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Abstract
We study the memory requirements of Nash equilibria in turn-based multiplayer games on possibly
infinite graphs with reachability, shortest path and Büchi objectives.

We present constructions for finite-memory Nash equilibria in these games that apply to arbitrary
game graphs, bypassing the finite-arena requirement that is central in existing approaches. We
show that, for these three types of games, from any Nash equilibrium, we can derive another Nash
equilibrium where all strategies are finite-memory such that the same players accomplish their
objective, without increasing their cost for shortest path games.

Furthermore, we provide memory bounds that are independent of the size of the game graph for
reachability and shortest path games. These bounds depend only on the number of players.

To the best of our knowledge, we provide the first results pertaining to finite-memory constrained
Nash equilibria in infinite arenas and the first arena-independent memory bounds for Nash equilibria.
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1 Introduction

Games on graphs. Games on graphs are a prevalent framework to model reactive systems,
i.e., systems that continuously interact with their environment. Typically, this interaction
is modelled as an infinite-duration two-player (turn-based) zero-sum game played on an
arena (i.e., a game graph) where a system player and an environment player are adversaries
competing for opposing goals (e.g., [18, 1, 14]), which can be modelled, e.g., by numerical
costs for the system player. Determining whether the system can enforce some specification
boils down to computing how low of a cost the system player can guarantee. We then
construct an optimal strategy for the system which can be seen as a formal blueprint for a
controller of the system to be implemented [24, 1]. For implementation purposes, strategies
should have a finite representation. We consider finite-memory strategies (e.g., [3]) which are
strategies defined by Mealy machines, i.e., automata with outputs on their edges.

Nash equilibria. In some applications, this purely adversarial model may be too restrictive.
This is the case in settings with several agents, each with their own objective, who are not
necessarily opposed to one another. Such situations are modelled by multiplayer non-zero-sum
games on graphs. The counterpart of optimal strategies in this setting is typically a notion
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of equilibrium. We focus on Nash equilibria [22] (NEs) in the following; an NE is a tuple of
strategies, one per player, such that no player has an incentive to unilaterally deviate from
their strategy.

Reachability games. We focus on variants of reachability games on possibly infinite arenas.
In a reachability game, the goal of each player is given by a set of target vertices to be visited.
We also study shortest path games, where players aim to visit their targets as soon as possible
(where time is modelled by non-negative edge weights), and Büchi games, where players aim
to visit their targets infinitely often. NEs are guaranteed to exist for these games: see [7, 12]
for reachability games and for shortest path games in finite arenas, the full version of this
work [20] for shortest path games in general and [25] for Büchi games.

Usually, finite-memory NEs for these games are given by strategies whose size depends
on the arena (e.g., [7, 26, 6]). These constructions consequently do not generalise to infinite
arenas. The main idea of these approaches is as follows. First, one shows that there exist
plays resulting from NEs with a finite representation, e.g., a lasso. This play is then encoded
in a Mealy machine. If some player is inconsistent with the play, the other players switch
to a (finite-memory) punishing strategy to sabotage the deviating player; this enforces the
stability of the equilibrium. This punishing mechanism is inspired by the proof of the folk
theorem for NEs in repeated games [15, 23].

Contributions. Our contributions are twofold. First, we present constructions for finite-
memory NEs for reachability, shortest path and Büchi games that apply to arbitrary arenas,
bypassing the finite-arena requirement that is central in existing approaches. More precisely,
for these three types of games, we show that from any NE, we can derive another NE where
all strategies are finite-memory and such that the same players accomplish their objective,
without increasing their cost for shortest path games. In other words, our constructions are
general and can be used to match or improve any NE cost profile.

Second, for reachability and shortest-path games, we provide memory bounds that are
independent of the size of the arena which are quadratic in the number of players.

Our key observation is that it is not necessary to fully implement the punishment
mechanism: some deviations do not warrant switching to punishing strategies. This allows
us to encode only part of the information in the memory instead of an entire play.

Related work. We refer to the survey [9] for an extensive bibliography on games played on
finite graphs, to [8] for a survey centred around reachability games and to [14] as a general
reference on games on graphs. We discuss three research direction related to this work.

The first direction is related to computational problems for NEs. In the settings we
consider, NEs are guaranteed to exist. However, NEs where no player satisfy their objective
can coexist with NEs where all players satisfy their objective [25, 26]. A classical problem is
to decide if there exists a constrained NE, i.e., such that certain players satisfy their objective
in the qualitative case or such that the cost incurred by players is bounded from above in a
quantitative case (e.g., [10, 2]). Deciding the existence of a constrained NE is NP-complete
for reachability and shortest path games [6] and is in P for Büchi objectives [26].

Second, the construction of our finite-memory NEs rely on characterisations of plays res-
ulting from NEs. Their purpose is to ensure that the punishment mechanism described above
can be used to guarantee the stability of an equilibrium. In general, these characterisations
can be useful from an algorithmic perspective; deciding the existence of a constrained NE
boils down to finding a play that satisfies the characterisation. Characterisations appear in
the literature for NEs [26, 27, 2], but also for other types of equilibria, e.g., subgame perfect
equilibria [5] and secure equilibria [10].
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Finally, there exists a body of work dedicated to better understanding the complexity of
optimal strategies in zero-sum games. We mention [17] for memoryless strategies, and [3]
and [4] for finite-memory strategies in finite and infinite arenas respectively. In finite arenas,
for the finite-memory case, a key notion is arena-independent finite-memory strategies, i.e.,
strategies based on a memory structure that is sufficient to win in all arenas whenever
possible. In this work, the finite-memory strategies we propose actually depend on the arena;
only their size does not. We also mention [19]: in games on finite arenas with objectives from
a given class, finite-memory NEs exist if certain conditions on the corresponding zero-sum
games hold.

Outline. Due to space constraints, we only provide an overview of our work: technical
details can be found in the full paper [20]. This work is structured as follows. In Sect. 2,
we summarise prerequisite definitions. We establish the existence of memoryless punishing
strategies by studying zero-sum games in Sect. 3. Characterisations of NEs are provided in
Sect. 4. We prove our main results on finite-memory NEs in reachability and shortest path
games in Sect. 5. Finally, Sect. 6 is dedicated to the corresponding result for Büchi games.

2 Preliminaries

Notation. We write N, R for the sets of natural and real numbers respectively, and let
R = R ∪ {+∞, −∞} and N = N ∪ {+∞}. For any n ∈ N, n ≥ 1, we let JnK = {1, . . . , n}.

