
Testing Equivalence to Design Polynomials
Omkar Baraskar #

Indian Institute of Science, Bengaluru, India

Agrim Dewan #

Indian Institute of Science, Bengaluru, India

Chandan Saha #

Indian Institute of Science, Bengaluru, India

Abstract
An n-variate polynomial g of degree d is a (n, d, t) design polynomial if the degree of the gcd of every
pair of monomials of g is at most t − 1. The power symmetric polynomial PSymn,d :=

∑n

i=1 xd
i and

the sum-product polynomial SPs,d :=
∑s

i=1

∏d

j=1 xi,j are instances of design polynomials for t = 1.
Another example is the Nisan-Wigderson design polynomial NW, which has been used extensively
to prove various arithmetic circuit lower bounds. Given black-box access to an n-variate, degree-d
polynomial f(x) ∈ F[x], how fast can we check if there exist an A ∈ GL(n,F) and a b ∈ Fn such
that f(Ax + b) is a (n, d, t) design polynomial? We call this problem “testing equivalence to design
polynomials”, or alternatively, “equivalence testing for design polynomials”.

In this work, we present a randomized algorithm that finds (A, b) such that f(Ax + b) is
a (n, d, t) design polynomial, if such A and b exist, provided t ≤ d/3. The algorithm runs in
(nd)O(t) time and works over any sufficiently large F of characteristic 0 or > d. As applications
of this test, we show two results – one is structural and the other is algorithmic. The structural
result establishes a polynomial-time equivalence between the graph isomorphism problem and the
polynomial equivalence problem for design polynomials. The algorithmic result implies that Patarin’s
scheme (EUROCRYPT 1996) can be broken in quasi-polynomial time if a random sparse polynomial
is used in the key generation phase.

We also give an efficient learning algorithm for n-variate random affine projections of multilinear
degree-d design polynomials, provided n ≥ d4. If one obtains an analogous result under the weaker
assumption “n ≥ dϵ, for any ϵ > 0”, then the NW family is not VNP-complete unless there is a
VNP-complete family whose random affine projections are learnable. It is not known if random affine
projections of the permanent are learnable.

The above algorithms are obtained by using the vector space decomposition framework, introduced
by Kayal and Saha (STOC 2019) and Garg, Kayal and Saha (FOCS 2020), for learning non-degenerate
arithmetic circuits. A key technical difference between the analysis in the papers by Garg, Kayal
and Saha (FOCS 2020) and Bhargava, Garg, Kayal and Saha (RANDOM 2022) and the analysis
here is that a certain adjoint algebra, which turned out to be trivial (i.e., diagonalizable) in prior
works, is non-trivial in our case. However, we show that the adjoint arising here is triangularizable
which then helps in carrying out the vector space decomposition step.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory

Keywords and phrases Polynomial equivalence, design polynomials, graph isomorphism, vector
space decomposition

Digital Object Identifier 10.4230/LIPIcs.STACS.2024.9

Related Version Full Version: https://eccc.weizmann.ac.il/report/2024/004/ [7]

Funding Chandan Saha: Partially supported by a MATRICS grant of the Science and Engineering
Research Board, DST, India.

Acknowledgements We thank the reviewers for their valuable feedback, which has helped us improve
the presentation of this work. In particular, we thank one of the reviewers who pointed us to
appropriate citations for the adjoint algebra.

© Omkar Baraskar, Agrim Dewan, and Chandan Saha;
licensed under Creative Commons License CC-BY 4.0

41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024).
Editors: Olaf Beyersdorff, Mamadou Moustapha Kanté, Orna Kupferman, and Daniel Lokshtanov;
Article No. 9; pp. 9:1–9:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:omkarb@iisc.ac.in
mailto:agrimdewan@iisc.ac.in
mailto:chandan@iisc.ac.in
https://doi.org/10.4230/LIPIcs.STACS.2024.9
https://eccc.weizmann.ac.il/report/2024/004/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Testing Equivalence to Design Polynomials

1 Introduction

The polynomial equivalence problem (PE) is fundamental in algebraic complexity theory.
Given two polynomials, f and g, how fast can we check if one is in the orbit of the other?
Orbit of a polynomial f ∈ F[x] is the set {f(Ax) : A ∈ GL(|x|,F)}. In other words, PE is
the problem of checking if f and g are the same function up to a change of the coordinate
system. It can be regarded as the algebraic analogue of the graph isomorphism (GI) problem.

Much is unknown about the exact complexity of PE. Over finite fields, PE is unlikely
to be NP-complete [37, 35], but no polynomial-time algorithm is known unless f and g are
quadratic forms [29, 4]. PE for cubic forms over Q is not even known to be decidable. Cubic
form equivalence (CFE) is polynomial-time equivalent to several other fundamental problems
in algebra and linear algebra [18, 19, 3]. GI reduces to CFE in polynomial time [2], but the
converse is not known to be true. A natural question emerges at this point:

Is GI polynomial-time equivalent to PE for some natural class of polynomials?

We provide an affirmative answer to this question in Theorem 11 by studying the problem of
testing equivalence to design polynomials which we also refer to as the equivalence testing
problem for the family of design polynomials (see Definitions 1 and 2).

Equivalence testing (ET) is closely related to the PE problem. ET for a polynomial family
or a circuit class F is a problem wherein we are given a polynomial f , and we wish to check
if f is in the orbit of some polynomial or circuit in F .1 Efficient ET algorithms are known
for a variety of polynomial families and a few circuit classes, namely the permanent [24],
the determinant [24, 15], the iterated matrix multiplication polynomial family [26, 33], the
elementary and power symmetric polynomials [23], the sum-product polynomial family [31],
the continuant [31], and read-once formulas [21]. One important family that is missing from
the above list is the Nisan-Wigderson design polynomial family NW (see Equation 1). The
NW family has been used in many results on arithmetic circuit lower bounds in the last
decade. But, unlike the other families, NW had no known ET. In fact, ET for NW over Q
was not known to be decidable. We ask a more general question:

Is there an ET algorithm for the family of (general) design polynomials?

Our main result, given in Theorem 3, is an ET algorithm for design polynomials over any
field of zero or sufficiently large characteristic. The algorithm reveals a structural property
of invertible transformations between design polynomials that enables us to prove Theorem
11. The running time of the algorithm also helps us point out a vulnerability of Patarin’s
authentication scheme if a random sparse polynomial is chosen in the key generation phase.

Patarin [34] proposed a zero-knowledge authentication scheme based on the presumed
hardness of PE for random cubic forms (more generally, constant-degree forms). A random
n-variate cubic form f(x) is chosen in the key generation phase along with two random
transforms A1, A2 ∈ GL(n,F). The polynomials g1 := f(A1x) and g2 := f(A2x) are made
public; the secret is the transform A−1

1 A2, which maps g1 to g2. A random cubic form has
sparsity (i.e., number of monomials) O(n3). It is natural to ask: What if we choose a random
O(n3)-sparse polynomial f of a higher degree (see Definition 12) in the key generation step?

Can Patarin’s scheme be broken if a random nO(1)-sparse polynomial is chosen as the key?

1 Note that the ET problem for F is not the same as the PE problem for F . In the latter case, we are
given two polynomials f, g ∈ F , and we wish to check if one is in the orbit of the other. One may
alternatively call the ET problem for F as “testing equivalence to F” (as in the title of this article).

O. Baraskar, A. Dewan, and C. Saha 9:3

It turns out that a random sparse polynomial is a design polynomial and has no nontrivial
permutation symmetry with high probability (see Lemma 36 and Proposition 37). These
features let us invoke Theorem 3 and answer the above question in Theorem 13 via a reduction
to GI.

Our final result is a learning algorithm for random affine projections of design polynomials.
An equivalence test for NW is a special case of learning affine projections of NW. Consider
the (qd, d, t) design polynomial NWq,d,t as defined in Equation 1. A polynomial f =
NWq,d,t(Ax + b), where |x| = n ≤ qd, A ∈ Fqd×n and b ∈ Fqd, is an n-variate affine
projection of NWq,d,t. Given access to f , can we learn the unknown A and b? If n = qd and
A ∈ GL(n,F), then the problem is the same as ET for NW. However, for arbitrary n < qd

and A ∈ Fqd×n, the problem can be rather difficult, even for t = 1, as every depth-3 circuit is
an affine projection of NWq,d,1 for some q and d. Learning depth-3 circuits in the worst-case
is a challenging problem due to known depth reduction results (see the discussion in [27]).
But does the task of discovering A become easier if A is randomly chosen? In other words:

Can we learn random affine projections of NW efficiently?

Random affine projections of special design polynomials, such as the power symmetric
polynomial and the sum-product polynomial, have been studied, and efficient learning
algorithms have been provided in [27]. But it is unclear what to expect for NW. The reason
is that, unlike the determinant and the permanent, we do not have a good understanding
of the expressive power of affine projections of NW. The permanent is VNP-complete
under p-projections2 [38], but NW is not known to be so. For d = nO(1), no learning
algorithm is known for n-variate random affine projections of the d × d permanent which
has time complexity polynomial in

(
n+d

n

)
– the maximum sparsity of any n-variate, degree-d

polynomial. In fact, it is conjectured in [1] that n-variate random affine projections of the
d × d determinant form a pseudorandom function family when d = nO(1). If true, then there
is no

(
n+d

n

)O(1)-time learning algorithm for random affine projections of the determinant. If
such a conclusion holds for the determinant, which is VBP-complete, then we expect the
same to hold for the permanent or any other VNP-complete family, as VBP ⊆ VNP. So, an
efficient learning algorithm for random affine projections of NW may indicate NW is not
VNP-complete.

In Theorem 18, we give an efficient learning algorithm for n-variate random affine
projections of multilinear degree-d design polynomials, provided n ≥ d4. If we obtain an
analogous result under the weaker assumption “n ≥ dϵ, for any ϵ > 0”, then the NW family
is not VNP-complete assuming that there is no VNP-complete family whose random affine
projections are efficiently learnable. On the other hand, if NW happens to be VNP-complete,
then it is unlikely that we will be able to weaken the n ≥ d4 condition significantly without
compromising the other parameters of the theorem considerably.

1.1 Our results
We now state our results formally. Assume that an efficient univariate polynomial factoring
algorithm over F is available; this assumption is well justified over Q and Fq [30, 8].

