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Preface

The International Symposium on Theoretical Aspects of Computer Science (STACS) confer-
ence series is an internationally leading forum for original research on theoretical aspects of
computer science.

STACS 2024 consists of two tracks, A and B. Track A is dedicated to algorithms and data
structures, complexity and games. Track B covers automata, logic, semantics and theory of
programming.

STACS is held alternately in France and in Germany. This year’s conference, taking place
in Clermont-Ferrand (Université Clermont Auvergne) from March 12 to March 14, is the 41st
in the series. Previous meetings took place in Paris (1984), Saarbrücken (1985), Orsay
(1986), Passau (1987), Bordeaux (1988), Paderborn (1989), Rouen (1990), Hamburg (1991),
Cachan (1992), Würzburg (1993), Caen (1994), München (1995), Grenoble (1996), Lübeck
(1997), Paris (1998), Trier (1999), Lille (2000), Dresden (2001), Antibes (2002), Berlin (2003),
Montpellier (2004), Stuttgart (2005), Marseille (2006), Aachen (2007), Bordeaux (2008),
Freiburg (2009), Nancy (2010), Dortmund (2011), Paris (2012), Kiel (2013), Lyon (2014),
München (2015), Orléans (2016), Hannover (2017), Caen (2018), Berlin (2019), Montpellier
(2020), Saarbrücken (2021, taking place virtually), Marseille (2022, taking place virtually),
and Hamburg (2023).

The interest in STACS has remained at a very high level over the past years. The
STACS 2024 call for papers led to 203 submissions (153 for Track A and 50 for Track B) with
authors from 37 countries. Each paper was assigned to three program committee members
who, at their discretion, asked external reviewers for reports. For the tenth time within
the STACS conference series, there was also a rebuttal period during which authors could
submit remarks to the PC concerning the reviews of their papers. In addition, and for the
fourth time, STACS 2024 employed a lightweight double-blind reviewing process: submissions
should not reveal the identity of the authors in any way. However, it was still possible for
authors to disseminate their ideas or draft versions of their paper as they normally would, for
instance by posting drafts on the web or giving talks on their results. The committee selected
56 papers for publication (40 for Track A and 16 for Track B). This means an acceptance
rate of around 28%. As co-chairs of the program committee, we would like to sincerely thank
all its members and the 313 external reviewers for their valuable work. In particular, there
were intense and interesting discussions inside the PC committee. The very high quality of
the submissions made the selection an extremely difficult task.

We would like to express our thanks to the three invited speakers: Igor Carboni Oliveira
(Warwick University, UK), Sofya Raskhodnikova (Boston University, USA), and Szymon
Toruńczyk (Warsaw University, Poland).

We thank Michael Didas from the LIPIcs team for assisting us in the publication process
and the final production of the proceedings. These proceedings contain extended abstracts
of the accepted contributions and abstracts of the invited talks. The authors retain their
rights and make their work available under a Creative Commons license. The proceedings
are published electronically by Schloss Dagstuhl – Leibniz-Center for Informatics within
their LIPIcs series. We also thank Sourav S Bhowmick who helped at the beginning of the
reviewing process and assignment to PC members to identify conflicts with the Closet system.
Finally, we would like to thank Université Clermont Auvergne, Clermont Auvergne INP,
ISIMA, LIMOS, CNRS and Clermont Auvergne Metropole for their support. Our special
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Editors: Olaf Beyersdorff, Mamadou Moustapha Kanté, Orna Kupferman, and
Daniel Lokshtanov
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thanks go to Béatrice Bourdieu, Dipayan Chakraborty, Solène Drouet, Florent Foucaud and
Bruno Guillon – the local organising team at Université Clermont Auvergne – for all their
help with the webpages, the registration and all social events.
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Polynomial-Time Pseudodeterministic
Constructions
Igor C. Oliveira # Ñ

University of Warwick, UK

Abstract
A randomised algorithm for a search problem is pseudodeterministic if it produces a fixed

canonical solution to the search problem with high probability. In their seminal work on the topic,
Gat and Goldwasser (2011) posed as their main open problem whether prime numbers can be
pseudodeterministically constructed in polynomial time.

We provide a positive solution to this question in the infinitely-often regime. In more detail,
we give an unconditional polynomial-time randomised algorithm B such that, for infinitely many
values of n, B(1n) outputs a canonical n-bit prime pn with high probability. More generally, we
prove that for every dense property Q of strings that can be decided in polynomial time, there is
an infinitely-often pseudodeterministic polynomial-time construction of strings satisfying Q. This
improves upon a subexponential-time pseudodeterministic construction of Oliveira and Santhanam
(2017).

This talk will cover the main ideas behind these constructions and discuss their implications,
such as the existence of infinitely many primes with succinct and efficient representations.

2012 ACM Subject Classification Theory of computation → Computational complexity and crypto-
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The Role of Local Algorithms in Privacy
Sofya Raskhodnikova # Ñ

Department of Computer Science, Boston University, MA, USA

Abstract
We will discuss research areas at the intersection of local algorithms and differential privacy. The
main focus will be on using local Lipschitz filters to enable black-box differentially private queries
to sensitive datasets. We will also cover new sublinear computational tasks arising in private data
analysis. Finally, we will touch upon distributed models of privacy.
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Keywords and phrases Sublinear algorithms, differential privacy, reconstruction of Lipschitz functions,
local algorithms
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This talk will be mostly based on joint work with Madhav Jha [2], Jane Langer, Ephraim
Linder, and Arsen Vasilyan [3], Satchit Sivakumar, Adam Smith, and Marika Swanberg [4],
and Talya Eden, Quanquan Liu, and Adam Smith [1].
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Structurally Tractable Graph Classes
Szymon Toruńczyk #

Institute of Informatics, University of Warsaw, Poland

Abstract
Sparsity theory, initiated by Ossona de Mendez and Nešetřil, identifies those classes of sparse graphs
that are tractable in various ways – algorithmically, combinatorially, and logically – as exactly the
nowhere dense classes. An ongoing effort aims at generalizing sparsity theory to classes of graphs
that are not necessarily sparse. Twin-width theory, developed by Bonnet, Thomassé and co-authors,
is a step in that direction. A theory unifying the two is anticipated. It is conjectured that the
relevant notion characterising dense graph classes that are tractable, generalising nowhere denseness
and bounded twin-width, is the notion of a monadically dependent class, introduced by Shelah in
model theory. I will survey the recent, rapid progress in the understanding of those classes, and
of the related monadically stable classes. This development combines tools from structural graph
theory, logic (finite and infinite model theory), and algorithms (parameterised algorithms and range
search queries).
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Max Weight Independent Set in Sparse Graphs
with No Long Claws
Tara Abrishami #
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Paweł Rzążewski #
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Abstract
We revisit the recent polynomial-time algorithm for the Max Weight Independent Set (MWIS)
problem in bounded-degree graphs that do not contain a fixed graph whose every component is a
subdivided claw as an induced subgraph [Abrishami, Chudnovsky, Dibek, Rzążewski, SODA 2022].

First, we show that with an arguably simpler approach we can obtain a faster algorithm with
running time nO(∆2), where n is the number of vertices of the instance and ∆ is the maximum
degree. Then we combine our technique with known results concerning tree decompositions and
provide a polynomial-time algorithm for MWIS in graphs excluding a fixed graph whose every
component is a subdivided claw as an induced subgraph, and a fixed biclique as a subgraph.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Mathematics
of computing → Graph algorithms

Keywords and phrases Max Weight Independent Set, subdivided claw, hereditary classes
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4:2 Max Weight Independent Set in Sparse Graphs with No Long Claws

1 Introduction

A vertex-weighted graph is an undirected graph G equipped with a weight function w :
V (G) → N. For X ⊆ V (G), we use w(X) as a shorthand for

∑
x∈X w(x) and for a subgraph

H of G, w(H) is a shorthand for w(V (H)). By convention we use w(∅) = 0. Throughout
the paper we assume that arithmetic operations on weights are performed in unit time.

For a graph G, a set I ⊆ V (G) is independent or stable if there is no edge of G with both
endpoints in I. In the Max Weight Independent Set (MWIS) problem we are given
an undirected vertex-weighted graph (G, w), and ask for a maximum-weight independent
set in (G, w). MWIS is one of canonical hard problems – it is NP-hard [23], W[1]-hard [15],
hard to approximate [22]. Thus a very natural research direction is to consider restricted
instances and try to capture the boundary between “easy” and “hard” cases.

State of the art. The study of complexity of MWIS in restricted graph classes is a central
topic in algorithmic graph theory [20, 45, 27, 19, 14, 4]. A particular attention is given to
classes that are hereditary, i.e., closed under vertex deletion. Among such classes a special
role is played by ones defined by forbidding certain substructures. For graphs G and H, we
say that G is H-free if it does not contain H as an induced subgraph.

In this paper we are interested in graph classes defined by forbidding certain induced
trees. Let S be the family of subcubic trees H with at most one vertex of degree 3. In other
words, every such H is either a path or a subdivision of the claw: the three-leaf star. For
integers a, b, c ⩾ 1, by Sa,b,c we denote the claw whose edges were subdivided, respectively,
a − 1, b − 1, and c − 1 times.

As already observed by Alekseev in the early 1980s [3], if H is connected, MWIS remains
NP-hard in H-free graphs unless H ∈ S. In the past few years we have witnessed rapid progress
in development of algorithms for MWIS in these remaining cases [6, 10, 16, 42, 13, 17, 35].
In particular, it is known that for each H ∈ S, the MWIS problem can be solved in
quasipolynomial time in H-free graphs [16, 42, 17]. This is a strong indication that the problem
is not NP-hard. However, we are still very far from obtaining polynomial-time algorithms.
Such results are known only for very small forbidden paths [27, 19], subdivided claws [36, 43,
5, 28], or their disjoint unions [31, 7]. There is also a long line of research concerning graphs
excluding a fixed (but still small) path or a subdivided claw and, simultaneously, some other
small graphs, see e.g. [26, 8, 18, 32, 34, 38, 29, 30, 21, 37, 39, 40, 41, 9].

In a somewhat perpendicular direction, Abrishami, Chudnovsky, Dibek, and Rzążewski [1]
proved that for every H ∈ S, the MWIS problem can be solved in polynomial time in H-free
graphs of bounded degree (where the degre of the polynomial depends on H, and the degree
bound). Let us remark that the algorithm of [1] is very technical, and the dependency of the
complexity on the degree bound is involved.

Our results. As a warm-up, we present a polynomial-time algorithm for H-free graphs of
bounded degree, where H ∈ S. It is significantly simpler than the one by Abrishami et al. [1]
and has much better dependency on the maximum degree.

▶ Theorem 1. There exists an algorithm that, given a vertex-weighted graph (G, w) on n

vertices with maximum degree ∆ and an integer t, in time nO(t∆2) either finds an induced
St,t,t or the maximum possible weight of an independent set in (G, w).

Note that by picking appropriate t, Theorem 1 yields a polynomial-time algorithm for MWIS
for bounded-degree graphs excluding a fixed graph from S as an induced subgraph.
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Then we proceed to the main result of the paper: we show that MWIS remains polynomial-
time solvable in St,t,t-free graphs, even if instead of bounding the maximum degree, we forbid
a fixed biclique as a subgraph.

▶ Theorem 2. For every fixed integer t, and s there exists a polynomial-time algorithm that,
given a vertex-weighted graph (G, w) that does not contain St,t,t as an induced subgraph nor
Ks,s as a subgraph, returns the maximum possible weight of an independent set in (G, w).

Let us remark that by the celebrated Kövári-Sós-Turán theorem [25], classes that exclude
Ks,s as a subgraph capture all hereditary classes of sparse graphs, where by “sparse” we mean
“where every graph has subquadratic number of edges.” Furthermore, by a simple Ramsey
argument, for every positive integer r there exists an integer s such that if G is Kr-free and
Kr,r-free then G does not contain Ks,s as a subgraph. Hence, equivalently, Theorem 2 yields
a polynomial-time algorithm for MWIS for graphs that are simultaneously H-free (for some
H ∈ S), Kr-free, and Kr,r-free.

Our techniques. As in the previous works [1, 13, 17], the crucial tool in handling St,t,t-
free graphs is an extended strip decomposition. Its technical definition can be found in
preliminaries; for now, it suffices to say that it is a wide generalization of the preimage graph
of a line graph (recall that line graphs are S1,1,1-free) that allows for recursion for the MWIS
problem: An extended strip decomposition of a graph G identifies some induced subgraphs
of G as particles and, knowing the maximum possible weight of an independent set in each
particle, one can compute in polynomial time the maximum possible weight of an independent
set in G. (We remark that this computation involves advanced combinatorial techniques as
it relies on a reduction to the maximum weight matching problem in an auxiliary graph.)
In other words, finding an extended strip decomposition with small particles compared to
|V (G)| is equally good for the MWIS problem as splitting the graph into small connected
components.

The starting point is the following theorem of [35].

▶ Theorem 3 ([35, Corollary 12] in a semi-weighted setting). There exists an algorithm that,
given an n-vertex graph G with a set U ⊆ V (G) and an integer t, in polynomial time outputs
either:

an induced copy of St,t,t in G, or
a set X of size at most (11 log n + 6)(t + 1) and a rigid extended strip decomposition of
G − N [X] with every particle containing at most |U |/2 vertices of U .

(A rigid extended strip decomposition is an extended strip decomposition that does not
have some unnecessary empty sets. By N [X] we denote the set consisting of X and all
vertices with a neighbor in X.) Let us remark that the result stated in [35, Theorem 2] is for
unweighted graphs (i.e., U = V (G) using the notation from Theorem 3), but the statement
of Theorem 3 can be easily derived from the proof, see also [17].

Consider the setting of Theorem 1, i.e., the graph G has maximum degree ∆. Apply
Theorem 3 to G with U = V (G). If we get the first outcome, i.e., an induced St,t,t in G, we
return it and terminate. So assume that we get the second outcome, i.e., the set X. Note that
as |X| = O(t log n), we have |N [X]| = O(t∆ log n). It is now tempting to exhaustively branch
on N [X] (i.e., guess the intersection of the sought independent set with N [X]) and recurse
on the particles of the extended strip decomposition of G − N [X]. However, implementing
this strategy directly gives quasipolynomial (in n) running time bound of nO(t∆ log n), as
the branching step yields up to 2|N [X]| = nO(t∆) subcases and the depth of the recursion is
O(log n).

STACS 2024



4:4 Max Weight Independent Set in Sparse Graphs with No Long Claws

Our main new idea now is to perform this branching lazily, by considering a more general
border version of the problem, where the input graph is additionally equipped with a set
of terminals and we ask for a maximum weight of an independent set for every possible
behavior on the terminals.

Input: A vertex-weighted graph (G, w) with a set T ⊆ V (G) of terminals.
Task: Compute fG,w,T : 2T → N ∪ {−∞} defined for every IT ⊆ T as

fG,w,T (IT ) = max{w(I) | I ⊆ V (G) and I is independent, and I ∩ T = IT }.

Border MWIS

A similar application of a border version of the problem to postpone branching in recursion
appeared for example in the technique of recursive understanding [24, 11].

Let us return to our setting, where we have a set X of size O(t log n) and an extended
strip decomposition of G − N [X] with particles of size at most half of the size of V (G).
We would like to remove N [X] from the graph, indicate N(N [X]) as terminals and solve
Border MWIS in (G − N [X], w, T := N(N [X])) using the extended strip decomposition
for recursion. Note that, thanks to the bounded degree assumption, the size of T = N(N [X])
is bounded by O(t∆2 log n).

This approach almost works: the only problem is that, as the recursion progresses,
the set of terminals accummulates and its size can grow beyond the initial O(t∆2 log n)
bound. Luckily, this can be remedied in a standard way: we alternate recursive steps where
Theorem 3 is invoked with U = V (G) with steps where Theorem 3 is invoked with U = T .
In this manner, we can maintain a bound of O(t∆2 log n) on the number of terminals in
every recursive call. Note that this bound also guarantees that the size of the domain of the
requested function fG,w,T is of size nO(t∆2), which is within the promised time bound.

We remark that this approach is arguably significantly simpler and more direct than the
decomposition techniques used in [1] and, furthermore, results in a much better dependency
on ∆ in the exponent in the final running time bound.

Let us now move to the more general setting of Theorem 2. Here, the starting point are
recent results of Weißauer [44] and Lozin and Razgon [33] that show that in the St,t,t-free case,
excluding a biclique as a subgraph is not that much different than bounding the maximum
degree.

A k-block in a graph is a set of k vertices, no two of which can be separated by deleting
fewer than k vertices. The following result was shown by Weißauer (we refer to preliminaries
for standard definitions of tree decompositions and torsos).

▶ Theorem 4 (Weißauer [44]). Let G be a graph and k ⩾ 2 be an integer. If G has no
(k + 1)-block, then G admits a tree decomposition with adhesion less than k, in which every
torso has at most k vertices of degree larger than 2k(k − 1).

Even though the statement of the result in [44] is just existential, the proof actually yields a
polynomial-time algorithm to compute such a tree decomposition.

It turns out that St,t,t-free graphs with no large bicliques have no large blocks.

▶ Lemma 5 (Lozin and Razgon [33]). For any t and s there exists k such that the following
holds. Every St,t,t-free graph with no subgraph isomorphic to Ks,s has no k-block.

Combining Theorem 4 and Lemma 5 we immediately obtain the following.
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▶ Corollary 6. For any t, and s there exists k such that the following holds. Given an
St,t,t-free graph with no subgraph isomorphic to Ks,s, in polynomial time one can compute a
tree decomposition with adhesion less than k, in which every torso has at most k vertices of
degree larger than 2k(k − 1).

To prove Theorem 2 using Corollary 6 we need to carefully combine explicit branching on the
(bounded number of) vertices of large degree in a single bag with – as in the bounded degree
case – applying Theorem 3 to the remainder of the graph and indicating N(N [X]) as the
terminal set of the border problem passed to the recursive calls. Finally, one requires some
care to combine this with the information passed over adhesions in the tree decomposition.

2 Preliminaries

Our algorithms take a vertex-weighted graph (G, w) as an input. In the recursion, we will be
working on various induced subgraphs of G with vertex weight inherited from w. Somewhat
abusing notation, we will keep w for the weight function in any induced subgraph of G.

Tree decompositions. Let G be a graph. A tree decomposition of G is a pair (T , β) where
T is a tree and β : V (T ) → 2V (G) is a function satisfying the following: (i) for every
uv ∈ E(G) there exists t ∈ V (T ) with u, v ∈ β(t), and (ii) for every v ∈ V (G) the set
{t ∈ V (T ) | v ∈ β(t)} induces a connected nonempty subtree of T . For every t ∈ V (T ) and
st ∈ E(T ), the set β(t) is the bag at node t and the set σ(st) := β(s) ∩ β(t) is the adhesion
at edge st. The critical property of a tree decomposition (T , β) is that if st ∈ E(T ) and Vs

and Vt are two connected components of T − {st} that contain s and t, respectively, then
σ(st) separates

⋃
x∈Vs

β(x) \ σ(st) from
⋃

x∈Vt
β(x) \ σ(st) in G.

The torso of a bag β(t) in a tree decomposition (T , β) is a graph H with V (H) = β(t)
and uv ∈ E(H) if uv ∈ E(G) or there exists a neighbor s ∈ NT (t) with u, v ∈ σ(st). That is,
the torso of β(t) is created from G[β(t)] by turning the adhesion σ(st) into a clique for every
neighbor s of t in T .

Extended strip decompositions. We follow the notation of [35, 17]. For a graph H, by
T (H) we denote the set of triangles in H . An extended strip decomposition of a graph G is a
pair (H, η) that consists of:

a simple graph H,
a vertex set η(x) ⊆ V (G) for every x ∈ V (H),
an edge set η(xy) ⊆ V (G) for every xy ∈ E(H), and its subsets η(xy, x), η(xy, y) ⊆ η(xy),
a triangle set η(xyz) ⊆ V (G) for every xyz ∈ T (H),

which satisfy the following properties:
1. The family {η(o) | o ∈ V (H) ∪ E(H) ∪ T (H)} is a partition of V (G).
2. For every x ∈ V (H) and every distinct y, z ∈ NH(x), the set η(xy, x) is complete to

η(xz, x).
3. Every uv ∈ E(G) is contained in one of the sets η(o) for o ∈ V (H) ∪ E(H) ∪ T (H), or is

as follows:
u ∈ η(xy, x), v ∈ η(xz, x) for some x ∈ V (H) and y, z ∈ NH(x), or
u ∈ η(xy, x), v ∈ η(x) for some xy ∈ E(H), or
u ∈ η(xyz) and v ∈ η(xy, x) ∩ η(xy, y) for some xyz ∈ T (H).
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4:6 Max Weight Independent Set in Sparse Graphs with No Long Claws

An extended strip decomposition (H, η) is rigid if for every xy ∈ E(H), the sets η(xy),
η(xy, x), and η(xy, y) are nonempty, and for every isolated x ∈ V (H), the set η(x) is
nonempty. Note that if (H, η) is a rigid extended strip decomposition of G, then |V (H)| is
bounded by |V (G)|.

For an extended strip decomposition (H, η) of a graph G, we identify five types of particles.

vertex particle: Ax := η(x) for each x ∈ V (H),

edge interior particle: A⊥
xy := η(xy) \ (η(xy, x) ∪ η(xy, y)) for each xy ∈ E(H),

half-edge particle: Ax
xy := η(x) ∪ η(xy) \ η(xy, y) for each xy ∈ E(H),

full edge particle: Axy
xy := η(x) ∪ η(y) ∪ η(xy) ∪

⋃
z : xyz∈T (H)

η(xyz) for each xy ∈ E(H),

triangle particle: Axyz := η(xyz) for each xyz ∈ T (H).

As announced in the introduction, to solve MWIS in G it suffices to know the solution
to MWIS in particles. The proof of the following lemma follows closely the lines of proofs of
analogous statements of [1, 13] and is included for completeness in Appendix A.

▶ Lemma 7. Given a Border MWIS instance (G, w, T ), an extended strip decomposition
(H, η) of G, and a solution fG[A],w,T ∩A to the Border MWIS instance (G[A], w, T ∩ A)
for every particle A of (H, η), one can in time 2|T | times a polynomial in |V (G)| + |V (H)|
compute the solution fG,w,T to the input (G, w, T ).

We need the following simple observations.

▶ Lemma 8. Let G be a Kt-free graph and let (H, η) be a rigid extended strip decomposition
of G. Then the maximum degree of H is at most t − 1.

Proof. Let x ∈ V (H). Observe that the sets {η(xy, x) | y ∈ NH(x)} are nonempty and
complete to each other in G. Hence, G contains a clique of size equal to the degree of x

in H. ◀

▶ Lemma 9. Let G be a graph and let (H, η) be an extended strip decomposition of G

such that the maximum degree of H is at most d. Then, every vertex of G is in at most
max(4, 2d + 1) particles.

Proof. Pick v ∈ V (G) and observe that:
If v ∈ η(x) for some x ∈ V (H), then v is in the vertex particle of x and in one half-edge
and one full-edge particle for every edge of H incident with x. Since there are at most d

such edges, v is in at most 2d + 1 particles.
If v ∈ η(xy) for some xy ∈ E(H), then v is in at most four particles for the edge xy.
If v ∈ η(xyz) for some xyz ∈ T (H), then v is in the triangle particle for xyz and in three
full edge particles, for the three sides of the triangle xyz. ◀

3 Bounded-degree graphs: Proof of Theorem 1

This section is devoted to the proof of Theorem 1.
Let t be a positive integer and let (G, w) be the input vertex-weighted graph. We denote

n := |V (G)| and ∆ to be the maximum degree of G. Let

ℓ := ⌈11 log n + 6⌉(t + 2) = O(t log n)

be an upper bound on the size of X for any application of Theorem 3 for any induced
subgraph of G.
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We describe a recursive algorithm that takes as input an induced subgraph G′ of G with
weights w and a set of terminals T ⊆ V (G′) of size at most 4ℓ∆2 and solves Border MWIS
on (G′, w, T ). The root call is for G′ := G and T := ∅; indeed, note that fG,w,∅(∅) is the
maximum possible weight of an independent set in G.

Let (G′, w, T ) be an input to a recursive call. First, the algorithm initializes fG′,w,T (IT ) :=
−∞ for every IT ⊆ T .

If |V (G′)| ⩽ 4∆2ℓ, the algorithm proceeds by brute-force: it enumerates independent sets
I ⊆ V (G′) and updates fG′,w,T (I ∩ T ) with w(I) whenever the previous value of that cell
was smaller. As ℓ = O(t log n), this step takes nO(t∆2) time. This completes the description
of the leaf step of the recursion.

If |V (G′)| > 4∆2ℓ, the algorithm proceeds as follows. If |T | ⩽ 3∆2ℓ, let U := V (G′), and
otherwise, let U := T . The algorithm invokes Theorem 3 on G′ and U . If an induced St,t,t is
returned, then it can be returned by the main algorithm as it is in particular an induced
subgraph of G. Hence, we can assume that we obtain a set X ⊆ V (G) of size at most ℓ and
an extended strip decomposition (H, η) of G∗ := G′ − NG′ [X] whose every particle contains
at most |U |/2 vertices of U .

Observe that as |X| ⩽ ℓ and the maximum degree of G is ∆, we have |NG′(NG′ [X])| ⩽ ∆2ℓ.
Let T ∗ := (T ∩ V (G∗)) ∪ NG′(NG′ [X]). Note that we have T ∗ ⊆ V (G∗) and |T ∗| ⩽ 5∆4ℓ.
For every particle A of (H, η), invoke a recursive call on (G∗

A := G∗[A], w, T ∗
A := T ∗ ∩ A),

obtaining fG∗
A

,w,T ∗
A

(or an induced St,t,t, which can be directly returned). Use Lemma 7 to
obtain a solution fG∗,w,T ∗ to Border MWIS instance (G∗, w, T ∗).

Finally, iterate over every IT ⊆ T ∗ ∪ NG′ [X] (note that T ⊆ T ∗ ∪ NG′ [X]) and, if IT is
independent, update the cell fG′,w,T (IT ∩ T ) with the value w(IT \ T ∗) + fG∗,w,T ∗(IT ∩ T ∗),
if this value is larger than the previous value of this cell. This completes the description of
the algorithm.

The correctness of the algorithm is immediate thanks to Lemma 7 and the fact that
NG′ [X] is adjacent in G′ only to NG′(NG′ [X]) which is a subset of T ∗.

For the complexity analysis, consider a recursive call to (G∗
A, w, T ∗

A) for a particle A. If
|T | ⩽ 3∆2ℓ, then |T ∗

A| ⩽ |T ∗| ⩽ 4∆2ℓ. Otherwise, U = T and |T ∩ A| ⩽ |T |/2 ⩽ 2∆2ℓ. As
|NG′(NG′ [X])| ⩽ ∆2ℓ, we have |T ∗

A| ⩽ 3∆2ℓ. Hence, in the recursive call the invariant of at
most 4∆2ℓ terminals is maintained and, moreover:

if |T | ⩽ 3∆2ℓ, then U = |V (G′)| and |V (G∗
A)| = |A| ⩽ |V (G′)|/2;

otherwise, V (G∗
A) ⊆ V (G′) and |T ∗

A| ⩽ 3∆2ℓ, hence the recursive call will fall under the
first bullet.

We infer that the depth of the recursion is at most 2⌈log n⌉.
At every non-leaf recursive call, we spend nO(1) time on invoking the algorithm from

Theorem 3, nO(t∆2) time to compute fG∗,w,T ∗ using Lemma 7, and nO(t∆2) time for the final
iteration over all subsets IT ⊆ T ∗ ∪ NG′ [X]. Hence, the time spent at every recursive call is
bounded by nO(t∆2).

At every non-leaf recursive call, we make subcalls to (G∗
A, w, T ∗

A) for every particle A of
(H, η). Lemmata 8 and 9 ensure that the sum of |V (G∗

A)| over all particles A is bounded
by (2∆ + 3)|V (G′)|. Hence, the total size of all graphs in the i-th level of the recursion is
bounded by n · (2∆ + 3)i. Since the depth of the recursion is bounded by 2⌈log n⌉, the total
size of all graphs in the recursion tree is bounded by nO(log ∆). Since this also bounds the
size of the recursion tree, we infer that the whole algorithm runs in time nO(t∆2).

This completes the proof of Theorem 1.
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4 Graphs with no large bicliques: Proof of Theorem 2

This section is devoted to the proof of Theorem 2.
Let t be a positive integer and let k be the constant depending on t from Corollary 6.

Again, let (G, w) be the input vertex-weighted graph, let n := |V (G)|, and let

ℓ := ⌈11 log n + 6⌉(t + 2) = O(t log n)

be an upper bound on the size of X for any application of Theorem 3 for any induced
subgraph of G.

The general framework and the leaves of the recursion are almost exactly the same as in
the previous section, but with different thresholds. That is, we describe a recursive algorithm
that takes as input an induced subgraph G′ of G with weights w and a set of terminals
T ⊆ V (G′) of size at most 32k5ℓ and solves Border MWIS on (G′, w, T ). The root call is
for G′ := G and T := ∅ and the algorithm returns fG,w,∅(∅) as the final answer.

Let (G′, w, T ) be an input to a recursive call. The algorithm initiates first fG′,w,T (IT ) =
−∞ for every IT ⊆ T .

If |V (G′)| ⩽ 32k5ℓ, the algorithm proceeds by brute-force: it enumerates independent
sets I ⊆ V (G′) and updates fG′,w,T (I ∩ T ) with w(I) whenever the previous value of that
cell was smaller. As ℓ = O(t log n) and k is a constant depending on t and s, this step takes
polynomial time. This completes the description of the leaf step of the recursion.

Otherwise, if |V (G′)| > 32k5ℓ, we invoke Corollary 6 on G′, obtaining a tree decomposition
(T , β) of G′. If |T | ⩽ 24k5ℓ, let U := V (G′) \ T , and otherwise, let U := T .

For every t1t2 ∈ E(T ), proceed as follows. For i = 1, 2, let Ti be the connected component
of T − {t1t2} that contains ti and let Vi =

⋃
x∈Ti

β(x) \ σ(t1t2). Clearly, σ(t1t2) separates
V1 from V2. Orient the edge t1t2 towards ti with larger |U ∩ Vi|, breaking ties arbitrarily.

There exists t ∈ V (T ) of outdegree 0. Then, for every connected component C of G′ −β(t)
we have |C ∩ U | ⩽ |U |/2. Fix one such node t and let B := β(t) and let C be the set of
connected components of G′ − B. Let GB be a supergraph of G′[B] obtained from G′[B]
by turning, for every C ∈ C, the neighborhood NG′(C) into a clique. Note that GB is a
subgraph of the torso of β(t). Hence, by the properties promised by Corollary 6, for every
C ∈ C we have |NG′(C)| < k (as this set is contained in a single adhesion of an edge incident
with t in T ) and GB contains at most k vertices of degree larger than 2k(k − 1). Let Q be
the set of vertices of GB of degree larger than 2k(k − 1).

We perform exhaustive branching on Q. That is, we iterate over all independent sets
J ⊆ Q and denote GJ := G′ − Q − NG′(J), T J := T ∩ V (GJ ), UJ := U ∩ V (GJ ). For one J ,
we proceed as follows.

We invoke Theorem 3 to GJ with set UJ , obtaining a set XJ of size at most ℓ and an
extended strip decomposition (HJ , ηJ) of GJ − NGJ [XJ ] whose every particle has at most
|UJ |/2 ⩽ |U |/2 vertices of U . Note that GJ is an induced subgraph of G′, which is an
induced subgraph of G, so there is no induced dSt,t,t in GJ .

A component C ∈ C is dirty if NGJ [XJ ] ∩ NG′ [C] ̸= ∅ and clean otherwise. Let

Y J := (NGJ [XJ ] ∩ B) ∪
⋃

C∈C:C is dirty
(NG′(C) ∩ V (GJ)).

The following bounds will be important for further steps.

|NGJ [XJ ] ∩ B| ⩽ (2k(k − 1) + 1)|XJ |. (1)
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To see (1) observe that a vertex v ∈ XJ ∩ B has at most 2k(k − 1) neighbors in B (as every
vertex of B \ Q has degree at most 2k(k − 1) in GB) while every vertex v ∈ XJ \ B has at
most k neighbors in B, as every component of G′ − B has at most k neighbors in B. This
proves (1).

|Y J | ⩽ (k + (2k(k − 1) + 1)2)|XJ | ⩽ 4k4|XJ | ⩽ 4k4ℓ = O(k4t log n). (2)

To see (2), consider a dirty component C ∈ C. Observe that either C contains a vertex of
XJ or NG′(C) ∩ V (GJ) contains a vertex of NGJ [XJ ] ∩ B. There are at most |XJ | dirty
components of the first type, contributing in total at most k|XJ | vertices to Y J . For the
dirty components of the second type, although there can be many of them, we observe that
if v ∈ NG′(C) ∩ NGJ [XJ ] ∩ B, then NG′(C) ∩ V (GJ) ⊆ NGB

[v]. Hence, for every dirty
component of the second type, it holds that NG′(C) ∩ V (GJ) ⊆ NGB

[NGJ [XJ ] ∩ B]. Since
the degree of each vertex of GB is at most 2k(k − 1), by (1) we have∣∣NGB

[
NGJ [XJ ] ∩ B

]∣∣ ⩽ (2k(k − 1) + 1)2|XJ |.

The bound (2) follows.
A component C ∈ C is touched if it is dirty or NG′(C) contains a vertex of Y J . Let

ZJ := (NGJ [Y J ] ∩ B) ∪
⋃

C∈C:C is touched
NG′(C) ∩ V (GJ).

Using similar arguments as before, we can prove

|ZJ | ⩽ (2k(k − 1) + 1)|Y J | ⩽ 8k5|XJ | ⩽ 8k5ℓ = O(k5t log n). (3)

Indeed, if C is touched, then NG′(C) contains a vertex v ∈ Y J (if C is dirty, NG′(C) ∩ V (GJ )
is contained in Y J), and then NG′(C) is contained in NGB

[v]. Also, for v ∈ Y J we have
NGJ [v] ∩ B ⊆ NGB

[v]. Hence, ZJ ⊆ NGB
[Y J ]. Since the maximum degree of a vertex of

B \ Q is 2k(k − 1), this proves (3).
For every touched C ∈ C, denote GC := GJ [NG′ [C] ∩ V (GJ)] and TC := ((T ∩ C) ∪

NG′(C)) ∩ V (GJ). Recurse on (GC , w, TC), obtaining fGC ,w,TC
.

Let

GY := GJ − Y J −
⋃

C∈C:C is touched
C.

Note that, by the definition of dirty and touched, GY is an induced subgraph of GJ −NGJ [XJ ].
Hence, (HJ , ηJ) can be restricted to a (not necessarily rigid) extended strip decomposition
(HJ , ηJ,Y ) of GY .

Let T Y := (T ∪ ZJ) ∩ V (GY ). For every particle A of (HJ , ηJ,Y ), recurse on
(GY [A], w, T Y ∩ A), obtaining fGY [A],w,T Y ∩A. Then, use these values with Lemma 7 to
solve a Border MWIS instance (GY , w, T Y ), obtaining fGY ,w,T Y .

Iterate over every independent set IT ⊆ (T ∩ V (GJ )) ∪ T Y ∪ Y J . Observe that G′ admits
an independent set I with I ∩ (Q ∪ T ∪ T Y ∪ Y J) = J ∪ IT and weight:

w(J) + w(IT \ T Y ) + fGY ,w,T Y (IT ∩ T Y )+∑
C∈C:C is touched

(fGC ,w,TC
(NG′ [C] ∩ IT ) − w(IT ∩ NG′(C))) .

Update the cell fG′,w,T ((IT ∪ J) ∩ T ) with this value if it is larger than the previous value of
this cell. This finishes the description of the algorithm.

STACS 2024



4:10 Max Weight Independent Set in Sparse Graphs with No Long Claws

For correctness, it suffices to note that for every touched component C, the whole
NG′(C) ∩ V (GJ) is in the terminal set for the recursive call (GC , w, TC) and the whole
NG′(C) ∩ V (GY ) is in ZJ and thus in the terminal set for the Border MWIS instance
(GY , w, T Y ).

For the sake of analysis, consider a recursive call on (GC , w, TC) for a touched component
C. If |T | ⩽ 24k5ℓ and U = V (G′)\T , then |TC | ⩽ |T |+k ⩽ 32k5ℓ and |V (GC)\TC | ⩽ |C\T | ⩽
|V (G′)\T |/2. Otherwise, if |T | > 24k5ℓ and U = T , then |TC | ⩽ |T |/2+k ⩽ 16k5ℓ+k ⩽ 24k5ℓ.
Thus, the recursive call on (GC , w, TC) will fall under the first case of at most 24k5ℓ terminals.

Analogously, consider a recursive call on (GY [A], w, T Y ∩A) for a particle A of (HJ , ηJ,Y ).
If |T | ⩽ 24k5ℓ and U = V (G′) \ T , then |T Y ∩ A| ⩽ |T Y | ⩽ |T | + |ZJ | ⩽ 32k5ℓ due to (3).
Furthermore, |V (GY [A]) \ T Y | ⩽ |V (G′) \ T |/2. Otherwise, if |T | > 24k5ℓ and U = T , then
|T Y ∩ A| ⩽ |T |/2 + |ZJ | ⩽ 16k5ℓ + 8k5ℓ ⩽ 24k5ℓ again due to (3). Thus, the recursive call
on (GY [A], w, T Y ∩ A) will fall under the first case of at most 24k5ℓ terminals.

Finally, note that a recursive call (G′, w, T ) without nonterminal vertices (i.e., with
T = V (G′)) is a leaf call.

We infer that all recursive calls satisfy the invariant of at most 32k5ℓ terminals and the
depth of the recursion tree is bounded by 2⌈log n⌉ (as every second level the number of
nonterminal vertices halves).

At each recursive call, we iterate over at most 2k subsets J ⊆ Q. Lemma 8 ensures that
the maximum degree of HJ is at most 2t − 1, while Lemma 9 ensures that every vertex
of GY is used in at most 4t particles of (HJ , ηJ,Y ). In a subcall (GC , w, TC) for a touched
component C, vertices of C are not used in any other call for the current choice of J , while
all vertices of V (GC) \ C are terminals. Consequently, every nonterminal vertex v of G′ is
passed as a nonterminal vertex to a recursive subcall at most 2k · 4t number of times (and a
terminal is always passed to a subcall as a terminal). Furthermore, a recursive call without
nonterminal vertices is a leaf call. As the depth of the recursion is O(log n), we infer that,
summing over all recursive calls in the entire algorithm, the number of nonterminal vertices
is bounded by nO(log t+k) and the total size of the recursion tree is nO(log t+k).

At each recursive call, we iterate over all 2k subsets J ⊆ Q and then we invoke Theorem 3
and iterate over all independent sets IT in (T ∩ V (GJ )) ∪ T Y ∪ Y J . Thanks to the invariant
|T | ⩽ 32k5ℓ and bounds (2), and (3), this set is of size O(k5ℓ). Hence, every recursive call
runs in time nO(k5t)+k·ct , where ct is a constant depending on t. As k is a constant depending
on t and s, the final running time bound is polynomial.

This completes the proof of Theorem 2.

5 Conclusion

While it is generally believed that MWIS is polynomial-time-solvable in St,t,t-free graphs
(with no further assumptions), such a result seems currently out of reach. Thus it is interesting
to investigate how further can we relax the assumptions on instances, as we did when going
from Theorem 1 to Theorem 2. In particular, we used the assumption of Kr-freeness twice:
once in Lemma 5 and then to argue that H (the pattern of an extended strip decomposition
we obtain) is of bounded degree. On the other hand, the assumption of Kr,r-freeness was
used just once: in Lemma 5. Thus it seems natural to try to prove the following conjecture.

▶ Conjecture 10. For every integers t, r there exists a polynomial-time algorithm that, given
an St,t,t-free and Kr-free vertex-weighted graph (G, w) computes the maximum possible weight
of an independent set in (G, w).
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A Appendix: Proof of Lemma 7

Iterate over every IT ⊆ T . For fixed IT , we aim at computing fG,w,T (IT ). If IT is not
independent, we set fG,w,T (IT ) = −∞. In the remainder of the proof, we show how to
compute in polynomial time the value fG,w,T (IT ) for fixed independent IT ⊆ T .

For a particle A of (H, η), let a(A) := fG[A],w,T ∩A(IT ∩A) and let I(A) be an independent
set witnessing this value, that is, an independent set in G[A] of weight w(a(A)) with
I(A) ∩ T ∩ A = IT ∩ A. Note that as IT is independent, the value a(A) is not equal to −∞
and such an independent set exists.

We say that x ∈ V (H) is forced if IT ∩
⋃

y∈NH (x) η(xy, x) ̸= ∅. Note that since IT is
independent, if x is forced, then η(xy, x) ∩ IT ≠ ∅ for exactly one edge xy incident with x.
We call such an edge xy the enforcer of x. Note that an edge xy may be the enforcer of both
x and y.

The arguments now follow very closely the outline of Section 3.3 of [12].
We construct a set P of particles and an edge-weighted graph (H ′, w′) as follows. We

start with P = ∅, V (H ′) = V (H), and E(H ′) = ∅.
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For every x ∈ V (H) that is not forced, add Ax to P. For every xyz ∈ T (H) such that
neither of the edges xy, yz, or xz is the enforcer of both its endpoints, add Axyz to P. For
every e = xy ∈ E(H), proceed as follows.
1. If neither x nor y is forced, we add to H ′ a new vertex te and edges tex, tey, xy, and set

the edge weights w′ as follows:

w′(tex) := a(Ax
xy) − a(A⊥

xy) − a(Ax),
w′(tey) := a(Ay

xy) − a(A⊥
xy) − a(Ay),

w′(xy) := a(Axy
xy) − a(A⊥

xy) − a(Ax) − a(Ay) −
∑

z, s.t. xyz∈T (H)

a(Axyz).

Furthermore, add A⊥
xy to P.

2. If exactly one of x and y is forced, say w.l.o.g. x is forced and y is not forced, proceed as
follows.
a. If xy is the enforcer of x, then add to H ′ an edge xy with weight

w′(xy) := a(Axy
xy) − a(Ax

xy) − a(Ay) −
∑

z, s.t. xyz∈T (H)

a(Axyz).

Furthermore, add Ax
xy to P.

b. If xy is not the enforcer of x, then add to H ′ a new vertex te and an edge tey with
weight

w′(tey) := a(Ay
xy) − a(A⊥

xy) − a(Ay).

Furthermore, add A⊥
xy to P.

3. If both x and y are forced, proceed as follows.
a. If xy is neither the enforcer of x nor of y, add A⊥

xy to P.
b. If xy is the enforcer of x but not of y add Ax

xy to P.
c. If xy is the enforcer of y but not of x add Ay

xy to P.
d. If xy is the enforcer of both x and y, add Axy

xy to P.

This finishes the description of the construction of P and (H ′, w′). In the next two
paragraphs we make two observations that follow by a direct check from the definitions.

Observe that I0 :=
⋃

A∈P I(A) is independent in G and has weight a0 :=
∑

A∈P a(A).
Furthermore, for every A ∈ P , we have I0 ∩ A ∩ T = IT ∩ A and I0 ∩ T = IT . We think of I0
as the “base” solution for fG,w,T (IT ).

Observe also that all weights w′ of H ′ are nonnegative, as Ax
xy contains both A⊥

xy and
Ax while Axy

xy contains A⊥
xy, Ax, Ay, as well as all Axyz for all triangles xyz containing the

edge xy.
We will be asking for a maximum weight matching in (H ′, w′). Intuitively, taking an

edge tex to such a matching corresponds to replacing in I0 the parts I(A⊥
xy) and I(Ax) with

the part I(Ax
xy) while taking an edge xy to such a matching corresponds to replacing in I0

the parts I(A⊥
xy), I(Ax), I(Ay) and all parts I(Axyz) for triangles xyz containing the edge

xy with part I(Axy
xy).

From another perspective, fix x ∈ V (H) and recall that the sets η(xy, x) for y ∈ NH(x)
are complete to each other. Hence, any independent set in G can contain vertices in at most
one of such sets. For an edge e = xy ∈ E(H), taking an edge xy or tex in a matching in
H ′ corresponds to choosing that, among all neighbors of x in H, the neighbor y is such
that the set η(xy, x) is allowed to contain vertices of the sought independent set. (Choosing
xy ∈ E(H ′) to the matching corresponds to allowing both η(xy, x) and η(yx, y) to contain
vertices of the sought independent set.)
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However, there is a delicacy if IT contains a vertex of some interface η(xy, x). Then, in
some sense IT already forces some choices in the corresponding matching in H ′. This is
modeled above by having alternate construction for vertices x ∈ V (H) that are forced.

The following two claims prove that fG,w,T (IT ) equals a0 plus the maximum possible
weight of a matching in (H ′, w′) and thus complete the proof of Lemma 7. Their proofs
follow exactly the lines of the proofs of Claims 3.7 and 3.8 of Section 3.3 of [12] and are thus
omitted.

▷ Claim 11. Let I be an independent set in G with I ∩ T = IT . Let M be the set of edges
of H ′ defined as follows: for every e = xy ∈ E(H), if η(xy, x) ∩ I ≠ ∅ and η(xy, y) ∩ I ̸= ∅,
then xy ∈ M , if η(xy, x) ∩ I ̸= ∅ and η(xy, y) ∩ I = ∅, then tex ∈ M , and if η(xy, x) ∩ I = ∅
and η(xy, y) ∩ I ̸= ∅, then tey ∈ M . Then, all the above edges indeed exist in H ′ and M is a
matching. Furthermore, the weight of I is at most a0 +

∑
e∈M w′(e).

▷ Claim 12. Let M be a matching in H ′. Let PM be the set of particles of (H, η) defined
as follows. Start with PM := P and then for every edge e = xy ∈ E(H),

if xy ∈ M , insert Axy
xy into PM and remove from PM the following particles if present:

Ax
xy, Ay

xy, A⊥
xy, Ax, Ay, Axyz for any z ∈ V (H) such that xyz ∈ T (H).

if tex ∈ M (resp. tey ∈ M), insert Ax
xy (resp. Ay

xy) into PM , and remove from PM the
following particles if present: A⊥

xy and Ax (resp. Ay).
Then IM :=

⋃
A∈PM

is an independent set in G with IM ∩ T = IT and of weight at least
a0 +

∑
e∈M w′(e).
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Abstract
We study the satisfiability of string constraints where context-free membership constraints may be
imposed on variables. Additionally a variable may be constrained to be a subword of a word obtained
by shuffling variables and their transductions. The satisfiability problem is known to be undecidable
even without rational transductions. It is known to be NExptime-complete without transductions,
if the subword relations between variables do not have a cyclic dependency between them. We show
that the satisfiability problem stays decidable in this fragment even when rational transductions are
added. It is 2NExptime-complete with context-free membership, and NExptime-complete with
only regular membership. For the lower bound we prove a technical lemma that is of independent
interest: The length of the shortest word in the intersection of a pushdown automaton (of size O(n))
and n finite-state automata (each of size O(n)) can be double exponential in n.
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1 Introduction

The theory of strings has always been an important and active area of research for long. In
fact, as Hilbert notes, it is the very foundation of mathematical logic itself [45, 25]. The recent
successes in employing the theory for practical verification has only re-iterated its importance.
The study of the theory of string constraints dates back to Tarski and Hermes [44, 33], who in
1933 provided the axiomatic foundation for it. There have been several other advancements
of string theories since then, some of the notable ones include [25, 43, 41, 40, 42, 18]. In
1977, Makanin studied the algorithmic aspect of the word equations (equation involving
concatenation and equality) and showed that the satisfiability problem is decidable [40]. The
complexity for this problem was improved in [42]. Despite receiving much attention, the
theory of strings has long standing unsolved open problems, indicating the intrinsic difficult
nature of the theory.
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5:2 Context-Free String Constraints with Subword-Ordering and Transducers

One important aspect of the study here is the satisfiability of string constraints. The
question here asks whether it is possible to assign a word to each variable such that the
given set of string constraints is satisfied. The constraints themselves can be either relational,
which relate variables or membership, that define the domain for each variable.

