
Tree-Layout Based Graph Classes: Proper Chordal
Graphs
Christophe Paul #Ñ

CNRS, Université Montpellier, France

Evangelos Protopapas #

CNRS, Université Montpellier, France

Abstract
Many important graph classes are characterized by means of layouts (a vertex ordering) excluding
some patterns. For example, a graph G = (V, E) is a proper interval graph if and only if G has a
layout L such that for every triple of vertices such that x ≺L y ≺L z, if xz ∈ E, then xy ∈ E and
yz ∈ E. Such a triple x, y, z is called an indifference triple. In this paper, we investigate the concept
of excluding a set of patterns in tree-layouts rather than layouts. A tree-layout TG = (T, r, ρG) of
a graph G = (V, E) is a tree T rooted at some node r and equipped with a one-to-one mapping
ρG between V and the nodes of T such that for every edge xy ∈ E, either x is an ancestor of y,
denoted x ≺TG y, or y is an ancestor of x. Excluding patterns in a tree-layout is now defined using
the ancestor relation. This leads to an unexplored territory of graph classes. In this paper, we
initiate the study of such graph classes with the class of proper chordal graphs defined by excluding
indifference triples in tree-layouts. Our results combine characterization, compact and canonical
representation as well as polynomial time algorithms for the recognition and the graph isomorphism
of proper chordal graphs. For this, one of the key ingredients is the introduction of the concept of
FPQ-hierarchy generalizing the celebrated PQ-tree data-structure.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Mathematics of
computing → Combinatorial algorithms; Mathematics of computing → Graph theory; Theory of
computation → Data structures design and analysis; Theory of computation → Graph algorithms
analysis

Keywords and phrases Graph classes, Graph representation, Graph isomorphism

Digital Object Identifier 10.4230/LIPIcs.STACS.2024.55

Related Version Full Version: https://arxiv.org/abs/2211.07550

Funding Christophe Paul: Research supported by ANR-DFG project UTMA ANR-20-CE92-0027.
Evangelos Protopapas: Research supported by ANR-DFG project UTMA ANR-20-CE92-0027.

1 Introduction

Context. A graph class C is hereditary if for every graph G ∈ C and every induced subgraph
H of G, which we denote H ⊆i G, we have that H ∈ C. A minimal forbidden subgraph
for C is a graph F /∈ C such that for every induced subgraph H ⊆i F , H ∈ C. Clearly, a
hereditary graph class C is characterized by its set of minimal forbidden subgraphs. Let F
be a set of graphs that are pairwise not induced subgraphs of one another. We say that a
graph G is an F-free graph, if it does not contain any graph of F as an induced subgraph.
If F = {H}, then we simply say that G is H-free if H ̸⊆i G. Important graph classes are
characterized by a finite set F of minimal forbidden subgraphs. A popular example is the
class of cographs [32, 45]. A graph G is a cograph if either G is the single vertex graph, or
it is the disjoint union of two cographs, or its complement is a cograph. It is well known
that G is a cograph if and only if it is a P4-free graph [32, 11]. As witnessed by chordal
graphs [26, 3], not every hereditary graph family is characterized by excluding a finite set of

© Christophe Paul and Evangelos Protopapas;
licensed under Creative Commons License CC-BY 4.0

41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024).
Editors: Olaf Beyersdorff, Mamadou Moustapha Kanté, Orna Kupferman, and Daniel Lokshtanov;
Article No. 55; pp. 55:1–55:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:christophe.paul@lirmm.fr
http://www.lirmm.fr/~paul
https://orcid.org/0000-0001-6519-975X
mailto:vagelis.protopapas@gmail.com
https://orcid.org/0000-0003-0294-2985
https://doi.org/10.4230/LIPIcs.STACS.2024.55
https://arxiv.org/abs/2211.07550
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

55:2 Tree-Layout Based Graph Classes: Proper Chordal Graphs

minimal forbidden subgraphs: a graph is chordal if it does not contain a chordless cycle of
length at least 4 as an induced subgraph.

To circumvent this issue, Skrien [44] and Damaschke [13] proposed to embed graphs in
some additional structure such as vertex orderings, also called layouts. An ordered graph is
then defined as a pair (G, ≺G) such that ≺G is a total ordering of the vertex set V of the
graph G = (V, E). We say that an ordered graph (H, ≺H) is a pattern of the ordered graph
(G, ≺G), which we denote by (H, ≺H) ⊆p (G, ≺G), if H ⊆i G and for every pair of vertices
x and y of H, x ≺G y if and only if x ≺H y. A graph G excludes the pattern (H, ≺H), if
there exists a layout ≺G of G such that (H, ≺H) ̸⊆p (G, ≺G). More generally, a graph class
C excludes a set P of patterns if for every graph G ∈ C, there exists a layout ≺G such that
for every pattern (H, ≺H) ∈ P , (H, ≺H) ̸⊆p (G, ≺G). We let L(P) denote the class of graphs
excluding a pattern from P. Hereafter, a small size pattern (H, ≺H) will be encoded by
listing its set of (ordered) edges and non-edges. There are two patterns on two vertices and
eight patterns on three vertices (see Figure 1).

1 ≺ 2
⟨12⟩

1 ≺ 2
⟨12⟩

1 ≺ 2 ≺ 3
⟨12, 13, 23⟩

1 ≺ 2 ≺ 3
⟨12, 13, 23⟩

1 ≺ 2 ≺ 3
⟨12, 13, 23⟩

1 ≺ 2 ≺ 3
⟨12, 13, 23⟩

1 ≺ 2 ≺ 3
⟨12, 13, 23⟩

1 ≺ 2 ≺ 3
⟨12, 13, 23⟩

1 ≺ 2 ≺ 3
⟨12, 13, 23⟩

1 ≺ 2 ≺ 3
⟨12, 13, 23⟩

Figure 1 The 10 patterns on at most 3 vertices. L(⟨12, 13, 23⟩) is the class of chordal graphs.

Interestingly, it is known that chordal graphs are characterized by excluding a unique
pattern: Pchordal =

{
⟨12, 13, 23⟩

}
, see Figure 1 [13, 15]. This characterization relies on the

fact that a graph is chordal if and only if it admits a simplicial elimination ordering 1 [14, 43].
Ginn [20] proved that for every pattern (H, ≺H) such that H is neither the complete graph
nor the edge-less graph, characterizing the graph family L((H, ≺H)) requires an infinite
family of forbidden induced subgraphs. Observe however that excluding a unique pattern is
important for that result: cographs are characterized as P4-free graphs (see discussion above)
but needs a set Pcograph of several excluded patterns (see Figure 2) to be characterized [13]:

Pcograph =
{

⟨12, 13, 23⟩, ⟨12, 13, 23⟩,
⟨12, 13, 14, 23, 24, 34⟩, ⟨12, 13, 14, 23, 24, 34⟩, ⟨12, 13, 14, 23, 24, 34⟩

}

1 ≺ 2 ≺ 3 ≺ 4
⟨12, 13, 14, 23, 24, 34⟩

1 ≺ 2 ≺ 3 ≺ 4
⟨12, 13, 14, 23, 24, 34⟩

1 ≺ 2 ≺ 3 ≺ 4
⟨12, 13, 14, 23, 24, 34⟩

Figure 2 The three size 4 forbidden patterns of cographs.

In [16], Duffus et al. investigate the computational complexity of the recognition problem
of L((H, ≺H)) for a fixed ordered graph (H, ≺H). They conjectured that if H is neither the
complete graph nor the edge-less graph, then recognizing L((H, ≺H)) is NP-complete if H or

1 A vertex is simplicial if its neighbourhood induces a clique. A simplicial elimination ordering can
be defined by a layout ≺G of G = (V, E) such that every vertex x is simplicial in the subgraph
G[{y ∈ V | y ≺G x}].

