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Abstract
This article focuses on the sub-exponential time lower bounds for two canonical #P-hard problems:
counting the vertex covers of a given graph (#VC) and counting the matchings of a given graph
(#Matching), under the well-known counting exponential time hypothesis (#ETH).

Interpolation is an essential method to build reductions in this article and in the literature. We
use the idea of block interpolation to prove that both #VC and #Matching have no 2o(N) time
deterministic algorithm, even if the given graph with N vertices is a 3-regular graph. However,
when it comes to proving the lower bounds for #VC and #Matching on planar graphs, both block
interpolation and polynomial interpolation do not work. We prove that, for any integer N > 0, we
can simulate N pairwise linearly independent unary functions by gadgets with only O(log N) size in
the context of #VC and #Matching. Then we use log-size gadgets in the polynomial interpolation

to prove that planar #VC and planar #Matching have no 2o(
√

N
log N

) time deterministic algorithm.
The lower bounds hold even if the given graph with N vertices is a 3-regular graph.

Based on a stronger hypothesis, randomized exponential time hypothesis (rETH), we can avoid
using interpolation. We prove that if rETH holds, both planar #VC and planar #Matching have no
2o(

√
N) time randomized algorithm, even that the given graph with N vertices is a planar 3-regular

graph. The 2Ω(
√

N) time lower bounds are tight, since there exist 2O(
√

N) time algorithms for planar
#VC and planar #Matching.

We also develop a fine-grained dichotomy for a class of counting problems, symmetric Holant*.
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49:2 Sub-Exponential Time Lower Bounds for #VC and #Matching on 3-Regular Graphs

1 Introduction

As an analog of NP, Valiant [19] defined the class #P of counting problems, which non-
deterministic polynomial time Turing machines can compute with outputting the number of
accepting computations. #P-hardness is similarly defined as NP-hardness. Two canonical
counting problems, counting the vertex covers of a given graph (#VC) and counting the
matchings of a given graph (#Matching), were proven to be #P-hard [18], even if the graph
is sparse or planar. The two problems caused continuous attention in the past years [1, 6–8].

For the two problems, trivial 2npoly(n) or 2mpoly(m) time algorithms exist by checking
all possible solutions, where n or m denotes the number of vertices or edges in the input
graph. A series of improved algorithms [9, 10, 16, 17, 22] for the two problems still need
exponential time. According to the well-believed exponential time hypothesis (ETH) [12, 13],
Dell et al. [8] put forward the counting version #ETH which states #3-SAT can not be
solved in sub-exponential time. Under #ETH, many counting problems were proved that
they have no 2o(n) or 2o(m) time deterministic algorithm. For example, counting the vertex
covers of a graph with maximum degree 3 [1, 7,15] and counting the matchings of a graph
with maximum degree 4 [7] both have no 2o(n) time algorithm. And there are also some
fine-grained dichotomies [1,15] driven from the lower bound of #VC. If the two problems are
restricted on planar graphs, there are O(2

√
n) time algorithms [16,22]. However, the tight

lower bounds for the two problems restricted on planar graphs are still open. Marx et al. [16]
proved that counting the matchings of a graph, with a tree decomposition of width tw given,
has no 2o(tw) time algorithm under #ETH, even if the graph has maximum degree 8.

This article considers the lower bound results for #VC and #Matching on 3-regular
graphs. We represent the two problems in the Holant framework [3], where each counting
problem is defined by a set of functions. This helps us comprehend the difficulty of problems
and build reductions between them more easily. One motivation behind this work is to
enhance and complement the current lower bound results. Besides, the two problems on
3-regular graphs are starting problems that drive a series of dichotomy theorems [2, 4, 14].
Compared to the restriction that graphs are with maximum degree 3, the two problems
on 3-regular graphs are defined by fewer functions in the Holant framework. For example,
#Matching on 3-regular graphs is defined by only a ternary function in the Holant framework.
This brings great convenience in building reductions. So another motivation is to prepare for
developing fine-grained dichotomy theorems, which state that a problem in a class either is
tractable in polynomial time or has no 2o(n) time algorithm (or no 2o(

√
n) time algorithm on

planar graphs).
We prove the 2Ω(n) time lower bound for #VC and #Matching on 3-regular graphs,

presented in Section 3. In Section 4, we apply polynomial interpolation via log size gadgets
to obtaining the nearly tight 2Ω(

√
n

log n ) time lower bound for #VC and #Matching on planar
3-regular graphs under #ETH. In Section 5, we avoid the use of interpolation and prove the
tight 2Ω(

√
n) time lower bound for #VC and #Matching on planar 3-regular graphs, based

on a stronger assumption rETH. In Section 6, we develop a simple fine-grained dichotomy
for a class of counting problems.

2 Preliminaries

2.1 Notations and definitions
Let N, Z, and C be the set of natural numbers, the set of integers, and the set of complex
numbers, respectively. [q] of some positive integer q denotes the finite domain {1, 2, ..., q}. A
domain of size 2 is called the Boolean domain, where any entry is assigned 0 or 1. A function
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(or called signature) F : {0, 1}k → C of some non-negative integer k is a complex-valued
Boolean function, where k is called the arity of F . F is a symmetric function if its value is
invariant under the permutation of its variables. The value of a Boolean symmetric function
F only depends on the Hamming weight of the input assignment, so F can be written as
[f0, f1, ...fk] where fi is the value of F accepting an assignment with Hamming weight i ∈ [k].
A function of arity 1 or 2 is called a unary function or a binary function, respectively. A
Boolean unary function F is usually written as a vector [F (0), F (1)], and a Boolean binary

function H is usually written as a matrix
(

H(0, 0) H(0, 1)
H(1, 0) H(1, 1)

)
. For example, the binary

equality function =2 is written as [1, 0, 1], the binary dis-equality function ̸=2 is written as
[0, 1, 0], the equality function =k of some arity k ≥ 3 is written as [1, 0, ..., 0, 1], the binary
function OR2 is written as [0, 1, 1], and the ternary function OR3 is written as [0, 1, 1, 1].

An undirected graph G is denoted by a pair (V, E), where V is the set of vertices and E

is the set of edges. Multiple edges may exist between the same pair of vertices and self-loops
in E. Let N(v) ⊆ V and E(v) ⊆ E denote the adjacent vertices and incident edges of v,
respectively. The degree of a vertex v is denoted by dv = |E(v)| (a self-loop is counted twice,
and an l-multiple edge of some integer l is counted l times). ∆ = max{dv | v ∈ V } denotes
the maximum degree of G. A bipartite graph G is also written as a tuple (VL ∪ VR, E), where
VL, VR are two disjoint nonempty sets of vertices, and each edge e ∈ E has one endpoint in
VL and another in VR.