In the recent years, the constraint satisfaction problem of strings (CSPS) has received
much attention from verification community due to its usefulness in modeling and reasoning
about programs. This problem has particularly been useful in verifying web services [32] and
database applications from injection attacks [11]. In such attacks, the attacker constructs an
input string in such a way that the underlying semantics of the interpretation is changed.
The CSPS, and more importantly its implementations in solvers [38, 1, 17, 36, 37, 26, 35]
have provided the much needed power to model and verify programs for such vulnerabilities.
This in turn has directed the study to explore the boundaries of solvability.

However one impediment for this has been the theoretical limitation. For instance, with
respect to word equations, adding a transducer renders the model undecidable. Similarly
introducing membership in context free language also renders the model undecidable (see
[28], [30] for more details). Despite this, there have been several advancements in this regard
[20, 39, 34, 23, 22, 19, 5, 8, 29].

The context-free membership constraints are particularly useful feature to have since
checking vulnerabilities include checking for programs, that are inherently context-free,
masquerading as string queries. In [9], the authors provided first such model that could
handle context-free membership queries and yet has decidability for CSPS, under some
restrictions. They showed that if every relational constraint has sub-word relation instead
of equality and assuming an acyclicity restriction, the satisfaction problem is NExptime
complete. In fact, the authors in their model include a more powerful shuffle operator
against the usual concatenation. Further they show that the complexity of the satisfiability
problem when only regular membership is involved is also the same i.e, NExptime complete.
They also provide an interesting connection of their model with lossy channel systems that
include pushdown automata.

Yet another feature in string solvers that has been much desired is that of transductions. As
noted in [34, 22], most modern applications, especially browsers include implicit transductions
that mutates the input string. To verify such applications, one also needs the power of
transductions. There have been very few successful attempt towards decidability of string
constraints that involve transductions, some of them being [34, 8, 22, 20].

We investigate string constraints when sub-word ordering, context-free membership and
transducers are involved. Unfortunately, in its full generality this problem is undecidable.
However we show that imposing the same acyclicity restriction as in [9] gives decidability
under this setting. This extends the decidability result of [9] to include transductions.

In [9] the satisfiability of the acyclic variant of the string constraints without transducers
was shown to be inter-reducible with the control-state reachability problem of acyclic networks
of pushdown systems communicating over lossy fifo channels. They showed that both these
problems are NExptime-complete. In our setting, with the additional feature of transductions,
we can enrich the model of communicating pushdown to allow transductions to be sent in
the channels. Such transductions naturally model encoders such as error correcting codes or
injection of noise.

We show that, when only regular membership is allowed, adding transductions do not alter
the complexity. It is still NExptime-complete. Interestingly when context-free membership
is involved, it becomes 2NExptime-complete.
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Our 2NExptimelower bound argument relies on a new technique that is of independent
interest. In fact, we show that we can count exactly 22n using one pushdown automaton
with a binary stack alphabet and 3 states, and n finite state automata each of size O(n).
Along the way we also show that 1) we can count exactly 2n using a pushdown automaton
with O(n) states and a binary stack alphabet, and 2) we can count exactly 2n using n finite
state automata each of size O(n).

As an application of this, we obtain a tight bound on the size of the smallest DFA of the
downward closure, upward closure and the Parikh image closure of the intersection language
of n finite state automata, each of size O(n). This size is Θ(2n). Likewise, the size of the
smallest DFA of the downward, upward and Parikh image closure for the intersection of
language of n finite state automata with the language of a pushdown automaton, each of
size O(n) is Θ(22n).

Related work

Apart from the work mentioned in the introduction, there are several other work on string
constraints. In [19], the authors consider word equations equipped with replace all function
and show decidability for the acyclic fragment.

In [3], the authors develop an uniform framework to decide the satisfiability and unsat-
isfiability of string constraints based on identifying patterns. In [2], the authors consider
string constraints extended with negation and show how to solve them. In [23], the authors
provide a semantic restriction on string manipulating programs that guarantees decidability
for checking path feasibility. In [7], the authors study the problem of regular separability of
the language of two word equations. In [27], the authors compare the expressive power of
the logical theories built around word equations.

In [34], word equations with equality, transducers and regular membership is considered.
This problem in full generality is undecidable. The authors consider a straight line fragment
and show that the satisfiability problem is Expspace complete. In [23], the authors
investigated the decidability of string constraints in the presence of regular membership
constraints, replaceAll operator involving regular expressions and straight line restriction.
In [21], the authors consider a stronger match and replace operator and show decidability.
In [8], word equations with equality, transducers, length constraints and regular membership
is considered and a chain free fragment of it was shown to be decidable. The authors show
that the chain-free fragment of the satisfiability problem in this setting is decidable.

All of these work consider word equation (uses equality for comparison) in the model,
our work uses subword ordering as the comparison operator. Further more, none of the work
mentioned above considers context free membership constraints. In [9], subword ordering
and context free membership is considered, where as it does not include transductions.

Apart from these, there are several approaches which attempts to solve the problem from
a practical perspective, some of them being [4, 6, 2, 5, 17, 16, 34].

2 Preliminaries

Sets, Multisets, Functions

We denote the set of natural number {1, 2, . . . } by N. For n ∈ N, we denote by [n] the
set of natural numbers up to n: {1, 2, . . . , n}. Let N0 denote the set {0, 1, 2, . . . }. That is,
N0 = {0} ∪ N.

STACS 2024



5:4 Context-Free String Constraints with Subword-Ordering and Transducers

2 31
ϵ/ϵ ϵ/ϵ

b/bb

a/a

b/b

a/aa

Figure 1 A transducer. Here the label x/y on a transition t indicates that label(t) = x and
out(t) = y. It nondeterministically chooses to duplicates as leaving bs as such, or duplicates bs
leaving as as such.

Let S be any set. A multiset X of S assigns a multiplicity X(s) ∈ N0 to each element
s ∈ S. We say that s ∈ X if X(s) > 0. For a usual subset X, the multiplicity X(s) ∈ {0, 1}.
A multiset X may also be written as {{s1, s2, . . . }}, by listing each element s, X(s) many
times. The set of all multisets of S is denoted NS

0 , and the set of all usual subsets of S is
denoted by 2S . The size of a multiset X, denoted |X| is the sum of the multiplicities of the
elements. That is, |X| =

∑
s∈X X(s).

Word, Subword, Shuffle, Projection

Let Σ be an alphabet. Σ∗ denotes the set of all words over Σ, ϵ denotes the empty word,
and Σϵ = Σ ∪ {ϵ}. For a word w = a1a2 . . . an ∈ Σ∗, we denote by len(w), the length of w

(len(w) = n) and by w[i] its ith letter ai. The set of positions of w is denoted pos(w). That
is, pos(w) = [len(w)]. For Y ⊆ pos(w), we denote by w↓Y the projection of w to the positions
in Y . If Y = {i1, i2, . . . im} with 0 < i1 < i2 < · · · < im ≤ n, then w↓Y = ai1ai2 . . . aim

. For
u, v ∈ Σ∗, we say u is a (scattered) subword of v, denoted u ⪯ v, if there is Y ⊆ pos(v) such
that u = v↓Y . In this case we say v is a superword of u. Let Σ′ ⊆ Σ be a sub-alphabet and let
w ∈ Σ∗. Projection of w to Σ′, denoted w↓Σ′ , is defined to be w↓Y where Y = {i | w[i] ∈ Σ′}.

Let X be a finite multiset of words from Σ∗ given by X = {{w1, . . . wn}}. We define the
shuffle of X, denoted Shuffle(X) to be the set {w | there are Y1, Y2 . . . Yn ⊆ pos(w) forming
a partition of pos(w) and wi = w↓Yi for all i ∈ [n]}.

Finite-state automaton, Transducers, Pushdown Automaton

A (nondeterministic) finite-state automaton (NFA) over an alphabet Σ is given by a tuple
A = (States, Trans, sin, F ) where States is the finite set of states, Trans ⊆ States × Σϵ × States
is the set of transitions, sin ∈ States is the initial state, and F ⊆ States is the set of
final/accepting states. We write s

t−→ s′ for some t ∈ Trans if t is of the form (s, a, s′). Define
the homomorphism label : Trans∗ → Σ∗ given by label((s, a, s′)) = a. The language of an
NFA A, denoted L(A) is given by L(A) = {w | w = label(t1t2 . . . tn) and sin

t1−→ s1
t2−→

s2 . . . sn−1
tn−→ sn with sn ∈ F}.

A transducer from Σ∗ to Σ∗ is a tuple T = (States, Trans, sin, F, out) where A =
(States, Trans, sin, F ) is an NFA, and out : Trans → Σ∗ defines the outputs on each transition.
The function out defines a homomorphism out : Trans∗ → Σ∗. The relation R ⊆ Σ∗ × Σ∗

recognized by T , denoted R(T ) is given by {(u, v) | u = label(t1t2 . . . tn), v = out(t1t2 . . . tn)
and sin

t1−→ s1
t2−→ s2 . . . sn−1

tn−→ sn with sn ∈ F}. The equality relation is realised by a
transducer Tid. A transducer is depicted in Figure 1.
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A pushdown automaton over Σ is given by a tuple P = (States, Trans, sin, F, op, Γ) where
A = (States, Trans, sin, F ) is an NFA, Γ is the finite set of stack symbols, and op : Trans → Ops
defines the stack operation of each transition, where Ops = {push(γ) | γ ∈ Γ} ∪ {pop(γ) | γ ∈
Γ} ∪ {nop}. When depicting the pushdown automaton pictorially, we represent a transition
t = (s, a, s′) as s

a|op(t)−−−−→ s′. When op(t) = nop, we may simply write s
a−→ s′. Further if a = ϵ

then we may write it as s
op(t)−−−→ s′. A configuration of a PDA is a pair (s, w) ∈ States × Γ∗,

indicating the current state and the stack contents. For two configurations (s, w) and (s′, w′)
we write (s, w) t−→ (s′, w′) for some t ∈ Trans if t is of the form (s, a, s′) and 1) op(t) = push(γ)
and w′ = γ · w, or 2) op(t) = pop(γ) and w = γ · w′, or 3) op(t) = nop and w = w′. The
language of a PDA P, denoted L(P ) is given by L(P ) = {w | w = label(t1t2 . . . tn) and
(sin, ϵ) t1−→ (s1, w1) t2−→ (s2, w2) . . . (sn−1, wn−1) tn−→ (sn, ϵ) with sn ∈ F}.

The set of all NFA / transducers / PDA over the alphabet Σ is denoted NFA(Σ) /
TRANSD(Σ) / PDA(Σ). A language L ⊆ Σ∗ is said to be context-free (resp. regular) if there
is a PDA (resp. NFA) A such that L = L(A). A relation R ⊆ Σ∗ × Σ∗ is said to be rational
if it is recognized by some transducer T .

Given an NFA A (resp. transducer T ), its number of states is denoted by state-size(A)
(resp. state-size(T )). Given a PDA P by state-size(P ) we denote the sum of the number of
states and number of stack symbols. That is state-size(P ) = |States| + |Γ|.

3 String constraints

A string constraint over a set of variables V and an alphabet Σ is given by a set of membership
constraints and a set of subword ordering constraints. The membership constraint is given by
associating a pushdown automaton to each variable, indicating that the word assigned to the
variable must belong to the language of the pushdown automaton. A subword order constraint
is given by a pair (x, Y ) where x ∈ V and Y is a finite multiset over V × TRANSD(Σ).

For example, the constraint (x, {{(y, T1), (y, T2), (y, T2), (z, T2)}}) means that the words
assigned to x, y and z, say wx, wy and wz respectively, must satisfy wx ⪯ w for some
w ∈ Shuffle({{u1, u2, u3, u4}}), where (wy, u1) ∈ R(T1), (wy, u2) ∈ R(T2), (wy, u3) ∈ R(T2),
and (wz, u4) ∈ R(T2). Note that the transducers can be identity in which case the input and
the output are the same. For instance, if T1 = Tid then u1 must be same as wy.

We sometimes denote the constraint (x, Y ) by x ⪯ Shuffle(Y ). Abusing notation, we may
write a pair (x, T ) ∈ V × TRANSD(Σ) as T (x). If Y = {{(y, T )}} (i.e., a singleton), then we
may simply write x ⪯ T (y) instead of x ⪯ Shuffle({{T (y)}}). Further, we may simply write x

for (x, Tid). For instance, (x, {{(y, Tid)}}) may be also written as x ⪯ y.

▶ Definition 1. A string constraint C is a tuple (Σ, V, Mem, Rel) where Mem : V → PDA(Σ)∪
NFA(Σ) assigns a PDA or an NFA to each variable, and Rel ⊆ V × NV×TRANSD(Σ)

0 is a finite
set of subword-order constraints.

We denote by trset(C) the finite set of transducers occurring in the string constraint C.
That is, trset(C) = {T | ∃(x, Y ) ∈ Rel, y ∈ V , (y, T ) ∈ Y }. Similarly, autset(C) is
the finite set of PDA/NFA occurring in C. That is, autset(C) = {Mem(x) | x ∈ V}.
A string constraint is regular if for every v ∈ V, Mem(v) is an NFA, (equivalently, if
autset(C) ⊆ NFA(Σ)). An important parameter for our complexity considerations will
be the number of times a variable is used in the right hand side (RHS). We denote it by
multiplicityC(x) =

∑
T ∈trset(C),(y,Y )∈Rel Y ((x, T )). We omit the subscript and simply write

multiplicity(x) when C is clear from the context.
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5:6 Context-Free String Constraints with Subword-Ordering and Transducers

▶ Definition 2. A string constraint C is satisfiable if there exists an assignment σ : V → Σ∗

that satisfies every membership and relational constraints in C – that is,
1. σ(v) ∈ L(Mem(v)) for all v ∈ V
2. For every (x, Y ) ∈ Rel, if Y = {{(y1, T1), (y2, T2), . . . (yn, Tn)}}, then there are words

u1, u2, . . . , un such that (σ(yi), ui) ∈ R(Ti) for each i ∈ {1, 2, . . . , n}, and there is a word
w ∈ Shuffle({{u1, u2, . . . , un}}) such that σ(x) ⪯ w .

Such an assignment σ is called a satisfying assignment.

▶ Example 3. Consider a string constraint on two variables x and y. The membership
constraints are as follows. Mem(x) is an NFA for {ababab}, and Mem(y) is an NFA for
{ab}. There is only one relational constraint: x ⪯ Shuffle({{(y, T )(y, T )}}), where T is the
transducer defined in Figure 1. This string constraint is satisfiable.

▶ Definition 4 (Satisfiability Problem for String Constraints).
Input: A string constraint C.
Question: Is C satisfiable?

The satisfiability problem is undecidable already for regular string constraints without
transducers (or, equivalently, when only Tid is allowed) [9]. To circumvent undecidability,
acyclic fragment of string constraints were considered in [9]. Formally, let x < y if (x, Y ) ∈ Rel
with (y, T ) ∈ Y for some transducer T . The string constraint is acyclic if < is acyclic. For
the acyclic fragment without transducers, satisfiability was shown in [9] to be NExptime-
complete. The lower bound already holds for regular acyclic string constraints without
transducers.

We study the satisfiability problem for acyclic string constraints in the presence of
transducers. Our main results are:

▶ Theorem 5. Satisfiability problem for acyclic context-free string constraints with transducers
is 2NExptime-complete.

▶ Theorem 6. Satisfiability problem for acyclic regular string constraints with transducers is
NExptime-complete.

▶ Remark 7. Our result shows an interesting contrast with string equations (with equality
instead of subword order in relational constraints). Satisfiability of string equations (with
concatenation, no shuffle) is decidable, when regular membership constraints are allowed.
Adding transducers on top however render the satisfiability undecidable. In our setting,
where subword order is used instead of equality, adding transducers to the acyclic fragment
retains decidability.
▶ Remark 8. Without transducers, regular and context-free string constraints have the same
complexity. In the presence of transducers they are in different complexity classes.
▶ Remark 9. It was shown in [9] that concatenation can be expressed by shuffle. This
simulation is only linear and furthermore it preserves acyclicity. Thus our complexity upper
bounds already hold for string constraints which uses the more popular concatenation
operation instead of shuffle. Interestingly, the lower bounds in Theorem 5 and Theorem 6
already hold for the variant without shuffle.
In Section 4 and Section 5 we prove the lower bound and upper bound claimed in Theorem 5
respectively. The proof of Theorem 6, as well as other missing details can be found in the
full version of this paper [10]. In Section 6, we discuss some implications of our results and
conclude.
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4 2NEXPTIME Hardness

We prove the hardness by giving a reduction from a bounded variant of the PCP problem
that is 2NExptime-complete.

4.1 (Double-exponentially) Bounded PCP problem
In this decidable variant of the PCP problem, we are also given a parameter ℓ as part of the
input in unary, and we ask whether there is a solution of length 22ℓ . Formally the problem is
stated as follows.

▶ Definition 10 ((Double-exponentially) Bounded PCP problem (2eBPCP)).
Input: (Σ1, Σ2, f, g, ℓ) where Σ1 and Σ2 are two disjoint finite alphabets, f, g : Σ1 → Σ∗

2 are
two functions which naturally extend to a homomorphism from Σ∗

1 → Σ∗
2, and ℓ ∈ N is a

natural number.
Question: Is there a word w ∈ Σ+

1 with |f(w)| = 22ℓ and f(w) = g(w) ?

The above problem is 2NExptime-complete. The proof can be found in the full ver-
sion [10]. If the problem asked for the length of f(w) to be ℓ, it would be NP-complete [31],
and if it was 2ℓ it would be NExptime-complete [9].

▶ Theorem 11. (Double-exponentially) Bounded PCP problem is 2NExptime-complete.

4.2 Towards a reduction
Our idea is to use 4 variables x1, x2, xf , xg. The membership constraint for xf is a PDA for
the language Lf = {w · #∗ · f(wr) | w ∈ Σ∗

1}, and that for xg is a PDA for the language
Lg = {w · #∗ · g(wr) | w ∈ Σ∗

1}. Recall that wr denotes the reverse of w, and # is a special
symbol not in Σ1 or Σ2. Suppose x1 and x2 are constrained to the language Σm

1 #nΣ22ℓ

2 such
that m + n = 22ℓ , by polynomial-sized constraints. Then with the relational constraints 1)
x1 ⪯ xf 2) xf ⪯ xg and 3) xg ⪯ x2, we will achieve our reduction. Recall that x ⪯ y is a
short hand for x ⪯ Shuffle({{(y, Tid)}}). Indeed these constraints are satisfiable if and only if
the 2eBPCP has a solution.

Notice that our constraints for x1 and x2 requires counting exactly 22ℓ . This is not possible
with a polynomial-sized PDA. In the above paragraph we did not use transducers either.
Without transducers, the satisfiability problem of string constraints is not 2NExptime-hard,
it is indeed in NExptime[9].

However, with the help of ℓ many transducers (or FSA) of size O(ℓ) we can have a PDA
that counts 22ℓ . We will describe this technique with PDA and DFA in the next subsection,
and in the following subsection using this idea, we complete the reduction.

4.3 Counting 22ℓ using one PDA and ℓ DFA
Let Γ1 = {0, 1, inc, dec}, and let Γ2 be another finite alphabet disjoint from Γ1. Our objective
is to come up with a PDA A and ℓ DFAs A1, A2, . . . Aℓ over the alphabet Γ1 ∪ Γ2, each
of size O(ℓ) such that any word accepted by all of them (i.e., in ∩iL(Ai) ∩ L(A)) has 22ℓ

occurrences of letters from Γ2.

First we give a PDA with 3n + 3 states and stack symbols {0, 1} that accepts (Γ2)2n+1 .

▷ Claim 12. There is a PDA with 3n + 3 states and stack symbols {0, 1} with stack-height
never exceeding n that accepts (Γ2)2n+1 .
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⟨0, push⟩ ⟨1, push⟩ ⟨2, push⟩ · · · ⟨n − 1, push⟩ ⟨n, push⟩

⟨0, switch⟩ ⟨1, switch⟩ ⟨2, switch⟩ · · · ⟨n − 1, switch⟩ ⟨n, switch⟩

⟨0, pop⟩ ⟨1, pop⟩ ⟨2, pop⟩ · · · ⟨n − 1, pop⟩ ⟨n, pop⟩

push(0) push(0) push(0)

push(1)
push(1)

push(1)

pop(0)
pop(0)

pop(1)pop(1)pop(1)

pop(0)

Γ2

Γ2

Figure 2 A PDA with 3n + 3 states that accepts (Γ2)2n+1
.

Proof. Such a PDA is depicted in Figure 2. In this PDA the stack height never exceeds n.
The PDA has three modes - a push mode where it keeps pushing 0s until the stack height is
n, a pop mode where it keeps popping the symbol 1, and a switch mode that switches from a
pop mode to push mode by replacing a 0 on the top of the stack by a 1. The states then
represent the current stack height and the mode.

When the PDA is in the state ⟨n, push⟩, the stack contents represents an n-bit binary
number. At this point it reads two symbols from Γ2 and goes to the state ⟨n, pop⟩. From
there, it does a sequence of transitions such that the next time it reaches ⟨n, push⟩, the binary
number in the stack would be incremented. For this it replaces the 01m suffix with a 10m.

The initial state is ⟨0, push⟩. The first time it reaches ⟨n, push⟩, the stack content would
be 0n. The last time it reaches ⟨n, push⟩ (or ⟨n, pop⟩) the stack content would be 1n, and
from there it reaches ⟨0, pop⟩ by popping the entire stack. The state ⟨0, pop⟩ is accepting.
Note that this PDA reaches the state ⟨n, push⟩ exactly once for every n-bit binary number,
and each time it reaches ⟨n, push⟩ it reads two symbols from Γ2. Thus any accepting run
will read 2n+1 Γ2 symbols. ◁

If n = 2ℓ − 1 we will be able to get 22ℓ length words from Γ2 as we wanted. However, we
are allowed to use only O(ℓ) states. To overcome this, we will use ℓ length binary numbers
to indicate the current stack height. We then use ℓ DFAs, one for each bit, to update the
binary numbers representing the stack height as required. We will next describe the ℓ DFAs
that succinctly record the stack height. We then give a PDA that, along with these ℓ DFAs,
accepts words with 22ℓ occurrences of letters from Γ2.

Let {inc, dec} disjoint from Γ2 be the increment and the decrement operators on integers.
Further, we may treat symbols from Γ2 as “keep unchanged” operators. That is, inc(n) =
n + 1, dec(n) = n − 1 and a(n) = n for all a ∈ Γ2. Consider the following language
over the alphabet Γ = {0, 1, inc, dec} ∪ Γ2 of alternating sequences of ℓ-bit numbers and
operators, where each operator when applied on the previous number gives the next number.
Here, the binary numbers are written with the most-significant bit on the left. That is
val(b1b2 . . . bℓ) =

∑
i bi × 2ℓ−i.

Lℓ = {n0o1n1o2n2 · · · oknk | k ≥ 0, ni ∈ (0 + 1)ℓ for all i : 0 ≤ i ≤ k

oi ∈ {inc, dec} ∪ Γ2 for all i : 0 < i ≤ k

val(ni) ≡ oi(val(ni−1)) mod 2ℓ for all i : 0 < i ≤ k}

▷ Claim 13. There are ℓ DFAs B1, B2, . . . Bℓ, each with O(ℓ) states such that Lℓ =
⋂

i L(Bi).

Proof. We describe the ℓ DFAs B1, B2, . . . Bℓ below.
The ith DFA Bi guarantees that the ith bit takes the correct value. This DFA is depicted

in the Figure 3. The automaton has two disconnected “forks” (the top one starting at si
0

and the bottom one starting at si
1). In the top fork, the ith bit read is always 0, and in the
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si
0 · · ·

· · · ti
0

· · · ti
1

· · · ti
2

si
1 · · ·

· · · ti
3

· · · ti
4

· · · ti
5

0, 1 0, 1 0

0
0 0
1 1

0, 1

1
1 1

0 0

0, 1 0, 1 1

0
0 0
1 1

0, 1

1
1 1

0 0

Γ2

Γ2

inc

inc

dec

dec

Figure 3 The automaton Bi. The transitions on {0, 1} are depicted in blue. The transitions on
Γ2 (resp. inc, dec) are depicted in brown (resp. green, red).

bottom fork the ith bit read is always 1. Consider nj−1ojnj occurring in the above sequence.
Let nj−1 = b1b2 . . . bℓ and let nj = b′

1b′
2 . . . b′

ℓ. If oj is inc, the ith bit bi is toggled (b′
i ≠ bi)

iff bm = 1 for all m : m > i. If oj is dec, the ith bit bi is toggled (b′
i ̸= bi) iff bm = 0 for all

m : m > i. If oj ∈ Γ2 the ith bit is never toggled. The initial states are si
0 and si

1, and the
accepting states are ti

0, . . . ti
5. Clearly Lℓ =

⋂
i L(Bi). ◁

However, for succinctly simulating the PDA given in Figure 2, we need the ℓ DFAs to
faithfully reflect the stack height. For this we consider a slight modification of Lℓ.

L′
ℓ = {n0o1n1o2n2 · · · oknk | k ≥ 0, ni ∈ (0 + 1)ℓ for all i : 0 ≤ i ≤ k

oi ∈ {inc, dec} ∪ Γ2 for all i : 0 < i ≤ k

val(ni) ≡ oi(val(ni−1)) for all i : 0 < i ≤ k

n0 = 0ℓ = nk, if oi = inc then ni−1 ̸= 1ℓ

if oi = dec then ni−1 ̸= 0ℓ}

This ensures that the PDA starts and ends with an empty stack. Further inc after 1ℓ and
dec after 0ℓ are forbidden. Otherwise, the value will not faithfully represent the stack height.

▷ Claim 14. There are ℓ DFAs A1, A2, . . . Aℓ, each with O(ℓ) states such that L′
ℓ =

⋂
i L(Ai).

Proof. The states of Ai are exactly those of Bi. For i ≥ 2, the transitions of Ai is exactly
the same as that of Bi. The transitions for A1 is obtained by removing two transitions from
that of B1, namely the outgoing inc transition from t1

5 and the outgoing dec transition from
t1
0. For all i ≥ 1, the initial state of Ai is si

0 and the final state is ti
0. ◁
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5:10 Context-Free String Constraints with Subword-Ordering and Transducers

▷ Claim 15. There is a PDA A with 3 states and stack symbols {0, 1} such that L(A) ∩ L′
ℓ

when projected to Γ2 is exactly (Γ2)22ℓ

.

push

switch

pop

inc |push(1)

dec |pop(0)

Γ2

Γ2

inc |push(0)1, 0

1, 0

dec |pop(1)1, 0

Figure 4 The PDA A. This PDA and the ℓ DFAs together faithfully encode the accepting runs
of the PDA in Figure 2 with n = 2ℓ − 1. Thus they accept words with exactly 22ℓ

occurrences of Γ2.

Proof. The PDA A is depicted in Figure 4. The three states represents the three modes of
the PDA in Figure 2. The ℓ DFAs will guarantee that we start with the number 0ℓ. Because
of A1, the PDA cannot take the inc transition from the state ⟨push⟩ immediately after the
number 1ℓ. It will have to read a Γ2 symbol and move to the state ⟨switch⟩. The PDA will
loop in this state once by reading the same number (1ℓ) as mandated by the Γ2 transitions of
the DFAs. From this state, again inc is disabled by A1, and hence the PDA will read another
Γ2 symbol and go to the state ⟨pop⟩. The PDA will read 1ℓ staying in the state ⟨pop⟩ after
which it can take a dec transition. ◁

4.4 Completing the reduction
Before giving the reduction, let us first define a PDA and the transducers that we use in
the reduction. Let P1 be the PDA in Claim 15 with Γ2 = Σ1 ∪ {#}. Let P2 the PDA for
L(P1) ∩ (Σ∗

1#∗). Let P3 be the PDA in Claim 15 with Γ2 = Σ2. Let P4 be the PDA for
L(P2) · L(P3). Let T1, . . . Tℓ be ℓ transducers. The input automaton of Ti is exactly the
DFA Ai from Claim 14 with Γ2 = Σ1 ∪ Σ2 ∪ {#}. The output of the transducer Ti on every
transition is ϵ.

Now we are ready to give the reduction. Let P = (Σ1, Σ2, f, g, ℓ) be an input to a
2eBPCP problem. We describe how to obtain a string constraint CP from this. We use
the alphabet Σ = Σ1 ∪ Σ2 ∪ Γ1 ∪ {#}, and the variable set V = {x0, x1, x2, xf , xg}. Next
we define the membership constraints Mem. Let Mem(x0) = Aϵ where Aϵ is an NFA for
{ϵ}. We have Mem(x1) = P4, Mem(x2) = P4. Now we need to augment the language of xf

and xg to also account for the letters from Γ1, which can be achieved by adding Γ1 self
loops in all the states in the PDA for Lf and Lg respectively. Thus the language for xf

is W(Lf , Γ∗
1), where W(Lf , Γ∗

1) = {w | w ∈ Shuffle(u, v), u ∈ Lf , v ∈ Γ∗
1}. Similarly the

language for xg is W(Lg, Γ∗
1). Let P5 and P6 be PDAs recognizing W(Lf , Γ∗

1), and W(Lg, Γ∗
1)

respectively. We have Mem(xf ) = P5 and Mem(xg) = P6. Let Rel be the following relational
constraints: 1)x0 ⪯ Ti(x1), for all i : 1 < i < ℓ, 2) x0 ⪯ Ti(x2), for all i : 1 < i < ℓ,
3) x1 ⪯ xf , 4) xf ⪯ xg and 5) xg ⪯ x2. We have 2ℓ + 3 relational constraints. Further
multiplicity(x1) = ℓ = multiplicity(x2) in our construction. Let CP = (Σ, V, Mem, Rel).

▷ Claim 16. The string constraint CP is satisfiable if and only if the 2eBPCP instance P
has a solution.
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Notice that we construct CP from P in polynomial time, and it is acyclic. Hence, it
follows that the satisfiability checking of acyclic string constraints is 2NExptime-hard,
proving the lower bound of Theorem 5.

5 Satisfiability is in 2NEXPTIME

We will show that if an acyclic string constraint is satisfiable, then there is a satisfying
assignment of double exponential size.

▶ Theorem 17 (Small model property). Let C be a satisfiable acyclic string constraint. Then
C has a satisfying assignment σ such that len(σ(x)) ≤ B where B is

22O(m log t+log p+log k)

where
m = maxx∈V multiplicity(x), the maximum multiplicity of any variable,
t = maxT ∈trset(C) state-size(T ), the maximum number of states of any transducer,
p = maxP ∈autset(C) state-size(P ), the maximum number of states (and stack symbols) of
any automaton.
k = |V|, the number of variables.

Our aim, towards a 2NEXPTIME procedure, is to non-deterministically guess an assign-
ment of size at most double exponential, and check that it satisfies the Conditions 1 and 2
(see Definition 2). However, Condition 2 uses more existentially quantified variables, and it
is not evident that verifying Condition 2 can be done within the complexity limits. Towards
this, we define an extended assignment which considers the values given to these existentially
quantified variables as well, and show that every word used in this extended assignment is of
length at most B. We define the extended assignment and the related notions and notations,
and state the small model property for the extended assignment.

Recall that multiplicity(x) denotes the number of times a variable occurs on the RHS of
the constraints. In each such occurrence, the variable occurs in a pair along with a transducer
(of the form (x, T )), which belongs to the RHS of a constraint from Rel of the form (y, Y ).
Let us fix some enumeration of these occurrences, and define the respective transducer and
constraint of the ith occurrence of x by T x

i and constraint(x, i). Now, as per Condition 2,
there are words (output words of the respective transducers), that witness the transduction.
For every x ∈ V and i ∈ [multiplicity(x)], let ox

i be a new variable. This variable is intended
to take as value a witness word for the output of the transducer T x

i on the word provided
by x, so that the constraint constraint(x, i) is satisfied. Let V̂(C), or simply V̂ when C is
clear from the context, contain the output variables in addition to the original variables.
That is, V̂ = O ∪ V, where O = {ox

i | x ∈ V , i ∈ [multiplicity(x)]}. An extended assignment
σ̂ : V̂ → Σ∗ satisfies a string constraint C if
E1 σ̂(x) ∈ Mem(x) for all x ∈ V
E2 (σ̂(x), σ̂(ox

i )) ∈ R(T x
i ), for all x ∈ V , i ∈ [multiplicity(x)]

E3 For every (y, Y ) ∈ Rel, we have σ̂(y) ⪯ Shuffle(σ̂(Y )) where σ̂(Y ) is an overloaded
notation for the multiset

{{σ̂(ox
i ) | x ∈ V , i ∈ [multiplicity(x)], constraint(x, i) = (y, Y )}}. (1)

We will actually prove the small model property for the extended assignments.
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5:12 Context-Free String Constraints with Subword-Ordering and Transducers

▶ Lemma 18. Let C be a satisfiable acyclic string constraint. Then C has a satisfying
extended assignment σ̂ such that len(σ̂(x)) ≤ B for all x ∈ V(C), and len(σ̂(y)) ≤ 2ctB for
all y ∈ O. The parameters B and t are as defined in Theorem 17, and c = max{len(out(tr)) |
tr is a transition of T, and T ∈ trset(C)}.

With this, our non-deterministic procedure guesses an extended assignment and verifies
that it satisfies the conditions 1, 2 and 3. In fact, checking whether a given word w is a
subword of some word in Shuffle(W ) where W is a finite mutliset of words is NP-complete
[9, 24]. It remains to prove Lemma 18.

Proof of Lemma 18. Consider an acyclic string constraint C. Recall that we write x < y

if (x, Y ) ∈ Rel with (y, T ) ∈ Y for some T ∈ trset(C). Consider a topological sorting of
the variables respecting the relation <, say x1, x2, . . . , xk. Note that x1 does not appear in
the RHS of any subword order constraint (in other words, multiplicity(x1) = 0). If (xi, T )
appears on the RHS of any constraint for some T , then the LHS of that constraint is xj for
some j < i.

Suppose C is satisfiable. Let σ̂0 be a satisfying extended assignment. In order to get the σ̂

as per Lemma 18, we will construct a sequence of k extended assignments, each progressively
modifying the previous one until we reach our goal. That is, we will construct the sequence,
σ̂0, σ̂1, . . . , σ̂k = σ̂ such that for each i ∈ [k]
I1 σ̂i is satisfiable. That is, 1) membership constraints are satisfied (Condition 1),

2) transductions are accepted by the transducers (Condition 2), and 3) the relational
constraints are satisfied (Condition 3).

I2 for all j : j ≤ i, len(σ̂i(xj)) ≤ Bj and for each ℓ ∈ multiplicity(xj), len(σ̂i(o
xj

ℓ )) ≤ 2ctBj .
We define Bn as follows. B1 = 2p3 , and for n > 1, Bn = 2m · t2m · p3 · Bn−1 · 2p3t2m .

Note that, Bn increases with n and Bk is at most B.

Base cases. We consider σ̂0 and σ̂1 as base cases. For σ̂0, it is given to be satisfiable, and
Condition 2 above holds vacuously.

Towards constructing σ̂1, consider the variable x1, and a context-free grammar G1 for
Mem(x1) in Chomsky Normal Form with at most p3 non-terminals [15]. Note that G1 can
be constructed in polynomial time. Since σ̂0 is satisfying, the word w1 = σ̂0(x1) has a valid
parse tree in G1. If a non terminal repeats in any leaf to root path in this tree, say at node
n1 and node n2 with n2 an ancestor of n1, then we can shrink the parse tree (pump down)
by replacing the subtree rooted at n2 by the subtree rooted at n1 to get a smaller parse tree
of a smaller word in the language. Furthermore, this smaller word will be a subword of w1.
Consider a shrinking of the parse tree of w1 which cannot be shrunk any further. This tree
has size at most 2p3 , and hence its yield ŵ1 satisfies Condition 2. Setting x1 to ŵ1 will also
satisfy Condition 1. Further, note that there are no output variables corresponding to x1.

Hence we get σ̂1: σ̂1(x) =
{

ŵ1 if x = x1

σ̂0(x) otherwise.

Inductive Step. Now, for the inductive case, assume we have constructed σ̂i−1. We will
describe how to obtain σ̂i. Let Gi be the context-free grammar in Chomsky Normal Form
for Mem(xi) with p3 non-terminals. We will basically do a “conservative” pumping down of
wi = σi−1(xi), which ensures that the constraints are still satisfied, which we explain below.
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Challenges. In order to bound the length of σ̂i(xi) we may consider subwords w′
i ⪯ wi,

so that the constraints in which xi appear on the left continue to be satisfied. In addition,
such a subword w′

i must not only satisfy the membership constraint (w′
i ∈ Mem(xi)) but

also admit the specified transductions – that is, for all ℓ ∈ [multiplicity(xi)], we must have
(w′

i, u′
ℓ) ∈ R(T xi

ℓ ) for some u′
ℓ. Furthermore, a mere existence of such a u′

ℓ is not sufficient –
consider the constraint (xj , Y ) = constraint(xi, ℓ) and let σ̂i−1(xj) = wj and σ̂i−1(Y ) = U

with σ̂i−1(oxi

ℓ ) = uℓ (recall, σ̂(Y ) is defined in Equation 1)). Since σ̂i−1 is satisfying we know
that wj ⪯ Shuffle(U). However, it need not be the case that wj ⪯ Shuffle(U \ {uℓ} ∪ {u′

ℓ}).
Hence we need to find a suitable u′

ℓ such that wj ⪯ U \ {uℓ} ∪ {u′
ℓ}. One way to ensure

this, is by insisting that u′
ℓ provides the same “witnessing subword” that uℓ provided. We

formalise this notion of “witnessing subword” below.
We give two equivalent definitions for w ⪯ Shuffle(U).

▷ Claim 19. Let w be a word and U = {{u′
1, u′

2 . . . u′
n}} be a multiset of words. The following

statements are equivalent.
1. There exists w′: 1) w′ ∈ Shuffle(U) and 2) w ⪯ w′.
2. There exist u′

1, u′
2 . . . u′

n: 1) w ∈ Shuffle({{u′
1, u′

2 . . . u′
n}}) and 2) u′

i ⪯ ui.

We refer to v1, . . . vn as the witnessing subwords of u1, . . . un for w ⪯ Shuffle(U). Thus,
for the inductive case, we need to find good w′

i, u′
1, . . . u′

multiplicity(xi) such that
1. |w′

i| ≤ Bi

2. for each ℓ, |u′
ℓ| ≤ 2 · t · Bi,

3. w′
i ∈ Mem(xi),

4. (w′
i, u′

ℓ) ∈ R(T xi

ℓ ) for each ℓ, and
5. vℓ ⪯ u′

ℓ where vℓ is a witnessing subword of uℓ = σ̂i−1(oxi

ℓ ) for the relation σ̂i−1(y) ⪯
Shuffle(σ̂i−1(Y )) letting (y, Y ) = constraint(xi, ℓ). (Note that vℓ exists because σ̂i−1 is
satisfiable by induction hypothesis.)

Block decomposition. Towards the above goal, let us consider wi and ρ1 . . . ρm where
m = multiplicity(xi) and for ℓ : 1 ≤ ℓ ≤ m, ρℓ is an accepting run of the transducer T xi

ℓ on
the input wi producing uℓ = σ̂i−1(oxi

ℓ ). This is depicted in Figure 5. We factorize each ρℓ

into blocks. The number of blocks is exactly n + 1, where n = |wi|. For j > 0, the jth block
contains the transition on the jth letter of wi, followed by all the trailing ϵ-input transitions.
The very first block (block 0), contains the leading ϵ-input transitions if present. Now, we
decompose the output of ρℓ according to the blocks. That is, uℓ = u0

ℓu1
ℓ · u2

ℓ . . . un
ℓ . Next we

want to identify the subword of wi (and subruns of ρℓ) that needs to be preserved.

Identifying crucial blocks and positions. Consider vℓ, the witnessing subword of uℓ for
σ̂i−1(y) ⪯ Shuffle(σ̂i−1(Y )) where (y, Y ) = constraint(xi, ℓ). Fix an embedding of vℓ in uℓ.
If this embedding is incident on the factor uj

ℓ for j > 0, we will mark the the jth block as
well as the jth letter of wi as crucial. Since |σ̂i−1(y)| ≤ Bi−1 (by induction hypothesis), the
number of crucial blocks in ρℓ is at most Bi−1. Hence the number of crucial positions in wi

is at most m × Bi−1 where m = multiplicity(xi). Notice that if we shrink wi to a subword
that 1) preserves the crucial positions, 2) preserves membership in Mem(xi) and 3) yields
subruns of ρℓ that preserves the crucial blocks, then the satisfiability would be preserved.
Our next aim is to obtain such a shrinking, which is sufficiently small to also satisfy the
length requirements.
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· · ·

· · ·

· · ·

a1 a2 an

a1 a2 an

a1 a2 an

q0 q1 q2 qn

a1 a2 · · · an

ρ1

ρ2
...

ρm

w

Figure 5 The figure describes the block decomposition of the runs of transducers. The very first
block includes the sequence of ϵ-transitions (if any) before the first letter of the input is read. Every
other block includes a transition on input letter followed by a sequence of ϵ transitions. Blocks here
are represented as overlapping rectangles coloured in red. The transition on input is represented as
a solid arrow and a sequence of ϵ transitions is represented as a dashed arrows.

Annotated parse trees. Consider a grammar Gi for Mem(xi) in Chomsky Normal Form
and a parse tree of wi in Gi. Annotate the nodes of this parse-tree by pairs of m-tuple of
states. The m-tuple of states qj correspond to the states of the transducers at the boundary
between (j − 1)th block and jth block. A node is annotated with ⟨qj−1, qj′⟩ if the yield of
the subtree rooted at that node generates the factor of wi from jth letter to j′th letter (for
some j′ ≥ j). Notice that some of the leaves are marked as crucial. We will mark an internal
node as crucial if it is the least common ancestor of two crucial nodes.

A, ⟨q1, q2⟩

A, ⟨q1, q2⟩

a1 ai ai′ aj′ aj an· · · · · · · · · · · · · · ·

Figure 6 The figure illustrates the annotations of a nodes and pumping down in a parse tree.

Shrinking the parse tree. Now, if there are two nodes n1 and n2 in this tree such that
1) both have the same annotated non-terminal, 2) n1 is an ancestor of n2, 3) there are no
crucial nodes in the path from n1 to n2, then we replace the subtree rooted at n1 with the
subtree rooted at n2 (pumping down). This is illustrated in Figure 6. We repeat this until
no more pumping down is possible. The yield of this shrunk parse tree is the required word
w′

i. Let us analyse the size of w′
i. Any path without a crucial node is of length at most p3t2m.

Hence the skeleton of the parse tree that contains all the crucial nodes and the paths from
them to the root will be of size at most 2nC × p3t2m, where nC is the number of crucial
positions of wi.
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Any sub tree rooted at any of the nodes of the skeleton is of size at most 2p3t2m . Hence
the total size of the tree is at most 2nC × p3t2m × 2p3t2m . Since nC ≤ mBi−1, we have
len(w′

i) ≤ Bi.

Shrinking the transducer runs. Note that, since the shrinking preserves the annotations,
shrinking the ρℓs appropriately gives us an accepting subrun ρ′

ℓ that preserves the crucial
blocks. The number of blocks in ρ′

ℓ is at most Bi. Now, we need to shrink the size of each
block as well, in order to satisfy len(u′

ℓ) ≤ 2ctBi. For this, consider the witnessing subword
of uℓ. Note that it is still embedded in out(ρ′

ℓ). If this embedding is incident on the output
of a transition we will mark this transition as crucial. Further all the transitions that read
a letter from w′

i are also crucial. Note that the number of crucial transitions is at most
Bi + Bi−1. Now, let us shrink the run ρ′

ℓ without losing crucial transitions to get ρ′′
ℓ . The

number of transitions in ρ′′
ℓ is at most t × (Bi + Bi−1 + 1) where t is the number of states.

Let u′
ℓ = out(ρ′′

ℓ ). Then it is easy to see that len(u′
ℓ) ≤ 2ctBi.

Finally, we can give the required σ̂i. Below, xj comes from V and ox
ℓ comes from O.

σ̂i(xj) =
{

w′
i if j = i

σ̂i−1(xj) if j ̸= i
σ̂i(ox

ℓ ) =
{

u′
ℓ if x = xi

σ̂i−1(ox
ℓ ) otherwise

This establishes the proof of Lemma 18. ◀

A proof of NExptime-completeness for the setting where only regular membership is
allowed (proof of Theorem 6) can be found in the full version of this paper [10].

6 Discussions

6.1 Application: Regular abstractions and DFA sizes
For any language L, we define its Parikh image closure (Π(L)), downward closure (L ↓)
and upward closure (L ↑) as follows. Let Σ = {a1, · · · an}. For w ∈ Σ∗, we let p(w) =
⟨len(w)a1 , · · · , len(w)an

⟩ denote the Parikh image of w, that is, it counts the occurrences of
each letter from Σ. Here, by len(w)a, we mean the number of times a occurs in w.

Π(L) = {v ∈ Σ∗ | ∃w ∈ L, p(v) = p(w)} L ↓= {v ∈ Σ∗ | ∃w ∈ L, v ⪯ w}
L ↑= {v ∈ Σ∗ | ∃w ∈ L, w ⪯ v}

Efficient computability of these regular abstractions of languages of infinite state systems
is a relevant question for verification and automata theory [14, 12, 46, 13]. It is interesting to
see if small automata representing these abstractions can be computed for succinctly given
infinite state systems.

We address here the case where a large pushdown system is presented as a small pushdown
system and a certain number of finite state automata (referred to as the smaller components).
Here the language of the large pushdown system is same as the intersection of the languages of
the smaller components. We argue that the lower bound on the size of the regular abstraction
holds even when pushdown system is presented succinctly.

For any n ∈ N, let L(n) be the language over Σ = {0, 1, a} that accepts the word w =
n0o1n1o2n2 · · · nk, where n0 = 0n, nk = 1n, o1, o2, · · · ok = inc, then len(w)inc = 2n. From
Section 4 we know that we can construct n DFAs B1, B2, . . . Bn such that

⋂
i L(Bi) = {w}.

Since any DFA recognising the closure of this language requires at least 2n states, we have
the following claim.
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▷ Claim 20. Given n regular languages as n finite state automata, let L be the language
obtained by intersecting the languages of these automata. Then, the minimal DFA for Π(L),
L ↓ and L ↑ can be of exponential size.

Consider the language given in Claim 15 i.e. L(A) ∩ L′
ℓ, since it can recognize words with

exactly 22n many symbols from Γ2, we have the following claim.

▷ Claim 21. Given n regular languages as n finite state automata and a pushdown system,
let L be the language got by intersecting the languages of these automata. Then, the minimal
DFA for Π(L), L ↓ and L ↑ can be of double exponential size.

6.2 Concatenation instead of Shuffle
In [9] it is shown that shuffle can express concatenation with a polynomial blow-up, but
preserving acyclicity. It is interesting to see if the hardness holds in the presence of concaten-
ation alone. Already, in the setting of [9] (no transductions), if acyclicity is not imposed,
it is not known whether satisfiability of the regular string constraints is decidable if only
concatenation is allowed instead of shuffle. In our setting (in the presence of tranducers), it
turns out that satisfiability is undecidable. We show this by modifying the reduction in [9].