▶ Definition 1 (Design polynomial). An n-variate, degree-d polynomial g =
∑

i∈[s] cimi, where
mi is a monomial and ci ∈ F, is a (n, d, s, t) design polynomial if ∀i ̸= j, deg gcd(mi, mj) < t.

2 If every row of A has at most one nonzero entry, then it is a p-projection.

STACS 2024

9:4 Testing Equivalence to Design Polynomials

Some well-known polynomials that are also design polynomials are the sum-product poly-
nomial SPs,d :=

∑s
i=1

∏d
j=1 xi,j , which is a (sd, d, s, 1) design polynomial, and the power

symmetric polynomial PSymn,d :=
∑n

i=1 xd
i , which is a (n, d, n, 1) design polynomial. The

most relevant example is the Nisan-Wigderson design polynomial NWq,d,t, defined as:

NWq,d,t :=
∑

h∈Fq [y], deg h<t

d−1∏
i=0

xi,h(i) , for t ≤ d ≤ q, where q is a prime. (1)

As two univariate polynomials of degree < t agree at ≤ t − 1 points, NWq,d,t is a (qd, d, qt, t)
design polynomial. Whenever the parameter s is not required, we will write (n, d, t) design
polynomial by omitting s. Also, for simplicity, we assume that design polynomials are
homogeneous. Our results hold for non-homogeneous design polynomials as well.

▶ Definition 2 (The ET problem for design polynomials). Given black-box access to an n-
variate, degree-d polynomial f ∈ F[x], check if there exist an A ∈ GL(n,F) and a b ∈ Fn

such that f(Ax + b) is a (n, d, t) design polynomial, and if so, recover A and b.

▶ Theorem 3 (ET for design polynomials). Let n, d, s, t ∈ N, d ≥ 3t, char(F) = 0 or > d

and |F| > max(s3, d7). There is a randomized, poly((nd)t)-time3 algorithm that takes input
black-box access to an n-variate, degree-d polynomial f ∈ F[x], with the promise that there
exist some (n, d, s, t) design polynomial g and some A ∈ GL(n,F) such that f = g(Ax), and
outputs, with high probability, a B ∈ GL(n,F) and a (n, d, s, t) design polynomial h such that
B = PSA and f = h(Bx), where P, S are permutation and scaling matrices, respectively.

▶ Remark 4. If g is multilinear, then the condition d ≥ 3t can be improved to d > 2t.
▶ Remark 5. The condition |F| > max (s3, d7) arises due to the use of the Schwartz–Zippel
lemma4 in our analysis and in the factorization algorithm of [22]. If f is given as a circuit,
the algorithm can work with an extension field, irrespective of the size of F, and still obtain
a B with entries in F. A finite field extension can be constructed efficiently (see Section 14.9
in [39]). This feature of the algorithm is explained in [7].
▶ Remark 6. The theorem gives an ET algorithm for NW (see Theorem 50). The algorithm
also works over Q, where ET for NW was not known to be decidable.
▶ Remark 7. A random sparse polynomial is a (n, d, s, d/3) design polynomial with high
probability (see Lemma 36). Thus, we have ET for random sparse polynomials.

In Section 3, we prove Theorem 3 and elaborate on how to handle non-homogeneous
design polynomials and transforms of the form Ax + b, where A ∈ GL(n,F) and b ∈ Fn.

▶ Definition 8 (Symmetries of a polynomial). Let f ∈ F[x] be an n-variate, degree-d polynomial.
The set Gf := {A ∈ GL(n,F) : f(Ax) = f} is the group of symmetries of f .

The authors of [20] studied the symmetries of NW by examining the Lie algebra associated
with it, while these corollaries of Theorem 3 (which is proved using a different technique)
hold for general design polynomials.

▶ Corollary 9 (Symmetries of design polynomials). Let d ≥ 3t, f be a (n, d, t) design polynomial
and A ∈ Gf . Then, A = PS, where P is a permutation matrix and S is a scaling matrix.

3 Here, “time” means number of field operations. Over Q, the complexity is poly((nd)t, β), where β is
the bit complexity of the coefficients of f .

4 also known as the DeMillo–Lipton–Schwartz–Zippel lemma [14, 41, 36].

O. Baraskar, A. Dewan, and C. Saha 9:5

▶ Corollary 10 (Equivalent design polynomials). Let d ≥ 3t, A ∈ GL(n,F) and f, g be (n, d, t)
design polynomials such that f = g(Ax). Then, A = PS, where P, S are as stated above.

Our second result, proven in Section 3.5, shows that GI ≡p PE for design polynomials
with all-one coefficients. Here, ≡p denotes polynomial-time, many-one equivalence.

▶ Theorem 11 (GI and PE). GI ≡p PE for (n, 6, 2) design polynomials with all-one
coefficients.

Theorem 11 holds for (n, d, t) design polynomials for any d ≥ 6 and t ≤ d/3, and also for
(n, d, t) multilinear design polynomials with d ≥ 5 and t < d/2. Thus, PE for (n, d, t) design
polynomials with all-one coefficients, for d ≥ 6 and t ≤ d/3, polynomial-time reduces to PE
for (n, 6, 2) design polynomials with all-one coefficients.5

Our third result, proven in Section 3.5, shows that if a random sparse polynomial of
sufficiently large constant degree is used in Patarin’s scheme for public and private key
generations, then the private key can be recovered in quasi-polynomial time.

▶ Definition 12 (Random sparse polynomial). An n-variate, degree-d, s-sparse polynomial
f(x) is a random s-sparse polynomial if each monomial is formed by picking d variables
uniformly and independently at random from x; the coefficients are then chosen arbitrarily.

▶ Theorem 13 (A vulnerability of Patarin’s scheme). Let n, s, d, q ∈ N, n > d8, n3 ≤ s <(
n
d2

)d/6, d ≥ 25 be a constant, and q = nO(1). Let f be a random s-sparse polynomial over
Fq. If f is used in Patarin’s scheme for key generation, then the scheme can be broken in
quasi-poly(n) time.

▶ Remark 14. The bound on s, stated in the theorem, is for simplicity. The precise bound is
n2 log(n) ≤ s ≤

√
ϵ
(

n
d2

)d/6, where ϵ is the constant from Lemma 36. The lower bound on d

can be derived from the inequality n2 log(n) ≤
√

ϵ
(

n
d2

)d/6 and fixing ϵ = 0.01.
▶ Remark 15. Patarin’s scheme was shown to be vulnerable in [23] when using a random
constant-degree multilinear polynomial for key generation. In [23] a random polynomial was
defined by selecting the coefficients of all multilinear monomials randomly and independently,
while we allow arbitrary coefficients, non-multilinear monomials, and a lower number of
monomials.

Our fourth and final result, proven in Section 4, gives an algorithm to learn random affine
projections of multilinear design polynomials such as the polynomials in the NW family.

▶ Definition 16 (Affine projections). Let m, n ∈ N, m ≥ n. Let f and g be polynomials in n

and m variables, respectively. If f(x) = g(Ax + b) for some A ∈ Fm×n and b ∈ Fm, then f

is an affine projection of g. An affine projection is random if A ∈r Fm×n, where ∈r denotes
that the entries of A are chosen randomly and independently from a sufficiently large subset
of F.

▶ Definition 17 (Learning affine projections of design polynomials). Given black-box access
to an n-variate f ∈ F[x], which is an affine projection of an unknown (m, d, s, t) design
polynomial g, recover B ∈ Fm×n, c ∈ Fm and a (m, d, s, t) design polynomial h such that
f = h(Bx + c).

5 It is worth noting, in [2], the authors showed a reduction from PE for degree-d forms to PE for cubic
forms over fields containing d-th roots. However, the reduction there does not seem to preserve the
design condition.

STACS 2024

9:6 Testing Equivalence to Design Polynomials

▶ Theorem 18 (Learning random affine projections of multilinear design polynomials). Let
m, n, d, s, t ∈ N, m ≥ n ≥ d4+ϵ, where ϵ > 0, d ≥ 3t, s <

(√
n

d2

) d
13 . Let char(F) = 0 or

> d and |F| ≥ poly(sd)dt. There is a randomized, poly(m, s, nt)-time algorithm that takes
input black-box access to an n-variate, degree-d polynomial f ∈ F[x], with the promise that
there exist some multilinear (m, d, s, t) design polynomial g and some A ∈r Fm×n such that
f = g(Ax), and outputs, with high probability, a B ∈ Fm×n and a multilinear (m, d, s, t)
polynomial h such that B = PSA and f = h(Bx), where P, S are permutation and scaling
matrices, respectively.

▶ Remark 19. For NWq,d,t with t ≤ d/1300, m = qd = n10 and n ≥ d5, it holds that
s = qt <

(√
n

d2

) d
13 . Thus, we can learn random affine projections of NWq,d,t for m = poly(n),

assuming n ≥ d4+ϵ. The precise bound on |F| is stated in [7].

▶ Remark 20. Theorem 18 does not imply that either NW is not VNP-complete or there is
a VNP-complete family whose random affine projections are learnable. The reason is that
the algorithm assumes n ≥ d4+ϵ, but it may be the case that a VNP polynomial family is a
projection of NW in the setting n < d4.

▶ Remark 21. As mentioned earlier, our motivation for designing a learning algorithm for
random affine projections of multilinear design polynomials originates from NW, which is
also multilinear and design. We believe that a similar theorem holds for non-multilinear
design polynomials as well. Theorem 3 provides evidence towards this belief since it holds
for non-multilinear design polynomials as well.

In Section 4, we elaborate on how non-homogeneous multilinear design polynomials and
general transforms of the form Ax + b, where A ∈r Fm×n and b ∈ Fm, are handled.

1.2 Proof techniques
The core underlying technique, used to prove Theorems 3 and 18, is based on the vector
space decomposition framework introduced in [16, 27]. Suppose that f can be expressed as:

f = T1 + T2 + . . . + Ts , (2)

and we wish to learn the terms T1, . . . , Ts that are simple in some sense. For example, in our
setting, each Ti is a product of linear forms (see details on next page). The authors in [16, 27]
reduce the task of learning the Ti’s to the vector space decomposition (VSD) problem. We
define the VSD problem first and then discuss the reduction.