We introduce two individual counting problems on graphs in the following.

▶ Definition 1 (#VC). A vertex cover of a graph G(V, E) is a set S ⊂ V , such that S

contains at least one endpoint of e for every edge e ∈ E. The problem #Vertex Cover (#VC)
is defined as

Input: a graph G(V, E),
Output: the number of vertex covers of G.

An independent set of a graph G(V, E) is a set S ⊆ V , such that S contains at most one
endpoint of e for every edge e ∈ E. The problem #Independent Set (#IS) is defined as
counting the independent sets of a given graph. V − S for any vertex cover S must be
an independent set, so #IS(G) = #VC(G) for any graph G with n vertices, i.e., the two
problems #IS and #VC are equivalent.

▶ Definition 2 (#Matching). A matching of a graph G(V, E) is a set M ∈ E, such that e1
and e2 do not intersect for any pair e1, e2 ∈ M . The problem #Matching is defined as

Input: a graph G(V, E),
Output: the number of matchings of G.

We use the prefix 3R-, 3∆-, or pl- to denote the restriction that the input graphs
are 3-regular, have max-degree no more than 3, or are planar, respectively. For example,
#pl-3R-VC denotes counting the vertex covers for a given planar 3-regular graph.

To better analyze the complexity of the above two problems, we express them in the
Boolean Holant [3] framework. A Boolean Holant problem, dubbed Holant(F), is paramet-
erized by a set F of Boolean functions. A tuple Ω = (G, π) is called signature grid over
F , where G(V, E) is a graph, and the mapping π assigns to every vertex v ∈ V a function
Fv ∈ F with a linear order to the edges in E(v).

STACS 2024
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▶ Definition 3 (Holant [3]). Let F be a set of Boolean functions. The Boolean Holant problem
Holant(F) is defined as

Input: Ω = (G, π) over F

Output : Holant(Ω) =
∑

σ:E→{0,1}

∏
v∈V

Fv(σ|E(v)),

where σ|E(v) is the restriction of σ to E(v) and Fv(σ|E(v)) depends on the ordered input tuple
σ|E(v). If

∏
v∈V Fv(σ|E(v)) ̸= 0 for a fixed assignment σ, we called σ a satisfying assignment.

Given any function F and any non-zero constant λ, the two functions λF and F are
equivalent in the context of Holant, since the factor λ only brings a constant multiplicative
factor to the final result. The operator transforming any function F to λF for some constant
λ ∈ C − {0} is called normalization. We usually hide the information of π into the graph
G, so Ω is represented by G for simplification. If F is finite, then the graph G must be
bounded degree. If F = {F} consists of only one function F , we directly use Holant(F )
denotes Holant(F). The problem Holant∗(F) denotes the problem Holant(F ∪ U) where U
is the set of all unary functions.

Let F , H be two sets of Boolean functions. A bipartite signature grid Ω(G, π) over
F|H consists of a bipartite graph G(VL ∪ VR, E) and a mapping π which maps each vertex
v ∈ VL or v ∈ VR to a function F ∈ F or a function H ∈ H, respectively. The problem
Holant(F|H) is similarly defined, with a bipartite signature grid Ω over F|H as an input.
Trivially, Holant(F) is equivalent to Holant(F| =2).

We re-describe the problems #VC and #Matching as Boolean Holant problems. It is trivial
to re-describe #Matching. Given a graph G(V, E), we map the function Fv = [1, 1, 0, ..., 0] of
arity dv to every vertex v ∈ V . The function Fv takes value 1 if no more than one incident edge
of v is assigned 1; otherwise, it takes 0. Holant(G) is the number of matching of G. #Matching
is exactly the problem Holant({[1, 1], [1, 1, 0], [1, 1, 0, 0], ......}), #3∆-Matching is the problem
Holant({[1, 1], [1, 1, 0], [1, 1, 0, 0]}), and #3R-Matching is the problem Holant([1, 1, 0, 0]).

Considering re-describing the problem #VC. Given the input graph G(V, E), we map
the equality function =dv

to each vertex v ∈ V . For every edge e ∈ E, we add a extra
vertex ue assigned the function OR2 to divide it. These define a new bipartite signature grid
G′(V ∪ Ve, E′) where Ve = {ue|e ∈ E} denotes the set of new vertices. Given a satisfying
assignment to E′, let the set S ⊆ V consist of the vertices v ∈ V whose incident edges all
are assigned 1. S must be a vertex cover of G. Conversely, given a vertex cover S of G, the
incident edges E′(v) ∈ E′ of each v ∈ S are assigned 1, and the other edges are assigned
0. Such an assignment must satisfy

∏
v∈V ∪Ve

Fv = 1. So Holant(G′) is the number of the
vertex covers of G. #VC is exactly the problem Holant({=1, =2, ......}|OR2), #3∆-VC is the
problem Holant({=1, =2, =3}|OR2), and #3R-VC is the problem Holant(=3 |OR2).

2.2 Counting exponential time hypothesis

Impagliazzo et al. [12,13] put forward the well-known exponential time hypothesis (ETH),
which states that the satisfiability of a given 3-CNF formula (3-SAT) can not be decided in
sub-exponential time. Dell et al. [8] put forward the relaxed counting version #ETH.

▶ Conjecture 4 (#ETH [8]). There exists a constant ε > 0 such that no deterministic
algorithm can solve #3-SAT in O(2εn) time, where n denotes the number of variables of the
input formula.



Y. Liu and S. Chen 49:5

The 2Ω(n) time lower bound can be strengthened to 2Ω(m) where m denotes the number of
clauses in the input formula, according to the Sparsification Lemma [13].

A stronger hypothesis, randomized exponential time hypothesis (rETH) [8], states that
the same lower bound also holds for the probabilistic algorithm.

▶ Conjecture 5 (rETH [8]). There is a constant ε > 0 such that no randomized algorithm
can decide 3-SAT in O(2εn) time with error probability at most 1/3.

Polynomial-time Turing reductions, signed as ≤poly or ≤p, can not always preserve the
sub-exponential time lower bound since the size of the generated instances may increase
non-linearly. Impagliazoo et al. [13] introduced another particular class of Turing reductions:
sub-exponential time reduction families (SERF), which preserves the sub-exponential time
lower bound. We restrict the definition of SERF to problems on graphs.

