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Abstract
We consider the following problem that we call the Shortest Two Disjoint Paths problem: given
an undirected graph G = (V, E) with edge weights w : E → R, two terminals s and t in G, find two
internally vertex-disjoint paths between s and t with minimum total weight. As shown recently by
Schlotter and Sebő (2022), this problem becomes NP-hard if edges can have negative weights, even
if the weight function is conservative, i.e., there are no cycles in G with negative total weight. We
propose a polynomial-time algorithm that solves the Shortest Two Disjoint Paths problem for
conservative weights in the case when the negative-weight edges form a constant number of trees
in G.
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1 Introduction

Finding disjoint paths between given terminals is a fundamental problem in algorithmic
graph theory and combinatorial optimization. Besides its theoretical importance, it is also
motivated by numerous applications in transportation, VLSI design, and network routing.
In the Disjoint Paths problem, we are given k terminal pairs (si, ti) for i ∈ {1, . . . , k} in
an undirected graph G, and the task is to find pairwise vertex-disjoint paths P1, . . . , Pk so
that Pi connects si with ti for each i ∈ {1, . . . , k}. This problem was shown to be NP-hard
by Karp [7] when k is part of the input, and remains NP-hard even on planar graphs [10].
Robertson and Seymour [11] proved that there exists an f(k)n3 algorithm for Disjoint
Paths with k terminal pairs, where n is the number of vertices in G and f some computable
function; this celebrated result is among the most important achievements of graph minor
theory. In the Shortest Disjoint Paths problem we additionally require that P1, . . . , Pk

have minimum total length (in terms of the number of edges). For fixed k, the complexity
of this problem is one of the most important open questions in the area. Even the case for
k = 2 had been open for a long time, until Björklund and Husfeldt [3] gave a randomized
polynomial-time algorithm for it in 2019. For directed graphs the problem becomes much
harder: the Directed Disjoint Paths problem is NP-hard already for k = 2. The Disjoint
Paths problem and its variants have also received considerable attention when restricted to
planar graphs [6, 5, 8, 1, 4, 14, 9].

The variant of Disjoint Paths when s1 = · · · = sk = s and t1 = · · · = tk = t is
considerably easier, since one can find k pairwise (openly vertex- or edge-) disjoint paths
between s and t using a max-flow computation. Applying standard techniques for computing
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57:2 Shortest Two Disjoint Paths in Conservative Graphs

a minimum-cost flow (see e.g. [15]), one can even find k pairwise disjoint paths between s

and t with minimum total weight, given non-negative weights on the edges. Notice that
if negative weights are allowed, then flow techniques break down for undirected graphs:
in order to construct an appropriate flow network based on our undirected graph G, the
standard technique is to direct each edge of G in both directions; however, if edges can
have negative weight, then this operation creates negative cycles consisting of two arcs, an
obstacle for computing a minimum-cost flow. Recently, Schlotter and Sebő [13] have shown
that this issue is a manifestation of a complexity barrier: finding two openly disjoint paths
with minimum total weight between two vertices in an undirected edge-weighted graph is
NP-hard, even if weights are conservative (i.e., no cycle has negative total weight) and each
edge has weight in {−1, 1}.1 Note that negative edge weights occur in network problems
due to various reasons: for example, they might arise as a result of some reduction (e.g.,
deciding the feasibility of certain scheduling problems with deadlines translates into finding
negative-weight cycles), or as a result of data that is represented on a logarithmic scale. We
remark that the Single-Source Shortest Paths problem is the subject of active research
for the case when negative edges are allowed; see Bernstein et al. [2] for an overview of the
area and their state-of-the-art algorithm running in near-linear time on directed graphs.

Our contribution

We consider the following problem which concerns finding paths between two fixed terminals
(as opposed to the classic Shortest Disjoint Paths problem):

Shortest Two Disjoint Paths:
Input: An undirected graph G = (V, E), a weight function w : E → R that is conservative

on G, and two vertices s and t in G.
Task: Find two paths P1 and P2 between s and t with V (P1) ∩ V (P2) = {s, t} that

minimizes w(P1) + w(P2).

A solution for an instance (G, w, s, t) of Shortest Two Disjoint Paths is a pair of
(s, t)-paths that are openly disjoint, i.e., do not share vertices other than their endpoints.

From the NP-hardness proof for Shortest Two Disjoint Paths by Schlotter and
Sebő [13] it follows that the problem remains NP-hard even if the set of negative-weight
edges forms a perfect matching. Motivated by this intractability, we focus on the “opposite”
case when the subgraph of G spanned by the set E− = {e ∈ E : w(e) < 0} of negative-
weight edges, denoted by G[E−], has only few connected components.2 Note that since w is
conservative on G, the graph G[E−] is acyclic. Hence, if c denotes the number of connected
components in G[E−], then G[E−] in fact consists of c trees.

We can think of our assumption that c is constant as a compromise for allowing negative-
weight edges but requiring that they be confined to a small part of the graph. For a
motivation, consider a network where negative-weight edges arise as some rare anomaly. Such
an anomaly may occur when, in a certain part of a computer network, some information can
be collected while traversing the given edge. If such information concerns, e.g., the detection
of (possibly) faulty nodes or edges in the network, then it is not unreasonable to assume that
these faults are concentrated to a certain part of the network, due to underlying physical
causes that are responsible for the fault.

1 In fact, Schlotter and Sebő use an equivalent formulation of the problem where, instead of finding two
openly disjoint paths between s and t, the task is to find two vertex-disjoint paths between {s1, s2} and
{t1, t2} for four vertices s1, s2, t1, t2 ∈ V .

2 See Section 2 for the precise definition of a subgraph spanned by an edge set.
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Ideally, one would aim for an algorithm that is fixed-parameter tractable (FPT) when
parameterized by c; however, already the case c = 1 turns out to be challenging. We prove
the following result, which can be thought of as a first step towards an FPT algorithm:

▶ Theorem 1. For each constant c ∈ N, Shortest Two Disjoint Paths can be solved in
polynomial time on instances where the set of negative edges spans c trees in G.

Our algorithm first applies standard flow techniques to find minimum-weight solutions
among those that have a simple structure in the sense that there is no negative tree in G[E−]
used by both paths. To deal with more complex solutions where there is at least one tree T

in G[E−] used by both paths, we use recursion to find two openly disjoint paths from s to T ,
and from T to t; to deal with the subpaths of the solution that heavily use negative edges
from T , we apply an intricate dynamic programming method that is based on significant
insight into the structural properties of such solutions.

Organization

We give all necessary definitions in Section 2. In Section 3 we make initial observations about
optimal solutions for an instance (G, w, s, t) of Shortest Two Disjoint Paths, and we
also present a lemma of key importance that will enable us to create solutions by combining
partial solutions that are easier to find (Lemma 10). We present the algorithm proving our
main result, Theorem 1, in Section 4. In Section 4.1 we give a general description of our
algorithm, and explain which types of solutions can be found using flow-based techniques. We
proceed in Section 4.2 by establishing structural observation that we need to exploit in order
to find those types of solutions where more advanced techniques are necessary. Section 4.3
contains our dynamic programming method for finding partial solutions which, together with
Lemma 10, form the heart of our algorithm. We conclude with some questions for further
research in Section 5. All proofs are deferred to the full version of our paper [12].