Vector space decomposition (VSD) for (L, U, V). Given bases of vector spaces U, V and
a set of linear maps L from U to V , output a (further indecomposable) decomposition of
U, V as:

U = U1 ⊕ · · · ⊕ Us and V = V1 ⊕ · · · ⊕ Vs , such that ⟨L ◦ Ui⟩ ⊆ Vi for all i ∈ [s].

Reducing the learning problem to VSD. We choose appropriate sets of operators L1 and
L2 to get spaces U = ⟨L1 ◦ f⟩ and V = ⟨L2 ◦ U⟩ such that the following are satisfied:

U = U1 ⊕ · · · ⊕ Us and V = V1 ⊕ · · · ⊕ Vs, where Ui = ⟨L1 ◦ Ti⟩ and Vi = ⟨L∈ ◦ Ui⟩.
Each pair (Ui, Vi) is indecomposable with respect to L2.
The (further indecomposable) decomposition is unique up to a reordering of Ui’s and Vi’s.
Ti’s can be recovered efficiently from the bases of the Ui’s.

O. Baraskar, A. Dewan, and C. Saha 9:7

If such two sets of operators can be found, then learning T1, . . . , Ts reduces to the VSD
problem for (L2, U, V). The (Ui, Vi)’s need to be indecomposable and unique otherwise a
VSD algorithm might output some other decomposition, making the recovery of the Ti’s
hard.

Solving the VSD problem. The authors of [13] gave a polynomial-time algorithm for the
symmetric case of the problem when U = V . The algorithm works over finite fields, C,R but
not over Q (if we wish to output a decomposition over Q). The authors of [16] showed a
reduction of VSD to the symmetric case. The authors of [9] and [16] exploited the structure
of U and V (arising in their settings) to get a VSD algorithm that also works over Q.

The VSD framework above gives rise to a meta algorithm for learning the “terms”. To
use the algorithm for Theorems 3 and 18, we need appropriate sets of operators L1 and L2
satisfying the above-mentioned conditions which point to four technical steps in the analysis,
which we state first and then discuss how to execute them for Theorems 3 and 18.

Algorithm 1 Meta algorithm [16].

Input: f = T1 + T2 + ... + Ts, where Ti’s are unknown “simple” terms.
Output: T ′

1, T ′
2 . . . T ′

s such that T ′
i = Tπ(i) for some permutation π on [s].

1. Compute U = ⟨L1 ◦ f⟩ and V = ⟨L2 ◦ L1 ◦ f⟩.
2. Solve VSD for (L2, U, V); find the decompositions U = U1 ⊕ · · · ⊕ Us, V = V1 ⊕ · · · ⊕ Vs.
3. Recover T ′

i from Ui.

1. Direct sum structure: This means establishing U = U1 ⊕· · ·⊕Us and V = V1 ⊕· · ·⊕Vs.
2. Uniqueness of decomposition: Once the direct sum holds, it needs to be shown that

the decomposition of U and V is indecomposable with respect to L2 and unique up to
permutations of the Ui’s and Vi’s. Inspired by the Krull-Schmidt theorem [28], [16] ana-
lysed the adjoint algebra6 associated with (L2, U, V) and pointed out a sufficient condition
for uniqueness to hold. The adjoint algebra for (L, U, V) is defined as Adj(L, U, V) :=
{(D, E) | D : U → U, E : V → V are linear maps, and ∀L ∈ L, LD = EL}. The au-
thors of [16] noted that if Adj(L, U, V) is block diagonalizable, i.e., ∀(D, E) ∈ Adj(L, U, V)
if D(Ui) ⊆ Ui and E(Vi) ⊆ Vi, then the decomposition is unique. So, we need to show
that Adj(L2, U, V) is block diagonalizable.

3. Vector space decomposition: With 1 and 2 satisfied, an algorithm is required to
decompose U and V . As mentioned before, the vector space decomposition algorithm
in [13] does not quite work over Q. But fortunately, the adjoint algebra comes to the
rescue again. Suppose, Adj(L2, U, V) is block diagonalizable. If it is further block equi-
triangularizable (refer Definition 23) and has an element (D, E), where D has s distinct
eigenvalues, then the Ui’s are the generalized eigenspaces of D which can be computed
efficiently7. Thus, if Adj(L2, U, V) is block equi-triangularizable, then computing vector
space decomposition reduces to computing generalized eigenspaces.

4. Recovery of Ti: Finally, once Ui = ⟨L1 ◦ Ti⟩ is obtained, we need to derive Ti from it.

6 The authors of [16] attributed the use of adjoint algebra in their work to a suggestion by Youming Qiao.
7 The existence of such an element implies that for a random (D, E) ∈ Adj(L2, U, V), D has s distinct

eigenvalues with high probability by the Schwartz-Zippel lemma.

STACS 2024

9:8 Testing Equivalence to Design Polynomials

Connecting our problems with the learning problem given by Equation (2). Let g =∑
i∈[s] cimi be a design polynomial and f = g(Ax) =

∑
i∈[s] Ti, where Ti = cimi(Ax) is a

product of linear forms. Then, we can learn the unknown transformation A (up to permutation
and scaling) by learning and factoring the terms T1, . . . Ts. We do so by implementing the
above steps for Theorems 3 and 18; we discuss this next. We compare our work with relevant
previous works in Section A.1.

1.2.1 Implementing the four steps for Theorem 3
We choose L1 = L2 = ∂t. For a (n, d, s, t) design polynomial g with d ≥ 3t, we show Step
1 in Lemma 25 by leveraging the design property, Step 2 by showing that the adjoint is
block diagonalizable (Lemma 28), and Step 3 by showing further that the adjoint is block
equi-triangularizable (Proposition 30). Since the input f is in the orbit of g, these properties
also hold for f by Lemma 27. A term Ti of f is in the orbit of a monomial of g, and so, Ti is
a product of linear forms. The recovery process for Ti from Ui is the same as that in [27].
The transform and the design polynomial are then obtained from the Ti’s (Proposition 24).

1.2.2 Implementing the four steps for Theorem 18
We choose L1 = ∂k and L2 = ∂2, where k > t is appropriately chosen in Lemma 45. First,
we show that assuming the two non-degeneracy conditions stated in Section 4.1, all the steps
can be implemented. Step 1 is immediate from the first non-degeneracy condition. Lemma 41
shows that Adj(∂2, U, V) is block diagonalizable (in fact, block equi-triangularizable) for
non-degenerate affine projections. Hence, both Steps 2 and 3 hold. The process of recovering
the terms (i.e., Step 4) is the same as that for Theorem 3.

Second, we show that random affine projections of design polynomials are non-degenerate
with high probability. The second non-degeneracy condition holds with high probability
given the restriction on the field size. If we show that dim U = s

(
d
k

)
, then the direct sum

structure holds8. By the Schwartz-Zippel lemma , it is sufficient to show that for every design
polynomial, there exists an affine projection such that dim U = s

(
d
k

)
. We do this by showing

that the probability that dim U = s
(

d
k

)
is non-zero if f is chosen from a specific class of

affine projections as described by the two-phase random process in the proof of Lemma 45
(which can be found in [7]).

2 Preliminaries

2.1 Notations and definitions
For n ∈ N, [n] is the set {1, 2 . . . n}. We use b.b.a to refer to black-box access. The set of
n × n invertible matrices over F is denoted as GL(n,F). For two polynomials f and g, f ∼ g

denotes that f is in the orbit of g. Variable sets are denoted as x, y and z. Permutation
and scaling matrices are denoted as P and S, respectively. A monomial in x is denoted as
xα := xα1

1 xα2
2 . . . xαn

n , which has total degree |α| :=
∑n

i=1 αi. The set of degree t derivatives
in x is denoted as ∂t while ∂tf denotes the set of degree t derivatives of the polynomial f .
The vector space spanned by a set of polynomials S over F is denoted as ⟨S⟩. Typically,

8 as U ⊆ U1 + · · · + Us and dim Ui ≤
(

d
k

)
.

O. Baraskar, A. Dewan, and C. Saha 9:9

g denotes a (n, d, s, t) design polynomial g = g1 + g2 + · · · + gs where gi are monomials of
degree d, while f denotes the input polynomial f = g(Ax) = T1 + T2 + · · · + Ts, where
Ti = gi(Ax) for A ∈ GL(n,F). Define the spaces U, Ui, V, Vi, U ′, U ′

i , V ′, V ′
i as follows:

U := ⟨L1 ◦ f⟩, U ′ := ⟨L1 ◦ g⟩, V := ⟨L2 ◦ L1 ◦ f⟩, V ′ := ⟨L2 ◦ L1 ◦ g⟩,

Ui := ⟨L1 ◦ Ti⟩, U ′
i := ⟨L1 ◦ gi⟩, Vi := ⟨L2 ◦ L1 ◦ Ti⟩, V ′

i := ⟨L2 ◦ L1 ◦ gi⟩,

where L1 = L2 = ∂t (as defined in Section 1.2.1). These spaces will be used in Section 3.
For the algorithmic preliminaries, refer Section A.2.

▶ Definition 22 (Adjoint Algebra). The adjoint algebra associated with (L2, U, V) is defined
as Adj(L2, U, V) := {(D, E) | D : U → U, E : V → V are linear maps, and ∀L ∈ L2, LD =
EL}.

Adjoint algebra was introduced in Section 4.3 of [40] as an associative ring to study the
decompositions of bilinear maps and has been used in [11] for developing a fast isomorphism
testing algorithm for a subclass of finite p-groups. A meta-framework for designing learning
algorithms for arithmetic circuits was given in [16], where the learning problem was reduced
to the vector space decomposition problem, and the uniqueness of vector space decomposition
was proved by analyzing a certain adjoint algebra (refer [16] for details).

▶ Definition 23 (Equi-triangular matrix). An equi-triangular matrix is triangular with equal
diagonal entries. Block equi-triangularizability and simultaneous block equi-triangularizability
are defined similarly as block diagonalizability and simultaneous block diagonalizability.

3 Equivalence testing for design polynomials

We state the ET algorithm in Section 3.1. The precise time complexity of the ET algorithm
is poly(

(
n+t

n

)
dt) we discuss this further in Section 3.2 which analyses it. Section 3.3 analyses

the adjoint algebra of a design polynomial g. Based on the structure of the adjoint, Section
3.4 develops and analyses a VSD algorithm. In Section 3.5, Theorems 11 and 13 are proven.

Algorithm 2 Equivalence testing for design polynomials.