▶ Definition 6 ([7, 13]). Let A and B be two problems on graphs. A sub-exponential time
reduction family from A to B is an algorithm T with oracle access for B. T accepts a tuple
(G, ε) as input, where G is an input of A and ε > 0 is a running time parameter of T , and
(1) computes A(G) in time O(2ε|V (G)|) with
(2) only invoking the oracle of B on graphs with O(|V (G)|) vertices.
If such an algorithm exists, We say that A is SERF-reducible to B, written as A ≤serf B.

Suppose A ≤serf B. If B has a O(2εn) time algorithm for some constant ε > 0, where n

denotes the number of vertices in the input graph, then we can solve A(G) in O(2ε|V (G)|) ·
O(2ε·O(|V (G)|)) = O(2ε′|V (G)|) time for some constant ε′ > 0. Conversely, if A has no sub-
exponential time algorithm, so does B. SERF reductions are known to be transitive [13,
Section 1.1.4].

Ying [15] built a series of SERF reductions and proved the sub-exponential time lower
bound for #3∆-VC under #ETH.

▶ Lemma 7 ([15]). If #ETH holds, then there exists a constant ε > 0 such that #3∆-VC
has no O(2εn) time deterministic algorithm, where n denotes the number of vertices in the
input graph.

Calabro et al. [5] proved an isolation lemma and built a SERF reduction from 3-SAT to
Unique 3-SAT, which is a sub-problem of 3-SAT with the restriction that the input 3-CNF
formula has at most one satisfying assignment.

▶ Lemma 8 ([5]). If rETH holds, then there exists a constant ε > 0 such that Unique 3-SAT
has no O(2εm) time randomized algorithm, where m denotes the number of clauses in the
input formula.

2.3 Gadget construction
To preserve the 2Ω(

√
N) time lower bound, the SERF reduction should be strengthened to

only 2o(
√

N) time cost.
A trivial but useful method to build such a reduction is called gadget construction. A

gadget is also a signature grid (G, π), where G = (V, E ∪ X) is a graph with some dangling
edges X. A dangling edge has one endpoint in V and the other dangling. The gadget defines
a function of arity k = |X|

Γ(x1, x2, ..., xk) =
∑

σ:E→{0,1}

∏
v∈V

Fv(σ̂|E(v)),

STACS 2024
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where (x1, x2, ..., xk) ∈ {0, 1}k is an assignment to X and σ̂ is the extension of the assignment
σ by (x1, x2, ..., xk). If Fv ∈ F for every vertex v ∈ V , the gadget is called an F-gate with
signature Γ. For example, Figure 1 shows a {[1, 1, 0, 0]}-gate with signature [4, 2, 1, 1]. Given

Figure 1 A {[1, 1, 0, 0]}-gate with signature [4, 2, 1, 1].

an instance G of Holant([4, 2, 1, 1]), we can replace each occurrence of [4, 2, 1, 1] by such
a gadget. The value of the new instance equals the original value. So Holant([4, 2, 1, 1])
is reduced to Holant([1, 1, 0, 0]). Such a reduction built by gadget construction is a SERF
reduction. Besides, the reduction only costs poly(N) time, where N denotes the number of
vertices in the input graph. So the reductions built by gadget constructions can preserve the
2Ω(

√
N) time lower bound. Ying [23] used gadget constructions to prove the following lemma.

▶ Lemma 9 ([23]). If #ETH holds, then there exists a constant ε > 0 such that planar
Holant({=2, =3, ̸=2, OR3}) has no O(2ε

√
N ) time algorithm, where N denotes the number of

vertices in the input graph.

2.4 Holographic transformation
Another method is called holographic transformation [20,21], which also preserves the 2Ω(

√
N)

time lower bound.
The tensor product ⊗ is the Kronecker product, that is, for two matrices X = Xa×b

and Y = Yc×d, X ⊗ Y is an ac × bd matrix with entry Xi,jYk,l at (i, k) ∈ [a] × [c] row and
(j, l) ∈ [b] × [d] column, where a, b, c, d are some positive integers. Tensor power is defined
recursively X⊗k = X⊗(k−1) ⊗ X for some integer k > 0.

Let T be a 2 × 2 invertible matrix. Given a Boolean function F of some arity k, written
as a column vector in C2k , we write TF = T ⊗kF as the transformed function. For a set F of
functions, TF = {TF |F ∈ F}. FT = FT ⊗k and FT = {FT |F ∈ F} are similarly defined,
where F is written as a row vector. Given an instance G of Holant(F|H), we generate a new
bipartite graph G′ from G, by reassigning the function FT or T −1H to each vertex which is
assigned the function F ∈ F or H ∈ H, respectively. Valiant’s Holant Theorem [21] shows
that Holant(G) = Holant(G′).

▶ Lemma 10 ([21]). Let F and H be two function sets. Given an invertible 2 × 2 matrix T ,

Holant(F|H) ≤p Holant(FT |T −1H).

In addition, the generated instance has the same number of vertices and edges as the original.

3 Lower bounds for #3R-VC and #3R-Matching under #ETH

In this section, we build SERF-reductions from #3∆-VC to prove the 2Ω(N) time lower
bounds for #3R-VC and #3R-Matching, where N denotes the number of vertices in the
input graph.
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3.1 Lower bound for #3R-VC

We build a SERF-reduction from #3∆-VC to #3R-VC. In fact, we prove the equivalent
reduction Holant({=1, =2, =3}|OR2) ≤serf Holant(=3 |OR2) by gadget constructions.

▶ Theorem 11. If #ETH holds, then there exists a constant ε > 0 such that the number of
vertex covers of a 3-regular graph with N vertices can not be computed in O(2εN ) time.

Proof. We first reduce Holant({=1, =2, =3}|OR2) to Holant(=3 |{OR2, [1, 1]}). A function
=1 can be realized by one function =3 connected with two unary functions [1, 1], and a
function =2 can be realized by one function =3 connected with one unary function [1, 1]. We
realize [1, 1] by the {=3}|{OR2}-gate shown in Figure 2.

Figure 2 A {=3}|{OR2} gate with signature [1, 1].

