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Abstract
The runtime of graph algorithms such as depth-first search or Dijkstra’s algorithm is dominated
by the fact that all edges of the graph need to be processed at least once, leading to prohibitive
runtimes for large, dense graphs. We introduce a simple data structure for storing graphs (and
more general structures) in a compressed manner using directed acyclic graphs (dags). We then
show that numerous standard graph problems can be solved in time linear in the size of the dag
compression of a graph, rather than in the number of edges of the graph. Crucially, many dense
graphs, including but not limited to graphs of bounded twinwidth, have a dag compression of size
linear in the number of vertices rather than edges. This insight allows us to improve the previous
best results for the runtime of standard algorithms from quasi-linear to linear for the large class of
graphs of bounded twinwidth, which includes all cographs, graphs of bounded treewidth, or graphs
of bounded cliquewidth.
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1 Introduction

Graph traversal or graph searching is a fundamental subroutine in algorithmic graph theory.
Given a directed graph (digraph) and a source vertex, the task is to explore the graph
following a predefined strategy. Two famous incarnations of such algorithms are depth-first
search (dfs) and breadth-first search (bfs), which, as the names suggest, explore the graph
by following long paths first or by unraveling the graph layer by layer. Both algorithms
have a broad range of applications, including the computation of connected components or a
topological ordering of the input, identifying separators, testing whether the input is planar,
finding shortest paths, computing maximum flows, and many more [10]. They are also central
in more applied fields and, for instance, are a crucial building block in garbage collection [8],
artificial intelligence [15, 20], and web crawling [7, 9]. It is well-known that both algorithms
can be implemented in time O(m), where m is the number of edges of the input graph [12,
Chapter 5.5]. In particular, for the class of sparse graphs, where m = O(n), both algorithms
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Graph G = (V, E),
black edges are in E
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Cluster dag C = (V ′, A),
gray edges are in A
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dag compression (V ′, A, E′),
compressed edges in E′

depicted as double lines

Figure 1 Example of how a dag compression works: For the graph G with vertex set V =
{1, . . . , 9}, one possible cluster dag is the shown C with vertex set V ′ = {1, . . . , 14}. Note that
the sinks of C are exactly the vertices in V . The cluster edges of C, shown as straight gray lines,
determine subsets of V (“clusters”) via reachability: The cluster C(10) of vertex 10 is the set {2, 3};
and C(11) = {4, 5}, C(12) = {5, 6}, C(13) = {4, 5, 6}, C(14) = {8, 9} and note that, for instance,
C(1) = {1}. Pairing C with a relation E′ ⊆ V ′ ×V ′, shown as double lines, yields a dag compression
of G: Each edge (u, v) ∈ E′ adds C(u) × C(v) to E. For instance, the edge (12, 14) ∈ E′ implies
that in E there is a complete bipartite graph with shores C(12) = {5, 6} and C(14) = {8, 9}.

run in time linear in the number of vertices. Many (but by far not all) natural graph classes
are sparse, including planar graphs, d-degenerate graphs, series-parallel graphs, or graphs of
bounded treewidth [17]. In contrast, for very dense graphs, where m = Ω(n2), until recently,
only relatively trivial examples (such as cliques) were known for which these problems could
be solved in time o(n2).

In this paper, we propose a simple data structure, dubbed dag compression, that will
prove useful in computing a bfs or dfs on dense graphs G = (V, E). The idea is to represent
complete bipartite subgraphs of G by storing compressed edges, which are just pairs of
vertices of a dag. Formally, a cluster dag for G is a directed acyclic graph C = (V ′, A)
whose sinks are exactly the vertices in V and each vertex v′ ∈ V ′ represents a cluster C(v′),
which is the set of sinks reachable from v′ in C. A compressed edge is a pair (u′, v′) ∈ V ′ × V ′

that encodes that there are edges in G from each vertex in C(u′) to each vertex in C(v′);
and to encode all edges in G, we use a compressed (edge) relation E′ ⊆ V ′ × V ′ such that
E = C(E′) :=

⋃
(u′,v′)∈E′ C(u′) × C(v′), see Figure 1 for an example. In case G contains

multiple edge relations E1, E2, . . . , Ek (like red edges and blue edges), we compress each Ei

separately using a compressed relation E′
i (but using the same cluster dag).

Crucially, we will show that bfs and dfs can be implemented in a way such that their
time complexity is linear in the total number |A| + |E′| of edges in the dag compression
(called the size of the dag compression in the following) and no longer necessarily linear in
the number |E| of edges of the original graph. Thus, whenever we can find a dag compression
of a graph whose size is linearly bounded by the number n of vertices in the original graph,
we can lower the runtime of bfs and dfs from O(m) to O(n).

A powerful motivation for studying dag compressions comes from its relation to the
prominent class of graphs of bounded twinwidth. Twinwidth is a structural graph parameter
introduced in 2020 by Bonnet et al. [5] to measure the distance of a graph from being a
cograph (detailed definitions will be given later). The importance of this parameter lies in
the fact that for many graph classes commonly studied in the literature this parameter is
bounded (so the class of graphs of bounded twinwidth is large), but the model checking
problem for first-order logic on structures of bounded twinwidth is still fixed-parameter
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tractable (so many problems are still in FPT on this class). However, graphs of bounded
twinwidth are not only interesting in the context of powerful logical characterizations and
algorithmic meta-theorems: It was recently shown [4] that in unweighted graphs of bounded
twinwidth, the single-source shortest path problem (sssp) can be solved in time O(n log n),
despite the fact that such graphs can easily have Ω(n2) edges. Consequently, the diameter of
a graph of bounded twinwidth, i.e., the maximum length of a shortest path, can be computed
in time O(n2 log n), while it is also known [4] that it cannot be computed in time O(n2−ϵ)
unless the strong exponential time hypothesis fails. Hence, there is a log(n)-gap between the
known lower and upper bounds for determining the diameter of graphs of bounded twinwidth.

One of our main results will be that graphs of bounded twinwidth admit a linear-size
dag compression. Combining this with our bfs implementation that runs in time linear
in the size of the dag compression, we see that on graphs of bounded twinwidth, one can
actually solve sssp in time O(n) and, thus, can solve the diameter problem in time O(n2).
In particular, we close the gaps in the runtime left open by previous work.

However, one has to be careful regarding the exact claims of the just-mentioned results: All
known algorithms working on graphs of twinwidth d, including our algorithm for computing
a linear-size dag compression of a graph of bounded twinwidth, need access to a so-called
contraction sequence. Such a sequence is a linear-size witness that a graph has twinwidth d

and, indeed, they can be used to show that deciding whether a graph has twinwidth d lies
in NP (and it is known [3] that at least for d = 4 the problem is NP-complete). For instance,
the algorithm from [4] for the diameter problem needs access to a contraction sequence
witnessing a twinwidth of d, in order to run in time O(d · n2 log n); but the lower bound of
O(n2−ϵ) also still holds when a contraction sequence is given.