Input: Black-box access to an f ∈ F[x], where f = g(Ax) for some unknown (n, d, s, t)
design polynomial g and A ∈ GL(n,F).
Output: A matrix B and a (n, d, s, t) design polynomial h, where B = PSA and
f = h(Bx) for some permutation matrix P and scaling matrix S.

1. Compute black-box access to bases of U =
〈
∂tf

〉
and V =

〈
∂tU

〉
.

2. Perform VSD for (∂t, U, V) using Algorithm 3. Let U = U1⊕· · ·⊕Us be the decomposition
returned by Algorithm 3.

3. Express ∂tf
∂xα = u1α + · · · + usα, where uiα ∈ Ui and obtain black-box access to uiα for all

i ∈ [s] and xα of degree t. The black-box for Ti is given by (d−t)!
d!

∑
|α|=t

(
t

α1...αn

)
xαuiα(x).

4. From black-box access to the Ti’s, recover and return a B ∈ GL(n,F) and a (n, d, s, t)
design polynomial h such that f = h(Bx) using Proposition 24.

STACS 2024

9:10 Testing Equivalence to Design Polynomials

3.1 The algorithm
1. Step 1: As discussed in Section 1.2, L1 = ∂t and L2 = ∂t are used to define U and V .

Black-box access to bases of U and V is computable using Facts 46 and 47.
2. Step 2: The VSD algorithm of Section 3.4 gives b.b.a to bases of Ui’s.
3. Step 3: Each ∂tf

∂xα is expressible as a sum of uiα ∈ Ui’s, where each uiα is ∂tTi

∂xα . Using
Fact 48, b.b.a to ∂tf

∂xα and Ui’s, black-boxes to uiα can be obtained. It can be verified
using Lagrange’s formula that the described black-box for Ti is the correct one.

4. Step 4: The proof of Proposition 24 details the recovery process for B and h.

▶ Proposition 24. Assuming b.b.a to the Ti’s, B and h can be recovered in poly(n, s, d) time.

3.2 Analysis of the algorithm
Each step is randomized with a small probability of error. For the analysis, we assume that
each step executes correctly. An implicit check is made at the end to see if h is a (n, d, s, t)
design polynomial, B is invertible and f = h(Bx), failing which the algorithm is repeated.

The correctness of Algorithm 2 holds if it executes each of the four steps listed in
Section 1.2 correctly. By Lemmas 25 and 27 (given below), U and V have the required
direct sum structure. The correctness of the vector space decomposition follows from the
correctness of Facts 46 and 47 and that of the vector space decomposition algorithm of
Section 3.4. The uniqueness of decomposition follows from Proposition 30 and Lemmas 27
and 32. The correctness of the recovery of Ti’s, B and h follows from Fact 48 and Proposition
24. Let U ′, U ′

i , V ′, V ′
i be as defined in Section 2.1.

▶ Lemma 25. For d ≥ 3t, U ′ = U ′
1 ⊕ U ′

2 · · · ⊕ U ′
s and V ′ = V ′

1 ⊕ V ′
2 · · · ⊕ V ′

s .

The following proposition gives the time complexity of the algorithm.

▶ Proposition 26. Algorithm 2 has a running time of poly(
(

n+t
n

)
dt).

Typically n > d, in which case the running time is poly(nt).

3.3 Structure of the adjoint algebra
Once we fix bases of the spaces U, U ′, V and V ′, a linear operator from one of these spaces
to another can be naturally viewed as a matrix. Thus, Adj(∂t, U, V) and Adj(∂t, U ′, V ′)
are sets of tuples of matrices with respect to appropriately chosen bases. We now show
that Adj(∂t, U, V) is block equi-triangularizable, i.e., the set of matrices {D : (D, E) ∈
Adj(∂t, U, V)} is simultaneously block equi-triangularizable. By Lemma 27, it suffices to
show this for Adj(∂t, U ′, V ′). Note, after fixing bases of U ′ and V ′, the operators ∂t : U ′ → V ′

are also matrices. When we say Adj(∂t, U, V) is equal to Adj(∂t, U ′, V ′) in Lemma 27, we
mean they are equal as sets of tuples of matrices with respect to appropriately chosen bases
for U, V, U ′ and V ′.

▶ Lemma 27. Let U , V , Ui, Vi, U ′, V ′, U ′
i and V ′

i be vector spaces as defined in Section 2.1
with L1 = L2 = ∂t. Define the invertible map ϕ : F[x] → F[x] as ϕ(p) := p(Ax) for p ∈ F[x],
where A ∈ GL(n,F) is as in Algorithm 2. Then,
1. U ′ ∼= U , V ′ ∼= V , U ′

i
∼= Ui and V ′

i
∼= Vi via the map ϕ. In other words, if B is a basis of

U ′, ϕ(B) is a basis of U . This holds similarly for the other spaces.
2. Let B′

1 and B′
2 be bases for U ′ and V ′ respectively, with ϕ(B′

1) and ϕ(B′
2) being basis of U

and V respectively. Then, Adj(∂t, U ′ , V ′), with respect to bases B′
1 and B′

2, is equal to
Adj(∂t, U, V), with respect to bases ϕ(B′

1) and ϕ(B′
2).

O. Baraskar, A. Dewan, and C. Saha 9:11

▶ Lemma 28. If (D′, E′) ∈ Adj(∂t, U ′, V ′), then D′(U ′
i) ⊆ U ′

i and E′(V ′
i) ⊆ V ′

i , ∀i ∈ [s].

The direct sum structure of U ′ and V ′ implies that every ∂t : U ′ → V ′ is block diagonal,
with respect to the monomial basis of U ′ and V ′, and by Lemma 28, Adj(∂t, U ′, V ′) is block
diagonal with respect to these bases. This and the adjoint condition imply that Adj(∂t, U ′, V ′)
comprises the adjoints of the gi’s. Thus, it suffices to analyse the adjoint of the gi’s. The
adjoint of a monomial need not be trivial, as shown in Section add ref. We show that
the adjoint algebra of a monomial is equi-triangularizable. For gi, an arbitrary monomial
of g, B′

i := {∂tgi} is a basis9 for U ′
i . For (D′, E′) ∈ Adj(∂t, U ′, V ′), let D′

i and E′
i be the

restriction of D′ and E′ to U ′
i and V ′

i respectively. Represent D′
i as a dim(U ′

i) × dim(U ′
i)

matrix with respect to B′
i , where D′

i[xα][xβ] is the coefficient of ∂tgi

∂xα in D′
i

(
∂tgi

∂xβ

)
. Lemma 29

shows when D′
i[xα][xβ] is 0 and that all entries D′

i[xα][xα] are equal. We use the notation
mon(c·xα) := xα, where c ∈ F\{0}; the definition is naturally extended to a set of monomials.
For e.g., mon{2x4

1, 5x1x2} = {x4
1, x1x2}.

▶ Lemma 29. Let |α| = |β| = t, ∂tgi

∂xα ̸= 0 and ∂tgi

∂xβ ̸= 0. Let D′
i be as above. Then,

1. D′
i[xα][xβ] = 0, if mon{∂t(∂tgi

∂xα)} ̸⊆ mon{∂t(∂tgi

∂xβ)}, and
2. D′

i[xα][xα] = D′
i[xβ][xβ].

The following proposition shows that Adj(∂t, U ′, V ′) is block equi-triangularizable.

▶ Proposition 30. A basis B′ for U ′ exists with respect to which any D′, where (D′, E′) ∈
Adj(∂t, U ′, V ′) for some E′, is block equi-triangular.

As detailed in the proof of Proposition 30, reordering each B′
i and concatenating them

gives B′. For each B′
i, a directed acyclic graph Gi is constructed with vertices as B′

i. For
∂tgi

∂xα , ∂tgi

∂xβ ∈ B′
i, if mon{∂t

(
∂tgi

∂xα

)
} ⊆ mon{∂t

(
∂tgi

∂xβ

)
} then an edge from ∂tgi

∂xα to ∂tgi

∂xβ exists in

Gi. The topological sort of Gi gives the reordering of B′
i. By Lemma 29, D′

i is equi-triangular
with respect to the reordered B′

i implying D′ is block equi-triangular with respect to B′.

3.4 Vector space decomposition

Algorithm 3 Vector space decomposition algorithm.
Input: B.b.a to bases of spaces U and V .
Output: B.b.a to bases of spaces W1, . . . , Ws, where Wi = Uπ(i) for some permutation π.

1. Compute a basis D(1), . . . , D(b) of Adj(∂t, U, V)1 := {D | (D, E) ∈ Adj(∂t, U, V)}.
2. Pick c1, . . . , cb ∈r S ⊆ F, where |S| = s3. Let D := c1D(1) + · · · + cbD(b).
3. Factorize the characteristic polynomial of D and obtain its eigenvalues λ1, · · · , λs.
4. Compute Wi := Ker((D − λiI)dim U) for all i ∈ [s] and output b.b.a to bases of

W1, . . . , Ws.

Step 1 is executed by solving the linear system arising from LD = EL, for L ∈ L2, with
the entries of D and E as the variables. In Step 2, a random linear combination of the
D(i)’s gives a random operator D. The eigenvalues of D can be found by factorizing the

9 Assume that the set {∂tgi} consists of only the nonzero derivatives.

STACS 2024

9:12 Testing Equivalence to Design Polynomials

characteristic polynomial.10 Step 4 involves the computation of the generalized eigenspaces
of D. Note, Lemma 32 proves the uniqueness of decomposition and the indecomposability of
Ui and Vi with respect to ∂t.

▶ Lemma 31. D has s distinct eigenvalues with probability ≥ 1 − (s
2)

|S| .

▶ Lemma 32. Let D ∈ Adj(∂t, U, V) such that it has s distinct eigenvalues λ1, . . . , λs. Then,
Ker((D − λiI)dim U) = Uπ(i) for all i ∈ [s], and for some permutation π on [s].

▶ Proposition 33. Algorithm 3 has a running time of poly(
(

n+t
n

)
dt).