Games. Let (V, E) be a directed graph where V is a (possibly infinite) set of vertices and
E ⊆ V × V is an edge relation. For any v ∈ V , we write SuccE(v) = {v′ ∈ V | (v, v′) ∈ E}
for the set of successor vertices of v. An n-player arena is a tuple A = ((Vi)i∈JnK, E), where
(Vi)i∈JnK is a partition of V . We assume that there are no deadlocks in the arenas we consider,
i.e., for all v ∈ V , SuccE(v) is not empty. We write Pi for player i.

A play starts in an initial vertex and proceeds as follows. At each round of the game,
the player controlling the current vertex selects a successor of this vertex and the current
vertex is updated accordingly. The play continues in this manner infinitely. Formally, a play
of A is an infinite sequence v0v1 . . . ∈ V ω such that (vℓ, vℓ+1) ∈ E for all ℓ ∈ N. For a play
π = v0v1 . . . and ℓ ∈ N, we let π≥ℓ = vℓvℓ+1 . . . denote the suffix of π from position ℓ and
π≤ℓ = v0 . . . vℓ denote the prefix of π up to position ℓ. A history is any finite non-empty prefix
of a play. We write Plays(A) and Hist(A) for the set of plays and histories of A respectively.
For i ∈ JnK, we let Histi(A) = Hist(A) ∩ V ∗Vi. For any history h = v0 . . . vr, we let first(h)
and last(h) respectively denote v0 and vr. For any play π, first(π) is defined similarly.

We formalise the goal of a player in two ways. In the qualitative case, we describe the
goal of a player by a set of plays, called an objective. We say that a play π satisfies an
objective Ω if π ∈ Ω. For quantitative specifications, we assign to each play a quantity using
a cost function costi : Plays(A) → R that Pi intends to minimise. Any goal expressed by an
objective Ω can be encoded using a cost function costi which assigns 0 to plays in Ω and 1
to others; aiming to minimise this cost is equivalent to aiming to satisfy the objective. For
this reason, we present further definitions using cost functions, and explicitly mention when
notions are specific to objectives.

A game is an arena augmented with the goals of each player. Formally, a game is a tuple
G = (A, (costi)i∈JnK) where A is an arena and, for all i ∈ JnK, costi is the cost function of Pi.
The cost profile of a play π is (costi(π))i∈JnK. Given two plays π and π′, we say that the cost
profile of π is preferable to that of π′ if costi(π) ≤ costi(π′) for all i ∈ JnK.

STACS 2024
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Objectives and costs. We consider a qualitative and quantitative formulation for the goal
of reaching a target, and the goal of infinitely often reaching a target. Let T ⊆ V denote a
set of target vertices. We often refer to the set T as a target.

We first consider the reachability objective, which expresses the goal of reaching T .
Formally, the reachability objective (for T ) Reach(T ) is defined by the set {v0v1v2 . . . ∈
Plays(A) | ∃ ℓ ∈ N, vℓ ∈ T}. The complement of the reachability objective Safe(T ) =
Plays(A) \ Reach(T ), which expresses the goal of avoiding T , is called the safety objective.

Second, we introduce a cost function formalising the goal of reaching a target as soon as
possible. In this context, we assign (non-negative) weights to edges via a weight function
w : E → N, which model, e.g., the time taken when traversing an edge. The weight function is
extended to histories as follows; for h = v0 . . . vr ∈ Hist(A), we let w(h) =

∑r−1
ℓ=0 w((vℓ, vℓ+1)).

We define the truncated sum cost function (for T and w), for all plays π = v0v1 . . ., by
TST

w(π) = w(π≤r) if r = min{ℓ ∈ N | vℓ ∈ T} exists and TST
w(π) = +∞ otherwise.

Finally, we define the Büchi objective, expressing the goal of reaching a target infinitely
often. Formally, the Büchi objective (for T ) Büchi(T ) is defined by the set {v0v1v2 . . . ∈
Plays(A) | ∀ ℓ ∈ N, ∃ ℓ′ ≥ ℓ, vℓ′ ∈ T}. The complement of a Büchi objective is a co-Büchi
objective: the co-Büchi objective (for T ), which expresses the goal of visiting T finitely often,
is defined as coBüchi(T ) = Plays(A) \ Büchi(T ).

We refer to games where all players have a reachability objective (resp. a truncated sum
cost function, a Büchi objective) as reachability (resp. shortest path, Büchi) games.

Let T1, . . . , Tn ⊆ V be targets for each player and π = v0v1 . . . ∈ Plays(A). For reachability
and shortest path games, we introduce the notation VisPlT1,...,Tn(π) = {i ∈ JnK | π ∈
Reach(Ti)} as the set of players whose targets are visited in π and VisPosT1,...,Tn

(π) =
{min{ℓ ∈ N | vℓ ∈ Ti} | i ∈ VisPl(π)} as the set of earliest positions at which targets are
visited along π. For Büchi games, we define InfPlT1,...,Tn

(π) = {i ∈ JnK | π ∈ Büchi(Ti)} as
the set of players whose target is visited infinitely often in π. When T1, . . . , Tn are clear
from the context, we omit them.

Strategies. Strategies describe the decisions of players during a play. These choices may
depend on the past, and not only the current vertex of the play. Formally, a strategy of
Pi in an arena A is a function σi : Histi(A) → V such that for all histories h ∈ Histi(A),
(last(h), σi(h)) ∈ E. A strategy profile is a tuple σ = (σi)i∈JnK, where σi is a strategy of Pi

for all i ∈ JnK. To highlight the role of Pi, we sometimes write σ = (σi, σ−i), where σ−i

denotes the strategy profile of the players other than Pi.
A play π = v0v1v2 . . . is consistent with a strategy σi of Pi if for all ℓ ∈ N, vℓ ∈ Vi

implies vℓ+1 = σi(π≤ℓ). A play is consistent with a strategy profile if it is consistent with all
strategies of the profile. Given an initial vertex v0 and a strategy profile σ, there is a unique
play Out(σ, v0) from v0 that is consistent with σ, called the outcome of σ from v0.

We identify two classes of strategies of interest in this work. A strategy σi is memoryless
if the moves it prescribes depend only on the current vertex, i.e., if for all h, h′ ∈ Histi(A), if
last(h) = last(h′), then σi(h) = σi(h′). We view memoryless strategies as functions Vi → V .

A strategy is finite-memory if it can be encoded by a Mealy machine, i.e., a finite
automaton with outputs. A Mealy machine (for Pi) is a tuple M = (M, minit, up, nxti) where
M is a finite set of memory states, minit is an initial memory state, up : M × V → M is a
memory update function and nxti : M × Vi → V is a next-move function.