2 Notation

For a positive integer ℓ, we use [ℓ] := {1, 2, . . . , ℓ}.
Let a graph G be a pair (V, E) where V and E are the set of vertices and edges, respectively.

For two vertices u and v in V , an edge connecting u and v is denoted by uv or vu.
For a set of X of vertices (or edges), let G−X denote the subgraph of G obtained by

deleting the vertices (or edges, respectively) of X; if X = {x} then we may simply write
G− x instead of G− {x}. Given a set F ⊆ E of edges in G, we denote by V (F ) the vertices
incident to some edge of F . The subgraph of G spanned by F is the graph (V (F ), F ); we
denote this subgraph as G[F ].

A walk W in G is a series e1, e2, . . . , eℓ of edges in G for which there exist vertices
v0, v1, . . . , vℓ in G such that ei = vi−1vi for each i ∈ [ℓ]; note that both vertices and edges
may appear repeatedly on a walk. We denote by V (W ) the set of vertices contained by or
appearing on W , that is, V (W ) = {v0, v1, . . . , vℓ}. The endpoints of W are v0 and vℓ, or in
other words, it is a (v0, vℓ)-walk, while all vertices on W that are not endpoints are inner
vertices. If v0 = vℓ, then we say that W is a closed walk.

A path is a walk on which no vertex appears more than once. By a slight abuse of
notation, we will usually treat a path as a set {e1, e2, . . . , eℓ} of edges for which there
exist distinct vertices v0, v1, . . . , vℓ in G such that ei = vi−1vi for each i ∈ [ℓ]. For any i

and j with 0 ≤ i ≤ j ≤ ℓ we will write P [vi, vj ] for the subpath of P between vi and vj ,
consisting of edges ei+1, . . . , ej . Note that since we associate no direction with P , we have
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57:4 Shortest Two Disjoint Paths in Conservative Graphs

P [vi, vj ] = P [vj , vi]. Given two vertices s and t, an (s, t)-path is a path whose endpoints
are s and t. Similarly, for two subsets S and T of vertices, an (S, T )-path is a path with one
endpoint in S and the other endpoint in T .

We say that two paths are vertex- or edge-disjoint, if they do not share a common vertex
or edge, respectively. Two paths are openly disjoint, if they share no common vertices
apart from possibly their endpoints. Given vertices s1, s2, t1, and t2, we say that two
({s1, s2}, {t1, t2})-paths are permissively disjoint, if a vertex v can only appear on both paths
if either v = s1 = s2 or v = t1 = t2. Two paths properly intersect, if they share at least one
edge, but neither is the subpath of the other.

A cycle in G is a set {e1, e2, . . . , eℓ} of distinct edges in G such that e1, e2, . . . , eℓ−1 form a
path in G− eℓ whose endpoints are connected by eℓ. A set T ⊆ E of edges in G is connected,
if for every pair of edges e and e′ in T , there is a path contained in T containing both e

and e′. If T is connected and acyclic, i.e., contains no cycle, then T is a tree in G. Given
two vertices a and b in a tree T , we denote by T [a, b] the unique path contained in T whose
endpoints are a and b. For an edge uv ∈ T and a path P within T such that uv /∈ P , we say
that v is closer to P in T than u, if v ∈ V (T [u, p]) for some vertex p ∈ V (P ).

Given a weight function w : E → R on the edge set of G, we define the weight of any
edge set F ⊆ E as w(F ) =

∑
e∈F w(e). We extend this notion for any pair F = (F1, F2)

of edge sets by letting w(F) = w(F1) + w(F2). The restriction of w to an edge set F ⊆ E,
i.e., the function whose domain is F and has value w(f) on each f ∈ F , is denoted by w|F .
We say that w (or, to make the dependency on G explicit, the weighted graph (G, w)) is
conservative, if no cycle in G has negative total weight.

3 Structural Observations

Let G = (V, E) be an undirected graph with a conservative weight function w : E → R. Let
E− = {e ∈ E : w(e) < 0} denote the set of negative edges, and T the set of negative trees
they form. More precisely, let T be the set of connected components in the subgraph G[E−];
the acyclicity of each T ∈ T follows from the conservativeness of w. For any subset T ′ of T ,
we use the notation E(T ′) =

⋃
T ∈T ′ E(T ) and V (T ′) =

⋃
T ∈T ′ V (T ).

In Section 3.1 we gather a few useful properties of conservative weight functions. In
Section 3.2 we collect observations on how an optimal solution can use different trees in T .
We close the section with a lemma of key importance in Section 3.3 that enables us to compose
solutions by combining two path pairs without violating our requirement of disjointness.

3.1 Implications of Conservative Weights
The next two lemmas establish implications of the conservativeness of our weight function.
Lemma 2 concerns closed walks, while Lemma 3 considers paths running between two vertices
on some negative tree in T . These lemmas will be useful in proofs where a given hypothetical
solution is “edited” – by removing certain subpaths from it and replacing them with paths
within some negative tree – in order to obtain a specific form without increasing its weight.

▶ Lemma 2. If W is a closed walk that does not contain any edge with negative weight more
than once, then w(W ) ≥ 0.

▶ Lemma 3. Let x, y, x′, y′ be four distinct vertices on a tree T in T .
(1) If Q is an (x, y)-walk in G using each edge of E− at most once, then w(Q) ≥ w(T [x, y]).
(2) If Q is an (x, y)-path and Q′ is an (x′, y′)-path vertex-disjoint from Q, then

w(Q) + w(Q′) ≥ w(T [x, y] \ T [x′, y′]) + w(T [x′, y′] \ T [x, y]).
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3.2 Solution Structure on Negative Trees
We first observe a simple property of minimum-weight solutions.

▶ Definition 4 (Locally cheapest path pairs). Let s1, s2, t1, t2 be vertices in G, and let P1
and P2 be two permissively disjoint ({s1, s2}, {t1, t2})-paths. A path T [u, v] in some T ∈ T
is called a shortcut for P1 and P2, if u and v both appear on the same path, either P1 or P2,
and there is no inner vertex or edge of T [u, v] contained in P1 ∪ P2. We will call P1 and P2
locally cheapest, if there is no shortcut for them.

The idea behind this concept is the following. Suppose that P1 and P2 are permissively
disjoint ({s1, s2}, {t1, t2})-paths, and T [u, v] is a shortcut for P1 and P2. Suppose that u

and v both lie on Pi (for some i ∈ [2]), and let P ′
i be the path obtained by replacing Pi[u, v]

with T [u, v]; we refer to this operation as amending the shortcut T [u, v]. Then P ′
i is also

permissively disjoint from P3−i and, since Lemma 2 implies w(Pi[u, v]) ≥ −w(T [u, v]) > 0,
has weight less than w(Pi). Hence, we have the following observation.