Handling non-homogeneous polynomials and translations. For non-homogeneous (n, d, s, t)
design polynomials, if the degree of all monomials is ≥ 3t, Lemmas 25, 28 and Proposition 30
hold. When f(x) = g(Ax+b) for b ∈ Fn, then since this transform is also invertible, a lemma
similar to Lemma 27 holds. The analysis then proceeds in the same way. Proposition 24 can
also recover translations. For multilinear (n, d, s, t) design polynomials, L2 = ∂1 with the
adjoint Adj(∂1, U, V) improves the bound on t to d ≥ 2t + 1. Lemmas 25, 28 and 29 hold
with some minor changes, and Adj(∂1, U ′, V ′) can be shown to be trivial.

3.5 Applications of the equivalence test
3.5.1 GI ≡p P E for design polynomials: Proof of Theorem 11
GI ≤p PE for design polynomials. Let G1(V1, E1) and G2(V2, E2) be two n-vertex simple
graphs with e edges each. Let there be an arbitrary ordering on the edges of both graphs
with I1 an index function mapping E1 to [e] and I2 similarly mapping E2 to [e]. Introduce
variables x1, . . . , xn and y1, . . . , ye. Construct

M1 := {xixjy4
I1(i,j) : (i, j) ∈ E1} and M2 := {xlxky4

I2(l,k) : (l, k) ∈ E2}.

Let h1(z) :=
∑

m∈M1
m and h2(z) :=

∑
m∈M2

m, where z = x ⊔ y. Both h1 and h2 are
(n + e, 6, e, 2) design polynomials with all-one coefficients constructible in poly(n) time.
Proposition 34 follows from Corollary 10, the coefficients being 1, and y variables having
degree 4.

▶ Proposition 34. For h1, h2 as above, G1 ∼= G2 ⇐⇒ h1 ∼ h2.

PE for design polynomials ≤p GI. Let h1(x) and h2(x) be (n, d, s, t) design polynomials
with all-one coefficients, satisfying d ≥ 3t. If h1 and h2 are multilinear, construct hypergraphs
H1 and H2 with x as the vertices and subsets of vertices corresponding to the monomials
of h1 and h2 as the hyperedges, respectively. Observe that h1 ∼ h2 iff H1 ∼= H2 as, by
Corollary 10, if h1 ∼ h2, then they are equivalent via a permutation matrix. It is well-known
that hypergraph isomorphism reduces to GI (refer [32]). If h1 and h2 are non-multilinear,
the argument is more elaborate: Now the monomials correspond to multisets of x, while
hyperedges need to be subsets of vertices. This can be handled by examining a standard
reduction from hypergraph isomorphism to GI that uses bipartite graphs (see the opening
paragraph of [5]). By introducing in-between vertices to handle parallel edges, graphs G1
and G2 can be constructed in poly(s) time. For details, refer to the proof of Proposition 35
in [7].

▶ Proposition 35. For graphs G1, G2 as above, G1 ∼= G2 ⇐⇒ h1 ∼ h2.

10 Here, we need an efficient univariate polynomial factorization algorithm over F.

O. Baraskar, A. Dewan, and C. Saha 9:13

3.5.2 Cryptanalysis of Patarin’s scheme: Proof of Theorem 13
Patarin’s authentication scheme [34], described in Section A.3, is based on the presumed
hardness of PE for random polynomials of constant degree. The attack on the scheme is as:
1. Invoking Theorem 3: Invoke Theorem 3 on f1 and f2 to obtain h1 ∼ f1 and h2 ∼ f2.
2. Recovering P: Use Theorem 11 to construct graphs G1 and G2 corresponding to h1

and h2 and use Babai’s algorithm [6] for GI to recover a permutation matrix P .
3. Recovering S: Solve the system of monomial equations arising from h2(x) = h1(PSx),

with the entries of S as variables.
The attack relies on Lemma 36, Propositions 37, 38, Theorems 3, 11 and Corollary 10.

▶ Lemma 36. A random s-sparse polynomial, as per Definition 12, is a (n, d, s, t) design
polynomial with probability at least 1 − ϵ, if n > d2 and s ≤

√
ϵ
(

n
d2

) t
2 where 0 < ϵ < 1.

▶ Proposition 37. If f is a random s-sparse polynomial as per Lemma 36 with s ≥ n3,
n > d8, d ≥ 25, t = d

3 and ϵ = 0.01, f has no non-trivial permutation symmetry with high
probability.11

▶ Proposition 38. Let f be as in Proposition 37. For h1(x) = f(P1S1x) and h2(x) =
f(P2S2x), where P1, P2 are permutation matrices and S1, S2 are scaling matrices, there exists
a unique permutation matrix P such that h2(x) = h1(PSx) for some scaling matrix S.

Invoking Theorem 3. For n > d8, ϵ = 0.01, t = d/3, d ≥ 25 and n3 ≤ s ≤ 0.1
(

n
d2

) d
6 ,

Lemma 36 implies f is, with high probability, a (n, d, s, d/3) design polynomial. Thus,
invoking Theorem 3 on f1 and f2 gives h1, h2, P1S1A1 and P2S2A2 where f1 = h1(P1S1A1x)
and f2 = h2(P2S2A2x). Clearly, h1 ∼ h2 by the transform P1S1(P2S2)−1 = PS for
appropriate P and S. If P and S can be recovered, then A−1

1 A2 = (P1S1A1)−1PS(P2S2A2)
can be recovered. As n > d8 and d is a constant, this step requires poly(n) time.

Recovering P . Note that P maps the monomials of h1 to h2 while S scales the coefficients
accordingly. To recover P , treat h1 and h2 as design polynomials with all-one coefficients and
use Theorem 11 and the GI algorithm of [6]. This step can be done in quasi-poly(s) time,
and the uniqueness of P , which holds by Propositions 38 and 37, implies the correctness.

Recovering S. Let h1(x) =
∑s

i=1 cimi and h2(x) =
∑s

i=1 c̃imi. Now h2(x) = h1(PSx) =
h1(S′Px) for an appropriate scaling matrix S′. Treat the diagonal entries of S′ as variables
{z1, z2 . . . zn}. Equating the coefficients of the monomials, we get cimi(z1, · · · , zn) = c̃j

where mj = mi(Px). If mi = x
αi,1
1 x

αi,2
2 . . . x

αi,n
n , we get the following monomial equations:

z
αi,1
1 z

αi,2
2 . . . zαi,n

n = c̃jc−1
i ∀ i ∈ [s]. (3)

There are s such equations in n variables, which is converted to a system of linear
equations by taking log(zj) as variables and αi,j and log(c̃jc−1

i) as constants. Computing
log(a) over Fq is finding the discrete logarithm of a with respect to a generator γ of F×

q .12

Since q = O(poly(n)), γ can be found and discrete log can be computed in O(poly(n)) time.
We get a system of s linear equations over Zq−1 which can be solved in poly(s, q) time using
the Chinese Remainder Theorem, refer Chapter 5 of [39] for details.

11 meaning, for any permutation matrix P , f(P x) = f(x) implies P is the identity matrix.
12 that is finding a b ∈ [0, q − 2] such that γb = a.

STACS 2024

9:14 Testing Equivalence to Design Polynomials

4 Learning random affine projections of design polynomials

In this section, Theorem 18 is proven. Section 4.1 lists the non-degeneracy conditions imposed
on affine projections of design polynomials. In Sections 4.2 and 4.4, we state and analyse
the learning algorithm and the vector space decomposition algorithm, respectively. The
adjoint of non-degenerate affine projections is analysed in Section 4.3. In Section 4.5, we
show random affine projections of multilinear design polynomials are non-degenerate with
high probability.

4.1 Non-degeneracy conditions
Let g(y) = g1 + · · · + gs be a (m, d, s, t) multilinear design polynomial with gi’s as monomials.
Let f(x) = g(l1, l2 . . . lm) = T1 + · · · + Ts be an n-variate affine projection of g with
Ti = gi(l1, · · · , lm), a product of d linear forms and Li be the set of linear forms in Ti. We
say f is a random affine projection if the coefficients of the li’s are randomly chosen from F.
Define:

U := ⟨∂kf⟩, V := ⟨∂k+2f⟩, Ui := ⟨∂kTi⟩, Vi := ⟨∂k+2Ti⟩,

where k is as in Lemma 45 and d ≥ 2k + 2. We say f is non-degenerate if the following holds:
1. U = U1 ⊕ · · · ⊕ Us and V = V1 ⊕ · · · ⊕ Vs.
2. The set Li is F-linearly independent for all i ∈ [s].

4.2 The algorithm and its analysis
Algorithm 4 is similar to Algorithm 2, except L1 = ∂k and L2 = ∂2 define U and V

respectively and Algorithm 5 for vector space decomposition computes eigenspaces. Each
step of the algorithm is randomized with a small error probability. An implicit check is run
at the end of Step 4 to see if h is a (m, d, s, t) multilinear design polynomial and the linear
forms per Ti are linearly independent, failing which the algorithm is repeated.

Analysis and Time complexity. We assume that each step executes without error and
f is non-degenerate, which holds for a random affine projection with high probability by
Lemma 45. The correctness of Algorithm 4 holds if it executes each of the four steps listed
in Section 1.2 correctly. Non-degeneracy condition 1 implies the direct sum structure of U

and V . The correctness of VSD follows from that of Facts 46, 47 and Algorithm 5. The
uniqueness of decomposition follows from Lemmas 41 and 43. The correctness of the recovery
of Ti’s, B and h follows from Fact 48 and Proposition 39. Proposition 40 gives the time
complexity.

▶ Proposition 39. Assuming b.b.a to Ti’s, B and h are recoverable in poly(m, n, s, d) time.

▶ Proposition 40. Algorithm 4 has a running time of poly(m, s, (nd)t).

4.3 Structure of the adjoint algebra
Lemma 41 states that Adj(∂2, U, V) is trivial13 for a non-degenerate f . The idea is to leverage
that each Ti is an affine projection of a multilinear monomial. By condition 2, there exists an
Ai ∈ GL(n,F), such that in f(Aix), Ti(Aix) is a multilinear monomial. By Lemma 27, the

13 This is a special case of being block equi-triangularizable.

O. Baraskar, A. Dewan, and C. Saha 9:15

Algorithm 4 Learning random affine projections of multilinear design polynomials.

Input: B.b.a to f = g(Ax), where A ∈ Fm×n and g is some (m, d, s, t) polynomial.
Output: A matrix B and (m, d, s, t) design polynomial h, with B = PSA and f = h(Bx).

1. Compute black-box access to some bases of U =
〈
∂kf

〉
and V =

〈
∂2U

〉
.