To describe the strategy induced by a Mealy machine, we first define the iterated update
function ûp : V ∗ → M by induction. We write ε for the empty word. We let ûp(ε) = minit
and for all wv ∈ V ∗, ûp(wv) = up(ûp(w), v). The strategy σM

i induced by M is defined, for
all histories h = h′v ∈ Histi(A), by σM

i (h) = nxti(ûp(h′), v).
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v0 t12 v1

v2

t13

(a) A weighted arena with several NEs.

v0 v∞

v1 v2 v3 . . .t

(b) An infinite arena where there is no P2 optimal strategy
from v∞ in the zero-sum shortest path game with T = {t}.

Figure 1 Two weighted arenas. Circles and squares respectively denote P1 and P2 vertices. Edge
labels denote their weight and unlabelled edges have a weight of 1.

We say that a finite-memory strategy σi has memory size b ∈ N if there is some Mealy
machine (M, minit, up, nxti) encoding σi with |M | = b and b is the smallest such number.
▶ Remark 1. Some authors define the updates of Mealy machines using edges rather than
vertices. Any vertex-update Mealy machine can directly be seen as an edge-update Mealy ma-
chine. The converse is not true. In particular, a vertex-update Mealy machine representation
of a strategy can require a larger size than an equivalent edge-update Mealy machine.

Nash equilibria. Let G = (A, (costi)i∈JnK) be a game and v0 be an initial vertex. Given a
strategy profile σ = (σi)i∈JnK, we say that a strategy τi of Pi is a profitable deviation (with
respect to σ from v0) if costi(Out((τi, σ−i), v0)) < costi(Out(σ, v0)). A Nash equilibrium (NE)
from v0 is a strategy profile such that no player has a profitable deviation. Equivalently,
σ is an NE from v0 if, for all i ∈ JnK and all plays π consistent with σ−i starting in v0,
costi(π) ≥ costi(Out(σ, v0)). In general, NEs with incomparable cost profiles may coexist.

▶ Example 2. Consider the shortest path game played on the arena depicted in Fig. 1a where
T1 = {t12, t1} and T2 = {t12}. The memoryless strategy profile (σ1, σ2) with σ1(v0) = t12
and σ2(v1) = v2 is an NE from v0 with cost profile (3, 3). Another NE from v0 would be the
memoryless strategy profile (σ′

1, σ′
2) such that σ′

1(v0) = v1 and σ′
2(v1) = t1; the cost profile

of its outcome is (2, +∞), which is incomparable with (3, 3). ⌟

Zero-sum games. In a zero-sum game, two players compete with opposing goals. Formally,
a two-player zero-sum game is a two-player game G = (A, (cost1, cost2)) where A is a two-
player arena and cost2 = −cost1. We usually shorten the notation of a zero-sum game to
G = (A, cost1) due to the definition.

Let v0 ∈ V . If infσ1 supσ2 cost1(Out((σ1, σ2), v0)) = supσ2 infσ1 cost1(Out((σ1, σ2), v0)),
where σi is quantified over the strategies of Pi, we refer to the above as the value of v0 and
denote it by val(v0). A game is determined if the value is defined in all vertices.

A strategy σ1 of P1 (resp. σ2 of P2) is said to ensure α ∈ R from a vertex v0 if all plays
π consistent with σ1 (resp. σ2) from v0 are such that cost1(π) ≤ α (resp. cost1(π) ≥ α). A
strategy of Pi is optimal from v0 ∈ V if it ensures val(v0) from v0. A strategy is a uniform
optimal strategy if it ensures val(v) from v for all v ∈ V . Optimal strategies do not necessarily
exist, even if the value does.

▶ Example 3. Consider the two-player zero-sum game played on the weighted arena illustrated
in Fig. 1b where the cost function of P1 is TS{t}

w . Let α ∈ N \ {0}. It holds that val(vα) = α.
On the one hand, P1 can ensure a cost of α from vα by moving leftward in the illustration.
On the other hand, P2 can ensure a cost of α from vα with the memoryless strategy that

STACS 2024
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moves from v∞ to vα. It follows that this same memoryless strategy of P2 ensures α + 1 from
v∞. We conclude that val(v∞) = +∞. However, P2 cannot prevent t from being reached
from v∞, despite its infinite value. Therefore, P2 does not have an optimal strategy. ⌟

If the goal of P1 is formulated by an objective Ω, we say that a strategy σ1 of P1 (resp. σ2
of P2) is winning from v0 if all plays consistent with it from v0 satisfy Ω (resp. Plays(A) \ Ω).
The set of vertices from which P1 (resp. P2) has a winning strategy is called their winning
region denoted by W1(Ω) (resp. W2(Plays(A) \ Ω)). A strategy σ1 of P1 (resp. σ2 of P2) is a
uniform winning strategy if it is winning from all vertices in W1(Ω) (resp. W2(Plays(A) \ Ω)).

Given an n-player game G = (A, (costi)i∈JnK) where A = ((Vi)i∈JnK, E), we define the
coalition game (for Pi) as the game opposing Pi to the coalition of the other players, formally
defined as the two-player zero-sum game Gi = (Ai, costi) where Ai = ((Vi, V \ Vi), E). We
write P−i to refer to the coalition of players other than Pi

We also refer to two-player zero-sum games where the objective (resp. cost function) of
P1 is a reachability objective (resp. a truncated sum cost function, a Büchi objective) as
reachability (resp. shortest path, Büchi) games.

3 Zero-sum games: punishing strategies

In this section, we present results on strategies in zero-sum games. They are of interest for
the classical punishment mechanism used to construct NEs (described in Sect. 1). Intuitively,
this mechanism functions as follows: if some player deviates from the intended outcome
of the NE, the other players coordinate as a coalition to prevent the player from having a
profitable deviation. The strategy of the coalition used to sabotage the deviating player is
called a punishing strategy.

We explain that we can always find memoryless punishing strategies. First, we recall
classical results on reachability and Büchi games. Second, we describe memoryless punishing
strategies for shortest path games. We fix a two-player arena A = ((V1, V2), E) and a target
T ⊆ V for the remainder of this section.

Reachability and Büchi games. Zero-sum reachability games enjoy memoryless determinacy:
they are determined and for both players, there exist memoryless uniform winning strategies.
Furthermore, any vertex of P2 that is winning for P2 has a successor in this winning region.
Any strategy of P2 that selects only such successors can be shown to be winning from any
vertex in their winning region. The statements above follow, e.g., from the proof of [21,
Proposition 2.18]. We summarise this information in the following theorem.