Let P = (Σ1, Σ2, f, g) be a given PCP instance, let Lu = ({i · f(i) | i ∈ Σ1})∗, Lv =
({i · g(i) | i ∈ Σ1})∗, Li = Σ+

1 and Ls = Σ∗
2. Notice that all these four languages are regular,

let Au, Av, Ai and As be their corresponding NFA. Then the required string constraint
is (Σ, V, Mem, Rel), where V = {u, v, i, s}, for any x ∈ V, Mem(x) = Ax. Let TΣ =
{(a1 . . . an, Σ∗a1Σ∗a1 . . . Σ∗anΣ∗)} be the transduction that arbitrarily inserts words from Σ.
The set Rel is given by

i ⪯ u s ⪯ u u ⪯ TΣ1(s) u ⪯ TΣ2(t)
i ⪯ v s ⪯ v v ⪯ TΣ1(s) v ⪯ TΣ2(t)

In the case of acyclic string constraints, one may wonder if the lower bounds hold in a
setting where only concatenation is allowed instead of shuffle. This was not discussed in [9].
Infact, in our case, the lower bound holds even when only concatenation is allowed. Notice
that, in our 2NExptime-hard reduction, all relational constraints have only one variable in
the RHS. Hence, the 2NExptime-hard holds for acyclic pushdown string constraints with
transducers, even when shuffle (or even concatenation) is disallowed.

In fact, it is not known whether the lower bounds in [9] hold for the variant with only
concatenation instead of shuffle. It is also open whether satisfiability is decidable for the
regular string constraints without acyclicity restriction when only concatenation is allowed.

7 Conclusions

In this paper, we considered string constraints in the presence of sub-word relation, shuffle
operator (which subsumes concatenation [9]) and transducers. We studied this problem for
two different kinds of membership constraints, namely regular and context free. We showed
that in the case when only regular membership constraints are involved, the problem is
NExptime-complete. Whereas, when context-free membership constraints are involved, the
problem is 2NExptime-complete. Towards the hardness proof, we showed how to count
exactly 2n using n finite state automata each of size O(n). As a consequence of this result, we
also obtained a lower bound for any regular representation of the upward closure, downward
closure and Parikh image closure of the intersection of the language of n finite state automata.
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Similarly, we showed that we can count exactly 22n using a pushdown automaton and n

finite state automata, each of size O(n). With this, we also obtained a lower bound for any
regular representation of the upward closure, downward closure and Parikh image closure of
the intersection language of a pushdown and n finite state automata.
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Abstract
We consider a hierarchy of graph invariants that naturally extends the spectral invariants defined
by Fürer (Lin. Alg. Appl. 2010) based on the angles formed by the set of standard basis vectors
and their projections onto eigenspaces of the adjacency matrix. We provide a purely combinatorial
characterization of this hierarchy in terms of the walk counts. This allows us to give a complete
answer to Fürer’s question about the strength of his invariants in distinguishing non-isomorphic
graphs in comparison to the 2-dimensional Weisfeiler-Leman algorithm, extending the recent work
of Rattan and Seppelt (SODA 2023). As another application of the characterization, we prove
that almost all graphs are determined up to isomorphism in terms of the spectrum and the angles,
which is of interest in view of the long-standing open problem whether almost all graphs are
determined by their eigenvalues alone. Finally, we describe the exact relationship between the
hierarchy and the Weisfeiler-Leman algorithms for small dimensions, as also some other important
spectral characteristics of a graph such as the generalized and the main spectra.
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1 Introduction

The spectrum of a graph is a remarkable graph invariant that has found numerous applications
in computer science; e.g., [17, 20]. These applications are based on analyzing relevant
information contained in the eigenvalues of a given graph. The maximum information possible
is evidently obtained for graphs that are determined by their spectra up to isomorphism.
This graph class, which is of direct relevance to the graph isomorphism problem, is often
abbreviated as DS. Thus, a graph G is DS if every graph cospectral to G, i.e., with the
same spectrum as G, is actually isomorphic to G. Though the problem of characterizing DS
graphs has been intensively studied since the beginning of spectral graph theory (see [10] and
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6:2 On a Hierarchy of Spectral Invariants for Graphs

references therein), we are still far from a satisfactory solution. In particular, a long-standing
open question [16, 25] is whether or not almost all graphs are DS. Here and in the rest of the
paper, we say that almost all graphs have some property if a uniformly distributed random
n-vertex graph1 has this property with probability approaching 1 as n goes to infinity.

Somewhat surprisingly at first sight, the area is connected to a purely combinatorial
approach to the graph isomorphism problem. In their seminal work, Weisfeiler and Leman [28]
proposed and studied a method for distinguishing a graph G from another non-isomorphic
graph by computing a sequence of canonical partitions of V (G)2 into color classes. The final
partition of V (G)2 results in a coherent configuration, a concept which is studied in algebraic
combinatorics [7] and plays an important role in isomorphism testing [2]. The method of [28]
is now called the 2-dimensional Weisfeiler-Leman algorithm (2-WL). A similar approach
based on partitioning V (G) is known as color refinement and is often called 1-WL. Even
this one-dimensional method is quite powerful as it suffices for identification of almost all
graphs [3]. On the other hand, construction of graphs not identifiable by 2-WL is rather
tricky. Particular examples are based on rare combinatorial objects. General constructions,
like the far-reaching one in [6], give rather sporadic families of “hard” graphs. It turns out
(see, e.g., [4, 15]) that if two graphs are indistinguishable by 2-WL, then they are cospectral.
As a consequence, graphs not identifiable by 2-WL are examples of non-DS graphs.

Our overall goal in this paper is a systematic exploration of connections between spectral
and combinatorial approaches to finding expressive graph invariants. A graph invariant I is
a function of a graph such that I(G) = I(H) whenever G ∼= H. An invariant I is stronger
than invariant I ′ if I(G) determines I ′(G). That is, I(G) = I(H) implies I ′(G) = I ′(H).
Equivalently, we sometimes say that I ′ is weaker than I and write I ′ ⪯ I. A stronger
invariant can be more effective in distinguishing non-isomorphic graphs: If I ′ ⪯ I and I ′

can distinguish non-isomorphic graphs G and H, i.e., I ′(G) ̸= I ′(H), then these graphs are
distinguishable by I as well.

Let Spec(G) denote the spectrum of a graph G, and WL2(G) denote the output of 2-WL on
G (a formal definition is given in Section 2.2). The discussion above shows that Spec ⪯WL2.
This can be seen as evidence of limitations of Spec, as well as evidence of the power of WL2.

A reasonable question is what can be achieved if Spec(G) is enhanced by other spectral
characteristics of the adjacency matrix of G. One such line of research in spectral graph
theory considers Spec(G) augmented with the multiset of all angles between the standard
basis vectors and the eigenspaces of G. The parameters and properties of a graph G which
are determined by its eigenvalues and angles are called EA-reconstructible and are thoroughly
studied by Cvetković and co-authors; see [11, Ch. 4] and [10, Ch. 3].

A further natural step is to take into consideration the multisets of angles between the
projections of the standard basis vectors onto eigenspaces. Fürer [15] uses this additional
data to define two new graph invariants, namely, the weak and strong spectral invariants. We
denote these spectral invariants by weak-FSI and strong-FSI respectively; formal definitions
are in Section 3. Fürer shows that both weak-FSI and strong-FSI remain weaker than WL2.
That is,

weak-FSI ⪯ strong-FSI ⪯WL2 (1)

(note that Spec ⪯ weak-FSI by definition). An open problem posed in [15] is to determine
which of the relations in (1) are strict. Rattan and Seppelt, in their recent paper [23], show
that this small hierarchy does not entirely collapse by separating weak-FSI and WL2. Hence,

1 In the Erdős-Rényi G(n, 1/2) random graph model to be precise.
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at least one of the two relations in (1) is strict. Fürer [15] conjectures that the first relation
in (1) is strict and does not exclude that the last two invariants in (1) are equivalent, and
our aim is to give precise answers to these questions.

In [23] the invariants weak-FSI and WL2 are separated by introducing a new natural graph
invariant WL3/2, whose strength lies between WL1 and WL2. The authors give an elegant
algebraic characterization of WL3/2 using which they show that weak-FSI ⪯WL3/2. The final
step in their analysis is an example of graph pair that separates WL3/2 and WL2.

Our approach is different. First, we observe that the invariants weak-FSI and strong-FSI
are part of a broader scheme, presented in Section 2.1, that leads to a potentially infinite
hierarchy of graph invariants. We define the corresponding spectral hierarchy containing
weak-FSI and strong-FSI on its lower levels in Section 3. Another level is taken by the
aforementioned invariant EA. In Section 4 we characterize this hierarchy in terms of walk
counts. A connection between spectral parameters and walk counts is actually well known
(see an overview in Subsection 4.1). With a little extra effort we are able to show that this
connection is tight; see Theorem 4. This yields a purely combinatorial characterization
of the invariants EA, weak-FSI, and strong-FSI (Corollary 5), which also reveals some new
relations. For example, we notice that weak-FSI determines the generalized spectrum of a
graph (Theorem 11).

As another application of our combinatorial characterization, we prove that almost all
graphs are determined up to isomorphism by weak-FSI, that is, by the eigenvalues and
the angles formed by the standard basis vectors and their projections onto eigenspaces
(Corollary 8). We find this interesting in the context of the open problem mentioned above:
whether or not almost all graphs are DS.

We present the relations between the spectral and combinatorial invariants under consid-
eration in Section 5; see the diagram in Fig. 1. In Section 6 we prove that this diagram is
complete, that is, it shows all existent relations, and all of these relations are strict (perhaps
up to higher levels of the hierarchy whose separation remains open). In particular, both
relations in (1) are strict, which gives a complete answer to Fürer’s questions. Another
noteworthy separation is strong-FSI ⪯̸ WL3/2 (Theorem 12). Curiously, the separating pair
of graphs is the same that was used in [23], which yields more information now because we
also use our characterization in Theorem 4.

The more involved separations are shown in Theorems 13, 16, and 18. The corresponding
separating examples are not ad hoc. They are obtained by a quite general construction
(Lemma 14). The construction is based on a considerable extension of the approach taken
in [27] to separate various concepts related to 1-WL and the walk matrix of a graph (an
important notion discussed in Section 4.2). Implementation of the construction requires
vertex-colored strongly regular graphs with certain properties. The required colorings were
found by a computer assisted search among members of the family of strongly regular graphs
on 25 vertices.

Some proofs are missing due to the space constraints and can be found in the full version
of the paper [1].

2 Preliminaries

2.1 From isomorphism-invariant colorings to isomorphism invariants
Let C be a set of colors and χ : V (G)2 → C be a coloring of vertex pairs in a graph G. It
is natural to see χ(x, x) as the color of a vertex x. We suppose that χ = χG is defined for
every graph G. That is, speaking of a coloring χ, we actually mean a map G 7→ χG. Such a
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coloring χ is isomorphism invariant if for every isomorphism f from a graph G to a graph H

(the equality G = H is not excluded) we have χG(x, y) = χH(f(x), f(y)) for all vertices x

and y in G.
The simplest isomorphism-invariant colorings are the adjacency relation A and the identity

relation I. That is, A(x, y) = 1 if x and y are adjacent and A(x, y) = 0 otherwise. For the
identity relation, I(x, y) = 1 if x = y and I(x, y) = 0 if x ̸= y. Below, we will consider A and
I also as the adjacency and the identity matrices. Other examples of isomorphism-invariant
colorings are the distance d(x, y) between two vertices x and y and the number of all such
triangles in the graph that contain the vertices x and y. One can consider also more complex
definitions like the triple χ(x, y) = (deg x, d(x, y), deg y), where deg x denotes the degree of x.

Given an isomorphism-invariant coloring χ, we can build on it to define various graph
invariants. The simplest such examples are

I1(G) = {{χ(x, y)}}x,y∈V (G) ,

I2(G) =
(
{{χ(x, x)}}x∈V (G) , {{χ(x, y)}}x,y∈V (G)

)
,

I3(G) = {{(χ(x, x), χ(x, y), χ(y, y))}}x,y∈V (G) ,

I4(G) =
{{(

χ(x, x), {{(χ(x, y), χ(y, y))}}y∈V (G)

)}}
x∈V (G)

,

where {{. . .}} denotes a multiset. Note that I1(G) ⪯ I2(G) ⪯ I3(G) ⪯ I4(G).
Given an isomorphism-invariant coloring χ, we can define a hierarchy of ever more complex

graph invariants. We first inductively define a sequence of colorings χ0, χ1, χ2, . . . of single
vertices by

χ0(x) = χ(x, x) and χr+1(x) =
(

χr(x), {{(χ(x, y), χr(y))}}y∈V (G)

)
. (2)

This definition is a natural extension of the well-known concept of color refinement (CR) to
edge- and vertex-colored graphs. In broad outline, CR computes an isomorphism-invariant
color of each vertex in an input graph and recognizes two graphs as non-isomorphic if one of
the colors occurs in one graph more frequently than in the other. In the case of an uncolored
undirected graph G, CR starts with a uniform coloring χ0 of V (G), that is, χ0(x) = χ0(x′)
for all x, x′ ∈ V (G). In the (r + 1)-th round, the preceding coloring χr is refined to a new
coloring χr+1. For each vertex x, its new color χr+1(x) consists of χr(x) and the multiset
{{χr(y)}}y∈N(x) of all colors occurring in the neighborhood N(x) of x. In other words, CR
counts how frequently each χr-color occurs among the vertices adjacent to x (or, equivalently,
among the vertices non-adjacent to x). In an edge- and vertex-colored graph G, each vertex
pair (x, y) is assigned a color, which we denote by χ(x, y). The edge colors must be taken
into account while computing the refined color χr+1(x). In the colored case, CR first splits
all vertices y into classes depending on χ(x, y) and then computes the frequencies of χr(y)
within each class. This is exactly what (2) does.

Note that

χ1(x) =
(

χ(x, x), {{(χ(x, y), χ(y, y))}}y∈V (G)

)
. (3)

In addition, we set

χ1/2(x) =
(

χ(x, x), {{χ(x, y)}}y∈V (G)

)
(4)

Now, we define

χ(r)(G) = {{χr(x)}}x∈V (G) . (5)



V. Arvind, F. Fuhlbrück, J. Köbler, and O. Verbitsky 6:5

For each r, the coloring χr is isomorphism invariant in the sense that χr(f(x)) = χr(x) for
any isomorphism of graphs f . This readily implies that χ(r) is a graph invariant. As easily
seen, χ(r) ⪯ χ(s) if r ≤ s.

2.2 First two dimensions of combinatorial refinement
We now give formal descriptions of the isomorphism tests 1-WL and 2-WL already introduced
in Section 1. Note that 1-WL is an alternative name for CR. In what follows we will apply
the 1-WL procedure to vertex-colored graphs. Given a vertex-colored graph G, we consider a
coloring χ of V (G)2 defined by χ(x, y) = A(x, y), i.e., according to the adjacency relation, for
x ̸= y and by setting χ(x, x) to be the color of a vertex x. On an input G, 1-WL iteratively
computes the vertex colorings χr according to (2). After performing n iterations, where n

is the number of vertices in G, 1-WL outputs WL1(G) = χ(n)(G) as defined by (5). Two
graphs G and H are recognized as non-isomorphic if WL1(G) ̸= WL1(H).

2-WL can be similarly formulated, except that it computes colorings of vertex pairs.
If an input graph G is uncolored, then 2-WL begins with an initial coloring χ0 of V (G)2

defined by χ0(x, y) = A(x, y) if x ̸= y and by χ0(x, x) = 2 for every vertex x of G. If G is a
vertex-colored graph, then χ0(x, y) must include also the colors of x and y. Furthermore,

χr+1(x, y) =
(

χr(x, y), {{(χr(x, z), χr(z, y))}}z∈V (G)

)
.

Thus, the new color of a pair (x, y) can be seen as a kind of “superposition” of the old color
pairs observable along all extensions of (x, y) to a triangle xzy. Finally, 2-WL outputs the
multiset WL2(G) = {{χn2(x, y)}}x,y∈V (G).

3 A hierarchy of spectral invariants

Speaking of an n-vertex graph G, we will assume that V (G) = {1, 2, . . . , n}. Let

µ1 < µ2 < . . . < µm (6)

be all pairwise distinct eigenvalues of the adjacency matrix A of G. Let Spec(G) denote the
spectrum of G, i.e., the multiset of all eigenvalues where each µi occurs with its multiplicity.
As mentioned before, Spec(G) is a well-studied graph invariant with numerous applications
in computer science.

Let Ei be the eigenspace of µi. Recall that Ei consists of all eigenvectors of µi, i.e.,
Ei = {v ∈ Rn : Av = µiv}. Let Pi be the matrix of the orthogonal projection of Rn onto Ei.
Note that P 2

i = Pi = P ⊤
i . For 1 ≤ x, y ≤ n, the matrix entry Pi(x, y) can be seen a color of

the vertex pair (x, y). This coloring is isomorphism invariant.
Throughout the paper, we use the following notational convention for compact represen-

tations of sequences.

▶ Notation 1. For an indexed set {ai} with index i ranging through the interval of integers
s, s + 1, . . . , t− 1, t we set a∗ = (as, . . . , at).

In particular,

P∗(x, y) = (P1(x, y), . . . , Pm(x, y)) .

Since the order on the index set is determined by (6), P∗ is also an isomorphism-invariant
coloring. Following the general framework in Section 2.1, the coloring P∗ determines the
sequence of graph invariants P

(0)
∗ , P

(1/2)
∗ , P

(1)
∗ , P

(2)
∗ , . . .. In particular, by (2)–(5) we have

STACS 2024



6:6 On a Hierarchy of Spectral Invariants for Graphs

P
(0)
∗ (G) = {{ P∗(x, x) }}1≤x≤n , (7)

P
(1/2)
∗ (G) =

{{ (
P∗(x, x), {{P∗(x, y)}}1≤y≤n

) }}
1≤x≤n

,

P
(1)
∗ (G) =

{{ (
P∗(x, x), {{(P∗(x, y), P∗(y, y))}}1≤y≤n

) }}
1≤x≤n

.

Fürer [15] introduces the weak and strong spectral invariants. Using our notation, Fürer’s
spectral invariants (FSI) can be defined as follows:

weak-FSI(G) =
(

Spec(G), P
(1/2)
∗ (G)

)
and (8)

strong-FSI(G) =
(

Spec(G), P
(1)
∗ (G)

)
. (9)

The entries of the projection matrices Pi have a well-known geometric meaning [10, 12].
For 1 ≤ x ≤ n, the standard basis vector ex of Rn has 1 in the position x and 0 elsewhere.
The angle αi,x of a graph G is defined to be the cosine of the angle between ex and the
eigenspace Ei, i.e., the angle between ex and its projection Piex onto Ei. We have the
equality

Pi(x, x) = α2
i,x. (10)

Indeed, let ⟨u, v⟩ denote the scalar product of two vectors u, v ∈ Rn. Then

Pi(x, x) = ⟨ex, Piex⟩ = ∥ex∥∥Piex∥αi,x = α2
i,x.

Furthermore, let αi,xy be the cosine of the angle between the projections Piex and Piey of
the standard basis vector ex and ey onto Ei. If ex or ey is orthogonal to Ei, i.e., αi,x = 0
or αi,y = 0, then the angle is undefined and we set αi,xy = 0 in this case. In particular,
αi,xx = 0 if αi,x = 0 while αi,xx = 1 if αi,x ̸= 0. Equality (10) generalizes to

Pi(x, y) = αi,xαi,yαi,xy. (11)

Indeed,

Pi(x, y) = ⟨ex, Piey⟩ = ⟨ex, P 2
i ey⟩ = ⟨Piex, Piey⟩ = ∥Piex∥∥Piey∥αi,xy = αi,xαi,yαi,xy.

Now, define a coloring αi by αi(x, x) = αi,x and αi(x, y) = αi,xy for x ̸= y. This coloring is
isomorphism invariant basically because an isomorphism is represented by a permutation
matrix, which is the transformation matrix of an isometry of Rn. Using Notation 1,

α∗(x, y) = (α1(x, y), . . . , αm(x, y)) ,

where α∗ is an isomorphism-invariant coloring as well. The corresponding graph invariants
α

(r)
∗ are closely related to the invariants P

(r)
∗ . More precisely, we say that two graph invariants

I and I ′ are equivalent and write I ≡ I ′ if I ′ ⪯ I and I ⪯ I ′.

▶ Lemma 2. P
(r)
∗ ≡ α

(r)
∗ for every integer r ≥ 0.

Motivated by the equivalence P
(0)
∗ ≡ α

(0)
∗ , we define the graph invariant EA similar to

(8)–(9) as

EA(G) =
(

Spec(G), P
(0)
∗ (G)

)
, (12)

where the abbreviation EA stands for E igenvalues and Angles and corresponds to the known
concept [11, 10] mentioned in the introduction.
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4 Characterization of the spectral invariants by walk counts

A walk of length k (or k-walk) from a vertex x to a vertex y is a sequence of vertices
x = x0, x1, . . . , xk = y such that every two successive vertices xi, xi+1 are adjacent. Let
wk(x, y) denote the number of walks of length k from x to y in a graph. Obviously, wk is an
isomorphism-invariant coloring in the sense of Section 2.1. In accordance with Notation 1,
we also consider the isomorphism-invariant coloring w∗ defined by

w∗(x, y) = (w0(x, y), w1(x, y), . . . , wn−1(x, y)) ,

where n, as usually, denotes the number of vertices in a graph. Note that for each y, the
matrix (wk(x, y))1≤x≤n, 0≤k≤n−1 determines the value of wk(x, y) for every x and for every
arbitrarily large k.

It is well known that the walk counts are expressible in terms of spectral parameters of a
graph; see, e.g., [10]. On the other hand, it is also well known that the numbers of closed
k-walks in a graph determine the graph spectrum. We give a brief overview of these facts
in Subsection 4.1. In Subsection 4.2 we make further use of this connection between walks
and spectra. We are able to characterize the spectral invariants defined in Section 3 using
solely the walk numbers, that is, in purely combinatorial terms without involving any linear
algebra.

4.1 Linear-algebraic background and known relations
Since the adjacency matrix A of a graph G is symmetric, the eigenspaces Ei are pairwise
orthogonal, and hence PiPj = O for i ̸= j, where O denotes the zero matrix. The spectral
theorem for symmetric matrices says in essence that

Rn = E1 ⊕ · · · ⊕ Em,

that is, Rn has an orthonormal basis consisting of eigenvectors of A. This decomposition
implies that

I = P1 + · · ·+ Pm. (13)

From Equality (13) it is easy to derive the spectral decomposition

A = µ1P1 + · · ·+ µmPm.

Raising both sides of this equality to the k-th power and taking into account that P 2
i = Pi

and PiPj = O for i ̸= j, we conclude that

Ak = µk
1P1 + · · ·+ µk

mPm.

Since wk(x, y) = Ak(x, y), we get

wk(x, y) = µk
1P1(x, y) + · · ·+ µk

mPm(x, y). (14)

Let ck(G) =
∑

x∈V (G) wk(x, x) denote the total number of closed k-walks in a graph G.
In particular, c0(G) = n and c1(G) = 0.

▶ Lemma 3 (folklore). Spec G = Spec H if and only if ck(G) = ck(H) for k = 0, 1, . . . , n.
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6:8 On a Hierarchy of Spectral Invariants for Graphs

4.2 General characterization and its consequences
▶ Theorem 4. (Spec, P

(r)
∗ ) ≡ w

(r)
∗ for every r = 0, 1/2, 1, 2, . . ..

Before proving Theorem 4, we describe some of its consequences.

▶ Corollary 5.
1. EA ≡ w

(0)
∗ .

2. weak-FSI ≡ w
(1/2)
∗ .

3. strong-FSI ≡ w
(1)
∗ .

Parts 2 and 3 of Corollary 5, which are particular cases of Theorem 4 for r = 1/2 and
r = 1 respectively, provide a characterization of both Fürer’s spectral invariants. We now
comment on Part 1. By Definition (12), this part is the special case of Theorem 4 for r = 0.
Note that w

(0)
∗ (G) = w

(0)
∗ (H) if and only if the graphs G and H are closed-walk-equivalent

in the sense that there is a bijection f : V (G)→ V (H) such that wk(x, x) = wk(f(x), f(x))
for all x ∈ V (G) and all k. On the other hand, let us say that G and H are EA-equivalent
if these graphs have the same eigenvalues and angles, i.e., EA(G) = EA(H). As seen from
the summary in Subsection 4.1, there are well-known connections between the closed walk
numbers and the eigenvalues and angles. Part 1 of Corollary 5 pinpoints the fact that the
two equivalence concepts actually coincide.

Corollary 5 reveals connections of spectral invariants to other graph invariants studied in
the literature, which we introduce now.

The walk matrix W of a graph G is indexed by vertices 1 ≤ x ≤ n and the length
parameter 0 ≤ k ≤ n− 1 and defined by

W (x, k) =
n∑

y=1
wk(x, y). (15)

That is, W (x, k) is the total number of k-walks starting from the vertex x. Let WLk
1(G, x)

denote the color assigned by 1-WL to a vertex x of G after the k-th refinement round. For a
vertex x of G, let Gx denote the version of G with x individualized. This means that Gx is a
vertex-colored graph where x has a special unique color while the other vertices are colored
uniformly. We now state two well-known facts.

▶ Lemma 6.
1. W (x, k) is determined by WLk

1(G, x);
2. wk(x, y) is determined by WLk

1(Gx, y);

Part 1 of Lemma 6 is proved in algebraic terms in [22, Theorem 2]. Another proof,
involving logical concepts, is provided in [13, Lemma 4] and a direct combinatorial proof can
be found in [27, Lemma 8]. Part 2 is a straightforward extension of Part 1.

In addition to the graph invariants WL1 and WL2 introduced in Section 2.2, we define

WL3/2(G) = {{WL1(Gx)}}x∈V (G) .

This yields a chain of graph invariants WLd for d ∈ {1, 3/2, 2}, where WLc ⪯WLd if c ≤ d.
The walk matrix naturally gives us a graph invariant, which we denote by WM and define as
WM(G) = {{W (x, ∗)}}x∈V (G) where W (x, ∗) =

(
W (x, 0), W (x, 1), . . . , W (x, n− 1)

)
. In other

words, WM(G) is the multiset of the rows of the walk matrix of G. Part 1 of Lemma 6 readily
implies that WM ⪯WL1. Thus,

WM ⪯WL1 ⪯WL3/2 ⪯WL2.
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The second relation in the following corollary is the recent result in [23] already described
in Section 1.

▶ Corollary 7. WM ⪯ weak-FSI ⪯WL3/2.

Proof. By Part 2 of Corollary 5, it is enough to show that

WM ⪯ w
(1/2)
∗ ⪯WL3/2.

The former relation follows directly from the definitions of WM and w
(1/2)
∗ . Indeed, w

(1/2)
∗ (G)

comprises the multiset {{w∗(x, y)}}y∈V (G) for each vertex x of G; see (4). This multiset allows
us to calculate the sum (15) for each k. The latter relation follows from the definitions of
w

(1/2)
∗ and WL3/2 by Part 2 of Lemma 6. ◀

The relationship between the graph invariants discussed above is summarized in Figure 1
below, which also puts these invariants in a somewhat broader context.

The next consequence of Theorem 4 is interesting in view of the long-standing open
question whether almost all graphs are determined up to isomorphism by their spectrum [16,
25].

▶ Corollary 8. Almost all graphs are determined up to isomorphism by weak-FSI.

Proof. It is known that if the walk matrix is non-singular, then it determines the adjacency
matrix [19]. Moreover, the walk matrix of a random graph is non-singular with high
probability [21]. As a consequence, almost all graphs are determined by the graph invariant
WM; see [19, Th. 7.2]. The same is true also for weak-FSI because weak-FSI is stronger than
WM by Corollary 7. ◀

Since Spec ⪯ EA ⪯ weak-FSI, a natural further question is whether Corollary 8 can be
improved to the identifiability of almost all graphs by the graph invariant EA, that is, by
using the eigenvalues and the angles between each standard basis vector and its projections
onto eigenspaces but not between the projections themselves. If true, this would be yet closer
to the aforementioned open problem.

4.3 Proof of Theorem 4
The case of r = 0. We have to prove that

(Spec, {{P∗(x, x)}}x) ≡ {{w∗(x, x)}}x . (16)

The “⪰” part immediately follows from Equality (14). In the other direction, the relation
Spec ⪯ {{w∗(x, x)}}x is a direct consequence of Lemma 3. To complete the proof of (16),
we show that for each vertex x, the sequence P∗(x, x) can be obtained from the sequences
w∗(x, x) and µ∗. To this end, put y = x in Equality (14), obtaining

µk
1P1(x, x) + · · ·+ µk

mPm(x, x) = wk(x, x). (17)

This equality makes sense also for k = 0. In this case, it reads

P1(x, x) + · · ·+ Pm(x, x) = 1, (18)

which is true by Equality (13) (if µi = 0, we need to use the convention 00 = 1). Consider
Equalities (17) for k = 0, 1, . . . , m − 1 as a system of m linear equations for m unknowns
P1(x, x), . . . , Pm(x, x). The coefficients of this system are powers of the m pairwise distinct
eigenvalues. They form a Vandermonde matrix. Therefore, the system is uniquely solvable,
and the sequence P∗(x, x) is determined.
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The case of r = 1/2. Now we have to prove that(
Spec,

{{(
P∗(x, x), {{P∗(x, y)}}y

)}}
x

)
≡

{{(
w∗(x, x), {{w∗(x, y)}}y

)}}
x

. (19)

The “⪰” part is again an immediate consequence of Equality (14).
Let us prove the part “⪯”. That is, we have to show that for a given graph, the left hand

side of (19) can be obtained from the right hand side. The spectrum is, as already observed in
the case of r = 0, determined by the multiset {{w∗(x, x)}}x, which is easy to obtain from the
right hand side of (19). Thus, in what follows we can assume that the sequence µ1, . . . , µm of
distinct eigenvalues is known. For each vertex x, we have to compute the sequence P∗(x, x)
and the multiset {{P∗(x, y)}}y. The former task is solvable exactly as in the case of r = 0,
and we focus on the latter task. In addition to x, we now fix also y and consider Equalities
(14) for k = 0, 1, . . . , m− 1. Here, the equality for k = 0 is actually a particular instance of
Equality (13), that is, this is (18) if y = x and

P1(x, y) + · · ·+ Pm(x, y) = 0

if y ̸= x. As in the case of r = 0, for m unknowns P1(x, y), . . . , Pm(x, y) we obtain a system
of m linear equation whose coefficients form a non-singular Vandermonde matrix. Hence, we
can determine the sequence P∗(x, y), completing the proof of (19).

The case of r ≥ 1. We proceed as above using induction. To facilitate the notation, we
set π(x, y) = P∗(x, y) and ω(x, y) = w∗(x, y). We write a ←[ b to say that a is obtainable
from b. As we have already seen,

ω(x, y)←[ Spec, π(x, y) (20)

by Equality (14) and

π(x, y)←[ Spec, ω(x, y) (21)

by the Vandermonde matrix argument. The vertex colorings πr and ωr are defined as in (2).
For every r,

Spec←[ {{ω0(x)}}x ←[ {{ωr(x)}}x . (22)

The former relation is, as already observed above, a consequence of Lemma 3, while the
latter relation follows directly from the definition of ωr. Therefore, in order to prove that

(Spec, {{πr(x)}}x) ⪯ {{ωr(x)}}x ,

it suffices to prove for each x that

πr(x)←[ Spec, ωr(x). (23)

In order to prove that

{{ωr(x)}}x ⪯ (Spec, {{πr(x)}}x) ,

it suffices to prove for each x that

ωr(x)←[ Spec, πr(x). (24)

We prove (23) and (24) by induction on r.
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In the base case we have r = 0. The relation (24) for r = 0 follows from the relation (20)
for y = x. Similarly, the relation (23) for r = 0 follows from the relation (21) for y = x.

For the induction step, suppose that r ≥ 1. Consider first (23). Recall that

πr(x) =
(

πr−1(x), {{(π(x, y), πr−1(y))}}y

)
.

By the induction hypothesis,

πr−1(x)←[ Spec, ωr−1(x)←[ Spec, ωr(x).

The latter relation follows from the fact that ωr−1(x) is a part of ωr(x). Another part of
ωr(x) gives us the multiset {{(ω(x, y), ωr−1(y))}}y. Therefore, it suffices to argue that, for
each y,

(π(x, y), πr−1(y))←[ Spec, (ω(x, y), ωr−1(y)).

Indeed, π(x, y) is determined by (21), and πr−1(y) is determined by the induction hypothesis.
The argument for (24) is virtually the same, with the roles of π and ω interchanged. In

place of (21), we have to refer to (20). The proof is complete.

5 The Hierarchy

Figure 1 shows the invariants from Section 4.2 and the relations between them as a part of a
more general picture involving also some other spectral invariants studied in the literature,
which we introduce in the next two subsections.

Moreover, we define a new invariant w
(•)
∗ which is, in a sense, the limit of the sequence of

invariants w
(r)
∗ for r = 1, 2, . . .. The definition is rather general. As we already mentioned,

the formal framework of Section 2.1 is analogous to the concept of color refinement. Given
an isomorphism-invariant coloring χ, we therefore can along with graph invariants χ(r) define
the stable version χ(•). One possibility to do this is to set χ(•)(G) = χ(n)(G), where n is the
number of vertices in G. Note that χ(r) ⪯ χ(•) for every r. For χ = ω∗, we obtain

w
(r)
∗ ⪯ w

(r+1)
∗ ⪯ w

(•)
∗ ⪯WL2.

To see the last relation above, we first recall the well-known fact that w∗(x, y) is determined by
the color assigned to the vertex pair (x, y) by 2-WL. Furthermore, since w

(•)
∗ (G) is obtained

from G endowed with the coloring w∗ by running the version of 1-WL for edge-colored graphs,
the outcome can be simulated by 2-WL.

5.1 Main eigenvalues and angles
Let j denote the all-ones vector (the dimension should be clear from the context). Using our
usual notation, suppose that G has m distinct eigenvalues µ1, . . . , µm, and let E1, . . . , Em

be the corresponding eigenspaces of G. Consider the angle between Ei and j and denote its
cosine by βi. If βi ̸= 0, then the corresponding eigenvalue µi is called a main eigenvalue, and
then the positive number βi is called a main angle. Let ν1, . . . , νm′ be the sequence of all
main eigenvalues in the ascending order and θ1, . . . , θm′ be the sequence of the main angles
in the corresponding order. We define a graph invariant main-EA by

main-EA(G) = (ν∗, θ∗) .
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WL2 w
(•)
∗ · · · w

(r)
∗ (r ≥ 1)

...

WL3/2 w
(1)
∗ strong-FSI

WL1 w
(1/2)
∗ weak-FSI

WM gen-Spec w
(0)
∗ EA

main-EA Spec

Figure 1 Relations between graph invariants. An arrow I → I ′ means I′ ⪯ I.

A characterization of main-EA in terms of walk numbers is known. Let

wk(G) =
∑

x∈V (G)

wk(x)

be the total number of k-walks in G. By WG we will denote the corresponding generating
function, that is, the formal series

WG(z) =
∞∑

k=0
wk(G)zk.

▶ Proposition 9 (folklore, e.g. [24]). Let G and H be graphs with n vertices. Then
main-EA(G) = main-EA(H) if and only if wk(G) = wk(H) for k = 1, . . . , n− 1.

As a direct consequence of Proposition 9, we get the relation main-EA ⪯WM.

5.2 The generalized spectrum
Another important spectral invariant of G is the spectrum of the complement graph G.
The equalities Spec G = Spec H and, simultaneously, Spec G = Spec H are equivalent to the
condition that the graphs G and H have the same generalized spectrum. For the definition of
this concept and its various characterizations we refer the reader to [18] and [26, Th. 3]. We
define the graph invariant gen-Spec by

gen-Spec(G) =
(
Spec G, Spec G

)
.

We note that

main-EA ⪯ gen-Spec . (25)

This follows from Proposition 9 and the following result in [8]. Let PG denote the characteristic
polynomial of a graph G.
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▶ Proposition 10 (Cvetković [8]). WG(z) = 1
z

(
(−1)n P

G
(−1/z−1)

PG(1/z) − 1
)

.

Alternatively, (25) can be obtained by using [26, Th. 3].
To complete the diagram in Figure 1, it remains to prove the following relation.

▶ Theorem 11. gen-Spec ⪯ weak-FSI.

Proof. The spectrum of G, hence also the characteristic polynomial PG, is determined by
weak-FSI(G) just by definition. We have to show that Spec G or, equivalently, PG is also
determined. By Proposition 10, PG is obtainable from PG and WG. Using Part 2 of Corollary
5, it remains to notice that WG is determined by w

(1/2)
∗ (G). Indeed,

wk(G) =
∑

x

wk(x) =
∑

x

∑
y

wk(x, y),

where the right hand side is obtainable from the multiset
{{
{{wk(x, y)}}y

}}
x
, which is a part

of w
(1/2)
∗ (G). ◀

6 Separations

Fürer [15] poses the open problem of determining which of the relations in the chain

weak-FSI ⪯ strong-FSI ⪯WL2 (26)

are strict. As mentioned before, Rattan and Seppelt [23] show that this chain does not
entirely collapse. They separate weak-FSI and WL2 by proving that weak-FSI ⪯WL3/2 and
separating WL3/2 and WL2. Hence, at least one of the two relations in (26) is strict. Fürer [15]
conjectures that the first relation in (26) is strict and does not exclude the possibility that
the last two invariants in (26) are equivalent. We settle this by showing that, in fact, both
relations in (26) are strict. We actually prove much more: up to one question remaining open,
the diagram shown in Figure 1 is exact in the sense that all present arrows are non-reversible
and that any two invariants not connected by arrows are provably incomparable. The only
remaining question concerns the chain w

(•)
∗ → · · · → w

(r)
∗ → · · · → w

(1)
∗ ; see Problem 17

stated below and an approach to its solution in Theorem 18.
We now present a minimal set of separations from which all other separations follow. For

compatibility with Figure 1, we write I ↛ I ′ to negate I ′ ⪯ I.

WL1 ↛ Spec. To show this, we have to present two WL1-equivalent but not cospectral
graphs. The simplest pair of WL1-equivalent graphs, 2C3 and C6, works. Indeed, the
eigenvalues of Cn are 2 cos 2πk

n for k = 0, 1, . . . , n− 1, and the spectrum of the disjoint
union of graphs is the union of their spectra; see, e.g., [10, Example 1.1.4 and Theorem
2.1.1].

EA ↛ main-EA. It is known [9] that among trees with up to 20 vertices there is a single pair
of non-isomorphic trees, with 19 vertices, with the same eigenvalues and angles. Using
Proposition 9, a direct computation shows that these two trees are not main-EA-equivalent.

gen-Spec ↛ WM. The smallest, with respect to the number of vertices and the number
of edges, pair of generalized cospectral graphs consists of 7-vertex graphs G and H

where G = C6 ∪K1 and H is obtained from the 3-star K1,3 by subdividing each edge;
see [16, Fig. 4]. Since G has an isolated vertex and H does not, these graphs are not
WM-equivalent.
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gen-Spec ↛ EA. The same pair of graphs G and H works. They are not EA-equivalent
because connectedness of a graph is determined by its spectrum and angles [10, Th. 3.3.3].
Another reason for this is that every graph with at most 9 vertices is determined by its
spectrum and angles up to isomorphism [9].

strong-FSI ↛ WL1. An even stronger fact, namely w
(2)
∗ ↛ WL1 is proved as Theorem 13

below. The separation implies that strong-FSI ↛ WL2, answering one part of Fürer’s
question. Another consequence is also the separation WM ↛ WL1, which follows as well
from [27, Theorem 3].

WL1 ↛ WL3/2. Consider C6 and 2C3.
WL3/2 ↛ strong-FSI. This is Theorem 12 below. As a consequence, weak-FSI ↛ strong-FSI,

answering the other part of Fürer’s question. Another consequence is the separation
WL3/2 ↛ WL2 shown in [23].

w(•)
∗ ↛ WL2. This is Theorem 16 below. It considerably strengthens the negative answer

to Fürer’s question by showing that the whole hierarchy of the invariants w
(r)
∗ for all r is

strictly weaker than WL2.

We state and prove the three results announced above in the rest of this section.

6.1 WL3/2 is not stronger than strong-FSI
▶ Theorem 12. strong-FSI ⪯̸ WL3/2.

Proof. The separation WL2 ⪯̸ WL3/2 in [23] is shown by constructing a pair of WL3/2-
equivalent graphs G and H as follows. Consider two copies of C6 ∗K1, where ∗ is the join of
graphs. Denote the vertices of degree 6 by u1 and u2. Consider also two copies of (2C3) ∗K1,
denoting their vertices of degree 6 by v1 and v2. The graph G is obtained by adding four
edges forming the cycle u1u2v1v2, and the graph H is obtained by adding the cycle u1v1u2v2.
In [23] it is observed that G and H are distinguishable by 2-WL. We now strengthen this
observation to show that strong-FSI(G) ̸= strong-FSI(H).

The vertices u1, u2, v1, v2 will be referred to as Q-vertices. The other vertices are split
into two classes, H-vertices and T -vertices, depending on whether they belong to a hexagonal
or a triangular part. A vertex x is a Q-vertex exactly when w2(x, x) = deg x = 8. The
H- and the T -vertices are distinguishable by the condition w3(x, x) = 6 for a T -vertex and
w3(x, x) = 4 for an H-vertex. Consider an arbitrary T -vertex x in G. Note that from x there
is at least one 3-walk to each of the twelve T -vertices y. If we consider a T -vertex x in H,
then from x there are 3-walks only to six T -vertices y. This implies that w

(1)
∗ (G) ̸= w

(1)
∗ (H).

We conclude by Part 3 of Corollary 5 that G and H are not strong-FSI-equivalent. ◀

6.2 w(2)
∗ is not stronger than WL1

▶ Theorem 13. WL1 ⪯̸ w
(2)
∗ .

The proof requires a substantial extension of the approach in [27] to separate various
WL1- and WM-based concepts.

Construction. Suppose that we have a graph A with m designated vertices a1, . . . , am and
a graph B with m designated vertices b1, . . . , bm, which will be referred to as port vertices.
In each of the graphs, the port vertices are colored by different colors. Specifically, ai and
bi are colored by the same color i. The resulting partially colored graphs are denoted by
A′ and B′. We construct a graph G(A′, B′) with no colored vertices as follows. G(A′, B′)
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A′ B′ G(A′, B′)

Figure 2 Construction of G(A′, B′).

consists of the vertex-disjoint union of A and B and a number of new vertices of two sorts,
namely connecting and pendant vertices. For each i, there is a connecting vertex ci adjacent
to ai and bi. Moreover, for each i there are i pendant vertices pi,1, . . . , pi,i of degree 1 all
adjacent to ci. An example of the construction for m = 3 is shown in Figure 2.

The main lemma. The crux of the proof is the following lemma. Recall that a strongly
regular graph with parameters (n, d, λ, µ) is an n-vertex d-regular graph where every two
adjacent vertices have λ common neighbors, and every two non-adjacent vertices have µ

common neighbors. Extending the notation used in Section 4.2, for a graph G we set
WLr

1(G) = {{WLr
1(G, x)}}x∈V (G).

▶ Lemma 14. Let A and B be strongly regular graphs with the same parameters (in particular,
A and B can be isomorphic). Let A′ and B′ be their partially colored versions such that
each color occurs in A′, as well as in B′, at most once. Assume that WL0

1(A′) = WL0
1(B′),

which means the the sets of the colors occurring in A′ and B′ are equal and, therefore, we
can construct the uncolored graph G = G(A′, B′). Consider also H = G(A′, A′) constructed
from two vertex-disjoint copies of A′.

1. If WL1(A′) ̸= WL1(B′), then WL1(G) ̸= WL1(H). In words: if color refinement
distinguishes A′ and B′, then it distinguishes also G and H.

2. If WLr
1(A′) = WLr

1(B′) for some r ≥ 1 (i.e., r rounds of color refinement do not suffice
for distinguishing A′ and B′), then w

(r−1)
∗ (G) = w

(r−1)
∗ (H).

The rest of the proof. We can separate WL1 and w
(2)
∗ by finding partially colored strongly

regular graphs A′ and B′ as in Lemma 14 with r = 3. Let SRG(n, d, λ, µ) denote the set
of strongly regular graphs with parameters (n, d, λ, µ). Two suitable colorings A′ and B′

exist for a graph in the set SRG(25,12,5,6) of Paulus graphs, namely for the graph P25.12 in
Brouwer’s collection [5]. These colorings are described in the full version of the paper [1].
They were found by computer search using the Lua package TCSLibLua [14].

Note that P25.12 is one of the two Latin square graphs in SRG(25,12,5,6). The other
Latin square graph in SRG(25,12,5,6) is P25.15, which is the Paley graph on 25 vertices.
This is the only vertex-transitive graph in this family. Curiously, it is not suitable for our
purposes. Moreover, it seems that strongly regular graphs with less than 25 vertices do not
admit appropriate colorings even for r = 2.
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6.3 Separation of the w(r)
∗ hierarchy from WL2

▶ Lemma 15. Let A and B be (possibly isomorphic) strongly regular graphs with the same
parameters. Let A′ and B′ be their versions, each containing a single individualized vertex.
Let G = G(A′, B′) and H = G(A′, A′).
1. w

(r)
∗ (G) = w

(r)
∗ (H) for all r and, therefore, w

(•)
∗ (G) = w

(•)
∗ (H).

2. If WL2(A′) ̸= WL2(B′), then WL2(G) ̸= WL2(H).

Proof. For Part 1, note that WL1(A′) = WL1(B′). Indeed, the distinguishability of A′ and B′

by 1-WL would imply the distinguishability of A and B by 2-WL, contradicting the assumption
that these strongly regular graphs have the same parameters. Thus, WLr

1(A′) = WLr
1(B′)

for all r ≥ 1, and we can apply the second part of Lemma 14. Part 2 is easy. ◀

▶ Theorem 16. WL2 ⪯̸ w
(•)
∗ .

Proof. We apply Lemma 15, where A is the Shrikhande graph and B the 4 × 4 rook’s
graph, both strongly regular graphs with parameters (16, 6, 2, 2). Since both graphs are
vertex-transitive, A′ and B′ are uniquely defined. The neighborhood of the individualized
vertex induces C6 in the Shrikhande graph and 2C3 in the 4× 4 rook’s graph. Therefore,
WL2(A′) ̸= WL2(B′). ◀

▶ Open Problem 17. We leave open the question whether the hierarchy

w
(1)
∗ ⪯ w

(2)
∗ ⪯ w

(3)
∗ ⪯ w

(4)
∗ ⪯ · · · ⪯ w

(•)
∗ (27)

is strict or at least does not collapse to some level. While we know that each w
(r)
∗ is strictly

weaker than WL2, it remains open whether w
(r)
∗ can be stronger than WL1 for some large r.

A negative answer will follow from Lemma 14 if there is an infinite sequence of partially
colored strongly regular graphs A′

r and B′
r for r = 1, 2, 3 . . ., where the underlying graphs are

equal or have the same parameters, such that A′
r and B′

r are distinguished by 1-WL, but
requiring at least r refinement rounds.

