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Abstract
We consider a hierarchy of graph invariants that naturally extends the spectral invariants defined
by Fürer (Lin. Alg. Appl. 2010) based on the angles formed by the set of standard basis vectors
and their projections onto eigenspaces of the adjacency matrix. We provide a purely combinatorial
characterization of this hierarchy in terms of the walk counts. This allows us to give a complete
answer to Fürer’s question about the strength of his invariants in distinguishing non-isomorphic
graphs in comparison to the 2-dimensional Weisfeiler-Leman algorithm, extending the recent work
of Rattan and Seppelt (SODA 2023). As another application of the characterization, we prove
that almost all graphs are determined up to isomorphism in terms of the spectrum and the angles,
which is of interest in view of the long-standing open problem whether almost all graphs are
determined by their eigenvalues alone. Finally, we describe the exact relationship between the
hierarchy and the Weisfeiler-Leman algorithms for small dimensions, as also some other important
spectral characteristics of a graph such as the generalized and the main spectra.
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1 Introduction

The spectrum of a graph is a remarkable graph invariant that has found numerous applications
in computer science; e.g., [17, 20]. These applications are based on analyzing relevant
information contained in the eigenvalues of a given graph. The maximum information possible
is evidently obtained for graphs that are determined by their spectra up to isomorphism.
This graph class, which is of direct relevance to the graph isomorphism problem, is often
abbreviated as DS. Thus, a graph G is DS if every graph cospectral to G, i.e., with the
same spectrum as G, is actually isomorphic to G. Though the problem of characterizing DS
graphs has been intensively studied since the beginning of spectral graph theory (see [10] and
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references therein), we are still far from a satisfactory solution. In particular, a long-standing
open question [16, 25] is whether or not almost all graphs are DS. Here and in the rest of the
paper, we say that almost all graphs have some property if a uniformly distributed random
n-vertex graph1 has this property with probability approaching 1 as n goes to infinity.

Somewhat surprisingly at first sight, the area is connected to a purely combinatorial
approach to the graph isomorphism problem. In their seminal work, Weisfeiler and Leman [28]
proposed and studied a method for distinguishing a graph G from another non-isomorphic
graph by computing a sequence of canonical partitions of V (G)2 into color classes. The final
partition of V (G)2 results in a coherent configuration, a concept which is studied in algebraic
combinatorics [7] and plays an important role in isomorphism testing [2]. The method of [28]
is now called the 2-dimensional Weisfeiler-Leman algorithm (2-WL). A similar approach
based on partitioning V (G) is known as color refinement and is often called 1-WL. Even
this one-dimensional method is quite powerful as it suffices for identification of almost all
graphs [3]. On the other hand, construction of graphs not identifiable by 2-WL is rather
tricky. Particular examples are based on rare combinatorial objects. General constructions,
like the far-reaching one in [6], give rather sporadic families of “hard” graphs. It turns out
(see, e.g., [4, 15]) that if two graphs are indistinguishable by 2-WL, then they are cospectral.
As a consequence, graphs not identifiable by 2-WL are examples of non-DS graphs.

Our overall goal in this paper is a systematic exploration of connections between spectral
and combinatorial approaches to finding expressive graph invariants. A graph invariant I is
a function of a graph such that I(G) = I(H) whenever G ∼= H. An invariant I is stronger
than invariant I ′ if I(G) determines I ′(G). That is, I(G) = I(H) implies I ′(G) = I ′(H).
Equivalently, we sometimes say that I ′ is weaker than I and write I ′ ⪯ I. A stronger
invariant can be more effective in distinguishing non-isomorphic graphs: If I ′ ⪯ I and I ′

can distinguish non-isomorphic graphs G and H, i.e., I ′(G) ̸= I ′(H), then these graphs are
distinguishable by I as well.

Let Spec(G) denote the spectrum of a graph G, and WL2(G) denote the output of 2-WL on
G (a formal definition is given in Section 2.2). The discussion above shows that Spec ⪯WL2.
This can be seen as evidence of limitations of Spec, as well as evidence of the power of WL2.

A reasonable question is what can be achieved if Spec(G) is enhanced by other spectral
characteristics of the adjacency matrix of G. One such line of research in spectral graph
theory considers Spec(G) augmented with the multiset of all angles between the standard
basis vectors and the eigenspaces of G. The parameters and properties of a graph G which
are determined by its eigenvalues and angles are called EA-reconstructible and are thoroughly
studied by Cvetković and co-authors; see [11, Ch. 4] and [10, Ch. 3].

A further natural step is to take into consideration the multisets of angles between the
projections of the standard basis vectors onto eigenspaces. Fürer [15] uses this additional
data to define two new graph invariants, namely, the weak and strong spectral invariants. We
denote these spectral invariants by weak-FSI and strong-FSI respectively; formal definitions
are in Section 3. Fürer shows that both weak-FSI and strong-FSI remain weaker than WL2.
That is,

weak-FSI ⪯ strong-FSI ⪯WL2 (1)

(note that Spec ⪯ weak-FSI by definition). An open problem posed in [15] is to determine
which of the relations in (1) are strict. Rattan and Seppelt, in their recent paper [23], show
that this small hierarchy does not entirely collapse by separating weak-FSI and WL2. Hence,

1 In the Erdős-Rényi G(n, 1/2) random graph model to be precise.
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at least one of the two relations in (1) is strict. Fürer [15] conjectures that the first relation
in (1) is strict and does not exclude that the last two invariants in (1) are equivalent, and
our aim is to give precise answers to these questions.

In [23] the invariants weak-FSI and WL2 are separated by introducing a new natural graph
invariant WL3/2, whose strength lies between WL1 and WL2. The authors give an elegant
algebraic characterization of WL3/2 using which they show that weak-FSI ⪯WL3/2. The final
step in their analysis is an example of graph pair that separates WL3/2 and WL2.