By the above, Holant({=1, =2, =3}|OR2) ≤serf Holant(=3 |OR2) and we can conclude
this theorem, according to Lemma 7. ◀

3.2 Lower bound for #3R-Matching

We build a SERF-reduction from #3R-VC to #3R-Matching, i.e., we demonstrate that
Holant(OR2| =3) ≤serf Holant([1, 1, 0, 0]) by the idea of block interpolation [7], which is
actually multivariate polynomial interpolation.

We first introduce a lemma, which is essential during the interpolation process.

▶ Lemma 12 ([11,18]). Let A, B, C, D be positive rational numbers, and x0, y0 be rational
numbers. Define the sequences {xl}l≥0 and {yl}l≥0 recursively by xl+1 = Axl + Byl and
yl+1 = Cxl + Dyl. Then the sequence { xl

yl
}l≥0 is pairwise different as long as AD − BC ≠ 0

and By2
0 − Cx2

0 − (A − D)x0y0 ̸= 0.

▶ Theorem 13. If #ETH holds, then there exists some constant ε > 0 such that #3R-
Matching can not be calculated in O(2εN ) time, where N is the number of vertices in the
input graph.

Proof. We establish the following reduction chain.

Holant([0, 1, 1] | [1, 0, 0, 1]) ≤serf Holant([−1, 2, 0] | [4, 2, 1, 1]) (1)
≤serf Holant({[−1, 2, 0], [1, 1, 0, 0]}) (2)
≤serf Holant([1, 1, 0, 0]) (3)

1. The reduction (1) is proved by the holographic transformation defined by Q =(
0 3

√
4

1
2

3
√

4 1
2

3
√

4

)
, since

STACS 2024
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[0, 1, 1](Q−1)⊗2 = (0, 1, 1, 1)( 1
3
√

2

( 1
2

3
√

4 − 3
√

4
− 1

2
3
√

4 0

)
⊗ 1

3
√

2

( 1
2

3
√

4 − 3
√

4
− 1

2
3
√

4 0

)
)

= (0, 1, 1, 1)
3
√

4
4


1 −2 −2 4

−1 0 2 0
−1 2 0 0
1 0 0 0


=

3
√

4
4 (−1, 2, 2, 0) =

3
√

4
4 [−1, 2, 0]

and

Q⊗3[1, 0, 0, 1] = (
3
√

4
2 )3



0 0 0 0 0 0 0 8
0 0 0 0 0 0 4 4
0 0 0 0 0 4 0 4
0 0 0 0 2 2 2 2
0 0 0 4 0 0 0 4
0 0 2 2 0 0 2 2
0 2 0 2 0 2 0 2
1 1 1 1 1 1 1 1





1
0
0
0
0
0
0
1


= 1

2



8
4
4
2
4
2
2
2


=



4
2
2
1
2
1
1
1


.

(4, 2, 2, 1, 2, 1, 1, 1)T has the indexes 000, 001, 010, 011,100,101,110, and 111 in order, and
it is the column vector of the function [4, 2, 1, 1].

2. The reduction (2) is built by gadget constructions. We replace each occurrence of the
function [4, 2, 1, 1] by the {[1, 1, 0, 0]}-gate showed in Figure-1.

3. The reduction (3) is built by the idea of block interpolation. Let G be an instance of
Holant({[−1, 2, 0], [1, 1, 0, 0]}) and V ′ ⊆ V (G) denote the vertices assigned the function
[−1, 2, 0]. Suppose |V ′| = n ≤ |V (G)|. We divide V ′ to r = n

d disjoint blocks B1, B2, ..., Br

for some positive integer d, such that each block |Bi| = d for i ∈ [r] (w.l.o.g, n is divisible by
d.)2. We label each satisfying assignment to E(G) a type t⃗ = (t1, t2, ..., tr) ∈ {0, 1, ..., d}r,
where ti denotes the number of vertices v ∈ Bi with E(v) assigned (0, 0). Let ρt⃗ denote the
number of satisfying assignments with type t⃗. Then Holant(G) =

∑
t⃗ ρt⃗

∏r
i=1(−1)ti(2)d−ti .

Define a multivariate polynomial

µ(x1, x2, ..., xr) =
∑

t⃗

ρt⃗

r∏
i=1

(xi)ti

on variables x1, x2, ..., xr ∈ C. Holant(G) = 2n · µ(− 1
2 , − 1

2 , ..., − 1
2 ).

Given l⃗ = (l1, l2, ..., lr) ∈ Nr, we replace each vertex v ∈ Bi by a gadget with a binary
signature which is realized by a ternary function [1, 1, 0, 0] connecting with a unary
function showed in Figure 3.
The unary function realized by the gadget Sl can be written as [s0

l , s1
l ] where {s0

l } and
{s1

l } satisfy the recurrences: s0
l = 25s0

l−1 + 13s1
l−1 and s1

l = 13s0
l−1 + 7s1

l−1 with initial
conditions s0

0 = 50 and s1
0 = 26. Actually, s0

l represents the number of matchings of the
underlying graph of Sl, which do not include the dangling edge. And s1

l represents the
number of matchings that include the dangling edge. If we connect [s0

l , s1
l ] to a ternary

function [1, 1, 0, 0], then we realize a binary function [s0
l + s1

l , s0
l , 0]. The value of Gl⃗ is

Holant(Gl⃗) =
∑

t⃗

ρt⃗

r∏
i=1

(s0
li

+ s1
li

)ti(s0
li

)d−ti =
r∏

i=1
(s0

li
)d · µ(1 +

s1
l1

s0
l1

, 1 +
s1

l2

s0
l2

, ..., 1 +
s1

lr

s0
lr

).

2 We can add the gadget, an isolated 3-multiple edge whose two endpoints are assigned [1, 1, 0, 0] and one
edge is divided by an extra vertex assigned [−1, 2, 0], to fit the assumption without affecting Holant(G).
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Figure 3 A {[1, 1, 0, 0]}-gate Sl for some integer l.

We construct a series of graphs Gl⃗ for l⃗ ∈ [d+1]r to invoke the oracle of Holant([1, 1, 0, 0]).
Then, we obtain the values of µ in (d + 1)r distinct points, since { s1

l

s0
l

}l≥0 is pairwise
different according to Lemma 12. So we can solve all coefficients ρt⃗ of µ by Lagrange
interpolation, and compute Holant(G) in poly((d + 1)r) time. Each Gl⃗ is constructed in
poly(|V (G)|) time and it has O(d|V (G)|) vertices.
Give a running time parameter ε, we choose a constant d such that log(d+1)

d ≤ ε. The
total time of the above reduction is

(d + 1)r(poly(|V (G)|)) + poly((d + 1)r) = O(2
log(d+1)

d n) = O(2ε|V (G)|).