Suppose that strongly regular graphs A and B have the same parameters and their
partially colored versions A′ and B′ are distinguished by 1-WL exactly in the (r + 1)-th
round. By Lemma 14, G(A′, B′) and G(A′, A′) are w

(r−1)
∗ -equivalent and, therefore, this

pair of graphs is a good candidate for separation of w
(r−1)
∗ from w

(r)
∗ . This approach works

indeed pretty well.

▶ Theorem 18. The hierarchy (27) is strict up to the 4-th level, that is, the first three
relations in (27) are strict.
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1 Introduction

Since its introduction by Bonnet, Kim, Thomassé and Watrigant in 2020 [16], the notion of
twin-width has made an astounding impact on the field of algorithmic model-checking [10,
11, 12, 13, 14]. Indeed, it promises a unified explanation of why model-checking first order
logic is fixed-parameter tractable on a number of graph classes which were, up to then,
considered to be separate islands of tractability for the model-checking problem, including
proper minor-closed graphs, graphs of bounded rank-width, posets of bounded width and map
graphs [16]; see also the recent works on other graph classes of bounded twin-width [1, 2, 21].
Beyond this, twin-width was shown to have fundamental connections to rank-width and
path-width [14] as well as to matrix theory [13], and has by now been studied even in areas
such as graph drawing [21] and SAT Solving [27, 34].

© Jakub Balabán, Robert Ganian, and Mathis Rocton;
licensed under Creative Commons License CC-BY 4.0

41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024).
Editors: Olaf Beyersdorff, Mamadou Moustapha Kanté, Orna Kupferman, and Daniel Lokshtanov;
Article No. 7; pp. 7:1–7:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:485053@mail.muni.cz
https://orcid.org/0000-0002-2475-8938
mailto:rganian@gmail.com
https://orcid.org/0000-0002-7762-8045
mailto:mrocton@ac.tuwien.ac.at
https://orcid.org/0000-0002-7158-9022
https://doi.org/10.4230/LIPIcs.STACS.2024.7
https://arxiv.org/abs/2310.08243
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


7:2 Computing Twin-Width Parameterized by the Feedback Edge Number

And yet, essentially all twin-width based algorithmic results known to date require a
corresponding decomposition – a so-called contraction sequence – to be provided as part of the
input. The fact that the inner workings of these algorithms rely on a contraction sequence is
not surprising; after all, the same reliance on a suitable decomposition is present in essentially
all graph algorithms parameterized by classical width measures such as treewidth [33] or
rank-width [32, 24]. But while optimal decompositions for treewidth and rank-width can be
computed in fixed-parameter time when parameterized by the respective width measure [6, 28]
and even more efficient algorithms are known when aiming for decompositions that are only
a constant-factor worse than optimal [30, 23], the situation is entirely different in the case of
twin-width. In particular, it is known that already deciding whether a graph has twin-width
at most 4, i.e., admits a 4-contraction sequence, is NP-hard [4] (ruling out fixed-parameter
as well as XP algorithms for computing optimal contraction sequences). Moreover, whether
one can at least compute approximately-optimal contraction sequences in fixed-parameter
time is arguably the most prominent open question in contemporary research of twin-width.

Contribution. Given the difficulty of computing (near-)optimal contraction sequences when
parameterized by twin-width itself, in this article we ask whether one can at least compute
such contraction sequences under a larger parameterization, i.e., when using an auxiliary
parameter which yields stronger restrictions on the input graph1. Algorithms obtained under
such stronger restrictions are not intended to be used as a pre-computation step prior to
using twin-width for model checking, but rather aim to further our understanding of the
fundamental problem of computing (near-)optimal contraction sequences. In this sense,
our work follows in the footsteps of previous work on, e.g., treedepth parameterized by the
vertex cover number [29], MIM-width parameterized by the feedback edge number and other
parameters [20], treewidth parameterized by the feedback vertex number [9] and the directed
feedback vertex number parameterized by the (undirected) feedback vertex number [5].

As our two main contributions, we obtain the first non-trivial fixed-parameter algorithms
for computing (near-)optimal contraction sequences.

▶ Theorem 1. The problem of deciding whether the twin-width of an input graph is at most
2 admits a linear bikernel when parameterized by the feedback edge number k. Moreover, a
2-contraction sequence for G (if one exists) can be computed in time 2O(k·log k) + nO(1).

We remark that Theorem 1 providing a bikernel [19] (instead of a kernel) is merely due
to the output being a trigraph [16]. Our second result targets graphs of higher twin-width:

▶ Theorem 2. There is an algorithm which takes as input an n-vertex graph G with feedback
edge number k, runs in time f(k)·nO(1) for a computable function f , and outputs a contraction
sequence for G of width at most tww(G) + 1.

We note that the graph parameter used in our results – the feedback edge number or
equivalently the edge deletion distance to acyclicity – is highly restrictive and provides
stronger structural guarantees on the input graph than not only twin-width itself, but also
rank-width and treewidth. In a sense, it is one of the two most “restrictive” structural
parameters used in the design of fixed-parameter algorithms [35, 3, 26, 25, 22], with the other
being the vertex cover number, i.e., the minimum size of a vertex cover (see also Figure 1).
But while there is a trivial fixed-parameter algorithm for computing optimal contraction

1 When approximating width parameters, it is desirable to aim for approximation errors which depend
only on the targeted width parameter.
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Twin-width

Clique-width

Treewidth

Neighborhood
diversity Treedepth

Vertex cover number Feedback edge number

Figure 1 Complexity of computing twin-width with respect to notable structural parameters. A
directed path from parameter x to parameter y indicates that y is upper-bounded by a function of
x, i.e., that x is more restrictive than y. Green marks parameters where the problem is trivially
fixed-parameter tractable; red and white signify para-NP-hardness and cases where the complexity
is unknown, respectively; the parameter considered in this paper is highlighted in blue.

sequences w.r.t. the vertex cover number2 and also a polynomial-time algorithm for solving
the same problem on trees [16], lifting the latter to our more general setting parameterized by
the feedback edge number is far from a trivial undertaking and goes hand in hand with the
development of new insights into optimal contraction sequences of highly structured graphs.

Proof Overview and Techniques. At its core, both of our results are kernelization routines
in the sense that they apply polynomial-time reduction rules in order to transform the input
instance into an “equivalent” instance whose size is upper-bounded by a function of the
parameter alone. The required reduction rules are in fact very simple – the difficulty lies in
proving that they are safe. The used parameterization then allows us to argue that after
exhaustive application of these results, we are guaranteed to obtain an instance whose size is
upper-bounded by a function of the feedback edge number. Below, we provide a high-level
overview of the proof; for brevity, we assume here that readers are familiar with the basic
terminology associated with twin-width (as also introduced in Section 2).

The first step towards both desired kernelization algorithms consists of a set of tree-
pruning rules which allow us to “cut off” subtrees in the graph that are connected to the rest
of the graph via a bridge, i.e., a single edge. Already this step (detailed in Section 3) requires
some effort in the context of twin-width, and replaces the cut-off subtrees by one of two
kinds of stumps which depend on the properties of the replaced subtree. After the exhaustive
application of these general rules, in Section 4 we apply a further cleanup step which uses the
structural properties guaranteed by our parameter to deal with the resulting stumps. This
reduces the instance to an equivalent trigraph consisting of O(k)-many vertices plus a set of
“dangling” paths connecting these vertices – paths whose internal vertices have degree 2. We
note that some of the reduction rules developed here, and in particular those which allow
us to safely remove trees connected via a bridge, provide techniques that could be lifted to
remove other kinds of dangling subgraphs and hence may be of general interest. In fact, we

2 In particular, this follows by repeatedly deleting vertices which are twins (an operation which is known
to preserve twin-width [16]) until one obtains a problem kernel.
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(a) (b) (c)

(d)

(e)

Section 3 Section 4 Section 5

Section 6
H

H

H

Figure 2 (a) The input graph – a tree with k extra edges. (b) Three kinds of stumps, which are
obtained by cutting down dangling trees. (c) A small subtrigraph H and long dangling red paths.
(d) If the target twin-width is 2, the paths can be shortened to single vertices. (e) Paths can be
shortened to bounded length while retaining a guarantee on the twin-width. A detailed example
depicting the first two steps is provided in Figure 4.

use our reduction rules to improve the previously known twin-width 2 upper bound from
trees to graphs of feedback edge number 1 (Theorem 21), which additionally yields a slightly
tighter relationship between twin-width and the feedback edge number (Corollary 22).

The structure of the trigraph at this point seems rather simple: it consists of a bounded-
size part plus a small set of arbitrarily long dangling paths. Intuitively, one would like to
obtain a bikernel by showing that each sufficiently long dangling path can be replaced by a
path of length bounded by some constant without altering the twin-width. In Section 5, we
implement this approach by guaranteeing the existence of “well-structured” 2-contraction
sequences for graphs of twin-width 2, in turn allowing us to complete the proof of Theorem 1.

The situation becomes significantly more complicated when aiming for contraction se-
quences for graphs of higher twin-width. In particular, not only does the approach used in
Section 5 not generalize, but we prove that there can exist no safe twin-width preserving
rule to shorten dangling paths to a constant length, for any constant (see Proposition 9).
Circumventing this issue – even when allowing for an additive error of one – in Section 6
forms the most challenging part of our results. The core idea used in the proof here is
to partition a hypothetical optimal contraction sequence into a bounded number of stages
(defined via so-called blueprints). Crucially, we show that the original contraction sequence
can be transformed into a “nice” sequence where we retain control over the operations carried
out in each stage, at the cost of allowing for a slightly higher width of the sequence. The
structure in these nice sequences is defined by aggregating all the descendants of the dangling
paths into so-called centipedes. Afterward, we use an iterative argument to show that such
a well-behaved sequence can also be used to deal with a kernelized trigraph where all the
long dangling paths are replaced by paths whose length is not constant, but depends on a
function of k.

A mind map of our techniques and algorithmic results is provided in Figure 2.

2 Preliminaries

For integers i and j, we let [i, j] := {n ∈ N | i ≤ n ≤ j} and [i] := [1, i]. We assume familiarity
with basic concepts in graph theory [18] and parameterized algorithmics [19, 17].

The length of a path is the number of edges it contains. An edge set F in an n-vertex
graph G is called a feedback edge set if G − F is acyclic, and the feedback edge number of G

is the size of a minimum feedback edge set in G. A dangling path in G is a path of vertices
which all have degree 2 in G, and a dangling tree in G is an induced subtree in G which can
be separated from the rest of G by a bridge (see, e.g., Figure 4 later).
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Twin-Width. A trigraph G is a graph whose edge set is partitioned into a set of black and
red edges. The set of red edges is denoted R(G), and the set of black edges E(G). The
black ( resp. red) degree of u ∈ V (G) is the number of black (resp. red) edges incident to u in
G. We extend graph-theoretic terminology to trigraphs by ignoring the colors of edges; for
example, the degree of u in G is the sum of its black and red degrees. We say a (sub)graph
is black ( resp. red) if all of its edges are black (resp. red); for example, P is a red path in G

if it is a path containing only red edges. Without a color adjective, the path (or a different
kind of subgraph) may contain edges of both colors. We use G[Q] to denote the subtrigraph
of G induced on Q ⊆ V (G).

Given a trigraph G, a contraction of two distinct vertices u, v ∈ V (G) is the operation
which produces a new trigraph by (1) removing u, v and adding a new vertex w, (2) adding a
black edge wx for each x ∈ V (G) such that xu, xv ∈ E(G), and (3) adding a red edge wy for
each y ∈ V (G) such that yu ∈ R(G), or yv ∈ R(G), or y contains only a single black edge to
either v or u. A sequence C = (G = G1, . . . , Gn) is a partial contraction sequence of G if it is
a sequence of trigraphs such that for all i ∈ [n − 1], Gi+1 is obtained from Gi by contracting
two vertices. A contraction sequence is a partial contraction sequence which ends with a
single-vertex graph. The width of a (partial) contraction sequence C, denoted w(C), is the
maximum red degree over all vertices in all trigraphs in C; we also use α-contraction sequence
as a shorthand for a contraction sequence of width at most α. The twin-width of G, denoted
tww(G), is the minimum width of any contraction sequence of G, and a contraction sequence
of width tww(G) is called optimal. An example of a contraction sequence is provided in
Figure 3.

A

C

E

B

D

F

A

C

B

D

EF

AB

C D

EF

AB

CD

EF

AB

CDEF

ABCDEF

Figure 3 A 2-contraction sequence of the leftmost graph, consisting of 6 trigraphs.

Let us now fix a contraction sequence C = (G = G1, . . . , Gn). For each i ∈ [n], we
associate each vertex u ∈ V (Gi) with a set β(u, i) ⊆ V (G), called the bag of u, which
contains all vertices contracted into u.

Note that if a vertex u appears in multiple trigraphs in C, then its bag is the same in
all of them, and so we may denote the bag of u simply by β(u). Let us fix i, j ∈ [n], i ≤ j.
If u ∈ V (Gi), v ∈ V (Gj), and β(u) ⊆ β(v), then we say that u is an ancestor of v in Gi

and v is the descendant of u in Gj (clearly, this descendant is unique). If H is an induced
subtrigraph of Gi, then u ∈ V (Gj) is a descendant of H if it is a descendant of at least one
vertex of H, and we say that u ∈ V (Gi) is contracted to H in Gj if u is an ancestor of a
descendent of H in Gj . A contraction of u, v ∈ V (Gj) into uv ∈ V (Gj+1) involves w ∈ V (Gi)
if w is an ancestor of uv.

The following definition provides terminology that allows us to partition a contraction
sequence into “steps” based on contractions between certain vertices in the original graph.

▶ Definition 3. Let C be a contraction sequence of a trigraph G, and let H be an induced
subgraph of G with |V (H)| = m. For i ∈ [m − 1], let C⟨i⟩H be the trigraph in C obtained by
the i-th contraction between two descendants of H, and let C⟨0⟩H = G. For i ∈ [m − 1], let
Ui and Wi be the bags of the vertices which are contracted into the new vertex of C⟨i⟩H .
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7:6 Computing Twin-Width Parameterized by the Feedback Edge Number

A contraction sequence C[H ] = (H = H1, . . . , Hm) is the restriction of C to H if for each
i ∈ [m − 1], Hi+1 is obtained from Hi by contracting the two vertices u, w ∈ V (Hi) such that
β(u) = Ui ∩ V (H) and β(w) = Wi ∩ V (H).

Next, we introduce a notion that will be useful when dealing with reduction rules in the
context of computing contraction sequences.

▶ Definition 4. Let G, G′ be trigraphs. We say that the twin-width of G′ is effectively at
most the twin-width of G, denoted tww(G′) ≤e tww(G), if (1) tww(G′) ≤ tww(G) and (2)
given a contraction sequence C of G, a contraction sequence C ′ of G′ of width at most w(C)
can be constructed in polynomial time. If tww(G′) ≤e tww(G) and tww(G) ≤e tww(G′), then
we say that the two graphs have effectively the same twin-width, tww(G′) =e tww(G).

We say that G′ is a pseudoinduced subtrigraph of G if G′ is obtained from an induced
subtrigraph of G by the removal of red edges or their replacement with black edges.

▶ Observation 5. If G′ is a pseudoinduced subtrigraph of G, then tww(G′) ≤e tww(G).

Preliminary Observations and Remarks. We begin by stating a simple brute-force algorithm
for computing twin-width.

▶ Observation 6. An optimal contraction sequence of an n-vertex graph can be computed in
time 2O(n·log n).

The following observation not only establishes the twin-width of trees – which form a
baseline case for our algorithms – but also notes that the necessary contractions are almost
entirely independent of the choice of the root.

▶ Observation 7 ([16, Section 3]). For any rooted tree T with root r, there is a contraction
sequence C of T of width at most 2 such that the only contraction involving r is the very last
contraction in C.

Next, we recall that a 1-contraction sequence can be computed in polynomial time not
only on graphs, but also on trigraphs with at most one red edge.

▶ Theorem 8 ([15, Section 7]). If G is a trigraph with at most one red edge, then it can be
decided in polynomial time whether the twin-width of G is at most 1. In the positive case,
the algorithm also returns an optimal contraction sequence of G.

Finally, we formalize the claim made in Section 1 that there can be no “simple” twin-width
preserving reduction rule for handling long dangling paths; in particular, any such rule for
simplifying dangling paths cannot depend purely on the length of the path itself.

▶ Proposition 9. For every integer c ≥ 1, there exists a graph Gc with the following properties:
(1) Gc contains a dangling path P of length c, (2) tww(Gc) ≥ 5, and (3) the graph obtained
by subdividing one edge in P (i.e., replacing P with a path P ′ whose length is c + 1) has
twin-width at most 4.

Finally, we remark that throughout the paper, we assume the input graph G to be
connected; this is without loss of generality, since otherwise one can handle each of the
graph’s connected components separately.
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3 Cutting Down a Forest

After computing a minimum feedback edge set of an input graph G, the first task on our route
towards Theorems 1 and 2 is to devise reduction rules which can safely deal with dangling
trees. While it is not possible to delete such trees entirely while preserving twin-width, we
show that they can be safely “cut down”; in particular, depending on the structure of the
tree it can be replaced by one of the two kinds of stumps defined below.

▶ Definition 10. Let G be a trigraph, and let u, v, w ∈ V (G). We say that u has a half
stump v if uv ∈ E(G), and the degree of v in G is 1. We say that u has a red (resp. black)
stump vw if uv ∈ E(G) and vw ∈ R(G) (resp. vw ∈ E(G)), and the degrees of v and w are
2 and 1, respectively. Half, red, and black stumps are collectively called stumps. The stump
vw (or v) then belongs to u.

We begin by observing that special kinds of subtrees – specifically, stars – can be safely
replaced with just a black stump.

▶ Observation 11. Let G be a trigraph with a dangling tree T connected to the rest of the
graph via the bridge e = uv where v ∈ V (T ). Assume that T is a black star consisting of at
least one vertex other than v. Then G has effectively the same twin-width as the trigraph G′

obtained from G − T by adding a black stump to u.

Next, we show that all dangling trees not covered by Observation 11 can be safely cut
down to a red stump, as long as the trigraph obtained by the cutting has twin-width at least
2 (a condition that will be handled later on). The proof of this case is significantly more
difficult than the previous one.

▶ Lemma 12. Let G be a trigraph with a bridge e = uv such that the connected component
T of G − {e} containing v is a black dangling tree which contains a vertex at distance 2 from
v and let G′ be the trigraph obtained from G − T by adding a red stump to u. If tww(G) ≥ 2
and tww(G′) ≥ 2, then G and G′ have effectively the same twin-width.

Proof Sketch. We begin by establishing tww(G) ≤e tww(G′). Let C ′ be a contraction
sequence of G′, and we will show how to construct a contraction sequence C = (G =
G0, G1, . . .) of G of width at most w(C ′). C starts with contracting T , following the
contraction sequence CT given by Observation 7 (with v as the root), but stops before the
first contraction involving v (which is the very last contraction in CT ). Let Gi be the obtained
trigraph. By definition of CT , no vertex of Gj , j ∈ [i], exceeds the bound on its red degree
since w(CT ) ≤ 2 ≤ tww(G′). Gi is isomorphic to G′ and so from here on, C follows C ′.

Our task in the remainder of the proof will be to establish tww(G′) ≤e tww(G). Let
C = (G, G1, . . .) be a contraction sequence of G, and let w, x ∈ V (T ) \ {v} be such that
vw, wx ∈ E(T ). We need to construct a contraction sequence of G′ of width at most
w(C); note that there can be vertices with red degree up to 2 in this desired sequence since
w(C) ≥ tww(G) ≥ 2. Let G− := G[V (G − T ) ∪ {v, w}]. Observe that the only difference
between G′ and G− is the color of the edge vw (it is red in G′, but black in G−) and let
C− = (G− = G−

0 , G−
1 , . . . , G−

m) be the restriction of C to G−; hence w(C−) ≤ w(C). Let us
consider the contraction sequence C ′ = (G′ = G′

0, G′
1, . . . , G′

m) of G′ which follows C− in
each step (i.e., V (G−

i ) = V (G′
i) for all i ∈ [m]). To avoid any confusion, we explicitly note

that it is not possible to rule out w(C ′) > w(C−). We complete the proof by performing
a case distinction that will allow us to either guarantee w(C ′) ≤ w(C−), or – in the most
difficult case – construct a new contraction sequence C ′′ of G′ such that w(C ′′) ≤ w(C). ◀
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7:8 Computing Twin-Width Parameterized by the Feedback Edge Number

Let us now provide some intuition on how we aim to apply Lemma 12 (a formalization
is provided in the proof of Theorem 17 at the end of this section). Assume without loss
of generality that the input graph G has twin-width at least 2. The first time we want to
apply Lemma 12 to go from G to G′, we can verify that tww(G′) ≥ 2 by Theorem 8; if this
check fails then we show how to construct a 2-contraction sequence of G, and otherwise we
replace T with a red stump as per the lemma statement. For every subsequent application
of Lemma 12, G′ will have two red edges and hence we cannot rely on Theorem 8 anymore –
but instead, we can guarantee that the condition on G′ holds by establishing the following
lemma.

▶ Lemma 13. Let G be a connected trigraph with two red stumps. Then tww(G) ≥ 2.

With Observation 11 and Lemmas 12-13, we can effectively preprocess (tri)graphs by
“cutting down” all dangling trees (i.e., replacing them with stumps). However, we will also
need to deal with the fact that a vertex could now be connected to many distinct stumps.
For half stumps this is not an issue, as multiple half stumps can be assumed to be contracted
into a single half stump due to the vertices in them being twins. For all pairs of other kinds
of stumps (except for a pair consisting of a half and a black stump), we show that it is
sufficient to replace these with a single stump instead.

▶ Observation 14. Let G′ be a trigraph such that tww(G′) ≥ 2, let u ∈ V (G′) be a vertex
with a red stump S in G′, and let G be a trigraph obtained from G′ by adding an additional
stump to u. Then G′ and G have effectively the same twin-width.

▶ Lemma 15. Let G′ be a trigraph, let u ∈ V (G′) be a vertex with a red stump S in G′, and
let G be a trigraph obtained from G′ by removing S and adding two black stumps to u. If
tww(G) ≥ 2 and tww(G′) ≥ 2, then G′ and G have effectively the same twin-width.

We conclude this section by formalizing the trigraph that can be obtained through
the exhaustive application of the reduction rules arising from Observations 11, 14 and
Lemmas 12, 15. We say that an induced subtrigraph in G is a dangling pseudo-path if it can
be obtained from a dangling path P in G by adding, to each of the vertices in P , either (a)
one red stump or (b) at most one black stump and at most one half stump.

▶ Definition 16. A connected trigraph G with tww(G) ≥ 2 is an (H, P)-graph if P is a set
of dangling pseudo-paths in G, and there are two disjoint induced subtrigraphs of G, H and
⊔P (the disjoint union of all paths in P), such that each vertex of G belongs to one of them.

We proceed with some related terminology that will be used extensively in the subsequent
sections. A vertex u ∈ V (H) is a connector in G if u is adjacent to a vertex of ⊔P in G. We
say that P ∈ P is original if all edges in P that do not belong to a stump are black and the
edges connecting the endpoints of P to H are also black. Later, we will also deal with tidy
paths in P , where P ∈ P is tidy if P is a dangling red path (i.e., contains no stumps) which
additionally satisfies the following three technical conditions for each connector u ∈ V (H)
adjacent to an endpoint v of P :
1. u has black degree 0;
2. v is the only neighbor of u in ⊔P ; and
3. u has a unique neighbor u′ in V (H) and u′ has positive black degree.

We say that an (H, P)-graph is original (tidy) if all paths P ∈ P are original (tidy,
respectively). An illustration of these notions is provided in Figure 4, which also showcases
the outcome of applying the culmination of this section – Theorem 17 – on an input graph.
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Figure 4 Left: A graph G with feedback edge number two. Feedback edges are orange, vertices
in dangling trees are blue. Middle: The original (H, P)-graph obtained from G after all dangling
trees have been cut down (i.e., the outcome of Theorem 17). A dangling pseudo-path is depicted
via the grey vertices. Right: The tidy (H, P)-graph that will later be obtained from the original
(H, P)-graph by applying Corollary 20 at the end of Section 4. Here, P contains a single tidy
dangling path which is colored green, and all other vertices lie in H.

▶ Theorem 17. There is a polynomial-time procedure which takes as input a graph G with
feedback edge number k and either outputs an optimal contraction sequence of G of width at
most 2, or an original (H, P)-graph G′ with effectively the same twin-width as G such that
|V (H)| ≤ 16k and |P| ≤ 4k.

4 Cleaning the Paths

In the second phase of our proof, our aim is to simplify the instance even further after
Theorem 17 in order to reach a trigraph which is “clean” enough to support the path
reduction rules developed in the next sections. In particular, we will show that all the
dangling pseudo-paths arising from Theorem 17 can be safely transformed into red dangling
paths, resulting in an (H, P)-graph that is tidy as per the definition in the previous section.

We first show how to deal with stumps belonging to a single vertex.

▶ Observation 18. Let G be a trigraph, let u ∈ V (G) be a vertex with a single stump or a
black and a half stump, and let G′ be the trigraph obtained from G by deleting the stumps
belonging to u and making all edges incident to u red. There is a partial contraction sequence
from G to G′ of width max{d1 + 1, d2}, where d1 is the red degree of u in G and d2 is the
maximum red degree of any vertex in G′.

Next, we establish that if a dangling pseudo-path has two consecutive vertices without
stumps, the edge between them can be turned red. We remark that this lemma will be
applied to subtrigraphs of the considered trigraph, and hence we cannot assume that the
trigraph has twin-width at least 2.
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▶ Lemma 19. Let G be a trigraph, let (u1, u2, u3, u4) be an induced path in G in this order,
and assume that the degree of u2 and u3 is 2 in G and that the degree of u ∈ {u1, u4} in G is 3
if u has a single stump, 4 if u has a half stump and a black stump, and 2 otherwise. Let G′ be
the trigraph obtained from G by changing the color of the edge u2u3 to red. Given a contraction
sequence C of G, a contraction sequence C ′ of G′ such that w(C ′) = max{2, w(C)} can be
constructed in polynomial time.

With Lemma 19, we show that a dangling pseudo-path can either be safely transformed
into a “real” dangling path, or (if the path is too short) absorbed into H, which in turn
allows us to prove:

▶ Corollary 20. There is a polynomial-time algorihm which transforms an original (H, P)-
graph into a tidy (H ′, P ′)-graph with effectively the same twin-width such that |V (H ′)| ≤
|V (H)| + 24 · |P| and |P ′| ≤ |P|.

Before we proceed towards establishing our main algorithmic theorems, we remark that
Theorem 17 and Corollary 20 allow us to bound the twin-width of graphs with feedback edge
number 1, generalizing the earlier result of Bonnet et al. [16, Section 3] for trees.

▶ Theorem 21. Every graph with feedback edge number 1 has twin-width at most 2.

As an immediate corollary, we can obtain an even more general statement:

▶ Corollary 22. Every graph with feedback edge number ℓ ≥ 1 has twin-width at most 1 + ℓ.

5 Establishing Theorem 1: Recognizing Twin-width 2

Our aim now is to make the step from Corollary 20 towards a proof of Theorem 1. Towards
this, let us fix a tidy n-vertex (H, P)-graph G. When dealing with a contraction sequence,
we will use Gi to denote the i-th trigraph obtained from G, and let Hi be the subtrigraph
of Gi induced by the descendants of H. We say that u ∈ V (Gi) is an outer vertex in Gi if
u /∈ V (Hi), and we lift the previous definition of connectors by saying that u is a connector
in Gi if u ∈ V (Hi) and u is adjacent to an outer vertex in Gi.

We begin with a simple observation which will be useful throughout the rest of the section.

▶ Observation 23. If Gi is a trigraph obtained from a tidy (H, P)-graph G by a sequence of
contractions, then all outer vertices and all connectors in Gi have black degree 0 in Gi.

Our proof of Theorem 1 relies on establishing that if a tidy (H, P)-graph G has twin-width
2, then it also admits a contraction sequence which is, in a sense, “well-behaved”. The proof
of this fact is based on induction, and hence being “well-behaved” (formalized under the
notion of regularity below) is defined not only for entire sequences but also for prefixes.

▶ Definition 24. Let C = (G1 = G, G2, . . . , Gn) be a contraction sequence. For P ∈ P, let
us denote by Pi the subtrigraph of Gi induced by the descendants of P which are not in Hi.
We say that a prefix (G1, . . . , Gi) of C is regular if:

for all j ∈ [i], {Pj | P ∈ P} is a set of disjoint red paths, and the endpoints of these paths
are adjacent to connectors; and
for all j ∈ [i − 1]:

1. Gj+1 is obtained by a contraction inside Hj, or
2. there is P ∈ P such that if you shorten Pj by one vertex in Gj, you obtain Gj+1, or
3. there is P ∈ P such that |V (Pj)| = 1 and |V (Pj+1)| = 0.
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Let reg(C) denote the length of the longest regular prefix of C. Below, we show that
unless we reach a degenerate trigraph (a case which is handled in the proof of Proposition 26
later), every contraction sequence of width 2 can be made “more regular” until it is entirely
regular.

▶ Lemma 25. Let C = (G1 = G, G2, . . . , Gn) be an optimal contraction sequence of G of
width 2, and let i := reg(C). If i < n and Gi is not a red cycle of length 4, then there is an
optimal contraction sequence C ′ of G such that reg(C ′) > i.

We can now use Lemma 25 to show that contracting all the tidy dangling paths in G

into singletons cannot increase the twin-width of G.

▶ Proposition 26. Let G′ be the trigraph obtained from a tidy (H, P)-graph G of twin-width
2 by shortening each path in P to a single vertex. Then tww(G′) = 2.

With Proposition 26 in hand, we can complete the proof of Theorem 1.

▶ Theorem 1. The problem of deciding whether the twin-width of an input graph is at most
2 admits a linear bikernel when parameterized by the feedback edge number k. Moreover, a
2-contraction sequence for G (if one exists) can be computed in time 2O(k·log k) + nO(1).

Proof. First we use Theorem 17: if it returns an optimal contraction sequence of the input
graph G0, we immediately know its twin-width. Otherwise, we obtain an original (H, P)-
graph G with effectively the same twin-width as G0 such that |V (H)| ≤ 16k and |P| ≤ 4k.
Now we use Corollary 20 to transform G into a tidy (H ′, P ′)-graph G′ that has effectively
the same twin-width as G and that satisfies |V (H ′)| ≤ 112k and |P ′| ≤ 4k. By transitivity
of =e, we obtain tww(G0) =e tww(G′). Finally, let G′′ be the trigraph obtained from G′ by
shortening each path in P ′ to a single vertex.

By Proposition 26, tww(G′) = 2 implies tww(G′′) = 2. Conversely, given a contraction
sequence C ′′ of G′′, we can construct a contraction sequence C ′ of G′ of width at most
w(C ′′) by first shortening each path in P ′ to a single vertex via progressive contractions of
consecutive vertices, and then following C ′′; thus, tww(G′) ≤e tww(G′′). Since tww(G′) ≥ 2,
we obtain that tww(G′′) = 2 implies tww(G′) = 2. By combining these two implications
with tww(G0) = tww(G′), we obtain that tww(G0) = 2 if and only if tww(G′′) = 2. Since
all operations required to construct G′′ from G0 can be performed in polynomial time and
|V (G′′)| ≤ 116k, G′′ is indeed a linear bikernel for the considered problem.

Finally, if tww(G0) ≤ 2, an optimal contraction sequence of G0 can be computed in the
desired time: either it is given by Theorem 17, or we construct G′′ in polynomial time and
compute an optimal contraction sequence of G′′ in time 2O(k·log k) as per Observation 6, and
then the result follows by the effectiveness in tww(G0) =e tww(G′) ≤e tww(G′′). ◀

6 Establishing Theorem 2: Almost-Optimal Contraction Sequence

We now move on to the most involved part of the paper: the final step towards proving
Theorem 2, which we will outline in the next few paragraphs. Recall that after applying
Corollary 20, we obtain a tidy (H, P)-graph G with effectively the same twin-width as the
input graph. Now we “only” need to show that the dangling paths in P can be shortened to
length bounded by the input parameter without increasing the twin-width too much. As we
noted earlier, there is no “local” way of shortening a dangling path (see Proposition 9).

Instead, our approach is based on establishing the existence of a (tww(G) + 1)-contraction
sequence C∗ for the trigraph G∗ obtained from G by shortening its long paths; C∗ is obtained
by non-trivially repurposing a hypothetical optimal contraction sequence C = (G1 =
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G, G2, . . . , Gn) of G. Once we do that, we will have proven that our algorithm can produce
a near-optimal contraction sequence for G by first shortening the paths (by contracting
neighbors) and then, when the paths are as short as in G∗, by applying Observation 6. In
other words, the complex machinery devised in this section is required for the correctness
proof, while the algorithm itself is fairly simple.

Intuitively, the reason why it is difficult to go from C to C∗ is that C has too much
“freedom”: it can perform arbitrary contractions between vertices of the dangling paths,
whereas the only limitation is that the red degrees cannot grow too high (this was not an issue
in Section 5, since having twin-width 2 places strong restrictions on how the dangling paths
may interact). We circumvent this issue by not following C too closely when constructing
C∗. Instead, we only look at a bounded number of special trigraphs in C, called checkpoints
– forming the big-step contraction sequence defined later – and show that we can completely
ignore what happened in C between two checkpoints when constructing C∗. Moreover, while
checkpoints may be large and complicated, we identify for each checkpoint a small set of
characteristics which will be sufficient to carry out our construction; we call this set the
blueprint of the checkpoint, and it also includes the induced subtrigraph Hi of all descendants
of H in a checkpoint Gi (the so-called core).

Our aim is to simulate the transition from one checkpoint to another via a “controlled”
contraction sequence. For this purpose, we define representatives – trigraphs in C∗ which
match the blueprints of checkpoints in C – and show how to construct a partial contraction
sequence from one representative to another in Subsection 6.3. In the end, these partial
contraction sequences will be concatenated to create C∗.

A crucial gadget needed to define these representatives are centipedes; these are well-
defined and precisely structured objects which simulate the (possibly highly opaque) connec-
tions between red components in the core, and are illustrated in Figure 5 later. Subsection 6.2
is dedicated to establishing the operations required to alter the structure and placement
of centipedes between individual representatives. These operations rely on the fact that a
vertex is allowed to have red degree 4; this is one reason why Theorem 2 produces sequences
whose width may be one larger than the optimum (the other reason is that the possibility of
supporting an additional red edge provides more flexibility when moving and altering the
centipedes between checkpoints).

One final issue we need to deal with is that the paths in P must be sufficiently long in
order to support the creation of the centipedes at the beginning of C∗. Fortunately, there is
a simple way of resolving this: paths in P which are not long enough can be moved into H.
However, the cost of this is that each time we add such a path into H, the size of H – and
hence also the bound on the length of the paths in G∗ – can increase by an exponential factor.
For this reason, unlike in the previous section, the bikernel we obtain is not polynomial and
not even elementary; its size will be bounded by a tower of exponents whose height is linear
in the parameter.

6.1 Initial Setup
Recall that at this point, we are dealing with a tidy (H, P)-graph G. Let C = (G1 =
G, G2, . . . , Gn) be a contraction sequence of G, and recall that Hi denotes the subtrigraph
of Gi induced on the descendants of H and that we call vertices not in Hi outer.

We say that Gi is decisive if Hi ̸= Hi−1 or i = 1. We define the big-step contraction
sequence CBS as a subsequence of C which contains Gi if and only if Gi or Gi+1 is decisive.
We call the trigraphs in CBS checkpoints. Furthermore, we define fH : N → N as follows:
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Hi

Hi

Figure 5 Left: A possible trigraph Gi. The components of HR
i (i.e., vertices of Bi) are marked

by green or blue circles: blue means isolated and green means non-isolated. The edges of Bi are
depicted as green lines. Right: a representative for Gi. Blue vertices lie in the body of a centipede,
yellow vertices form legs of centipedes, and green vertices lie in the tail of a centipede. Note that
the tails and the leg paths, which are drawn as thick red lines, contain many vertices.

fH(ℓ) = (3|V (H)|+4 · |V (H)|2)ℓ. Informally, this function describes how big the centipedes
will need to be in the ℓ-th trigraph in CBS , counted from the end (the centipedes need to be
the largest at the beginning, as they shrink during each transition between checkpoints).

Now we define the blueprints; these capture the information we need about the checkpoints.

▶ Definition 27. The blueprint of a trigraph Gi in C, denoted Bi, is the tuple (Hi, Bi) where
Bi is the vertex-labeled graph constructed in the following way:

let HR
i be the subgraph obtained from Hi by removing every edge that is black or incident

to a black edge;
V (Bi) is the set of connected components of HR

i (the fully-red components);
U ∈ V (Bi) is labeled isolated if for all u ∈ U , we have NGi

(u) ⊆ V (Hi), and otherwise
it is non-isolated;
UU ′ ∈ E if there is a (red) path between some vertices u ∈ U and u′ ∈ U ′ in Gi which
contains no vertex of V (Hi) except for u and u′. E(Bi) is then the transitive closure of
E. Observe that isolated vertices have degree 0 in Bi but a non-isolated vertex may have
degree 0, too; see Figure 5 for an illustration.

A reader may wonder why we define the edge relation of Bi to be transitive. The reason
is that with this definition, a connection can disappear only when Hi changes, see Lemma 32
below. We are now ready to define centipedes – the technical gadget underlying our entire
construction.

▶ Definition 28. Let d ≥ 0 and ℓ ≥ 1. The centipede cen(d, ℓ) is the following graph:
the vertex set consists of three disjoint sets: the body {ui | i ∈ [d + 1]}, the legs
{vi | i ∈ [d]}, and the tail {wi | i ∈ [ℓ]};
the edge set is {uiui+1, uivi | i ∈ [d]} ∪ {wiwi+1 | i ∈ [ℓ − 1]} ∪ {ud+1w1, ud+1wℓ}.

We say that u1 is the head of cen(d, ℓ). Let G′ be a supergraph of cen(d, ℓ). We say that a
leg v of cen(d, ℓ) is free in G′ if its degree is 1 in G′. For x ∈ V (G′), we say that cen(d, ℓ) is
attached to x if x is adjacent to the head of cen(d, ℓ).
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Now we define the representatives; trigraphs representing the blueprints in C ′. Note that
ℓ specifies how big the centipedes in the representative need to be.

▶ Definition 29. Let Bi = (Hi, Bi) be a blueprint and ℓ be an integer. Now a representative
for Bi of order ℓ, denoted Rℓ

i , is a trigraph that can be built as follows:
1. start with Hi; let U ⊆ V (Bi) be the set of non-isolated vertices of Bi;
2. for each U ∈ U , add a red centipede ΨU

∼= cen(degBi
(U), fH(ℓ));

3. for all U ∈ U , add a red edge between the head of ΨU and some vertex of U which has at
least one neighbor outside of Hi in Gi (there must be at least one such vertex because U

is non-isolated);
4. for each edge UU ′ ∈ E(Bi), do the following:

let w (resp. w′) be a leg of ΨU (resp. ΨU ′) free in the current trigraph. Add a red path
of length fH(ℓ) connecting w and w′. We call this path, including the two legs, the leg
path connecting ΨU and ΨU ′ .

Notice that the construction in Definition 29 works by a simple inductive argument
because the number of legs of ΨU is degBi

(U) by construction; an illustration is provided in
Figure 5. Moreover, observe that a representative is not uniquely determined by i and ℓ; the
order of leg paths, as well as the vertices which the centipedes are attached to, can differ.

6.2 Moving Centipedes Around
In this subsection, we describe several operations, i.e., partial contraction sequences, which will
later be used to obtain a partial contraction sequence which transitions from a representative
of one checkpoint in CBS to a representative of the next checkpoint. These operations will
focus on the centipedes introduced in the previous subsection, and may result in trigraphs
which are not necessarily a representative for any graph in C; we refer to these obtained
trigraphs as intermediate graphs and note that their structure can be precisely formalized.

We start with a few simple operations on generalized intermediate graphs:

▶ Observation 30 (Shortening a centipede). We can shorten the tail of a centipede Ψ, by
contracting two neighboring vertices belonging to the tail, to any length. Similarly, we can
shorten a leg path to any non-zero length.

▶ Observation 31 (Destroying a centipede). Let G′ be an intermediate graph, let u ∈ V (H ′),
and let Ψ = cen(0, ℓ) be a centipede attached to u. We can destroy Ψ, i.e., there is a partial
contraction sequence of width at most tww(G) + 1 from G′ to G′ − V (Ψ).

The remaining operations allow us to
1. reorder the legs of a centipede,
2. move a centipede to a different vertex of the core,
3. connect two centipedes by a new leg path,
4. merge two centipedes into a single centipede, and
5. split a centipede into two new centipedes.

Each of these operations can be formalized by carefully prescribing the initial and final
intermediate graph, the impact on the length of the involved centipedes, and a proof ensuring
that the contraction subsequence between the initial and final intermediate graph has width
at most tww(G) + 1.
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6.3 Contraction Sequences for Representatives
In this subsection, we will construct partial contraction sequences between the representatives
of consecutive checkpoints by making use of the operations with the centipedes defined in
Subsection 6.2. We distinguish between two cases depending on whether the core changes
between the checkpoints or not, see Lemmas 33 and 34 below.

We start by observing that if the core does not change between two consecutive checkpoints,
then the blueprint of the latter checkpoint contains all edges present in the blueprint of the
former checkpoint.

▶ Lemma 32. Let Gi and Gj be two consecutive trigraphs in CBS such that Hi = Hj . This
means that V (Bi) = V (Bj), see Definition 27. It holds that E(Bi) ⊆ E(Bj).

We are now ready to define the partial contraction sequence between two representatives
in the case when the core does not change.

▶ Lemma 33. Let Gi, Gj (i < j) be two consecutive trigraphs in CBS, such that Hi = Hj.
For any ℓ ∈ N, there is a partial contraction sequence from Rℓ+1

i to Rℓ
j whose width is at

most tww(G) + 1.

Proof Sketch. Even though the number of contraction happening between Gi and Gj in
C can be huge, the effect on the blueprints (and thus the representatives) is somewhat
limited. After checking what could differ between the two representatives, we present a
sequence of operations on the centipedes – namely moving, creating, connecting, shortening
and destroying centipedes – which is sufficient to obtain Rℓ

j from Rℓ+1
i .

To prove that this sequence of operation on centipedes is feasible, we verify that the tails
and leg paths are sufficiently longer in Rℓ+1

i than in Rℓ
j to sustain the operations without

becoming too short. Moreover, the control we have over the operations enables us to make
sure that no vertex has a red degree higher than tww(G) + 1 at any point in the created
contraction sequence. ◀

Next, we define the partial contraction sequence between two representatives in the
second and final case, namely the case when the core does change. Note that in this case, we
allow the sequence to terminate in a slightly different trigraph (which will be handled by
Lemma 35).

▶ Lemma 34. Let Gi, Gj (i < j) be two consecutive trigraphs in CBS such that Hi ≠ Hj.
For any ℓ ∈ N, there is a partial contraction sequence Cp from Rℓ+1

i to a trigraph that is a
pseudoinduced subtrigraph of Rℓ

j such that w(Cp) ≤ tww(G) + 1.

We now combine the previous two lemmas to obtain a contraction sequence of the
representative for G1 – the first trigraph in CBS as well as in C. More generally:

▶ Lemma 35. Let Gi be a trigraph in CBS such that there are ℓ trigraphs after Gi in CBS.
There is a contraction sequence of Rℓ

i whose width is at most tww(G) + 1.

One more thing we need to do is initialization: the trigraph we are interested in, i.e.,
the trigraph obtained from G by shortening all dangling paths to bounded length, does not
contain any centipedes. This is handled by (the proof of) Theorem 36 below, which also
summarizes the outcome of this subsection.

▶ Theorem 36. Let G be a tidy (H, P)-graph such that tww(G) ≥ 3 and all paths in P have
length at least 3 · fH(|2V (H)|2) + 9 and let G′ = (H, P ′) be any trigraph obtained from G

by shortening paths in P to arbitrary lengths no shorter than 3 · fH(2|V (H)|2) + 9. Then
tww(G′) ≤ tww(G) + 1.
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6.4 Putting Everything Together
We are now ready to prove Theorem 2.

▶ Theorem 2. There is an algorithm which takes as input an n-vertex graph G with feedback
edge number k, runs in time f(k)·nO(1) for a computable function f , and outputs a contraction
sequence for G of width at most tww(G) + 1.

Proof Sketch. We begin by handling the case where tww(G) ≤ 2 by invoking Theo-
rems 8 and 1. For the rest of the proof, we assume tww(G) ≥ 3. Here, we first use
Theorem 17 to get in nO(1) time an original (H, P)-graph such that |V (H)| ≤ 16k and
|P| ≤ 4k. Recall that this (H, P)-graph has effectively the same twin-width as G, so any
optimal contraction sequence for it can be lifted to an optimal one for G. Using Corollary 20,
we obtain – also in nO(1) time – a tidy (H ′, P ′)-graph G′ such that |V (H ′)| ≤ 112k, |P ′| ≤ 4k,
and G′ still has effectively the same twin-width as G.

At this point, we check the length of each path in P ′, whereas if we identify a path
P ∈ P ′ whose length is below the bound required by Theorem 36 (w.r.t. the current size of
H ′), we add P into H ′ and update our choices of H ′ and P ′ accordingly. After exhaustively
completing the above check, we are guaranteed to have satisfied the conditions of Theorem 36.
We now begin constructing our contraction sequence for G′ as follows. First, we iteratively
contract the paths which remain in P ′ until they have length precisely 3 · fH′(2|V (H ′)|2) + 9;
recall that by Theorem 36, we are guaranteed that the resulting graph G∗ has twin-width
at most one larger than G (and also G′). Moreover, the number of vertices in G∗ can

be upper-bounded by a non-elementary function of our parameter, specifically 22...2O(log(k))

where the height of the tower of exponents is upper-bounded by 4k + 3. At this point, we
apply Observation 6 to construct an optimal contraction sequence of G∗ and append it after
the trivial sequence of contractions which produced G∗. The proof now follows by the fact
that G′ has effectively the same twin-width as G. ◀

7 Concluding Remarks

While the feedback edge number parameterization employed by our algorithms is highly
restrictive, we believe Theorems 1 and 2 represent a tangible and important first step towards
more general algorithms for computing near-optimal contraction sequences, with the “holy
grail” being a fixed-parameter algorithm for computing near-optimal contraction sequences
parameterized by twin-width itself. The natural next goals in this line of research would be
to obtain fixed-parameter algorithms for the problem when parameterized by treedepth [31]
and then by treewidth [33].

Towards this direction, we note that it is not at all obvious how one could apply classical
tools such as typical sequences [7, 20, 8] in the context of computing contraction sequences.
At least for treedepth, it may be possible to employ the general approach developed in
Section 6 – in particular, establishing the existence of a near-optimal but “well-structured”
contraction sequence and using that to identify safe reduction rules – but the details and
challenges arising there seem to differ significantly from the ones handled in this article.