Our approach is different. First, we observe that the invariants weak-FSI and strong-FSI
are part of a broader scheme, presented in Section 2.1, that leads to a potentially infinite
hierarchy of graph invariants. We define the corresponding spectral hierarchy containing
weak-FSI and strong-FSI on its lower levels in Section 3. Another level is taken by the
aforementioned invariant EA. In Section 4 we characterize this hierarchy in terms of walk
counts. A connection between spectral parameters and walk counts is actually well known
(see an overview in Subsection 4.1). With a little extra effort we are able to show that this
connection is tight; see Theorem 4. This yields a purely combinatorial characterization
of the invariants EA, weak-FSI, and strong-FSI (Corollary 5), which also reveals some new
relations. For example, we notice that weak-FSI determines the generalized spectrum of a
graph (Theorem 11).

As another application of our combinatorial characterization, we prove that almost all
graphs are determined up to isomorphism by weak-FSI, that is, by the eigenvalues and
the angles formed by the standard basis vectors and their projections onto eigenspaces
(Corollary 8). We find this interesting in the context of the open problem mentioned above:
whether or not almost all graphs are DS.

We present the relations between the spectral and combinatorial invariants under consid-
eration in Section 5; see the diagram in Fig. 1. In Section 6 we prove that this diagram is
complete, that is, it shows all existent relations, and all of these relations are strict (perhaps
up to higher levels of the hierarchy whose separation remains open). In particular, both
relations in (1) are strict, which gives a complete answer to Fürer’s questions. Another
noteworthy separation is strong-FSI ⪯̸ WL3/2 (Theorem 12). Curiously, the separating pair
of graphs is the same that was used in [23], which yields more information now because we
also use our characterization in Theorem 4.

The more involved separations are shown in Theorems 13, 16, and 18. The corresponding
separating examples are not ad hoc. They are obtained by a quite general construction
(Lemma 14). The construction is based on a considerable extension of the approach taken
in [27] to separate various concepts related to 1-WL and the walk matrix of a graph (an
important notion discussed in Section 4.2). Implementation of the construction requires
vertex-colored strongly regular graphs with certain properties. The required colorings were
found by a computer assisted search among members of the family of strongly regular graphs
on 25 vertices.

Some proofs are missing due to the space constraints and can be found in the full version
of the paper [1].

2 Preliminaries

2.1 From isomorphism-invariant colorings to isomorphism invariants
Let C be a set of colors and χ : V (G)2 → C be a coloring of vertex pairs in a graph G. It
is natural to see χ(x, x) as the color of a vertex x. We suppose that χ = χG is defined for
every graph G. That is, speaking of a coloring χ, we actually mean a map G 7→ χG. Such a

STACS 2024
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coloring χ is isomorphism invariant if for every isomorphism f from a graph G to a graph H

(the equality G = H is not excluded) we have χG(x, y) = χH(f(x), f(y)) for all vertices x

and y in G.
The simplest isomorphism-invariant colorings are the adjacency relation A and the identity

relation I. That is, A(x, y) = 1 if x and y are adjacent and A(x, y) = 0 otherwise. For the
identity relation, I(x, y) = 1 if x = y and I(x, y) = 0 if x ̸= y. Below, we will consider A and
I also as the adjacency and the identity matrices. Other examples of isomorphism-invariant
colorings are the distance d(x, y) between two vertices x and y and the number of all such
triangles in the graph that contain the vertices x and y. One can consider also more complex
definitions like the triple χ(x, y) = (deg x, d(x, y), deg y), where deg x denotes the degree of x.

Given an isomorphism-invariant coloring χ, we can build on it to define various graph
invariants. The simplest such examples are

I1(G) = {{χ(x, y)}}x,y∈V (G) ,

I2(G) =
(
{{χ(x, x)}}x∈V (G) , {{χ(x, y)}}x,y∈V (G)

)
,

I3(G) = {{(χ(x, x), χ(x, y), χ(y, y))}}x,y∈V (G) ,

I4(G) =
{{(

χ(x, x), {{(χ(x, y), χ(y, y))}}y∈V (G)

)}}
x∈V (G)

,

where {{. . .}} denotes a multiset. Note that I1(G) ⪯ I2(G) ⪯ I3(G) ⪯ I4(G).
Given an isomorphism-invariant coloring χ, we can define a hierarchy of ever more complex

graph invariants. We first inductively define a sequence of colorings χ0, χ1, χ2, . . . of single
vertices by

χ0(x) = χ(x, x) and χr+1(x) =
(

χr(x), {{(χ(x, y), χr(y))}}y∈V (G)

)
. (2)

This definition is a natural extension of the well-known concept of color refinement (CR) to
edge- and vertex-colored graphs. In broad outline, CR computes an isomorphism-invariant
color of each vertex in an input graph and recognizes two graphs as non-isomorphic if one of
the colors occurs in one graph more frequently than in the other. In the case of an uncolored
undirected graph G, CR starts with a uniform coloring χ0 of V (G), that is, χ0(x) = χ0(x′)
for all x, x′ ∈ V (G). In the (r + 1)-th round, the preceding coloring χr is refined to a new
coloring χr+1. For each vertex x, its new color χr+1(x) consists of χr(x) and the multiset
{{χr(y)}}y∈N(x) of all colors occurring in the neighborhood N(x) of x. In other words, CR
counts how frequently each χr-color occurs among the vertices adjacent to x (or, equivalently,
among the vertices non-adjacent to x). In an edge- and vertex-colored graph G, each vertex
pair (x, y) is assigned a color, which we denote by χ(x, y). The edge colors must be taken
into account while computing the refined color χr+1(x). In the colored case, CR first splits
all vertices y into classes depending on χ(x, y) and then computes the frequencies of χr(y)
within each class. This is exactly what (2) does.