The above reduction is a SERF reduction.

SERF reductions are transitive. So Holant(OR2| =3) ≤serf Holant([1, 1, 0, 0]). This
lemma is true by Theorem 11. ◀

4 Lower bounds for #pl-3R-VC and #pl-3R-Matching under #ETH

We build reductions from pl-Holant({=2, =3, ̸=2, OR3}) which has the 2Ω(
√

N) time lower
bound. Gadget constructions and holographic transformations preserve the 2Ω(

√
N) time

lower bound, but their ability is limited in building reductions. We need a more potent
method: interpolation.

Unfortunately, both polynomial interpolation and block interpolation can not build
a reduction preserving the 2Ω(

√
N) time lower bound. The reduction built by polynomial

interpolation costs polynomial time but generates new graphs with O(N2) size. The reduction
built by block interpolation generates new graphs with O(N) size but costs 2o(N) time. In
the process of block interpolation, the proof of Theorem 13 as an example, we can choose
d = O(

√
N log N) such that the time costs is 2o(

√
N), but the generated graphs have

O(N
√

N log N) size.
The type of interpolations that preserves the 2Ω(

√
N) time lower bound has yet to be

developed. We struggled for it but failed. We step back and consider building reductions
that cost 2o(

√
N) time and generate graphs with O(N log N) vertices.

4.1 Polynomial interpolation via log size gadgets
In the traditional application of interpolation, for any integer d > 0, people build a series
of O(d) size gadgets to realize a sequence of d pairwise linearly independent functions and
generate new instances with size O(dN). Inspired by the proof of Theorem 1.3 in [8], we
innovatively put up the way to construct a sequence of d pairwise linearly independent
functions by gadgets only with size O(log d).
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▶ Lemma 14. Let A, B ∈ C2×2 be two non-singular matrices.
Given a nonzero column vector s ∈ C2, the sequence of column vectors {Mi · · · M1s}i≥1

with Mi ∈ {A, B} is pairwise linearly independent if the following conditions are satisfied.
(1) det([As Bs]) ̸= 0, and
(2) for any pair column vectors v1, v2 ∈ {Mi · · · M1s}i≥1 (v1, v2 are not necessarily distinct),

det([Av1 Bv2]) ̸= 0.

Proof. We prove by induction on the positive integer i.
1. i = 1. As and Bs are linearly independent according to the condition (1).
2. Inductively we assume the lemma is proven for i = l − 1 for any l ≥ 2, and now assume

i = l. Let v1, v2 be two distinct column vectors in {Ml−1 × · · · × M1s}. v1, v2 are linearly
independent. Av1, Av2 are linearly independent, otherwise, |A| = 0 or v1, v2 are linearly
dependent, which contradicts to the assumption. So the sequence {AMl−1 · · · M1s} is
pairwise linearly independent. Similarly, the sequence {B × Ml−1 · · · M1s} is pairwise
linearly independent.
Av1, Bv2 for any pair column vectors in {Ml−1 × · · · × M1s} are linearly independent
according to the condition (2). So The sequence {AMl−1 · · · M1s, BMl−1 · · · M1s} is
pairwise linearly independent.

This lemma is true. ◀

If we have three gadgets with signatures A, B, s which satisfy the conditions in Lemma 14,
then, for any d ∈ N, we can construct a sequence of d gadgets with unary signatures which
are pairwise linearly independent. Besides, each gadget has O(log d) size.

▶ Lemma 15. Let F be a set of complex-valued Boolean functions. Suppose the following
gadgets can be realized by the F .
(1) two non-singular recursive gadgets with binary signature A, B ∈ C2×2 and
(2) a unary start gadget with signature s written as a column vector,
which satisfy det([As Bs]) ̸= 0 and det([Av1 Bv2]) ̸=2 0 for any unary signatures v1, v2 ∈
{Mi · · · M1s}i≥0 with Mi ∈ {A, B}.

Then for a finite sequence of unary functions S = {[x1, y1], · · · , [xm, ym]} with xj , yj ∈ C

for any j ∈ [m], Holant(F ∪ S) ≤p Holant(F). Furthermore, Holant(F) has no 2o(
√

N
log N )

time algorithm if Holant(F ∪ S) has no 2o(
√

n) time algorithm, where N, n denote the number
of vertices of the input.

The result also holds for planar Holant(F) if the gadgets are planar.

Proof. Let G(V ∪ S, E) with n vertices be an instance of Holant(F ∪ S), where S denotes
the set of vertices each assigned a unary function in S. Let Sj ⊆ S denotes the set of vertices
assigned [xj , yj ] where j ∈ [m]. We label each assignment to E a type t = (t1, t2, ..., tm)
where tj ∈ {0, 1, 2, ..., |Sj |} denotes the number of vertices v ∈ Sj whose incident edge is
assigned 0. Then Holant(G) =

∑
t ρt

∏
j∈[m](xj)tj (yj)|Sj |−tj where ρt denotes the sum of

the products of the signatures in V under the assignments with type t.
If we obtain the values of all coefficients ρt, then we can compute Holant(G). According

to Lemma 14, for any integer n > 0, we can simulate a sequence of n pairwise linearly
independent unary gadgets {[w1, z1], [w2, z2], ..., [wn, zn]} by the signature set F . Each
gadget has O(log n) size.

Define l = (l1, l2, ..., lm) where lj ∈ N for j ∈ [m]. We construct a graph Gl by replacing
each vertex in Sj with a vertex assigned the signature [wlj , zlj ]. The value of Gl is

Holant(Gl) =
∑

t

ρt

∏
j∈[m]

(wlj )tj (zlj )|Sj |−tj (1)
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By taking l ∈ [|S1| + 1] × [|S2| + 1] × · · · × [|Sm| + 1], we construct a system of (|S1| +
1) × (|S2| + 1) × · · · × (|Sm| + 1) ≤ (n + 1)m equations of the form as (1):

Holant(G(1,1,...,1))
Holant(G(1,1,...,2))

...
Holant(G(|S1|+1,|S2|+1,...,|Sm|+1))

 = M ·


ρ(0,0,...,0)
ρ(0,0,...,1)

...
ρ(|S1|,|S2|,...,|Sm|)


where the matrix M = M1 ⊗ M2 ⊗ · · · ⊗ Mm with

Mj =


z

|Sj |
1 w1z

|Sj |−1
1 · · · w

|Sj |
1

z
|Sj |
2 w2z

|Sj |−1
2 · · · w

|Sj |
2

...
...