▶ Theorem 4. Both players have memoryless uniform winning strategies in reachability games.
Let G = (A, Reach(T )), W2(Safe(T )) be the winning region of P2 in G, v0 ∈ W2(Safe(T ))
and σ2 be a strategy of P2. If for all histories h ∈ Hist2(A) starting in v0 containing only
vertices of W2(Safe(T )), we have σ2(h) ∈ W2(Safe(T )), then σ2 is winning from v0.

Büchi games also enjoy memoryless determinacy. If follows from the memoryless determ-
inacy of parity games [13], a class of objectives subsuming Büchi objectives.

▶ Theorem 5. Both players have memoryless uniform winning strategies in Büchi games.

Shortest path games. Let w : E → N be a weight function and G = (A, TST
w) be a zero-sum

shortest path game. First, we remark that G is determined. It can be shown using the
determinacy of games with open objectives [16]. Furthermore, P1 has a memoryless uniform
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optimal strategy. Intuitively, this is because P1 has no need to remember the past, and only
should follow a shortest path to a target from the current vertex. Although P2 does not
necessarily have an optimal strategy (Ex. 3), it can be shown that there exists a family of P2
memoryless strategies labelled by non-negative integers that are winning from any vertex
in the winning region of P2 in the reachability game (A, Reach(T )) and that ensure the
minimum of the integer and the value of the vertex from any other vertex. This information
is summarised in the following theorem. Its proof is provided in the full paper [20].

▶ Theorem 6. The game G is determined. A memoryless uniform optimal strategy exists
for P1. For all α ∈ N, there exists a memoryless strategy σα

2 of P2 such that, for all v ∈ V :
(i) σα

2 is winning from v for P2 in the game (A, Reach(T )) if v ∈ W2(Safe(T )) and (ii) σα
2

ensures a cost of at least min{val(v), α}.

4 Characterising Nash equilibria outcomes

We provide characterisations of plays that are outcomes of NEs in reachability, Büchi and
shortest path games. These characterisations relate to the corresponding zero-sum games:
they roughly state that a play is an NE outcome if and only if the cost incurred by a player
from a vertex of the play is less than the value of said vertex in the coalition game opposing
the player to the others. We provide a characterisation for reachability and Büchi games,
and then a characterisation for shortest path games. We fix an arena A = ((Vi)i∈JnK, E) and
targets T1, . . . , Tn ⊆ V for this entire section. Proofs of the results below are presented in
the full paper [20].

Reachability and Büchi games. We first consider reachability and Büchi games: their
respective NE outcome characterisations are close. Let G = (A, (Ωi)i∈JnK) be a reachability
or Büchi game. We denote by Wi(Ωi) the winning region of the first player of the coalition
game Gi = (Ai, Ωi), in which Pi is opposed to the other players. The characterisation follows.
It relies on the existence of punishing strategies. An identical characterisation for finite
arenas can be found in [11].

▶ Theorem 7. Assume G is a reachability (resp. Büchi) game. Let π = v0v1 . . . be a
play. Then π is the outcome of an NE from v0 if and only if, for all i ∈ JnK \ VisPl(π)
(resp. i ∈ JnK \ InfPl(π)), vℓ /∈ Wi(Reach(Ti)) (resp. vℓ /∈ Wi(Büchi(Ti))) for all ℓ ∈ N.

Shortest path games. Let w : E → N be a weight function. We now consider a shortest
path game G = (A, (TSTi

w )i∈JnK). For any v ∈ V , we denote by vali(v) the value of v in the
coalition game Gi = (Ai, TSTi

w ). We keep the notation Wi(Reach(Ti)) of the previous section.
In reachability and Büchi games, Thm. 7 indicates that the value in coalition games (i.e.,

who wins) is sufficient to characterise NE outcomes. It is also the case in finite arenas for
shortest path games [6, Theorem 15]. However, it is not in arbitrary arenas.

▶ Example 8. Let us consider the arena depicted in Fig. 1b and let T1 = {t} and T2 = {v0}.
It holds that val1(v0) = +∞ (it follows from val1(v∞) = +∞ which is shown in Ex. 3).
Therefore, the cost of all suffixes of the play vω

0 for P1 matches the value of their first vertex
v0. However, for any strategy profile resulting in vω

0 from v0, P1 has a profitable deviation in
moving to v∞ and using a reachability strategy to ensure a finite cost. ⌟

STACS 2024
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A value-based characterisation fails because of vertices v ∈ Wi(Reach(Ti)) such that
vali(v) is infinite. Despite the infinite value of such vertices, Pi has a strategy such that their
cost is finite no matter the behaviour of the others. To obtain a characterisation, we impose
additional conditions on players whose targets are not visited that are related to reachability
games. We obtain the following characterisation.

▶ Theorem 9. Let π = v0v1 . . . be a play. Then π is an outcome of an NE from v0
in G if and only (i) for all i ∈ JnK \ VisPl(π) and ℓ ∈ N, we have vℓ /∈ Wi(Reach(Ti))
and (ii) for all i ∈ VisPl(π) and all ℓ ≤ ri, it holds that TSTi

w (π≥ℓ) ≤ vali(vℓ) where
ri = min{r ∈ N | vr ∈ Ti}.

5 Finite-memory Nash equilibria in reachability games

In this section, we describe finite-memory strategy profiles for NEs with memory bounds
that depend solely on the numbers of players in reachability and shortest path games. These
finite-memory strategy profiles behave differently to those described for the characterisations
in Thm. 7 and Thm. 9. Intuitively, following a deviation of Pi, the coalition P−i does not
necessarily switch to a punishing strategy for Pi. Instead, they may attempt to keep following
a suffix of the equilibrium’s original outcome if the deviation does not appear to prevent it.

This section is structured as follows. We illustrate the constructions for reachability
and shortest path games with examples in Sect. 5.1. In Sect. 5.2, we provide templates for
finite-memory NEs and technical notions to define them. In Sect. 5.3, we show that we
can derive, from any NE outcome, another with a simple structure and provide the general
constructions for finite-memory NEs with memory size independent of the arena. The details
of the last two sections are provided in the full paper [20].

We fix an arena A = ((Vi)i∈JnK, E), target sets T1, . . . , Tn ⊆ V and a weight function
w : E → N for the remainder of this section. We introduce a new operator in this section.
Given two histories h = v0 . . . vℓ and h′ = vℓvℓ+1 . . . vr, we let h · h′ = v0 . . . vℓvℓ+1 . . . vr; we
say that h · h′ is the combination of h and h′. The combination h · π of a history h and a
play π such that last(h) = first(π) is defined similarly.