Note that

χ1(x) =
(

χ(x, x), {{(χ(x, y), χ(y, y))}}y∈V (G)

)
. (3)

In addition, we set

χ1/2(x) =
(

χ(x, x), {{χ(x, y)}}y∈V (G)

)
(4)

Now, we define

χ(r)(G) = {{χr(x)}}x∈V (G) . (5)
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For each r, the coloring χr is isomorphism invariant in the sense that χr(f(x)) = χr(x) for
any isomorphism of graphs f . This readily implies that χ(r) is a graph invariant. As easily
seen, χ(r) ⪯ χ(s) if r ≤ s.

2.2 First two dimensions of combinatorial refinement
We now give formal descriptions of the isomorphism tests 1-WL and 2-WL already introduced
in Section 1. Note that 1-WL is an alternative name for CR. In what follows we will apply
the 1-WL procedure to vertex-colored graphs. Given a vertex-colored graph G, we consider a
coloring χ of V (G)2 defined by χ(x, y) = A(x, y), i.e., according to the adjacency relation, for
x ̸= y and by setting χ(x, x) to be the color of a vertex x. On an input G, 1-WL iteratively
computes the vertex colorings χr according to (2). After performing n iterations, where n

is the number of vertices in G, 1-WL outputs WL1(G) = χ(n)(G) as defined by (5). Two
graphs G and H are recognized as non-isomorphic if WL1(G) ̸= WL1(H).

2-WL can be similarly formulated, except that it computes colorings of vertex pairs.
If an input graph G is uncolored, then 2-WL begins with an initial coloring χ0 of V (G)2

defined by χ0(x, y) = A(x, y) if x ̸= y and by χ0(x, x) = 2 for every vertex x of G. If G is a
vertex-colored graph, then χ0(x, y) must include also the colors of x and y. Furthermore,

χr+1(x, y) =
(

χr(x, y), {{(χr(x, z), χr(z, y))}}z∈V (G)

)
.

Thus, the new color of a pair (x, y) can be seen as a kind of “superposition” of the old color
pairs observable along all extensions of (x, y) to a triangle xzy. Finally, 2-WL outputs the
multiset WL2(G) = {{χn2(x, y)}}x,y∈V (G).

3 A hierarchy of spectral invariants

Speaking of an n-vertex graph G, we will assume that V (G) = {1, 2, . . . , n}. Let

µ1 < µ2 < . . . < µm (6)

be all pairwise distinct eigenvalues of the adjacency matrix A of G. Let Spec(G) denote the
spectrum of G, i.e., the multiset of all eigenvalues where each µi occurs with its multiplicity.
As mentioned before, Spec(G) is a well-studied graph invariant with numerous applications
in computer science.

Let Ei be the eigenspace of µi. Recall that Ei consists of all eigenvectors of µi, i.e.,
Ei = {v ∈ Rn : Av = µiv}. Let Pi be the matrix of the orthogonal projection of Rn onto Ei.
Note that P 2

i = Pi = P ⊤
i . For 1 ≤ x, y ≤ n, the matrix entry Pi(x, y) can be seen a color of

the vertex pair (x, y). This coloring is isomorphism invariant.
Throughout the paper, we use the following notational convention for compact represen-

tations of sequences.

▶ Notation 1. For an indexed set {ai} with index i ranging through the interval of integers
s, s + 1, . . . , t− 1, t we set a∗ = (as, . . . , at).

In particular,

P∗(x, y) = (P1(x, y), . . . , Pm(x, y)) .

Since the order on the index set is determined by (6), P∗ is also an isomorphism-invariant
coloring. Following the general framework in Section 2.1, the coloring P∗ determines the
sequence of graph invariants P

(0)
∗ , P

(1/2)
∗ , P

(1)
∗ , P

(2)
∗ , . . .. In particular, by (2)–(5) we have

STACS 2024



6:6 On a Hierarchy of Spectral Invariants for Graphs

P
(0)
∗ (G) = {{ P∗(x, x) }}1≤x≤n , (7)

P
(1/2)
∗ (G) =

{{ (
P∗(x, x), {{P∗(x, y)}}1≤y≤n

) }}
1≤x≤n

,

P
(1)
∗ (G) =

{{ (
P∗(x, x), {{(P∗(x, y), P∗(y, y))}}1≤y≤n

) }}
1≤x≤n

.

Fürer [15] introduces the weak and strong spectral invariants. Using our notation, Fürer’s
spectral invariants (FSI) can be defined as follows:

weak-FSI(G) =
(

Spec(G), P
(1/2)
∗ (G)

)
and (8)

strong-FSI(G) =
(

Spec(G), P
(1)
∗ (G)

)
. (9)

The entries of the projection matrices Pi have a well-known geometric meaning [10, 12].
For 1 ≤ x ≤ n, the standard basis vector ex of Rn has 1 in the position x and 0 elsewhere.
The angle αi,x of a graph G is defined to be the cosine of the angle between ex and the
eigenspace Ei, i.e., the angle between ex and its projection Piex onto Ei. We have the
equality

Pi(x, x) = α2
i,x. (10)

Indeed, let ⟨u, v⟩ denote the scalar product of two vectors u, v ∈ Rn. Then

Pi(x, x) = ⟨ex, Piex⟩ = ∥ex∥∥Piex∥αi,x = α2
i,x.

Furthermore, let αi,xy be the cosine of the angle between the projections Piex and Piey of
the standard basis vector ex and ey onto Ei. If ex or ey is orthogonal to Ei, i.e., αi,x = 0
or αi,y = 0, then the angle is undefined and we set αi,xy = 0 in this case. In particular,
αi,xx = 0 if αi,x = 0 while αi,xx = 1 if αi,x ̸= 0. Equality (10) generalizes to

Pi(x, y) = αi,xαi,yαi,xy. (11)

Indeed,

Pi(x, y) = ⟨ex, Piey⟩ = ⟨ex, P 2
i ey⟩ = ⟨Piex, Piey⟩ = ∥Piex∥∥Piey∥αi,xy = αi,xαi,yαi,xy.