. . .
...

z
|Sj |
|Sj |+1 w|Sj |+1z

|Sj |−1
|Sj |+1 · · · w

|Sj |
|Sj |+1


for j ∈ [m]. Since {[w1, z1], ..., [w|Sj |+1, z|Sj |+1]} is pairwise linearly independent, det(Mj) ̸= 0
for any j ∈ [m]. So the matrix M is invertible.

We can compute all ρt by solving the system after obtaining the values of Holant(Gl)
by invoking the oracle of Holant(F). Let T (N) be the time cost of the oracle, where N is
the vertices number of the input graph. In the above reduction, we build at most (n + 1)m

new graphs in (n + 1)mpoly(n) time, and each new graph has O(n log(n + 1)) vertices. The
reduction time is (n + 1)mpoly(n) + (n + 1)mT (c · n log(n + 1)) + poly((n + 1)m) where c is
some constant. Since m is also a constant, the reduction is a polynomial time reduction. So
Holant(F ∪ S) ≤p Holant(F).

Suppose Holant(F) has 2o(
√

N
log N ) time algorithm, that is, T (N) = 2ε(

√
N

log N ) for any
ε > 0. Then we can solve Holant(G) in

(n + 1)mpoly(n) + (n + 1)m2
ε(
√

cn log(n+1)
log c+log n+log log(n+1) )

+ poly((n + 1)m) ≤ 2ε′√n (2)

for any ε′ > 0, by choose small enough ε. Then we obtain the 2o(
√

n) algorithm for the
problem Holant(F ∪ S). It is a contradiction to the assumption that Holant(F ∪ S) has no
2o(

√
n) time algorithm. ◀

Using block interpolation via log size gadget does not improve the lower bound.

4.2 Lower bound for planar #3R-VC
We reduce pl-Holant({=2, =3, ̸=2, OR3}) to pl-Holant(=3 |OR2). We use the problem pl-
Holant(=3 |{OR2, [−1, 1]}) as an intermediate.

▶ Lemma 16. If #ETH holds, then there exists some constant ε > 0 such that planar
Holant(=3 |{OR2, [−1, 1]}) has no O(2ε

√
N ) time algorithm, where N denotes the number of

vertices of the instance.

Proof. We prove that pl-Holant({=2, =3, ̸=2, OR3}) ≤p pl-Holant(=3 |{OR2, [−1, 1]}) by
gadget constructions. For any instance G of pl-Holant({=2, =3, ̸=2, OR3}), we add a vertex
assigned the function =2 to divide each edge, and replace every occurrence of ̸=2 or OR3
by the corresponding {=3}|{OR2, =2, [−1, 1]}-gates shown in Figure 4. We generate a new
graph G′ which is an instance of pl-Holant({=2, =3}|{OR2, [−1, 1], =2}).

STACS 2024
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(a) Realizing ̸=2. (b) Realizing OR3.

Figure 4 The constructions of some gadgets with signature ̸=2 and OR3.

(a) Realizing (=2) in the
left.

(b) Realizing [1, 0, −1]. (c) Realizing (=2) in the right.

Figure 5 The constructions of gadgets with signature (=2).

Then we replace each the occurrence of =2 in the left of G′ by a {=3}|{=2}-gate shown
in Figure 5-(a) and each occurrence of =2 in the right of G′ by the {=3}|{OR2, [−1, 1]}-gate
shown in Figure 5-(c). The finial graph G′′ is an instance of Holant(=3 |{OR2, [−1, 1]}) .

So Holant({=2, =3, ̸=2, OR3}) ≤p Holant(=3 |{OR2, [−1, 1]}) with preserving planarity.
The reductions cost polynomial time, and G′′ has cN vertices for some constant c, where N

denotes the number of vertices in G. Suppose Holant(G′′) can be solved in O(2ε
√

cN ) time
for any ε > 0, then Holant(G) can be solved in poly(N) + O(2ε

√
cN ) = O(2ε′√N ) time for

any ε′ > 0. It is a contradiction to Lemma 9. ◀

Next we interpolate the function [−1, 1] in the context of planar Holant(=3 |OR2).

▶ Theorem 17. If #ETH holds, then there exists some constant ε > 0 such that planar
Holant(=3 |OR2) has no O(2ε

√
N

log N ) time algorithm, where N denotes the number of vertices
of the instance.

Proof. In the context of planar Holant(=3 |OR2), we build two recursive gadgets with

signatures A =
(

1 1
1 2

)
, B =

(
1 4
2 5

)
shown in Figure 6, and a start gadget with signature

s = [1, 1]T shown in Figure 2. det(A), det(B) ̸= 0 and det([As Bs]) ̸= 0.
Consider the sequence {Mi · · · M1s}i≥1 where Mi ∈ {A, B}. The elements in A, B, s are

positive, so any unary signature in this sequence is written as [z, w] with z, w > 0 and can be
normalized as [x, 1] with 0 < x ≤ 1. Let v1 = [x1, 1]T , v2 = [x2, 1]T be two unary functions
in the sequence. If det([Av1 Bv2]) = 0 then x1x2 + x1 = 3, that is a contradiction since
0 < x1, x2 ≤ 1. So, the conditions in Lemma 15 are satisfied. According to Lemma 15 and
Lemma 16, this theorem is true. ◀
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(a) With the signature [1, 1, 2].

(b) With the signature
(1 4

2 5

)
.

Figure 6 The recursive gadgets to simulate a sequence of unary functions of the form {[xi, 1]}i≥0

in the context of planar Holant(=3 |OR2).

4.3 Lower bound for planar #3R-Matching

We reduce from planar Holant(=3 |{OR2, [−1, 1]}). We firstly do a holographic transform-

ation defined by Q =
(

3√4
2 −

3√4
2

− 3
√

4 0

)
. Q⊗2(0, 1, 1, 1)T = ( 3√4)2

4 (−1, 2, 2, 0)T , Q(−1, 1)T =

3
√

4(−1, 1)T , and (=3)(Q−1)⊗3 = [4, 2, 1, 1]. Then pl-Holant(=3 |{OR2, [−1, 1]}) is reduced
to pl-Holant([4, 2, 1, 1]|{[−1, 2, 0], [−1, 1]}). The function [4, 2, 1, 1] can be realized by a
{[1, 1, 0, 0]}-gate showed in Figure 3 and the function [−1, 2, 0] can be realized by the function
[1, 1, 0, 0] connected with a unary function [2, −3], so pl-Holant([4, 2, 1, 1]|{[−1, 2, 0], [−1, 1]})
can be reduce to pl-Holant({[1, 1, 0, 0], [2, −3], [−1, 1]}) with preserving the 2Ω(

√
N) time lower

bound.