Our Contributions. Our first main contribution is conceptual: We propose the already
mentioned dag compression data structure and study their basic properties. The size of
these compressions (the number |A| of cluster edges plus the number |E′| of compressed
edges) will be of particular interest since we will show that important problems can be solved
in a time that is linear with respect to this size.

The central tool underlying our algorithms is a construction that uses a dag compression
D = (V ′, A, E′) of a graph G = (V, E) to build an edge-weighted graph S = (V ′′, E′′, w′′)
with V ⊆ V ′′ and w′′ : E′′ → {0, 1}, called the switching graph of D (since paths in this
graph repeatedly switch between two parts of it, see Figure 2 for an example).

▶ Theorem 1.1. Let G = (V, E) be a directed graph, let D = (V ′, A, E′) be a dag compression
of G, and let S = (V ′′, E′′, w′′) be the switching graph of D. Then for every pair (u, v) ∈ V ×V

we have dG(u, v) = dS(u, v), that is, the distance from u to v is the same in G and in S.

Since it will be immediate from the construction that the number |E′′| of edges in the
switching graph is 2|A| + |E′| and thus at most double the size of the dag compression D,
we easily get fast dfs and bfs algorithms for graphs that admit a dag compression of linear
size:

▶ Theorem 1.2. On input of a dag compression D = (V ′, A, E′) of a graph G = (V, E) we
can visit the vertices in V both in bfs and dfs order in time O(|V ′| + |A| + |E′|).

As graphs with bounded twinwidth have a linearly bounded dag compression, a direct
consequence of Theorem 1.2 is that we close the gap between the lower and upper bound for
computing the diameter of graphs of bounded twinwidth:

STACS 2024
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Figure 2 The example graph G = (V, E), dag compression D = (V ′, A, E′), and cluster dag
C = (V ′, A) from Figure 1. The switching graph S = (V ′′, E′′, w′′) results from first taking the
disjoint union of C and the copy C̄, where all edges are reversed, and unifying the vertices in V .
This results in 2|A| many edges (shown in gray in S above) and we set their weight to 0. In addition,
for each edge (u′, v′) ∈ E′ there is a switching edge (ū′, v′) in E′′, shown in black, that leads from
the lower part to the upper part and has weight 1. A path in G of length 2, like the path 3 → 5 → 9,
corresponds to a path 3 → 10 → 11 → 5 → 12 → 14 → 9 in S of weight 2 as it contains two switching
edges (black edges of weight 1).

▶ Corollary 1.3. On input of a contraction sequences that witnesses that a graph G has
twinwidth at most d, we can compute the diameter of G in time O(d · n2).

Access to a fast depth-first search allows us to implement other operations from algorithmic
graph theory in time O(n). For instance, the strongly connected components of a digraph
can be computed by two consecutive depth-first searches using Kosaraju’s algorithm [22]:

▶ Corollary 1.4. On input of a dag compression D = (V ′, A, E′) of a graph G = (V, E), the
strongly connected components of G can be computed in time O(|V ′| + |A| + |E′|).

Another traditional application of the depth-first search is the detection of cycles in
directed graphs as well as the computation of a topological sort of the input [23]:

▶ Corollary 1.5. On input of a dag compression D = (V ′, A, E′) of a graph G = (V, E),
we can test in time O(|V ′| + |A| + |E′|) whether G contains a cycle and, if not, compute a
topological sorting of G.

It is well-known that a bfs can compute the shortest path between two vertices in
unweighted graphs. However, this is different in weighted graphs, in which a more refined
algorithm must be used. Generalizing the dag compression to weighted graphs, we obtain:

▶ Theorem 1.6. On input of a dag compression D = (V ′, A, E′, w′) of a weighted graph
G = (V, E, w) with w : E → N, the single-source shortest path (sssp) problem can be solved
in time O

(
(|V ′| + |A| + |E′|) log(|V ′| + |A| + |E′|)

)
.

Related Work. Many graph compression methods are known in the literature; the one most
similar to ours is by Toivonen et al. [26]. They also introduce supernodes and superedges with
the idea that an edge between two supernodes represents all edges between vertices within
these supernodes. However, they partition the vertex set into a set of supernodes, whereas
our compression allows for nested vertex combinations. The representation of Navlakha
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et al. is similar to the one of Toivonen et al. with an additional set of edge corrections, i.e.,
edges that must be deleted or added to retrieve the original graph [18]. Tian et al. provide
two operations: One for creating a graph compression based on user-given attributes and
another to further control the compression [25]. Zhang et al. further refine this compression
to include numerical attributes and add more automation [27].

Using distance-equivalent graphs to speed up routing algorithms is commonly done in
theory and practice [24]. However, the objective is usually to replace a large input graph
with a smaller graph in which distances are approximately the same as in the input. In
contrast, our use of distance-equivalent graphs does not involve any approximations: The
distances in the switching graphs are precisely as in the original graph.

Twinwidth was introduced in 2020 for graphs and digraphs by Bonnet et al. [5] and
interest quickly increased as witnessed by dozens of new research papers each year since
then. One of the earliest and most remarkable results is an fpt-algorithm for the model-
checking problem of first-order logic [5]. Graphs of twinwidth 0 and 1 can be recognized
in polynomial time [28, 14], but deciding whether a graph has twinwidth at most 4 is
NP-complete [3]. Besides the aforementioned meta-theorem, dedicated dynamic programs
are known to compute maximum cliques, independent sets, and minimal dominating sets on
graphs of bounded twinwidth [4]. It is also known that all triangles of a graph of twinwidth
at most d can be counted in time O(d2n + m) if a corresponding contraction sequence is
given [16]. Ahn et al. [2] study the twinwidth of random graphs. Schidler and Szeider provide
the first practical strategies to compute contraction sequences using a sat-solver [21] and
Ganian et al. show that weighted model counting can be done efficiently on formulas of
small twinwidth [13]. Bonnet et al. introduced twin-models [6], which can also compress
graphs and is similar to our result in Theorem 4.4. However, one main thrust of defining
dag compressions is their usefulness independently of twinwidth, which is also one of the
reasons we consider dag compressions rather than tree compressions.

Structure of this Paper. We define dag compressions and have a look at some basic
properties and operations in the next section. In Section 3 on algorithms, we define the
switching graph and show how it can be used to implement fast versions of bfs and dfs, and
related algorithms. In Section 4, we show how we can build linear-size dag compressions. Our
particular focus will be on graphs of bounded twinwidth, where we turn a given contraction
sequence into a dag compression of linear size.