C. Paul and E. Protopapas 55:3

its complement is 2-connected. Hell et al. [28] have recently shown that if P only contains
patterns of size at most 3, then L(P) can be recognized in polynomial time using a 2-SAT
approach. Besides chordal graphs (see discussion above), these graph classes comprise very
important graph classes, among others:

Interval graphs [27, 2, 22] exclude Pint =
{

⟨12, 13, 23⟩, ⟨12, 13, 23⟩
}

[40]: A graph is an
interval graph if it is the intersection graph of a set of intervals on the real line. The
existence of a Pint-layout for interval graphs follows from the fact that a graph is an
interval graph if and only if it is chordal and co-comparability.
Proper interval graphs [41, 42] exclude Pproper = Pint ∪

{
⟨12, 13, 23⟩

}
. A graph is a proper

interval graph if it is the intersection graph of a set of proper intervals on the real line
(no interval is a subset of another one). This characterization of proper interval graphs
as L(Pproper) follows from the existence of the so-called indifference orderings that are
exactly the layouts excluding Pproper [41, 42].
Trivially perfect graphs [21] exclude PtrivPer = Pchordal ∪

{
⟨12, 13, 23⟩

}
. A graph G is

a trivially perfect graph if and only if it is {P4, C4}-free, or equivalently G is the
comparability graph of a rooted tree T (two vertices are adjacent if one is the ancestor
of the other). A PtrivPer-free layout is obtained from a depth first search ordering of T .
Moreover every layout of P4 and C4 contains one of the patterns of PtrivPer (see [17]).

For more examples, the reader should refer to [13, 17]. Feuilloley and Habib [17] list all the
graph classes that can be obtained by excluding a set of patterns each of size at most 3.

From layouts to tree-layouts. A layout ≺G of a graph G = (V, E) on n vertices can be
viewed as an embedding of G into a path P on n vertices rooted at one of its extremities.
Under this view point, it becomes natural to consider graph embeddings in graphs that are
more general than rooted paths. Recently, Guzman-Pro et al. [23] have studied embeddings
in a cyclic ordering. In this paper, we consider embedding the vertices of a graph in a rooted
tree, yielding the notion of tree-layout.

▶ Definition 1. Let G = (V, E) be a graph on n vertices. A tree-layout of G is a triple
TG = (T, r, ρG) where T is a tree on a set VT of n nodes rooted at r and ρG : V → VT is a
bijection such that for every edge xy ∈ E, either x is an ancestor of y, denoted by x ≺T y,
or y is an ancestor of x.

a

b c

d

e f

g h

G = (V, E)
r = ρ(b)

ρ(f)

ρ(c)

ρ(a)

ρ(e)

u = ρ(g)

ρ(h) ρ(d)

(T, r, ρ)

Figure 3 A tree layout (T, r, ρ) of a graph G = (V, E).

Let TG = (T, r, ρG) be a tree-layout of a graph G. We observe that, from Definition 1,
T is not a Trémaux tree since it is not necessarily a spanning tree of G (see [39] and [6]
for similar concepts). It is easy to see that if T is a path, then TG defines a layout of
G. So from now on, we shall define a layout as a triple LH = (P, r, ρH), where P is a
path that fulfils the conditions of Definition 1. An ordered graph then becomes a pair
(H, LH) where LH = (P, r, ρH) is a layout of G. Excluding a pattern (H, LH) in a tree-layout

STACS 2024

55:4 Tree-Layout Based Graph Classes: Proper Chordal Graphs

TG = (T, r, ρG) of a graph G is defined similarly as excluding a pattern in a layout, but now
using the ancestor relation ≺T . For a set P of patterns, we can also define the class T(P)
of graphs admitting a tree-layout that excludes every pattern P ∈ P. If P = {(H, LH)},
we simply write T((H, LH)). Observe that, as a layout is a tree-layout, for a fixed set P of
patterns, we always have L(P) ⊆ T(P). As an introductory example, let us consider the
pattern ⟨12⟩. The following observation directly follows from the definitions of a tree-layout
and trivially perfect graphs.

▶ Observation 2. The class L(⟨12⟩) is the set of complete graphs while the class T(⟨12⟩) is
the set of trivially perfect graphs.

So the class of trivially perfect graphs can be viewed as the tree-like version of the class of
complete graphs. This view point motivates the systematic study of the unexplored territory
composed by graph classes defined by excluding a set of patterns in a tree-layout.

Our contributions. As a first case study, we consider the patterns characterizing interval
graphs and proper interval graphs. We first show that if we consider the interval graphs
patterns Pint, the same phenomena as for

{
⟨12⟩

}
holds, leading to a novel (up to our

knowledge) characterization of chordal graphs as being exactly T(Pint) (see Theorem 3).
As already discussed, proper interval graphs are obtained by restricting interval graphs

to the intersection of a set of proper intervals (no interval is a subinterval of another). It is
known that K1,3 is an interval graph but not a proper one. Following this line, Gavril [19],
in his seminal paper characterizing chordal graphs as the intersection graphs of a subset
of subtrees of a tree, considered the class of intersection graphs of a set of proper subtrees
of a tree (no subtree is contained in an another). Using an easy reduction, Gavril proved
that this again yields a characterization of chordal graphs. So this left open the question of
proposing a natural definition for proper chordal graphs, a class of graphs that should be
sandwiched between proper interval graphs and chordal graphs but incomparable to interval
graphs. In a recent paper, Chaplick [9] investigated this question and considered the class of
intersection graphs of non-crossing paths in a tree.

Our main contribution is to propose a natural definition of proper chordal graphs by means
of forbidden patterns on tree-layouts: a graph is proper chordal if it belongs to T(Pproper), the
class of graphs admitting a Pproper-free tree-layout, hereafter called indifference tree-layout.
Recall that Pproper are the patterns characterizing proper interval graphs on layouts. It can
be observed that proper chordal graphs and intersection graphs of non-crossing paths in a
tree are incomparable graph classes. Table 1 resumes the discussion above.

Forbidden patterns Layouts Tree-layouts
⟨12⟩ Cliques Trivially perfect graphs

⟨12, 13, 23⟩, ⟨12, 13, 23⟩, ⟨12, 13, 23⟩ Proper interval graphs Proper chordal graphs
⟨12, 13, 23⟩, ⟨12, 13, 23⟩ Interval graphs Chordal graphs

Table 1 Graph classes obtained by excluding ⟨12⟩, Pproper and Pint.

We then provide a thorough study of the combinatorial and algorithmic aspects of
proper chordal graphs. Our first result (see Theorem 6) is a characterization of indifference
tree-layouts (and henceforth of proper chordal graphs). As discussed in Section 3, (proper)
interval graphs may have multiple (proper) interval models. For a given graph, these interval
models are all captured in a canonical representation encoded by the celebrated PQ-tree
data-structure [7]. We show that the set of indifference tree-layouts can also be represented

C. Paul and E. Protopapas 55:5

in a canonical and compact way by means of a tree data-structure generalizing PQ-trees,
that we call FPQ-hierarchies, see Theorem 11. These structural results have very interesting
algorithmic implications. First, we can design a polynomial time recognition algorithm for
proper chordal graphs, see Theorem 14. Second, we show that the isomorphism problem
restricted to proper chordal graphs is polynomial time solvable, see Theorem 16. Interestingly,
this problem is GI-complete on (strongly) chordal graphs [38, 46]. So considering proper
chordal graphs allows us to push the tractability further towards its limit. We believe that
beyond proper chordal graphs, the concept of FPQ-hierarchy is interesting on its own as it is
strongly related to the concept of (weakly) partitive families [12, 10] and thereby the theory
of modular decomposition [37, 25].

2 Preliminaries

2.1 Notations and definitions

Graphs. In this paper, every graph is finite, loopless, and without multiple edges. A graph
is a pair G = (V, E) where V is its vertex set and E ⊆ V 2 is the set of edges. For two
vertices x, y ∈ V , we let xy denoted the edge e = {x, y}. We say that the vertices x and
y are incident with the edge xy. The neighbourhood of a vertex x is the set of vertices
N(x) = {y ∈ V | xy ∈ E}. The closed neighbourhood of a vertex x is N [x] = N(x) ∪ {x}.
Let S be a subset of vertices of V . The graph resulting from the removal of S is denoted
by G − S. If S = {x} is a singleton we write G − x instead of G − {x}. The subgraph of G

induced by S is G[S] = G − (V \ S). We say that S is a separator of G if G − S contains
more connected components than G. We say that S separates X ⊆ V (G) from Y ⊆ V (G) if
X and Y are subsets of distinct connected components of G − S. If x is a vertex such that
x /∈ S and S ⊆ N(x), then we say that x is S-universal.