Now, define a coloring αi by αi(x, x) = αi,x and αi(x, y) = αi,xy for x ̸= y. This coloring is
isomorphism invariant basically because an isomorphism is represented by a permutation
matrix, which is the transformation matrix of an isometry of Rn. Using Notation 1,

α∗(x, y) = (α1(x, y), . . . , αm(x, y)) ,

where α∗ is an isomorphism-invariant coloring as well. The corresponding graph invariants
α

(r)
∗ are closely related to the invariants P

(r)
∗ . More precisely, we say that two graph invariants

I and I ′ are equivalent and write I ≡ I ′ if I ′ ⪯ I and I ⪯ I ′.

▶ Lemma 2. P
(r)
∗ ≡ α

(r)
∗ for every integer r ≥ 0.

Motivated by the equivalence P
(0)
∗ ≡ α

(0)
∗ , we define the graph invariant EA similar to

(8)–(9) as

EA(G) =
(

Spec(G), P
(0)
∗ (G)

)
, (12)

where the abbreviation EA stands for E igenvalues and Angles and corresponds to the known
concept [11, 10] mentioned in the introduction.
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4 Characterization of the spectral invariants by walk counts

A walk of length k (or k-walk) from a vertex x to a vertex y is a sequence of vertices
x = x0, x1, . . . , xk = y such that every two successive vertices xi, xi+1 are adjacent. Let
wk(x, y) denote the number of walks of length k from x to y in a graph. Obviously, wk is an
isomorphism-invariant coloring in the sense of Section 2.1. In accordance with Notation 1,
we also consider the isomorphism-invariant coloring w∗ defined by

w∗(x, y) = (w0(x, y), w1(x, y), . . . , wn−1(x, y)) ,

where n, as usually, denotes the number of vertices in a graph. Note that for each y, the
matrix (wk(x, y))1≤x≤n, 0≤k≤n−1 determines the value of wk(x, y) for every x and for every
arbitrarily large k.

It is well known that the walk counts are expressible in terms of spectral parameters of a
graph; see, e.g., [10]. On the other hand, it is also well known that the numbers of closed
k-walks in a graph determine the graph spectrum. We give a brief overview of these facts
in Subsection 4.1. In Subsection 4.2 we make further use of this connection between walks
and spectra. We are able to characterize the spectral invariants defined in Section 3 using
solely the walk numbers, that is, in purely combinatorial terms without involving any linear
algebra.

4.1 Linear-algebraic background and known relations
Since the adjacency matrix A of a graph G is symmetric, the eigenspaces Ei are pairwise
orthogonal, and hence PiPj = O for i ̸= j, where O denotes the zero matrix. The spectral
theorem for symmetric matrices says in essence that

Rn = E1 ⊕ · · · ⊕ Em,

that is, Rn has an orthonormal basis consisting of eigenvectors of A. This decomposition
implies that

I = P1 + · · ·+ Pm. (13)

From Equality (13) it is easy to derive the spectral decomposition

A = µ1P1 + · · ·+ µmPm.

Raising both sides of this equality to the k-th power and taking into account that P 2
i = Pi

and PiPj = O for i ̸= j, we conclude that

Ak = µk
1P1 + · · ·+ µk

mPm.

Since wk(x, y) = Ak(x, y), we get

wk(x, y) = µk
1P1(x, y) + · · ·+ µk

mPm(x, y). (14)

Let ck(G) =
∑

x∈V (G) wk(x, x) denote the total number of closed k-walks in a graph G.
In particular, c0(G) = n and c1(G) = 0.

▶ Lemma 3 (folklore). Spec G = Spec H if and only if ck(G) = ck(H) for k = 0, 1, . . . , n.

STACS 2024



6:8 On a Hierarchy of Spectral Invariants for Graphs

4.2 General characterization and its consequences
▶ Theorem 4. (Spec, P

(r)
∗ ) ≡ w

(r)
∗ for every r = 0, 1/2, 1, 2, . . ..

Before proving Theorem 4, we describe some of its consequences.

▶ Corollary 5.
1. EA ≡ w

(0)
∗ .

2. weak-FSI ≡ w
(1/2)
∗ .

3. strong-FSI ≡ w
(1)
∗ .

Parts 2 and 3 of Corollary 5, which are particular cases of Theorem 4 for r = 1/2 and
r = 1 respectively, provide a characterization of both Fürer’s spectral invariants. We now
comment on Part 1. By Definition (12), this part is the special case of Theorem 4 for r = 0.
Note that w

(0)
∗ (G) = w

(0)
∗ (H) if and only if the graphs G and H are closed-walk-equivalent

in the sense that there is a bijection f : V (G)→ V (H) such that wk(x, x) = wk(f(x), f(x))
for all x ∈ V (G) and all k. On the other hand, let us say that G and H are EA-equivalent
if these graphs have the same eigenvalues and angles, i.e., EA(G) = EA(H). As seen from
the summary in Subsection 4.1, there are well-known connections between the closed walk
numbers and the eigenvalues and angles. Part 1 of Corollary 5 pinpoints the fact that the
two equivalence concepts actually coincide.

Corollary 5 reveals connections of spectral invariants to other graph invariants studied in
the literature, which we introduce now.

The walk matrix W of a graph G is indexed by vertices 1 ≤ x ≤ n and the length
parameter 0 ≤ k ≤ n− 1 and defined by

W (x, k) =
n∑

y=1
wk(x, y). (15)

That is, W (x, k) is the total number of k-walks starting from the vertex x. Let WLk
1(G, x)

denote the color assigned by 1-WL to a vertex x of G after the k-th refinement round. For a
vertex x of G, let Gx denote the version of G with x individualized. This means that Gx is a
vertex-colored graph where x has a special unique color while the other vertices are colored
uniformly. We now state two well-known facts.

