} = ∅ and W =

⋃
i∈[q] ei is a

U1, U2-separator. Then q ≥ b/2d.

Back to the proof of Theorem 16, we observe that e(U1), . . . , e(U3k+1) is ρ-stable. This is
because each e(Ui), to ’incorporate’ all Sj must be of size at least (3k + 1)d + 1 and, in a
(2, d)-hypergraph, this is too large to be covered by (3k + 1) other hyperedges. We will then
use Theorem 4 to prove the desired lower bound on ghw(H), by showing that there is the
set {e(U1), . . . , e(U3k+1} cannot be separated in the way specified by Theorem 4. Towards a
contradiction, we assume existence of a weak partition E′

0, E′
1, E′

2 of {e(U1), . . . , e(U3k+1},
|E′

i| ≤ 2k for each i ∈ {1, 2} and W ⊆ V (H) such that ρ(W ) ≤ k,
⋃

E′
0 ⊆ W and W is a⋃

E′
1,

⋃
E′

2- separator. W.l.o.g. we assume existence of {e1, . . . , er} ⊆ E(H), r ≤ k such
that W =

⋃
i∈[q] ei. Let E∗

0 be the set of all elements of e(U1), . . . , e(U3k+1) that are subsets
of W . We note that E′

0 ⊆ E∗
0 and, since no e(Ui) can be covered by k other hyperedges,

E∗
0 ⊆ {e1, . . . , er}. We also note that both E′

1 \ E∗
0 and E′

2 \ E∗
0 are nonempty. Indeed, if

say E′
2 \ E∗

0 = ∅ then 3k + 1 = |{e(U1), . . . , e(U3k+1)}| = |E′
1 ∪ E∗

0 | ≤ 2k + k, or in other
words, in such a situation E′

0, E′
1, E′

2 could not form a weak partition of 3k + 1 edges. Let
e(Ui1) ∈ E′

1 \ E∗
0 and e(Ui2)) ∈ E′

2 \ E∗
0 . Then W is a (Ui1 , Ui2)-separator. By Lemma 17,

r ≥ (3k + 1)d/2d > k, and we arrive at a contradiction. This completes the sketch of the
proof for Theorem 16.

As a next step, we show that a large enough shyg will imply the existence of a strong
(3k + 1, (3k + 1)d + 1)-shyg. We will show this inductively via a graded version of strong
shygs that we will call c-strong shygs. The only difference from Definition 15 is that
|Sj ∩ Sj′ ∩

⋃
i∈[a] Ui| ≤ c for each j ̸= j′ ∈ [b]. Thus a strong shyg is 0-strong one and any

ordinary shyg is d-strong by definition of a (2, d)-hypergraph.
Let us recursively define a function g(c) = gk,d(c) as follows. Let g(0) = (3k +1)d+1. For

c > 0, assuming that g(c− 1) has been defined, we let g(c) = g(0)2(g(c− 1)− 2)) + 1. Further
on, we let ξ(k, d) = gk,d(d) and let Sk,d(H) to be the set of all (3k + d + 1, ξ(k, d))-shygs of
H. The second part of the proof of Theorem 7 is the following statement.

▶ Theorem 18. Let c ≥ 0 and let H be a (2, d)-hypergraph that has a c-strong (3k+1+c, g(c))-
shyg. Then H has a strong (3k + 1, (3k + 1)d + 1)-shyg.

Theorem 7 is immediate from the combination of Theorem 18 with c = d and Theorem 16.
So, let us discuss the proof of Theorem 18.

Proof Sketch. The proof is by induction on c. The case c = 0 is immediate as the considered
shyg is exactly the desired strong shyg. For c > 0, we demonstrate we can ’extract’ from the
considered shyg either a c− 1-strong (3k + c, g(c− 1)) shyg (implying the theorem by the
induction assumption) a strong (3k + 1, g(0))-shyg exactly as required by the theorem.

So, let U1, . . . , U3k+c+1, S1, . . . , Sg(c) be the considered c-strong shyg. Assume first that
there is u ∈

⋃
i∈3k+c+1 Ui that touches g(c− 1) sets Sj . We assume w.l.o.g that u ∈ U3k+c+1

and that the sets Sj touching u are precisely S1, . . . , Sg(c)−1. Since one intersection point
between these sets is spent on U3k+c+1 for any j ̸= j′ ∈ [g(c)−1], |Sj∩Sj′∩

⋃
i∈[3k+c] Ui| ≤ c−1.