Rooted trees. A rooted tree is a pair (T, r) where r is a distinguished node2 of the tree
T . We say that a node u is an ancestor of the node v (and that u is a descendant of v) if u

belongs to the unique path of T from r to v. If u is an ancestor of v, then we write u ≺(T,r) v.
For a node u of T , the set A(T,r)(u) contains every ancestor of u, that is every node v of
T such that v ≺(T,r) u. Likewise, the set D(T,r)(u) contains every descendant of u, that is
every node v of T such that u ≺(T,r) v. We may also write A(T,r)[u] = A(T,r)(u) ∪ {u} and
D(T,r)[u] = D(T,r)(u) ∪ {u}. The least common ancestor of two nodes u and v is denoted
lca(T,r)(u, v). For a node u, we define Tu as the subtree of (T, r) rooted at u and containing
the descendants of u. We let L(T, r) denote the set of leaves of (T, r) and for a node u,
L(T,r)(u) is the set of leaves of (T, r) that are descendants of the node u.

Ordered trees. An ordered tree is a rooted tree (T, r) such that the children of every internal
node are totally ordered. For an internal node v, we let denote σv

(T,r) the permutation of its
children. An ordered tree is non-trivial if it contains at least one internal node. An ordered
tree (T, r) defines a permutation σ(T,r) of its leaf set L(T, r) as follows. For every pair of
leaves x, y ∈ L(T, r), let ux and uy be the children of v = lca(T,r)(x, y) respectively being an
ancestor of x and of y. Then x ≺σ(T,r) y if and only if ux ≺σv

T,r
uy.

2 To avoid confusion, we reserve the term vertex for graphs and node for trees.

STACS 2024

55:6 Tree-Layout Based Graph Classes: Proper Chordal Graphs

Tree-layouts of graphs. Let T = (T, r, ρ) be a tree-layout of a graph G = (V, E) (see
Definition 1). Let x and y be two vertices of G. We note x ≺T y if ρ(x) is an ancestor of
ρ(y) in (T, r) and use AT(x), DT(x) to respectively denote the ancestors and descendants of
x. The notations L(T), Tx, LT(x) are derived from the notations defined above.

2.2 A novel characterization of chordal graphs
Gavril [19] characterized chordal graphs as the intersection graphs of a family of subtrees of
a tree. Given a chordal graph G = (V, E), a tree-intersection model of G = (V, E) is defined
as a triple MT

G = (T, T , τG) where T is a tree, T is a family of subtrees of T and τG : V → T
is a bijection such that xy ∈ E if and only if τG(x) intersects τG(y). Hereafter, we denote
by T x ∈ T the subtree of T such that T x = τG(x). Likewise, an intersection model of an
interval graph G is MI

G = (P, P, τG) where P is a path, P is a family of subpaths of P . The
interval, or subpath, τG(x) ∈ P will be denoted P x. So, chordal graphs clearly appear as the
tree-like version of interval graphs. We prove that this similarity can also be observed when
characterizing these graph classes by means of forbidden patterns. Recall that the class of
interval graphs is L(Pint) where Pint =

{
⟨12, 13, 23⟩, ⟨12, 13, 23⟩

}
.

▶ Theorem 3. The class of chordal graphs is T(Pint).

2.3 Proper interval graphs and proper chordal graphs
Proper interval graphs. A graph G = (V, E) is a proper interval graph if it is an interval
graph admitting an interval model MI

G such that for every pair of intervals none is a subinterval
of another [41, 42]. In terms of a pattern characterization, we have seen that the class of proper
interval graphs is L(Pproper) where Pproper =

{
⟨12, 13, 23⟩, ⟨12, 13, 23⟩, ⟨12, 13, 23⟩

}
[42, 13].

Hereafter a layout that is Pproper-free is called an indifference layout. Indifference layouts
have several characterizations, see Theorem 4 below.

▶ Theorem 4. [35, 41] Let LG be a layout of a graph G. The following properties are
equivalent.
1. LG is an indifference layout;
2. for every vertex v, N [v] is consecutive in LG;
3. every maximal clique is consecutive in LG;
4. for every pair of vertices x and y with x ≺LG

y, N(y) ∩ ALG
(x) ⊆ N(x) ∩ ALG

(x) and
N(x) ∩ DLG

(y) ⊆ N(y) ∩ DLG
(y).

Proper chordal graphs. To understand what are the tree-like proper interval graphs, we
propose the following definition.

▶ Definition 5. A graph G = (V, E) is a proper chordal graph if G ∈ T(Pproper).

Hereafter, a tree-layout TG of a graph G that is Pproper-free will be called an indifference
tree-layout. We first prove that Theorem 4 generalizes to indifference tree-layouts.

▶ Theorem 6. Let TG = (T, r, ρG) be a tree-layout of a graph G. The following properties
are equivalent.
1. TG is an indifference tree-layout;
2. for every vertex x, the vertices of N [x] induces a connected subtree of T ;
3. for every maximal clique K, the vertices of K appear consecutively on a path from r in T ;
4. for every pair of vertices x and y such that x ≺TG

y, N(y) ∩ ATG
(x) ⊆ N(x) ∩ ATG

(x)
and N(x) ∩ DTG

(y) ⊆ N(y) ∩ DTG
(y).

C. Paul and E. Protopapas 55:7

Clearly, as an indifference layout is an indifference tree-layout, every proper interval graph
is a proper chordal graph. Also, as Pchordal ⊂ Pproper, proper chordal graphs are chordal
graphs. However this inclusion is strict as k-suns, for k ≥ 3, are not proper chordal. More
generally, Figure 4 positions proper chordal graphs with respect to important subclasses of
chordal graphs, see [8] for definitions of these classes.

proper chordal
proper interval

interval

rooted directed path

strongly chordal

chordal

Figure 4 Relationship between proper chordal graphs and subclasses of chordal graphs.

3 FPQ-trees and FPQ-hierarchies

Let P be a set of patterns. In general, a graph G ∈ L(P) admits several P-free layouts. A
basic example is the complete graph Kℓ on ℓ vertices, which is a proper interval graph. It is
easy to observe that every layout of Kℓ is an indifference layout (i.e. a Pproper-free layout),
but also a Pint-free layout and a Pchordal-free layout. Let us discuss in more details the case
of proper interval graphs and interval graphs.

Two vertices x and y of a graph G are true-twins if N [x] = N [y]. It is easy to see that
the true-twin relation is an equivalence relation. If G contains some true-twins, then, by
Theorem 4, the vertices of any equivalence class occurs consecutively (and in arbitrary order)
in an indifference layout. It follows that for proper interval graphs, the set of indifference
layouts depends on the true-twin equivalence classes. Indeed, a proper interval graph G

without any pair of true-twins has a unique (up to reversal) indifference layout.
In the case of interval graphs, the set of intersection models, and hence of Pint-free layouts,

is structured by means of modules [18], in a similar way to the true-twin equivalence classes
for Pproper-free layouts. A subset M of vertices of a graph G is a module if for every x /∈ M ,
either M ⊆ N(x) or M ⊆ N(x). Observe that a true-twin equivalence class is a module. A
graph may have exponentially many modules. For example, every subset of vertices of the
complete graph is a module. Hsu [29] proved that interval graphs having a unique intersection
model are those without any trivial module.

The set of modules of a graph forms a so-called partitive family [10] and can thereby be
represented through a linear size tree, called the modular decomposition tree (see [25] for
a survey on modular decomposition). To recognize interval graphs in linear time, Booth
and Lueker [7] introduced the concept of PQ-trees which is closely related to the modular
decomposition tree or more generally to the theory of (weakly-)partitive families [10, 12].
Basically, a PQ-tree on a set X is a labelled ordered tree having X as its leaf set. Since every
ordered tree defines a permutation of its leaf set, by defining an equivalence relation based

STACS 2024

55:8 Tree-Layout Based Graph Classes: Proper Chordal Graphs

on the labels of the node, every PQ-tree can be associated to a set of permutations of X. In
the context of interval graphs, X is the set of maximal cliques and a PQ-tree represents the
set of so-called consecutive orderings of the maximal cliques characterizing interval graphs.