▶ Observation 5. Let P1 and P2 be two permissively disjoint ({s1, s2}, {t1, t2})-paths ad-
mitting a shortcut T [z, z′]. Suppose that z and z′ are on the path, say, P1. Let P ′

1 be
the path obtained by amending T [z, z′] on P1. Then P ′

1 and P2 are permissively disjoint
({s1, s2}, {t1, t2})-paths and w(P ′

1) < w(P1).

▶ Corollary 6. Any minimum-weight solution for (G, w, s, t) is a pair of locally cheapest
paths.

For convenience, for any (s, t)-path P and vertices u, v ∈ V (P ) we say that u precedes v

on P , or equivalently, v follows u on P , if u lies on P [s, v]. When defining a vertex as the
“first” (or “last”) vertex with some property on P or on a subpath P ′ of P then, unless
otherwise stated, we mean the vertex on P or on P ′ that is closest to s (or farthest from s,
respectively) that has the given property.

The following lemma shows that if two paths in a minimum-weight solution both use
negative trees T and T ′ for some T, T ′ ∈ T then, roughly speaking, they must traverse T

and T ′ in the same order; otherwise one would be able to replace the subpaths of the solution
running between T and T ′ by two paths, one within T and one within T ′, of smaller weight.

▶ Lemma 7. Let P1 and P2 be two openly disjoint (s, t)-paths of minimum total weight,
and let T and T ′ be distinct trees in T . Suppose that v1, v2, v′

1 and v′
2 are vertices such that

vi ∈ V (T ) ∩ V (Pi) and v′
i ∈ V (T ′) ∩ V (Pi) for i ∈ [2], with v1 preceding v′

1 on P1. Then v2
precedes v′

2 on P2.

The following lemma is a consequence of Corollary 6 and Lemma 7, and considers a
situation when one of the paths in an optimal solution visits a negative tree T ∈ T at least
twice, and visits some T ′ ∈ T \ {T} in between.

▶ Lemma 8. Let P1 and P2 be two openly disjoint (s, t)-paths of minimum total weight, and
let T and T ′ be distinct trees in T . Suppose that v1, v′

2, and v3 are vertices appearing in this
order on P1 when traversed from s to t, and suppose v1, v3 ∈ V (T ) while v′

2 ∈ V (T ′). Then
V (P2) ∩ V (T ) ̸= ∅;
V (P2) ∩ V (T ′) = ∅;
no vertex of V (P1) ∩ V (T ′) precedes v1 or follows v3 on P1.

We say that two paths P1 and P2 are in contact at T , if there is a tree T ∈ T and two
distinct vertices v1 and v2 in T such that v1 lies on P1, and v2 lies on P2. Lemmas 7 and 8
imply the following fact that will enable us to use recursion in our algorithm to find solutions
that consist of two paths in contact.

STACS 2024



57:6 Shortest Two Disjoint Paths in Conservative Graphs

▶ Lemma 9. Let P1 and P2 be two openly disjoint (s, t)-paths of minimum total weight, and
assume that they are in contact at some tree T ∈ T . For i ∈ [2], let ai and bi denote the
first and last vertices of Pi on T when traversed from s to t. Then we can partition T \ {T}
into (Ts, T0, Tt) such that for each T ′ ∈ T \ {T} and i ∈ [2] it holds that

(i) if Pi[s, ai] contains a vertex of T ′, then T ′ ∈ Ts

(ii) if Pi[bi, t] contains a vertex of T ′, then T ′ ∈ Tt

(iii) if Pi[ai, bi] contains a vertex of T ′, then T ′ ∈ T0.

Given a solution (P1, P2) whose paths are in contact at some tree T ∈ T , a partition
of T \ {T} is T -valid with respect to (P1, P2), if it satisfies the conditions of Lemma 9.

3.3 Combining Path Pairs

The following lemma will be a crucial ingredient in our algorithm, as it enables us to combine
“partial solutions” without violating the requirement of vertex-disjointness.

▶ Lemma 10. Let p1, p2, q1, q2 be vertices in G, and let T ∈ T contain vertices v1 and v2
with v1 ̸= v2. Let P1 and P2 be two permissively disjoint ({p1, p2}, {v1, v2})-paths in G, and
let Q1 and Q2 be two permissively disjoint ({v1, v2}, {q1, q2})-paths in G that are locally
cheapest. Assume also that we can partition T into two sets T1 and T2 with T ∈ T2 such that

(i) V (T ) ∩ V (P1 ∪ P2) = {v1, v2}, and
(ii) P1 ∪ P2 contains no edge of E(T2), and Q1 ∪Q2 contains no edge of E(T1).

Then we can find in linear time two permissively disjoint ({p1, p2}, {q1, q2})-paths S1 and S2
in G such that w(S1) + w(S2) ≤ w(P1) + w(P2) + w(Q1) + w(Q2).

We remark that Lemma 10 heavily relies on the condition that v1 and v2 are both on T :
to construct the desired paths S1 and S2, we not only use the path pairs (P1, P2) and (Q1, Q2)
but, if necessary, remove certain subpaths from them and stitch together the remainder with
a path running within T .

4 Polynomial-Time Algorithm for Constant |T |

This section contains the algorithm proving our main result, Theorem 1. Let (G, w, s, t)
be our instance of Shortest Two Disjoint Paths with input graph G = (V, E), and
assume that the set E− of negative edges spans c trees in G for some constant c. We present
a polynomial-time algorithm that computes a solution for (G, w, s, t) with minimum total
weight, or correctly concludes that no solution exists for (G, w, s, t). The running time of our
algorithm is O(n2c+9) where n = |V |, so in the language of parameterized complexity, our
algorithm is in XP with respect to the parameter c.

In Section 4.1 we present the main ideas and definitions necessary for our algorithm, and
provide its high-level description together with some further details. We will distinguish
between so-called separable and non-separable solutions. Finding an optimal and separable
solution will be relatively easy, requiring extensive guessing but only standard techniques for
computing minimum-cost flows. By contrast, finding an optimal but non-separable solution
is much more difficult. Therefore, in Section 4.2 we collect useful properties of optimal, non-
separable solutions. These observations form the basis for an important subroutine necessary
for finding optimal, non-separable solutions; this subroutine is presented in Section 4.3.
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4.1 The Algorithm
We distinguish between two types of solutions for our instance (G, w, s, t) of Shortest Two
Disjoint Paths.

▶ Definition 11 (Separable solution). Let (P1, P2) be a solution for (G, w, s, t). We say that
P1 and P2 are separable, if either

they are not in contact, i.e., there is no tree T ∈ T that shares distinct vertices with
both P1 and P2, or
there is a unique tree T ∈ T such that P1 and P2 are in contact at T , but the intersection
of T with both P1 and P2 is a path, possibly containing only a single vertex;

otherwise they are non-separable.