Last but not least, we remark that the algorithms developed here rely on reduction
rules which are provably safe, simple to implement, and run in polynomial time; we believe
these may potentially be of interest for heuristic and empirical purposes. We also believe
that the additive error of 1 incurred by Theorem 2 is avoidable, albeit this may perhaps be
seen as a less pressing question than settling the approximability of twin-width under the
parameterizations outlined in the previous paragraph.
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Abstract
The runtime of graph algorithms such as depth-first search or Dijkstra’s algorithm is dominated
by the fact that all edges of the graph need to be processed at least once, leading to prohibitive
runtimes for large, dense graphs. We introduce a simple data structure for storing graphs (and
more general structures) in a compressed manner using directed acyclic graphs (dags). We then
show that numerous standard graph problems can be solved in time linear in the size of the dag
compression of a graph, rather than in the number of edges of the graph. Crucially, many dense
graphs, including but not limited to graphs of bounded twinwidth, have a dag compression of size
linear in the number of vertices rather than edges. This insight allows us to improve the previous
best results for the runtime of standard algorithms from quasi-linear to linear for the large class of
graphs of bounded twinwidth, which includes all cographs, graphs of bounded treewidth, or graphs
of bounded cliquewidth.
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1 Introduction

Graph traversal or graph searching is a fundamental subroutine in algorithmic graph theory.
Given a directed graph (digraph) and a source vertex, the task is to explore the graph
following a predefined strategy. Two famous incarnations of such algorithms are depth-first
search (dfs) and breadth-first search (bfs), which, as the names suggest, explore the graph
by following long paths first or by unraveling the graph layer by layer. Both algorithms
have a broad range of applications, including the computation of connected components or a
topological ordering of the input, identifying separators, testing whether the input is planar,
finding shortest paths, computing maximum flows, and many more [10]. They are also central
in more applied fields and, for instance, are a crucial building block in garbage collection [8],
artificial intelligence [15, 20], and web crawling [7, 9]. It is well-known that both algorithms
can be implemented in time O(m), where m is the number of edges of the input graph [12,
Chapter 5.5]. In particular, for the class of sparse graphs, where m = O(n), both algorithms
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Figure 1 Example of how a dag compression works: For the graph G with vertex set V =
{1, . . . , 9}, one possible cluster dag is the shown C with vertex set V ′ = {1, . . . , 14}. Note that
the sinks of C are exactly the vertices in V . The cluster edges of C, shown as straight gray lines,
determine subsets of V (“clusters”) via reachability: The cluster C(10) of vertex 10 is the set {2, 3};
and C(11) = {4, 5}, C(12) = {5, 6}, C(13) = {4, 5, 6}, C(14) = {8, 9} and note that, for instance,
C(1) = {1}. Pairing C with a relation E′ ⊆ V ′ ×V ′, shown as double lines, yields a dag compression
of G: Each edge (u, v) ∈ E′ adds C(u) × C(v) to E. For instance, the edge (12, 14) ∈ E′ implies
that in E there is a complete bipartite graph with shores C(12) = {5, 6} and C(14) = {8, 9}.

run in time linear in the number of vertices. Many (but by far not all) natural graph classes
are sparse, including planar graphs, d-degenerate graphs, series-parallel graphs, or graphs of
bounded treewidth [17]. In contrast, for very dense graphs, where m = Ω(n2), until recently,
only relatively trivial examples (such as cliques) were known for which these problems could
be solved in time o(n2).

In this paper, we propose a simple data structure, dubbed dag compression, that will
prove useful in computing a bfs or dfs on dense graphs G = (V, E). The idea is to represent
complete bipartite subgraphs of G by storing compressed edges, which are just pairs of
vertices of a dag. Formally, a cluster dag for G is a directed acyclic graph C = (V ′, A)
whose sinks are exactly the vertices in V and each vertex v′ ∈ V ′ represents a cluster C(v′),
which is the set of sinks reachable from v′ in C. A compressed edge is a pair (u′, v′) ∈ V ′ × V ′

that encodes that there are edges in G from each vertex in C(u′) to each vertex in C(v′);
and to encode all edges in G, we use a compressed (edge) relation E′ ⊆ V ′ × V ′ such that
E = C(E′) :=

⋃
(u′,v′)∈E′ C(u′) × C(v′), see Figure 1 for an example. In case G contains

multiple edge relations E1, E2, . . . , Ek (like red edges and blue edges), we compress each Ei

separately using a compressed relation E′
i (but using the same cluster dag).

Crucially, we will show that bfs and dfs can be implemented in a way such that their
time complexity is linear in the total number |A| + |E′| of edges in the dag compression
(called the size of the dag compression in the following) and no longer necessarily linear in
the number |E| of edges of the original graph. Thus, whenever we can find a dag compression
of a graph whose size is linearly bounded by the number n of vertices in the original graph,
we can lower the runtime of bfs and dfs from O(m) to O(n).

A powerful motivation for studying dag compressions comes from its relation to the
prominent class of graphs of bounded twinwidth. Twinwidth is a structural graph parameter
introduced in 2020 by Bonnet et al. [5] to measure the distance of a graph from being a
cograph (detailed definitions will be given later). The importance of this parameter lies in
the fact that for many graph classes commonly studied in the literature this parameter is
bounded (so the class of graphs of bounded twinwidth is large), but the model checking
problem for first-order logic on structures of bounded twinwidth is still fixed-parameter
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tractable (so many problems are still in FPT on this class). However, graphs of bounded
twinwidth are not only interesting in the context of powerful logical characterizations and
algorithmic meta-theorems: It was recently shown [4] that in unweighted graphs of bounded
twinwidth, the single-source shortest path problem (sssp) can be solved in time O(n log n),
despite the fact that such graphs can easily have Ω(n2) edges. Consequently, the diameter of
a graph of bounded twinwidth, i.e., the maximum length of a shortest path, can be computed
in time O(n2 log n), while it is also known [4] that it cannot be computed in time O(n2−ϵ)
unless the strong exponential time hypothesis fails. Hence, there is a log(n)-gap between the
known lower and upper bounds for determining the diameter of graphs of bounded twinwidth.

One of our main results will be that graphs of bounded twinwidth admit a linear-size
dag compression. Combining this with our bfs implementation that runs in time linear
in the size of the dag compression, we see that on graphs of bounded twinwidth, one can
actually solve sssp in time O(n) and, thus, can solve the diameter problem in time O(n2).
In particular, we close the gaps in the runtime left open by previous work.

However, one has to be careful regarding the exact claims of the just-mentioned results: All
known algorithms working on graphs of twinwidth d, including our algorithm for computing
a linear-size dag compression of a graph of bounded twinwidth, need access to a so-called
contraction sequence. Such a sequence is a linear-size witness that a graph has twinwidth d

and, indeed, they can be used to show that deciding whether a graph has twinwidth d lies
in NP (and it is known [3] that at least for d = 4 the problem is NP-complete). For instance,
the algorithm from [4] for the diameter problem needs access to a contraction sequence
witnessing a twinwidth of d, in order to run in time O(d · n2 log n); but the lower bound of
O(n2−ϵ) also still holds when a contraction sequence is given.

Our Contributions. Our first main contribution is conceptual: We propose the already
mentioned dag compression data structure and study their basic properties. The size of
these compressions (the number |A| of cluster edges plus the number |E′| of compressed
edges) will be of particular interest since we will show that important problems can be solved
in a time that is linear with respect to this size.

The central tool underlying our algorithms is a construction that uses a dag compression
D = (V ′, A, E′) of a graph G = (V, E) to build an edge-weighted graph S = (V ′′, E′′, w′′)
with V ⊆ V ′′ and w′′ : E′′ → {0, 1}, called the switching graph of D (since paths in this
graph repeatedly switch between two parts of it, see Figure 2 for an example).

▶ Theorem 1.1. Let G = (V, E) be a directed graph, let D = (V ′, A, E′) be a dag compression
of G, and let S = (V ′′, E′′, w′′) be the switching graph of D. Then for every pair (u, v) ∈ V ×V

we have dG(u, v) = dS(u, v), that is, the distance from u to v is the same in G and in S.

Since it will be immediate from the construction that the number |E′′| of edges in the
switching graph is 2|A| + |E′| and thus at most double the size of the dag compression D,
we easily get fast dfs and bfs algorithms for graphs that admit a dag compression of linear
size:

▶ Theorem 1.2. On input of a dag compression D = (V ′, A, E′) of a graph G = (V, E) we
can visit the vertices in V both in bfs and dfs order in time O(|V ′| + |A| + |E′|).

As graphs with bounded twinwidth have a linearly bounded dag compression, a direct
consequence of Theorem 1.2 is that we close the gap between the lower and upper bound for
computing the diameter of graphs of bounded twinwidth:
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Figure 2 The example graph G = (V, E), dag compression D = (V ′, A, E′), and cluster dag
C = (V ′, A) from Figure 1. The switching graph S = (V ′′, E′′, w′′) results from first taking the
disjoint union of C and the copy C̄, where all edges are reversed, and unifying the vertices in V .
This results in 2|A| many edges (shown in gray in S above) and we set their weight to 0. In addition,
for each edge (u′, v′) ∈ E′ there is a switching edge (ū′, v′) in E′′, shown in black, that leads from
the lower part to the upper part and has weight 1. A path in G of length 2, like the path 3 → 5 → 9,
corresponds to a path 3 → 10 → 11 → 5 → 12 → 14 → 9 in S of weight 2 as it contains two switching
edges (black edges of weight 1).

▶ Corollary 1.3. On input of a contraction sequences that witnesses that a graph G has
twinwidth at most d, we can compute the diameter of G in time O(d · n2).

Access to a fast depth-first search allows us to implement other operations from algorithmic
graph theory in time O(n). For instance, the strongly connected components of a digraph
can be computed by two consecutive depth-first searches using Kosaraju’s algorithm [22]:

▶ Corollary 1.4. On input of a dag compression D = (V ′, A, E′) of a graph G = (V, E), the
strongly connected components of G can be computed in time O(|V ′| + |A| + |E′|).

Another traditional application of the depth-first search is the detection of cycles in
directed graphs as well as the computation of a topological sort of the input [23]:

▶ Corollary 1.5. On input of a dag compression D = (V ′, A, E′) of a graph G = (V, E),
we can test in time O(|V ′| + |A| + |E′|) whether G contains a cycle and, if not, compute a
topological sorting of G.

It is well-known that a bfs can compute the shortest path between two vertices in
unweighted graphs. However, this is different in weighted graphs, in which a more refined
algorithm must be used. Generalizing the dag compression to weighted graphs, we obtain:

▶ Theorem 1.6. On input of a dag compression D = (V ′, A, E′, w′) of a weighted graph
G = (V, E, w) with w : E → N, the single-source shortest path (sssp) problem can be solved
in time O

(
(|V ′| + |A| + |E′|) log(|V ′| + |A| + |E′|)

)
.

Related Work. Many graph compression methods are known in the literature; the one most
similar to ours is by Toivonen et al. [26]. They also introduce supernodes and superedges with
the idea that an edge between two supernodes represents all edges between vertices within
these supernodes. However, they partition the vertex set into a set of supernodes, whereas
our compression allows for nested vertex combinations. The representation of Navlakha
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et al. is similar to the one of Toivonen et al. with an additional set of edge corrections, i.e.,
edges that must be deleted or added to retrieve the original graph [18]. Tian et al. provide
two operations: One for creating a graph compression based on user-given attributes and
another to further control the compression [25]. Zhang et al. further refine this compression
to include numerical attributes and add more automation [27].

Using distance-equivalent graphs to speed up routing algorithms is commonly done in
theory and practice [24]. However, the objective is usually to replace a large input graph
with a smaller graph in which distances are approximately the same as in the input. In
contrast, our use of distance-equivalent graphs does not involve any approximations: The
distances in the switching graphs are precisely as in the original graph.

Twinwidth was introduced in 2020 for graphs and digraphs by Bonnet et al. [5] and
interest quickly increased as witnessed by dozens of new research papers each year since
then. One of the earliest and most remarkable results is an fpt-algorithm for the model-
checking problem of first-order logic [5]. Graphs of twinwidth 0 and 1 can be recognized
in polynomial time [28, 14], but deciding whether a graph has twinwidth at most 4 is
NP-complete [3]. Besides the aforementioned meta-theorem, dedicated dynamic programs
are known to compute maximum cliques, independent sets, and minimal dominating sets on
graphs of bounded twinwidth [4]. It is also known that all triangles of a graph of twinwidth
at most d can be counted in time O(d2n + m) if a corresponding contraction sequence is
given [16]. Ahn et al. [2] study the twinwidth of random graphs. Schidler and Szeider provide
the first practical strategies to compute contraction sequences using a sat-solver [21] and
Ganian et al. show that weighted model counting can be done efficiently on formulas of
small twinwidth [13]. Bonnet et al. introduced twin-models [6], which can also compress
graphs and is similar to our result in Theorem 4.4. However, one main thrust of defining
dag compressions is their usefulness independently of twinwidth, which is also one of the
reasons we consider dag compressions rather than tree compressions.

Structure of this Paper. We define dag compressions and have a look at some basic
properties and operations in the next section. In Section 3 on algorithms, we define the
switching graph and show how it can be used to implement fast versions of bfs and dfs, and
related algorithms. In Section 4, we show how we can build linear-size dag compressions. Our
particular focus will be on graphs of bounded twinwidth, where we turn a given contraction
sequence into a dag compression of linear size.

2 DAG Compressions: Definition, Examples, and Basic Constructions

The idea behind dag compressions is – as already pointed out in the introduction – to
compress complete bipartite subgraphs of a given graph by single “compressed edges” that
link vertices of the cluster dag. The cluster dag has the job of encoding sets of vertices via
the reachability relation: Each vertex of the cluster graph encodes all sinks that are reachable
from it. In the following, we formalize these ideas and give examples. We also show how
basic update and construction operations on dag compressions can be implemented.

Basic Terminology. Before we proceed, let us fix some terminology and notation: To
simplify the presentation, a graph is always a pair (V, E) consisting of a non-empty finite
set V of vertices together with a relation E ⊆ V × V . In other words, by “graph” we always
refer to a simple, non-empty, directed graph; undirected graphs are just directed graphs with
a symmetric edge relation. Throughout this paper, n will refer to the size |V | of the graph G

currently under consideration and m will refer to |E|.
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An (edge-)weighted graph is a triple (V, E, w), where w : E → N maps edges to nonnegative
integers. The weights are binary if w(e) ∈ {0, 1} holds for all e ∈ E. An unweighted graph
can also be seen as a weighted graph in which all weights are 1. A walk of length l in a graph G

is a sequence (v0, . . . , vl) of vertices such that (vi−1, vi) ∈ E holds for all i ∈ {1, . . . , l}. For
s = v0 and t = vl, the walk is also called an s-t-walk and we say that t is reachable from s.
The weight of a walk is the sum

∑l
i=1 w

(
vi−1, vi

)
. Note that for unweighted graphs the

length and the weight of a walk are the same.
A walk is called a path if all vertices are distinct. A walk is called a cycle if l ≥ 3, v0 = vl,

and (v0, . . . , vl−1) is a path. The distance function for G is the function dG : V ×V → N∪{∞}
that maps each pair (u, v) of vertices to the minimum weight of any u-v-walk in G (or to ∞,
if no such walk exists).

A graph is a directed acyclic graph (a dag) if there is no walk in G of length at least 1
with v0 = vl. A sink in a dag is a vertex s ∈ V of out-degree 0, that is, without edges
leaving s. Note that a dag must always have at least one sink.

2.1 Definition of DAG Compressions and Examples
In order to formalize the notion of dag compressions, we start with cluster dags:

▶ Definition 2.1 (Cluster DAGs and Compressed Edges). A cluster dag for a set V is a
dag C = (V ′, A) such that V is exactly the set of sinks of C. Given a vertex v′ ∈ V ′, the
cluster C(v′) of v′ is the subset of V of all sinks that are reachable from v′ in C. A pair
(u, v) ∈ V ′ × V ′, not necessarily an element of A, is called a compressed edge.

▶ Definition 2.2 (DAG Compression). Let G = (V, E) be a graph. Let C = (V ′, A) be a
cluster dag for V . A dag compression of G is a triple D = (V ′, A, E′), where E′ ⊆ V ′ × V ′

is a compressed (edge) relation, such that E =
⋃

(u′,v′)∈E′ C(u′) × C(v′). The size of D is
the number |A| + |E′|.

We already gave an example of a dag compression of a graph in Figure 1. In the following
we consider three more examples in order to explain the concept.

▶ Example 2.3 (No Compression). A trivial way of compressing any graph G = (V, E) is to
do no compression at all, that is, to use (V ′, A, E′) with V ′ = V , A = ∅, and E′ = E. Note
that, indeed, if there are no edges in the cluster dag, each vertex is a sink.

This trivial example shows that we can always come up with a dag compression of size m

for any graph G. In particular, for any class C of graphs that has only a linear number of
edges (that is, for which there is a constant c such that for all (V, E) ∈ C we have |E| ≤ c · |V |),
all graphs in C admit linear-size dag compressions. A prominent example of such classes are
classes of graphs of bounded treewidth.

A slightly more interesting example are complete graphs, which have a superlinear number
of edges, but a linear-size dag compression:

▶ Example 2.4 (Cliques). Let Cn := (V, E) with E = V × V be the complete graph on n

vertices. Note that m = |E| = n2. A linear-size (n + 1 to be precise) dag compression for
it is (V ′, A, E′) with V ′ = V ∪ {c}, where c is a fresh vertex, A = {(c, v) | v ∈ V } contains
an edge from c to every vertex of V , making all of them sinks, and E′ = {(c, c)} contains a
single loop. Indeed, we then have E =

⋃
(u′,v′)∈E′ C(u′) × C(v′) = C(c) × C(c) = V × V .

A more involved and interesting example are cographs, which are the natural “base class”
to define twinwidth (which we will discuss in more detail later):
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▶ Example 2.5 (Cographs). The class of cographs is defined inductively as follows: First,
any single vertex is a cograph. Second, if G and H are cographs, so are their disjoint union
and also their disjoint union with all edges between vertices in G and vertices in H added.
This inductive definition can be used to obtain a linear-size (5n − 4 to be precise) dag
compression of any cograph: Compressing single vertex graphs is trivial, so let G = (VG, EG)
and H = (VH , EH) be cographs and let DG and DH be dag compressions of sizes 5nG − 4
and 5nH − 4, respectively. We will ensure (and assume) that the cluster dags CG and CH

are actually trees with roots rG and rH .
A dag compression of the disjoint union is then obtained by taking the disjoint union of

the two compressions, adding a new root r and adding the edges (r, rG) and (r, rH), that is, by
considering

(
V ′

G∪V ′
H ∪{r}, AG∪AH ∪{(r, rG), (r, rH)}, E′

G∪E′
H

)
and always assuming that all

vertex names are distinct. Note that the resulting size is 5nG−4+5nG−4+2 = 5n−6 ≤ 5n−4.
The interesting case is to obtain a dag compression of the disjoint union with all edges

between G and H added. However, this is easy to achieve by taking the same construction and
just adding the edges (rG, rH) and (rH , rG) to E′ as this will cause C(rG)×C(rH) = VG ×VH

and also the reversed edges C(rH) × C(rG) = VH × VG to be added to E, exactly as needed.
This adds two more edges to the size of the dag compression, meaning that the size is
5nG − 4 + 5nG − 4 + 2 + 2 = 5n − 4 as claimed.

Compressing Weighted Graphs and Arbitrary Structures. It is straightforward to extend
the definition of a dag compression to weighted graphs: Simply add a weight function
w′ : E′ → N that assigns weights to compressed edges. The obvious semantics is then that
for (u′, v′) ∈ E′ all edges in C(u′) × C(v′) should have weight w′(u′, v′). However, we then
run into the problem that different weights may now be assigned to the same edge (u, v),
namely when (u, v) ∈ C(u′

1) × C(v′
1) and also (u, v) ∈ C(u′

2) × C(v′
2) for some compressed

edges (u′
1, v′

1) and (u′
2, v′

2) with w′(u′
1, v′

1) ̸= w′(u′
2, v′

2). We resolve this case by assigning the
minimum weight to (u, v) of the weights of all compressed edge that uncompress to (u, v).
Formally, we require that for a weighted graph (V, E, w) a weighted dag compression is a
tuple (V ′, A, E′, w′) such that (V ′, A, E′) is a dag compression of (V, E) and for all e ∈ E

we have w(e) = min(u′,v′)∈E′,e∈C(u′)×C(v′) w′((u′, v′)
)
.

As mentioned in the introduction, it is straightforward to define dag compressions of
graphs with multiple edge relations Ei by using multiple compression relations E′

i (but still
using a single cluster dag). It makes also sense to use dags to compress not only binary
edge relations, but also unary relations (subsets of V , that is, colors): We can compress a
color X ⊆ V using a set X ′ ⊆ V ′ such that X =

⋃
x′∈X′ C(x′), that is, by representing X as

the union of some clusters described by the cluster graph. In the other direction, is it also
possible to compress ternary relations R ⊆ V × V × V using a relation R′ ⊆ V ′ × V ′ × V ′

such that R =
⋃

(u′,v′,w′)∈R′ C(u′) × C(v′) × C(w′); and note that this potentially allows one
to compress relations with |R| = O(n3) using dag compressions of size O(n). All told, dag
compressions can be used to compress arbitrary logical structures as well, but for simplicity,
we restrict our attention to (weighted) graphs in the following.

Cluster Trees Versus Cluster DAGs. In all of the above examples, the cluster dag was
actually a tree. The following is an important example of a graph for which we appear to
need a dag to compress it to linear size (we believe that one can prove that a linear-size
compression using trees is not possible, but are not aware of any simple proof for this claim):

▶ Example 2.6 (Rook Graph). The rook graph on n vertices, where n = s2 is the square of
some integer s =

√
n, is a graph G with V = {1, . . . , s}2 and with

(
(i, j), (k, l)

)
∈ E iff i = k

or j = l, that is, if a rook could be moved from position (i, j) to position (k, l) in a chess
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game in a single move. Another way of viewing a rook graph is as an intertwined union of
cliques: Every row is a clique and every column is a clique, but there are not other edges.
Note that the rook graph has (2s)s2 = Θ(n3/2) edges.

We can easily construct a linear-size dag compression for the rook graph: Consider
(V ′, A, E′) with V ′ = V ∪ {r1, . . . , rs} ∪ {c1, . . . , cs}, so we add a row vertex ri for each
row and similarly a column vertex ci for each column; we set A =

{
(ri, (i, j)) | i, j ∈

{1, . . . , s}
}

∪
{

(cj , (i, j)) | i, j ∈ {1, . . . , s}
}

, that is, each row vertex and each column
vertex is directly connected to all vertices of their row or column, respectively; and we
set E′ = {(ci, ci) | i ∈ {1, . . . , s}} ∪ {(ri, ri) | i ∈ {1, . . . , s}}, that is, we add self-loops
at all row and column vertices, resulting in cliques in E for each row and each column
– exactly, what we are looking for. The total size of the described dag compression is
|A| + |E′| = 2s2 + 2s = 2n + 2

√
n = O(n).

There is a deeper reason why we can compress the rook graph so well using dags rather
than trees: Using dags in compressions allows us to implement the union operation on edge
sets by uniting the dag compressions. The formal statement is the following:

▶ Lemma 2.7. Let G = (V, E1 ∪E2) and let D1 = (V ′
1 , A1, E′

1) and D2 = (V ′
2 , A2, E′

2) be dag
compressions of (V, E1) and (V, E2), respectively, that use distinct vertex sets for non-sink
vertices, that is, V ′

1 ∩ V ′
2 ⊆ V . Then (V ′

1 ∪ V ′
2 , A1 ∪ A2, E′

1 ∪ E′
2) is a dag compression of G

whose size is at most the sum of the sizes of D1 and D2.

Proof. Since V ′
1 ∩ V ′

2 ⊆ V , the edges of the cluster dags A1 and A2 do not “interfere,” that
is, in the new compression dag for any v′ ∈ V ′

1 the set C(v′) with respect to reachability in
A1 ∪ A2 is the same as C(v′) with respect to just A1; and symmetrically for v′ ∈ V ′

2 . This
implies that for any compressed edge (u′, v′) ∈ E′

1 ∪ E′
2, the set C(u′) × C(v′) is the same as

before. In particular, the union of all of these sets is exactly E1 ∪ E2. The claim concerning
the sizes follows directly from the construction. ◀

By the lemma, the rook graph can be compressed simply because it is the union of 2
√

n

cliques, each having
√

n vertices and, hence, allowing a dag compression of size 1 +
√

n by
Example 2.4; so the lemma tells us that a size of 2

√
n(1 +

√
n) = O(n) suffices for the union

of all these cliques – no matter how they are intertwined.

2.2 Updating DAG Compressions
When defining a new data structure, a natural question is how difficult it is to update it.
That is, suppose we have already constructed a dag compression D of a graph G, with
D being stored in memory while G is not stored directly, and we now wish to modify G

by adding or deleting edges or vertices. How difficult is it to update D instead (without
decompressing it)? In other words, given D, we wish to compute a dag compression D̃ of G̃,
where G̃ results from G by some small change.

Let us start with simple modifications that are easy to implement. First, we may wish to
add an edge, meaning that G̃ =

(
V, E ∪ {(u, v)}

)
. It is then fairly simple to compute D̃ in

this case: We can add the edge as a compressed edge, that is, let Ẽ′ = E′ ∪ {(u, v)}. Note
that the size increases only by one. Second, we may wish to add a new vertex. This turns
out to be even simpler: Just add it to V ′, where it will become an isolated sink. This does
not even change the size of the compression. Third, we may wish to delete an existing vertex
v from V along with all adjacent edges in E. This is also simple to achieve: Simply delete v

from V ′ and all its occurrences in A and in E′.
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One operation is suspiciously missing: Deleting an edge (u, v) from E. It turns out that
this can be a difficult operation to implement: If (u, v) ∈ C(u′)×C(v′) for several compressed
edges (u′, v′) ∈ E′, we need to “break up” these compressed edges, meaning that we need to
remove the compressed edge (u′, v′) and to then add new compressed edges that cover exactly
the set (C(u′) × C(v′)) \ {(u′, v′)}. It is currently unclear to us what the exact complexity of
this operation is.

Another suspiciously missing aspect is the question of what happens when we have
multiple edge additions in a row. Clearly, it is not optimal to simply add each edge as a
compressed edge that only compresses itself: If we add all edges of, say, a cluster C(v′)
and thereby making it a clique, we would like to end up with a dag compression in which
there is a single compressed edge (v′, v′) in E′ to represent this clique. Undoubtedly, greedy
heuristics exist for locally compressing sets of newly inserted edges, but finding a minimum-
size dag compression (V ′, A, E′) for a given graph (V, E) appears to be a difficult problem.
The following theorem shows that minimizing |E′| is NP-complete and we conjecture that
minimizing |A| + |E′| (which is the more important question from a practical point of view)
is also NP-complete:

▶ Theorem 2.8. It is NP-complete to decide on input G = (V, E) and a number k whether
there is a dag compression (V ′, A, E′) of G with |E′| ≤ k.

Proof. Reduce from the NP-complete problem of covering a bipartite graph with at most
k complete bipartite graphs [19]. By definition, a dag compression (V ′, A, E′) of G with
|E′| ≤ k immediately yields a cover of E by at most k complete bipartite graphs; and given
such a cover of size k, we can easily construct a cluster dag such that for each complete
bipartite graph X ×Y in this cover there are vertices x′ and y′ with C(x′) = X and C(y′) = Y ,
allowing us to put the edge (x′, y′) into E′. ◀

3 DAG Compression: Algorithms

Given a dag compression D of some graph G, we wish to solve typical algorithmic problems
on G, for instance, we would like to compute a topological ordering of G. The objective is,
of course, to do so without “decompressing” the graph, that is, without storing the large
graph G in memory. Rather, we would like to directly work on D and would like to have
linear or quasi-linear runtimes in terms of the size of D.

At first sight, dag compressions seem rather ill-suited for this purpose: Even deciding
whether there is an edge between two given vertices u, v ∈ V is not straightforward. Indeed,
to answer this simple question using only D = (V ′, A, E′), we have to determine whether
there is a compressed edge (u′, v′) ∈ E′ such that u is reachable from u′ in A and v is
reachable from v′ in A. If A is a complex graph containing long paths, this is a nontrivial
problem. Indeed, even very simple problems like determining the degree of a vertex are
difficult if only D is given, as we may need to consider all vertices v′ ∈ V from which v is
reachable – and this set may have linear size.

Nevertheless, it turns out that many problems involving the whole graph G can be solved
in linear-time with respect to D. The core idea behind these algorithms is the construction
of the switching graph, whose core property is that it is distance-equivalent to G.

Distance Equivalence and the Switching Graph. In order to solve bfs in G using only D,
we first construct a new graph S that is distance equivalent to G, but has few edges.
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▶ Definition 3.1 (Distance Equivalence). Let G1 = (V1, E1, w1) and G2 = (V2, E2, w2) be two
weighted graphs. They are distance equivalent (on V1 ∩ V2) if for all u, v ∈ V1 ∩ V2 we have
dG1(u, v) = dG2(u, v).

The key observation, to be formalized later, is that computing, say, a bfs ordering of the
vertices in G1 will also yield a bfs ordering of the vertices in V2 in G2 because the ordering
in which vertices need to be visited depends on the distances.

Let us now define the switching graph of a dag compression D and prove that it is
distance equivalent to the uncompressed graph G.

▶ Definition 3.2 (Switching Graph). Let D = (V ′, A, E′, w′) be a dag compression of a
weighted graph G = (V, E, w). For each v′ ∈ V ′ let v̄′ be a new vertex, except when v′ ∈ V ,
in which case v̄′ = v′. The switching graph S of a dag compression D = (V ′, A, E′, w′) of a
weighted graph G = (V, E, w) is a weighted graph S = (V ′′, E′′, w′′) such that
1. the vertex set V ′′ is the union of the three sets

upper part Vupper = {v′ | v′ ∈ V ′ \ V },
middle part Vmiddle = {v | v ∈ V } = {v̄ | v ∈ V }, and
lower part Vlower = {v̄′ | v′ ∈ V ′ \ V },

2. the edge set E′′ is the union of the three sets
upper cluster edges {(u′, v′) | (u′, v′) ∈ A} in the upper part,
lower cluster edge {(v̄′, ū′) | (u′, v′) ∈ A} in the lower part, and
switching edges {(ū′, v′) | (u′, v′) ∈ E′},

3. and the weight function w′′ : E′′ → N with w′′((u′, v′)) = w′′((ū′, v̄′)) = 0 for the cluster
edges resulting from (u′, v′) ∈ A and with w′′((ū′, v′)) = w′((u′, v′)) for the switching
edges resulting from (u′, v′) ∈ E′.

An example of a switching graph is depicted in Figure 2, where the weights in G are
all 1 and, hence, the weights in S are either 0 (for cluster edges, depicted in gray) or 1 (for
switching edges, shown in black). For further reference, we note a trivial observation:

▶ Lemma 3.3. For very switching graph we have |V ′′| ≤ 2|V ′| and |E′′| = 2|A| + |E′|.

Let us now prove the main property of switching graphs:

▶ Theorem 3.4. Let S be the switching graph of a dag compression D of G. Then S and G

are distance equivalent.

Proof. Let u and v be a pair of vertices in V .
First, consider a minimum-weight u-v-walk (v0, . . . , vl) in G and let k be its weight. We

will construct a u-v-walk in S of the same weight, starting at v0 = u and extending it for
each i ∈ {1, . . . , l} each time to vi. For a given i, we must have (vi−1, vi) ∈ E as we have a
walk in G. Since D is a dag compression of G, there must exist (v′

i, v′
i+1) ∈ E′ such that

vi−1 ∈ C(v′
i−1) and vi ∈ C(v′

i) and w((vi−1, vi)) = w′((v′
i−1, v′

i)). Extend the new walk as
follows: From vi−1 = v̄i−1 use (reversed) cluster edges to reach v̄′

i−1 in the lower part (which
must exist since vi−1 ∈ C(v′

i−1) means that vi−1 is reachable from v′
i−1 using non-reversed

cluster edges, so v̄′
i−1 is reachable from v̄i−1 using reversed cluster edges), use the switching

edge (v̄′
i−1, v′

i) to get to the upper part, and use cluster edges in the upper part to get to vi.
We only use exactly one switching edge during this extension of the new walk, meaning that
the weight of the walk increases exactly by the weight of this edge. This immediately yields
the claim concerning the total walk weight.



M. Bannach, F. A. Marwitz, and T. Tantau 8:11

Second, consider a minimum-weight u-v-walk (v′′
0 , . . . , v′′

l ) in S and let k be its weight.
Since u = v′′

0 and v = v′′
l , we start and end in the middle part of V ′′. We cut the walk into

subwalk P1, . . . , Pp of minimal lengths (but at least 1) such that each Pi starts and ends
with a vertex in the middle part (that is, in V ), while all other vertices are in the lower or in
the upper part. Each subwalk (except for P1) begins with the last vertex of the previous
subwalk. As an example, the example 3-9-walk (3, 10, 11, 5, 12, 14, 9) in Figure 2 would be
cut into the subwalks P1 = (3, 10, 11, 5) and P2 = (5, 12, 14, 9) since V contains only the
single digit numbers. Observe that the number of subwalks is exactly the number of positions
j ∈ {1, . . . , l} for which v′′

j ∈ V holds, that is, how often the walk crosses the middle part.
We claim that each Pi contains exactly one switching edge and all other edges are cluster

edges. To see this, let Pi = (p1, . . . , pz) and observe that only p1 and pz lie in the middle
part by construction. From p1, all non-switching edges point to a vertex in the lower part –
and this is true also for all vertices in the lower part. Thus, up to the first switching edge
on Pi, all edges are (reversed) lower cluster edges. Then, at some point, a switching edge
(p̄′, q′) ∈ E′′ must be used for some (p′, q′) ∈ E′ since, otherwise, we could not exit the lower
part (pz is not in the lower part – and we also not allowed to just “rest” at p1 since we must
make at least one step as the length of all Pi is at least 1). Note that p̄′ is reachable from p1,
meaning p1 ∈ C(p′). By construction, the switching edge brings us to the upper part (or to
the middle part, but then we stop and are done). In the upper part, we can only follow upper
cluster edges until we reach the middle part; but then we stop one more, having reached pz.
This implies that pz ∈ C(q′).

We see that each Pi consists of cluster edges (having weight 0) and a single switching
edge (p̄′, q′) ∈ E′′ of some weight w′′((p̄′, q′)) = w′((p′, q′)) for (p′, q′) ∈ E′. Furthermore,
(p1, pz) ∈ E must hold since p1 ∈ C(p′) and py ∈ C(q′). All told, for each subwalk Pi starting
at some vertex p ∈ V and ending at a vertex q ∈ V , we see that there is an edge (p, q) ∈ E.
Furthermore, the weight of this edge is at most the weight of the switching edge used in Pi.
However, it also cannot be smaller than this weight: Otherwise, we could replace the walk
by another walk from p to q in S of lesser weight (simple walk from p to the switching edge
having this smaller weight and then walk to q). This shows that the minimal weight of a
u-v-walk in G is k. ◀

Our first main theorem from the introduction, Theorem 1.1, is just a restatement of the
above theorem.

▶ Corollary 3.5. Given a dag compression D = (V ′, A, E′) of a graph G = (V, E), we can
run a bfs in time O(|V ′| + |A| + |E′′|).

Proof. Run Dijkstra’s algorithm [11] on the switching graph S of D, which has size at most
2|V ′| vertices and 2|A| + |E′| edges by Lemma 3.3. Since all weights are 0 or 1, we can run
the Dijkstra algorithm in time O(|V ′| + |A| + |E′|). ◀

▶ Corollary 3.6. Given a dag compression D = (V ′, A, E′) of a graph G, we can run a dfs
in time O(|V ′| + |A| + |E′′|).

Proof. Modify Dijkstra’s algorithm in Corollary 3.5 to extract the maximum instead of the
minimum. ◀

Theorem 1.2 directly follows from Corollaries 3.5 and 3.6. When the graphs we study
are weighted, as in Theorem 1.6, we can still run the Dijkstra algorithm, but the runtime
is no longer linear in the size of the dag compression, but of the order O(s log s), where
s = |V ′| + |A| + |E′|. We obtain Theorem 1.6 from the introduction.
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4 DAG Compressions: The Link to Twinwidth

We have shown that several standard algorithms can be implemented in time linear in the
size of the dag compression of a graph, and we also saw examples of graphs such as cographs
or the rook graph that allow us to compress graphs with n1+δ edges for δ > 0 to size O(n).
In the following we show that there is a large class of graphs for which a linear-size dag
compression is always possible: Graphs of bounded twinwidth. Linear-sized dag compressions
are tightly linked with bounded twinwidth, however, they do not capture the same class
of graphs (as the rook graph shows). We first define twinwidth and afterwards show how
we can build the dag compression from a so-called contraction sequence. Readers familiar
with twin-models [6] will note that the tree compressions developed in the following are very
closely related to twin-models (the difference is mainly in the terminology). For simplicity,
we only consider undirected graphs, that is, graphs with a symmetric edge relation.

Twinwidth and Contraction Sequences. Following Bonnet et al. it will be useful to consider
trigraphs [4, 5], which are triples (V, B, W, R) such that R, B, and W partition the set of
possible (non-loop) edges V × V \ {(v, v) | v ∈ V } into red edges, black edges, and white edges.
The red, black, or white degree of a vertex is the number of its incoming (or, equivalently,
outgoing) red, black, or white edges, respectively.

A contraction in a trigraph G merges two arbitrary vertices u and v into a single fresh
vertex z, forming a new trigraph G′ by removing u and v and coloring for each x ∈ V \ {u, v}
the edge between x and z (and also the backward edge as the graph is symmetric) as follows:
If the edges between x and u and between x and v were both black, so is the x-z-edge; if the
edges were both white, so is the x-z-edge; and in all other cases the x-z-edge becomes red.

A contraction sequence of a graph G = (V, E) is a sequence (Gn, Gn−1, . . . , G1) of
trigraphs Gi such that the first Gn =

(
V, E, V × V \ (E ∪ {(v, v) | v ∈ V }), ∅

)
is the trigraph

in which the edges in E are black and everything else is white and there are no red edges; the
last graph G1 is just a single vertex; and each Gi results from Gi+1 through the contraction
of two vertices ui+1 and vi+1 of Gi+1 into a fresh vertex zi. The red degree of a contraction
sequence is the maximum red degree any vertex in any of the Gi has. The sequence is called
a d-contraction sequence if its maximum red degree is d. Finally, the twinwidth tww(G) of G

is the minimal d for which there is a d-contraction sequence of G.
An example of 1-contraction sequence of the cycle C4 is show in Figure 3.

( 1

u4

2

3 4
v4G4

, z3

u3 2

v3

3
G3

,
z2

u2

3

v2

G2

, z1

G1

)

Figure 3 Example of a contraction sequence of the cycle C4. In the first step, u4 = 1 and v4 = 4
are contracted to form the new vertex z3 in G3. The edge from z3 to 2 is black since both the edges
from u4 to 2 and from v4 to 2 were black (that is, present). Similarly, there is a black edge from z3

to 3. In contrast, when v3 = 2 and u3 = z3 are contracted to z2 in G2, the edge from z2 to 3 is red
since there was a (black) edge from u3 to 3 in G3, but a white (not present) edge from v3 to 3. The
sequence is a 1-contraction sequence since the maximum red degree of any vertex in the sequence
is 1, proving that the twinwidth of C4 is at most 1 (it is actually 0 since contracting 2 and 3 in G3

rather than 2 and z3 yields a 0-contraction sequence).
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From Contraction Sequence to DAG Compression. Intuitively, contraction sequences
“form clusters of vertices in a tree-like manner through contractions” and we can use this idea
to build cluster dags from contraction sequences. Crucially, we can then insert compressed
edges whenever a black edge is “about to finally disappear” and this will allow us to keep
their number small (that is, linear in the number of vertices).

In detail, let us now assume that a fixed d-contraction sequence (Gn, . . . , G1) for a graph
G = (V, E) is given in which for each i ∈ {n, . . . , 2} we contract ui and vi in the trigraph Gi

into zi−1 in order to form the trigraph Gi−1. Our objective is to construct a dag compression
D = (V ′, A, E′) for G using the sequence such that |A| + |E′| ≤ (3d + 4) · n. In particular,
for every fixed d, the size of D is in O(n).

The first step is to define the cluster dag C = (V ′, A). This is done as follows, see
Figure 4 for an example:

▶ Definition 4.1. The cluster tree C = (V ′, A) of a contract sequence (Gn, . . . , G1) has
V ′ = V ∪ {zn−1, . . . , z1} and for each i ∈ {2, . . . , n} there are edges from zi−1 to both ui and
vi to A, that is, A = {(zi−1, ui) | i ∈ {2, . . . , n}} ∪ {(zi−1, vi) | i ∈ {2, . . . , n}}.

1 4 2 3

z3

z2

z1

Cluster dag (V ′, A)

1 4 2 3

z3

z2

z1

dag compression (V ′, A, E′)
with E′ depicted as double lines

Figure 4 The cluster dag resulting from the contraction sequence from Figure 3 and the dag
compression of C4 resulting from it. The two compressed edges (z3, 2) and (z3, 3) are both added
when G3 is contracted to G2, but for different reasons: In G3 there is a black edge (z3, 2), but
(α3(z3), α3(2)) = (z2, z2) is not a black edge in G2 (there are no self-loops). In G3 there is also a
black edge (z3, 3), but while in G2 there is an edge (α3(z3), α3(3)) = (z2, 3), it is red.

A simple lemma will be useful in the following:

▶ Lemma 4.2. Let (V ′, A) be the cluster tree of a contraction sequence (Gn, . . . , G1) of
G = (V, E) and let x′, y′ ∈ V ′ be two different vertices in some Gi. Then there is a black
edge between x′ and y′ in Gi if, and only if, C(x′) × C(y′) ⊆ E.

Proof. By induction. The start Gn is trivial. Suppose the claim holds for Gi, we need to show
that it also holds for Gi−1, where u and v have been contracted to z. Consider two different
vertices x′ and y′ in Gi−1. If neither of them is z, then the contraction does not change
whether there is a black edge between them, so the induction hypothesis yields the claim.
Since the vertices must be different, the only remaining case we need to consider is x′ ̸= y′ = z.
First, suppose that there is black edge (x′, z) in Gi−1. By definition of contractions, the
existence of this black edge implies that there are black edges (x′, u) and (x, v) in Gi. By
the induction hypothesis this yields that C(x′) × C(u) ⊆ E and also C(x′) × C(v) ⊆ E. But,
then, by construction we have C(y′) = C(z) = C(u) ∪ C(v) and hence C(x′) × C(y′) ⊆ E.
Second, there is no black edge (x′, z) in Gi−1. Then either (x′, u) or (x, v) was not a black
edge in Gi. By the induction hypothesis, either C(x′) × C(u) ̸⊆ E or C(x′) × C(v) ̸⊆ E.
Since we still have C(y′) = C(z) = C(u) ∪ C(v), we get C(x′) × C(y′) ̸⊆ E. ◀
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The second step is to add as few compression edges as possible, that is, to keep E′ small
(while, of course, D is still a compression of G), by adding compression edges “as late as
possible”. In detail, for i ∈ {n, . . . , 2} let αi : V ′ → V ′ be the function that maps both ui

and vi to zi−1 and is the identity otherwise, so αi(ui) = αi(vi) = zi−1 and αi(v) = v for
v ∈ V ′ \ {ui, vi}. In other words, αi tells us “what became of a vertex v from Gi in Gi−1.”
We now add a compression edge (u, v) to E′ whenever (u, v) is a black edge in Gi but
(αi(u), αi(v)) is no longer black or no longer present in Gi−1. Formally:

▶ Definition 4.3. The set of compressed edges E′ of a contraction sequence (Gn, . . . , G1)
is E′ =

{
(u, v) ∈ V ′ × V ′ | there is an i ∈ {2, . . . , n} with (u, v) ∈ BGi

, but (αi(u), αi(v)) /∈
BGi−1

}
.

▶ Theorem 4.4. For each (undirected, loop-free) graph G of twinwidth at most d there is a dag
compression D = (V ′, A, E′) with |V ′| = 2n − 1, |A| = 2n − 2, and |E′| ≤ 2 · (2d + 1) · (n − 1).

Proof. Since G has twinwidth at most d, there is a d-contraction sequence (Gn, . . . , G1) for
it. Consider the dag compression D = (V ′, A, E′) where (V ′, A) is the cluster tree from
Definition 4.1 for the contraction sequences and E′ is the set of compressed edges from
Definition 4.3 for the sequence.

The claim concerning the size of |V ′| follows trivially from Definition 4.1. For the size
of |A|, just note that a binary tree on k vertices has k − 1 edges. For the size of E′, we must
count “how many black edges can disappear when Gi is contracted into Gi−1.” First, if there
is a black edge (ui, vi) in Gi, it will disappear, resulting in (ui, vi) ∈ E′. Second, if there is a
vertex v ∈ V ′ \ {ui, vi} such that (v, ui) is black, but (αi(v), αi(ui)) = (v, zi−1) is red, we will
add (v, ui) to E′ (and also (ui, v), the symmetric edge, which is accounted for by the factor
of 2 in the bound of the theorem). Likewise, if (v, vi) is black, but (v, zi−1) is red, we add
(v, vi) to E′. Crucially, for any v, when at least one of the at most two black edges (v, ui) or
(v, vi) is added to E′, the edge (v, zi−1) is red. Since the maximum red degree of any vertex,
including zi−1, is d, there can be at most d red edges and hence at most 2d black edges may
have disappeared. All told, from Gi to Gi−1 we add at most 2 · (2d + 1) compressed edges
to E′.

It remains to argue that D is, indeed, a dag compression of G. However, Lemma 4.2
immediately implies that all compressed edges we add to E′ are “correct”, that is, for every
compressed edge (u′, v′) ∈ E′ we have C(u′) × C(v′) ⊆ E. Furthermore, the lemma also
implies that we do no “miss” any edges from E: Every edge of E is present in G′ as a
black edge and remains present as an element of some C(u′) × C(v′) until the black edge
disappears – which is exactly the moment we add (u′, v′) to E′. Finally, G1 is a single vertex
and contains no edges, so all edges in E will be accounted for in E′ at some point. ◀

By the above theorem, all graphs of twinwidth d admit a dag compression (indeed, even
a tree compression) of size O(d · n). However, computing the dag compression of a graph of
bounded twinwidth is a potentially difficult problem since it is already NP-hard to decide
whether the twinwidth of a graph is 4 and, hence, it is also impossible to compute optimal
contraction sequences in polynomial time unless P = NP. For these reasons, we can only hope
to be able to compute the dag compression of G when we are given a d-contraction sequence
already as part of the input – and it is standard practice in the literature for algorithms
working on graphs of twinwidth d to assume that this is the case.

However, one needs to be careful how the contraction sequence is represented in the
input. Clearly, it makes little sense to assume that a string encoding the actual sequence
(Gn, Gn−1, . . . , G1) is given as input – when G is dense, we wish to avoid explicitly keeping
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all edges of Gn in memory, let alone storing the whole sequence. Also, statements like “bfs
can be solved in time O(dn) for a graph G when a d-contraction sequence of G is given” are
much less impressive if this presupposes that the input may take up O(n3) cells of memory.
On the other hand, it is also not sufficient to just be given, say, for each i ∈ {n, . . . , 2} the
vertices ui and vi that get contracted to zi−1: We then miss the information which black
edges got removed.

What we really need is, in addition to the contraction pairs, for each i ∈ {n, . . . , 2} for
each red edge (v, zi−1) the color of the edges (v, ui) and (v, vi): We can then reconstruct
which black edges were lost from Gi to Gi−1. The following definition and theorem make
these observations explicit:

▶ Definition 4.5. Let (Gn, . . . , G1) be a contraction sequence such that in Gi we contract ui

and vi into zi−1 to get Gi−1. Define the color recording sequence of the contraction sequence
as a sequence of tuples (tn, tn−1, . . . , t2) such that each ti contains the following:
1. The vertices ui, vi, zi−1.
2. The color of the edge (ui, vi) in Gi.
3. For each vertex v such that (v, zi−1) is a red edge in Gi−1, the colors of the edges (v, ui)

and of (v, vi) in Gi.