As shown by Figure 5, a proper chordal graph can also have several indifference tree-
layouts. In order to represent the set of Pproper-tree-layouts of a given graph, we will define a
structure called FPQ-hierarchies, based on FPQ-trees [34], a variant of PQ-trees.

a

1

b
2

c
3

d

1

a

d

b

c

3

2

1

a

b

d

c

3

2

3

c

d

b

a

1

2

Figure 5 A graph G with three possible indifference tree-layouts, two of them rooted at vertex 1,
the third one at vertex 3.

3.1 FPQ-trees
An FPQ-tree on the ground set X is a labelled, ordered tree T such that its leaf set L(T) is
mapped to X. The internal nodes of T are of three types, F-nodes, P-nodes, and Q-nodes. If
|X| = 1, then T is the tree defined by a leaf and a Q-node as the root. Otherwise, F-nodes
and Q-nodes have at least two children while P-nodes have at least three children.

Let T and T′ be two FPQ-trees. We say that T and T′ are isomorphic if they are
isomorphic as labelled trees. We say that T and T′ are equivalent, denoted T ≡FPQ T′, if
one can be turned into a labelled tree isomorphic to the other by a series of the following
two operations: permute(u) which permutes in any possible way the children of a P-node u;
and reverse(u) which reverses the ordering of the children of a Q-node u. It follows that the
equivalence class of an FPQ-tree T on X defines a set SFPQ(T) of permutations of X.

Let S be a subset of permutations of X. A subset I ⊆ X is a factor of S if in every
permutation of S, the elements of I occur consecutively. It is well known that the set
of factors of a set of permutations form a so called weakly-partitive family [10, 12]. As a
consequence, we have the following property, which was also proved in [36].

▶ Lemma 7. [10, 12, 36] Let ST be the subset of permutations of a non-empty set X

associated to a PQ-tree T. Then a subset I ⊆ X is a factor of ST if and only if there exists
an internal node u of T such that

either I = LT(u);
or u is a Q-node and there exists a set of children v1, . . . , vs of u that are consecutive in
<T,u and such that I =

⋃
1≤i≤s LT(vi).

We observe that u = lcaT(I).

Given a set S ⊆ 2X of subsets of the ground set X, we let Convex(S) denote the set of
permutations of X such that for every S ∈ S, S is a factor of Convex(S). For a PQ-tree T ,
the set of permutation SPQ(T) is defined similarly as for FPQ-trees.

▶ Lemma 8. [24] Let X be a non-empty set and let S ⊆ 2X . In linear time in |S|, we can
compute a PQ-tree T on X such that SPQ(T) = Convex(S) or decide that Convex(S) = ∅.

C. Paul and E. Protopapas 55:9

a b c

d

F

Q

Figure 6 An FPQ-tree T with SFPQ(T) = {abcd, cbad}. The set of non-trivial common factors of
ST is I = {{a, b, c}, {a, b}, {b, c}}. The permutations dabc and dcba also belong to Convex(I).

A set N ⊆ 2X of subsets of X is nested if for every Y, Z ∈ N , either Y ⊆ Z or Z ⊆ Y .
Let C = ⟨N1, . . . , Nk⟩ be a collection of nested sets Ni ⊆ 2X (1 ≤ i ≤ k). Observe that
a subset Y ⊆ X may occur in several nested sets of C. We set S =

⋃
1≤i≤k Ni. We say

that a permutation σ ∈ Convex(S) is C-nested if for every 1 ≤ i ≤ k and every pair of sets
Y, Z ∈ Ni such that Z ⊂ Y , then Y \ Z ≺σ Z. We let Nested-Convex(C, S) denote the subset
of permutations of Convex(S) that are C-nested.

▶ Lemma 9. Let C = ⟨N1, . . . , Nk⟩ be a collection of nested sets such that for every 1 ≤ i ≤ k,
Ni ⊂ 2X . If Nested-Convex(C, S) ̸= ∅, with S =

⋃
1≤i≤k Ni, then there exists an FPQ-tree T

on X such that ST = Nested-Convex(C, S). Moreover, such an FPQ-tree, when it exists, can
be computed in polynomial time.

3.2 FPQ-hierarchies
A hierarchy of ordered trees H is defined on a set T = {T0, T1, . . . , Tp} of non-trivial (i.e.
with at least two vertices) ordered trees arranged in an edge-labelled tree, called the skeleton
tree SH. More formally, for 0 < i ≤ p, the root ri of Ti is attached, through a skeleton edge
ei, to an internal node fi of some tree Tj with j < i. Suppose that ei = rifi is the skeleton
edge linking the root ri of Ti to a node fi of Tj having c children. Then the label of ei is a
pair of integers I(ei) = (ai, bi) ∈ [c] × [c] with ai ≤ bi. The contraction of the trees of T in a
single node each, results in the skeleton tree SH.

From a hierarchy of ordered trees H, we define a rooted tree TH whose node set is⋃
0≤i≤p L(Ti) and that is built as follows. The root of TH is ℓ0 the first leaf of L(T0) in σT0 .

For every 0 ≤ i ≤ p, the permutation σTi of L(Ti), defined by Ti, is a path of TH. Finally, for
1 ≤ i ≤ p, let ℓi be the first leaf of L(Ti) in σTi

. Suppose Ti is connected in H to Tj through
the skeleton edge ei = rifi with label I(ei) = (ai, bi). Let uj the bi-th child of fi in Tj and ℓ

be the leaf of Tj that is a descendant of uj and largest in σTj
. Then set ℓ as the parent of ℓi

in TH. See Figure 7 for an example.
An FPQ-hierarchy is a hierarchy of FPQ-trees with an additional constraint on the labels

of the skeleton edges. Let ei = rifi be the skeleton from the root ri of Ti to the node fi of Tj

with j ≤ i. If fj is a P-node with c children, then I(ei) = (1, c). As in the case of FPQ-trees,
we say two FPQ-hierarchies H and H′ are isomorphic if they are isomorphic as labeled ordered
trees. That is the types of the nodes, the skeleton edges and their labels are preserved. We say
that H and H′ are equivalent, denoted H ≈FPQ H′, if one can be turned into an FPQ-hierarchy
isomorphic to the other by a series of permute(u) and reverse(u) operations (with u being
respectively a P-node and a Q-node) to modify relative ordering of the tree-children of u.
Suppose that u is a Q-node with c children incident to a skeleton edge e. Then applying
reverse(u) transforms I(e) = (a, b) into the new label Ic(e) = (c + 1 − b, c + 1 − a). It
follows that the equivalence class of an FPQ-hierarchy H on the set T = {T0, T1, . . . , Tp}
of FPQ-trees defines a set TFPQ(H) of rooted trees on

⋃
0≤i≤p L(Ti). Observe that since

STACS 2024

55:10 Tree-Layout Based Graph Classes: Proper Chordal Graphs

reversing a Q-node modifies the labels of the incident skeleton edges, two rooted trees of
TFPQ(H) may not be isomorphic (see Figure 7).

[2, 3]

Q

F

a b c

d

P

x y z

a

b

c

d x

y

z

c

b

a

d

z

y

x

Figure 7 An FPQ-hierarchy H. The set TFPQ(H) contains 12 rooted trees, two of which are
depicted. Observe that from the left to the right tree, the ordering on the leaves of the Q-node is
reversed and that the ordering on the leaves of the P-nodes are different. In both trees however, the
path containing {x, y, z} is attached below the leaves {b, c} since these leaves form the interval [2, 3]
of the Q-node and this interval is the label of the unique skeleton edge.

4 Compact representation of the set of indifference tree-layouts

In this section, we show how, given a proper chordal graph G and a vertex x ∈ V , an
FPQ-hierarchy H can be constructed to represent the set of indifference tree-layouts rooted
at a vertex x (if such an indifference tree-layout exists). To that aim, we first provide a
characterization of indifference tree-layout alternative to Theorem 6. This characterization
naturally leads us to define the notion of block that, for a fixed vertex x of a proper chordal
graph, drives the combinatorics of the set of indifference tree-layouts rooted at x.