▶ Lemma 6.
1. W (x, k) is determined by WLk

1(G, x);
2. wk(x, y) is determined by WLk

1(Gx, y);

Part 1 of Lemma 6 is proved in algebraic terms in [22, Theorem 2]. Another proof,
involving logical concepts, is provided in [13, Lemma 4] and a direct combinatorial proof can
be found in [27, Lemma 8]. Part 2 is a straightforward extension of Part 1.

In addition to the graph invariants WL1 and WL2 introduced in Section 2.2, we define

WL3/2(G) = {{WL1(Gx)}}x∈V (G) .

This yields a chain of graph invariants WLd for d ∈ {1, 3/2, 2}, where WLc ⪯WLd if c ≤ d.
The walk matrix naturally gives us a graph invariant, which we denote by WM and define as
WM(G) = {{W (x, ∗)}}x∈V (G) where W (x, ∗) =

(
W (x, 0), W (x, 1), . . . , W (x, n− 1)

)
. In other

words, WM(G) is the multiset of the rows of the walk matrix of G. Part 1 of Lemma 6 readily
implies that WM ⪯WL1. Thus,

WM ⪯WL1 ⪯WL3/2 ⪯WL2.
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The second relation in the following corollary is the recent result in [23] already described
in Section 1.

▶ Corollary 7. WM ⪯ weak-FSI ⪯WL3/2.

Proof. By Part 2 of Corollary 5, it is enough to show that

WM ⪯ w
(1/2)
∗ ⪯WL3/2.

The former relation follows directly from the definitions of WM and w
(1/2)
∗ . Indeed, w

(1/2)
∗ (G)

comprises the multiset {{w∗(x, y)}}y∈V (G) for each vertex x of G; see (4). This multiset allows
us to calculate the sum (15) for each k. The latter relation follows from the definitions of
w

(1/2)
∗ and WL3/2 by Part 2 of Lemma 6. ◀

The relationship between the graph invariants discussed above is summarized in Figure 1
below, which also puts these invariants in a somewhat broader context.

The next consequence of Theorem 4 is interesting in view of the long-standing open
question whether almost all graphs are determined up to isomorphism by their spectrum [16,
25].

▶ Corollary 8. Almost all graphs are determined up to isomorphism by weak-FSI.

Proof. It is known that if the walk matrix is non-singular, then it determines the adjacency
matrix [19]. Moreover, the walk matrix of a random graph is non-singular with high
probability [21]. As a consequence, almost all graphs are determined by the graph invariant
WM; see [19, Th. 7.2]. The same is true also for weak-FSI because weak-FSI is stronger than
WM by Corollary 7. ◀

Since Spec ⪯ EA ⪯ weak-FSI, a natural further question is whether Corollary 8 can be
improved to the identifiability of almost all graphs by the graph invariant EA, that is, by
using the eigenvalues and the angles between each standard basis vector and its projections
onto eigenspaces but not between the projections themselves. If true, this would be yet closer
to the aforementioned open problem.

4.3 Proof of Theorem 4
The case of r = 0. We have to prove that

(Spec, {{P∗(x, x)}}x) ≡ {{w∗(x, x)}}x . (16)

The “⪰” part immediately follows from Equality (14). In the other direction, the relation
Spec ⪯ {{w∗(x, x)}}x is a direct consequence of Lemma 3. To complete the proof of (16),
we show that for each vertex x, the sequence P∗(x, x) can be obtained from the sequences
w∗(x, x) and µ∗. To this end, put y = x in Equality (14), obtaining

µk
1P1(x, x) + · · ·+ µk

mPm(x, x) = wk(x, x). (17)

This equality makes sense also for k = 0. In this case, it reads

P1(x, x) + · · ·+ Pm(x, x) = 1, (18)

which is true by Equality (13) (if µi = 0, we need to use the convention 00 = 1). Consider
Equalities (17) for k = 0, 1, . . . , m − 1 as a system of m linear equations for m unknowns
P1(x, x), . . . , Pm(x, x). The coefficients of this system are powers of the m pairwise distinct
eigenvalues. They form a Vandermonde matrix. Therefore, the system is uniquely solvable,
and the sequence P∗(x, x) is determined.
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The case of r = 1/2. Now we have to prove that(
Spec,

{{(
P∗(x, x), {{P∗(x, y)}}y

)}}
x

)
≡

{{(
w∗(x, x), {{w∗(x, y)}}y

)}}
x

. (19)

The “⪰” part is again an immediate consequence of Equality (14).
Let us prove the part “⪯”. That is, we have to show that for a given graph, the left hand

side of (19) can be obtained from the right hand side. The spectrum is, as already observed in
the case of r = 0, determined by the multiset {{w∗(x, x)}}x, which is easy to obtain from the
right hand side of (19). Thus, in what follows we can assume that the sequence µ1, . . . , µm of
distinct eigenvalues is known. For each vertex x, we have to compute the sequence P∗(x, x)
and the multiset {{P∗(x, y)}}y. The former task is solvable exactly as in the case of r = 0,
and we focus on the latter task. In addition to x, we now fix also y and consider Equalities
(14) for k = 0, 1, . . . , m− 1. Here, the equality for k = 0 is actually a particular instance of
Equality (13), that is, this is (18) if y = x and

P1(x, y) + · · ·+ Pm(x, y) = 0

if y ̸= x. As in the case of r = 0, for m unknowns P1(x, y), . . . , Pm(x, y) we obtain a system
of m linear equation whose coefficients form a non-singular Vandermonde matrix. Hence, we
can determine the sequence P∗(x, y), completing the proof of (19).