In Section 4.1.1 we show how to find an optimal, separable solution, whenever such a
solution exists for (G, w, s, t). Section 4.1.2 deals with the case when we need to find an
optimal, non-separable solution. Our algorithm for the latter case is more involved, and
relies on a subroutine that is based on dynamic programming and is developed throughout
Sections 4.2 and 4.3. The existence of this subroutine is stated in Corollary 33.

4.1.1 Finding Separable Solutions
Suppose that (P1, P2) is a minimum-weight solution for (G, w, s, t) that is separable. The
following definition establishes conditions when we are able to apply a simple strategy for
finding a minimum-weight solution using well-known flow techniques.

▶ Definition 12 (Strongly separable solution). Let (P1, P2) be a solution for (G, w, s, t).
We say that P1 and P2 are strongly separable, if they are separable and they are either not
in contact at any tree of T , or they are contact at a tree of T that contains s or t.

Suppose that P1 and P2 are either not in contact, or they are in contact at a tree of T
that contains s or t. Let T ̸∋s,t denote the set of all trees in T that contain neither s nor t.
For each T ∈ T ̸∋s,t that shares a vertex with Pi for some i ∈ [2], we define aT as the first
vertex on Pi (when traversed from s to t) that is contained in T ; note that T cannot share
vertices with both P1 and P2 as they are strongly separable, so Pi is uniquely defined.

Our approach is the following: we guess the vertex aT for each T ∈ T ̸∋s,t, and then
compute a minimum-cost flow in an appropriately defined network. More precisely, for each
possible choice of vertices Z = {zT ∈ V (T ) : T ∈ T ̸∋s,t}, we build a network NZ as follows.

▶ Definition 13 (Flow network NZ for strongly separable solutions). Given a set Z ⊆ V

such that Z ∩ V (T ) = {zT } for each T ∈ T ̸∋s,t, we create NZ as follows. We direct each
non-negative edge in G in both directions. Then for each T ∈ T ̸∋s,t, we direct the edges
of T away from zT .3 If some T ∈ T contains s, then we direct all edges of T away from s;
similarly, if some T ∈ T contains t, then we direct all edges of T towards t. We assign
a capacity of 1 to each arc and to each vertex4 in the network except for s and t, and we
retain the cost function w (meaning that we define w(−→e ) as w(e) for any arc −→e obtained by
directing some edge e). We let s and t be the source and the sink in NZ , respectively.

3 Directing a tree T away from a vertex z ∈ V (T ) means that an edge uv in T becomes an arc (u, v) if
and only if T [z, u] has fewer edges than T [z, v]; directing T towards z is defined analogously.

4 The standard network flow model can be adjusted by well-known techniques to allow for vertex capacities.
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▶ Lemma 14. If there exists a strongly separable solution for (G, w, s, t) with weight k, then
there exists a flow of value 2 having cost k in the network NZ for some choice of Z ⊆ V

containing exactly one vertex from each tree in T ̸∋s,t. Conversely, a flow of value 2 and
cost k in the constructed network NZ for some Z yields a solution for (G, w, s, t) with weight
at most k.

Next, we show how to deal with the case when a minimum-weight solution (P1, P2) is
separable, but not strongly separable; then there is a unique tree T ∈ T at which P1 and P2
are in contact. In such a case, we can simply delete an edge from T in a way that paths P1
and P2 cease to be in contact in the resulting instance. This way, we can reduce our problem
to the case when there is a strongly separable optimal solution; note, however, that the
number of trees spanned by the negative edges (our parameter c) increases by 1.

▶ Lemma 15. If there exists a separable, but not strongly separable solution for (G, w, s, t) with
weight k, then there exists an edge e ∈ E− such that setting G′ = G− e and E′ = E \{e}, the
instance (G′, w|E′ , s, t) admits a strongly separable solution with weight at most k. Conversely,
a solution for (G′, w|E′ , s, t) is also a solution for (G, w, s, t) with the same weight.

Thanks to Lemmas 14 and 15, if there exists a minimum-weight solution for (G, w, s, t)
that is separable, then we can find some minimum-weight solution using standard algorithms
for computing minimum-cost flows. In Section 4.1.2 we explain how we can find a minimum-
weight non-separable solution for (G, w, s, t).

4.1.2 Finding Non-separable Solutions
To find a minimum-weight solution for (G, w, s, t) that is not separable, we need a more
involved approach. We now provide a high-level presentation of our algorithm for finding a
non-separable solution of minimum weight. We remark that Algorithm STDP contains a
pseudocode; however, we believe that it is best to read the following description first.

Step 1. We guess certain properties of a minimum-weight non-separable solution (P1, P2):
First, we guess a tree T ∈ T that shares distinct vertices both with P1 and P2, i.e., a tree
at which P1 and P2 are in contact. Second, we guess a partition (Ts, T0, Tt) of T \ {T}
that is T -valid with respect to (P1, P2).

Step 2. If Ts ̸= ∅, then we guess the first vertex of P1 and of P2 contained in V (T ), denoted
by a1 and a2, respectively. We use recursion to compute two permissively disjoint
(s, {a1, a2})-paths using only the negative trees in Ts, and to compute two permissively
disjoint ({a1, a2}, t)-paths using only the negative trees in T \ Ts. Observe that by Ts ̸= ∅
and T ∈ T \ Ts, we search for these paths in graphs that contain only a strict subset of
the negative trees in T . Thus, our parameter c strictly decreases in both constructed
sub-instances. We combine the obtained pairs of paths into a solution by using Lemma 10.
We proceed in a similar fashion when Tt ̸= ∅.

Step 3. If Ts = Tt = ∅, then for both i ∈ [2] we guess the first and last vertex of Pi contained
in V (T ), denoted by ai and bi, respectively. We apply standard flow techniques to
compute two (s, {a1, a2})-paths and two ({b1, b2}, t)-paths with no inner vertices in V (T )
that are pairwise permissively disjoint. Then, we apply the polynomial-time algorithm
we devise for computing a pair of permissively disjoint ({a1, a2}, {b1, b2})-paths in G.
This algorithm is the cornerstone of our method, and is based on important structural
observations that allow for efficient dynamic programming. We combine the obtained
pairs of paths into a solution by applying Lemma 10.

Step 4. We output a solution of minimum weight among all solutions found in Steps 2 and 3.

Let us now provide more details about these steps; see also Algorithm STDP.
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Step 1: Initial guesses on T

There are c = |T | possibilities to choose T from T , and there are 3c−1 further possibilities to
partition T \ {T} into (Ts, T0, Tt), yielding c3c−1 possibilities in total for our guesses.

Step 2: Applying recursion

To apply recursion in Step 2 when Ts ̸= ∅, we guess two distinct vertices a1 and a2 in T , and
define the following sub-instances.