Let S be a non-empty vertex subset of a connected graph G = (V, E) and let C be a
connected component of G − S. We say that x ∈ C is S-maximal if for every vertex y ∈ C,
N(y) ∩ S ⊆ N(x) ∩ S. Observe that if C contains two distinct S-maximal vertices x and y,
then N(x) ∩ S = N(y) ∩ S.

▶ Definition 10. Let S be a subset of vertices of a graph G = (V, E) and let C be a connected
component of G − S. A maximal subset of vertices X ⊆ C is an S-block, if every vertex of
X is S-maximal and (N(S) ∩ V (C))-universal.

We let the reader observe that a connected component C of G − S may not contain an
S-block. However, if C contains an S-block, then it is uniquely defined. In the following
paragraph we summarize the approach taken towards showing Theorem 11.

It can be shown that indifference tree-layouts are characterized as those such that for every
vertex x distinct from ρ−1

G (r), x is ATG
(x)-maximal and (N(ATG

(x)) ∩ DTG
[x])-universal.

This implies that every vertex x distinct from the root of an indifference tree-layout can be
associated with a non-empty ATG

(x)-block containing x. Hereafter, we let BTG
(x) denote

that block. If x = ρ−1
G (r), then we set BTG

(x) = {x}. Then, we prove that for every
vertex x ∈ V , the vertices of the block BTG

(x) appear consecutively on a path rooted at
x and induces a clique in G. Moreover, we show that the set of B(TG) containing the
inclusion-maximal blocks of TG, partitions the vertex set of G. It follows that we can define
the block tree of TG, which we denote TG|BT(G), by contracting every block of B(TG) into
a single node. We get that if a connected proper chordal graph admits two indifference
tree-layouts rooted at the same vertex, then the corresponding block trees are isomorphic,

C. Paul and E. Protopapas 55:11

implying that the block tree only depends on the root vertex. Thereby, from now on, we let
BG(x) and Btree

G (x) respectively denote the set of maximal blocks and the block tree of any
indifference tree-layout of G rooted at vertex x. However the uniqueness of the block tree is
not enough to fully describe the set of indifference tree-layouts rooted at x, as it does not
reflect how each block is precisely attached to its parent block.

Towards this, let TG = (T, r, ρG) be an indifference tree layout of a graph G = (V, E). Let
BTG

(x) ∈ B(TG) with x distinct from the root of TG. We denote by CTG
(x) the connected

component of G − ATG
(x) containing x. Let C1, . . . Ck be the connected components of

G[CTG
(x) \ BTG

(x)]. We define CTG
(x) = ⟨N1, . . . , Nk⟩ a collection of sets of 2BTG

(x):
for every 1 ≤ i ≤ k and every vertex y ∈ Ci such that N(y) ∩ BTG

(x) ̸= ∅, then we add
N(y)∩BTG

(x) to Ni. We define Sx =
⋃

1≤i≤k Ni. We can prove that CTG
(x) = ⟨N1, . . . , Nk⟩

is a collection of nested sets and that Nested-Convex(CTG
(x), Sx) ̸= ∅.

The discussion above allows us to establish the existence of a canonical FPQ-hierarchy
HG(x) encoding the set of indifference tree-layouts of G rooted at x (see Figure 8).

▶ Theorem 11. Let G = (V, E) be a proper chordal graph. If G has an indifference tree-layout
rooted at some vertex x, then there exists an FPQ-hierarchy HG(x) such that a tree-layout
TG = (T, r, ρG) of G is an indifference tree-layout such that ρ−1

G (r) = x if and only if
TG ∈ TFPQ(HG(x)). Moreover HG(x) is unique and, given an indifference tree-layout rooted
at x, it can be computed in polynomial time.

T

x

y

z
a

b

c

d

e

s

t

w

v

u
[1, 2]

[1, 1]

[1, 2] [2, 3] [3, 4]

[1, 1]

[1, 1]

Q

x

[1, 1]

Q

y
Q

z
Q

F

b c d e

a

F

Q

s
Q

t

Q

u

Q

v

Q

w

x

y

z
a

e

d

c

b

s

t

u

v

w

T′

Figure 8 On the left hand side, an indifference tree-layout T rooted at vertex x of a proper
chordal graph G. For every vertex, only the edge (blue or red) to its highest neighbor in T is
depicted. The boxes represent the partition into blocks. The FPQ-hierarchy HG(x) is depicted in the
middle. Observe that for the FPQ-tree T of the block BT(a) = {a, b, c, d, e}, S(T) = {abcde, aedcb}.
It follows that TFPQ(HG(x)) contains the two indifference tree-layouts T and T′.

5 Algorithmic aspects

In this section, we first design a polynomial time recognition problem of proper chordal
graphs. Then we show that using the FPQ-hierarchies, we can resolve the graph isomorphism
problem between two proper chordal graphs in polynomial time.

STACS 2024

55:12 Tree-Layout Based Graph Classes: Proper Chordal Graphs

5.1 Recognition
Given a graph G = (V, E), the recognition algorithm test for every vertex x ∈ V , if G has an
indifference tree-layout rooted at x. We proceed in two steps. First, we compute the block
tree Btree

G (x) of G rooted at x that would correspond to the skeleton tree of the FPQ-hierarchy
HG(x) if G has an indifference tree-layout rooted at x. Then, in the second step, instead of
computing HG(x), we verify that Btree

G (x) can indeed be turned into an indifference tree-layout
of G. If eventually we can construct an indifference tree-layout, then G is proper chordal. If
G is proper chordal and has an indifference tree-layout rooted at x, then the algorithm will
succeed.

Computing the blocks and the block tree. We assume that the input graph G = (V, E) is
proper chordal and consider a vertex x ∈ V that is the root of some indifference tree-layout
of G. As discussed above, the first step aims at computing the skeleton tree of HG(x) (see
Theorem 11). That skeleton tree is the block tree Btree

G (x) that can be obtained from any
indifference tree-layout rooted at x by contracting the blocks of BG(x) into a single node
each. To compute Btree

G (x), we perform a search on G starting at x (see Algorithm 1 below).
At every step of the search, if the set of searched vertices is S, then the algorithm either
identifies, in some connected component C of G − S, a new block S-block of BG(x) and
connects it to the current block tree, or (if C does not contain an S-block) stops and declares
that there is no block tree rooted at x.

Algorithm 1 Block tree computation.
Input: A graph G = (V, E) and a vertex x ∈ V .
Output: The block tree Btree

G (x), if G has an indifference tree-layout rooted at x.
1 set S ← {x}, B ←

{
{x}

}
and Btree ← (B, ∅);

2 while S ̸= V do
3 let C be a connected component of G− S;
4 if C contains a S-block X then
5 S ← S ∪X and B ← B ∪

{
X

}
;

6 let B ∈ B such that N(X) ∩B ̸= ∅ and that is the deepest;
7 add an edge in Btree between B and X;
8 else
9 stop and return G has no indifference tree-layout rooted at x

10 end
11 end
12 return Btree;

▶ Lemma 12. Let x be a vertex of a graph G = (V, E). If G is proper chordal and has an
indifference tree-layout rooted at x, then Algorithm 1 returns the block tree Btree

G (x) that is
the skeleton tree of the FPQ-hierarchy HG(x).

Before describing the second step of the algorithm, let us discuss some properties of Btree

returned by Algorithm 1 when B is a partition of V . An extension of Btree is any tree TBtree

obtained by substituting every node B ∈ B by an arbitrary permutation σB of the vertices of
B. In this construction, if B is the parent of B′ in Btree, x is the last vertex of B in σB that
has a neighbor in B′ and x′ is the first vertex of B′ in σB′ , then the parent of x′ in TBtree is a
vertex of B that appears after x in σ.

C. Paul and E. Protopapas 55:13

▶ Observation 13. Let x be a vertex of a graph G = (V, E). If Btree is returned by Algorithm 1,
then every extension TBtree of Btree is a tree-layout of G. And moreover, if B, B′, and B′′

are three blocks of B such that B ≺Btree B′ ≺Btree B′′, then for every y ∈ B, y′ ∈ B′, y′′ ∈ B′′,
yy′′ ∈ E implies that y′y ∈ E and y′y′′ ∈ E.