2. Perform VSD for (∂2, U, V): let U = U1 ⊕ · · · ⊕ Us.
3. Express ∂kf

∂xα = u1α + · · · + usα, where uiα ∈ Ui and obtain black-box access to uiα for
all i ∈ [s] and xα of degree k. The black box for Ti is (d−k)!

d!
∑

|α|=k

(
k

α1...αn

)
xαuiα(x).

4. From black box access to the Ti’s, recover and return B ∈ Fm×n and (m, d, s, t) design
polynomial h using Proposition 39.

adjoint of f(Aix) and that of f(x) are equal as sets of matrices with respect to appropriate
bases of their respective derivative spaces.14 The operators in the adjoint of f(Aix) are
shown to be invariant on the derivative spaces of Ti(Aix) by using the fact that the derivative
space of Ti(Aix) is the space of multilinear polynomials in d variables. The block diagonality
then holds. Because of the direct sum structure, the block diagonality of the adjoint and the
block diagonality of ∂2 operators, it suffices to analyse the adjoint of individual Ti’s. Since
Ti(Aix) is a multilinear monomial, its adjoint is trivial and thus so is the adjoint of Ti.

▶ Lemma 41. Let g and f be as defined in Section 4.1. If f is non-degenerate, then
Adj(∂2, U, V) is block-diagonal and is also trivial (thus, also block equi-triangular).

4.4 Vector space decomposition algorithm

Algorithm 5 Vector Space Decomposition Algorithm.
Input: B.b.a to bases of spaces U and V .
Output: B.b.a to bases of W1, . . . , Ws where Wi = Uπ(i) for some permutation π.

1. Compute a basis D(1), . . . , D(b) of Adj(∂2, U, V)1 = {D | (D, E) ∈ Adj(∂2, U, V)}.
2. Select c1, . . . , cb ∈r S ⊆ F, |S| = s3 and let D = c1D(1) + · · · + cbD(b).
3. Factorize the characteristic polynomial of D to obtain eigenvalues λ1, . . . , λs.
4. Compute Wi := Ker(D − λiI) for all i ∈ [s] and output b.b.a to the bases of W1, . . . , Ws.

Analysis and Time complexity. Algorithm 5 is similar to Algorithm 3 except it uses ∂2

operators and computes the eigenspaces of D, instead of generalized eigenspaces. Thus, the
analysis for Algorithm 5 is the same as for Algorithm 3. Lemmas 41 and 42 prove that
Algorithm 5 works with high probability. Proposition 44 gives the time complexity.

▶ Lemma 42. D has s distinct eigenvalues with probability ≥ 1 − (s
2)

|S| .

▶ Lemma 43. Let D ∈ Adj(∂k, U, V) such that it has s distinct eigenvalues denoted λ1, . . . , λs.
Then Ker(D − λiI) = Uπ(i) for all i ∈ [s], where π is some permutation on [s].

▶ Proposition 44. Algorithm 5 has a running time of poly(n, s, dt).

14 Lemma 27 holds more generally for any two polynomials equivalent by invertible linear transforms.

STACS 2024

9:16 Testing Equivalence to Design Polynomials

Handling non-homogeneous polynomials and translation. The non-degeneracy conditions
are the same for non-homogeneous (m, d, s, t) multilinear design polynomials and when
f(x) = g(Ax + b) for A ∈r Fm×n and b ∈ Fm. For the non-homogeneous case, if the degree
of all monomials is ≥ 2k + 2, then Lemmas 41 and 45 hold, and the analysis proceeds in the
same way. Proposition 39 can also recover translations.

4.5 Random affine projections are non-degenerate

Lemma 45 states that a random affine projection f is non-degenerate with high probability.
Showing f is non-degenerate reduces to showing certain matrices, with entries as the
coefficients of the li’s, are full rank with high probability when the entries are chosen
randomly. The main technical challenge is in proving condition 1 because the gi’s share
variables, thus Ti’s share the li’s. A two-stage random process is used to show the existence
of an affine projection which satisfies condition 1. The Schwartz-Zippel lemma then implies
that a random affine projection also satisfies condition 1 with high probability.

▶ Lemma 45. Let g be a polynomial as defined in Section 4.1 and f be its random affine

projection. For k = t +
⌊

2 log(s)
log

(√
n

d2

)⌋
+ 1, f is non-degenerate with high probability.

5 Conclusion

In this work, we design an ET algorithm for general design polynomials (Theorem 3) and a
learning algorithm for random affine projections of multilinear design polynomials (Theorem
18). As an application of the ET algorithm, we show that GI is polynomial-time equivalent
to PE for design polynomials with all-one coefficients (Theorem 11). As another application,
we show that Patarin’s authentication scheme can be broken if it uses a higher degree sparse
polynomial for key generation (Theorem 13). We also give an ET algorithm for the NW
design polynomial using Theorem 3 (Theorem 50). Theorem 18 is a significant generalization
of the main result in [27] that gave a learning algorithm for random affine projections of the
sum-product polynomial, which is a special multilinear design polynomial.

Both the algorithms are based on the vector space decomposition framework of [27, 16].
This work’s main technical contributions include analysing a non-trivial adjoint algebra
associated with design polynomials and developing a VSD algorithm based on generalized
eigenspaces. We end by listing some related questions:
1. ET for sparse polynomial: What is the complexity of ET for the class of sparse

polynomials? That is, given black-box access to a polynomial f and a parameter s, what
is the complexity of testing whether f is in the orbit of some s-sparse polynomial? The
authors of [12] showed that the shift equivalence problem for sparse polynomials (i.e.,
when f = g(x + b) for some sparse polynomial g and b ∈ Fn) is undecidable over Z.

2. Weakening n ≥ d4+ϵ: Can the condition n ≥ d4+ϵ in Theorem 18 be changed to n ≥ dδ

for arbitrary δ > 0? Doing so would give stronger evidence that NW is not VNP-complete.
3. Efficient ET for NW: Theorem 50 gives an ET for NW, but it is not a polynomial-time

algorithm. Is there a polynomial-time ET algorithm for NW? Our ET algorithm is
for general design polynomials; it is possible that analyzing the properties of the NW
polynomial may yield an efficient ET algorithm specifically for NW.

O. Baraskar, A. Dewan, and C. Saha 9:17

References
1 Scott Aaronson. Arithmetic natural proofs theory is sought. http://www.scottaaronson.

com/blog/?p=336, 2008.
2 Manindra Agrawal and Nitin Saxena. Automorphisms of finite rings and applications to

complexity of problems. In Proceedings of the 22nd Annual Conference on Theoretical Aspects
of Computer Science, STACS’05, pages 1–17, Berlin, Heidelberg, 2005. Springer-Verlag. doi:
10.1007/978-3-540-31856-9_1.

3 Manindra Agrawal and Nitin Saxena. Equivalence of F-algebras and cubic forms. In Proceedings
of the 23rd Annual Conference on Theoretical Aspects of Computer Science, STACS’06, pages
115–126, Berlin, Heidelberg, 2006. Springer-Verlag. doi:10.1007/11672142_8.

4 Manuel Araújo. Classification of quadratic forms. https://www.math.tecnico.ulisboa.pt/
~ggranja/manuel.pdf, 2011.

5 Vikraman Arvind, Bireswar Das, Johannes Köbler, and Seinosuke Toda. Colored Hypergraph
Isomorphism is Fixed Parameter Tractable. Algorithmica, 71(1):120–138, 2015. Conference
version appeared in the proceedings of FSTTCS 2010. doi:10.1007/s00453-013-9787-y.

6 László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In Daniel
Wichs and Yishay Mansour, editors, Proceedings of the 48th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 684–697.
ACM, 2016. doi:10.1145/2897518.2897542.

7 Omkar Baraskar, Agrim Dewan, and Chandan Saha. Testing equivalence to design polynomials.
Electronic Colloquium on Computational Complexity (ECCC), 2024. URL: https://eccc.
weizmann.ac.il/report/2024/004/.

8 Elwyn R. Berlekamp. Factoring polynomials over large finite fields. In Stanley R. Petrick,
Jean E. Sammet, Robert G. Tobey, and Joel Moses, editors, Proceedings of the second ACM
symposium on Symbolic and algebraic manipulation, SYMSAC 1971, Los Angeles, California,
USA, March 23-25, 1971, page 223. ACM, 1971. doi:10.1145/800204.806290.

9 Vishwas Bhargava, Ankit Garg, Neeraj Kayal, and Chandan Saha. Learning generalized depth
three arithmetic circuits in the non-degenerate case. In Amit Chakrabarti and Chaitanya
Swamy, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, APPROX/RANDOM 2022, September 19-21, 2022, University of Illinois,
Urbana-Champaign, USA (Virtual Conference), volume 245 of LIPIcs, pages 21:1–21:22. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.APPROX/RANDOM.2022.
21.

10 Markus Bläser, B. V. Raghavendra Rao, and Jayalal Sarma. Testing polynomial equivalence
by scaling matrices. In Ralf Klasing and Marc Zeitoun, editors, Fundamentals of Computation
Theory - 21st International Symposium, FCT 2017, Bordeaux, France, September 11-13, 2017,
Proceedings, volume 10472 of Lecture Notes in Computer Science, pages 111–122. Springer,
2017. doi:10.1007/978-3-662-55751-8_10.

11 Peter A. Brooksbank, Joshua Maglione, and James B. Wilson. A fast isomorphism test for
groups whose lie algebra has genus 2. Journal of Algebra, Volume 473, Pages 545-590, ISSN
0021-8693, 2017. doi:10.1016/j.jalgebra.2016.12.007.

12 Suryajith Chillara, Coral Grichener, and Amir Shpilka. On hardness of testing equivalence
to sparse polynomials under shifts. In Petra Berenbrink, Patricia Bouyer, Anuj Dawar,
and Mamadou Moustapha Kanté, editors, 40th International Symposium on Theoretical
Aspects of Computer Science, STACS 2023, March 7-9, 2023, Hamburg, Germany, volume
254 of LIPIcs, pages 22:1–22:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.
doi:10.4230/LIPIcs.STACS.2023.22.

13 Alexander Chistov, Gábor Ivanyos, and Marek Karpinski. Polynomial time algorithms for
modules over finite dimensional algebras. In Proceedings of the 1997 International Symposium
on Symbolic and Algebraic Computation, ISSAC ’97, pages 68–74, New York, NY, USA, 1997.
Association for Computing Machinery. doi:10.1145/258726.258751.