5.1 Examples
In this section, we illustrate the upcoming construction for finite-memory NEs for both
settings of interest. We start with a reachability game.

▶ Example 10. We consider the game on the arena depicted in Fig. 2a where the objective
of Pi is Reach({ti}) for i ∈ J4K. We present a finite-memory NE with outcome π =
v0v1v2t1v2v1v0tω

2 to illustrate the idea behind the upcoming construction.
First, observe that π can be seen as the combination of the simple history sg1 = v0v1v2t1

and the simple lasso sg2 = t1v2v1v0tω
2 . The simple history sg1 connects the initial vertex

to the first visited target, and the simple lasso sg2 connects the first target to the second
and contains the suffix of the play. Therefore, if we were not concerned with the stability of
the equilibrium, the outcome π could be obtained by using a finite-memory strategy profile
where all strategies are defined by a Mealy machine with state space J2K. Intuitively, these
strategies would follow sg1 while remaining in their first memory state 1, then, when t1 is
visited, they would update their memory state to 2 and follow sg2.

We build on these simple Mealy machines with two states. We include additional
information in each memory state. We depict a suitable Mealy machine state space and
update scheme in Fig. 2b. The rectangles grouping together states (P3, j) and (P4, j)
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v0t2 v1 v2 t1

v3 v4

v5t3 t4

(a) An arena. Circles, squares, diamonds and hexagons
are resp. P1, P2, P3, P4 vertices.

(P3, 1)

(P4, 1)

(P3, 2)

(P4, 2)

v2 v1

t1

t1

v2 v1

(b) An illustration of the update scheme of
a Mealy machine. Transitions that do not
change the memory state are omitted.

Figure 2 A reachability game and a representation of a Mealy machine update scheme suitable
for an NE from v0.

represent the memory state j of the simpler Mealy machine, for j ∈ J2K. The additional
information roughly encodes the last player to act among the players whose objective is not
satisfied in π. More precisely, an update is performed from the memory state (Pi, j) only if
the vertex fed to the Mealy machine appears in sgj for j ∈ J2K.

By construction, if Pi (among P3 and P4) deviates and exits the set of vertices of sgj

when in a memory state of the form (·, j), then the memory updates to (Pi, j) and does not
change until the play returns to some vertex of sgj (which is not possible here due to the
structure of the graph, but may be in general). For instance, assume P3 moves from v1 to
v3 after the history h = v0v1v2t1v2v1. Then the memory after h is in state (P3, 2) and no
longer changes from there on.

It remains to explain how the next-move function of the Mealy machine should be defined
to ensure an NE. Essentially, for a state of the form (Pi, j) and vertices in sgj , we assign
actions as in the simpler two-state Mealy machine described previously. On the other hand,
for a state of the form (Pi, j) and a vertex not in sgj , we use a memoryless punishing strategy
against Pi. In this particular case, we need only specify what P1 should do in v5. Naturally,
in memory state (Pi, j), P1 should move to the target of the other player. It is essential to
halt memory updates for vertices v3 and v4 to ensure the correct player is punished.

We close this example with comments on the structure of the Mealy machine. Assume the
memory state is of the form (Pi, j). If a deviation occurs and leads to a vertex of sgj other
than the intended one, then the other players will continue trying to progress along sgj and
do not specifically try punishing the deviating player. Similarly, if after a deviation leaving
the set of vertices of sgj (from which point the memory is no longer updated until this set is
rejoined), a vertex of sgj is visited again, then the players resume trying to progress along
this history and memory updates resume. In other words, these finite-memory strategies
do not pay attention to all deviations and do not have dedicated memory that commit to
punishing deviating players for the remainder of a play after a deviation. ⌟

We now give an example for the shortest path case. The Mealy machines we propose are
slightly larger in this case. We argue that it may be necessary to commit to a punishing
strategy if the set of vertices of the history the players want to progress along is left. This
requires additional memory states. Our example shows that it may be necessary to punish
deviations from players whose targets are visited, as they can possibly improve their cost.

▶ Example 11. We consider the shortest path game on the weighted arena depicted in
Fig. 3a where the target of Pi is Ti = {t, t12} for i ∈ J2K and T3 = {t} for P3. We argue that
a finite-memory NE with outcome π = v0v1v3tω from v0 cannot be obtained by adapting the
construction of Ex. 10. We provide an alternative construction that builds on the same ideas.
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v0 v1

v2

v3 t

v4t12

10

(a) A weighted arena. Edge labels indicate their
weight. Unlabelled edges have a weight of 1.

(P1, 1) (P2, 1)

(P3, 1)

P3 P2P1

t

v0, v1

v0
v1

v3 v3

t
v2
t12
v4

v2
t12
v4v2

t12
v4

(b) An illustration of the update scheme of a Mealy
machine. Transitions that do not change the memory
state are omitted.

Figure 3 A shortest path game and a representation of a Mealy machine update scheme suitable
for some NE from v0.

In this case, π is a simple lasso, much like the second part of the play in the previous
example. First, let us assume a Mealy machine similar to that of Ex. 10, i.e., such that it
tries to progress along π whenever it is in one of its vertices. The update scheme of such a
Mealy machine would be obtained by removing the transitions to states of the form Pi from
Fig. 3b (replacing them by self-loops).

If P3 uses a strategy based on such a Mealy machine, then P1 has a profitable deviation
from v0: if P1 moves from v0 to v2, then either P1 incurs a cost of 2 if P2 moves to t12 from
v2 or a cost of 3 if P2 moves to v3 as P3 would then move to t by definition of the Mealy
machine. To circumvent this issue, if Pi exits the set of vertices of π, we update the memory
to the punishment state Pi. This results in the update scheme depicted in Fig. 3b. Next-move
functions to obtain an NE can be defined as follows, in addition to the expected behaviour
to obtain π: for P2, nxt2((P1, 1), v2) = nxt2(P1, v2) = v3 and for P3, nxt3(P1, v3) = v4.

Similarly to the previous example, players do not explicitly react to deviations that
move to vertices of π; if P3 deviates after reaching v3 and moves back to v0, the memory of
the other players does not update to state P3. Intuitively, there is no need to switch to a
punishing strategy for P3 as going back to the start of the intended outcome is more costly
than conforming to it, preventing the existence of a profitable deviation.

This example differs slightly from the general construction below, which would decompose
π into two parts: a history v0v1v3t from the initial vertex to the first target and the suffix tω

of the play after all targets are visited. In full generality, this separation is needed [20]. ⌟

5.2 Segments and strategies
In Sect. 5.1, we illustrated that the finite-memory Nash equilibria we construct in reachability
and shortest path games share a common structure. In this section, we provide the generic
part of these Mealy machines. We first introduce decompositions of plays. We then partially
define Mealy machines encoding strategies based on so-called simple decompositions.