Nested sets. From Observation 13, an extension of Btree is not yet an indifference tree-
layout of G. However, if G is a proper chordal graph that has an indifference tree-layout
TG = (T, r, ρG) rooted at x, then, by Lemma 12, Btree = Btree

G (x). It then follows from the
proof of Theorem 11 that TG is an extension of Btree. The second step of the algorithm
consists in testing if Btree has an extension that is an indifference tree-layout.

By Lemma 12, we can assume that Algorithm 1 has returned BG(x) and Btree
G (x). To

every block B of BG(x), we assign a collection of nested subsets of 2B which we denote
CB = ⟨N1, . . . , Nk⟩ (see Algorithm 2 for a definition of CB). The task of the second step
of the recognition algorithm is to verify that for every block B, Nested-Convex(CB , SB) ̸= ∅
where SB = ∪1≤i≤kNi.

To define the collection CB , we need some notations. Let AB denote the subset of BG(x)
such that if B′ ∈ AB , then B′ is an ancestor of B in Btree

G (x). Then we set AB = ∪B′∈AB
B′

and denote CB the connected component of G − AB containing B.

Algorithm 2 Proper chordal graph recognition.
Input: A graph G = (V, E);
Output: Decide if G is a proper chordal graph.

1 foreach x ∈ V do
2 if Algorithm 1 applied on G and x returns Btree

G (x) then
3 foreach block B ∈ BG(x) do
4 let C1, . . . , Ck be the connected components of G[CB]−B;
5 foreach Ci in C1, . . . , Ck do Ni ← {X ⊆ B | ∃y ∈ Ci, X = N(y) ∩B} ;
6 set CB = ⟨N1, . . . ,Nk⟩ and SB =

⋃
i∈[k]Ni;

7 end
8 if ∀B ∈ B(x), CB is a collection of nested sets st. Nested-Convex(CB ,SB) ̸= ∅ then
9 stop and return G is a proper chordal graph;

10 end
11 end
12 end
13 return G is not a proper chordal graph;

▶ Theorem 14. We can decide in polynomial time whether a graph G = (V, E) is proper
chordal. Moreover, if G is proper chordal, an indifference tree-layout of G can be constructed
in polynomial time.

5.2 Isomorphism
We observe that, because an FPQ-hierarchy does not carry enough information to reconstruct
the original graph, two non-isomorphic proper chordal graphs G and G′ may share an
FPQ-hierarchy (Figure 9) satisfying the conditions of Theorem 11. More precisely, given
an FPQ-hierarchy of a proper chordal graph G that satisfies the conditions of Theorem 11,
one can reconstruct an indifference tree-layout T of G. But T is not sufficient to test
the adjacency between a pair of vertices. Indeed, for a given vertex y, we cannot retrieve
N(y) ∩ AT(y) from HG(x) since only the intersection of N(y) with the parent block is present

STACS 2024

55:14 Tree-Layout Based Graph Classes: Proper Chordal Graphs

in HG(x). In the example of Figure 9, the vertices w and w′ are also adjacent to c and b,
which do not belong to their parent block.

x

a

b

c

v

u

w w′

T

x

a

b

c

u
v

w

w′

G

x

a

b

c

v

u

w w′

T′

x

a

b

c

u
v

w

w′

G′

[1, 1](1)
Q

x

[1, 2](2) [2, 3](2)

[1, 1](3) [1, 1](3)

F

a b c

Q

u

Q

v

Q

w

Q

w′H(x)

Figure 9 Two proper chordal graphs G and G′ with their respective indifference tree-layouts T
and T′. We observe that G and G′ are not isomorphic, but their respective skeleton trees TG(x) and
TG′ (x) are. Moreover, H(x) is an FPQ-hierarchy such that TFPQ(H(x)) contains all the indifference
tree-layouts rooted at x of G and of G′. We obtain H∗(x) for G by adding to H(x) the blue labels
on the skeleton edges.

Let HG(x) be the FPQ-hierarchy satisfying the conditions of Theorem 11, we define the
indifference FPQ-hierarchy, denoted H∗

G(x), obtained from HG(x) by adding to every skeleton
edge e, a label Â(e). Suppose that e is incident to the root of the FPQ-tree of the block B,
then we set Â(e) = |N(B) ∩ AT(B)|. We say that two indifference FPQ-hierarchies H∗

1 and
H∗

2 are equivalent, denoted H∗
1 ≈∗

FPQ H∗
2, if H1 ≈FPQ H2 and for every pair of mapped skeleton

edges e1 and e2 we have Â(e1) = Â(e2).
Let S1 ∈ 2X1 be a set of subsets of X1 and S2 ∈ 2X2 be a set of subsets of X2. We say

that S1 and S2 are isomorphic if there exists a bijection f : X1 → X2 such that S1 ∈ S1 if
and only if S2 = {f(x) | x ∈ S1} ∈ S2. For S1 ⊆ X1, we denote by f(S1) = {f(y) | y ∈ S1}.

▶ Lemma 15. Let G1 = (V1, E1) and G2 = (V2, E2) be two (connected) proper chordal
graphs. Let H∗

1(x1) be an indifference FPQ-hierarchy of G1 and H∗
2(x2) be an indifference

FPQ-hierarchy of G2. Then H∗
1(x1) ≈∗

FPQ H∗
2(x2) if and only if G1 and G2 are isomorphic

with x1 mapped to x2.

From Lemma 15, testing graph isomorphism on proper chordal graphs reduces to testing
the equivalence between two indifference FPQ-hierarchies. To that aim, we use a similar
approach to the one developed for testing interval graph isomorphism [36]. That is, we adapt
the standard unordered tree isomorphism algorithm that assigns to every unordered tree a
canonical isomorphism code [47, 1]. Testing isomorphism then amounts to testing equality
between two isomorphism codes.

We proceed with a detailed description of the isomorphism test. Let H∗ be an indifference
FPQ-hierarchy of a proper chordal graph G = (V, E). Intuitively, the isomorphism code of
H∗ is a string obtained by concatenating information about the root node of H∗ and the
isomorphism codes of the sub-hierarchies rooted at its children. To guarantee the canonicity
of the isomorphism code of H∗, some of the codes of these sub-hierarchies need to be sorted

C. Paul and E. Protopapas 55:15

lexicographically. To that aim, we use the following convention:

L <lex F <lex P <lex Q <lex 0 <lex 1 . . . <lex n <lex . . . ,

Moreover the separating symbols (such as brackets, commas. . .) used in the isomorphism
code for the sake of readability are irrelevant for the sort.

Before formally describing the isomorphism code of H∗, let us remind that, in an indiffer-
ence FPQ-hierarchy, we can classify the children of any node t in two categories: we call a
node t′ a skeleton child of t if the tree edge e = tt′ is a skeleton edge of H∗, otherwise we
call it a block child of t. We observe that the block children of a node t belong with t to the
FPQ-tree of some block of BG(x). It follows from the definition of an FPQ-tree, that the
block children of a given node t are ordered and depending on the type of t, these nodes can
be reordered. On the contrary, the skeleton children of a node t are not ordered.

For every node t of H∗, we define a code, denoted code(t). We will define the isomorphism
code of H∗ as code(H∗) = code(r), where r is the root node of H∗. We let b1, . . . , bk denote
the block children of node t (if any, and ordered from 1 to k) and s1, . . . , sℓ denote the
skeleton children of t (if any). For a node t, the set of eligible permutations of the indices
[1, k] of its chidlren depends on type(t):

if type(t) = F, then the identity permutation is the unique eligible permutation;
if type(t) = P, then every permutation is eligible;
if type(t) = Q, then the identity or its reverse permutation are the two eligible permuta-
tions.

The code of t, denoted code(t), is obtained by minimizing with respect to <lex over all
eligible permutations β of t:

code(t, β) =

 size(t) ◦ type(t)◦
code(bβ(1)) ◦ · · · ◦ code(bβ(k))◦

label(sπβ(1), β) ◦ code(sπβ(1)) ◦ · · · ◦ label(sπβ(ℓ), β) ◦ code(sπβ(ℓ))

where:
type(t) ∈ {L, F, P, Q}, indicates whether t a leaf (L), a F-node, a P-node, or a Q-node.
size(t) ∈ N, stores the number of nodes in the sub-hierarchy rooted at t (including t).
label(s, β), with s being a skeleton child s of t and β being a permutation of [1, k]. Let e be
the skeleton edge of H∗ between s and t. If I(e) = [a, b], we set Ic(e) = [k +1−b, k +1−a].
Then, we set label(s) = ⟨Iβ(e), A(e)⟩, where

Iβ(e) =
{

I(e), β is the identity permutation
Ic(e), otherwise.