▶ Definition 16 (Sub-instances for Ts ̸= ∅). For some ∅ ̸= Ts ⊆ T and distinct vertices a1
and a2, we create a graph Gs by adding a new vertex a⋆, and connecting it to both a1 and a2
with an edge of weight wa⋆ = |w(T [a1, a2])|/2. We create instances I1

s and I2
s as follows:

to get I1
s , we delete E(T \ Ts) and V (T \ Ts) \ {a1, a2} from Gs, and designate s and a⋆

as our two terminals;
to get I2

s , we delete V (Ts) from Gs, and designate a⋆ and t as our two terminals.

We use recursion to solve Shortest Two Disjoint Paths on sub-instances I1
s and I2

s .
Note that conservativeness is maintained for both I1

s and I2
s , due to our choice of wa⋆ and

statement (1) of Lemma 3. If both sub-instances admit solutions, we obtain two permissively
disjoint (s, {a1, a2})-paths Q↗

1 and Q↗
2 from our solution to I1

s by deleting the vertex a⋆.
Similarly, we obtain two permissively disjoint ({a1, a2}, t)-paths Q↘

1 and Q↘
2 from our solution

to I2
s by deleting the vertex a⋆. Next we use Lemma 10 to create a solution for our original

instance (G, w, s, t) using paths Q↗
1 , Q↗

2 , Q↘
1 , and Q↘

2 .
If Tt ≠ ∅, then we proceed similarly: after guessing two distinct vertices b1 and b2 in T ,

we use a construction analogous to Definition 16.

▶ Definition 17 (Sub-instances for Tt ̸= ∅). For some ∅ ≠ Ts ⊆ T and distinct vertices b1
and b2, we create a graph Gt by adding a new vertex b⋆, and connecting it to both b1 and b2
with an edge of weight wb⋆ = |w(T [b1, b2])|/2. We create instances I1

t and I2
t as follows:

to get I1
t , we delete V (Tt) from Gt, and designate s and b⋆ as our two terminals;

to get I2
t , we delete E(T \ Tt) and V (T \ Tt) \ {b1, b2} from Gt and designate b⋆ and t as

our two terminals.

We use recursion to solve Shortest Two Disjoint Paths on sub-instances I1
t and I2

t ;
again, conservativeness is ensured for I1

t and I2
t by our choice of wb⋆ and statement (1)

of Lemma 3. If both sub-instances admit solutions, we obtain two permissively dis-
joint (s, {b1, b2})-paths Q↗

1 and Q↗
2 from our solution to I1

t by deleting the vertex b⋆. Similarly,
we obtain two permissively disjoint ({b1, b2}, t)-paths Q↘

1 and Q↘
2 from our solution to I2

t

by deleting the vertex b⋆. Again, we use Lemma 10 to create a solution for our original
instance (G, w, s, t) using paths Q↗

1 , Q↗
2 , Q↘

1 , and Q↘
2 .

We state the correctness of Step 2 in the following lemma:

▶ Lemma 18. Suppose that (P1, P2) is a minimum-weight solution for (G, w, s, t) such that
P1 and P2 are in contact at some T ∈ T ,
ai and bi are the first and last vertices of Pi contained in T , respectively, for i ∈ [2], and
(Ts, T0, Ts) is a T -valid partition w.r.t. (P1, P2).

Then instances I1
s and I2

s admit solutions whose total weight (summed over all four paths)
is w(P1) + w(P2) + 4wa⋆ . Furthermore, given a solution Si for Ii

s for both i ∈ [2], we can
compute in linear time a solution for (G, w, s, t) of weight at most w(S1) + w(S2)− 4wa⋆ .
The same holds when substituting I1

s , I2
s , and wa⋆ with I1

t , I2
t , and wb⋆ in these claims.
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Algorithm STDP Solving Shortest Two Disjoint Paths with conservative weights.

Input: An instance (G, w, s, t) where w is conservative on G.
Output: A solution for (G, w, s, t) with minimum weight, or ∅ if no solution exist.

1: Let S = ∅.
2: for all E′ ⊆ E such that E \ E′ ⊆ E− and |E \ E′| ≤ 1 do ▷ Separable solutions.
3: Create the instance (G[E′], w|E′ , s, t).
4: Let T ̸∋s,t = {T : T is a maximal tree in G[E′ ∩ E−] with s, t /∈ V (T )}.
5: for all Z ⊆ V such that |Z ∩ V (T )| = 1 for each T ∈ T ̸∋s,t do
6: Create the network NZ from instance (G[E′], w|E′ , s, t). ▷ Use Def. 13.
7: if ∃ a flow f of value 2 in NZ then
8: Compute a minimum-cost flow f of value 2 in NZ .
9: Construct a solution (S1, S2) from f using Lemma 14.

10: S ← (S1, S2).
11: for all T ∈ T do ▷ Non-separable solutions.
12: for all partitions (Ts, T0, Tt) of T \ {T} do
13: if Ts ̸= ∅ then
14: for all a1, a2 ∈ V (T ) with a1 ̸= a2 do
15: Create sub-instances I1

s and I2
s . ▷ Use Def. 16.

16: Compute (Q↗
1 , Q↗

2 ) = STDP(I1
s ).

17: Compute (Q↘
1 , Q↘

2 ) = STDP(I2
s ).

18: if (Q↗
1 , Q↗

2 ) ̸= ∅ and (Q↘
1 , Q↘

2 ) ̸= ∅ then
19: Create a solution (S1, S2) from (Q↗

1 , Q↗
2 ) and (Q↘

1 , Q↘
2 ) using Lemma 18.

20: S ← (S1, S2).
21: else if Tt ̸= ∅ then
22: for all b1, b2 ∈ V (T ) with b1 ̸= b2 do
23: Create sub-instances I1

t and I2
t . ▷ Use Def. 17.

24: Compute (Q↗
1 , Q↗

2 ) = STDP(I1
t ).

25: Compute (Q↘
1 , Q↘

2 ) = STDP(I2
t ).

26: if (Q↗
1 , Q↗

2 ) ̸= ∅ and (Q↘
1 , Q↘

2 ) ̸= ∅ then
27: Create a solution (S1, S2) from (Q↗

1 , Q↗
2 ) and (Q↘

1 , Q↘
2 ) using Lemma 18.

28: S ← (S1, S2).
29: else ▷ Ts = Tt = ∅.
30: for all a1, a2, b1, b2 ∈ V (T ) that constitute a reasonable guess do
31: if ∃ a flow f of value 4 in N(a1,b1,a2,b2) then ▷ Use Def. 19.
32: if ∃ two permissively disjoint ({a1, a2}, {b1, b2})-paths in G then
33: Compute a minimum-cost flow f of value 4 in N(a1,b1,a2,b2).
34: Compute permissively disjoint ({a1, a2}, {b1, b2})-paths Q1 and Q2.
35: ▷ Use Corollary 33 in Section 4.3
36: Construct a solution (S1, S2) from f , Q1, and Q2 using Lemma 20.
37: S ← (S1, S2).
38: if S = ∅ then return ∅.
39: else Let S⋆ be the cheapest pair among those in S, and return S⋆.
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Step 3: Applying flow techniques and dynamic programming

We now describe Step 3 in more detail, which concerns the case when Ts = Tt = ∅.
First, we guess vertices a1, b1, a2, and b2; the intended meaning of these vertices is that

ai and bi are the first and last vertices of Pi contained in V (T ), for both i ∈ [2]. We only
consider guesses that are reasonable, meaning that they satisfy the following conditions:

if s ∈ V (T ), then s = a1 = a2, otherwise a1 ̸= a2;
if t ∈ V (T ), then t = b1 = b2, otherwise b1 ̸= b2;
T [a1, b1] and T [a2, b2] share at least one edge.