2 DAG Compressions: Definition, Examples, and Basic Constructions

The idea behind dag compressions is – as already pointed out in the introduction – to
compress complete bipartite subgraphs of a given graph by single “compressed edges” that
link vertices of the cluster dag. The cluster dag has the job of encoding sets of vertices via
the reachability relation: Each vertex of the cluster graph encodes all sinks that are reachable
from it. In the following, we formalize these ideas and give examples. We also show how
basic update and construction operations on dag compressions can be implemented.

Basic Terminology. Before we proceed, let us fix some terminology and notation: To
simplify the presentation, a graph is always a pair (V, E) consisting of a non-empty finite
set V of vertices together with a relation E ⊆ V × V . In other words, by “graph” we always
refer to a simple, non-empty, directed graph; undirected graphs are just directed graphs with
a symmetric edge relation. Throughout this paper, n will refer to the size |V | of the graph G

currently under consideration and m will refer to |E|.

STACS 2024
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An (edge-)weighted graph is a triple (V, E, w), where w : E → N maps edges to nonnegative
integers. The weights are binary if w(e) ∈ {0, 1} holds for all e ∈ E. An unweighted graph
can also be seen as a weighted graph in which all weights are 1. A walk of length l in a graph G

is a sequence (v0, . . . , vl) of vertices such that (vi−1, vi) ∈ E holds for all i ∈ {1, . . . , l}. For
s = v0 and t = vl, the walk is also called an s-t-walk and we say that t is reachable from s.
The weight of a walk is the sum

∑l
i=1 w

(
vi−1, vi

)
. Note that for unweighted graphs the

length and the weight of a walk are the same.
A walk is called a path if all vertices are distinct. A walk is called a cycle if l ≥ 3, v0 = vl,

and (v0, . . . , vl−1) is a path. The distance function for G is the function dG : V ×V → N∪{∞}
that maps each pair (u, v) of vertices to the minimum weight of any u-v-walk in G (or to ∞,
if no such walk exists).

A graph is a directed acyclic graph (a dag) if there is no walk in G of length at least 1
with v0 = vl. A sink in a dag is a vertex s ∈ V of out-degree 0, that is, without edges
leaving s. Note that a dag must always have at least one sink.

2.1 Definition of DAG Compressions and Examples
In order to formalize the notion of dag compressions, we start with cluster dags:

▶ Definition 2.1 (Cluster DAGs and Compressed Edges). A cluster dag for a set V is a
dag C = (V ′, A) such that V is exactly the set of sinks of C. Given a vertex v′ ∈ V ′, the
cluster C(v′) of v′ is the subset of V of all sinks that are reachable from v′ in C. A pair
(u, v) ∈ V ′ × V ′, not necessarily an element of A, is called a compressed edge.

▶ Definition 2.2 (DAG Compression). Let G = (V, E) be a graph. Let C = (V ′, A) be a
cluster dag for V . A dag compression of G is a triple D = (V ′, A, E′), where E′ ⊆ V ′ × V ′

is a compressed (edge) relation, such that E =
⋃

(u′,v′)∈E′ C(u′) × C(v′). The size of D is
the number |A| + |E′|.

We already gave an example of a dag compression of a graph in Figure 1. In the following
we consider three more examples in order to explain the concept.

▶ Example 2.3 (No Compression). A trivial way of compressing any graph G = (V, E) is to
do no compression at all, that is, to use (V ′, A, E′) with V ′ = V , A = ∅, and E′ = E. Note
that, indeed, if there are no edges in the cluster dag, each vertex is a sink.

This trivial example shows that we can always come up with a dag compression of size m

for any graph G. In particular, for any class C of graphs that has only a linear number of
edges (that is, for which there is a constant c such that for all (V, E) ∈ C we have |E| ≤ c · |V |),
all graphs in C admit linear-size dag compressions. A prominent example of such classes are
classes of graphs of bounded treewidth.

A slightly more interesting example are complete graphs, which have a superlinear number
of edges, but a linear-size dag compression:

▶ Example 2.4 (Cliques). Let Cn := (V, E) with E = V × V be the complete graph on n

vertices. Note that m = |E| = n2. A linear-size (n + 1 to be precise) dag compression for
it is (V ′, A, E′) with V ′ = V ∪ {c}, where c is a fresh vertex, A = {(c, v) | v ∈ V } contains
an edge from c to every vertex of V , making all of them sinks, and E′ = {(c, c)} contains a
single loop. Indeed, we then have E =

⋃
(u′,v′)∈E′ C(u′) × C(v′) = C(c) × C(c) = V × V .

A more involved and interesting example are cographs, which are the natural “base class”
to define twinwidth (which we will discuss in more detail later):
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▶ Example 2.5 (Cographs). The class of cographs is defined inductively as follows: First,
any single vertex is a cograph. Second, if G and H are cographs, so are their disjoint union
and also their disjoint union with all edges between vertices in G and vertices in H added.
This inductive definition can be used to obtain a linear-size (5n − 4 to be precise) dag
compression of any cograph: Compressing single vertex graphs is trivial, so let G = (VG, EG)
and H = (VH , EH) be cographs and let DG and DH be dag compressions of sizes 5nG − 4
and 5nH − 4, respectively. We will ensure (and assume) that the cluster dags CG and CH

are actually trees with roots rG and rH .
A dag compression of the disjoint union is then obtained by taking the disjoint union of

the two compressions, adding a new root r and adding the edges (r, rG) and (r, rH), that is, by
considering

(
V ′

G∪V ′
H ∪{r}, AG∪AH ∪{(r, rG), (r, rH)}, E′

G∪E′
H

)
and always assuming that all

vertex names are distinct. Note that the resulting size is 5nG−4+5nG−4+2 = 5n−6 ≤ 5n−4.
The interesting case is to obtain a dag compression of the disjoint union with all edges

between G and H added. However, this is easy to achieve by taking the same construction and
just adding the edges (rG, rH) and (rH , rG) to E′ as this will cause C(rG)×C(rH) = VG ×VH

and also the reversed edges C(rH) × C(rG) = VH × VG to be added to E, exactly as needed.
This adds two more edges to the size of the dag compression, meaning that the size is
5nG − 4 + 5nG − 4 + 2 + 2 = 5n − 4 as claimed.