Observe that for a d-contraction sequence each tuple ti in the color recording sequence
contains at most 2d + 4 vertices and, hence, the whole sequence can be stored using O(d · n)
words of memory.

▶ Theorem 4.6. There is an algorithm that gets a color recording sequence of a d-contraction
sequences of a graph G as input and outputs in time O(d · n) a dag compression D of G of
size O(d · n).

Proof. Having a look at the definitions of cluster trees (Definition 4.1) and of how the
compressed edges E′ are derived from a contraction sequence (Definition 4.3), we immediately
see that the color recording sequence contains exactly the information needed to output
(V ′, A, E′) in time linear in the size of this output. ◀

Of course, the above theorem and definition beg the question of where the “color recording
sequences” might come from. Firstly, it may be the case that we do have access (perhaps
only during a preprocessing phase) to the graphs Gi. In this case, assuming that they are
stored using standard data structures that combine the advantages of an adjacency matrix
and list [1] and also assuming that we are told which vertices get contracted in each step, we
can easily compute the color recording sequence by iterating over the red edges incident to
each zi−1. Secondly, the graph G and the contraction sequence may be the output of some
algorithmic process. In this case, one needs to adapt the output or the process so that the
color recording sequence gets output.

Graphs with Large Twinwidth and Linear-Size DAG Compressions. The results in this
section suggest a tight link between twinwidth and linear-size dag compressions: When
G has twinwidth d, then G also has a size-O(dn) dag compression. Indeed, it even has a
size-O(dn) tree compression, that is, a dag compression where C = (V ′, A) is a tree. This
raises the question of whether, perhaps, the reverse is also true: It is true that all graphs
having a, say, linear-size tree compression, also have low twinwidth? The answer to this is
negative:

▶ Theorem 4.7. There is a sequence of graphs (G1, G2, . . . ) such that Gd has twinwidth at
least d, but each Gd = (Vd, Ed) admits a tree compression of size at most |Vd|.
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Proof. For each d, we can construct a graph Hd that has twinwidth at least d: For instance,
the rook graph on n vertices from Example 2.6 has twinwidth at least

√
n since contracting

any two different vertices immediately yields a vertex with
√

n incident red edges.
Let Gd be the graph Hd to which we add n2

d −nd isolated vertices, where nd is the number
of vertices of Hd. Then Gd has n2

d vertices and also twinwidth at least d since adding isolated
vertices does not change the twinwidth. The number of edges in Gd equals that of Hd, so
it can be at most n2

d. This shows that |Ed| ≤ n2
d = |Vd|; in other words, the graph has a

linear number of edges. As shown in Example 2.3 we can the “compress” it by simply doing
nothing to get a size-|Vd| compression. ◀

5 Conclusion

In this paper, we presented a new data structure, the dag compression, that represents
graphs by storing complete bipartite subgraphs as single compression edges between vertices
that represent clusters of vertices. We showed that some update operations are possible on
these compressions, but further research is needed to better understand them. A crucial
property was that the dag compression of a graph gives rise to another graph, which we
called the switching graph, that is distance-equivalent to the original graph and is only twice
the size of the compressed graph.

When the size of a dag compression is linearly bounded by the number of vertices in
the original graphs, the compression gives rise to a new framework for graph algorithms
with running times that are independent of the number of edges in the input: We can run
breadth- and depth-first search in time O(n) where n is the number of vertices in the input,
if we have access to a linear-size dag compression. Moreover, extending the definition to
weighted graphs, we can run Dijkstra’s algorithm in time O(n log n) on such graphs. We
believe that further algorithms that work directly on dag compressions rather than on the
original graphs are possible.

We also showed that all graphs of bounded twinwidth admit a linear-size dag compression.
The reverse, however, is not true. A natural research avenue would be to extend this result to
further graph classes: Is it true that all graphs of, say, bounded flip-width admit a linear-size
dag compression?
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Abstract
An n-variate polynomial g of degree d is a (n, d, t) design polynomial if the degree of the gcd of every
pair of monomials of g is at most t − 1. The power symmetric polynomial PSymn,d :=

∑n

i=1 xd
i and

the sum-product polynomial SPs,d :=
∑s

i=1

∏d

j=1 xi,j are instances of design polynomials for t = 1.
Another example is the Nisan-Wigderson design polynomial NW, which has been used extensively
to prove various arithmetic circuit lower bounds. Given black-box access to an n-variate, degree-d
polynomial f(x) ∈ F[x], how fast can we check if there exist an A ∈ GL(n,F) and a b ∈ Fn such
that f(Ax + b) is a (n, d, t) design polynomial? We call this problem “testing equivalence to design
polynomials”, or alternatively, “equivalence testing for design polynomials”.

In this work, we present a randomized algorithm that finds (A, b) such that f(Ax + b) is
a (n, d, t) design polynomial, if such A and b exist, provided t ≤ d/3. The algorithm runs in
(nd)O(t) time and works over any sufficiently large F of characteristic 0 or > d. As applications
of this test, we show two results – one is structural and the other is algorithmic. The structural
result establishes a polynomial-time equivalence between the graph isomorphism problem and the
polynomial equivalence problem for design polynomials. The algorithmic result implies that Patarin’s
scheme (EUROCRYPT 1996) can be broken in quasi-polynomial time if a random sparse polynomial
is used in the key generation phase.

We also give an efficient learning algorithm for n-variate random affine projections of multilinear
degree-d design polynomials, provided n ≥ d4. If one obtains an analogous result under the weaker
assumption “n ≥ dϵ, for any ϵ > 0”, then the NW family is not VNP-complete unless there is a
VNP-complete family whose random affine projections are learnable. It is not known if random affine
projections of the permanent are learnable.

The above algorithms are obtained by using the vector space decomposition framework, introduced
by Kayal and Saha (STOC 2019) and Garg, Kayal and Saha (FOCS 2020), for learning non-degenerate
arithmetic circuits. A key technical difference between the analysis in the papers by Garg, Kayal
and Saha (FOCS 2020) and Bhargava, Garg, Kayal and Saha (RANDOM 2022) and the analysis
here is that a certain adjoint algebra, which turned out to be trivial (i.e., diagonalizable) in prior
works, is non-trivial in our case. However, we show that the adjoint arising here is triangularizable
which then helps in carrying out the vector space decomposition step.
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1 Introduction

The polynomial equivalence problem (PE) is fundamental in algebraic complexity theory.
Given two polynomials, f and g, how fast can we check if one is in the orbit of the other?
Orbit of a polynomial f ∈ F[x] is the set {f(Ax) : A ∈ GL(|x|,F)}. In other words, PE is
the problem of checking if f and g are the same function up to a change of the coordinate
system. It can be regarded as the algebraic analogue of the graph isomorphism (GI) problem.

Much is unknown about the exact complexity of PE. Over finite fields, PE is unlikely
to be NP-complete [37, 35], but no polynomial-time algorithm is known unless f and g are
quadratic forms [29, 4]. PE for cubic forms over Q is not even known to be decidable. Cubic
form equivalence (CFE) is polynomial-time equivalent to several other fundamental problems
in algebra and linear algebra [18, 19, 3]. GI reduces to CFE in polynomial time [2], but the
converse is not known to be true. A natural question emerges at this point:

Is GI polynomial-time equivalent to PE for some natural class of polynomials?

We provide an affirmative answer to this question in Theorem 11 by studying the problem of
testing equivalence to design polynomials which we also refer to as the equivalence testing
problem for the family of design polynomials (see Definitions 1 and 2).

Equivalence testing (ET) is closely related to the PE problem. ET for a polynomial family
or a circuit class F is a problem wherein we are given a polynomial f , and we wish to check
if f is in the orbit of some polynomial or circuit in F .1 Efficient ET algorithms are known
for a variety of polynomial families and a few circuit classes, namely the permanent [24],
the determinant [24, 15], the iterated matrix multiplication polynomial family [26, 33], the
elementary and power symmetric polynomials [23], the sum-product polynomial family [31],
the continuant [31], and read-once formulas [21]. One important family that is missing from
the above list is the Nisan-Wigderson design polynomial family NW (see Equation 1). The
NW family has been used in many results on arithmetic circuit lower bounds in the last
decade. But, unlike the other families, NW had no known ET. In fact, ET for NW over Q
was not known to be decidable. We ask a more general question:

Is there an ET algorithm for the family of (general) design polynomials?

Our main result, given in Theorem 3, is an ET algorithm for design polynomials over any
field of zero or sufficiently large characteristic. The algorithm reveals a structural property
of invertible transformations between design polynomials that enables us to prove Theorem
11. The running time of the algorithm also helps us point out a vulnerability of Patarin’s
authentication scheme if a random sparse polynomial is chosen in the key generation phase.

Patarin [34] proposed a zero-knowledge authentication scheme based on the presumed
hardness of PE for random cubic forms (more generally, constant-degree forms). A random
n-variate cubic form f(x) is chosen in the key generation phase along with two random
transforms A1, A2 ∈ GL(n,F). The polynomials g1 := f(A1x) and g2 := f(A2x) are made
public; the secret is the transform A−1

1 A2, which maps g1 to g2. A random cubic form has
sparsity (i.e., number of monomials) O(n3). It is natural to ask: What if we choose a random
O(n3)-sparse polynomial f of a higher degree (see Definition 12) in the key generation step?

Can Patarin’s scheme be broken if a random nO(1)-sparse polynomial is chosen as the key?

1 Note that the ET problem for F is not the same as the PE problem for F . In the latter case, we are
given two polynomials f, g ∈ F , and we wish to check if one is in the orbit of the other. One may
alternatively call the ET problem for F as “testing equivalence to F” (as in the title of this article).
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It turns out that a random sparse polynomial is a design polynomial and has no nontrivial
permutation symmetry with high probability (see Lemma 36 and Proposition 37). These
features let us invoke Theorem 3 and answer the above question in Theorem 13 via a reduction
to GI.

Our final result is a learning algorithm for random affine projections of design polynomials.
An equivalence test for NW is a special case of learning affine projections of NW. Consider
the (qd, d, t) design polynomial NWq,d,t as defined in Equation 1. A polynomial f =
NWq,d,t(Ax + b), where |x| = n ≤ qd, A ∈ Fqd×n and b ∈ Fqd, is an n-variate affine
projection of NWq,d,t. Given access to f , can we learn the unknown A and b? If n = qd and
A ∈ GL(n,F), then the problem is the same as ET for NW. However, for arbitrary n < qd

and A ∈ Fqd×n, the problem can be rather difficult, even for t = 1, as every depth-3 circuit is
an affine projection of NWq,d,1 for some q and d. Learning depth-3 circuits in the worst-case
is a challenging problem due to known depth reduction results (see the discussion in [27]).
But does the task of discovering A become easier if A is randomly chosen? In other words:

Can we learn random affine projections of NW efficiently?

Random affine projections of special design polynomials, such as the power symmetric
polynomial and the sum-product polynomial, have been studied, and efficient learning
algorithms have been provided in [27]. But it is unclear what to expect for NW. The reason
is that, unlike the determinant and the permanent, we do not have a good understanding
of the expressive power of affine projections of NW. The permanent is VNP-complete
under p-projections2 [38], but NW is not known to be so. For d = nO(1), no learning
algorithm is known for n-variate random affine projections of the d × d permanent which
has time complexity polynomial in

(
n+d

n

)
– the maximum sparsity of any n-variate, degree-d

polynomial. In fact, it is conjectured in [1] that n-variate random affine projections of the
d × d determinant form a pseudorandom function family when d = nO(1). If true, then there
is no

(
n+d

n

)O(1)-time learning algorithm for random affine projections of the determinant. If
such a conclusion holds for the determinant, which is VBP-complete, then we expect the
same to hold for the permanent or any other VNP-complete family, as VBP ⊆ VNP. So, an
efficient learning algorithm for random affine projections of NW may indicate NW is not
VNP-complete.

In Theorem 18, we give an efficient learning algorithm for n-variate random affine
projections of multilinear degree-d design polynomials, provided n ≥ d4. If we obtain an
analogous result under the weaker assumption “n ≥ dϵ, for any ϵ > 0”, then the NW family
is not VNP-complete assuming that there is no VNP-complete family whose random affine
projections are efficiently learnable. On the other hand, if NW happens to be VNP-complete,
then it is unlikely that we will be able to weaken the n ≥ d4 condition significantly without
compromising the other parameters of the theorem considerably.

1.1 Our results
We now state our results formally. Assume that an efficient univariate polynomial factoring
algorithm over F is available; this assumption is well justified over Q and Fq [30, 8].

▶ Definition 1 (Design polynomial). An n-variate, degree-d polynomial g =
∑

i∈[s] cimi, where
mi is a monomial and ci ∈ F, is a (n, d, s, t) design polynomial if ∀i ̸= j, deg gcd(mi, mj) < t.

2 If every row of A has at most one nonzero entry, then it is a p-projection.
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Some well-known polynomials that are also design polynomials are the sum-product poly-
nomial SPs,d :=

∑s
i=1

∏d
j=1 xi,j , which is a (sd, d, s, 1) design polynomial, and the power

symmetric polynomial PSymn,d :=
∑n

i=1 xd
i , which is a (n, d, n, 1) design polynomial. The

most relevant example is the Nisan-Wigderson design polynomial NWq,d,t, defined as:

NWq,d,t :=
∑

h∈Fq [y], deg h<t

d−1∏
i=0

xi,h(i) , for t ≤ d ≤ q, where q is a prime. (1)

As two univariate polynomials of degree < t agree at ≤ t − 1 points, NWq,d,t is a (qd, d, qt, t)
design polynomial. Whenever the parameter s is not required, we will write (n, d, t) design
polynomial by omitting s. Also, for simplicity, we assume that design polynomials are
homogeneous. Our results hold for non-homogeneous design polynomials as well.

▶ Definition 2 (The ET problem for design polynomials). Given black-box access to an n-
variate, degree-d polynomial f ∈ F[x], check if there exist an A ∈ GL(n,F) and a b ∈ Fn

such that f(Ax + b) is a (n, d, t) design polynomial, and if so, recover A and b.

▶ Theorem 3 (ET for design polynomials). Let n, d, s, t ∈ N, d ≥ 3t, char(F) = 0 or > d

and |F| > max(s3, d7). There is a randomized, poly((nd)t)-time3 algorithm that takes input
black-box access to an n-variate, degree-d polynomial f ∈ F[x], with the promise that there
exist some (n, d, s, t) design polynomial g and some A ∈ GL(n,F) such that f = g(Ax), and
outputs, with high probability, a B ∈ GL(n,F) and a (n, d, s, t) design polynomial h such that
B = PSA and f = h(Bx), where P, S are permutation and scaling matrices, respectively.

▶ Remark 4. If g is multilinear, then the condition d ≥ 3t can be improved to d > 2t.
▶ Remark 5. The condition |F| > max (s3, d7) arises due to the use of the Schwartz–Zippel
lemma4 in our analysis and in the factorization algorithm of [22]. If f is given as a circuit,
the algorithm can work with an extension field, irrespective of the size of F, and still obtain
a B with entries in F. A finite field extension can be constructed efficiently (see Section 14.9
in [39]). This feature of the algorithm is explained in [7].
▶ Remark 6. The theorem gives an ET algorithm for NW (see Theorem 50). The algorithm
also works over Q, where ET for NW was not known to be decidable.
▶ Remark 7. A random sparse polynomial is a (n, d, s, d/3) design polynomial with high
probability (see Lemma 36). Thus, we have ET for random sparse polynomials.

In Section 3, we prove Theorem 3 and elaborate on how to handle non-homogeneous
design polynomials and transforms of the form Ax + b, where A ∈ GL(n,F) and b ∈ Fn.

▶ Definition 8 (Symmetries of a polynomial). Let f ∈ F[x] be an n-variate, degree-d polynomial.
The set Gf := {A ∈ GL(n,F) : f(Ax) = f} is the group of symmetries of f .

The authors of [20] studied the symmetries of NW by examining the Lie algebra associated
with it, while these corollaries of Theorem 3 (which is proved using a different technique)
hold for general design polynomials.

▶ Corollary 9 (Symmetries of design polynomials). Let d ≥ 3t, f be a (n, d, t) design polynomial
and A ∈ Gf . Then, A = PS, where P is a permutation matrix and S is a scaling matrix.

3 Here, “time” means number of field operations. Over Q, the complexity is poly((nd)t, β), where β is
the bit complexity of the coefficients of f .

4 also known as the DeMillo–Lipton–Schwartz–Zippel lemma [14, 41, 36].
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▶ Corollary 10 (Equivalent design polynomials). Let d ≥ 3t, A ∈ GL(n,F) and f, g be (n, d, t)
design polynomials such that f = g(Ax). Then, A = PS, where P, S are as stated above.

Our second result, proven in Section 3.5, shows that GI ≡p PE for design polynomials
with all-one coefficients. Here, ≡p denotes polynomial-time, many-one equivalence.

▶ Theorem 11 (GI and PE). GI ≡p PE for (n, 6, 2) design polynomials with all-one
coefficients.

Theorem 11 holds for (n, d, t) design polynomials for any d ≥ 6 and t ≤ d/3, and also for
(n, d, t) multilinear design polynomials with d ≥ 5 and t < d/2. Thus, PE for (n, d, t) design
polynomials with all-one coefficients, for d ≥ 6 and t ≤ d/3, polynomial-time reduces to PE
for (n, 6, 2) design polynomials with all-one coefficients.5

Our third result, proven in Section 3.5, shows that if a random sparse polynomial of
sufficiently large constant degree is used in Patarin’s scheme for public and private key
generations, then the private key can be recovered in quasi-polynomial time.

▶ Definition 12 (Random sparse polynomial). An n-variate, degree-d, s-sparse polynomial
f(x) is a random s-sparse polynomial if each monomial is formed by picking d variables
uniformly and independently at random from x; the coefficients are then chosen arbitrarily.

▶ Theorem 13 (A vulnerability of Patarin’s scheme). Let n, s, d, q ∈ N, n > d8, n3 ≤ s <(
n
d2

)d/6, d ≥ 25 be a constant, and q = nO(1). Let f be a random s-sparse polynomial over
Fq. If f is used in Patarin’s scheme for key generation, then the scheme can be broken in
quasi-poly(n) time.

▶ Remark 14. The bound on s, stated in the theorem, is for simplicity. The precise bound is
n2 log(n) ≤ s ≤

√
ϵ
(

n
d2

)d/6, where ϵ is the constant from Lemma 36. The lower bound on d

can be derived from the inequality n2 log(n) ≤
√

ϵ
(

n
d2

)d/6 and fixing ϵ = 0.01.
▶ Remark 15. Patarin’s scheme was shown to be vulnerable in [23] when using a random
constant-degree multilinear polynomial for key generation. In [23] a random polynomial was
defined by selecting the coefficients of all multilinear monomials randomly and independently,
while we allow arbitrary coefficients, non-multilinear monomials, and a lower number of
monomials.

Our fourth and final result, proven in Section 4, gives an algorithm to learn random affine
projections of multilinear design polynomials such as the polynomials in the NW family.

▶ Definition 16 (Affine projections). Let m, n ∈ N, m ≥ n. Let f and g be polynomials in n

and m variables, respectively. If f(x) = g(Ax + b) for some A ∈ Fm×n and b ∈ Fm, then f

is an affine projection of g. An affine projection is random if A ∈r Fm×n, where ∈r denotes
that the entries of A are chosen randomly and independently from a sufficiently large subset
of F.

▶ Definition 17 (Learning affine projections of design polynomials). Given black-box access
to an n-variate f ∈ F[x], which is an affine projection of an unknown (m, d, s, t) design
polynomial g, recover B ∈ Fm×n, c ∈ Fm and a (m, d, s, t) design polynomial h such that
f = h(Bx + c).

5 It is worth noting, in [2], the authors showed a reduction from PE for degree-d forms to PE for cubic
forms over fields containing d-th roots. However, the reduction there does not seem to preserve the
design condition.
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▶ Theorem 18 (Learning random affine projections of multilinear design polynomials). Let
m, n, d, s, t ∈ N, m ≥ n ≥ d4+ϵ, where ϵ > 0, d ≥ 3t, s <

( √
n

d2

) d
13 . Let char(F) = 0 or

> d and |F| ≥ poly(sd)dt. There is a randomized, poly(m, s, nt)-time algorithm that takes
input black-box access to an n-variate, degree-d polynomial f ∈ F[x], with the promise that
there exist some multilinear (m, d, s, t) design polynomial g and some A ∈r Fm×n such that
f = g(Ax), and outputs, with high probability, a B ∈ Fm×n and a multilinear (m, d, s, t)
polynomial h such that B = PSA and f = h(Bx), where P, S are permutation and scaling
matrices, respectively.

▶ Remark 19. For NWq,d,t with t ≤ d/1300, m = qd = n10 and n ≥ d5, it holds that
s = qt <

( √
n

d2

) d
13 . Thus, we can learn random affine projections of NWq,d,t for m = poly(n),

assuming n ≥ d4+ϵ. The precise bound on |F| is stated in [7].

▶ Remark 20. Theorem 18 does not imply that either NW is not VNP-complete or there is
a VNP-complete family whose random affine projections are learnable. The reason is that
the algorithm assumes n ≥ d4+ϵ, but it may be the case that a VNP polynomial family is a
projection of NW in the setting n < d4.

▶ Remark 21. As mentioned earlier, our motivation for designing a learning algorithm for
random affine projections of multilinear design polynomials originates from NW, which is
also multilinear and design. We believe that a similar theorem holds for non-multilinear
design polynomials as well. Theorem 3 provides evidence towards this belief since it holds
for non-multilinear design polynomials as well.

In Section 4, we elaborate on how non-homogeneous multilinear design polynomials and
general transforms of the form Ax + b, where A ∈r Fm×n and b ∈ Fm, are handled.

1.2 Proof techniques
The core underlying technique, used to prove Theorems 3 and 18, is based on the vector
space decomposition framework introduced in [16, 27]. Suppose that f can be expressed as:

f = T1 + T2 + . . . + Ts , (2)

and we wish to learn the terms T1, . . . , Ts that are simple in some sense. For example, in our
setting, each Ti is a product of linear forms (see details on next page). The authors in [16, 27]
reduce the task of learning the Ti’s to the vector space decomposition (VSD) problem. We
define the VSD problem first and then discuss the reduction.

Vector space decomposition (VSD) for (L, U, V ). Given bases of vector spaces U, V and
a set of linear maps L from U to V , output a (further indecomposable) decomposition of
U, V as:

U = U1 ⊕ · · · ⊕ Us and V = V1 ⊕ · · · ⊕ Vs , such that ⟨L ◦ Ui⟩ ⊆ Vi for all i ∈ [s].

Reducing the learning problem to VSD. We choose appropriate sets of operators L1 and
L2 to get spaces U = ⟨L1 ◦ f⟩ and V = ⟨L2 ◦ U⟩ such that the following are satisfied:

U = U1 ⊕ · · · ⊕ Us and V = V1 ⊕ · · · ⊕ Vs, where Ui = ⟨L1 ◦ Ti⟩ and Vi = ⟨L∈ ◦ Ui⟩.
Each pair (Ui, Vi) is indecomposable with respect to L2.
The (further indecomposable) decomposition is unique up to a reordering of Ui’s and Vi’s.
Ti’s can be recovered efficiently from the bases of the Ui’s.
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If such two sets of operators can be found, then learning T1, . . . , Ts reduces to the VSD
problem for (L2, U, V ). The (Ui, Vi)’s need to be indecomposable and unique otherwise a
VSD algorithm might output some other decomposition, making the recovery of the Ti’s
hard.

Solving the VSD problem. The authors of [13] gave a polynomial-time algorithm for the
symmetric case of the problem when U = V . The algorithm works over finite fields, C,R but
not over Q (if we wish to output a decomposition over Q). The authors of [16] showed a
reduction of VSD to the symmetric case. The authors of [9] and [16] exploited the structure
of U and V (arising in their settings) to get a VSD algorithm that also works over Q.

The VSD framework above gives rise to a meta algorithm for learning the “terms”. To
use the algorithm for Theorems 3 and 18, we need appropriate sets of operators L1 and L2
satisfying the above-mentioned conditions which point to four technical steps in the analysis,
which we state first and then discuss how to execute them for Theorems 3 and 18.

Algorithm 1 Meta algorithm [16].

Input: f = T1 + T2 + ... + Ts, where Ti’s are unknown “simple” terms.
Output: T ′

1, T ′
2 . . . T ′

s such that T ′
i = Tπ(i) for some permutation π on [s].

1. Compute U = ⟨L1 ◦ f⟩ and V = ⟨L2 ◦ L1 ◦ f⟩.
2. Solve VSD for (L2, U, V ); find the decompositions U = U1 ⊕ · · · ⊕ Us, V = V1 ⊕ · · · ⊕ Vs.
3. Recover T ′

i from Ui.

1. Direct sum structure: This means establishing U = U1 ⊕· · ·⊕Us and V = V1 ⊕· · ·⊕Vs.
2. Uniqueness of decomposition: Once the direct sum holds, it needs to be shown that

the decomposition of U and V is indecomposable with respect to L2 and unique up to
permutations of the Ui’s and Vi’s. Inspired by the Krull-Schmidt theorem [28], [16] ana-
lysed the adjoint algebra6 associated with (L2, U, V ) and pointed out a sufficient condition
for uniqueness to hold. The adjoint algebra for (L, U, V ) is defined as Adj(L, U, V ) :=
{(D, E) | D : U → U, E : V → V are linear maps, and ∀L ∈ L, LD = EL}. The au-
thors of [16] noted that if Adj(L, U, V ) is block diagonalizable, i.e., ∀(D, E) ∈ Adj(L, U, V )
if D(Ui) ⊆ Ui and E(Vi) ⊆ Vi, then the decomposition is unique. So, we need to show
that Adj(L2, U, V ) is block diagonalizable.

3. Vector space decomposition: With 1 and 2 satisfied, an algorithm is required to
decompose U and V . As mentioned before, the vector space decomposition algorithm
in [13] does not quite work over Q. But fortunately, the adjoint algebra comes to the
rescue again. Suppose, Adj(L2, U, V ) is block diagonalizable. If it is further block equi-
triangularizable (refer Definition 23) and has an element (D, E), where D has s distinct
eigenvalues, then the Ui’s are the generalized eigenspaces of D which can be computed
efficiently7. Thus, if Adj(L2, U, V ) is block equi-triangularizable, then computing vector
space decomposition reduces to computing generalized eigenspaces.

4. Recovery of Ti: Finally, once Ui = ⟨L1 ◦ Ti⟩ is obtained, we need to derive Ti from it.

6 The authors of [16] attributed the use of adjoint algebra in their work to a suggestion by Youming Qiao.
7 The existence of such an element implies that for a random (D, E) ∈ Adj(L2, U, V ), D has s distinct

eigenvalues with high probability by the Schwartz-Zippel lemma.
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Connecting our problems with the learning problem given by Equation (2). Let g =∑
i∈[s] cimi be a design polynomial and f = g(Ax) =

∑
i∈[s] Ti, where Ti = cimi(Ax) is a

product of linear forms. Then, we can learn the unknown transformation A (up to permutation
and scaling) by learning and factoring the terms T1, . . . Ts. We do so by implementing the
above steps for Theorems 3 and 18; we discuss this next. We compare our work with relevant
previous works in Section A.1.

1.2.1 Implementing the four steps for Theorem 3
We choose L1 = L2 = ∂t. For a (n, d, s, t) design polynomial g with d ≥ 3t, we show Step
1 in Lemma 25 by leveraging the design property, Step 2 by showing that the adjoint is
block diagonalizable (Lemma 28), and Step 3 by showing further that the adjoint is block
equi-triangularizable (Proposition 30). Since the input f is in the orbit of g, these properties
also hold for f by Lemma 27. A term Ti of f is in the orbit of a monomial of g, and so, Ti is
a product of linear forms. The recovery process for Ti from Ui is the same as that in [27].
The transform and the design polynomial are then obtained from the Ti’s (Proposition 24).

1.2.2 Implementing the four steps for Theorem 18
We choose L1 = ∂k and L2 = ∂2, where k > t is appropriately chosen in Lemma 45. First,
we show that assuming the two non-degeneracy conditions stated in Section 4.1, all the steps
can be implemented. Step 1 is immediate from the first non-degeneracy condition. Lemma 41
shows that Adj(∂2, U, V ) is block diagonalizable (in fact, block equi-triangularizable) for
non-degenerate affine projections. Hence, both Steps 2 and 3 hold. The process of recovering
the terms (i.e., Step 4) is the same as that for Theorem 3.

Second, we show that random affine projections of design polynomials are non-degenerate
with high probability. The second non-degeneracy condition holds with high probability
given the restriction on the field size. If we show that dim U = s

(
d
k

)
, then the direct sum

structure holds8. By the Schwartz-Zippel lemma , it is sufficient to show that for every design
polynomial, there exists an affine projection such that dim U = s

(
d
k

)
. We do this by showing

that the probability that dim U = s
(

d
k

)
is non-zero if f is chosen from a specific class of

affine projections as described by the two-phase random process in the proof of Lemma 45
(which can be found in [7]).

2 Preliminaries

2.1 Notations and definitions
For n ∈ N, [n] is the set {1, 2 . . . n}. We use b.b.a to refer to black-box access. The set of
n × n invertible matrices over F is denoted as GL(n,F). For two polynomials f and g, f ∼ g

denotes that f is in the orbit of g. Variable sets are denoted as x, y and z. Permutation
and scaling matrices are denoted as P and S, respectively. A monomial in x is denoted as
xα := xα1

1 xα2
2 . . . xαn

n , which has total degree |α| :=
∑n

i=1 αi. The set of degree t derivatives
in x is denoted as ∂t while ∂tf denotes the set of degree t derivatives of the polynomial f .
The vector space spanned by a set of polynomials S over F is denoted as ⟨S⟩. Typically,

8 as U ⊆ U1 + · · · + Us and dim Ui ≤
(

d
k

)
.
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g denotes a (n, d, s, t) design polynomial g = g1 + g2 + · · · + gs where gi are monomials of
degree d, while f denotes the input polynomial f = g(Ax) = T1 + T2 + · · · + Ts, where
Ti = gi(Ax) for A ∈ GL(n,F). Define the spaces U, Ui, V, Vi, U ′, U ′

i , V ′, V ′
i as follows:

U := ⟨L1 ◦ f⟩, U ′ := ⟨L1 ◦ g⟩, V := ⟨L2 ◦ L1 ◦ f⟩, V ′ := ⟨L2 ◦ L1 ◦ g⟩,

Ui := ⟨L1 ◦ Ti⟩, U ′
i := ⟨L1 ◦ gi⟩, Vi := ⟨L2 ◦ L1 ◦ Ti⟩, V ′

i := ⟨L2 ◦ L1 ◦ gi⟩,

where L1 = L2 = ∂t (as defined in Section 1.2.1). These spaces will be used in Section 3.
For the algorithmic preliminaries, refer Section A.2.

▶ Definition 22 (Adjoint Algebra). The adjoint algebra associated with (L2, U, V ) is defined
as Adj(L2, U, V ) := {(D, E) | D : U → U, E : V → V are linear maps, and ∀L ∈ L2, LD =
EL}.

Adjoint algebra was introduced in Section 4.3 of [40] as an associative ring to study the
decompositions of bilinear maps and has been used in [11] for developing a fast isomorphism
testing algorithm for a subclass of finite p-groups. A meta-framework for designing learning
algorithms for arithmetic circuits was given in [16], where the learning problem was reduced
to the vector space decomposition problem, and the uniqueness of vector space decomposition
was proved by analyzing a certain adjoint algebra (refer [16] for details).

▶ Definition 23 (Equi-triangular matrix). An equi-triangular matrix is triangular with equal
diagonal entries. Block equi-triangularizability and simultaneous block equi-triangularizability
are defined similarly as block diagonalizability and simultaneous block diagonalizability.

3 Equivalence testing for design polynomials

We state the ET algorithm in Section 3.1. The precise time complexity of the ET algorithm
is poly(

(
n+t

n

)
dt) we discuss this further in Section 3.2 which analyses it. Section 3.3 analyses

the adjoint algebra of a design polynomial g. Based on the structure of the adjoint, Section
3.4 develops and analyses a VSD algorithm. In Section 3.5, Theorems 11 and 13 are proven.

Algorithm 2 Equivalence testing for design polynomials.

Input: Black-box access to an f ∈ F[x], where f = g(Ax) for some unknown (n, d, s, t)
design polynomial g and A ∈ GL(n,F).
Output: A matrix B and a (n, d, s, t) design polynomial h, where B = PSA and
f = h(Bx) for some permutation matrix P and scaling matrix S.

1. Compute black-box access to bases of U =
〈
∂tf

〉
and V =

〈
∂tU

〉
.

2. Perform VSD for (∂t, U, V ) using Algorithm 3. Let U = U1⊕· · ·⊕Us be the decomposition
returned by Algorithm 3.

3. Express ∂tf
∂xα = u1α + · · · + usα, where uiα ∈ Ui and obtain black-box access to uiα for all

i ∈ [s] and xα of degree t. The black-box for Ti is given by (d−t)!
d!

∑
|α|=t

(
t

α1...αn

)
xαuiα(x).

4. From black-box access to the Ti’s, recover and return a B ∈ GL(n,F) and a (n, d, s, t)
design polynomial h such that f = h(Bx) using Proposition 24.
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9:10 Testing Equivalence to Design Polynomials

3.1 The algorithm
1. Step 1: As discussed in Section 1.2, L1 = ∂t and L2 = ∂t are used to define U and V .

Black-box access to bases of U and V is computable using Facts 46 and 47.
2. Step 2: The VSD algorithm of Section 3.4 gives b.b.a to bases of Ui’s.
3. Step 3: Each ∂tf

∂xα is expressible as a sum of uiα ∈ Ui’s, where each uiα is ∂tTi

∂xα . Using
Fact 48, b.b.a to ∂tf

∂xα and Ui’s, black-boxes to uiα can be obtained. It can be verified
using Lagrange’s formula that the described black-box for Ti is the correct one.

4. Step 4: The proof of Proposition 24 details the recovery process for B and h.

▶ Proposition 24. Assuming b.b.a to the Ti’s, B and h can be recovered in poly(n, s, d) time.

3.2 Analysis of the algorithm
Each step is randomized with a small probability of error. For the analysis, we assume that
each step executes correctly. An implicit check is made at the end to see if h is a (n, d, s, t)
design polynomial, B is invertible and f = h(Bx), failing which the algorithm is repeated.

The correctness of Algorithm 2 holds if it executes each of the four steps listed in
Section 1.2 correctly. By Lemmas 25 and 27 (given below), U and V have the required
direct sum structure. The correctness of the vector space decomposition follows from the
correctness of Facts 46 and 47 and that of the vector space decomposition algorithm of
Section 3.4. The uniqueness of decomposition follows from Proposition 30 and Lemmas 27
and 32. The correctness of the recovery of Ti’s, B and h follows from Fact 48 and Proposition
24. Let U ′, U ′

i , V ′, V ′
i be as defined in Section 2.1.

▶ Lemma 25. For d ≥ 3t, U ′ = U ′
1 ⊕ U ′

2 · · · ⊕ U ′
s and V ′ = V ′

1 ⊕ V ′
2 · · · ⊕ V ′

s .

The following proposition gives the time complexity of the algorithm.

▶ Proposition 26. Algorithm 2 has a running time of poly(
(

n+t
n

)
dt).

Typically n > d, in which case the running time is poly(nt).

3.3 Structure of the adjoint algebra
Once we fix bases of the spaces U, U ′, V and V ′, a linear operator from one of these spaces
to another can be naturally viewed as a matrix. Thus, Adj(∂t, U, V ) and Adj(∂t, U ′, V ′)
are sets of tuples of matrices with respect to appropriately chosen bases. We now show
that Adj(∂t, U, V ) is block equi-triangularizable, i.e., the set of matrices {D : (D, E) ∈
Adj(∂t, U, V )} is simultaneously block equi-triangularizable. By Lemma 27, it suffices to
show this for Adj(∂t, U ′, V ′). Note, after fixing bases of U ′ and V ′, the operators ∂t : U ′ → V ′

are also matrices. When we say Adj(∂t, U, V ) is equal to Adj(∂t, U ′, V ′) in Lemma 27, we
mean they are equal as sets of tuples of matrices with respect to appropriately chosen bases
for U, V, U ′ and V ′.

▶ Lemma 27. Let U , V , Ui, Vi, U ′, V ′, U ′
i and V ′

i be vector spaces as defined in Section 2.1
with L1 = L2 = ∂t. Define the invertible map ϕ : F[x] → F[x] as ϕ(p) := p(Ax) for p ∈ F[x],
where A ∈ GL(n,F) is as in Algorithm 2. Then,
1. U ′ ∼= U , V ′ ∼= V , U ′

i
∼= Ui and V ′

i
∼= Vi via the map ϕ. In other words, if B is a basis of

U ′, ϕ(B) is a basis of U . This holds similarly for the other spaces.
2. Let B′

1 and B′
2 be bases for U ′ and V ′ respectively, with ϕ(B′

1) and ϕ(B′
2) being basis of U

and V respectively. Then, Adj(∂t, U ′ , V ′), with respect to bases B′
1 and B′

2, is equal to
Adj(∂t, U, V ), with respect to bases ϕ(B′

1) and ϕ(B′
2).
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▶ Lemma 28. If (D′, E′) ∈ Adj(∂t, U ′, V ′), then D′(U ′
i) ⊆ U ′

i and E′(V ′
i ) ⊆ V ′

i , ∀i ∈ [s].

The direct sum structure of U ′ and V ′ implies that every ∂t : U ′ → V ′ is block diagonal,
with respect to the monomial basis of U ′ and V ′, and by Lemma 28, Adj(∂t, U ′, V ′) is block
diagonal with respect to these bases. This and the adjoint condition imply that Adj(∂t, U ′, V ′)
comprises the adjoints of the gi’s. Thus, it suffices to analyse the adjoint of the gi’s. The
adjoint of a monomial need not be trivial, as shown in Section add ref. We show that
the adjoint algebra of a monomial is equi-triangularizable. For gi, an arbitrary monomial
of g, B′

i := {∂tgi} is a basis9 for U ′
i . For (D′, E′) ∈ Adj(∂t, U ′, V ′), let D′

i and E′
i be the

restriction of D′ and E′ to U ′
i and V ′

i respectively. Represent D′
i as a dim(U ′

i) × dim(U ′
i)

matrix with respect to B′
i , where D′

i[xα][xβ] is the coefficient of ∂tgi

∂xα in D′
i

(
∂tgi

∂xβ

)
. Lemma 29

shows when D′
i[xα][xβ] is 0 and that all entries D′

i[xα][xα] are equal. We use the notation
mon(c·xα) := xα, where c ∈ F\{0}; the definition is naturally extended to a set of monomials.
For e.g., mon{2x4

1, 5x1x2} = {x4
1, x1x2}.

▶ Lemma 29. Let |α| = |β| = t, ∂tgi

∂xα ̸= 0 and ∂tgi

∂xβ ̸= 0. Let D′
i be as above. Then,

1. D′
i[xα][xβ] = 0, if mon{∂t( ∂tgi

∂xα )} ̸⊆ mon{∂t( ∂tgi

∂xβ )}, and
2. D′

i[xα][xα] = D′
i[xβ][xβ].

The following proposition shows that Adj(∂t, U ′, V ′) is block equi-triangularizable.

▶ Proposition 30. A basis B′ for U ′ exists with respect to which any D′, where (D′, E′) ∈
Adj(∂t, U ′, V ′) for some E′, is block equi-triangular.

As detailed in the proof of Proposition 30, reordering each B′
i and concatenating them

gives B′. For each B′
i, a directed acyclic graph Gi is constructed with vertices as B′

i. For
∂tgi

∂xα , ∂tgi

∂xβ ∈ B′
i, if mon{∂t

(
∂tgi

∂xα

)
} ⊆ mon{∂t

(
∂tgi

∂xβ

)
} then an edge from ∂tgi

∂xα to ∂tgi

∂xβ exists in

Gi. The topological sort of Gi gives the reordering of B′
i. By Lemma 29, D′

i is equi-triangular
with respect to the reordered B′

i implying D′ is block equi-triangular with respect to B′.

3.4 Vector space decomposition

Algorithm 3 Vector space decomposition algorithm.
Input: B.b.a to bases of spaces U and V .
Output: B.b.a to bases of spaces W1, . . . , Ws, where Wi = Uπ(i) for some permutation π.

1. Compute a basis D(1), . . . , D(b) of Adj(∂t, U, V )1 := {D | (D, E) ∈ Adj(∂t, U, V )}.
2. Pick c1, . . . , cb ∈r S ⊆ F, where |S| = s3. Let D := c1D(1) + · · · + cbD(b).
3. Factorize the characteristic polynomial of D and obtain its eigenvalues λ1, · · · , λs.
4. Compute Wi := Ker((D − λiI)dim U ) for all i ∈ [s] and output b.b.a to bases of

W1, . . . , Ws.

Step 1 is executed by solving the linear system arising from LD = EL, for L ∈ L2, with
the entries of D and E as the variables. In Step 2, a random linear combination of the
D(i)’s gives a random operator D. The eigenvalues of D can be found by factorizing the

9 Assume that the set {∂tgi} consists of only the nonzero derivatives.
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characteristic polynomial.10 Step 4 involves the computation of the generalized eigenspaces
of D. Note, Lemma 32 proves the uniqueness of decomposition and the indecomposability of
Ui and Vi with respect to ∂t.

▶ Lemma 31. D has s distinct eigenvalues with probability ≥ 1 − (s
2)

|S| .

▶ Lemma 32. Let D ∈ Adj(∂t, U, V ) such that it has s distinct eigenvalues λ1, . . . , λs. Then,
Ker((D − λiI)dim U ) = Uπ(i) for all i ∈ [s], and for some permutation π on [s].

▶ Proposition 33. Algorithm 3 has a running time of poly(
(

n+t
n

)
dt).

Handling non-homogeneous polynomials and translations. For non-homogeneous (n, d, s, t)
design polynomials, if the degree of all monomials is ≥ 3t, Lemmas 25, 28 and Proposition 30
hold. When f(x) = g(Ax+b) for b ∈ Fn, then since this transform is also invertible, a lemma
similar to Lemma 27 holds. The analysis then proceeds in the same way. Proposition 24 can
also recover translations. For multilinear (n, d, s, t) design polynomials, L2 = ∂1 with the
adjoint Adj(∂1, U, V ) improves the bound on t to d ≥ 2t + 1. Lemmas 25, 28 and 29 hold
with some minor changes, and Adj(∂1, U ′, V ′) can be shown to be trivial.

3.5 Applications of the equivalence test
3.5.1 GI ≡p P E for design polynomials: Proof of Theorem 11
GI ≤p PE for design polynomials. Let G1(V1, E1) and G2(V2, E2) be two n-vertex simple
graphs with e edges each. Let there be an arbitrary ordering on the edges of both graphs
with I1 an index function mapping E1 to [e] and I2 similarly mapping E2 to [e]. Introduce
variables x1, . . . , xn and y1, . . . , ye. Construct

M1 := {xixjy4
I1(i,j) : (i, j) ∈ E1} and M2 := {xlxky4

I2(l,k) : (l, k) ∈ E2}.

Let h1(z) :=
∑

m∈M1
m and h2(z) :=

∑
m∈M2

m, where z = x ⊔ y. Both h1 and h2 are
(n + e, 6, e, 2) design polynomials with all-one coefficients constructible in poly(n) time.
Proposition 34 follows from Corollary 10, the coefficients being 1, and y variables having
degree 4.

▶ Proposition 34. For h1, h2 as above, G1 ∼= G2 ⇐⇒ h1 ∼ h2.

PE for design polynomials ≤p GI. Let h1(x) and h2(x) be (n, d, s, t) design polynomials
with all-one coefficients, satisfying d ≥ 3t. If h1 and h2 are multilinear, construct hypergraphs
H1 and H2 with x as the vertices and subsets of vertices corresponding to the monomials
of h1 and h2 as the hyperedges, respectively. Observe that h1 ∼ h2 iff H1 ∼= H2 as, by
Corollary 10, if h1 ∼ h2, then they are equivalent via a permutation matrix. It is well-known
that hypergraph isomorphism reduces to GI (refer [32]). If h1 and h2 are non-multilinear,
the argument is more elaborate: Now the monomials correspond to multisets of x, while
hyperedges need to be subsets of vertices. This can be handled by examining a standard
reduction from hypergraph isomorphism to GI that uses bipartite graphs (see the opening
paragraph of [5]). By introducing in-between vertices to handle parallel edges, graphs G1
and G2 can be constructed in poly(s) time. For details, refer to the proof of Proposition 35
in [7].

▶ Proposition 35. For graphs G1, G2 as above, G1 ∼= G2 ⇐⇒ h1 ∼ h2.

10 Here, we need an efficient univariate polynomial factorization algorithm over F.
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3.5.2 Cryptanalysis of Patarin’s scheme: Proof of Theorem 13
Patarin’s authentication scheme [34], described in Section A.3, is based on the presumed
hardness of PE for random polynomials of constant degree. The attack on the scheme is as:
1. Invoking Theorem 3: Invoke Theorem 3 on f1 and f2 to obtain h1 ∼ f1 and h2 ∼ f2.
2. Recovering P: Use Theorem 11 to construct graphs G1 and G2 corresponding to h1

and h2 and use Babai’s algorithm [6] for GI to recover a permutation matrix P .
3. Recovering S: Solve the system of monomial equations arising from h2(x) = h1(PSx),

with the entries of S as variables.
The attack relies on Lemma 36, Propositions 37, 38, Theorems 3, 11 and Corollary 10.

▶ Lemma 36. A random s-sparse polynomial, as per Definition 12, is a (n, d, s, t) design
polynomial with probability at least 1 − ϵ, if n > d2 and s ≤

√
ϵ
(

n
d2

) t
2 where 0 < ϵ < 1.

▶ Proposition 37. If f is a random s-sparse polynomial as per Lemma 36 with s ≥ n3,
n > d8, d ≥ 25, t = d

3 and ϵ = 0.01, f has no non-trivial permutation symmetry with high
probability.11

▶ Proposition 38. Let f be as in Proposition 37. For h1(x) = f(P1S1x) and h2(x) =
f(P2S2x), where P1, P2 are permutation matrices and S1, S2 are scaling matrices, there exists
a unique permutation matrix P such that h2(x) = h1(PSx) for some scaling matrix S.

Invoking Theorem 3. For n > d8, ϵ = 0.01, t = d/3, d ≥ 25 and n3 ≤ s ≤ 0.1
(

n
d2

) d
6 ,

Lemma 36 implies f is, with high probability, a (n, d, s, d/3) design polynomial. Thus,
invoking Theorem 3 on f1 and f2 gives h1, h2, P1S1A1 and P2S2A2 where f1 = h1(P1S1A1x)
and f2 = h2(P2S2A2x). Clearly, h1 ∼ h2 by the transform P1S1(P2S2)−1 = PS for
appropriate P and S. If P and S can be recovered, then A−1

1 A2 = (P1S1A1)−1PS(P2S2A2)
can be recovered. As n > d8 and d is a constant, this step requires poly(n) time.

Recovering P . Note that P maps the monomials of h1 to h2 while S scales the coefficients
accordingly. To recover P , treat h1 and h2 as design polynomials with all-one coefficients and
use Theorem 11 and the GI algorithm of [6]. This step can be done in quasi-poly(s) time,
and the uniqueness of P , which holds by Propositions 38 and 37, implies the correctness.