Then we compute four paths from {s, t} to {a1, b1, a2, b2} in the graph G − E(T ) −
(V (T ) \ {a1, a2, b1, b2}) with minimum weight such that two paths have s as an endpoint,
the other two have t as an endpoint, and no other vertex appears on more than one path. To
this end, we define the following network and compute a minimum-cost flow of value 4 in it.

▶ Definition 19 (Flow network N(a1,b1,a2,b2) for non-separable solutions.). Given vertices
a1, b1, a2, and b2, we create N(a1,b1,a2,b2) as follows. First, we delete all edges in E− and all
vertices in V (T ) \ {a1, a2, b1, b2} from G, and direct each edge in G in both directions. We
then add new vertices s⋆ and t⋆, along with arcs (s⋆, s) and (s⋆, t) of capacity 2, and arcs
(ai, t⋆) and (bi, t⋆) for i = 1, 2 with capacity 1.5 We assign capacity 1 to all other arcs, and
also to each vertex of V (G)\{s, t}. All newly added arcs will have cost 0, otherwise we retain
the cost function w. We let s⋆ and t⋆ be the source and the sink in N(a1,b1,a2,b2), respectively.

Next, we compute two ({a1, a2}, {b1, b2})-paths Q1 and Q2 in G with minimum total
weight that are permissively disjoint. A polynomial-time computation for this problem, build-
ing on structural observations from Section 4.2, is provided in Section 4.3 (see Corollary 33).
Finally, we apply Lemma 10 (in fact, twice) to obtain a solution to our instance (G, w, s, t)
based on a minimum-cost flow of value 4 in N(a1,b1,a2,b2) and paths Q1 and Q2. We finish
this section with Lemma 20, stating the correctness of Step 3.

▶ Lemma 20. Suppose that (P1, P2) is a minimum-weight solution for (G, w, s, t) such that
P1 and P2 are non-separable, and in contact at some T ∈ T ,
ai and bi are the first and last vertices of Pi contained in T , respectively, for i ∈ [2], and
(∅, T \ {T}, ∅) is a T -valid partition w.r.t. (P1, P2).

Let Q1 and Q2 be two permissively disjoint ({a1, a2}, {b1, b2})-paths in G with minimum total
weight. Then the following holds:
If w⋆ is the minimum cost of a flow of value 4 in the network N(a1,b1,a2,b2), then w⋆ +w(Q1)+
w(Q2) ≤ w(P1) + w(P2). Conversely, given a flow of value 4 in the network N(a1,b1,a2,b2)
with cost w⋆, together with paths Q1 and Q2, we can find a solution for (G, w, s, t) with cost
at most w⋆ + w(Q1) + w(Q2) in linear time.

4.2 Properties of a Non-separable Solution
Let us now turn our attention to the subroutine lying at the heart of our algorithm for
Shortest Two Disjoint Paths: an algorithm that, given two source terminals and two
sink terminals on some tree T ∈ T , computes two permissively disjoint paths from the two
source terminals to the two sink terminals, with minimum total weight. It is straightforward
to see that any non-separable solution whose paths are in contact at T contains such a pair

5 In the degenerate case when s = a1 = a2 or t = b1 = b2 this yields two parallel arcs from s or t to t⋆.
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of paths. Therefore, as described in Section 4.1.2, finding such paths is a necessary step
to computing an optimal, non-separable solution for our instance (G, w, s, t). This section
contains observations about the properties of such paths.

Let us now formalize our setting. Let a1, a2, b1, and b2 be vertices on a fixed tree T ∈ T
such that T [a1, b1] and T [a2, b2] intersect in a path X (with at least one edge), with one
component of T \ X containing a1 and a2, and the other containing b1 and b2. Let the
vertices on X be x1, . . . , xr with x1 being the closest to a1 and a2. We will use the notation
Ai = T [ai, x1] and Bi = T [bi, xr] for each i ∈ [2]. For each i ∈ [r], let Ti be the maximal
subtree of T containing xi but no other vertex of X. We also define T(i,j) =

⋃
i≤h≤j Th for

some i and j with 1 ≤ i ≤ j ≤ r.
For convenience, for any path Q that has ai ∈ {a1, a2} as its endpoint, we will say that

Q starts at ai and ends at its other endpoint. Accordingly, for vertices u, v ∈ V (Q) we say
that u precedes v on Q, or equivalently, v follows u on Q, if u lies on Q[ai, v]. When defining
a vertex as the “first” (or “last”) vertex with some property on Q or on a subpath Q′ of Q

then, unless otherwise stated, we mean the vertex on Q or on Q′ that is closest to ai (or
farthest from ai, respectively) that has the given property.

Using Lemma 2 and (an extended version of) Lemma 3, we can establish the following
properties of a non-separable minimum-weight solution.

▶ Definition 21 (X-monotone path). A path Q starting at a1 or a2 is X-monotone if for
any vertices u1 and u2 on Q such that u1 ∈ V (Tj1) and u2 ∈ V (Tj2) for some j1 < j2 it
holds that u1 precedes u2 on Q.

▶ Definition 22 (Plain path). A path Q is plain, if whenever Q contains some xi ∈ V (X),
then the vertices of Q in Ti induce a path in Ti. In other words, if vertices xj ∈ V (X) and
u ∈ V (Tj) both appear on Q, then T [u, xj ] ⊆ Q.

▶ Lemma 23. Let Q1 and Q2 be two permissively disjoint ({a1, a2}, {b1, b2})-paths in G with
minimum total weight. Then both Q1 and Q2 are X-monotone and plain.

The following observation summarizes our understanding on how an optimal solution
uses paths A1, A2, B1, and B2.

▶ Lemma 24. If Q1 and Q2 are two permissively disjoint ({a1, a2}, {b1, b2})-paths that
are locally cheapest and also plain, then one of them contains A1 or A2, and one of them
contains B1 or B2.