Compressing Weighted Graphs and Arbitrary Structures. It is straightforward to extend
the definition of a dag compression to weighted graphs: Simply add a weight function
w′ : E′ → N that assigns weights to compressed edges. The obvious semantics is then that
for (u′, v′) ∈ E′ all edges in C(u′) × C(v′) should have weight w′(u′, v′). However, we then
run into the problem that different weights may now be assigned to the same edge (u, v),
namely when (u, v) ∈ C(u′

1) × C(v′
1) and also (u, v) ∈ C(u′

2) × C(v′
2) for some compressed

edges (u′
1, v′

1) and (u′
2, v′

2) with w′(u′
1, v′

1) ̸= w′(u′
2, v′

2). We resolve this case by assigning the
minimum weight to (u, v) of the weights of all compressed edge that uncompress to (u, v).
Formally, we require that for a weighted graph (V, E, w) a weighted dag compression is a
tuple (V ′, A, E′, w′) such that (V ′, A, E′) is a dag compression of (V, E) and for all e ∈ E

we have w(e) = min(u′,v′)∈E′,e∈C(u′)×C(v′) w′((u′, v′)
)
.

As mentioned in the introduction, it is straightforward to define dag compressions of
graphs with multiple edge relations Ei by using multiple compression relations E′

i (but still
using a single cluster dag). It makes also sense to use dags to compress not only binary
edge relations, but also unary relations (subsets of V , that is, colors): We can compress a
color X ⊆ V using a set X ′ ⊆ V ′ such that X =

⋃
x′∈X′ C(x′), that is, by representing X as

the union of some clusters described by the cluster graph. In the other direction, is it also
possible to compress ternary relations R ⊆ V × V × V using a relation R′ ⊆ V ′ × V ′ × V ′

such that R =
⋃

(u′,v′,w′)∈R′ C(u′) × C(v′) × C(w′); and note that this potentially allows one
to compress relations with |R| = O(n3) using dag compressions of size O(n). All told, dag
compressions can be used to compress arbitrary logical structures as well, but for simplicity,
we restrict our attention to (weighted) graphs in the following.

Cluster Trees Versus Cluster DAGs. In all of the above examples, the cluster dag was
actually a tree. The following is an important example of a graph for which we appear to
need a dag to compress it to linear size (we believe that one can prove that a linear-size
compression using trees is not possible, but are not aware of any simple proof for this claim):

▶ Example 2.6 (Rook Graph). The rook graph on n vertices, where n = s2 is the square of
some integer s =

√
n, is a graph G with V = {1, . . . , s}2 and with

(
(i, j), (k, l)

)
∈ E iff i = k

or j = l, that is, if a rook could be moved from position (i, j) to position (k, l) in a chess

STACS 2024
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game in a single move. Another way of viewing a rook graph is as an intertwined union of
cliques: Every row is a clique and every column is a clique, but there are not other edges.
Note that the rook graph has (2s)s2 = Θ(n3/2) edges.

We can easily construct a linear-size dag compression for the rook graph: Consider
(V ′, A, E′) with V ′ = V ∪ {r1, . . . , rs} ∪ {c1, . . . , cs}, so we add a row vertex ri for each
row and similarly a column vertex ci for each column; we set A =

{
(ri, (i, j)) | i, j ∈

{1, . . . , s}
}

∪
{

(cj , (i, j)) | i, j ∈ {1, . . . , s}
}

, that is, each row vertex and each column
vertex is directly connected to all vertices of their row or column, respectively; and we
set E′ = {(ci, ci) | i ∈ {1, . . . , s}} ∪ {(ri, ri) | i ∈ {1, . . . , s}}, that is, we add self-loops
at all row and column vertices, resulting in cliques in E for each row and each column
– exactly, what we are looking for. The total size of the described dag compression is
|A| + |E′| = 2s2 + 2s = 2n + 2

√
n = O(n).

There is a deeper reason why we can compress the rook graph so well using dags rather
than trees: Using dags in compressions allows us to implement the union operation on edge
sets by uniting the dag compressions. The formal statement is the following:

▶ Lemma 2.7. Let G = (V, E1 ∪E2) and let D1 = (V ′
1 , A1, E′

1) and D2 = (V ′
2 , A2, E′

2) be dag
compressions of (V, E1) and (V, E2), respectively, that use distinct vertex sets for non-sink
vertices, that is, V ′

1 ∩ V ′
2 ⊆ V . Then (V ′

1 ∪ V ′
2 , A1 ∪ A2, E′

1 ∪ E′
2) is a dag compression of G

whose size is at most the sum of the sizes of D1 and D2.

Proof. Since V ′
1 ∩ V ′

2 ⊆ V , the edges of the cluster dags A1 and A2 do not “interfere,” that
is, in the new compression dag for any v′ ∈ V ′

1 the set C(v′) with respect to reachability in
A1 ∪ A2 is the same as C(v′) with respect to just A1; and symmetrically for v′ ∈ V ′

2 . This
implies that for any compressed edge (u′, v′) ∈ E′

1 ∪ E′
2, the set C(u′) × C(v′) is the same as

before. In particular, the union of all of these sets is exactly E1 ∪ E2. The claim concerning
the sizes follows directly from the construction. ◀

By the lemma, the rook graph can be compressed simply because it is the union of 2
√

n

cliques, each having
√

n vertices and, hence, allowing a dag compression of size 1 +
√

n by
Example 2.4; so the lemma tells us that a size of 2

√
n(1 +

√
n) = O(n) suffices for the union

of all these cliques – no matter how they are intertwined.

2.2 Updating DAG Compressions
When defining a new data structure, a natural question is how difficult it is to update it.
That is, suppose we have already constructed a dag compression D of a graph G, with
D being stored in memory while G is not stored directly, and we now wish to modify G

by adding or deleting edges or vertices. How difficult is it to update D instead (without
decompressing it)? In other words, given D, we wish to compute a dag compression D̃ of G̃,
where G̃ results from G by some small change.

Let us start with simple modifications that are easy to implement. First, we may wish to
add an edge, meaning that G̃ =

(
V, E ∪ {(u, v)}

)
. It is then fairly simple to compute D̃ in

this case: We can add the edge as a compressed edge, that is, let Ẽ′ = E′ ∪ {(u, v)}. Note
that the size increases only by one. Second, we may wish to add a new vertex. This turns
out to be even simpler: Just add it to V ′, where it will become an isolated sink. This does
not even change the size of the compression. Third, we may wish to delete an existing vertex
v from V along with all adjacent edges in E. This is also simple to achieve: Simply delete v

from V ′ and all its occurrences in A and in E′.
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One operation is suspiciously missing: Deleting an edge (u, v) from E. It turns out that
this can be a difficult operation to implement: If (u, v) ∈ C(u′)×C(v′) for several compressed
edges (u′, v′) ∈ E′, we need to “break up” these compressed edges, meaning that we need to
remove the compressed edge (u′, v′) and to then add new compressed edges that cover exactly
the set (C(u′) × C(v′)) \ {(u′, v′)}. It is currently unclear to us what the exact complexity of
this operation is.