▶ Lemma 18. If #ETH holds, then there exists some constant ε > 0 such that planar
Holant({[1, 1, 0, 0], [2, −3], [−1, 1]}) has no O(2ε

√
N ) time algorithm, where N is the number

of vertices in the input.

Then we interpolate the two unary functions in the context of planar Holant({[1, 1, 0, 0]}).

▶ Theorem 19. If #ETH holds, then there exists some constant ε > 0 such that planar
Holant([1, 1, 0, 0]) has no O(2ε

√
N

log N ) time algorithm, where N is the number of vertices in
the input.

Proof. In the context of planar Holant([1, 1, 0, 0]), we construct two recursive gadgets A =(
2 1
1 0

)
, B =

(
6 3
3 2

)
and a start gadget s = [1, 1]T , showed in Figure 7. det(A), det(B) ̸= 0

and det([As Bs]) ̸= 0.
Consider the sequence {Mi · · · M1s}i≥1 where Mi ∈ {A, B}. Each unary function in the

sequence can be normalized to [x, 1] with x > 0. Let v1 = [x1, 1]T , v2 = [x2, 1]T be two
unary signatures in the sequence. If det([Av1 Bv2]) = 0 then x1 + 3x2 + 2 = 0, which is a
contradiction. So this lemma is true by Lemma 15 and Lemma 18. ◀
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(a) Start gadget with signa-
ture [1, 1].

(b) Recursive gadget with signa-

ture
(2 1

1 0

)
.

(c) Recursive gadget with signa-

ture
(6 3

3 2

)
where [2, 1, 0] is real-

ized by (b).

Figure 7 The gadgets to simulate a sequence of unary functions of the form {[xi, 1]}i≥0 in the
context of planar Holant({[1, 1, 0, 0]}).

5 Lower bounds for #pl-3R-VC and #pl-3R-Matching under rETH

It can be observed that the use of interpolation weakens the lower bounds with the
√

log N

factor in the exponent. In this section, based on a stronger assumption rETH, we build
polynomial reductions from Unique 3-SAT. We use the character that, for any instance G of
Unique 3-SAT, Holant(G) is either 0 or 1. In these reductions, we do not require the exact
values of the generated instances; we only need to decide whether the values are 0 or not.
Therefore, we can avoid the use of interpolation.

Unique 3-SAT can also be treated as a sub-problem of #3-SAT that is equivalent
to Holant({=1, =2, ...} ∪ {̸=2, OR1, OR2, OR3}), where OR1 = [0, 1]. According to the
reductions in [23], Holant({=1, =2, ...} ∪ {̸=2, OR1, OR2, OR3}) can be reduced to pl-
Holant({=2, =3, ̸=2, OR3}) in polynomial time by equivalent gadget constructions. That is,
given a 3-CNF formula ϕ with N variables and M clauses, we can transform ϕ to a planar
graph Gϕ with O((M + N)2) = O(M2) vertices in poly((M + N)2) = poly(M2) time. And
Gϕ is an instance of pl-Holant({=2, =3, ̸=2, OR3}). Suppose ϕ has at most one satisfying
assignment, that is, #SAT(ϕ) = Holant(Gϕ) is either 0 or 1.

In the following, we consider transforming Gϕ to some instance of #pl-3R-VC or #pl-3R-
Matching.

5.1 Lower bound for planar #3R-VC

According to the proof of Lemma 16, we transfer Gϕ to a graph G which is an instance of
pl-Holant(=3 |{OR2, [−1, 1]}). G has O(M2) vertices and Holant(G) = Holant(Gϕ) is either
0 or 1.

Let G′ be a graph constructed from G by replacing each occurrence of [1, −1] by a gadget
with signature [1, 1], showed in Figure 2. Since 1 ≡ −1 mod 2, (Holant(G′) mod 2) =
Holant(G). G′ is an instance of planar Holant(=3 |OR2). Suppose G has cM2 vertices for
some constant c. If we can compute Holant(G′) in 2o(

√
cM2) time, i.e., in 2ε

√
cM2 time for

any ε > 0, then we can compute #SAT(ϕ) by the above in 2ε
√

cM2 + poly(M2) ≤ 2ε′M time
for any ε′ > 0. It contradicts Lemma 8. So we can obtain the following lemma.

▶ Theorem 20. If rETH holds, then there exists some constant ε > 0 such that planar
Holant(=3 |OR2), i.e., counting the vertex covers of a given planar 3-regular graph, has no
O(2ε

√
N ) time randomized algorithm. N denotes the number of vertices of the input graph.
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5.2 Lower bound for planar #3R-Matching

We obtain the graph G from Gϕ as in Section 5.1. Then we do a holographic transformation

defined by Q =
(

3√4
2 −

3√4
2

− 3
√

4 0

)
. Because (=3)(Q−1)⊗3 = [4, 2, 1, 1], Q⊗2(0, 1, 1, 1)T =

( 3
√

4)−1(−1, 2, 2, 0)T or Q(−1, 1)T = 3
√

4(−1, 1)T The generated instance G1 is an instance of
Holant([4, 2, 1, 1]|{( 3

√
4)−1[−1, 2, 0], 3

√
4[−1, 1]}). Holant(G1) = Holant(G).

It is worth noting that the non-zero multiple factor to a function can not be ignored when
considering the value of an individual instance.

We replace each [4, 2, 1, 1] by the {[1, 1, 0, 0]}-gate showed in Figure 3, replace each
3
√

4[−1, 1] by [1, −1], and replace each ( 3
√

4)−1[−1, 2, 0] by [1, −2, 0]. The new graph, denoted
by G2, is an instance of planar Holant({[1, 1, 0, 0], [1, −1], [1, −2, 0]}). For some fixed integers
c, d, Holant(G1) = (−1)c( 3

√
4)d · Holant(G2). We further replace each occurrence of [1, −2, 0]

by the gadget showed in Figure 8-(a). This defines G3 with Holant(G2) = Holant(G3). G3
is an instance of planar Holant({[1, 1, 0, 0], [1, −1], [3, −2]}).