The case of r ≥ 1. We proceed as above using induction. To facilitate the notation, we
set π(x, y) = P∗(x, y) and ω(x, y) = w∗(x, y). We write a ←[ b to say that a is obtainable
from b. As we have already seen,

ω(x, y)← [ Spec, π(x, y) (20)

by Equality (14) and

π(x, y)← [ Spec, ω(x, y) (21)

by the Vandermonde matrix argument. The vertex colorings πr and ωr are defined as in (2).
For every r,

Spec←[ {{ω0(x)}}x ← [ {{ωr(x)}}x . (22)

The former relation is, as already observed above, a consequence of Lemma 3, while the
latter relation follows directly from the definition of ωr. Therefore, in order to prove that

(Spec, {{πr(x)}}x) ⪯ {{ωr(x)}}x ,

it suffices to prove for each x that

πr(x)← [ Spec, ωr(x). (23)

In order to prove that

{{ωr(x)}}x ⪯ (Spec, {{πr(x)}}x) ,

it suffices to prove for each x that

ωr(x)←[ Spec, πr(x). (24)

We prove (23) and (24) by induction on r.
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In the base case we have r = 0. The relation (24) for r = 0 follows from the relation (20)
for y = x. Similarly, the relation (23) for r = 0 follows from the relation (21) for y = x.

For the induction step, suppose that r ≥ 1. Consider first (23). Recall that

πr(x) =
(

πr−1(x), {{(π(x, y), πr−1(y))}}y

)
.

By the induction hypothesis,

πr−1(x)← [ Spec, ωr−1(x)← [ Spec, ωr(x).

The latter relation follows from the fact that ωr−1(x) is a part of ωr(x). Another part of
ωr(x) gives us the multiset {{(ω(x, y), ωr−1(y))}}y. Therefore, it suffices to argue that, for
each y,

(π(x, y), πr−1(y))← [ Spec, (ω(x, y), ωr−1(y)).

Indeed, π(x, y) is determined by (21), and πr−1(y) is determined by the induction hypothesis.
The argument for (24) is virtually the same, with the roles of π and ω interchanged. In

place of (21), we have to refer to (20). The proof is complete.

5 The Hierarchy

Figure 1 shows the invariants from Section 4.2 and the relations between them as a part of a
more general picture involving also some other spectral invariants studied in the literature,
which we introduce in the next two subsections.

Moreover, we define a new invariant w
(•)
∗ which is, in a sense, the limit of the sequence of

invariants w
(r)
∗ for r = 1, 2, . . .. The definition is rather general. As we already mentioned,

the formal framework of Section 2.1 is analogous to the concept of color refinement. Given
an isomorphism-invariant coloring χ, we therefore can along with graph invariants χ(r) define
the stable version χ(•). One possibility to do this is to set χ(•)(G) = χ(n)(G), where n is the
number of vertices in G. Note that χ(r) ⪯ χ(•) for every r. For χ = ω∗, we obtain

w
(r)
∗ ⪯ w

(r+1)
∗ ⪯ w

(•)
∗ ⪯WL2.

To see the last relation above, we first recall the well-known fact that w∗(x, y) is determined by
the color assigned to the vertex pair (x, y) by 2-WL. Furthermore, since w

(•)
∗ (G) is obtained

from G endowed with the coloring w∗ by running the version of 1-WL for edge-colored graphs,
the outcome can be simulated by 2-WL.

5.1 Main eigenvalues and angles
Let j denote the all-ones vector (the dimension should be clear from the context). Using our
usual notation, suppose that G has m distinct eigenvalues µ1, . . . , µm, and let E1, . . . , Em

be the corresponding eigenspaces of G. Consider the angle between Ei and j and denote its
cosine by βi. If βi ̸= 0, then the corresponding eigenvalue µi is called a main eigenvalue, and
then the positive number βi is called a main angle. Let ν1, . . . , νm′ be the sequence of all
main eigenvalues in the ascending order and θ1, . . . , θm′ be the sequence of the main angles
in the corresponding order. We define a graph invariant main-EA by

main-EA(G) = (ν∗, θ∗) .
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WL2 w
(•)
∗ · · · w

(r)
∗ (r ≥ 1)

...

WL3/2 w
(1)
∗ strong-FSI

WL1 w
(1/2)
∗ weak-FSI

WM gen-Spec w
(0)
∗ EA

main-EA Spec

Figure 1 Relations between graph invariants. An arrow I → I′ means I′ ⪯ I.

A characterization of main-EA in terms of walk numbers is known. Let

wk(G) =
∑

x∈V (G)

wk(x)

be the total number of k-walks in G. By WG we will denote the corresponding generating
function, that is, the formal series

WG(z) =
∞∑

k=0
wk(G)zk.

▶ Proposition 9 (folklore, e.g. [24]). Let G and H be graphs with n vertices. Then
main-EA(G) = main-EA(H) if and only if wk(G) = wk(H) for k = 1, . . . , n− 1.

As a direct consequence of Proposition 9, we get the relation main-EA ⪯WM.

5.2 The generalized spectrum
Another important spectral invariant of G is the spectrum of the complement graph G.
The equalities Spec G = Spec H and, simultaneously, Spec G = Spec H are equivalent to the
condition that the graphs G and H have the same generalized spectrum. For the definition of
this concept and its various characterizations we refer the reader to [18] and [26, Th. 3]. We
define the graph invariant gen-Spec by

gen-Spec(G) =
(
Spec G, Spec G

)
.

We note that

main-EA ⪯ gen-Spec . (25)

This follows from Proposition 9 and the following result in [8]. Let PG denote the characteristic
polynomial of a graph G.
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▶ Proposition 10 (Cvetković [8]). WG(z) = 1
z

(
(−1)n P

G
(−1/z−1)

PG(1/z) − 1
)

.

Alternatively, (25) can be obtained by using [26, Th. 3].
To complete the diagram in Figure 1, it remains to prove the following relation.

▶ Theorem 11. gen-Spec ⪯ weak-FSI.