Another suspiciously missing aspect is the question of what happens when we have
multiple edge additions in a row. Clearly, it is not optimal to simply add each edge as a
compressed edge that only compresses itself: If we add all edges of, say, a cluster C(v′)
and thereby making it a clique, we would like to end up with a dag compression in which
there is a single compressed edge (v′, v′) in E′ to represent this clique. Undoubtedly, greedy
heuristics exist for locally compressing sets of newly inserted edges, but finding a minimum-
size dag compression (V ′, A, E′) for a given graph (V, E) appears to be a difficult problem.
The following theorem shows that minimizing |E′| is NP-complete and we conjecture that
minimizing |A| + |E′| (which is the more important question from a practical point of view)
is also NP-complete:

▶ Theorem 2.8. It is NP-complete to decide on input G = (V, E) and a number k whether
there is a dag compression (V ′, A, E′) of G with |E′| ≤ k.

Proof. Reduce from the NP-complete problem of covering a bipartite graph with at most
k complete bipartite graphs [19]. By definition, a dag compression (V ′, A, E′) of G with
|E′| ≤ k immediately yields a cover of E by at most k complete bipartite graphs; and given
such a cover of size k, we can easily construct a cluster dag such that for each complete
bipartite graph X×Y in this cover there are vertices x′ and y′ with C(x′) = X and C(y′) = Y ,
allowing us to put the edge (x′, y′) into E′. ◀

3 DAG Compression: Algorithms

Given a dag compression D of some graph G, we wish to solve typical algorithmic problems
on G, for instance, we would like to compute a topological ordering of G. The objective is,
of course, to do so without “decompressing” the graph, that is, without storing the large
graph G in memory. Rather, we would like to directly work on D and would like to have
linear or quasi-linear runtimes in terms of the size of D.

At first sight, dag compressions seem rather ill-suited for this purpose: Even deciding
whether there is an edge between two given vertices u, v ∈ V is not straightforward. Indeed,
to answer this simple question using only D = (V ′, A, E′), we have to determine whether
there is a compressed edge (u′, v′) ∈ E′ such that u is reachable from u′ in A and v is
reachable from v′ in A. If A is a complex graph containing long paths, this is a nontrivial
problem. Indeed, even very simple problems like determining the degree of a vertex are
difficult if only D is given, as we may need to consider all vertices v′ ∈ V from which v is
reachable – and this set may have linear size.

Nevertheless, it turns out that many problems involving the whole graph G can be solved
in linear-time with respect to D. The core idea behind these algorithms is the construction
of the switching graph, whose core property is that it is distance-equivalent to G.

Distance Equivalence and the Switching Graph. In order to solve bfs in G using only D,
we first construct a new graph S that is distance equivalent to G, but has few edges.
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8:10 Faster Graph Algorithms Through DAG Compression

▶ Definition 3.1 (Distance Equivalence). Let G1 = (V1, E1, w1) and G2 = (V2, E2, w2) be two
weighted graphs. They are distance equivalent (on V1 ∩ V2) if for all u, v ∈ V1 ∩ V2 we have
dG1(u, v) = dG2(u, v).

The key observation, to be formalized later, is that computing, say, a bfs ordering of the
vertices in G1 will also yield a bfs ordering of the vertices in V2 in G2 because the ordering
in which vertices need to be visited depends on the distances.

Let us now define the switching graph of a dag compression D and prove that it is
distance equivalent to the uncompressed graph G.

▶ Definition 3.2 (Switching Graph). Let D = (V ′, A, E′, w′) be a dag compression of a
weighted graph G = (V, E, w). For each v′ ∈ V ′ let v̄′ be a new vertex, except when v′ ∈ V ,
in which case v̄′ = v′. The switching graph S of a dag compression D = (V ′, A, E′, w′) of a
weighted graph G = (V, E, w) is a weighted graph S = (V ′′, E′′, w′′) such that
1. the vertex set V ′′ is the union of the three sets

upper part Vupper = {v′ | v′ ∈ V ′ \ V },
middle part Vmiddle = {v | v ∈ V } = {v̄ | v ∈ V }, and
lower part Vlower = {v̄′ | v′ ∈ V ′ \ V },

2. the edge set E′′ is the union of the three sets
upper cluster edges {(u′, v′) | (u′, v′) ∈ A} in the upper part,
lower cluster edge {(v̄′, ū′) | (u′, v′) ∈ A} in the lower part, and
switching edges {(ū′, v′) | (u′, v′) ∈ E′},

3. and the weight function w′′ : E′′ → N with w′′((u′, v′)) = w′′((ū′, v̄′)) = 0 for the cluster
edges resulting from (u′, v′) ∈ A and with w′′((ū′, v′)) = w′((u′, v′)) for the switching
edges resulting from (u′, v′) ∈ E′.

An example of a switching graph is depicted in Figure 2, where the weights in G are
all 1 and, hence, the weights in S are either 0 (for cluster edges, depicted in gray) or 1 (for
switching edges, shown in black). For further reference, we note a trivial observation:

▶ Lemma 3.3. For very switching graph we have |V ′′| ≤ 2|V ′| and |E′′| = 2|A| + |E′|.

Let us now prove the main property of switching graphs:

▶ Theorem 3.4. Let S be the switching graph of a dag compression D of G. Then S and G

are distance equivalent.

Proof. Let u and v be a pair of vertices in V .
First, consider a minimum-weight u-v-walk (v0, . . . , vl) in G and let k be its weight. We

will construct a u-v-walk in S of the same weight, starting at v0 = u and extending it for
each i ∈ {1, . . . , l} each time to vi. For a given i, we must have (vi−1, vi) ∈ E as we have a
walk in G. Since D is a dag compression of G, there must exist (v′

i, v′
i+1) ∈ E′ such that

vi−1 ∈ C(v′
i−1) and vi ∈ C(v′

i) and w((vi−1, vi)) = w′((v′
i−1, v′

i)). Extend the new walk as
follows: From vi−1 = v̄i−1 use (reversed) cluster edges to reach v̄′

i−1 in the lower part (which
must exist since vi−1 ∈ C(v′

i−1) means that vi−1 is reachable from v′
i−1 using non-reversed

cluster edges, so v̄′
i−1 is reachable from v̄i−1 using reversed cluster edges), use the switching

edge (v̄′
i−1, v′

i) to get to the upper part, and use cluster edges in the upper part to get to vi.
We only use exactly one switching edge during this extension of the new walk, meaning that
the weight of the walk increases exactly by the weight of this edge. This immediately yields
the claim concerning the total walk weight.
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Second, consider a minimum-weight u-v-walk (v′′
0 , . . . , v′′

l ) in S and let k be its weight.
Since u = v′′

0 and v = v′′
l , we start and end in the middle part of V ′′. We cut the walk into