4.3 Computing Partial Solutions
In this section we design a dynamic programming algorithm that computes two permissively
disjoint ({a1, a2}, {b1, b2})-paths of minimum total weight (we keep all definitions introduced
in Section 4.2, including our assumptions on vertices a1, b1, a2, and b2). In Section 4.2 we
have established that two permissively disjoint ({a1, a2}, {b1, b2})-paths of minimum total
weight are necessarily X-monotone, plain, and they form a locally cheapest pair. A natural
approach would be to require these same properties from a partial solution that we aim to
compute. However, it turns out that the property of X-monotonicity is quite hard to ensure
when building subpaths of a solution. The following relaxed version of monotonicity can be
satisfied much easier, and still suffices for our purposes:

▶ Definition 25 (Quasi-monotone path). A path P starting at a1 or a2 is quasi-monotone, if
the following holds: if xi ∈ V (P ) for some i ∈ [r], then all vertices in

⋃
h∈[i−1] V (Th)∩ V (P )

precede xi on P , and all vertices in
⋃

h∈[r]\[i] V (Th) ∩ V (P ) follow xi on P .
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▶ Definition 26 (Well-formed path pair). Two paths P1 and P2 form a well-formed pair, if
they are locally cheapest, and both are plain and quasi-monotone.

We are now ready to define partial solutions, the central notion that our dynamic
programming algorithm relies on.

▶ Definition 27 (Partial solution). Given vertices u ∈ V (Ti) and v ∈ V (Tj) for some i ≤ j

and a set τ ⊆ T \ {T}, two paths Q1 and Q2 form a partial solution (Q1, Q2) for (u, v, τ), if
(a) Q1 and Q2 are permissively disjoint ({a1, a2}, {u, v})-paths;
(b) Q1 and Q2 are a well-formed pair;
(c) Q1 ends with the subpath T [xi, u];
(d) V (T(i+1,r)) ∩ V (Q2) ⊆ {v};
(e) if Q1 ∪Q2 contains a vertex of some T ′ ∈ T \ {T}, then T ′ ∈ τ ;
(f) there exists no tree T ′ ∈ T \ {T} such that Q1 and Q2 are in contact at T ′.

We will say that the vertices of V (T \(τ ∪{T})) are forbidden for (τ, T ); then condition (e)
asks for Q1 ∪Q2 not to contain vertices forbidden for (τ, T ).

Before turning our attention to the problem of computing partial solutions, let us first show
how partial solutions enable us to find two permissively disjoint ({a1, a2}, {b1, b2})-paths.

▶ Lemma 28. Paths P1 and P2 are permissively disjoint ({a1, a2}, {b1, b2})-paths of minimum
weight in G if and only if they form a partial solution for (bh, b3−h, T \ {T}) of minimum
weight for some h ∈ [2].

We now present our approach for computing partial solutions using dynamic programming.

Computing partial solutions: high-level view

For each u ∈ V (Ti) and v ∈ V (Tj) for some i ≤ j, and each τ ⊆ T \ {T}, we are going
to compute a partial solution for (u, v, τ) of minimum weight, denoted by F (u, v, τ), using
dynamic programming; if there exists no partial solution for (u, v, τ), we set F (u, v, τ) = ∅.

To apply dynamic programming, we fix an ordering ≺ over V (T ) fulfilling the condition
that for each i′ < i, u ∈ V (Ti) and u′ ∈ V (Ti′) we have u′ ≺ u. We compute the values
F (u, v, τ) based on the ordering ≺ in the sense that F (u′, v′, τ ′) is computed before F (u, v, τ)
whenever u′ ≺ u. This computation is performed by Algorithm PartSol which determines
a partial solution F (u, v, τ) based on partial solutions already computed.

To compute F (u, v, τ) in a recursive manner, we use an observation that either the partial
solution has a fairly simple structure, or it strictly contains a partial solution for (u′, v′, τ ′)
for some vertices u′ and v′ with u′ ∈ V (Ti′) and i′ < i, and some set τ ′ ⊆ τ . We can thus
try all possible values for u′, v′ and τ ′, and use the partial solution (Q′

1, Q′
2) we have already

computed and stored in F (u′, v′, τ ′). To obtain a partial solution for (u, v, τ) based on Q′
1

and Q′
2, we append paths to Q′

1 and to Q′
2 so that they fulfill the requirements of Definition 27

– most importantly, that Q1 ends with T [xi, u], that Q2 ends at v, and that Q1 ∪Q2 contains
no vertex of V (T \ (τ ∪ {T})). To this end, we create a path P1 = Q′

2 ∪ T [v′, u] and a path
P2 = Q′

1 ∪R where R is a shortest (u′, v)-path in a certain auxiliary graph. Essentially, we
use the tree T for getting from v′ to u, and we use the “remainder” of the graph for getting
from u′ to v; note that we need to avoid the forbidden vertices and ensure condition (f) as
well. The precise definition of the auxiliary subgraph of G that we use for this purpose is
provided in Definition 29. If the obtained path pair (P1, P2) is indeed a partial solution
for (u, v, τ), then we store it. After trying all possible values for u′, v′, and τ ′, we select a
partial solution that has minimum weight among those we computed.
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▶ Definition 29 (Auxiliary graph). For some T ∈ T , let P ⊆ T be a path within T , let u and
v be two vertices on T , and let τ ⊆ T \ {T}. Then the auxiliary graph G⟨P, u, v, τ⟩ denotes
the graph defined as

G⟨P, u, v, τ⟩ = G−
(⋃
{V (Th) : V (Th) ∩ V (P ) = ∅} ∪ V (P ) \ {u, v} ∪ V (T \ (τ ∪ {T}))

)
.

In other words, we obtain G⟨P, u, v, τ⟩ from G by deleting all trees Th that do not intersect P ,
and deleting P itself as well, while taking care not to delete u or v, and additionally deleting
all vertices forbidden for (τ, T ).

Working towards explaining the main ideas behind Algorithm PartSol, we start with
two simple observations. The first one, stated by Lemma 30 below, essentially says that a
path in a partial solution that uses a subtree Th of T for some h ∈ [r] should also go through
the vertex xh whenever possible, that is, unless the other path uses xh.

▶ Lemma 30. Let Q1 and Q2 be two permissively disjoint, locally cheapest ({a1, a2}, {xi, v})-
paths for some v ∈ V (Tj) where 1 ≤ i ≤ j ≤ r. Let z ∈ V (Th) for some h ≤ j such that
h < j or xh ∈ V (T [z, v]). If z ∈ V (Q1 ∪Q2), then xh ∈ V (Q1 ∪Q2).

As a consequence of Lemma 30, applied with a1 taking the role of z and x1 taking the
role of xh, we get that every partial solution for some (u, v, τ) must contain x1; using that
both paths in a partial solution must be plain, we get the following fact.

▶ Observation 31. Let (Q1, Q2) be a partial solution for (u, v, τ) for vertices u ∈ V (Ti) and
v ∈ V (Tj) for some i ≤ j and for τ ⊆ T \ {T}. Then either Q1 or Q2 contains A1 or A2.

Let us now give some insight on Algorithm PartSol that computes a minimum-weight
partial solution (Q1, Q2) for (u, v, τ), if it exists, for vertices u ∈ V (Ti) and v ∈ V (Tj) with
i ≤ j and trees τ ⊆ T \{T}. It distinguishes between two cases based on whether Q2 contains
a vertex of T [x1, xi] or not; see Figure 1 for an illustration. In both cases it constructs
candidates for a partial solution, and then chooses one among these with minimum weight.