Recovering S. Let h1(x) =
∑s

i=1 cimi and h2(x) =
∑s

i=1 c̃imi. Now h2(x) = h1(PSx) =
h1(S′Px) for an appropriate scaling matrix S′. Treat the diagonal entries of S′ as variables
{z1, z2 . . . zn}. Equating the coefficients of the monomials, we get cimi(z1, · · · , zn) = c̃j

where mj = mi(Px). If mi = x
αi,1
1 x

αi,2
2 . . . x

αi,n
n , we get the following monomial equations:

z
αi,1
1 z

αi,2
2 . . . zαi,n

n = c̃jc−1
i ∀ i ∈ [s]. (3)

There are s such equations in n variables, which is converted to a system of linear
equations by taking log(zj) as variables and αi,j and log(c̃jc−1

i ) as constants. Computing
log(a) over Fq is finding the discrete logarithm of a with respect to a generator γ of F×

q .12

Since q = O(poly(n)), γ can be found and discrete log can be computed in O(poly(n)) time.
We get a system of s linear equations over Zq−1 which can be solved in poly(s, q) time using
the Chinese Remainder Theorem, refer Chapter 5 of [39] for details.

11 meaning, for any permutation matrix P , f(P x) = f(x) implies P is the identity matrix.
12 that is finding a b ∈ [0, q − 2] such that γb = a.
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4 Learning random affine projections of design polynomials

In this section, Theorem 18 is proven. Section 4.1 lists the non-degeneracy conditions imposed
on affine projections of design polynomials. In Sections 4.2 and 4.4, we state and analyse
the learning algorithm and the vector space decomposition algorithm, respectively. The
adjoint of non-degenerate affine projections is analysed in Section 4.3. In Section 4.5, we
show random affine projections of multilinear design polynomials are non-degenerate with
high probability.

4.1 Non-degeneracy conditions
Let g(y) = g1 + · · · + gs be a (m, d, s, t) multilinear design polynomial with gi’s as monomials.
Let f(x) = g(l1, l2 . . . lm) = T1 + · · · + Ts be an n-variate affine projection of g with
Ti = gi(l1, · · · , lm), a product of d linear forms and Li be the set of linear forms in Ti. We
say f is a random affine projection if the coefficients of the li’s are randomly chosen from F.
Define:

U := ⟨∂kf⟩, V := ⟨∂k+2f⟩, Ui := ⟨∂kTi⟩, Vi := ⟨∂k+2Ti⟩,

where k is as in Lemma 45 and d ≥ 2k + 2. We say f is non-degenerate if the following holds:
1. U = U1 ⊕ · · · ⊕ Us and V = V1 ⊕ · · · ⊕ Vs.
2. The set Li is F-linearly independent for all i ∈ [s].

4.2 The algorithm and its analysis
Algorithm 4 is similar to Algorithm 2, except L1 = ∂k and L2 = ∂2 define U and V

respectively and Algorithm 5 for vector space decomposition computes eigenspaces. Each
step of the algorithm is randomized with a small error probability. An implicit check is run
at the end of Step 4 to see if h is a (m, d, s, t) multilinear design polynomial and the linear
forms per Ti are linearly independent, failing which the algorithm is repeated.

Analysis and Time complexity. We assume that each step executes without error and
f is non-degenerate, which holds for a random affine projection with high probability by
Lemma 45. The correctness of Algorithm 4 holds if it executes each of the four steps listed
in Section 1.2 correctly. Non-degeneracy condition 1 implies the direct sum structure of U

and V . The correctness of VSD follows from that of Facts 46, 47 and Algorithm 5. The
uniqueness of decomposition follows from Lemmas 41 and 43. The correctness of the recovery
of Ti’s, B and h follows from Fact 48 and Proposition 39. Proposition 40 gives the time
complexity.

▶ Proposition 39. Assuming b.b.a to Ti’s, B and h are recoverable in poly(m, n, s, d) time.

▶ Proposition 40. Algorithm 4 has a running time of poly(m, s, (nd)t).

4.3 Structure of the adjoint algebra
Lemma 41 states that Adj(∂2, U, V ) is trivial13 for a non-degenerate f . The idea is to leverage
that each Ti is an affine projection of a multilinear monomial. By condition 2, there exists an
Ai ∈ GL(n,F), such that in f(Aix), Ti(Aix) is a multilinear monomial. By Lemma 27, the

13 This is a special case of being block equi-triangularizable.
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Algorithm 4 Learning random affine projections of multilinear design polynomials.

Input: B.b.a to f = g(Ax), where A ∈ Fm×n and g is some (m, d, s, t) polynomial.
Output: A matrix B and (m, d, s, t) design polynomial h, with B = PSA and f = h(Bx).

1. Compute black-box access to some bases of U =
〈
∂kf

〉
and V =

〈
∂2U

〉
.

2. Perform VSD for (∂2, U, V ): let U = U1 ⊕ · · · ⊕ Us.
3. Express ∂kf

∂xα = u1α + · · · + usα, where uiα ∈ Ui and obtain black-box access to uiα for
all i ∈ [s] and xα of degree k. The black box for Ti is (d−k)!

d!
∑

|α|=k

(
k

α1...αn

)
xαuiα(x).

4. From black box access to the Ti’s, recover and return B ∈ Fm×n and (m, d, s, t) design
polynomial h using Proposition 39.

adjoint of f(Aix) and that of f(x) are equal as sets of matrices with respect to appropriate
bases of their respective derivative spaces.14 The operators in the adjoint of f(Aix) are
shown to be invariant on the derivative spaces of Ti(Aix) by using the fact that the derivative
space of Ti(Aix) is the space of multilinear polynomials in d variables. The block diagonality
then holds. Because of the direct sum structure, the block diagonality of the adjoint and the
block diagonality of ∂2 operators, it suffices to analyse the adjoint of individual Ti’s. Since
Ti(Aix) is a multilinear monomial, its adjoint is trivial and thus so is the adjoint of Ti.

▶ Lemma 41. Let g and f be as defined in Section 4.1. If f is non-degenerate, then
Adj(∂2, U, V ) is block-diagonal and is also trivial (thus, also block equi-triangular).

4.4 Vector space decomposition algorithm

Algorithm 5 Vector Space Decomposition Algorithm.
Input: B.b.a to bases of spaces U and V .
Output: B.b.a to bases of W1, . . . , Ws where Wi = Uπ(i) for some permutation π.

1. Compute a basis D(1), . . . , D(b) of Adj(∂2, U, V )1 = {D | (D, E) ∈ Adj(∂2, U, V )}.
2. Select c1, . . . , cb ∈r S ⊆ F, |S| = s3 and let D = c1D(1) + · · · + cbD(b).
3. Factorize the characteristic polynomial of D to obtain eigenvalues λ1, . . . , λs.
4. Compute Wi := Ker(D − λiI) for all i ∈ [s] and output b.b.a to the bases of W1, . . . , Ws.

Analysis and Time complexity. Algorithm 5 is similar to Algorithm 3 except it uses ∂2

operators and computes the eigenspaces of D, instead of generalized eigenspaces. Thus, the
analysis for Algorithm 5 is the same as for Algorithm 3. Lemmas 41 and 42 prove that
Algorithm 5 works with high probability. Proposition 44 gives the time complexity.

▶ Lemma 42. D has s distinct eigenvalues with probability ≥ 1 − (s
2)

|S| .

▶ Lemma 43. Let D ∈ Adj(∂k, U, V ) such that it has s distinct eigenvalues denoted λ1, . . . , λs.
Then Ker(D − λiI) = Uπ(i) for all i ∈ [s], where π is some permutation on [s].

▶ Proposition 44. Algorithm 5 has a running time of poly(n, s, dt).

14 Lemma 27 holds more generally for any two polynomials equivalent by invertible linear transforms.
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Handling non-homogeneous polynomials and translation. The non-degeneracy conditions
are the same for non-homogeneous (m, d, s, t) multilinear design polynomials and when
f(x) = g(Ax + b) for A ∈r Fm×n and b ∈ Fm. For the non-homogeneous case, if the degree
of all monomials is ≥ 2k + 2, then Lemmas 41 and 45 hold, and the analysis proceeds in the
same way. Proposition 39 can also recover translations.

4.5 Random affine projections are non-degenerate

Lemma 45 states that a random affine projection f is non-degenerate with high probability.
Showing f is non-degenerate reduces to showing certain matrices, with entries as the
coefficients of the li’s, are full rank with high probability when the entries are chosen
randomly. The main technical challenge is in proving condition 1 because the gi’s share
variables, thus Ti’s share the li’s. A two-stage random process is used to show the existence
of an affine projection which satisfies condition 1. The Schwartz-Zippel lemma then implies
that a random affine projection also satisfies condition 1 with high probability.

▶ Lemma 45. Let g be a polynomial as defined in Section 4.1 and f be its random affine

projection. For k = t +
⌊

2 log(s)
log

( √
n

d2

)⌋
+ 1, f is non-degenerate with high probability.

5 Conclusion

In this work, we design an ET algorithm for general design polynomials (Theorem 3) and a
learning algorithm for random affine projections of multilinear design polynomials (Theorem
18). As an application of the ET algorithm, we show that GI is polynomial-time equivalent
to PE for design polynomials with all-one coefficients (Theorem 11). As another application,
we show that Patarin’s authentication scheme can be broken if it uses a higher degree sparse
polynomial for key generation (Theorem 13). We also give an ET algorithm for the NW
design polynomial using Theorem 3 (Theorem 50). Theorem 18 is a significant generalization
of the main result in [27] that gave a learning algorithm for random affine projections of the
sum-product polynomial, which is a special multilinear design polynomial.

Both the algorithms are based on the vector space decomposition framework of [27, 16].
This work’s main technical contributions include analysing a non-trivial adjoint algebra
associated with design polynomials and developing a VSD algorithm based on generalized
eigenspaces. We end by listing some related questions:
1. ET for sparse polynomial: What is the complexity of ET for the class of sparse

polynomials? That is, given black-box access to a polynomial f and a parameter s, what
is the complexity of testing whether f is in the orbit of some s-sparse polynomial? The
authors of [12] showed that the shift equivalence problem for sparse polynomials (i.e.,
when f = g(x + b) for some sparse polynomial g and b ∈ Fn) is undecidable over Z.

2. Weakening n ≥ d4+ϵ: Can the condition n ≥ d4+ϵ in Theorem 18 be changed to n ≥ dδ

for arbitrary δ > 0? Doing so would give stronger evidence that NW is not VNP-complete.
3. Efficient ET for NW: Theorem 50 gives an ET for NW, but it is not a polynomial-time

algorithm. Is there a polynomial-time ET algorithm for NW? Our ET algorithm is
for general design polynomials; it is possible that analyzing the properties of the NW
polynomial may yield an efficient ET algorithm specifically for NW.
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A Appendix

A.1 Comparison with previous work
As mentioned earlier, ET has been studied for various polynomial families. ET algorithms
for power symmetric polynomials [23] and read-once formulas [21] were given by analyzing
the factors of the Hessian determinant. Analyzing the Lie algebra of the determinant [24, 15],
the permanent [24], and the iterated matrix multiplication [26, 33] polynomials led to ET
algorithms for these families. For the elementary symmetric polynomials, the maximal
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dimension of the space of second-order partials gave an ET algorithm [23]. It was shown
in [17] that over algebraically closed fields of characteristic 0, ET for polynomials characterized
by the continuous part of their symmetries is equivalent to testing matrix isomorphism to
their Lie algebras, implying over such fields an efficient ET exists for such polynomials,
provided matrix isomorphism to their Lie algebra can be solved efficiently. However, for design
polynomials, these techniques do not work. For example, the (2, d, 2, 3) design polynomial
x1xd−1

2 + xd−1
1 x2, where d ≥ 3 is odd, has a trivial Lie algebra and an irreducible Hessian

determinant over Q. For d ≥ 3, the (2d, d, 2, 1) design polynomial
∏d

i=1 xi +
∏2d

i=d+1 xi has
second-order partials dimension 2

(
d
2
)
, which is less than the maximum possible dimension(2d

2
)
. Design polynomials, particularly NW, are not characterized by the continuous part of

their symmetries (see [20]); hence the ET algorithm implied from [17] does not apply. Thus,
a different technique must be used for design polynomials.

The VSD framework was used previously in [27, 16, 9] to design learning algorithms. The
authors of [31] showed that polynomials in the orbit of the sum-product polynomial satisfy
the non-degeneracy conditions of [27], and so, we have an ET algorithm for this family. But
note that a sum-product polynomial has a read-once formula; an ET algorithm can also
be obtained via the Hessian determinant [21]. To our knowledge, our work is the first to
use the VSD framework to develop an ET algorithm (in Theorem 3) for a natural family
of polynomials for which none of the other three techniques work. Also, there is a notable
difference between the analysis in [16, 9] and the analysis here. In [16, 9], the relevant adjoint
algebra is diagonalizable, while in our case the adjoint is block equi-triangularizable. The
VSD algorithms of previous works recovered the component spaces by computing eigenspaces,
while we compute generalized eigenspaces to do so.

We learn affine projections of design polynomials (in Theorem 18) under certain non-
degeneracy conditions similar to those of [27]. However, proving the non-degeneracy of
random affine projections of design polynomials requires a more involved analysis than
proving the non-degeneracy of random depth-3 circuits in [27]. The reason is, unlike the
terms of the circuit models studied in [27, 16, 9], the terms in our case have shared randomness
as the same random affine form can appear in multiple terms. Theorem 18 is a significant
generalization of the main result in [27] that handles random affine projections of the
sum-product polynomial, which is a special design polynomial.

The learning algorithm in Theorem 18 is proper as it outputs an appropriate affine map.
It is also an average-case algorithm for learning affine projections of design polynomials as the
input is a random affine projection. This average-case, proper learning algorithm exploits the
property that the space of partial derivatives of an affine projection of a design polynomial
is low dimensional (under the technical conditions mentioned in the theorem statement) to
reduce the learning problem to VSD. A natural question arises at this point: is it always
possible to design an average-case, proper learning algorithm (via a reduction to VSD)
for affine projections of a model satisfying such low dimensional partial derivatives space
property? The answer is unclear. The related version [7] gives an example of affine projections
of low width algebraic branching programs (ABPs) satisfying the technical assumptions of
Theorem 18 and with low dimensional partial derivatives spaces, and for which (to the best
of our knowledge) no average-case, proper learning algorithm is known. The authors of [25]
gave such an algorithm assuming that the widths are the same across the layers of the ABP.

A.2 Algorithmic preliminaries
▶ Fact 46. Given black-box access to an n-variate degree d polynomial f , we can compute
black-box access to ∂kf

∂xα in poly(n, dk) time, where |α| = k. (Refer [26] for a proof idea.)
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▶ Fact 47. Given black-boxes to n-variate degree d polynomials f1, f2 . . . , fl, there is a
randomized poly(n, l, d) time algorithm that computes a basis for the vector space

(f1, f2 . . . fl)⊥ := {(α1, α2, . . . , αl) ∈ Fl :
l∑

i=1
αifi = 0}

Refer [23] for a proof of the above fact. A corollary of Fact 47 is:

▶ Fact 48. Given black-box access to linearly independent polynomials f1, . . . , fl and an
f =

∑l
i=1 βifi, where βi ∈ F, the βi’s can be computed in randomized poly(n, l, d) time.

▶ Fact 49. Let d ∈ N, char(F) = 0 or > d and |F| ≥ d6. Given black-box access to an
n-variate degree d polynomial f , black-box access to its irreducible factors can be computed
in randomized poly(n, d) time. (Refer [22] for details.)

A.3 Description of Patarin’s scheme
Patarin’s scheme is a provably perfect zero-knowledge authentication scheme; thus Alice can
prove to Bob that she knows a secret without revealing any information about the secret.
The key generation process is as follows:
1. Select an n-variate degree d polynomial f(x) ∈r Fq[x], where d is a constant.
2. Select two matrices A1, A2 ∈r Fn×n

q .15

3. Compute the public key (f1, f2) := (f(A1x), f(A2x)) and the private key C = A−1
2 A1.

The authentication procedure is as follows:
1. Alice selects an R ∈r Fn×n

q and computes g := f1(Rx) and sends it to Bob.
2. Bob receives g and picks h := f1 or f2 with probability 1

2 , challenging Alice to show
h ∼ g.

3. Alice receives h. If h = f1, she sends R. If h = f2, she sends CR.

A.4 Equivalence Testing for NW
The PS-equivalence testing problem for NW is as follows: given a polynomial f , check if
f = NWq,d,t(PSx) for some permutation P and scaling S, and recover them if so. Theorem 50
(the proof can be found in [7]) follows from Theorems 3 and 11, and the GI algorithm in [6].

▶ Theorem 50. Let q, d, t ∈ N, q ≥ d, t ≤ d/3, |F| ≥ q3t, char(F) = 0 or > d. ET for NWq,d,t

reduces to PS-equivalence testing for NWq,d,t in poly(qt) time. Further, PS-equivalence
testing for NWq,d,t reduces to S-equivalence testing for NWq,d,t in quasi-poly(qt) time.

The S-equivalence testing problem for NW is as follows: Given a polynomial f , check
if f = NWq,d,t(Sx) for some scaling S, and recover it if so. Over R and Fp, S-equivalence
testing for NW can be done by the algorithm of [10] in poly(q, β) time, where β is the bit
complexity of the coefficients of f , and also by an algorithm of [20]. Over Q, S-equivalence
testing of NW can be done in poly(qt, β) time, assuming oracle access to integer-factoring.
This combined with Theorem 50 gives a quasi-poly(qt) time algorithm for ET for NW. Here is
a proof sketch of S-equivalence test for NWq,d,t over Q: If f is S-equivalent to NWq,d,t, then
f =

∑
h∈Fq [y], deg h<t ch

∏d−1
i=0 xi,h(i), where ch ∈ F. With the entries of S as z variables, we

get the following equations:

15 A random matrix is invertible with high probability.
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z0,h(0)z1,h(1) . . . zd−1,h(d−1) = c−1
h for h ∈ Fq[y]<t .

There are qt many equations in qd variables. Since c−1
h ∈ Q, c−1

h = a/b for some a, b ∈ Z.
Using the integer-factoring oracle, factor the integers a, b into primes p1, p2 . . . pl. Now,
reduce it to solving an appropriate Diophantine linear system by taking logarithms to the
base pi, with logpi

(zj,h(j)) as variables wj,h(j),i. This Diophantine linear system has lqd

variables and lqt equations. Treating this system as a matrix, check its consistency and then
determine the linearly independent rows (say there are k of them). A k × k submatrix with
non-zero determinant m can be formed from these rows, which corresponds to expressing the
Diophantine linear system as linear equations in k of the wj,h(j),i variables with constants
as affine forms in the remaining wj,h(j),i variables. By Cramer’s rule, a solution to such a
system is a fraction with the numerator as the affine forms and the denominator as m. The
problem then further reduces to solving a linear system determined by the affine forms over
the ring Zm since wj,h(j),i must be integers. This whole process can be done in poly(qt, β) time.

Therefore, ET for NW can be solved in time quasi-polynomial in the sparsity of NWq,d,t.
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1 Introduction

Behavioural equivalences (such as bisimilarity and trace equivalence) are an important
technique to identify states with the same behaviour in a transition system [39]. They have
been complemented by notions of behavioural metrics [14, 38, 10] measuring the distance
between states, in particular in a quantitative setting. We work in a coalgebraic setting [32]
that allows us to answer generic questions about behavioural equivalences and metrics,
parametrized over various branching types (non-deterministic, probabilistic, weighted, etc.).

There are various ways to characterize behavioural equivalences or metrics, which we
illustrate using trace equivalence as an example: (i) direct specification: Two states x, y are
trace equivalent if they admit the same traces; (ii) logic: x, y are trace equivalent if they
cannot be distinguished in a modal logic based on diamond modalities and the constant
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true; (iii) fixpoint equation: x, y are trace equivalent if the pair ({x}, {y}) is contained in
the greatest fixpoint of the bisimulation function on the determinized transition system; (iv)
games: there is an attacker-defender game characterizing the equivalence.

Our focus is on (ii) and (iii), and our take is quite different from the usual approach:
Instead of first defining the behavioural equivalence/metric and then setting up an expressive
logic for it, we start by defining the logic and derive a fixpoint equation from the logic.
Fixpoint equations are of great interest since efficient algorithms for computing behavioural
conformances are almost always based on fixpoint characterizations; in future work, we
aim to exploit such characterizations for algorithmic purposes. However, for a given logic,
corresponding fixpoint equations do not always exist, and we give conditions for ensuring
that they do. We use the Galois connection approach from [4] as a starting point, and
instead of instantiating it for each case study, we propose a generic coalgebraic framework.
By employing fibrations (resp. indexed categories) [17, 18], we parameterize over the notion
of conformance (e.g. equivalence, metric) that is our focus of attention. Moreover, we
parametrize over a quantale in which both conformances and formulae take their values.

One interest, particularly, is in linear-time notions of conformance (such as trace/language
equivalences and their quantitative cousins), for which we work in an Eilenberg-Moore
category where the coalgebras live. We exploit the generalized powerset construction [20, 34]
and characterize those (trace) logics that can be turned into suitable fixpoint equations
on the determinized coalgebra, using a notion of compatibility [4] that has its roots in
up-to techniques [30]. We also study the relation of compatibility to the notion of depth-1
separation used in (quantitative) graded logics [11, 13].

More concretely, we work with coalgebras of the form c : X → FTX, living in some
category C, where a monad T intuitively specifies the implicit branching (or side effects)
and a functor F describes the explicit branching type. For instance, for a non-deterministic
automaton we choose T = P and F = _Σ × 2. We fix an EM-law ζ : TF ⇒ FT [20] allowing
us to obtain a determinized coalgebra, i.e., a coalgebra of the form c# : TX → FTX that
can be viewed as a coalgebra in the Eilenberg-Moore category of T . We can then define
a logic function log that is defined on sets of V-valued predicates on X and whose least
fixpoint induces a behavioural conformance on TX. Alternatively, given the determinization
c#, we can – in a fibrational style – define a conformance on TX as the greatest fixpoint
of a Kantorovich lifting followed by a reindexing via c#. The aim is to show that both
conformances coincide.

We allow arbitrary constants in the logic, which – in particular in the linear-time case –
are able to add extra distinguishing power to the logic. Along the way we give an answer to
the question of why, unlike branching-time logics, linear-time logics often do not need any
additional (boolean) operators, only modalities and constants.

As examples we consider bisimilarity and branching-time pseudometrics for probabilistic
transition systems, as well as linear-time conformances such as trace equivalence and trace
distance.

Roadmap. After reviewing preliminaries in Section 2, we summarize the approach based
on Galois connections (adjunctions) in Section 3. The instantiation to generic coalgebras
is presented in Section 4 and a concrete quantale-valued branching-time logic spelled out
in Section 5. Section 6 specializes to coalgebras in Eilenberg-Moore categories, leading to
results strengthening those for the general case. Finally, Section 7 details the linear-time
case studies mentioned above, and we conclude in Section 8.

The proofs can be found in the full version of this paper [5].
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2 Preliminaries

We recall some basic definitions and facts on lattices, quantales, generalized distances,
coalgebra, monads and their algebras and on indexed categories. We do assume basic
familiarity with category theory (e.g. [1]).

2.1 Lattices, Fixpoints and Galois Connections
A complete lattice (L, ⊑) consists of a set L with a partial order ⊑ such that each Y ⊆ L
has a least upper bound

⊔
Y (also called supremum, join) and a greatest lower bound

d
Y

(also called infimum, meet). The Knaster-Tarski theorem [36] guarantees that any monotone
function f : L → L on a complete lattice L has a least fixpoint µf and a greatest fixpoint νf .

Let L, B be two lattices. A Galois connection from L to B is a pair α ⊣ γ of monotone
functions α : L → B, γ : B → L such that for all ℓ ∈ L, b ∈ B: α(ℓ) ⊑ b ⇐⇒ ℓ ⊑ γ(b).

A closure cl : L → L is a monotone, idempotent and extensive (i.e. ∀x∈L x ⊑ cl(x))
function on a lattice. A co-closure is monotone, idempotent and extensive wrt. ⊒. Given a
Galois connection α ⊣ γ, γ ◦ α is always a closure and α ◦ γ a co-closure.

2.2 Quantales and Generalized Distances
▶ Definition 1. A (unital, commutative) quantale (V, ⊗, 1), or just V, is a complete lattice
with an associative, commutative operation ⊗ : V × V → V with unit 1 that distributes over
arbitrary (possibly infinite) joins

∨
. If 1 is the top element of V, then V is integral.

In a quantale V, the functor − ⊗ y has a right adjoint [y, −] for every y ∈ V; that is,
x ⊗ y ≤ z ⇐⇒ x ≤ [y, z] for all x, y, z ∈ V .

▶ Example 2.
1. The Boolean algebra 2 with ⊗ = ∧ and unit 1 is an integral quantale; for y, z ∈ 2, we

have [y, z] = y → z.
2. The complete lattice [0, 1] ordered by the reversed order of the reals, i.e. ≤ = ≥R, and

equipped with truncated addition r ⊗ s = min(r + s, 1), is an integral quantale; for
r, s ∈ [0, 1], we have [r, s] = s .− r = max(s − r, 0) (truncated subtraction).

Given a quantale V , a directed (V-valued) pseudometric (on X) is a function d : X × X → V
where (i) ∀x∈X d(x, x) ≥ 1 (reflexivity); (ii) ∀x,y,z∈X d(x, z) ≥ d(x, y) ⊗ d(y, z) (transitiv-
ity/triangle inequality). Moreover, d is a pseudometric if additionally, (iii) ∀x,y∈X d(x, y) =
d(y, x) (symmetry). We write DPMetV(X) to denote the lattice of all directed pseudo-
metrics on X, while for pseudometrics we use PMetV(X). Given dX ∈ DPMetV(X),
dY ∈ DPMetV(Y ), a function f : X → Y is non-expansive (wrt. dX , dY ) if dX(x, x′) ≤
dY (f(x), f(x′)) for all x, x′ ∈ X. Note that due to the choice of order in the quantale, the
inequality in the definitions above is reversed wrt. the standard definitions that are typically
given in the order on the reals. As originally observed by Lawvere [26], one may see directed
V-valued pseudometrics as V-enriched categories, or just V-categories, and non-expansive
functions as V-functors.

2.3 Coalgebras and Eilenberg-Moore Categories
Given a functor F : C → C, an F -coalgebra (X, c) (or simply c) consists of an object X ∈ C
and a C-arrow c : X → FX. In the paradigm of universal coalgebra [32], we understand X

as the state space of a transition system, F as specifying the branching type of the system,
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and c as a transition map that assigns to each state a collection of successors structured
according to F . For instance, when C = Set is the category of sets and functions, then the
powerset functor P assigns to each set its powerset, and P-coalgebras are just sets equipped
with a transition relation. On the other hand, the (finitely supported) distribution functor D
assigns to each set X the set of finitely supported probability distributions on X, given in
terms of maps p : X → [0, 1] with finite support such that

∑
x∈X p(x) = 1. A D-coalgebra

thus is precisely a Markov chain.
Recall that a monad (T, η : Id ⇒ T, µ : TT ⇒ T ) on C, usually denoted by just T , consists

of a functor T : C → C and natural transformations η : Id ⇒ T (the unit) and µ : TT ⇒ T

(the multiplication), subject to certain coherence laws. Monads abstractly capture notions of
algebraic theory, with TX being thought of as terms modulo provable equality over variables
in X. Correspondingly, a T -algebra (X, a) consists of an object X of C and a C-arrow
a : TX → X such that a ◦ ηX = idX and a ◦ Ta = a ◦ µX ; we may think of T -algebras as
algebras for the algebraic theory encapsulated by T . A homomorphism between T -algebras
(X, a), (Y, b) is a C-arrow f : X → Y such that b ◦ Tf = f ◦ a. The Eilenberg-Moore category
of T , denoted EM(T ), is the category of T -algebras and their homomorphisms. There is a
free-forgetful adjunction L ⊣ R : C → EM(T ), where the forgetful functor R maps an algebra
to its underlying C-object and L maps an object X ∈ C to the free algebra (TX, µX).

A (monad-over-functor) distributive law (or EM-law) of a monad T over a functor F

is a natural transformation ζ : TF ⇒ FT satisfying ζX ◦ ηF X = FηX and ζX ◦ µF X =
FµX ◦ ζT X ◦ TζX . This is equivalent to saying that the assignment F̃ (X, a) = (FX, Fa ◦ ζX)
defines a lifting F̃ : EM(T ) → EM(T ) of F (where lifting means that RF̃ = FR). Then, the
determinization [34] of a coalgebra c : X → FTX in C is the transpose c# : LX → F̃LX of c

under L ⊣ R. More concretely the determinization can be obtained as c# = FµX ◦ ζT X ◦ Tc.
For instance, when FX = XΣ × 2 and T = P , then this yields exactly the standard powerset
construction for the determinization of non-deterministic automata.

2.4 Indexed Categories and Fibrations
Our aim is to equip objects of a category with additional information, e.g., consider sets
with (equivalence) relations or metrics. Formally, this is done by working with fibrations,
in particular we will consider fibrations arising from the Grothendieck construction for
indexed categories [17, 18]. For us it is sufficient to consider as indexed categories functors
Φ: Cop → Pos, where Pos is the category of posets (ordered by ⪯) with monotone maps.
Such functors induce a fibration U :

∫
Φ → C where U is the forgetful functor and

∫
Φ is

the category whose objects and arrows are characterized as follows:

X ∈ C ∧ d ∈ ΦX

(X, d) ∈
∫

Φ

X
f−→ Y ∈ C ∧ d ⪯ (Φf)d′

(X, d) f−→ (Y, d′) ∈
∫

Φ

Here, f∗ = Φf is also called reindexing operation and d is called a conformance.
Typical examples are functors Φ: Setop → Pos mapping a set X to the lattice of

equivalence relations or pseudometrics on X.

3 Adjoint Logic: the General Framework

We summarize previous results on relating logical and behavioural conformances using Galois
connections [4]. These results are based on the following well-known property that shows
how fixpoints are preserved by Galois connections (e.g. [3, 8, 9]). The formulation of these
properties involves a notion of compatibility studied for coinductive up-to techniques [30].
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▶ Definition 3. Let log, cl : L → L be monotone endofunctions on a partial order (L, ⊑).
Then log is cl-compatible if log ◦ cl ⊑ cl ◦ log.

▶ Theorem 4 ([4]). Let α : L → B, γ : B → L be a Galois connection between complete
lattices L,B, and let log : L → L, beh : B → B be monotone. Then the following holds.
1. If beh = α ◦ log ◦γ then α(µ log) ⊑ µ beh.
2. If α ◦ log = beh ◦α, then α(µ log) = µ beh. If log reaches its fixpoint in ω steps, i.e.,

µ log = logω(⊥), then so does beh.
3. Let cl = γ ◦ α be the closure operator of the Galois connection, and suppose that beh =

α ◦ log ◦γ. If log is cl-compatible, then α(µ log) = µ beh.

▶ Remark 5. In fact, there is a weaker notion than compatibility that ensures the same
result, i.e., α(µ log) = µ beh. In particular, it is sufficient to show the following condition:

log(cl(ℓ)) ⊑ cl(log(ℓ)) for all ℓ ∈ S ⊆ L where S is an invariant of log, i.e. log[S] ⊆ S,
⊥ ∈ S, and S is closed under directed joins. (If the fixpoint is reached in ω steps, closure
under directed joins is not required.)

We apply this in a scenario where L consists of logical formulas (or more precisely their
semantics, in the shape of sets of definable predicates) and B consists of conformances. These
Galois connections will be contra-variant when we consider the quantalic ordering in B. Then,
log is the “logic function” that adds a layer of modalities and propositional operators to a
given set of predicates, so that µ log is the semantics of the set of formulas of the logic. On
the other hand, beh is the “behaviour function”, whose greatest fixpoint ν beh (remember
the contra-variance) is behavioural conformance.

▶ Example 6. The simplest Galois connection used in [4] for characterizing behavioural equi-
valence is between L = P(2X) (sets of predicates on X) and B = PMet2(X) (equivalences
on X), where α maps every set of predicates to the equivalence relation induced by it and γ

maps an equivalence to the set of predicates closed under it.
Moving to pseudometrics we obtain a Galois connection between L = P([0, 1]X) (sets

of real-valued predicates on X) and B = PMet[0,1](X) (pseudometrics on X) where α

maps every set of functions X → [0, 1] to the least pseudometric making all these functions
non-expansive and γ takes a pseudometric and produces all its non-expansive functions.

So first, define a logical universe L and a logic function log : L → L. Second, choose a
suitable Galois connection α ⊣ γ to a behaviour universe B and show that log is cl-compatible.
Third, derive the behaviour function beh = α ◦ log ◦γ : B → B. From the results above,
we automatically obtain the equality α(µ log) = µ beh, which tells us that logical and
behavioural equivalence respectively distance coincide (Hennessy-Milner theorem).

4 Adjoint Logic for Coalgebras

In this section we will describe a general framework where the adjoint logic is instantiated to
the setting of coalgebraic modal logic.

4.1 Setting up the Adjunction
One can generalize from Example 6 and instead of a set X take an object in a (locally small)
category C. Furthermore we fix an object Ω ∈ C (the truth value object), which in all our
applications will be a quantale. Predicates are represented by the indexed category C(_, Ω);
thus, sets of predicates (lattice L) are given by the indexed category P ◦ C(_, Ω) (where
the order is inclusion). In addition, we use an indexed category Φ specifying the notion of
conformance on X (lattice B) and work with the following assumptions:
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A1 Each fibre ΦX is a poset having arbitrary meets (thus, a complete lattice) and the
reindexing map preserves these meets (i.e.

∫
Φ has fibred limits).

A2 Let dΩ ∈ ΦΩ be a fixed conformance on the truth value object Ω.

For an arrow f ∈ C(X, Y ), we write f• for the reindexing in C(_, Ω) (f•g = g ◦ f , where
g ∈ C(Y, Ω)) and f∗ for the reindexing in Φ (f∗ = Φf).

▶ Theorem 7. Let X be an object of C. Under Assumptions A1 and A2, there is a dual
adjoint situation (contravariant Galois connection) αX ⊣ γX between the underlying fibres:

αX : P(C(X, Ω)) → Φ(X)op S ⊆ C(X, Ω) 7→
∧

k∈S

k∗(dΩ)

γX : Φ(X)op → P(C(X, Ω)) d ∈ ΦX 7→ {k ∈ C(X, Ω) | d ⪯ k∗(dΩ)}.

More concretely: αX , γX are both antitone (S ⊆ S′ =⇒ αX(S) ⪰ αX(S′), d ⪯ d′ =⇒
γX(d) ⊇ γX(d′)) and we have d ⪯ αX(S) ⇐⇒ S ⊆ γX(d) for d ∈ ΦX and S ∈ PC(X, Ω).

Thus, for X ∈ C, the fibres PC(X, Ω) and (ΦX)op will take the role of B and L
(respectively) as in [4, Theorem 3.2]. Moreover, Theorem 7 will be instantiated to obtain the
desired Galois connections between predicates and conformances for our case studies.

▶ Example 8. Let C = Set and Ω = V be a quantale. We consider ΦX = DPMetV(X)
(resp., ΦX = PMetV(X)) with the order ⪯ on ΦX induced by the pointwise lifting of
the order ≤ on V. The reindexing functor f∗ for a function f : X → Y is given by f∗d =
d ◦ (f × f); thus, satisfying A1. As conformance dΩ on V we take the internal hom [_, _]
(resp., its symmetrization: dΩ(x, y) = [x, y] ∧ [y, x]); thus, satisfying A2. Then we have
αX ⊣ γX : P(Set(X, V)) ⇄ DPMetV(X), where:

αX(S)(x, x′) =
∧

h∈S

dΩ(h(x), h(x′))

γX(d) = {h : X → V | ∀x,x′∈X d(x, x′) ≤ dΩ(h(x), h(x′))}

In both cases, αX assigns to a set of maps the greatest (directed) pseudometric making
all these maps non-expansive, while γX maps a pseudometric all its non-expansive maps.

4.2 Characterizing Closure
Given that the key condition imposed on the logic function in Theorem 4 is compatibility with
the closure of the Galois connection, it is important to understand how this closure operates.
In the setting of Theorem 7 we can characterize the closure in terms of non-expansive
propositional operators, provided that γ is natural. We note first that α is always natural:

▶ Proposition 9. In Theorem 7, the transformation α is natural in X ∈ C, that is, for
f ∈ C(X, Y ), we have αX ◦ P(f•) = f∗ ◦ αY .

For the right adjoint γ, naturality need not hold in general. It does hold for Set and
generalized (directed) metrics over the quantales in Example 2. A counterexample can
however be constructed for C = EM(P) and V = [0, 1] (see [4]).

If γ is natural, then we can characterize the closure γ ◦ α using the internal language
of indexed categories. To this end, suppose that C has (small) products. Then for every
S ⊆ C(X, Ω). we have a unique tupling ⟨S⟩ : X → ΩS such that πk ◦ ⟨S⟩ = k for all k ∈ S,
where πk : ΩS → Ω is the product projection for k.
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▶ Lemma 10. The right adjoint γ in Theorem 7 is laxly natural, i.e. P(f•) ◦ γY ⊆ γX ◦ f∗

for f : X → Y ∈ C. If γ is natural (i.e. the inclusion is an equality) and C has products,
then γX(αX(S)) = P(⟨S⟩•)(γΩS (dΩS )), where dΩS =

∧
k∈S π∗

kdΩ.

This result can be interpreted as follows: γΩS (dΩS ) is the set of all non-expansive functions
ΩS → Ω, hence all non-expansive operators of arbitrary arity on Ω. Reindexing via ⟨S⟩
means to combine all predicates in S via those operators, hence we describe the closure under
all non-expansive operations on Ω.

4.3 Towards a Generic Logic Function
Since our slogan is to generate the behaviour function from the logic function, we start by
setting up our logical framework first. Following [4, 12], we adopt a semantic approach to
defining a (modal) logic, i.e., we specify the operators (including modalities) as a transforma-
tion of predicates; formally, as a (natural) transformation log of type PC(_, Ω) ⇒ PC(_, Ω).
The idea is that the logic function logX adds one “layer” of modal depth; in particular, the
least fixpoint µ logX of logX can be seen as the set of (interpretations of) all modal formulas.

In particular, we require

A3 Fix a family (evλ ∈ C)λ∈Λ of evaluation maps evλ : FΩ → Ω.

As noted in [33], such evaluation maps – commonly used in coalgebraic modal logic –
correspond to natural transformations of type C(_, Ω) → C(F_, Ω) by the Yoneda lemma.

▶ Proposition 11. A family of evaluation maps (evλ)λ∈Λ induces a natural transformation
Λ: PC(_, Ω) ⇒ PC(F_, Ω) given by S 7→ {λX(h) | λ ∈ Λ, h ∈ S}, where λX(h) = evλ ◦ Fh.

Apart from modalities, a logic typically needs operators and constants. We do not consider
constants as 0-ary operators, which allows us to distinguish between operators that arise as
in Lemma 10 from the closure of the Galois connection (that is, non-expansive operators)
and the remaining (constant) operators that bring additional distinguishing power. This is,
for instance, needed in the case of trace equivalence on a determinized transition system to
distinguish the empty set of states from sets of states having no transitions. We need an
additional (constant) predicate for this task that can neither be provided by the closure nor
by a constant modality (see Appendix A.1).

A4 We assume a set ΘX ⊆ C(X, Ω) of constants (which is later restricted to consist of free
extensions of constant maps).

To model the propositional operators, we introduce a closure cl′X :

A5 For each X ∈ C we assume that there is a closure cl′X : PC(X, Ω) → PC(X, Ω) (not
necessarily natural), specifying the propositional operators.

We say that cl′X is a subclosure of clX whenever cl′X ⊆ clX , which means that the
propositional operators implemented by cl′X are already contained in the closure induced by
the Galois connection (cf. Lemma 10).

Now we can define the logic function for a coalgebra c as

logX = P(c•) ◦ ΛX ◦ cl′X ∪ ΘX : PC(X, Ω) → PC(X, Ω).

Its least fixpoint contains all predicates that can be described by modal formulas.1

1 In our setup a formula is either a constant or starts with a modality, which still results in an expressive
logic. One could slightly modify logX and obtain all formulas by adding another closure cl′.
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▶ Example 12. Let C = Set, c : X → FX and ΦX = PMetV(X). Recall the Galois
connection from Example 8 and consider the following two examples, where in both cases no
constants are needed, i.e., ΘX is empty; thus, A4 vacuously holds.
1. Bisimilarity on (unlabelled) transition systems: we let F = Pfin (finite powerset functor),

V = 2, and consider the evaluation map ev♢ : Pfin2 → 2 encoding the usual diamond
modality: ev♢(U) = 1 ⇐⇒ 1 ∈ U . This can be extended to a logic by choosing as cl′

(Assumption A5) the closure under all (finitary) Boolean operators.
2. Behavioural metrics for probabilistic transition systems with termination: we let FX =

DX +1 (where 1 = {✓}) and V = ([0, 1] , ≥R). Define two evaluation maps: evE : D [0, 1]+
1 → [0, 1] corresponds to expectation, i.e. evE(p) =

∑
r∈[0,1] r·p(r) if p ∈ DX (0 otherwise).

Furthermore, ev∗ : D[0, 1] + 1 → [0, 1] with ev∗(p) = 1 if p = ✓ (0 otherwise). We extend
this to a logic by defining cl′ (Assumption A5): we add as operators the constant 1,
min(φ, φ′), 1 − φ and φ .− q for a rational q (where φ is a formula), as in similar logics
for probabilistic transition systems [38].

To ensure that the requirements of Section 3 are met, we have to show compatibility of
the logic function. To this end, we introduce the notion of compability of cl′.

▶ Definition 13. Given a closure cl′X : PC(X, Ω) → PC(X, Ω), we say that cl′X is compatible
if the map ΛX ◦ cl′X (for each X ∈ C) is compatible with the closure clX = γX ◦ αX induced
by the adjoint situation in Theorem 7, i.e., ΛX ◦ cl′X ◦ clX ⊆ clF X ◦ΛX ◦ cl′X .

The following results hold under Assumptions A1-A5 and thus, we avoid stating them in
various lemma/theorem statements.

▶ Proposition 14. For a given compatible closure cl′X , the above logic function logX is
clX-compatible, i.e., logX ◦ clX ⊆ clX ◦ logX .

We will now study equivalent conditions and special cases in which compatibility holds.
First, it is easy to see that cl′ = cl is always compatible, but typically introduces infinitary
operators. Moreover, if cl′ is the identity (that is, there are no propositional operators), then
compatibility of cl′ reduces to cl-compatibility of Λ.

▶ Lemma 15. Let cl′X be a subclosure of clX . It holds that cl′X is compatible if and only if
αF X ◦ ΛX ◦ cl′X ⪯ αF X ◦ ΛX ◦ clX .

We next adapt the separation property establishing expressiveness of graded logics w.r.t.
graded semantics [11, 13] to the present setting, an additional twist being that the conformance
w.r.t. which modalities must be separating is the one induced by the modalities themselves.

▶ Definition 16 (Depth-1 self-separation). A set S ⊆ C(X, Ω) of predicates is initial for
d ∈ ΦX if αX(S) = d. Let cl′X be a subclosure of clX . The depth-1 self-separation property
holds if for every S that is closed under cl′X (i.e., S = cl′X(S)) and initial for d, it follows
that ΛX(S) is initial for κX(d) where κX = αF X ◦ ΛX ◦ γX .

▶ Lemma 17. Let cl′X be a subclosure of clX . Then cl′X is compatible if and only if the
depth-1 self-separation property holds.

Finally, we study a sufficient condition on evaluation maps ensuring cl-compatibility of Λ.

▶ Lemma 18. If each evaluation map evλ arises as a natural transformation η : F ⇒ Id or
η : F ⇒ Ω (Ω is the constant functor mapping every object to Ω), that is evλ = ηΩ, then Λ
is compatible with cl.
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▶ Example 19. We establish compatibility for the logics considered in Example 12. In
branching-time logics in general, depth-1 self-separation usually boils down to establishing a
Stone-Weierstraß type property saying that if S ⊆ C(X, Ω) is initial and closed under cl′X ,
then S is dense in C(X, Ω), for suitably restricted X [12]. For finitary set functors such
as Pfin or D, it suffices to prove self-separation on finite X. Additional details are as follows.
1. In the case of unlabelled transition systems, we are given an equivalence relation R on a

finite set X, a set S ⊆ Set(X, 2) that is initial for R and closed under Boolean combina-
tions, and A, B ∈ Pfin(X) that are distinguished by some predicate ♢Xf : Pfin(X) → 2
where f is invariant under R. We then have to show that A, B are distinguished by ♢g for
some g ∈ S. But by functional completeness of Boolean logic and because X is finite, S

is in fact the set of all R-invariant functions X → 2, so we can just take g = f .
2. The argument is similar for probabilistic transition systems, with some additional consider-

ations necessitated by the quantitative setting. We are now given a set S ⊆ Set(X, [0, 1])
that is initial for d and closed under propositional operators as per Example 12.2. By
a variant of the Stone-Weierstraß theorem, this implies that S is dense in the space of
non-expansive maps (X, d) → [0, 1] (see [43]), which means that in an argument as in the
previous item, we can take g to range over functions in S that approximate the given
non-expansive function f : (X, d) → [0, 1] arbitrarily closely, using additionally that the
predicate lifting induced by evE as in Example 12(2) is non-expansive [42].

4.4 Towards a Generic Behaviour Function
Building on the previous section, we define the behaviour function behX : ΦX → ΦX as
behX = αX ◦ logX ◦γX and – under the assumption of compatibility – we have2 αX(µ logX) =
ν behX . In other words, the notions of logical and behavioural conformances coincide.

This motivates a closer investigation of ν behX : in what sense does it coincide with
known behavioural equivalences or metrics? Defining a behavioural conformance (that is,
an element of ΦX) in a fibrational setting is typically done by taking the greatest fixpoint
of a function defined in two steps: the lifting of a conformance ΦX to Φ(FX), followed by
a reindexing via c. Here, we consider Kantorovich-style [2] or codensity [22] liftings based
on the evaluation maps. Kantorovich liftings have originally been used to lift metrics on a
set X to metrics of probability distributions over X. In the probabilistic case, an alternative
characterization is given via optimal transport plans in transportation theory (earth mover’s
distance) [40].

We use the natural transformation Λ introduced earlier and consider the composite
κX = αF X ◦ ΛX ◦ γX , the mentioned Kantorovich lifting. If F = D and the evaluation map
is expectation, then we obtain exactly the classical Kantorovich lifting.

Given a coalgebra c : X → FX, we use the behaviour function behX = c∗ ◦ κX ∧ αX(ΘX);
here, ΘX is a set of constants as in Section 4.3 (Assumption A4).

▶ Example 20. We derive the behaviour functions for Examples 12 and 19.
1. In the case F = P and V = 2, the lifting κX(R) ⊆ PX × PX of an equivalence

relation R ⊆ X × X is the Egli-Milner lifting, i.e. U κX(R) V ⇐⇒ ∀x∈U ∃y∈V x R

y ∧ ∀y∈V ∃x∈U x R y. It is well-known that the greatest fixpoint of behX = c∗ ◦ κX is
precisely Park-Milner bisimilarity.

2 Note that the adjunction defined in Theorem 7 is contravariant. Hence the least fixpoint of beh from
Theorem 4 becomes the greatest fixpoint ν behX wrt. the lattice order ⪯.
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P(C(X, Ω)) Φ(X)op

P(C(FX, Ω)) Φ(FX)op

P(C(X, Ω)) Φ(X)op

αX

⊥

ΛX

cl′XΘX

logX

γX

κX

behX
αF X

⊥

P(c•)
γF X

c∗

αX

⊥
γX

Figure 1 The adjoint setup with logX =P(c•)◦ΛX ◦cl′X ∪ ΘX and behX =c∗◦κX ∪ αX (ΘX ).