subwalk P1, . . . , Pp of minimal lengths (but at least 1) such that each Pi starts and ends
with a vertex in the middle part (that is, in V ), while all other vertices are in the lower or in
the upper part. Each subwalk (except for P1) begins with the last vertex of the previous
subwalk. As an example, the example 3-9-walk (3, 10, 11, 5, 12, 14, 9) in Figure 2 would be
cut into the subwalks P1 = (3, 10, 11, 5) and P2 = (5, 12, 14, 9) since V contains only the
single digit numbers. Observe that the number of subwalks is exactly the number of positions
j ∈ {1, . . . , l} for which v′′

j ∈ V holds, that is, how often the walk crosses the middle part.
We claim that each Pi contains exactly one switching edge and all other edges are cluster

edges. To see this, let Pi = (p1, . . . , pz) and observe that only p1 and pz lie in the middle
part by construction. From p1, all non-switching edges point to a vertex in the lower part –
and this is true also for all vertices in the lower part. Thus, up to the first switching edge
on Pi, all edges are (reversed) lower cluster edges. Then, at some point, a switching edge
(p̄′, q′) ∈ E′′ must be used for some (p′, q′) ∈ E′ since, otherwise, we could not exit the lower
part (pz is not in the lower part – and we also not allowed to just “rest” at p1 since we must
make at least one step as the length of all Pi is at least 1). Note that p̄′ is reachable from p1,
meaning p1 ∈ C(p′). By construction, the switching edge brings us to the upper part (or to
the middle part, but then we stop and are done). In the upper part, we can only follow upper
cluster edges until we reach the middle part; but then we stop one more, having reached pz.
This implies that pz ∈ C(q′).

We see that each Pi consists of cluster edges (having weight 0) and a single switching
edge (p̄′, q′) ∈ E′′ of some weight w′′((p̄′, q′)) = w′((p′, q′)) for (p′, q′) ∈ E′. Furthermore,
(p1, pz) ∈ E must hold since p1 ∈ C(p′) and py ∈ C(q′). All told, for each subwalk Pi starting
at some vertex p ∈ V and ending at a vertex q ∈ V , we see that there is an edge (p, q) ∈ E.
Furthermore, the weight of this edge is at most the weight of the switching edge used in Pi.
However, it also cannot be smaller than this weight: Otherwise, we could replace the walk
by another walk from p to q in S of lesser weight (simple walk from p to the switching edge
having this smaller weight and then walk to q). This shows that the minimal weight of a
u-v-walk in G is k. ◀

Our first main theorem from the introduction, Theorem 1.1, is just a restatement of the
above theorem.

▶ Corollary 3.5. Given a dag compression D = (V ′, A, E′) of a graph G = (V, E), we can
run a bfs in time O(|V ′| + |A| + |E′′|).

Proof. Run Dijkstra’s algorithm [11] on the switching graph S of D, which has size at most
2|V ′| vertices and 2|A| + |E′| edges by Lemma 3.3. Since all weights are 0 or 1, we can run
the Dijkstra algorithm in time O(|V ′| + |A| + |E′|). ◀

▶ Corollary 3.6. Given a dag compression D = (V ′, A, E′) of a graph G, we can run a dfs
in time O(|V ′| + |A| + |E′′|).

Proof. Modify Dijkstra’s algorithm in Corollary 3.5 to extract the maximum instead of the
minimum. ◀

Theorem 1.2 directly follows from Corollaries 3.5 and 3.6. When the graphs we study
are weighted, as in Theorem 1.6, we can still run the Dijkstra algorithm, but the runtime
is no longer linear in the size of the dag compression, but of the order O(s log s), where
s = |V ′| + |A| + |E′|. We obtain Theorem 1.6 from the introduction.

STACS 2024



8:12 Faster Graph Algorithms Through DAG Compression

4 DAG Compressions: The Link to Twinwidth

We have shown that several standard algorithms can be implemented in time linear in the
size of the dag compression of a graph, and we also saw examples of graphs such as cographs
or the rook graph that allow us to compress graphs with n1+δ edges for δ > 0 to size O(n).
In the following we show that there is a large class of graphs for which a linear-size dag
compression is always possible: Graphs of bounded twinwidth. Linear-sized dag compressions
are tightly linked with bounded twinwidth, however, they do not capture the same class
of graphs (as the rook graph shows). We first define twinwidth and afterwards show how
we can build the dag compression from a so-called contraction sequence. Readers familiar
with twin-models [6] will note that the tree compressions developed in the following are very
closely related to twin-models (the difference is mainly in the terminology). For simplicity,
we only consider undirected graphs, that is, graphs with a symmetric edge relation.

Twinwidth and Contraction Sequences. Following Bonnet et al. it will be useful to consider
trigraphs [4, 5], which are triples (V, B, W, R) such that R, B, and W partition the set of
possible (non-loop) edges V × V \ {(v, v) | v ∈ V } into red edges, black edges, and white edges.
The red, black, or white degree of a vertex is the number of its incoming (or, equivalently,
outgoing) red, black, or white edges, respectively.

A contraction in a trigraph G merges two arbitrary vertices u and v into a single fresh
vertex z, forming a new trigraph G′ by removing u and v and coloring for each x ∈ V \ {u, v}
the edge between x and z (and also the backward edge as the graph is symmetric) as follows:
If the edges between x and u and between x and v were both black, so is the x-z-edge; if the
edges were both white, so is the x-z-edge; and in all other cases the x-z-edge becomes red.

A contraction sequence of a graph G = (V, E) is a sequence (Gn, Gn−1, . . . , G1) of
trigraphs Gi such that the first Gn =

(
V, E, V × V \ (E ∪ {(v, v) | v ∈ V }), ∅

)
is the trigraph

in which the edges in E are black and everything else is white and there are no red edges; the
last graph G1 is just a single vertex; and each Gi results from Gi+1 through the contraction
of two vertices ui+1 and vi+1 of Gi+1 into a fresh vertex zi. The red degree of a contraction
sequence is the maximum red degree any vertex in any of the Gi has. The sequence is called
a d-contraction sequence if its maximum red degree is d. Finally, the twinwidth tww(G) of G

is the minimal d for which there is a d-contraction sequence of G.
An example of 1-contraction sequence of the cycle C4 is show in Figure 3.