πβ is, for some permutation β of [1, k], a permutation of [1, ℓ] that minimizes, with respect
to <lex:

label(sπβ(1), β) ◦ code(sπβ(1)) ◦ · · · ◦ label(sπβ(ℓ), β) ◦ code(sπβ(ℓ)).

Using the previous definitions, we can show that if H∗
1 and H∗

2 are indifference FPQ-
hierarchies of the graphs G1 and G2 respectively, then H∗

1 ≈∗
FPQ H∗

2 if and only if code(H∗
1) =

code(H∗
2).

▶ Theorem 16. Let G1 and G2 be two proper chordal graphs. One can test in polynomial
time if G1 = (V1, E1) and G2 = (V2, E2) are isomorphic graphs.

STACS 2024

55:16 Tree-Layout Based Graph Classes: Proper Chordal Graphs

Proof. The algorithm is working as follows. First, compute a tree-layout T1 of G1 and the
indifference FPQ-hierarchy H∗

1 such that T1 ∈ TFPQ(H1). This can be done in polynomial
time by Theorem 14. Then for every vertex x2 ∈ V2, we test if there exists an indifference
tree-layout T2 rooted at x2; compute the corresponding indifference FPQ-hierarchy H∗

2 and
test whether H∗

1 ≈∗
FPQ H∗

2. Testing equivalence between FPQ-hierarchies can be done by
computing and comparing the isomorphism codes of H∗

1 and H∗
2. Moreover, this latter task

can be achieved in polynomial time. By Lemma 15, if one of these tests is positive, then we
can conclude that G1 and G2 are isomorphic graphs. ◀

6 Conclusion

A rough analysis of the complexity of the algorithms would lead to a O(n4)-time complexity
for the proper chordal graph recognition problem and a for the isomorphism test. We let open
the question of deriving a faster algorithms. Our results demonstrate that proper chordal
graphs form a rich class of graphs. First, its relative position with respect to important
graph subclasses of chordal graphs and the fact that the isomorphism problem belongs to P
for proper chordal graphs shows that they form a non-trivial potential island of tractability
for many other algorithmic problems. In this line, we leave open the status of Hamiltonian
cycle, which is polynomial time solvable in proper interval graphs [4, 30] and interval graphs
[31, 5], but NP-complete on strongly chordal graphs [38]. We were only able to resolve the
special case of split proper chordal graphs. An intriguing algorithmic question is whether
proper chordal graphs can be recognized in linear time. Second, the canonical representation
we obtained of the set of indifference tree-layouts rooted at some vertex witnesses the rich
combinatorial structure of proper chordal graphs. We believe that this structure has to be
further explored and could be important for the efficient resolution of more computational
problems. For example, as proper chordal graphs form a hereditary class of graphs, one
could wonder if the standard graph modification problems (vertex deletion, edge completion
or deletion, and etc.), which are NP-complete by [33], can be resolved in FPT time. The
structure of proper chordal graphs is not yet fully understood. The first natural question on
this aspect is to provide a forbidden induced subgraph characterization. This will involve
infinite families of forbidden subgraphs. Furthermore understanding what makes a vertex
the root of an indifference tree-layout is certainly a key ingredient for a fast recognition
algorithm. We would like to stress that a promising line of research is to consider further
tree-layout based graph classes. For this, following the work of Damaschke [13], Hell et
al. [28] and Feuilloley and Habib [17] on layouts, we need to investigate in a more systematic
way various patterns to exclude, including rooted tree patterns.

References
1 A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer Algorithms.

Addison-Wesley, 1974.
2 S. Benzer. On the topology of the genetic fine structure. Proceedings of the National Academy

of Science, 45(11):1607–1620, 1957. doi:10.1073/pnas.45.11.1607.
3 C. Berge. Färbung von Graphen deren sämtliche beziehungsweise deren ungerade Kreise starr

sind (Zusammenfassung). Wissenschaftliche Zeitschrift, Martin Luther Univ. Halle-Wittenberg,
Math.-Naturwiss, Reihe, pages 114–115, 1961.

4 A.A. Bertossi. Finding Hamiltonian circuits in proper interval graphs. Information Processing
Letters, 17:97–101, 1983. doi:10.1016/0020-0190(83)90078-9.

5 A.A. Bertossi and M.A. Bonuccelli. Hamiltonian circuits in interval graph generalizations.
Information Processing Letters, 23:195–200, 1986. doi:10.1016/0020-0190(86)90135-3.

https://doi.org/10.1073/pnas.45.11.1607
https://doi.org/10.1016/0020-0190(83)90078-9
https://doi.org/10.1016/0020-0190(86)90135-3

C. Paul and E. Protopapas 55:17

6 D. Bienstock. On embedding graphs in trees. Journal of Combinatorial Theory, Series B,
49(1):103–136, 1990. doi:10.1016/0095-8956(90)90066-9.

7 K.S. Booth and G.S. Lueker. Testing for the consecutive ones property, interval graphs and
graph planarity using pq-tree algorithm. J. Comput. Syst. Sci., 13:335–379, 1976.

8 A. Brandstädt, V.B. Le, and J. Spinrad. Graph classes: a survey. SIAM Monographs on
Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics, 1999.

9 S. Chaplick. Intersection graphs of non-crossing paths. In International Workshop on Graph
Theoretical Concepts in Computer Science (WG), volume 11789 of Lecture Notes in Computer
Science, pages 311–324, 2019. doi:10.1007/978-3-030-30786-8_24.

10 M. Chein, M. Habib, and M.-C. Maurer. Partitive hypergraphs. Discrete Mathematics,
37:35–50, 1981. doi:10.1016/0012-365X(81)90138-2.

11 D.G. Corneil, H. Lerchs, and L.K. Stewart-Burlingham. Complement reducible graphs. Discrete
Applied Mathematics, 3(1):163–174, 1981. doi:10.1016/0166-218X(81)90013-5.

12 W.H. Cunningham and J. Edmonds. A combinatorial decomposition theory. Canadian Journal
of Mathematics, 32(3):734–765, 1980. doi:10.4153/CJM-1980-057-7.

13 Peter Damaschke. Forbbiden ordered subgraphs. Topics in Combinatorics and Graph Theory,
pages 219–229, 1990. doi:10.1007/978-3-642-46908-4_25.

14 G. Dirac. On rigid circuit graphs. Abhandlungen aus dem Mathematischen Seminar der
Universität Hamburg, 25:71–76, 1961.

15 P. Duchet. Classical perfect graphs: An introduction with emphasis on triangulated and
interval graphs. In C. Berge and V. Chvátal, editors, Topics on Perfect Graphs, volume 88
of North-Holland Mathematics Studies, pages 67–96. North-Holland, 1984. doi:10.1016/
S0304-0208(08)72924-4.

16 Dwight Duffus, Mark Ginn, and Vojtĕch Rödl. On the computational complexity of ordered
subgraph recognition. Random Structure and Algorithms, 7(3):223–268, 1995. doi:10.1002/
rsa.3240070304.

17 Laurent Feuilloley and Michel Habib. Graph classes and forbidden patterns on three vertices.
SIAM Journal on Discrete Mathematics, 35(1):55–90, 2021. doi:10.1137/19M1280399.

18 T. Gallai. Transitiv orientierbare graphen. Acta Mathematica Academiae Scientiarum Hun-
garica, 18(1):25–66, 1967. doi:10.1007/BF02020961.

19 F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs. Journal
of Combinatorial Theory Series B, 16:47–56, 1974. doi:10.1016/0095-8956(74)90094-X.

20 M. Ginn. Forbidden ordered subgraph vs. forbidden subgraph characterizations of graph classes.
Journal of Graph Theory, 30(71-76), 1999. doi:10.1002/(SICI)1097-0118(199902)30:2<71::
AID-JGT1>3.0.CO;2-G.