Decomposing plays. We fix π = v0v1 . . . ∈ Plays(A) for this whole section. We first
introduce some terminology. A play or history is simple if no vertex occurs twice within.
A play is a simple lasso if it is of the form pcω where pc ∈ Hist(A) is a simple history. A
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segment of π is either a suffix π≥ℓ of π (ℓ ∈ N) or any history of the form vℓ . . . vℓ′ (ℓ ≤ ℓ′).
We denote segments by sg to avoid distinguishing finite and infinite segments of plays in the
following. A segment is simple if it is a simple history, a simple play or a simple lasso.

A (finite) segment decomposition of π is a sequence D = (sg1, . . . , sgk) where sgj is
a history for all j < k, sgk is a suffix of π, last(sgj) = first(sgj+1) for all j < k and
π = sg1 · . . . · sgk. We assume that among the histories of a decomposition, there are none of
the form h = v, i.e., there are no trivial segments. The segment decomposition D is simple
if all segments within are simple. If there is some NE outcome with a given cost profile,
we show that there is an NE outcome with a preferable cost profile that admits a simple
segment decomposition. To obtain finite-memory NEs, we build on NE outcomes with a
simple segment decomposition.

Finite-memory decomposition-based strategies. Let π = v0v1 . . . ∈ Plays(A) be a play
that admits a simple segment decomposition D = (sg1, . . . , sgk). We partially define a Mealy
machine that serves as the basis for the finite-memory NEs described in the next section.

The memory state space is made of pairs of the form (Pi, j) for some j ∈ JkK. We do not
consider all such pairs, e.g., it is not necessary in Ex. 10. Therefore, we parameterise our
construction by a non-empty set of players I ⊆ JnK. We consider the memory state space
M I,D = {Pi | i ∈ I} × JkK. The initial state mI,D

init is any state of the form (Pi, 1) ∈ M I,D.
The update function upI,D behaves similarly to Fig. 2b. It keeps track of the last player

in I to have moved and the current segment. Formally, for any (Pi, j) ∈ M I,D and vertex
v occurring in sgj , we let upI,D((Pi, j), v) = (Pi′ , j′) where (i) i′ is such that v ∈ Vi′ if
v ∈

⋃
i′′∈I Vi′′ and otherwise i′ = i, and (ii) j′ = j + 1 if j < k and v = last(sgj) and j′ = j

otherwise. Updates from (Pi, j) for a vertex that does not appear in sgj are left undefined.
The next-move function nxtI,D

i of Pi proposes the next vertex of the current segment.
Formally, given a memory state (Pi′ , j) ∈ M I,D and a vertex v ∈ Vi that occurs in sgj ,
we let nxtI,D

i ((Pi′ , j), v) be the vertex occurring after v in sgj+1 if j < k and v = last(sgj),
and otherwise we let it be the vertex occurring after v in sgj . Like updates, the next-move
function is left undefined in memory states (Pi, j) for a vertex that does not appear in sgj .

5.3 Nash equilibria
We now present finite-memory NEs with memory bounds depending only on the number of
players. We first derive, given an NE outcome, another NE outcome that admits a simple
decomposition. We impose additional technical properties on these decompositions to define
NEs with strategies based on them. We then define finite-memory strategies based on these
simple decompositions by extending the partial definition above to obtain finite-memory
NEs. We deal with reachability games then shortest paths games.

Simplifying outcomes. We explain that from any NE outcome in a shortest path game, we
can derive another NE outcome with a preferable cost profile that admits a simple segment
decomposition. The result extends to reachability games. We consider two cases.

First, we consider NE outcomes such that all players who see their target have the initial
vertex of the outcome in it, generalising the case where no players see their targets. From
these outcomes, we can directly derive an NE outcome that is a simple lasso or simple play.

▶ Lemma 12. Let π′ ∈ Plays(A) be the outcome of an NE from v0 ∈ V in a shortest
path game G = (A, (TSTi

w )i∈JnK) such that VisPos(π′) ⊆ {0}. There exists an NE outcome
π ∈ Plays(A) from v0 with the same cost profile as π′ that is a simple lasso or a simple play
and such that VisPos(π) ⊆ {0}. In particular, π has the simple segment decomposition (π).
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We now consider NE outcomes such that some player sees their target later than in the
initial vertex. In this case, we can derive an NE outcome with a simple decomposition such
that the simple histories of the decomposition connect the first target elements that are
visited. We impose a technical condition on these simple histories, to ensure that no player
has a profitable deviation by skipping ahead in a segment.

▶ Lemma 13. Let π′ be the outcome of an NE from v0 ∈ V in a shortest path game
G = (A, (TSTi

w )i∈JnK). Assume that |VisPos(π′) \ {0}| = k > 0. There exists an NE outcome π

from v0 with VisPos(π) \ {0} = {ℓ1 < . . . < ℓk} that admits a simple segment decomposition
(sg1, . . . , sgk+1) such that (i) (sg1, . . . , sgk · sgk+1) is also a simple decomposition of π; (ii)
for all j ∈ JkK, sg1 · . . . · sgj = π≤ℓj

; (iii) for all j ∈ JkK, w(sgj) is minimum among all
histories that share their first and last vertex with sgj and traverse a subset of the vertices
occurring in sgj; and (iv) for all i ∈ JnK, TSTi

w (π) ≤ TSTi
w (π′).

Reachability games. We fix a reachability game G = (A, (Reach(Ti))i∈JnK). We construct
finite-memory NEs by extending the partially-defined Mealy machines of Sect. 5.2 and
generalising the strategies presented in Ex. 10. The main result is the following.

▶ Theorem 14. Let σ′ be an NE from a vertex v0. There exists a finite-memory NE
σ from v0 such that VisPl(Out(σ, v0)) = VisPl(Out(σ′, v0)) where each strategy of σ has a
memory size of at most n2. Precisely, a memory size of max{1, n − |VisPl(Out(σ′, v0))|} ·
max{1, |VisPos(Out(σ′, v0)) \ {0}|} suffices.