( 1

u4

2

3 4
v4G4

, z3

u3 2

v3

3
G3

,
z2

u2

3

v2

G2

, z1

G1

)

Figure 3 Example of a contraction sequence of the cycle C4. In the first step, u4 = 1 and v4 = 4
are contracted to form the new vertex z3 in G3. The edge from z3 to 2 is black since both the edges
from u4 to 2 and from v4 to 2 were black (that is, present). Similarly, there is a black edge from z3

to 3. In contrast, when v3 = 2 and u3 = z3 are contracted to z2 in G2, the edge from z2 to 3 is red
since there was a (black) edge from u3 to 3 in G3, but a white (not present) edge from v3 to 3. The
sequence is a 1-contraction sequence since the maximum red degree of any vertex in the sequence
is 1, proving that the twinwidth of C4 is at most 1 (it is actually 0 since contracting 2 and 3 in G3

rather than 2 and z3 yields a 0-contraction sequence).
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From Contraction Sequence to DAG Compression. Intuitively, contraction sequences
“form clusters of vertices in a tree-like manner through contractions” and we can use this idea
to build cluster dags from contraction sequences. Crucially, we can then insert compressed
edges whenever a black edge is “about to finally disappear” and this will allow us to keep
their number small (that is, linear in the number of vertices).

In detail, let us now assume that a fixed d-contraction sequence (Gn, . . . , G1) for a graph
G = (V, E) is given in which for each i ∈ {n, . . . , 2} we contract ui and vi in the trigraph Gi

into zi−1 in order to form the trigraph Gi−1. Our objective is to construct a dag compression
D = (V ′, A, E′) for G using the sequence such that |A| + |E′| ≤ (3d + 4) · n. In particular,
for every fixed d, the size of D is in O(n).

The first step is to define the cluster dag C = (V ′, A). This is done as follows, see
Figure 4 for an example:

▶ Definition 4.1. The cluster tree C = (V ′, A) of a contract sequence (Gn, . . . , G1) has
V ′ = V ∪ {zn−1, . . . , z1} and for each i ∈ {2, . . . , n} there are edges from zi−1 to both ui and
vi to A, that is, A = {(zi−1, ui) | i ∈ {2, . . . , n}} ∪ {(zi−1, vi) | i ∈ {2, . . . , n}}.

1 4 2 3

z3

z2

z1

Cluster dag (V ′, A)

1 4 2 3

z3

z2

z1

dag compression (V ′, A, E′)
with E′ depicted as double lines

Figure 4 The cluster dag resulting from the contraction sequence from Figure 3 and the dag
compression of C4 resulting from it. The two compressed edges (z3, 2) and (z3, 3) are both added
when G3 is contracted to G2, but for different reasons: In G3 there is a black edge (z3, 2), but
(α3(z3), α3(2)) = (z2, z2) is not a black edge in G2 (there are no self-loops). In G3 there is also a
black edge (z3, 3), but while in G2 there is an edge (α3(z3), α3(3)) = (z2, 3), it is red.

A simple lemma will be useful in the following:

▶ Lemma 4.2. Let (V ′, A) be the cluster tree of a contraction sequence (Gn, . . . , G1) of
G = (V, E) and let x′, y′ ∈ V ′ be two different vertices in some Gi. Then there is a black
edge between x′ and y′ in Gi if, and only if, C(x′) × C(y′) ⊆ E.

Proof. By induction. The start Gn is trivial. Suppose the claim holds for Gi, we need to show
that it also holds for Gi−1, where u and v have been contracted to z. Consider two different
vertices x′ and y′ in Gi−1. If neither of them is z, then the contraction does not change
whether there is a black edge between them, so the induction hypothesis yields the claim.
Since the vertices must be different, the only remaining case we need to consider is x′ ̸= y′ = z.
First, suppose that there is black edge (x′, z) in Gi−1. By definition of contractions, the
existence of this black edge implies that there are black edges (x′, u) and (x, v) in Gi. By
the induction hypothesis this yields that C(x′) × C(u) ⊆ E and also C(x′) × C(v) ⊆ E. But,
then, by construction we have C(y′) = C(z) = C(u) ∪ C(v) and hence C(x′) × C(y′) ⊆ E.
Second, there is no black edge (x′, z) in Gi−1. Then either (x′, u) or (x, v) was not a black
edge in Gi. By the induction hypothesis, either C(x′) × C(u) ̸⊆ E or C(x′) × C(v) ̸⊆ E.
Since we still have C(y′) = C(z) = C(u) ∪ C(v), we get C(x′) × C(y′) ̸⊆ E. ◀
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The second step is to add as few compression edges as possible, that is, to keep E′ small
(while, of course, D is still a compression of G), by adding compression edges “as late as
possible”. In detail, for i ∈ {n, . . . , 2} let αi : V ′ → V ′ be the function that maps both ui

and vi to zi−1 and is the identity otherwise, so αi(ui) = αi(vi) = zi−1 and αi(v) = v for
v ∈ V ′ \ {ui, vi}. In other words, αi tells us “what became of a vertex v from Gi in Gi−1.”
We now add a compression edge (u, v) to E′ whenever (u, v) is a black edge in Gi but
(αi(u), αi(v)) is no longer black or no longer present in Gi−1. Formally:

▶ Definition 4.3. The set of compressed edges E′ of a contraction sequence (Gn, . . . , G1)
is E′ =

{
(u, v) ∈ V ′ × V ′ | there is an i ∈ {2, . . . , n} with (u, v) ∈ BGi

, but (αi(u), αi(v)) /∈
BGi−1

}
.

▶ Theorem 4.4. For each (undirected, loop-free) graph G of twinwidth at most d there is a dag
compression D = (V ′, A, E′) with |V ′| = 2n − 1, |A| = 2n − 2, and |E′| ≤ 2 · (2d + 1) · (n − 1).

Proof. Since G has twinwidth at most d, there is a d-contraction sequence (Gn, . . . , G1) for
it. Consider the dag compression D = (V ′, A, E′) where (V ′, A) is the cluster tree from
Definition 4.1 for the contraction sequences and E′ is the set of compressed edges from
Definition 4.3 for the sequence.

The claim concerning the size of |V ′| follows trivially from Definition 4.1. For the size
of |A|, just note that a binary tree on k vertices has k − 1 edges. For the size of E′, we must
count “how many black edges can disappear when Gi is contracted into Gi−1.” First, if there
is a black edge (ui, vi) in Gi, it will disappear, resulting in (ui, vi) ∈ E′. Second, if there is a
vertex v ∈ V ′ \ {ui, vi} such that (v, ui) is black, but (αi(v), αi(ui)) = (v, zi−1) is red, we will
add (v, ui) to E′ (and also (ui, v), the symmetric edge, which is accounted for by the factor
of 2 in the bound of the theorem). Likewise, if (v, vi) is black, but (v, zi−1) is red, we add
(v, vi) to E′. Crucially, for any v, when at least one of the at most two black edges (v, ui) or
(v, vi) is added to E′, the edge (v, zi−1) is red. Since the maximum red degree of any vertex,
including zi−1, is d, there can be at most d red edges and hence at most 2d black edges may
have disappeared. All told, from Gi to Gi−1 we add at most 2 · (2d + 1) compressed edges
to E′.