STACS 2024

http://www.scottaaronson.com/blog/?p=336
http://www.scottaaronson.com/blog/?p=336
https://doi.org/10.1007/978-3-540-31856-9_1
https://doi.org/10.1007/978-3-540-31856-9_1
https://doi.org/10.1007/11672142_8
https://www.math.tecnico.ulisboa.pt/~ggranja/manuel.pdf
https://www.math.tecnico.ulisboa.pt/~ggranja/manuel.pdf
https://doi.org/10.1007/s00453-013-9787-y
https://doi.org/10.1145/2897518.2897542
https://eccc.weizmann.ac.il/report/2024/004/
https://eccc.weizmann.ac.il/report/2024/004/
https://doi.org/10.1145/800204.806290
https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2022.21
https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2022.21
https://doi.org/10.1007/978-3-662-55751-8_10
https://doi.org/10.1016/j.jalgebra.2016.12.007
https://doi.org/10.4230/LIPIcs.STACS.2023.22
https://doi.org/10.1145/258726.258751

9:18 Testing Equivalence to Design Polynomials

14 Richard A. DeMillo and Richard J. Lipton. A probabilistic remark on algebraic program
testing. Inf. Process. Lett., 7(4):193–195, 1978. doi:10.1016/0020-0190(78)90067-4.

15 Ankit Garg, Nikhil Gupta, Neeraj Kayal, and Chandan Saha. Determinant equivalence test over
finite fields and over Q. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano
Leonardi, editors, 46th International Colloquium on Automata, Languages, and Programming,
ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 62:1–62:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPICS.ICALP.2019.62.

16 Ankit Garg, Neeraj Kayal, and Chandan Saha. Learning sums of powers of low-degree
polynomials in the non-degenerate case. In Sandy Irani, editor, 61st IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020,
pages 889–899. IEEE, 2020. doi:10.1109/FOCS46700.2020.00087.

17 Joshua A. Grochow. Symmetry and equivalence relations in classical and geometric complexity
theory. PhD thesis, University of Chicago, Chicago, IL, 2012. URL: https://home.cs.
colorado.edu/~jgrochow/grochow-thesis.pdf.

18 Joshua A. Grochow and Youming Qiao. On the complexity of isomorphism problems for tensors,
groups, and polynomials I: tensor isomorphism-completeness. SIAM J. Comput., 52(2):568–617,
2023. Conference version appeared in the proceedings of ITCS 2021. doi:10.1137/21M1441110.

19 Joshua A. Grochow and Youming Qiao. On the complexity of isomorphism problems for
tensors, groups, and polynomials IV: linear-length reductions and their applications. CoRR,
abs/2306.16317, 2023. doi:10.48550/arXiv.2306.16317.

20 Nikhil Gupta and Chandan Saha. On the symmetries of and equivalence test for design
polynomials. In Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen, editors, 44th
International Symposium on Mathematical Foundations of Computer Science, MFCS 2019,
August 26-30, 2019, Aachen, Germany, volume 138 of LIPIcs, pages 53:1–53:16. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPICS.MFCS.2019.53.

21 Nikhil Gupta, Chandan Saha, and Bhargav Thankey. Equivalence test for read-once arithmetic
formulas. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023,
pages 4205–4272. SIAM, 2023. doi:10.1137/1.9781611977554.ch162.

22 Erich L. Kaltofen and Barry M. Trager. Computing with polynomials given by black boxes
for their evaluations: Greatest common divisors, factorization, separation of numerators and
denominators. J. Symb. Comput., 9(3):301–320, 1990. Conference version appeared in the
proceedings of FOCS 1988. doi:10.1016/S0747-7171(08)80015-6.

23 Neeraj Kayal. Efficient algorithms for some special cases of the polynomial equivalence problem.
In Dana Randall, editor, Proceedings of the Twenty-Second Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January 23-25, 2011,
pages 1409–1421. SIAM, 2011. doi:10.1137/1.9781611973082.108.

24 Neeraj Kayal. Affine projections of polynomials: extended abstract. In Howard J. Karloff
and Toniann Pitassi, editors, Proceedings of the 44th Symposium on Theory of Computing
Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages 643–662. ACM, 2012.
doi:10.1145/2213977.2214036.

25 Neeraj Kayal, Vineet Nair, and Chandan Saha. Average-case linear matrix factorization and
reconstruction of low width algebraic branching programs. Comput. Complex., 28(4):749–828,
2019. doi:10.1007/S00037-019-00189-0.

26 Neeraj Kayal, Vineet Nair, Chandan Saha, and Sébastien Tavenas. Reconstruction of full rank
algebraic branching programs. ACM Trans. Comput. Theory, 11(1):2:1–2:56, 2019. Conference
version appeared in the proceedings of CCC 2017. doi:10.1145/3282427.

27 Neeraj Kayal and Chandan Saha. Reconstruction of non-degenerate homogeneous depth three
circuits. In Moses Charikar and Edith Cohen, editors, Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26,
2019, pages 413–424. ACM, 2019. doi:10.1145/3313276.3316360.

28 Krull-Schmidt Theorem. https://mathstrek.blog/2015/01/17/krull-schmidt-theorem/.

https://doi.org/10.1016/0020-0190(78)90067-4
https://doi.org/10.4230/LIPICS.ICALP.2019.62
https://doi.org/10.1109/FOCS46700.2020.00087
https://home.cs.colorado.edu/~jgrochow/grochow-thesis.pdf
https://home.cs.colorado.edu/~jgrochow/grochow-thesis.pdf
https://doi.org/10.1137/21M1441110
https://doi.org/10.48550/arXiv.2306.16317
https://doi.org/10.4230/LIPICS.MFCS.2019.53
https://doi.org/10.1137/1.9781611977554.ch162
https://doi.org/10.1016/S0747-7171(08)80015-6
https://doi.org/10.1137/1.9781611973082.108
https://doi.org/10.1145/2213977.2214036
https://doi.org/10.1007/S00037-019-00189-0
https://doi.org/10.1145/3282427
https://doi.org/10.1145/3313276.3316360
https://mathstrek.blog/2015/01/17/krull-schmidt-theorem/

O. Baraskar, A. Dewan, and C. Saha 9:19

29 T. Y. Lam. Introduction To Quadratic Forms Over Fields. American Mathematical Society,
2004.

30 Arjen K Lenstra, Hendrik W Lenstra, and László Lovász. Factoring polynomials with rational
coefficients. Mathematische Annalen, 261(4):515–534, 1982. doi:10.1007/BF01457454.

31 Dori Medini and Amir Shpilka. Hitting sets and reconstruction for dense orbits in vp_{e}
and ΣΠΣ circuits. In Valentine Kabanets, editor, 36th Computational Complexity Conference,
CCC 2021, July 20-23, 2021, Toronto, Ontario, Canada (Virtual Conference), volume 200
of LIPIcs, pages 19:1–19:27. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:
10.4230/LIPICS.CCC.2021.19.

32 Gary L. Miller. Graph isomorphism, general remarks. J. Comput. Syst. Sci., 18(2):128–142,
1979. doi:10.1016/0022-0000(79)90043-6.

33 Janaky Murthy, Vineet Nair, and Chandan Saha. Randomized polynomial-time equivalence
between determinant and trace-imm equivalence tests. In Javier Esparza and Daniel Král’,
editors, 45th International Symposium on Mathematical Foundations of Computer Science,
MFCS 2020, August 24-28, 2020, Prague, Czech Republic, volume 170 of LIPIcs, pages 72:1–
72:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPICS.MFCS.
2020.72.

34 Jacques Patarin. Hidden fields equations (HFE) and isomorphisms of polynomials (IP): two
new families of asymmetric algorithms. In Ueli M. Maurer, editor, Advances in Cryptology -
EUROCRYPT ’96, International Conference on the Theory and Application of Cryptographic
Techniques, Saragossa, Spain, May 12-16, 1996, Proceeding, volume 1070 of Lecture Notes in
Computer Science, pages 33–48. Springer, 1996. doi:10.1007/3-540-68339-9_4.

35 Nitin Saxena. Morphisms of rings and applications to complexity. PhD thesis, Indian Institute of
Technology, Kanpur, 2006. URL: https://www.cse.iitk.ac.in/users/manindra/Students/
thesis_saxena.pdf.

36 Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J.
ACM, 27(4):701–717, 1980. doi:10.1145/322217.322225.

37 Thomas Thierauf. The isomorphism problem for read-once branching programs and arithmetic
circuits. Chic. J. Theor. Comput. Sci., 1998, 1998. URL: http://cjtcs.cs.uchicago.edu/
articles/1998/1/contents.html.

38 Leslie G. Valiant. Completeness classes in algebra. In Michael J. Fischer, Richard A. DeMillo,
Nancy A. Lynch, Walter A. Burkhard, and Alfred V. Aho, editors, Proceedings of the 11h
Annual ACM Symposium on Theory of Computing, April 30 - May 2, 1979, Atlanta, Georgia,
USA, pages 249–261. ACM, 1979. doi:10.1145/800135.804419.

39 Joachim von zur Gathen and Jürgen Gerhard. Modern computer algebra (2. ed.). Cambridge
University Press, 2003.

40 James B. Wilson. Decomposing p-groups via Jordan algebras. Journal of Algebra, Volume 322,
Issue 8, Pages 2642-2679, ISSN 0021-8693,, 2009. doi:10.1016/j.jalgebra.2009.07.029.

41 Richard Zippel. Probabilistic algorithms for sparse polynomials. In Symbolic and Al-
gebraic Computation, EUROSAM ’79, An International Symposiumon Symbolic and Al-
gebraic Computation, Marseille, France, June 1979, Proceedings, pages 216–226, 1979.
doi:10.1007/3-540-09519-5_73.