Proof sketch. Consider an NE outcome π and its simple decomposition D = (sg1, . . . , sgk)
provided by Lem. 12 and Lem. 13 (point (i)) for Out(σ′, v0). The general idea of the
construction is to use the state space M I,D where I ⊆ JnK is the set of players who do not see
their targets if it is non-empty, or a single arbitrary player if all players see their target. Let
i′ ∈ I and j ∈ JkK. We extend upI,D to leave unchanged the memory state if in state (Pi′ , j)
whenever the current vertex is not in sgj . In this same situation, the next-move functions
nxtI,D

i are extended to assign moves from a uniform memoryless winning strategy of the
second player in the coalition game Gi′ = (Ai′ , Reach(Ti′)) (which exists by Thm. 4). The
equilibrium’s stability is a consequence of Thm. 7 and the second statement of Thm. 4. ◀

We remark that Thm. 14 provides a memory bound that is linear in the number of players
when no players see their target and when all players see their target.

▶ Corollary 15. If there exists an NE from v0 such that no (resp. all) players see their target
in its outcome, then there is a finite-memory NE from v0 such that no (resp. all) players see
their target in its outcome such that all strategies have a memory size of at most n.

Shortest path games. We now fix a shortest path game G = (A, (TSTi
w )i∈JnK). We provide

an alternative generalisation of the partially-defined Mealy machines described in Sect. 5.2,
this time generalising the strategies provided in Ex. 11. Ex. 11 shows that only altering the
construction of Thm. 14 to also monitor (and punish) players whose targets are visited is not
sufficient. To overcome this, we change the approach so players commit to punishing any
player who exits the current segment of the intended outcome.

▶ Theorem 16. Let σ′ be an NE from a vertex v0. There exists a finite-memory NE σ from
v0 such that VisPl(Out(σ, v0)) = VisPl(Out(σ′, v0)) and, for all i ∈ JnK, TSTi

w (Out(σ, v0)) ≤
TSTi

w (Out(σ′, v0)) where each strategy of σ has a memory size of at most n2 + 2n. Precisely,
a memory size of n · (|VisPos(Out(σ′, v0)) \ {0}| + 2) suffices.
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Proof sketch. The construction is similar to that of Thm. 14. We obtain a suitable NE
outcome π and its decomposition D in the same way, and build on M I,D, upI,D, nxtI,D

i with
I = JnK. If we apply Lem. 13 here, we consider the first decomposition the lemma provides
and not the one from point (i) of the lemma. Intuitively, merging the last two segments,
as done in the decomposition from Lem. 13, point (i), prevents players from reacting to
deviations within the merged segment and could enable a profitable deviation.

In this case, instead of freezing memory updates if the current segment is left when
the memory state is of the form (Pi, j), the memory switches to a memory state Pi that
is never left. This switch can only occur if Pi deviates. The next-move function, for this
memory state, assigns moves from a punishing strategy obtained from the coalition game
Gi = (Ai, TSTi

w ) by Thm. 6, chosen to hinder Pi, ensuring that in case of a deviation, Pi’s
cost is at least that of the original outcome.

The conditions imposed on outcomes of Lem. 13 (notably condition (iii)) and the charac-
terisation of Thm. 9 imply the correctness of this construction. Condition (iii) of Lem. 13
ensures that a player cannot reach their target with a lesser cost by traversing the vertices
within a segment in another order, whereas the characterisation of Thm. 9 guarantees that
the punishing strategies sabotage deviating players sufficiently. ◀

In this case, Thm. 16 provides the memory bound 2n if no players visit their target.
However, the construction of Thm. 9 applies to such NEs in shortest path games.

▶ Corollary 17. If there exists an NE from v0 such that no players see their target in its
outcome, then there is a finite-memory NE from v0 such that no players see their target in
its outcome such that all strategies have a memory size of at most n.

6 Finite-memory Nash equilibria in Büchi games

We now present finite-memory NEs for Büchi games. We illustrate in Sect. 6.1 that the
constructions for reachability and shortest path games do not extend directly to Büchi
games. We build on the techniques of Sect. 5.2 to provide finite-memory NEs in Sect. 6.2.
We fix an arena A = ((Vi)i∈JnK, E), targets T1, . . . , Tn ⊆ V and the Büchi game G =
(A, (Büchi(Ti))i∈JnK) for this entire section. Proofs and details of this section are presented
in the full version of the paper [20].

6.1 Examples
For reachability and shortest path games, we relied on simple segment decompositions
between consecutive targets along some NE outcome to obtain finite-memory NEs. Our
strategies based on these decompositions do not explicitly punish players who deviate. We
show that this can be problematic when dealing with Büchi objectives.

▶ Example 18. Consider the game on the arena depicted in Fig. 4a where the objectives of
P1 and P2 are Büchi({v1}) and Büchi({v2}) respectively. The play v0v1vω

2 is the outcome of
an NE by Thm. 7. To mimic the construction underlying Thm. 14 and Thm. 16, we would
consider a finite-memory strategy based on the decomposition D = (v0v1v2, vω

2 ). However, if
P2 uses such a strategy, P1 would enforce their objective via the memoryless strategy σ1 such
that σ2(v1) = v0, resulting in the outcome (v0v1)ω, as P2 would not punish the deviation. ⌟

In the previous example, the issue with the proposed decomposition lies with the oc-
currence of a target of P2, whose objective is not satisfied in the intended outcome, within
some segment of the decomposition. To circumvent this issue, we construct strategies that
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v0 v1 v2

(a) An arena where a direct segment-based ap-
proach fails to obtain an NE.

v0 v1

v2

v3

v4

(b) An arena on which players should commit to
punishing strategies once a segment is left.

Figure 4 Two arenas. Circle, squares and diamonds are resp. P1, P2 and P3 vertices.

follow two phases in the following section. In their first phase, these strategies punish any
deviations from the intended outcome. For their second phase, we adapt the strategies of
Section 5.2. To ensure no profitable deviations may appear in the second phase, we start it
at a point of the intended outcome from which no more targets of losing players occur.

We close this section by illustrating that the punishing mechanism used for finite-memory
NEs in reachability games does not suffice, i.e., players must commit to their punishing
strategies once some player exits the current segment in the second phase mentioned above.

▶ Example 19. Consider the game on the arena depicted in Fig. 4b where the objectives of
P1, P2 and P3 are Büchi({v1}) and Büchi({v2, v4}) and Büchi({v4}) respectively. The play
π = (v0v1v3)ω is the outcome of an NE by Thm. 7. Consider a P1 strategy based on the
decomposition (π) that uses the punishment mechanism we introduced for reachability games.
Then the behaviour of P1 does not change if P2 moves from v0 to v2 instead of v1: P1 would
move from v1 to v3 and then to v0. It follows that P2 would have a profitable deviation no
matter the strategy of P3.