21 M.C. Golumbic. Trivially perfect graphs. Discrete Mathematics, 24:105–107, 1978. doi:
10.1016/0012-365X(78)90178-4.

22 M.C. Golumbic. Algorithmic graph theory and perfect graphs. Academic Press, 1980. doi:
10.1016/C2013-0-10739-8.

23 S. Guzmán-Pro, P. Hell, and C. Hernández-Cruz. Describing hereditary properties by forbidden
circular orderings. Applied Mathematics and Computation, 438:127555, 2023. doi:10.1016/j.
amc.2022.127555.

24 M. Habib, R.M. McConnell, C. Paul, and L. Viennot. Lex-bfs and partition refinement, with
applications to transitive orientation, interval graph recognition and consecutive ones testing.
Theoretical Computer Science, 234:59–84, 2000. doi:10.1016/S0304-3975(97)00241-7.

25 M. Habib and C. Paul. A survey on algorithmic aspects of modular decomposition. Computer
Science Review, 4:41–59, 2010. doi:10.1016/j.cosrev.2010.01.001.

26 A. Hajnal and J. Surányi. Über die Auflösung von Graphen in vollständige Teilgraphen.
Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae. Sectio
Mathematica, 1:113–121, 1958.

27 G. Hajös. Über eine Art von Graphen. Internationale Mathematische Nachrichten, 11, 1957.
Problem 65.

STACS 2024

https://doi.org/10.1016/0095-8956(90)90066-9
https://doi.org/10.1007/978-3-030-30786-8_24
https://doi.org/10.1016/0012-365X(81)90138-2
https://doi.org/10.1016/0166-218X(81)90013-5
https://doi.org/10.4153/CJM-1980-057-7
https://doi.org/10.1007/978-3-642-46908-4_25
https://doi.org/10.1016/S0304-0208(08)72924-4
https://doi.org/10.1016/S0304-0208(08)72924-4
https://doi.org/10.1002/rsa.3240070304
https://doi.org/10.1002/rsa.3240070304
https://doi.org/10.1137/19M1280399
https://doi.org/10.1007/BF02020961
https://doi.org/10.1016/0095-8956(74)90094-X
https://doi.org/10.1002/(SICI)1097-0118(199902)30:2<71::AID-JGT1>3.0.CO;2-G
https://doi.org/10.1002/(SICI)1097-0118(199902)30:2<71::AID-JGT1>3.0.CO;2-G
https://doi.org/10.1016/0012-365X(78)90178-4
https://doi.org/10.1016/0012-365X(78)90178-4
https://doi.org/10.1016/C2013-0-10739-8
https://doi.org/10.1016/C2013-0-10739-8
https://doi.org/10.1016/j.amc.2022.127555
https://doi.org/10.1016/j.amc.2022.127555
https://doi.org/10.1016/S0304-3975(97)00241-7
https://doi.org/10.1016/j.cosrev.2010.01.001

55:18 Tree-Layout Based Graph Classes: Proper Chordal Graphs

28 Pavol Hell, Bojan Mohar, and Arash Rafiey. Ordering without forbidden patterns. In Annual
European Symposium on Algorithms (ESA), volume 8737 of Lecture Notes in Computer Science,
pages 554–565, 2014. doi:10.1007/978-3-662-44777-2_46.

29 W.-L. Hsu. o(n.m) algorithms for the recognition and isomorphism problems on circular-arc
graphs. SIAM Journal on Computing, 24(3):411–439, 1995. doi:10.1137/s0097539793260726.

30 L. Ibarra. A simple algorithm to find hamiltonian cycles in proper interval graphs. Information
Processing Letters, 109:1105–1108, 2009. doi:10.1016/j.ipl.2009.07.010.

31 J.M. Keil. Finding Hamiltonian circuits in interval graphs. Information Processing Letters,
20:201–206, 1985. doi:10.1016/0020-0190(85)90050-X.

32 H. Lerchs. On cliques and kernels. Technical report, Departement of Computer Science,
University of Toronto, 1971.

33 J. Lewis and M. Yannakakis. The node-deletion problem for hereditary properties is NP-
complete. Journal of Computer and System Sciences, 20(2):219–230, 1980. doi:10.1016/
0022-0000(80)90060-4.

34 G. Liotta, I. Rutter, and A. Tappini. Simultaneous FPQ-ordering and hybrid planarity testing.
Theoretical Computer Science, 874:59–79, 2021. doi:10.1016/j.tcs.2021.05.012.

35 P. Looges and S. Olariu. Optimal greedy algorithms for indifference graphs. Computers and
Mathematics with Applications, 25(7):15–25, 1993. doi:10.1016/0898-1221(93)90308-I.

36 G.S. Lueker and K.S. Booth. A linear time algorithm for deciding interval graphs isomorphism.
Journal of ACM, 26(2):183–195, 1979. doi:10.1145/322123.322125.

37 R.H. Möhring and F.J. Radermacher. Substitution decomposition for discrete structures and
connections with combinatorial optimization. Annals of Discrete Mathematics, 19:257–356,
1984.

38 H. Müller. Hamiltonian circuits in chordal bipartite graphs. Discrete Mathematics, 156:291–298,
1996. doi:10.1016/0012-365X(95)00057-4.

39 J. Nešetřil and P. Ossona de Mendez. Tree-depth, subgraph coloring and homomorphism bounds.
European Journal of Combinatorics, 27(6):1022–1041, 2006. doi:10.1016/j.ejc.2005.01.010.

40 S. Olariu. An optimal greedy heuristic to color interval graphs. Information Processing Letters,
37:21–25, 1991. doi:10.1016/0020-0190(91)90245-D.

41 F.S. Roberts. Representations of indifference relations. PhD thesis, Standford University,
1968.

42 F.S. Roberts. Indifference graphs. In F. Harrary, editor, Proof Techniques in Graph Theory,
pages 139–146, 1969.

43 D. Rose. Triangulated graphs and the elimination process. Journal of Mathematical Analysis
and Applications, 32(597-609), 1970. doi:10.1016/0022-247X(70)90282-9.

44 Dale J. Skrien. A relationship between triangulated graphs, comparability graphs, proper
interval graphs, proper circular-arc graphs, and nested interval graphs. Journal of Graph
Theory, 6:309–316, 1982. doi:10.1002/jgt.3190060307.

45 D.P. Sumner. Graphs indecomposable with respect to the X-join. Discrete Mathematics,
6:281–298, 1973. doi:10.1016/0012-365X(73)90100-3.

46 R. Uehara, S. Toda, and T. Nagoya. Graph isomorphism completeness for chordal bipartite
graphs and strongly chordal graphs. Discrete Applied Mathematics, 145:479–482, 2005. doi:
doi:10.1016/j.dam.2004.06.008.

47 G. Valiente. Algorithms on trees and graphs. Texts in Computer Science. Springer, 2002.
doi:10.1007/978-3-030-81885-2.

https://doi.org/10.1007/978-3-662-44777-2_46
https://doi.org/10.1137/s0097539793260726
https://doi.org/10.1016/j.ipl.2009.07.010
https://doi.org/10.1016/0020-0190(85)90050-X
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/j.tcs.2021.05.012
https://doi.org/10.1016/0898-1221(93)90308-I
https://doi.org/10.1145/322123.322125
https://doi.org/10.1016/0012-365X(95)00057-4
https://doi.org/10.1016/j.ejc.2005.01.010
https://doi.org/10.1016/0020-0190(91)90245-D
https://doi.org/10.1016/0022-247X(70)90282-9
https://doi.org/10.1002/jgt.3190060307
https://doi.org/10.1016/0012-365X(73)90100-3
https://doi.org/doi:10.1016/j.dam.2004.06.008
https://doi.org/doi:10.1016/j.dam.2004.06.008
https://doi.org/10.1007/978-3-030-81885-2

	1 Introduction
	2 Preliminaries
	2.1 Notations and definitions
	2.2 A novel characterization of chordal graphs
	2.3 Proper interval graphs and proper chordal graphs

	3 FPQ-trees and FPQ-hierarchies
	3.1 FPQ-trees
	3.2 FPQ-hierarchies

	4 Compact representation of the set of indifference tree-layouts
	5 Algorithmic aspects
	5.1 Recognition
	5.2 Isomorphism

	6 Conclusion