In other words, U1, . . . , U3k+c, S1, . . . , Sg(c)−1 is a (c− 1)-strong shyg implying the theorem
by the induction assumption. It remains to assume that each u ∈

⋃
i∈3k+c+1 Ui touches at

most g(c− 1)− 1 sets Sj . We are going to identify I ⊆ [g(c)] of size g(0) so that for each
j ≠ j′ ∈ I, Si ∩ Sj ∩

⋃
i∈[3k+1] Ui = ∅. This means that U1, . . . , U3k+1 along with Sj for each

j ∈ I will form a stron (3k + 1, g(0))-shyg as required by the theorem.
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We use the same elementary argument as if we wanted to show that a graph with many
vertices and a small max-degree contains a large independent set. The initial set CI of
candidate indices is [g(c)] and initially I = ∅. We choose j ∈ CI into I and remove from CI

the j and all the j′ such that Sj ∩ Sj′ ∩
⋃

i∈[3k+1] Ui ̸= ∅ By definition of g(c), it is enough
to show that, apart from j itself, we remove at most (g(0)− 1)(g(c− 1)− 2) other elements.
Indeed, the size of S∗

j = Sj ∩
⋃

i∈[3k+1] Ui is at most (3k + 1)d = g(0)− 1 and each point of
S∗

i , apart from Sj touches at most g(c− 1)− 2 elements simply by assumption. ◀

5.3 Constructing Gap Cover Approximators (Theorem 9)
Our overall plan for the proof of Theorem 9 is to show that we can produce the elements
that make up the desired gap cover approximator, as a combination of four parts, each of
which we can bound appropriately. The resulting algorithm is then primarily a matter of
enumerating all combinations of elements from these parts. In the following we discuss the
construction of these parts and why this yields an FPT algorithm.

The first part is what we will refer to as the set BEp(U) of p-big edges w.r.t. U , which
are those edges e ∈ E(H[U ]) for which |e| > pd. The intuition for the importance of big
edges is simple, in a (2, d)-hypergraph, they are necessary to obtain low weight covers. In
particular, any edge cover of U with weight at most p must contain all edges of BEp(U): if
|e| > pd then the vertices in e cannot be covered by less than p + 1 other edges, since any
other e′ ̸= e will only intersect e in at most d vertices (see Appendix B in the full version
for in-depth discussion of BEp(U) sets). For the rest of this section we will simply say that
edges are big to mean p-big. Similarly, we will refer to all edges that are not p-big as small.

The more challenging part is to determine the structure of those vertices that are not
covered by the big hyperedges. To this end we first define the boundary BE∗

p of the big edges:

BE∗
p(U) := {e \

⋃
(BEp(U) \ {e}) | e ∈ BEp(U)}.

That is BE∗
p(U) contains those subedges of big edges that are unique to a single big edge.

With respect to this set we will be particularly interested in those members that together
cover the intersection of a small edge with the vertices in the boundary. We formalise this
via the spanning set sp(e) for e ∈ E(H[U ]) \ BEp(U), which is the set E′ ⊆ BE∗

p(U) such
that e∩

⋃
E′ = e∩

⋃
BE∗

p(U). We will refer to the cardinality of sp(e) as the span of e. The
final part we need is those vertices U0

p that are not part of any subedge in the boundary BE∗
p,

formally U0
p = U \

⋃
BE∗

p(U). In addition to the three parts described above, may need to
add subsets of U0

p to construct the elements of the gap cover approximator. In particular,
to add those vertices that are not part of any big edge. The key observation here is that,
under the assumption that ρ(U) ≤ p, there cannot be too many such vertices and specifically
|U0

p | = O(p2d).
Ultimately, what we prove is that for any U ′ ⊆ U with ρ(U ′) ≤ k0, there is a set X such

that X ⊇ U ′ and ρ(X) ≤ (3k + 1 + d)k0, where X is the union of big edges, short edges
and Y ⊆ U0

p . The short edges are actually split in two cases, depending on their span. The
construction of X may require some number of short edges with span at most 3k + d, as
well some short edges with span greater than 3k + d. The last set is the most challenging
in terms of achieving an FPT algorithm. All other sets can be bounded in terms of p and
d (a small edge with a small span is covered by the union of its span leading to the stated
approximation factor). Such a bound seems to not be achievable for the set of small edges
with large span. To get around this issue, we show that if there are many small edges with
large span, then this implies the existence of a large subedge hypergrid. In more concrete
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terms, if there is a set E′ ⊆ BE∗
p(U) with |E′| > 3k + d and sp−1(E′) > ξ(k, d) (with ξ as

in the definition of Sk,d(H)), then Sk,d(H) ̸= ∅. In consequence, we can detect the case for
which we could not achieve an FPT bound, and we know that in this case we can safely reject
as ghw(H) is guaranteed to be greater than k.

6 Conclusion

We have presented a fixed-parameter tractable algorithm for approximating the generalised
hypertree width of hypergraphs with bounded intersection size. In particular, we give an
algorithm that either decides in f(k, d)poly(H) time whether a (2, d)-hypergraph H has
ghw(H) ≤ 4k(k +d+1)(2k−1) or rejects, in the latter case it is guaranteed that ghw(H) ≥ k.

Our main result represents a first step into the area of FPT algorithms for ghw. Our
focus has been on developing the overarching framework, and we expect that with further
refinement, better approximation factors are achievable and present a natural avenue for
further research. The most immediate question is whether subcubic approximation can be
achieved. Recall that the (3k + d + 1)(2k − 1)k0 factor for ApproxSep comes from two
sources, (3k + d + 1)k0 is a result of using (3k + d + 1)k0, k0-gap cover approximators to
find partial covers. The factor (2k − 1) is a result of combining the partial separators. It is
unclear whether either of these factors can be avoided.

For full proof details and an extensive discussion of possible future work we refer to reader
to the full version of this paper [17].
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