To obtain an NE where all players use strategies based on the decomposition (π), P1,
must commit to a punishing strategy for P2 if v2 is visited. For P2 and P3 we consider the
memoryless strategies σ2 and σ3 such that σ2(v0) = σ3(v2) = v1. It is easy to check that
this is an NE. ⌟

6.2 Finite-memory Nash equilibria
In this section, we establish the counterpart of Thm. 14 and Thm. 16 for Büchi games. It is
split in two statements (Thm. 21 and Thm. 23) that depend on the form of the outcome of
the considered NE. Each case is considered in a dedicated section. First, we consider NE
outcomes with a vertex that occurs infinitely often within. We then show the result for NE
outcomes without infinitely occurring vertices. For both cases, we first provide NE outcomes
with a simple structure and then construct corresponding finite-memory NEs.

We consider alternative segment decompositions in this section. These decompositions
differ from those defined in Sect. 5 in the following way. First, we allow infinite segment
decompositions and tolerate decompositions such that their first segment is trivial. We
extend the definition of simple segment to include simple cycles.

Throughout this section, we assume without loss of generality that any considered NE
outcome π is such that InfPl(π) is not empty. This can be ensured by adding a new player
for whom all vertices are targets if necessary.

Outcomes with an infinitely occurring vertex. The first case we consider is a generalisation
of the finite-arena case: in a finite arena, all plays contain some infinitely occurring vertex.
To obtain finite-memory NEs, we use the two-phase mechanism presented previously with
an adaptation of the decomposition-based finite-memory strategies of Section 5.2 that can
handle infinite ultimately periodic decompositions.
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The following lemma provides NE outcomes with a simple structure on which we rely to
define finite-memory NEs.

▶ Lemma 20. Let π′ be the outcome of an NE from v0 ∈ V in the Büchi game G such that
some vertex occurs infinitely often in π′ and let k = |InfPl(π′)|. Then there exists an NE
outcome π from v0 with InfPl(π) = InfPl(π′) such that π admits an infinite simple segment
decomposition (sg0, sg1, . . .) such that (i) for all j ≥ 1 and all i ∈ JnK \ InfPl(π), no vertex of
Ti occurs in sgj and (ii) for all j ≥ 1, sgj = sgj+k.

We now state the main theorem of this section.

▶ Theorem 21. Let σ′ be an NE from a vertex v0 such that some vertex occurs infinitely
often in its outcome. There exists a finite-memory NE σ from v0 such that InfPl(Out(σ, v0)) =
InfPl(Out(σ′, v0)). If A is finite, a memory size of at most |V | + n2 + n suffices.

Proof sketch. Let π and D = (sg0, sg1, . . .) be given by Lem. 20 for Out(σ′, v0) and let
k = |InfPl(π)|. We obtain finite-memory NEs via the the two-phase finite-memory strategies
described in Sect. 6.1. For the first phase, we follow the history sg0. For the second phase,
we switch to a strategy that is based on the decomposition D′ = (sg1, sg2, . . .). Although
this decomposition is infinite, we can construct a finite-memory strategy based on D by
exploiting its ultimately periodic nature. To achieve this, we alter the definitions of Sect. 5.2:
when reading last(sgk) in memory states of the form (Pi, k), we update the memory to an
appropriate memory state of the form (Pi′ , 1).

By completing the behaviour described above with switches to memoryless punishing
strategies (Thm. 5) if sg0 is not accurately simulated or if a player exits the current segment,
we obtain a finite-memory NE. The stability of the NE follows from Thm. 7 for deviations
that induce the use of punishing strategies and the property that no targets of losing players
occur in segments sgj , j ≥ 1 for other deviations. ◀

With the classical approach to derive NEs from outcomes with a finite representation
(Sect. 1), we can also design finite-memory NEs for outcomes obtained by Lem. 20. If |V | is
finite, the resulting strategies of this approach have a memory size of at most (|V | + 2)n. It
follows our construction is preferable if there are few players compared to vertices.

Outcomes without an infinitely occurring vertex. We now deal with NE outcomes that
can only appear in infinite arenas. We once again rely on a two-phase mechanism where the
first phase is unchanged. The second phase is loosely based on an infinite decomposition.
Intuitively, we allocate infinitely many disjoint segments to a same group of memory state.
Due to this, players may not react to someone exiting the current segment.

The following lemma is the counterpart of Lemma 20 for this case.

▶ Lemma 22. Let π′ be the outcome of an NE from v0 ∈ V in the Büchi game G such that
no vertex occurs infinitely often in π′. Then there exists an NE outcome π from v0 with
InfPl(π) = InfPl(π′) such that π admits an infinite simple segment decomposition (sg0, sg1, . . .)
such that (i) for all j ≥ 1 and all i ∈ JnK \ InfPl(π), no vertex of Ti occurs in sgj and (ii) for
all j ̸= j′, sgj and sgj′ have no vertices in common if j and j′ have the same parity.

We can now state the last theorem of this section.

▶ Theorem 23. Let σ′ be an NE from a vertex v0 such that no vertex occurs infinitely often
in its outcome. There exists a finite-memory NE σ from v0 such that InfPl(Out(σ, v0)) =
InfPl(Out(σ′, v0)).
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Proof sketch. Let π be the play and D = (sg0, sg1, . . .) be the decomposition of π given by
Lem. 22 for Out(σ′, v0). We rely once again on strategies with two phases. The first phase
is defined exactly as for Thm. 21. For the second phase, we also adapt the definitions of
Sect. 5.2. The update and next-move function in the original definitions are defined for
each memory state of the form (Pi, j) based on the segment sgj . In this case, we define the
update and next-move functions in memory states of the form (Pi, 1) (resp. (Pi, 2)) based on
all odd segments (resp. all even segments besides sg0) of D simultaneously, such that when
the end of an even segment is reached in a memory state of the form (Pi, 2), the memory
is updated to a state of the form (Pi′ , 1). The fact all odd (resp. even) segments traverse
pairwise disjoint set of vertices ensures that the next-move function is well-defined.

If at some point in the second phase, a vertex that does not occur in an odd segment is
read in a memory state (Pi, 1), the memory is updated to a punishing state Pi, such that
players attempt to punish Pi with a memoryless strategy (Thm. 5). We proceed similarly for
the even case. The resulting finite-memory strategy profile is an NE from v0. On the one
hand, any deviation such that the memory never updates to a punishing state must only have
vertices that occur in segment sgj with j ≠ 0 in the limit. By choice of D, this deviation
cannot be profitable. Otherwise, it can be argued that the punishing strategy does in fact
sabotage the deviating player, so long as their objective is not satisfied in π, by Thm. 7. ◀
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