Case A: Q2 does not contain any vertices from T [x1, xi]. In this case, due to Observation 31,
we know that Q1 contains Ah for some h ∈ [2]; let us fix this value of h. Since Q1 and Q2
are locally cheapest and Q1 ends with T [xi, u], we also know that Q1 must contain T [x1, xi].
Therefore, we obtain Q1 = Ah ∪ T [x1, u]. In this case, we can also prove that Q2 is
a shortest (a3−h, v)-path in the auxiliary graph G⟨Ah ∪ T [x1, u], a3−h, v, τ⟩. Hence,
Algorithm PartSol computes such a path R and constructs the pair (Ah ∪ T [x1, u], R)
as a candidate for a partial solution for (u, v, τ).

Case B: Q2 contains a vertex from T [x1, xi]. In this case, let xi′ be the vertex on T [x1, xi−1]
closest to xi that appears on Q2, and let u′ be the last vertex of Q2 in Ti′ ; since Q2 is plain,
we know T [xi′ , u′] ⊆ Q2. Let xj′ denote the vertex on T [xi′ , xi] closest to xi′ that appears
on Q1; then i′ < j′ ≤ i. As Q1 and Q2 are locally cheapest, T [xj′ , xi] ⊆ Q1 follows. Let
v′ denote the first vertex of Q1 in Tj′ . Since Q1 is plain, we know T [v′, xj′ ] ⊆ Q1.
Define Q̃1 = Q2\Q2[u′, v] and Q̃2 = Q1\Q1[v′, u]. Let also τ ′ denote those trees in T \{T}
that share a vertex with Q̃1 ∪ Q̃2. We can then prove that (Q̃1, Q̃2) is a partial solution
for (u′, v′, τ ′); moreover, Q2[u′, v] is a path in the auxiliary graph G⟨T [v′, u], u′, v, τ \ τ ′⟩.
Thus, Algorithm PartSol takes a partial solution (Q′

1, Q′
2) for (u′, v′, τ ′), already com-

puted, and computes a shortest (u′, v)-path R in G⟨T [v′, u], u′, v, τ \ τ ′⟩. It then creates
the path pair (Q′

2 ∪ T [v′, u], Q′
1 ∪R) as a candidate for a partial solution for (u, v, τ).
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(a) Case A. The figure assumes Q1 = A1 ∪ T [x1, u] (so h = 1).
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b1

b2
u
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u′
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xixi′ xjxj′

x1̃

Q1

Q2Q̃2

Q1

(b) Case B. The subpaths Q̃2 and Q̃1 of Q1 and Q2, respectively, form a partial solution for (u′, v′, τ ′)
and are depicted in bold, with their endings marked by a parenthesis-shaped delimiter.

Figure 1 Illustration for Algorithm PartSol. Edges within T are depicted using solid lines,
edges not in T using dashed lines. Paths Q1 and Q2 are shown in blue and in green, respectively
(see the online version for colored figures).

Algorithm PartSol Computes a partial solution F (u, v, τ) of minimum weight for (u, v, τ) where
u ∈ V (Ti) and v ∈ V (Tj) with i ≤ j, and τ ⊆ T \ {T }.

Input: Vertices u and v where u ∈ V (Ti) and v ∈ V (Tj) for some i ≤ j, and a set τ ⊆ T \{T}.
Output: A partial solution F (u, v, τ) for (u, v, τ) of minimum weight, or ∅ if not existent.

1: Let S = ∅.
2: for all h ∈ [2] do
3: if Ah ∪ T [x1, u] is a path then
4: if v is reachable from a3−h in G⟨Ah ∪ T [x1, u], a3−h, v, τ⟩ then
5: Compute a shortest (a3−h, v)-path R in G⟨Ah ∪ T [x1, u], u, a3−h, v, τ⟩.
6: if (Ah ∪ T [x1, u], R) is a partial solution for (u, v, τ) then
7: S ← (Ah ∪ T [x1, u], R).
8: for all i′ ∈ [i− 1] and u′ ∈ V (Ti′) do
9: for all j′ ∈ [i] \ [i′] and v′ ∈ V (Tj′) such that T [xj′ , v′] ∩ T [xi, u] = ∅ do

10: for all τ ′ ⊆ τ do
11: if F (u′, v′, τ ′) = ∅ then continue;
12: Let (Q′

1, Q′
2) = F (u′, v′, τ ′).

13: if v is not reachable from u′ in G⟨T [v′, u], u′, v, τ \ τ ′⟩ then continue;
14: Compute a shortest (u′, v)-path R in G⟨T [v′, u], u′, v, τ \ τ ′⟩.
15: Let P1 = Q′

2 ∪ T [v′, u] and P2 = Q′
1 ∪R.

16: if (P1, P2) is a partial solution for (u, v, τ) then
17: S ← (P1, P2).
18: if S = ∅ then return ∅.
19: else Let S⋆ be the cheapest pair among those in S, and return F (u, v, τ) := S⋆.
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The following lemma guarantees the correctness of Algorithm PartSol. Formally, we say
that F (u, v, τ) is correctly computed if either it contains a minimum-weight partial solution
for (u, v, τ), or no partial solution for (u, v, τ) exists and F (u, v, τ) = ∅.

▶ Lemma 32. Let i, j ∈ [r] with i ≤ j, u ∈ V (Ti), v ∈ V (Tj) and τ ⊆ T \ {T}. As-
suming that the values F (u′, v′, τ ′) are correctly computed for each u′ ∈ V (Ti′) with i′ < i,
Algorithm PartSol correctly computes F (u, v, τ).

Using the correctness of Algorithm PartSol, as established by Lemma 32, and the
observation in Lemma 28 on how partial solutions can be used to find two permissively
disjoint ({a1, a2}, {b1, b2})-paths of minimum total weight, we obtain the following.

▶ Corollary 33. For each constant c ∈ N, there is a polynomial-time algorithm that finds two
permissively disjoint ({a1, a2}, {b1, b2})-paths of minimum total weight in G (if such paths
exist), where the set of negative edges in G spans c trees.

5 Conclusion

We have presented a polynomial-time algorithm for solving the Shortest Two Disjoint
Paths problem on undirected graphs G with conservative edge weights, assuming that the
number of connected components in the subgraph G[E−] spanned by all negative-weight
edges is a fixed constant c. The running time of our algorithm is O(n2c+9) on an n-vertex
graph. Is it possible to give a substantially faster algorithm for this problem? In particular,
is it possible to give a fixed-parameter tractable algorithm for Shortest Two Disjoint
Paths on undirected conservative graphs when parameterized by c?

More generally, is it possible to find in polynomial time k openly disjoint (s, t)-paths with
minimum total weight for some fixed k ≥ 3 in undirected conservative graphs with constant
values of c?
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