=!

=!

=" ="

=! [1,1]

[1,0, −1]

[1,0, −1]

[1,1,0,0] [1,1,0,0]

[1,1,0,0] [1,1,0,0] [3, −2]

[1, −1]

[1,1,0,0]

[1,1,0,0]

[1,1,0,0]

[1,1,0,0]

(a) Realizing [1, −2, 0].

=!

=!

=" ="

=! [1,1]

[1,0, −1]

[1,0, −1]

[1,1,0,0] [1,1,0,0]

[1,1,0,0] [1,1,0,0] [−2,3]

[1, −1]

[1,1,0,0]

[1,1,0,0]

[1,1,0,0]

[1,1,0,0]

(b) Realizing [3, 1].

=!

=!

=" ="

=! [1,1]

[1,0, −1]

[1,0, −1]

[1,1,0,0] [1,1,0,0]

[1,1,0,0] [1,1,0,0] [−2,3]

[1, −1]

[1,1,0,0]

[1,1,0,0]

[1,1,0,0]

[1,1,0,0]

(c) Realizing [4, 2].

Figure 8 The constructions of some gadgets.

We replace each occurrence of [1, −1] and each occurrence of [3, −2] by the gadget with
signature [4, 2] and the gadget with signature [3, 1], respectively. Such gadgets are showed in
Figure 8. This defines a new instance G′′ of planar Holant([1, 1, 0, 0]). Because 1 ≡ 4 mod 3,
2 ≡ −1 mod 3 and 1 ≡ −2 mod 3, so Holant(G′′) = Holant(G3) mod 3.

Since (−1)c( 3
√

4)d·Holant(G2) = Holant(G) is either 0 or 1, Holant(G) = 0 if ((−1)c( 3
√

4)d·
Holant(G3) mod 3) = 0, and Holant(G) = 1 if ((−1)c( 3

√
4)d · Holant(G3) mod 3) ̸= 0.

If Holant(G′′) can be computed in O(2ε(
√

cM2)) time for any ε > 0, then #SAT(ϕ) can
be solved in O(2ε′M ) time for any constant ε′ > 0. It is a contradiction to Lemma 8.

▶ Theorem 21. If rETH holds, then there exists some constant ε > 0 such that planar
Holant([1, 1, 0, 0]), i.e., counting all matchings of any given planar 3-regular graph, has no
O(2ε

√
N ) time randomized algorithm. N denotes the number of vertices in the input graph.
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6 Fine-grained dichotomy for symmetric Holant*

We develop a fine-grained dichotomy theorem for a class of counting problems: symmetric
Holant∗, from #3R-VC and #3R-Matching. A function is degenerate if it can be written as
the tensor power of some unary functions. A Holant problem defined by a set of degenerate
functions is trivially computed in polynomial time, so we only consider non-degenerate
functions.

▶ Theorem 22. Let F be a set of non-degenerate symmetric Boolean functions. Holant∗(F)
is computable in polynomial time if F satisfies one of the following cases.
1. Every function in F is of arity no more than two.
2. There exist two constants a and b, which are not both zero and depending only on F , such

that for all functions [x0, x1, ..., xn] ∈ F one of the two conditions is satisfied: (1) for
every k = 0, 1, ..., n − 2, there is axk + bxk+1 − axk+2 = 0; (2) n = 2 and the function
[x0, x1, x2] is of the form [2aλ, bλ, −2aλ] for some constant λ ∈ C.

3. For every function [x0, x1, ..., xn] ∈ F one of the two conditions is satisfied: (1) for every
k = 0, 1, ..., n − 2, there is xk + xk+2 = 0; (2) n = 2 and the function [x0, x1, x2] is of the
form [λ, 0, λ] for some constant λ ∈ C.

Otherwise, there exists some constant ε > 0 such that it has no 2εN time deterministic
algorithm under #ETH. N denotes the number of vertices in the input graph.

For planar Holant∗(F) which does not satisfy the tractable conditions, there also exists
some constant ε′ > 0 such that it has no 2ε′√N time deterministic algorithm under #ETH.
Besides, it has no 2ε′√N time randomized algorithm under rETH.

Proof. We follow the original proofs in [4] to develop a fine-grained dichotomy theorem for
the class symmetric Holant∗. Given the problem Holant∗(F), the problem has a polynomial
time algorithm [4] if F satisfies the tractable conditions; otherwise, Cai et al. used gadget
constructions and holographic transformations to build the polynomial reductions from
Holant∗(=3 |OR2) or Holant∗([1, 0, 0, 1]) to Holant∗(F). Since gadget constructions and
holographic transformations all preserve the 2Ω(N) or 2Ω(

√
N) time lower bound. Besides,

these reductions only use planar gadgets.
So the problem Holant∗(F), with F violating the tractable conditions, has the 2Ω(N) time

lower bound under #ETH. Moreover, it has the 2Ω(
√

N) time lower bound if the inputs are
restricted to planar graphs. ◀

7 Conclusion

Based on #ETH, we prove the tight 2Ω(N) time lower bounds for Holant(=3 |OR2) and
Holant([1, 0, 0, 1]) by Theorem 11 and Theorem 13. And we prove the tight 2Ω(

√
N) time lower

bounds for pl-Holant∗(=3 |OR2) and pl-Holant∗([1, 0, 0, 1]) under #ETH. We also present a
fine-grained dichotomy theorem for a class of counting problems, symmetric Holant∗.

One of the further works is the development of the fine-grained dichotomy theorem under
#ETH. The development is challenged when the inputs of counting problems are restricted
to planar graphs since we only prove the nearly tight 2Ω(

√
N

log N ) time lower bound for pl-
Holant(=3 |OR2) and pl-Holant([1, 0, 0, 1]). The problem that whether pl-Holant(=3 |OR2)
or pl-Holant([1, 0, 0, 1]) has 2o(

√
N) time algorithm or not, under #ETH, is still open. However,

this paper still presents a novelty application of polynomial interpolation, which can be
popularized to prove the nearly tight 2Ω(

√
N

log N ) time lower bound for more generalized
planar counting problems.
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Based on rETH, we prove the tight 2Ω(
√

N) time lower bound for #pl-3R-VC and #pl-
3R-Matching. The reductions under rETH need to pay close attention to the exact values of
the generated instances, so their generality is limited. However, these reductions still provide
a method that avoids interpolation for developing the tight lower bound for planar counting
problems.
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