Proof. The spectrum of G, hence also the characteristic polynomial PG, is determined by
weak-FSI(G) just by definition. We have to show that Spec G or, equivalently, PG is also
determined. By Proposition 10, PG is obtainable from PG and WG. Using Part 2 of Corollary
5, it remains to notice that WG is determined by w

(1/2)
∗ (G). Indeed,

wk(G) =
∑

x

wk(x) =
∑

x

∑
y

wk(x, y),

where the right hand side is obtainable from the multiset
{{
{{wk(x, y)}}y

}}
x
, which is a part

of w
(1/2)
∗ (G). ◀

6 Separations

Fürer [15] poses the open problem of determining which of the relations in the chain

weak-FSI ⪯ strong-FSI ⪯WL2 (26)

are strict. As mentioned before, Rattan and Seppelt [23] show that this chain does not
entirely collapse. They separate weak-FSI and WL2 by proving that weak-FSI ⪯WL3/2 and
separating WL3/2 and WL2. Hence, at least one of the two relations in (26) is strict. Fürer [15]
conjectures that the first relation in (26) is strict and does not exclude the possibility that
the last two invariants in (26) are equivalent. We settle this by showing that, in fact, both
relations in (26) are strict. We actually prove much more: up to one question remaining open,
the diagram shown in Figure 1 is exact in the sense that all present arrows are non-reversible
and that any two invariants not connected by arrows are provably incomparable. The only
remaining question concerns the chain w

(•)
∗ → · · · → w

(r)
∗ → · · · → w

(1)
∗ ; see Problem 17

stated below and an approach to its solution in Theorem 18.
We now present a minimal set of separations from which all other separations follow. For

compatibility with Figure 1, we write I ↛ I ′ to negate I ′ ⪯ I.

WL1 ↛ Spec. To show this, we have to present two WL1-equivalent but not cospectral
graphs. The simplest pair of WL1-equivalent graphs, 2C3 and C6, works. Indeed, the
eigenvalues of Cn are 2 cos 2πk

n for k = 0, 1, . . . , n− 1, and the spectrum of the disjoint
union of graphs is the union of their spectra; see, e.g., [10, Example 1.1.4 and Theorem
2.1.1].

EA ↛ main-EA. It is known [9] that among trees with up to 20 vertices there is a single pair
of non-isomorphic trees, with 19 vertices, with the same eigenvalues and angles. Using
Proposition 9, a direct computation shows that these two trees are not main-EA-equivalent.

gen-Spec ↛ WM. The smallest, with respect to the number of vertices and the number
of edges, pair of generalized cospectral graphs consists of 7-vertex graphs G and H

where G = C6 ∪K1 and H is obtained from the 3-star K1,3 by subdividing each edge;
see [16, Fig. 4]. Since G has an isolated vertex and H does not, these graphs are not
WM-equivalent.
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gen-Spec ↛ EA. The same pair of graphs G and H works. They are not EA-equivalent
because connectedness of a graph is determined by its spectrum and angles [10, Th. 3.3.3].
Another reason for this is that every graph with at most 9 vertices is determined by its
spectrum and angles up to isomorphism [9].

strong-FSI ↛ WL1. An even stronger fact, namely w
(2)
∗ ↛ WL1 is proved as Theorem 13

below. The separation implies that strong-FSI ↛ WL2, answering one part of Fürer’s
question. Another consequence is also the separation WM ↛ WL1, which follows as well
from [27, Theorem 3].

WL1 ↛ WL3/2. Consider C6 and 2C3.
WL3/2 ↛ strong-FSI. This is Theorem 12 below. As a consequence, weak-FSI ↛ strong-FSI,

answering the other part of Fürer’s question. Another consequence is the separation
WL3/2 ↛ WL2 shown in [23].

w(•)
∗ ↛ WL2. This is Theorem 16 below. It considerably strengthens the negative answer

to Fürer’s question by showing that the whole hierarchy of the invariants w
(r)
∗ for all r is

strictly weaker than WL2.

We state and prove the three results announced above in the rest of this section.

6.1 WL3/2 is not stronger than strong-FSI
▶ Theorem 12. strong-FSI ⪯̸ WL3/2.

Proof. The separation WL2 ⪯̸ WL3/2 in [23] is shown by constructing a pair of WL3/2-
equivalent graphs G and H as follows. Consider two copies of C6 ∗K1, where ∗ is the join of
graphs. Denote the vertices of degree 6 by u1 and u2. Consider also two copies of (2C3) ∗K1,
denoting their vertices of degree 6 by v1 and v2. The graph G is obtained by adding four
edges forming the cycle u1u2v1v2, and the graph H is obtained by adding the cycle u1v1u2v2.
In [23] it is observed that G and H are distinguishable by 2-WL. We now strengthen this
observation to show that strong-FSI(G) ̸= strong-FSI(H).

The vertices u1, u2, v1, v2 will be referred to as Q-vertices. The other vertices are split
into two classes, H-vertices and T -vertices, depending on whether they belong to a hexagonal
or a triangular part. A vertex x is a Q-vertex exactly when w2(x, x) = deg x = 8. The
H- and the T -vertices are distinguishable by the condition w3(x, x) = 6 for a T -vertex and
w3(x, x) = 4 for an H-vertex. Consider an arbitrary T -vertex x in G. Note that from x there
is at least one 3-walk to each of the twelve T -vertices y. If we consider a T -vertex x in H,
then from x there are 3-walks only to six T -vertices y. This implies that w

(1)
∗ (G) ̸= w

(1)
∗ (H).

We conclude by Part 3 of Corollary 5 that G and H are not strong-FSI-equivalent. ◀

6.2 w(2)
∗ is not stronger than WL1

▶ Theorem 13. WL1 ⪯̸ w
(2)
∗ .

The proof requires a substantial extension of the approach in [27] to separate various
WL1- and WM-based concepts.