A Appendix

A.1 Comparison with previous work
As mentioned earlier, ET has been studied for various polynomial families. ET algorithms
for power symmetric polynomials [23] and read-once formulas [21] were given by analyzing
the factors of the Hessian determinant. Analyzing the Lie algebra of the determinant [24, 15],
the permanent [24], and the iterated matrix multiplication [26, 33] polynomials led to ET
algorithms for these families. For the elementary symmetric polynomials, the maximal

STACS 2024

https://doi.org/10.1007/BF01457454
https://doi.org/10.4230/LIPICS.CCC.2021.19
https://doi.org/10.4230/LIPICS.CCC.2021.19
https://doi.org/10.1016/0022-0000(79)90043-6
https://doi.org/10.4230/LIPICS.MFCS.2020.72
https://doi.org/10.4230/LIPICS.MFCS.2020.72
https://doi.org/10.1007/3-540-68339-9_4
https://www.cse.iitk.ac.in/users/manindra/Students/thesis_saxena.pdf
https://www.cse.iitk.ac.in/users/manindra/Students/thesis_saxena.pdf
https://doi.org/10.1145/322217.322225
http://cjtcs.cs.uchicago.edu/articles/1998/1/contents.html
http://cjtcs.cs.uchicago.edu/articles/1998/1/contents.html
https://doi.org/10.1145/800135.804419
https://doi.org/10.1016/j.jalgebra.2009.07.029
https://doi.org/10.1007/3-540-09519-5_73

9:20 Testing Equivalence to Design Polynomials

dimension of the space of second-order partials gave an ET algorithm [23]. It was shown
in [17] that over algebraically closed fields of characteristic 0, ET for polynomials characterized
by the continuous part of their symmetries is equivalent to testing matrix isomorphism to
their Lie algebras, implying over such fields an efficient ET exists for such polynomials,
provided matrix isomorphism to their Lie algebra can be solved efficiently. However, for design
polynomials, these techniques do not work. For example, the (2, d, 2, 3) design polynomial
x1xd−1

2 + xd−1
1 x2, where d ≥ 3 is odd, has a trivial Lie algebra and an irreducible Hessian

determinant over Q. For d ≥ 3, the (2d, d, 2, 1) design polynomial
∏d

i=1 xi +
∏2d

i=d+1 xi has
second-order partials dimension 2

(
d
2
)
, which is less than the maximum possible dimension(2d

2
)
. Design polynomials, particularly NW, are not characterized by the continuous part of

their symmetries (see [20]); hence the ET algorithm implied from [17] does not apply. Thus,
a different technique must be used for design polynomials.

The VSD framework was used previously in [27, 16, 9] to design learning algorithms. The
authors of [31] showed that polynomials in the orbit of the sum-product polynomial satisfy
the non-degeneracy conditions of [27], and so, we have an ET algorithm for this family. But
note that a sum-product polynomial has a read-once formula; an ET algorithm can also
be obtained via the Hessian determinant [21]. To our knowledge, our work is the first to
use the VSD framework to develop an ET algorithm (in Theorem 3) for a natural family
of polynomials for which none of the other three techniques work. Also, there is a notable
difference between the analysis in [16, 9] and the analysis here. In [16, 9], the relevant adjoint
algebra is diagonalizable, while in our case the adjoint is block equi-triangularizable. The
VSD algorithms of previous works recovered the component spaces by computing eigenspaces,
while we compute generalized eigenspaces to do so.

We learn affine projections of design polynomials (in Theorem 18) under certain non-
degeneracy conditions similar to those of [27]. However, proving the non-degeneracy of
random affine projections of design polynomials requires a more involved analysis than
proving the non-degeneracy of random depth-3 circuits in [27]. The reason is, unlike the
terms of the circuit models studied in [27, 16, 9], the terms in our case have shared randomness
as the same random affine form can appear in multiple terms. Theorem 18 is a significant
generalization of the main result in [27] that handles random affine projections of the
sum-product polynomial, which is a special design polynomial.

The learning algorithm in Theorem 18 is proper as it outputs an appropriate affine map.
It is also an average-case algorithm for learning affine projections of design polynomials as the
input is a random affine projection. This average-case, proper learning algorithm exploits the
property that the space of partial derivatives of an affine projection of a design polynomial
is low dimensional (under the technical conditions mentioned in the theorem statement) to
reduce the learning problem to VSD. A natural question arises at this point: is it always
possible to design an average-case, proper learning algorithm (via a reduction to VSD)
for affine projections of a model satisfying such low dimensional partial derivatives space
property? The answer is unclear. The related version [7] gives an example of affine projections
of low width algebraic branching programs (ABPs) satisfying the technical assumptions of
Theorem 18 and with low dimensional partial derivatives spaces, and for which (to the best
of our knowledge) no average-case, proper learning algorithm is known. The authors of [25]
gave such an algorithm assuming that the widths are the same across the layers of the ABP.

A.2 Algorithmic preliminaries
▶ Fact 46. Given black-box access to an n-variate degree d polynomial f , we can compute
black-box access to ∂kf

∂xα in poly(n, dk) time, where |α| = k. (Refer [26] for a proof idea.)

O. Baraskar, A. Dewan, and C. Saha 9:21

▶ Fact 47. Given black-boxes to n-variate degree d polynomials f1, f2 . . . , fl, there is a
randomized poly(n, l, d) time algorithm that computes a basis for the vector space

(f1, f2 . . . fl)⊥ := {(α1, α2, . . . , αl) ∈ Fl :
l∑

i=1
αifi = 0}

Refer [23] for a proof of the above fact. A corollary of Fact 47 is:

▶ Fact 48. Given black-box access to linearly independent polynomials f1, . . . , fl and an
f =

∑l
i=1 βifi, where βi ∈ F, the βi’s can be computed in randomized poly(n, l, d) time.

▶ Fact 49. Let d ∈ N, char(F) = 0 or > d and |F| ≥ d6. Given black-box access to an
n-variate degree d polynomial f , black-box access to its irreducible factors can be computed
in randomized poly(n, d) time. (Refer [22] for details.)

A.3 Description of Patarin’s scheme
Patarin’s scheme is a provably perfect zero-knowledge authentication scheme; thus Alice can
prove to Bob that she knows a secret without revealing any information about the secret.
The key generation process is as follows:
1. Select an n-variate degree d polynomial f(x) ∈r Fq[x], where d is a constant.
2. Select two matrices A1, A2 ∈r Fn×n

q .15

3. Compute the public key (f1, f2) := (f(A1x), f(A2x)) and the private key C = A−1
2 A1.

The authentication procedure is as follows:
1. Alice selects an R ∈r Fn×n

q and computes g := f1(Rx) and sends it to Bob.
2. Bob receives g and picks h := f1 or f2 with probability 1

2 , challenging Alice to show
h ∼ g.

3. Alice receives h. If h = f1, she sends R. If h = f2, she sends CR.

A.4 Equivalence Testing for NW
The PS-equivalence testing problem for NW is as follows: given a polynomial f , check if
f = NWq,d,t(PSx) for some permutation P and scaling S, and recover them if so. Theorem 50
(the proof can be found in [7]) follows from Theorems 3 and 11, and the GI algorithm in [6].

▶ Theorem 50. Let q, d, t ∈ N, q ≥ d, t ≤ d/3, |F| ≥ q3t, char(F) = 0 or > d. ET for NWq,d,t

reduces to PS-equivalence testing for NWq,d,t in poly(qt) time. Further, PS-equivalence
testing for NWq,d,t reduces to S-equivalence testing for NWq,d,t in quasi-poly(qt) time.

The S-equivalence testing problem for NW is as follows: Given a polynomial f , check
if f = NWq,d,t(Sx) for some scaling S, and recover it if so. Over R and Fp, S-equivalence
testing for NW can be done by the algorithm of [10] in poly(q, β) time, where β is the bit
complexity of the coefficients of f , and also by an algorithm of [20]. Over Q, S-equivalence
testing of NW can be done in poly(qt, β) time, assuming oracle access to integer-factoring.
This combined with Theorem 50 gives a quasi-poly(qt) time algorithm for ET for NW. Here is
a proof sketch of S-equivalence test for NWq,d,t over Q: If f is S-equivalent to NWq,d,t, then
f =

∑
h∈Fq [y], deg h<t ch

∏d−1
i=0 xi,h(i), where ch ∈ F. With the entries of S as z variables, we

get the following equations:

15 A random matrix is invertible with high probability.

STACS 2024

9:22 Testing Equivalence to Design Polynomials

z0,h(0)z1,h(1) . . . zd−1,h(d−1) = c−1
h for h ∈ Fq[y]<t .

There are qt many equations in qd variables. Since c−1
h ∈ Q, c−1

h = a/b for some a, b ∈ Z.
Using the integer-factoring oracle, factor the integers a, b into primes p1, p2 . . . pl. Now,
reduce it to solving an appropriate Diophantine linear system by taking logarithms to the
base pi, with logpi

(zj,h(j)) as variables wj,h(j),i. This Diophantine linear system has lqd

variables and lqt equations. Treating this system as a matrix, check its consistency and then
determine the linearly independent rows (say there are k of them). A k × k submatrix with
non-zero determinant m can be formed from these rows, which corresponds to expressing the
Diophantine linear system as linear equations in k of the wj,h(j),i variables with constants
as affine forms in the remaining wj,h(j),i variables. By Cramer’s rule, a solution to such a
system is a fraction with the numerator as the affine forms and the denominator as m. The
problem then further reduces to solving a linear system determined by the affine forms over
the ring Zm since wj,h(j),i must be integers. This whole process can be done in poly(qt, β) time.

Therefore, ET for NW can be solved in time quasi-polynomial in the sparsity of NWq,d,t.

	1 Introduction
	1.1 Our results
	1.2 Proof techniques
	1.2.1 Implementing the four steps for Theorem 3
	1.2.2 Implementing the four steps for Theorem 18

	2 Preliminaries
	2.1 Notations and definitions

	3 Equivalence testing for design polynomials
	3.1 The algorithm
	3.2 Analysis of the algorithm
	3.3 Structure of the adjoint algebra
	3.4 Vector space decomposition
	3.5 Applications of the equivalence test
	3.5.1 GI equiv_p PE for design polynomials: Proof of Theorem 11
	3.5.2 Cryptanalysis of Patarin's scheme: Proof of Theorem 13

	4 Learning random affine projections of design polynomials
	4.1 Non-degeneracy conditions
	4.2 The algorithm and its analysis
	4.3 Structure of the adjoint algebra
	4.4 Vector space decomposition algorithm
	4.5 Random affine projections are non-degenerate

	5 Conclusion
	A Appendix
	A.1 Comparison with previous work
	A.2 Algorithmic preliminaries
	A.3 Description of Patarin's scheme
	A.4 Equivalence Testing for NW