It remains to argue that D is, indeed, a dag compression of G. However, Lemma 4.2
immediately implies that all compressed edges we add to E′ are “correct”, that is, for every
compressed edge (u′, v′) ∈ E′ we have C(u′) × C(v′) ⊆ E. Furthermore, the lemma also
implies that we do no “miss” any edges from E: Every edge of E is present in G′ as a
black edge and remains present as an element of some C(u′) × C(v′) until the black edge
disappears – which is exactly the moment we add (u′, v′) to E′. Finally, G1 is a single vertex
and contains no edges, so all edges in E will be accounted for in E′ at some point. ◀

By the above theorem, all graphs of twinwidth d admit a dag compression (indeed, even
a tree compression) of size O(d · n). However, computing the dag compression of a graph of
bounded twinwidth is a potentially difficult problem since it is already NP-hard to decide
whether the twinwidth of a graph is 4 and, hence, it is also impossible to compute optimal
contraction sequences in polynomial time unless P = NP. For these reasons, we can only hope
to be able to compute the dag compression of G when we are given a d-contraction sequence
already as part of the input – and it is standard practice in the literature for algorithms
working on graphs of twinwidth d to assume that this is the case.

However, one needs to be careful how the contraction sequence is represented in the
input. Clearly, it makes little sense to assume that a string encoding the actual sequence
(Gn, Gn−1, . . . , G1) is given as input – when G is dense, we wish to avoid explicitly keeping
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all edges of Gn in memory, let alone storing the whole sequence. Also, statements like “bfs
can be solved in time O(dn) for a graph G when a d-contraction sequence of G is given” are
much less impressive if this presupposes that the input may take up O(n3) cells of memory.
On the other hand, it is also not sufficient to just be given, say, for each i ∈ {n, . . . , 2} the
vertices ui and vi that get contracted to zi−1: We then miss the information which black
edges got removed.

What we really need is, in addition to the contraction pairs, for each i ∈ {n, . . . , 2} for
each red edge (v, zi−1) the color of the edges (v, ui) and (v, vi): We can then reconstruct
which black edges were lost from Gi to Gi−1. The following definition and theorem make
these observations explicit:

▶ Definition 4.5. Let (Gn, . . . , G1) be a contraction sequence such that in Gi we contract ui

and vi into zi−1 to get Gi−1. Define the color recording sequence of the contraction sequence
as a sequence of tuples (tn, tn−1, . . . , t2) such that each ti contains the following:
1. The vertices ui, vi, zi−1.
2. The color of the edge (ui, vi) in Gi.
3. For each vertex v such that (v, zi−1) is a red edge in Gi−1, the colors of the edges (v, ui)

and of (v, vi) in Gi.

Observe that for a d-contraction sequence each tuple ti in the color recording sequence
contains at most 2d + 4 vertices and, hence, the whole sequence can be stored using O(d · n)
words of memory.

▶ Theorem 4.6. There is an algorithm that gets a color recording sequence of a d-contraction
sequences of a graph G as input and outputs in time O(d · n) a dag compression D of G of
size O(d · n).

Proof. Having a look at the definitions of cluster trees (Definition 4.1) and of how the
compressed edges E′ are derived from a contraction sequence (Definition 4.3), we immediately
see that the color recording sequence contains exactly the information needed to output
(V ′, A, E′) in time linear in the size of this output. ◀

Of course, the above theorem and definition beg the question of where the “color recording
sequences” might come from. Firstly, it may be the case that we do have access (perhaps
only during a preprocessing phase) to the graphs Gi. In this case, assuming that they are
stored using standard data structures that combine the advantages of an adjacency matrix
and list [1] and also assuming that we are told which vertices get contracted in each step, we
can easily compute the color recording sequence by iterating over the red edges incident to
each zi−1. Secondly, the graph G and the contraction sequence may be the output of some
algorithmic process. In this case, one needs to adapt the output or the process so that the
color recording sequence gets output.

Graphs with Large Twinwidth and Linear-Size DAG Compressions. The results in this
section suggest a tight link between twinwidth and linear-size dag compressions: When
G has twinwidth d, then G also has a size-O(dn) dag compression. Indeed, it even has a
size-O(dn) tree compression, that is, a dag compression where C = (V ′, A) is a tree. This
raises the question of whether, perhaps, the reverse is also true: It is true that all graphs
having a, say, linear-size tree compression, also have low twinwidth? The answer to this is
negative:

▶ Theorem 4.7. There is a sequence of graphs (G1, G2, . . . ) such that Gd has twinwidth at
least d, but each Gd = (Vd, Ed) admits a tree compression of size at most |Vd|.
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Proof. For each d, we can construct a graph Hd that has twinwidth at least d: For instance,
the rook graph on n vertices from Example 2.6 has twinwidth at least

√
n since contracting

any two different vertices immediately yields a vertex with
√

n incident red edges.
Let Gd be the graph Hd to which we add n2

d −nd isolated vertices, where nd is the number
of vertices of Hd. Then Gd has n2

d vertices and also twinwidth at least d since adding isolated
vertices does not change the twinwidth. The number of edges in Gd equals that of Hd, so
it can be at most n2

d. This shows that |Ed| ≤ n2
d = |Vd|; in other words, the graph has a

linear number of edges. As shown in Example 2.3 we can the “compress” it by simply doing
nothing to get a size-|Vd| compression. ◀

5 Conclusion

In this paper, we presented a new data structure, the dag compression, that represents
graphs by storing complete bipartite subgraphs as single compression edges between vertices
that represent clusters of vertices. We showed that some update operations are possible on
these compressions, but further research is needed to better understand them. A crucial
property was that the dag compression of a graph gives rise to another graph, which we
called the switching graph, that is distance-equivalent to the original graph and is only twice
the size of the compressed graph.

When the size of a dag compression is linearly bounded by the number of vertices in
the original graphs, the compression gives rise to a new framework for graph algorithms
with running times that are independent of the number of edges in the input: We can run
breadth- and depth-first search in time O(n) where n is the number of vertices in the input,
if we have access to a linear-size dag compression. Moreover, extending the definition to
weighted graphs, we can run Dijkstra’s algorithm in time O(n log n) on such graphs. We
believe that further algorithms that work directly on dag compressions rather than on the
original graphs are possible.

We also showed that all graphs of bounded twinwidth admit a linear-size dag compression.
The reverse, however, is not true. A natural research avenue would be to extend this result to
further graph classes: Is it true that all graphs of, say, bounded flip-width admit a linear-size
dag compression?
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