Construction. Suppose that we have a graph A with m designated vertices a1, . . . , am and
a graph B with m designated vertices b1, . . . , bm, which will be referred to as port vertices.
In each of the graphs, the port vertices are colored by different colors. Specifically, ai and
bi are colored by the same color i. The resulting partially colored graphs are denoted by
A′ and B′. We construct a graph G(A′, B′) with no colored vertices as follows. G(A′, B′)
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A′ B′ G(A′, B′)

Figure 2 Construction of G(A′, B′).

consists of the vertex-disjoint union of A and B and a number of new vertices of two sorts,
namely connecting and pendant vertices. For each i, there is a connecting vertex ci adjacent
to ai and bi. Moreover, for each i there are i pendant vertices pi,1, . . . , pi,i of degree 1 all
adjacent to ci. An example of the construction for m = 3 is shown in Figure 2.

The main lemma. The crux of the proof is the following lemma. Recall that a strongly
regular graph with parameters (n, d, λ, µ) is an n-vertex d-regular graph where every two
adjacent vertices have λ common neighbors, and every two non-adjacent vertices have µ

common neighbors. Extending the notation used in Section 4.2, for a graph G we set
WLr

1(G) = {{WLr
1(G, x)}}x∈V (G).

▶ Lemma 14. Let A and B be strongly regular graphs with the same parameters (in particular,
A and B can be isomorphic). Let A′ and B′ be their partially colored versions such that
each color occurs in A′, as well as in B′, at most once. Assume that WL0

1(A′) = WL0
1(B′),

which means the the sets of the colors occurring in A′ and B′ are equal and, therefore, we
can construct the uncolored graph G = G(A′, B′). Consider also H = G(A′, A′) constructed
from two vertex-disjoint copies of A′.

1. If WL1(A′) ̸= WL1(B′), then WL1(G) ̸= WL1(H). In words: if color refinement
distinguishes A′ and B′, then it distinguishes also G and H.

2. If WLr
1(A′) = WLr

1(B′) for some r ≥ 1 (i.e., r rounds of color refinement do not suffice
for distinguishing A′ and B′), then w

(r−1)
∗ (G) = w

(r−1)
∗ (H).

The rest of the proof. We can separate WL1 and w
(2)
∗ by finding partially colored strongly

regular graphs A′ and B′ as in Lemma 14 with r = 3. Let SRG(n, d, λ, µ) denote the set
of strongly regular graphs with parameters (n, d, λ, µ). Two suitable colorings A′ and B′

exist for a graph in the set SRG(25,12,5,6) of Paulus graphs, namely for the graph P25.12 in
Brouwer’s collection [5]. These colorings are described in the full version of the paper [1].
They were found by computer search using the Lua package TCSLibLua [14].

Note that P25.12 is one of the two Latin square graphs in SRG(25,12,5,6). The other
Latin square graph in SRG(25,12,5,6) is P25.15, which is the Paley graph on 25 vertices.
This is the only vertex-transitive graph in this family. Curiously, it is not suitable for our
purposes. Moreover, it seems that strongly regular graphs with less than 25 vertices do not
admit appropriate colorings even for r = 2.
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6.3 Separation of the w(r)
∗ hierarchy from WL2

▶ Lemma 15. Let A and B be (possibly isomorphic) strongly regular graphs with the same
parameters. Let A′ and B′ be their versions, each containing a single individualized vertex.
Let G = G(A′, B′) and H = G(A′, A′).
1. w

(r)
∗ (G) = w

(r)
∗ (H) for all r and, therefore, w

(•)
∗ (G) = w

(•)
∗ (H).

2. If WL2(A′) ̸= WL2(B′), then WL2(G) ̸= WL2(H).

Proof. For Part 1, note that WL1(A′) = WL1(B′). Indeed, the distinguishability of A′ and B′

by 1-WL would imply the distinguishability of A and B by 2-WL, contradicting the assumption
that these strongly regular graphs have the same parameters. Thus, WLr

1(A′) = WLr
1(B′)

for all r ≥ 1, and we can apply the second part of Lemma 14. Part 2 is easy. ◀

▶ Theorem 16. WL2 ⪯̸ w
(•)
∗ .

Proof. We apply Lemma 15, where A is the Shrikhande graph and B the 4 × 4 rook’s
graph, both strongly regular graphs with parameters (16, 6, 2, 2). Since both graphs are
vertex-transitive, A′ and B′ are uniquely defined. The neighborhood of the individualized
vertex induces C6 in the Shrikhande graph and 2C3 in the 4× 4 rook’s graph. Therefore,
WL2(A′) ̸= WL2(B′). ◀

▶ Open Problem 17. We leave open the question whether the hierarchy

w
(1)
∗ ⪯ w

(2)
∗ ⪯ w

(3)
∗ ⪯ w

(4)
∗ ⪯ · · · ⪯ w

(•)
∗ (27)

is strict or at least does not collapse to some level. While we know that each w
(r)
∗ is strictly

weaker than WL2, it remains open whether w
(r)
∗ can be stronger than WL1 for some large r.

A negative answer will follow from Lemma 14 if there is an infinite sequence of partially
colored strongly regular graphs A′

r and B′
r for r = 1, 2, 3 . . ., where the underlying graphs are

equal or have the same parameters, such that A′
r and B′

r are distinguished by 1-WL, but
requiring at least r refinement rounds.

Suppose that strongly regular graphs A and B have the same parameters and their
partially colored versions A′ and B′ are distinguished by 1-WL exactly in the (r + 1)-th
round. By Lemma 14, G(A′, B′) and G(A′, A′) are w

(r−1)
∗ -equivalent and, therefore, this

pair of graphs is a good candidate for separation of w
(r−1)
∗ from w

(r)
∗ . This approach works

indeed pretty well.

▶ Theorem 18. The hierarchy (27) is strict up to the 4-th level, that is, the first three
relations in (27) are strict.
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