2. In the case FX = DX + 1 and V = [0, 1], we obtain the lifting κX(d) ∈ PMet(DX + 1)
of a pseudometric d ∈ PMet(X). It is easy to see that κX(d)(p1, p2) is the distance given
by the classical Kantorovich lifting of d if p1, p2 ∈ DX. If p1 = ✓ = p2, then the distance
is 0, otherwise 1. The least fixpoint (under the usual order on [0, 1]) of the behaviour
function behX = c∗ ◦ κX agrees with standard notions of bisimulation distance (e.g. [38]).

We conclude the section by showing that behaviour functions defined in this way are actually
the ones obtained from the logic function. For the diagram underlying the proof see Figure 1.

▶ Theorem 21. Assume that cl′X is a subclosure of clX and compatible. For a set ΘX of
constants and a coalgebra c : X → FX, the logic function logX = P(c•) ◦ ΛX ◦ cl′X ∪ ΘX

induces behX = c∗ ◦ κX ∧ αX(ΘX), i.e., αX ◦ logX ◦γX = behX .

Putting everything together via Theorem 4, if cl′X is a compatible closure, then we have
αX(µ logX) = ν behX , that is, logical conformance coincides with behavioural conformance.

5 Logics for Quantale-valued Simulation Distances

We next consider a quantitative modal logic LΛ that we show to be expressive for similarity
distance (a behavioural directed metric) under certain conditions. Throughout this section,
our working category C is Set, we have a fixed functor F on Set, and a fixed quantale
Ω = V with distance dV = [_, _] being the internal hom. Furthermore ΦX = DPMetV(X).
In this section we assume naturality of γ, which holds for the quantales given in Example 2.

φ ∈ LΛ ::=
∧

i∈I
φi | φ ⊗ v | dV(v, φ) | [λ]φ (for v ∈ V , λ ∈ Λ, I ∈ Set)

This logic is the positive fragment of quantale-valued coalgebraic modal logic [41, 12], and
generalizes logics for real-valued simulation distance [42] to the quantalic setting. The first
three operators are regarded as propositional operators of cl′, while the [λ] are the modalities.
We do not use explicit constants (ΘX = ∅), but note that constant truth ⊤ is included as
the empty meet. On a coalgebra c : X → FX ∈ Set, we interpret a formula φ as a function
JφK : X → V as usual (by structural induction on terms). Note that we do not allow negation,
as we aim to characterize similarity distance. Disjunction could be included but, as in the
two-valued case [39], is not needed to characterize simulation. Meet is infinitary, so the logic
function log does not reach its least fixpoint in ω steps.

The next results show that the three operators (as well as join) are all non-expansive and
hence cl′ is a subclosure of cl (cf. Lemma 10), which moreover is compatible.

▶ Proposition 22. Infinitary meets, infinitary joins, negative scaling dV(v, _), and positive
scaling _ ⊗ v (for v ∈ V) are non-expansive.
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▶ Proposition 23. If each λ ∈ Λ is sup-preserving (i.e. λX(
∨

P ) =
∨

P(λX)(P ), for every
subset P ⊆ Set(X, V),) then the sub-closure cl′ of cl as above is compatible.

Diamond-like modalities (for powerset or fuzzy powerset) are typically sup-preserving.
In such cases, Theorem 21 yields expressiveness of the above logic for similarity distance,
defined as the greatest fixpoint of behX(d) = c∗ ◦κX(d) where κX is the directed Kantorovich
lifting.

6 The Adjoint Setup in an Eilenberg-Moore Category

While we have seen in the examples of the previous sections that the framework can
be instantiated to coalgebras living in Set, thus providing Hennessy-Milner theorems for
bisimilarity, we are now interested in tackling trace equivalences and trace metrics. To
this end, we work in Eilenberg-Moore categories [34], which also allows us to determinize a
coalgebra using the generalized powerset construction (cf. 2.3).

In particular, we instantiate the adjoint setup to the category EM(T ) of T -algebras (for
some monad T on C), provide conditions guaranteeing compatibility, and characterize the
behaviour function. Furthermore, taking inspiration from [33], we also introduce a general
syntax for modal formulas that can be interpreted over coalgebras living in EM(T ). As
introduced in Section 2.3, we fix a coalgebra c : X → FTX living in C and its determinization
c# : LX → F̃LX in EM(T ) via a distributive law ζ : TF ⇒ FT .

We assume an indexed category Ψ: Cop → Pos (that has fibred limits) and lift it to the
category EM(T ) of T -algebras by postcomposition, that is, Φ = Ψ ◦ R (thus ensuring A1):

EM(T )op R−→ Cop Ψ−→ Pos.

Here, R is the forgetful functor in the free-forgetful adjunction L ⊣ R : C → EM(T ) from
Section 2.3. To handle A2, we fix a truth value object Ω ∈ C equipped with a T -algebra
structure o : TΩ → Ω and dΩ ∈ ΦΩ. These assumptions ensure that Theorem 7 becomes
applicable. We will denote the reindexing for Φ by _∗, while we overload the notation and
specify the reindexing in both C and EM(T ) by _•.

We focus on free algebras LX = (TX, µX) (over X ∈ C) and apply Theorem 7 to the
above-mentioned indexed category Ψ◦R, which gives the adjoint situations depicted by shaded
rectangles in Figure 2. We note that the middle hom-set EM(T )(LX, (Ω, o)) is isomorphic
to C(X, Ω) at the top left – due to the free-forgetful adjunction – with the bijection between
the respective powersets witnessed by α′, γ′. This allows us to define the logic function on the
lattice P(C(X, Ω)), which is a simpler structure than P(EM(T )(LX, (Ω, o))). In particular,
formulas can then be evaluated directly on the state space X.

6.1 Logic and Behaviour Function for Coalgebras in Eilenberg-Moore
Recall from Section 4.3 that we need evaluation maps in the working category to define a
logic function. So, to ensure A3, we assume a set Λ of evaluation maps for F̃ , i.e., a family
(F̃ (Ω, o) evλ−−→ (Ω, o) ∈ EM(T ))λ∈Λ of algebra homomorphisms. More concretely, a C-arrow
evλ : FΩ → Ω is such an algebra homomorphism if it satisfies o ◦ T evλ = evλ ◦ Fo ◦ ζΩ.

As in Section 4, this induces a natural transformation Λ. Since every homomorphism is
also a map in C, we can define Λ′

X , the predicate lifting on PC(X, Ω):

PC(X, Ω) α′
X−−→ PEM(T )(LX, (Ω, o)) ΛLX−−−→ PEM(T )(F̃LX, (Ω, o)) P(R)−−−→ PC(FTX, Ω).
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PC(X, Ω) P(EM(T )(LX, (Ω, o))) Ψop(TX)

P(EM(T )(F̃LX, (Ω, o))) Ψop(FTX)

PC(FTX, Ω)

PC(X, Ω) P(EM(T )(LX, (Ω, o))) Ψop(TX)

Θ′
X

α′
X

∼=

Λ′
X

log′
X

γ′
X

αLX

⊥

ΛLX

ΘLX

γLX

κLX

behLX

αF̃ LX

⊥

P((c#)•)

γF̃ LX

(c#)∗

P(c•)
α′

X

∼=
γ′

X

αLX

⊥
γLX

Figure 2 The adjoint setup for algebras, where behLX =(c#)∗◦κLX ∧αLX (ΘLX ) and log′
X =P(c•)◦Λ′

X ∪ΘX .

Note that Λ′ is a natural transformation (since α, Λ are natural transformations and R is a
functor); on components it can be easily characterized as follows:

▶ Lemma 24. We have that Λ′
X(S) = {evλ ◦ Fo ◦ FTh | h ∈ S} where S ⊆ C(X, Ω).

That is, Λ′
X(S) is obtained by first lifting the predicates from C(X, Ω) to C(TX, Ω) via

the evaluation map o : T Ω → Ω and then to C(FTX, Ω) via evλ : F Ω → Ω. This process can
be seen as applying a “double modality” for T and F .

We can now invoke the results of the previous chapter and assume that Λ is compatible
with the closure induced by the adjunction, that is, we work without propositional operators
(hence cl′, as mentioned in Assumption A5, is the identity), only constants, at first sight a
strong property. We will however see in the next section that this always holds when F is a
machine functor and we choose suitable evaluation maps.

The next theorem focusses on free algebras and is partly a corollary of Proposition 14
and Theorem 21. However there is a new component: instead of defining the logic function
on (free) Eilenberg-Moore categories, reindexing via the determinized coalgebra c#, it is
possible – as indicated above – to define it directly on arrows of type X → Ω living in C,
reindexing with c. This coincides with the view that formulas should be evaluated on states
in X rather than elements of TX. The diagram in Figure 2 outlines how to show this result.

▶ Theorem 25. We fix a coalgebra (c : X → FTX) ∈ C. Assume that ΛLX is compatible
with the closure clLX and fix ΘLX ⊆ EM(T )(LX, Ω) to ensure that A4 holds.
1. Then the logic function logLX = P((c#)•) ◦ ΛLX ∪ ΘLX is clLX-compatible.
2. For the behaviour function behLX = (c#)∗ ◦ κLX ∧ αLX(ΘLX) (where κLX = αF̃ LX ◦

ΛLX ◦ γLX), we have αLX(µ logLX) = ν behLX .
3. Now define another logic function log′

X = P(c•) ◦ Λ′
X ∪ Θ′

X with ΘLX = α′
X(Θ′

X). It
holds that α′

X ◦ log′
X ◦γ′

X = logLX and we obtain αLX(α′
X(µ log′

X)) = ν behX .

We hence consider a simple logic LEM for EM(T ), where T is a monad on Set:

φ ∈ LEM ::= θ | [λ]φ (where θ ∈ Θ, λ ∈ Λ)

Given a coalgebra c : X → FTX ∈ Set, each formula φ ∈ LEM is interpreted as a function
JφK : X → Ω, which is defined by structural induction as follows:

Let φ = θ. Then JφK is given by a predefined constant X → Ω.
Let φ = [λ]φ′. Then JφK = evλ ◦ Fo ◦ FT JφK ◦ c (see definition of Λ′

X in Lemma 24).
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▶ Corollary 26. Under the requirements of Theorem 25, the logic LEM is expressive for the
behavioural conformance behLX , i.e., αLX(α′

X({JφK | φ ∈ LEM})) = ν behLX .

6.2 The Machine Functor
Our next aim is to show that the machine functor has certain natural evaluation maps
ensuring that the predicate lifting is cl-compatible (one of the conditions of Theorem 25).
Throughout this section, we restrict ourselves to a monad T on Set and fix the machine
functor M = _Σ × B with Σ ∈ Set and (B, b) ∈ EM(T ). Since all monads in Set are strong
and B is endowed with a T -algebra structure b : TB → B, there is a canonical distributive
law ζ [19, Exercise 5.4.4]:

ζX : T (XΣ × B) ⟨a 7→T (πa◦π1),b◦T π2⟩−−−−−−−−−−−−−−→ (TX)Σ × B, (1)

where (πi)i∈{1,2} are the usual projections and πa : XΣ → X is the evaluation map (πa(g) =
g(a) where g : Σ → X). Now let M̃ be the lifting of M to EM(T ), induced by the ζ. We
observe that the evaluation maps suggested by it arise from natural transformations in the
sense of Lemma 18.

▶ Proposition 27.
1. Let a ∈ Σ. Then ηa : M̃ ⇒ Id given by the composite MX

π1−→ XΣ πa−→ X is a natural
transformation.

2. Let f : (B, b) → (Ω, o) be a homomorphism. Then η′
f : M̃ ⇒ Ω given by the composite

MX
π2−→ B

f−→ Ω is a natural transformation.
Thus, eva = ηΩ, evf = η′

Ω satisfy the properties of Lemma 18, and if each evaluation map is
of this form, then Λ is cl-compatible.

6.3 Alternative Formulation of Kantorovich Lifting
The behaviour function in Section 6.1 is based on the generalized Kantorovich lifting κ [2],
which works as follows: given a pseudometric d on Y (here Y = TX), generate all non-
expansive functions Y → Ω wrt. d, lift these functions to FY → Ω and from there generate
a pseudometric on FY . However, κLX – since it is defined in an Eilenberg-Moore category –
works subtly differently: it takes all non-expansive functions that are algebra homomorphisms.
This looks natural in the categorical setting, but may pose problems if we implement the
procedures. The standard (probabilistic) Kantorovich lifting can for instance be computed
based on the Kantorovich-Rubinstein duality, by determining optimal transport plans [40].

Here, both types of liftings coincide at least on relevant metrics. To show this result, we
first define an alternative way of lifting, as opposed to defining the lifting on T -algebra maps.
Applying Theorem 7 on Ψ (rather than on Ψ◦R) gives the adjunction αC

X ⊣ γC
X : PC(X, Ω) ⇄

ΨXop. Now consider the lifting κC
T X = αC

F T X ◦ ΛT X ◦ γC
T X , where ΛT X : PC(TX, Ω) →

PC(FTX, Ω) is defined identically to ΛLX .

▶ Theorem 28. Assume that d is preserved by the co-closure, i.e. d = αLX(γLX(d)), the
co-closure αC

X ◦ γC
X is the identity, and each evaluation map evλ arises from some natural

transformation either of type F ⇒ Id or F ⇒ Ω. Then the two liftings κLX , κC
T X coincide

on d, i.e., κLX(d) = κC
T X(d).

The condition d = αLX(γLX(d)) is a necessary, but not a serious restriction: this property
is typically satisfied by the ⊤ metric and is preserved by the behaviour function. Hence
during fixpoint iteration this invariant is preserved and the greatest fixpoints of behX based
on either version of the Kantorovich lifting coincide (if the fixpoint is reached in ω steps).
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In addition, if C = Set and V is an integral quantale, it can easily be shown that the
co-closure αC

X ◦ γC
X is the identity. This enables us to concretely spell out the behaviour

function for the case of the machine functor M = _Σ × B, provided that the conformances
ΨX are (directed) pseudometrics.

▶ Theorem 29. Assume that C = Set, ΨX = DPMetV(X) (resp. ΨX = PMetV(X)) for
an integral quantale V and let dV = [_, _] (resp. the symmetrized variant of [_, _]). Let
d : LX × LX → V be a pseudometric that is preserved by the co-closure αLX ◦ γLX . Assume
that M is the machine functor and the family of evaluation maps is

{eva | a ∈ Σ} ∪ {evf | f ∈ F ⊆ EM(T )((B, b), (V, o))}.

Then the corresponding behaviour function behLX : Ψ(LX) → Ψ(LX) is defined as follows:
let t1, t2 ∈ LX with c#(ti) = (bi, gi) ∈ B × LXΣ:

behLX(d)(t1, t2) =
∧

a∈Σ
d(g1(a), g2(a)) ∧

∧
f∈F

dV(f(b1), f(b2)) ∧
∧

θ∈ΘLX

dV(θ(t1), θ(t2)),

The above function beh is co-continuous and fixpoint iteration terminates after ω steps.

7 Case Studies for the Linear-time Case

7.1 Workflow

We recall the parameters of our framework and set out a workflow that we follow in our case
studies. Let F be a machine functor and T a monad on a category C.

Model systems as coalgebras of type c : X → FTX with a distributive law ζ : TF ⇒ FT .
Fix a truth value object (Ω, o) ∈ EM(T ) and dΩ ∈ ΨΩ.
Define a fibration (indexed category) Φ = Ψ ◦ R : EM(T )op → Pos by fixing an indexed
category Ψ: Cop → Pos to define the conformances.
Fix a set Λ of evaluation maps (predicate liftings) as homomorphisms F̃ (Ω, o) → (Ω, o).
Fix a set of constants ΘX ⊆ C(X, Ω).

Note that the last four conditions correspond to Assumptions A1-A5, which are necessary
to set up a logic and a behaviour function beh as defined in Section 6.1 and guarantee
expressiveness of the resulting logic. Whenever we choose ΨX = DPMetV(X) or ΨX =
PMetV(X) for an integral quantale V, we can rely on the characterization of the fixpoint
equation in Theorem 29.

We present one worked out case studies based on this workflow, two others are given in
Appendix A.

7.2 Trace Distance for Probabilistic Automata

A probabilistic automaton [31] is a quadruple (X, Σ, µ, p) where for each state x ∈ X and
each possible action a ∈ Σ there is a probability distribution µx,a on the possible successors
in X, and where each state x ∈ X has a payoff value p(x) ∈ [0, 1]. Following [34, 35], we
model them as coalgebras in the Eilenberg-Moore setting as detailed in the table below.
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C = Set, F = _Σ × [0, 1], T = D Logic:
(B = [0, 1], b expectation) evaluation maps: eva (Prop. 27(1))

c : X → (DX)Σ × [0, 1] ev∗(f, r) = r (Prop. 27(2))
c# : DX → (DX)Σ × [0, 1] constants ΘX = ∅

formulas: φ = [a1] · · · [an]∗
Ω = [0, 1] (Ex. 2(2)) Behaviour function:
o : D[0, 1] → [0, 1] expectation behDX : Ψ(DX) → Ψ(DX)
Ψ(X) = PMet[0,1](X) behDX(d)(p1, p2) = max{supa∈Σ d(g1(a), g2(a)), dΩ(r1, r2)}
dΩ(r, s) = |r − s|

Thus, given a formula φ = [a1] . . . [an]∗ and a state x ∈ X, JφK(x) gives us the expected
payoff after choosing actions according to the word a1 . . . an. The distance of two states
x1, x2 is hence the supremum of the difference of payoffs, over all words.

Expressiveness again follows from Corollary 26.

8 Conclusion

Related work. By now there is a large number of papers considering coalgebraic semantics
beyond branching-time, for instance [15, 34, 27, 7]. Furthermore in the same period quite a
wealth of results on the treatment of behavioural metrics in coalgebraic generality has been
published [38, 2, 23, 12]. However, there is little work combining both linear-time semantics
and behavioural metrics in the setting of coalgebra. In that respect we want to mention [13]
that is based on the graded monad framework [27] and which investigates exactly this
combination. However, different from the present paper, the focus is on the expressiveness of
the logics with respect a graded semantics (that intuitively specifies the traces of a state).
Hence, using the classification of the introduction, it studies the relationship of (i) and (ii).

Unlike other approaches, our main focus is on exploiting an adjunction (Galois connection)
and fixpoint preservation results to obtain Hennessy-Milner theorems “for free”. We start by
setting up a logic, characterizing the behavioural equivalence, and investigate under which
circumstances we can derive a corresponding fixpoint characterization. The fixpoint equation
might be defined on an infinite state space, but often there are finitary techniques that can
be employed, such as reducing the state space to a finite subset, linear programming, up-to
techniques, etc. In particular, for systems as in Appendix A.2 we are working on promising
results (based on [3]) for deriving bounds for behavioural distances via finite witnesses using
up-to techniques, even for infinite state spaces. The algorithmic angle of our approach is not
yet fully worked out in the present paper but establishing fixpoint equations as we do here is
a necessary first step in this direction.

Note that our concept deviates from the dual adjunction approach [21, 24, 25, 28] to
coalgebraic modal logic. There the functor on the “logic universe” characterizes the syntax
of the logics, while the semantics is instead given by a natural transformation. Nevertheless,
it complements (at least when restricted to the classical case of Boolean predicates) the
recent approach [37] that combines fibrations in the dual adjunction setup since having
contravariant Galois connections between fibres (at a “local” level) is equivalent to having
dual adjunctions between certain fibred categories (at a “global” level). It is unclear how to
establish this correspondence in the setting of quantitative V-valued predicates.

Future work. Currently the operators of the logic, given by cl′, are rather generic, although
we instantiated them in special cases to ensure expressiveness (see in particular Sections 5
and 6.2). We envision a general theory to ensure expressiveness of the logics, similar to
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Post’s functional completeness theorem [29], which characterizes complete sets of operators
for the boolean case. This question is strongly related to the notion of an approximating
family in [23] that has again close connections to compatibility as discussed in [4].

We will also study the condition requiring that a conformance (pseudometric) is preserved
by the co-closure (d = αLX(γLX(d))). Previous results [4] suggest that this is related to
the notion of (metric) congruence, as e.g. defined in [6], but the connection seems to be
non-trivial.

Another avenue of research is to further investigate the quantale-valued logic for the
branching case introduced in Section 5, to extend it to the undirected case and restrict to
finitary operators.
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A Case Studies for the Linear-time Case

A.1 Trace Equivalence for Labelled Transition Systems
We spell out a simple case study: trace equivalence [39] for labelled transition systems. The
main ingredients are summarized in the table below.

C = Set, F = _Σ, T = P Logic:
(B = 1) evaluation maps: eva (Prop. 27(1))

c : X → (PX)Σ constants ΘX = {1}, constant 1-function
c# : PX → (PX)Σ formulas: φ = [a1] · · · [an]1
Ω = 2 (Ex. 2(1)) Behaviour function:
o : P2 → 2 supremum behPX : Ψ(PX) → Ψ(PX)
Ψ(X): equivalences on X behPX(R)(U, V ) = (U = ∅ ⇔ V = ∅) ∧
dΩ: equality on Ω ∀a∈Σ(c#(U)(a), c#(V )(a)) ∈ R

The modality [a] boils down to the standard diamond modality (due to the definition
of o); a state x ∈ X satisfies φ = [a1] · · · [an]1 iff there exists a trace a1 · · · an from x. The
constant 1 is needed to start building formulas and to distinguish the empty set from a
non-empty set on LX = PX. (Note that ΘLX = α′

X(ΘX) = {1̃} with 1̃(Y ) = 0 iff Y = ∅.)
Its role cannot be taken by a constant modality or an operator, since those have to be
homomorphisms in EM(P), hence sup-preserving.

Expressiveness of trace logic LEM now directly follows from Corollary 26.

A.2 Directed Fuzzy Trace Distance
We now consider directed trace distances for weighted transition systems over a generic
quantale.

We work with the “fuzzy” monad T = PV (aka V-valued powerset monad [16, Re-
mark 1.2.3]) on Set that is defined as PV = VX on objects and as Tf(g)(y) =

∨
f(x)=y g(x)

(for f : X → Y ) on arrows. Its unit ηX : X → PVX is given by ηX(x)(x′) = 1 if x = x′
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and 0 (the empty join) otherwise. Multiplication µX : PVPVX → PVX is defined as
µX(G)(x) =

∨
g∈PV X G(g) ⊗ g(x). Note that for V = 2 (cf. Example 2(1)) T corresponds to

the powerset monad P.

C = Set, F = _Σ, T = PV Logic:
(B = 1) evaluation maps: eva (Prop. 27(1))

c : X → (PVX)Σ constants ΘX = {1}, constant 1-function
c# : PVX → (PVX)Σ formulas: φ = [a1] · · · [an]1
Ω = V, o : PVV → V Behaviour function:

g 7→
∨

v∈V g(v) ⊗ v behPV X : Ψ(PVX) → Ψ(PVX)
Ψ(X) = DPMetV(X) behPV X(d)(g1, g2) =

∧
a∈Σ d(c#(g1)(a), c#(g2)(a)) ∧

dΩ(v, v′) = [v, v′]
[∨

x∈X
g1(x),

∨
x∈X

g2(x)
]

Evaluating a formula φ = [a1] . . . [an]1 on a state x0 ∈ X results in

JφK(x0) =
∨

{
⊗

0≤i<n

c(xi)(ai+1)(xi+1) | x1 . . . xn ∈ Xn}.

This follows directly from structural induction on φ, from distributivity and from the
evaluation of the modality [a]φ′:

J[a]φ′K(x) =
∨

y∈X

c(x)(a)(y) ⊗ Jφ′K(y).

Intuitively we check how well x can match the trace a1 . . . an, where c(x)(a)(y) measures the
degree to which x can make an a-transition to y.

The second part of the minimum in the definition of beh stems from the constants
ΘX = {1}, since ΘLX = α′

X(ΘX) = {1̃} with 1̃(h) =
∨

x∈X h(x) for h : X → V. Without it,
the fixpoint iteration would stabilize at the constant 1-pseudometric.

Expressiveness again follows from Corollary 26. Expressiveness of a logic for symmetric
fuzzy trace distance has already been shown in previous work [13].
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11:2 A Characterization of Efficiently Compilable Constraint Languages

1 Introduction

One of the main aims of knowledge compilation is to encode solution sets of computational
problems into a succinct but usable form [25]. Typical target formats for this compilation
process are different forms of decision diagrams [44] or restricted classes of Boolean circuits.
One of the most general representation formats are circuits in decomposable negation normal
form (DNNF), which have been introduced in [23] as a compilation target for Boolean
functions. Related notions, which also rely on the central decomposability property, have
been independently considered in databases [38, 37] and circuit complexity [41, 1]. Besides
these, DNNF circuits and related compilation classes have also been proven useful in areas
like probabilistic inference [26], constraint satisfaction [31, 6, 4, 34], MSO evaluation [2], QBF
solving [15], to name a few. The DNNF representation format has become a popular data
structure because it has a particularly good balance between generality and usefulness [25].
There has also been a large amount of practical work on compiling solution sets into DNNF
or its fragments, see e.g. [33, 24, 36, 17, 39, 31]. In all these works, it assumed that the
solutions to be compiled are given as a system of constraints, often as a set of disjunctive
Boolean clauses, i. e., in conjunctive normal form (CNF).

In this setting, however, strong lower bounds are known: it was shown that there are
CNF-formulas whose representation as DNNF requires exponential size [7, 8, 14, 3]. The
constraints out of which the hard instances in [7, 3, 14] are constructed are very easy – they
are only monotone clauses of two variables. Faced with these negative results, it is natural to
ask if there are any classes of constraints that guarantee efficient compilability into DNNF.

We answer this question completely and prove a tight characterization for every constraint
language Γ. We first examine the combinatorial property of strong blockwise decomposability
and show that if a constraint language Γ has this property, any system of constraints over Γ
can be compiled into a DNNF representation of linear size within polynomial time. Otherwise,
there are systems of constraints that require exponential size DNNF representations. In the
tractable case, one can even compile to the restricted fragment of free decision diagrams
(FDD) that are in general known to be exponentially less succinct than DNNF [44, 25].

We also consider the important special case of so-called structured DNNF [40] which are
a generalization of the well-known ordered binary decision diagrams [9]. We show that there
is a restriction of strong blockwise decomposability that determines if systems of constraints
over a set Γ can be compiled into structured DNNF in polynomial time. In the tractable case,
we can in fact again compile into a restricted fragment, this time ordered decision diagrams
(ODD).

Let us stress that all our lower bounds are unconditional and do not depend on any
unproven complexity assumptions.

Further related work. Our work is part of a long line of work in constraint satisfaction,
where the goal is to precisely characterize those constraint languages that are “tractable”.
Starting with the groundbreaking work of Schaefer [42] which showed a dichotomy for deciding
consistency of systems of Boolean constraints, there has been much work culminating in the
dichotomy for general constraint languages [11, 45]. Beyond decision, there are dichotomies
for counting [19, 10, 27], enumeration [21], optimization [18, 30, 20] and in the context of
valued CSPs [43, 13]. Note that the hardness part (showing that certain constraint languages
do not admit efficient algorithms) always relies on some complexity theoretic assumption.

The complexity of constraint satisfaction has also been studied “from the other side”,
where the constraint language is unrestricted and the structure of the constraint network
(i. e. how the constraints are arranged) has been analyzed. In this setting, characterizations
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of (bounded arity) constraint networks have been obtained for the deciding the existence of
solutions [29] and counting solutions [22] (again, under some complexity theoretic assumption),
while for enumerating solutions only partial results exist [12]. Tractability classifications of
the constraint network have also been obtained in the context of valued CSPs [16]. Recently,
an unconditional characterization of (bounded arity) constraint networks that allow efficient
compilation into DNNFs has been proven [6].

Out of these works, our results are most closely related to the counting dichotomy of [27].
The tractable classes we obtain in our dichotomies are also tractable for counting, and in fact
we use the known counting algorithm in our compilation algorithms as a subroutine. Also,
the tractability criterion has a similar flavor, but wherever in [27] the count of elements in
certain relations is important, for our setting one actually has to understand their structure
and how exactly they decompose. That said, while the tractability criterion is related to the
one in [27], the techniques to show our results are very different. In particular, where [27] use
reductions from #P-complete problems to show hardness, we make an explicit construction
and then use communication complexity to get strong, unconditional lower bounds. Also,
our two algorithms for construction ODDs and FDDs are quite different to the counting
algorithm.

Outline of the paper. After some preliminaries in Section 2, we introduce the decompos-
ability notions that we need to formulate our results in Section 3. We also give the formal
formulation of our main results there. In Section 4, we show some of the properties of the
constraints we defined in the section before. These properties will be useful throughout
the rest of the paper. In Section 5, we present the algorithms for the positive cases of our
dichotomies, then, in Section 6, we show the corresponding lower bounds. We specialize our
results to the case of Boolean relations in Section 7, showing that the tractable cases are
essentially only equalities and disequalities. Finally, we conclude in Section 8.

2 Preliminaries

Constraints. Throughout the paper we let D be a finite domain and X a finite set of
variables that can take values over D. We typically denote variables by u, v, w, x, y, z and
domain elements by a, b, c, d. A k-tuple (x1, . . . , xk) ∈ Xk of variables is also denoted by
x⃗ = x1x2 · · ·xk and we let x̃ := {x1, . . . , xk} be the set of variables occurring in x⃗. We
use the same notation for tuples of domain elements. A k-ary relation R (over D) is a set
R ⊆ Dk. A k-ary constraint (over X and D), denoted by R(x⃗), consists of a k-tuple of
(not necessarily distinct) variables x⃗ ∈ Xk and a k-ary relation R ⊆ Dk. For a constraint
R(x⃗) we call x̃ the scope of the constraint and R the constraint relation. The solution set
of a constraint R(x1, . . . , xk) is defined by sol(R(x1, . . . , xk)) := {β | β : {x1, . . . , xk} →
D; (β(x1), . . . , β(xk)) ∈ R}. Since the order of the columns in a constraint relation is not of
great importance for us, we often identify constraints with their solution set and treat sets S
of mappings from Y ⊆ X to D as a constraint with scope Y and solution set S. Moreover,
for readability we will often write, e. g., “a constraint R(x, y, w⃗), such that x and y . . . ” when
we do not strictly require x and y to be at the first and second position and actually refer to
any constraint having x and y in its scope.

CSP-instance and constraint language. A constraint satisfaction instance I = (X, D, C)
consists of a finite set of variables X, a finite domain D and a finite set C of constraints. The
solution set sol(I) := {α | α : X → D; α|x̃ ∈ sol(R(x⃗)) for all R(x⃗) ∈ C} of an instance I is
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the set of mappings from X to D that satisfies all constraints. A constraint language Γ is a
finite set of relations (over some finite domain D). A constraint satisfaction instance I is a
CSP(Γ)-instance if every constraint relation R occurring in I is contained in the constraint
language Γ.

Conjunction and projection. A conjunction R(u⃗) = S(v⃗) ∧ T (w⃗) of two constraints S(v⃗)
and T (w⃗) defines a constraint R(u⃗) over u⃗ = u1 · · ·uℓ with scope ũ = ṽ ∪ w̃ and constraint
relation R := {(β(u1), . . . , β(uℓ)) | β : ũ → D; β|ṽ ∈ sol(S(v⃗)) and β|w̃ ∈ sol(T (w⃗))}.1 If
ṽ∩ w̃ = ∅, then a conjunction is called a (Cartesian) product and written R(u⃗) = S(v⃗)×T (w⃗).
For a constraint R(x⃗) and a set Y ⊆ x̃ we let the projection πY R(x⃗) be the constraint S(y⃗)
with scope ỹ = Y obtained by projecting the constraint relation to corresponding coordinates,
i. e., for x⃗ = x1 · · ·xk let 1 ≤ i1 < · · · < iℓ ≤ k s. t. {i1, . . . , iℓ} = {i | xi ∈ Y }, y⃗ := xi1 · · ·xiℓ

,
and S := {(ai1 , . . . , aiℓ

) | (a1, . . . , ak) ∈ R}.

Formulas and pp-definability. A Γ-formula F (x⃗) =
∧

i Si(x⃗i) is a conjunction over several
constraints whose constraint relations are in Γ. To avoid notational clutter, we use “F (x⃗)” for
both, the conjunction as syntactic expression and the constraint defined by this formula. Note
that any CSP(Γ)-instance I = (X, D, C) corresponds to a Γ-formula F (x⃗) =

∧
Ri(x⃗i)∈C Ri(x⃗i)

with x̃ = X and sol(F (x⃗)) = sol(I). Thus, we can treat CSP(Γ)-instances as Γ-formulas and
vice versa. A primitive positive (pp) formula over Γ is an expression F (y⃗) = πỹ(

∧
i Si(x⃗i) ∧∧

(j,k) xj = xk) consisting of a projection applied to a Γ ∪
{
{(a, a) | a ∈ D}

}
-formula,

which uses constraint relations from Γ and the equality constraint. Note that conjunctions
of pp-formulas can be written as pp-formula by putting one projection at the front and
renaming variables. A constraint is pp-definable over Γ, if it can be defined by a pp-formula
over Γ. Moreover, a relation R ⊆ Dk is pp-definable over Γ if it is the constraint relation of a
pp-definable constraint R(x1, . . . , xk) for pairwise distinct x1, . . . , xk. The co-clone ⟨Γ⟩ of Γ
is the set of all pp-definable relations over Γ.

Selection. It is often helpful to use additional unary relations S ⊆ D and to write US(x) for
the constraint S(x) with scope {x} and constraint relation S. We use Ua(x) as an abbreviation
for U{a}(x). For a constraint R(u⃗), a variable x ∈ ũ, and a domain element a ∈ D we define
the selection R(u⃗)|x=a be the constraint obtained by forcing x to take value a, that is,
R(u⃗)|x=a := R(u⃗) ∧ Ua(x). Similarly, for a set S ⊆ D we write R(u⃗)|x∈S := R(u⃗) ∧ US(x).

DNNF. We will be interested in circuits representing assignments of variables to a finite
set of values. To this end, we introduce a multi-valued variant of DNNF; we remark that
usually DNNF are only defined over the Boolean domain {0, 1} [23], but the extension we
make here is straightforward and restricted variants have been studied e.g. in [31, 4, 35, 28]
under different names.

Let X be a set of variables and D be a finite set of values. A circuit over the operations
× and ∪ is a directed acyclic graph with a single sink, called output gate, and whose inner
nodes, called gates, are labeled with × or ∪. The source-nodes, called inputs of the circuit,
are labeled by expressions of the form x 7→ a where x ∈ X and a ∈ D. We say that ×-gate
v is decomposable if there are no two inputs labeled with x 7→ a and x 7→ b (with possibly

1 Again, we may just write “S(v⃗) ∧ T (w⃗)” instead of “R(u⃗) = S(v⃗) ∧ T (w⃗)” if the order or multiple
occurrences of variables in u⃗ does not matter (the solution set sol(R(u⃗)) is always the same).
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a = b) that have a path to v going through different children of v. A DNNF is a circuit
in which all ×-gates are decomposable. Note that in a DNNF, for every ×-gate v, every
variable x ∈ X can only appear below one child of v.

For every DNNF O we define the set S(O) of assignments captured by O inductively:
The set captured by an input v with label x 7→ d is the single element set S(v) = {x 7→ d}.
For a ∪-gate with children v1, v2, we set S(v) := S(v1) ∪ S(v2).
For a ×-gate with children v1, v2, we set S(v) := S(v1)×S(v2) where for two assignments
a : X1 → D and b : X2 → D, we interpret (a, b) as the joined assignment c : X1∪X2 → D

with c(x) :=
{

a(x), if x ∈ X1

b(x), if x ∈ X2
.

We define S(O) := S(vo) where vo is the output gate of O. Note that S(O) is well-defined
in the case of ×, since X1 and X2 are disjoint because of decomposability. Finally, we say
that O accepts an assignment α to X if there is an assignment β ∈ S(O) such that α is an
extension of β to all variables in X. We say that O represents a constraint C(x⃗) if O accepts
exactly the assignments in sol(C(x⃗)).

A v-tree of a variable set X is a rooted binary tree whose leaves are in bijection to X.
For a v-tree T of X and a node t of T we define var(t) to be the variables in X that appear
as labels in the subtree of T rooted in t. We say that a DNNF O over X is structured by T

if for every sub-representation O′ of O there is a node t in T such that O′ is exactly over the
variables var(t) [40]. We say that O is structured if there is a v-tree T of X such that O is
structured by T .

We will use the following basic results on DNNF which correspond to projection and
selection on constraints.

▶ Lemma 1. Let C(u⃗) be a constraint for which there exists a DNNF of size s, x ∈ ũ and
A ⊆ D. Then there exists a DNNF for the selection C(u⃗)|x∈A of size ≤ s.

▶ Lemma 2. Let C(u⃗) be a constraint for which there exists a DNNF of size s and ṽ ∈ ũ.
Then there exists a DNNF for the projection πṽ(C(u⃗)) of size ≤ s.

Decision Diagrams. A decision diagram O over a variable set X is a directed acyclic graph
with a single source and two sinks and in which all non-sinks have |D| outgoing edges. The
sinks are labeled with 0 and 1, respectively, while all other nodes are labeled with variables
from x. For every non-sink, the |D| outgoing edges are labeled in such a way that every
value in D appears in exactly one label. Given an assignment α to X, the value computed
by O is defined as follows: we start in the source and iteratively follow the edge labeled by
α(x) where x is the label of the current node. We continue this process until we end up in a
leaf whose label then gives the value of O on α. Clearly, this way O computes a constraint
over X with relation {α | O computes 1 on input α}.

We are interested in decision diagrams in which on every source-sink-path every variable
appears at most once as a label. We call these diagrams free decision diagrams (FDD). An
FDD for which there is an order π such that when a variable x appears before y on a path
then x also appears before y in π is called ordered decision diagrams. We remark that FDD
and ODD are in the literature mostly studied for the domain {0, 1} in which case they are
called FBDD and OBDD, respectively, where the “B” stands for binary. Note also that there
is an easy linear time translation of FDD into DNNF and ODD into structured DNNF, see
e.g. [25]. In the other direction there are no efficient translations, see again [25].
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Rectangles. Let u⃗ be a variable vector, ũ = x̃ ∪ ỹ and x̃ ∩ ỹ = ∅. Then we say that the
constraint R(u⃗) is a (combinatorial) rectangle with respect to the partition (x̃, ỹ) if and only
if R(u⃗) = πx̃(R(u⃗))× πỹ(R(u⃗)). Let Z ⊆ ũ. Then we call the partition (x̃, ỹ) Z-balanced if
|Z|
3 ≤ |x̃ ∩ Z| ≤ 2|Z|

3 . A constraint R(u⃗) is called a Z-balanced rectangle if it is a rectangle
with respect to a Z-balanced partition. A Z-balanced rectangle cover R of a constraint R(u⃗)
is defined to be a set of Z-balanced rectangles such that sol(R(u⃗)) :=

⋃
r∈R sol(r(u⃗)). The

size of R is the number of rectangles in it.

3 Blockwise decomposability

In this section we introduce our central notion of blockwise and uniformly blockwise de-
composable constraints and formulate our main theorems that lead to a characterization of
efficiently representable constraint languages.

The first simple insight is the following. Suppose two constraints S(v⃗) and T (w⃗) with
disjoint scopes are efficiently representable, e. g., by a small ODD. Then their Cartesian
product R(v⃗, w⃗) = S(v⃗)× T (w⃗) also has a small ODD: given an assignment (⃗a, b⃗), we just
need to check independently whether a⃗ ∈ S and b⃗ ∈ T , for example, by first using the ODD
for S(v⃗) and then using the ODD for T (w⃗). Thus, if a constraint can be expressed as a
Cartesian product of two constraints, we only have to investigate whether the two parts are
easy to represent. This brings us to our first definition.

▶ Definition 3. Let R(u⃗) be a constraint and (V1, . . . , Vℓ) be a partition of its scope. We call
R(u⃗) decomposable w.r.t. (V1, . . . , Vℓ) if R(u⃗) = πV1(R(u⃗))× · · · × πVℓ

(R(u⃗)). A constraint
R(u⃗) is indecomposable if it is only decomposable w.r.t. trivial partitions (V1, . . . , Vℓ) where
Vi = ∅ or Vi = ũ for i ∈ [ℓ].

Next, we want to relax this notion to constraints that are “almost” decomposable. Suppose
we have four relations S1, S2 of arity s and T1, T2 of arity t and let a, b be two distinct domain
elements. Let

R := ({(a, a)} × S1 × T1) ∪ ({(b, b)} × S2 × T2). (1)

The constraint R(x, y, v⃗, w⃗) may now not be decomposable in any non-trivial variable
partition. However, after fixing values for x and y the remaining selection R(x, y, v⃗, w⃗)|x=c,y=d

is decomposable in (ṽ, w̃) for any pair (c, d) ∈ D2. Thus, an ODD could first read values
for x, y and then use ODDs for S1(v⃗) and T1(w⃗) if x = y = a, ODDs for S2(v⃗) and T2(w⃗)
if x = y = b, or reject otherwise. This requires, of course, that S1(v⃗) and S2(v⃗), as well as
T1(w⃗) and T2(w⃗), have small ODDs over the same variable order. For FDDs and DNNFs,
however, we would not need this requirement on the variable orders.

To reason about the remaining constraints after two variables have been fixed, it is helpful
to use the following matrix notation. Let R(u⃗) be a constraint and x, y ∈ ũ be two variables
in its scope. The selection matrix MR

x,y is the |D| × |D| matrix where the rows and columns
are indexed by domain elements ai, aj ∈ D and the entries are the constraints

MR
x,y[ai, aj ] := πũ\{x,y}(R(u⃗)|x=ai,y=bj ). (2)

▶ Example 4. Let D = {a, b, c} and R(x, y, z, v) a constraint with constraint relation
R = {(a, a, a, a) , (b, b, a, b) , (b, b, a, c) , (b, b, c, c) , (c, b, c, a)} . The selection matrix in x and y

is depicted below, where the first line and column are the indices from D and the matrix
entries contain the constraint relations of the corresponding constraints MR

x,y[ai, aj ](z, v):
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x\y a b c

a {(a, a)} ∅ ∅
b ∅ {(a, b) , (a, c) , (c, c)} ∅
c ∅ {(c, a)} ∅

 (3)

A block in the selection matrix is a subset of rows A ⊆ D and columns B ⊆ D. We also
associate with a block (A, B) the corresponding constraint R(u⃗)|x∈A,y∈B . A selection matrix
is a proper block matrix, if there exist pairwise disjoint A1, . . . , Ak ⊆ D and pairwise disjoint
B1, . . . , Bk ⊆ D such that for all ai, aj ∈ D:

sol(MR
x,y[ai, aj ]) ̸= ∅ ⇐⇒ there is ℓ ∈ [k] such that ai ∈ Aℓ and aj ∈ Bℓ. (4)

The selection matrix in Example 4 is a proper block matrix with A1 = {a}, A2 = {b, c},
B1 = {a}, B2 = {b}. We will make use of the following alternative characterization of proper
block matrices. The simple proof is similar to [27, Lemma 1].

▶ Lemma 5. A selection matrix MR
x,y is a proper block matrix if and only if it has no

2× 2-submatrix with exactly one empty entry.

Now we can define our central tractability criterion for constraints that have small ODDs,
namely that any selection matrix is a proper block matrix whose blocks are decomposable
over the same variable partition that separates x and y.

▶ Definition 6 (Uniform blockwise decomposability). A constraint R(u⃗) is uniformly block-
wise decomposable in x, y if MR

x,y is a proper block matrix with partitions (A1, . . . , Ak),
(B1, . . . , Bk) and there is a partition (V, W ) of ũ with x ∈ V and y ∈ W such that each
block R(u⃗)|x∈Ai,y∈Bi

is decomposable in (V, W ). A constraint R(u⃗) is uniformly blockwise
decomposable if it is uniformly decomposable in any pair x, y ∈ ũ.

In the non-uniform version of blockwise decomposability, it is allowed that the blocks are
decomposable over different partitions. This property will be used to characterize constraints
having small FDD representations.

▶ Definition 7 (Blockwise decomposability). A constraint R(u⃗) is blockwise decomposable in
x, y if MR

x,y is a proper block matrix with partitions (A1, . . . , Ak), (B1, . . . , Bk) and for each
i ∈ [k] there are Vi, Wi ⊆ ũ with x ∈ Vi and y ∈ Vj such that each block R(u⃗)|x∈Ai,y∈Bi

is
decomposable in (Vi, Wj). A constraint R(u⃗) is blockwise decomposable if it is decomposable
in any pair x, y ∈ ũ.

Note that every uniformly blockwise decomposable relation is also blockwise decomposable.
The next example illustrates that the converse does not hold.

▶ Example 8. Consider the 4-ary constraint relations

R1 := {(a, a, a, a), (a, b, a, b), (b, a, b, a), (b, b, b, b)} (5)
R2 := {(c, c, c, c), (c, d, d, c), (d, c, c, d), (d, d, d, d)} (6)
R := R1 ∪R2 (7)

Then the selection matrix MR
x,y of the constraint R(x, y, u, v) has two non-empty blocks:

MR
x,y =


x\y a b c d

a {(a, a)} {(a, b)} ∅ ∅
b {(b, a)} {(b, b)} ∅ ∅
c ∅ ∅ {(c, c)} {(d, c)}
d ∅ ∅ {(d, c)} {(d, d)}

 (8)
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The first block R(x, y, u, v)|x∈{a,b},y∈{a,b} = R1(x, y, u, v) is decomposable in {x, u} and
{y, v}, while the second block R(x, y, u, v)|x∈{c,d},y∈{c,d} = R2(x, y, u, v) is decomposable in
{x, v} and {y, u}. Thus, the constraint is blockwise decomposable in x, y, but not uniformly
blockwise decomposable.

Finally, we transfer these characterizations to relations and constraint languages: A k-ary
relation R is (uniformly) blockwise decomposable, if the constraint R(x1, . . . , xk) is (uniformly)
blockwise decomposable for pairwise distinct variables x1, . . . , xk. A constraint language
Γ is (uniformly) blockwise decomposable if every relation in Γ is (uniformly) blockwise
decomposable. A constraint language Γ is strongly (uniformly) blockwise decomposable if its
co-clone ⟨Γ⟩ is (uniformly) blockwise decomposable.

Now we are ready to formulate our main theorems. The first one states that the strongly
uniformly blockwise decomposable constraint languages are precisely those that can be
efficiently compiled to a structured representation format (anything between ODDs and
structured DNNFs).

▶ Theorem 9. Let Γ be a constraint language.
1. If Γ is strongly uniformly blockwise decomposable, then there is a polynomial time algorithm

that constructs an ODD for a given CSP(Γ)-instance.
2. If Γ is not strongly uniformly blockwise decomposable, then there is a family (In) of

CSP(Γ)-instances such that any structured DNNF for In has size 2Ω(∥In∥).

Our second main theorem states that the larger class of strongly blockwise decomposable
constraint languages captures CSPs that can be efficiently compiled in an unstructured
format between FDDs and DNNFs.

▶ Theorem 10. Let Γ be a constraint language.
1. If Γ is strongly blockwise decomposable, then there is a polynomial time algorithm that

constructs an FDD for a given CSP(Γ)-instance.
2. If Γ is not strongly blockwise decomposable, then there is a family (In) of CSP(Γ)-instances

such that any DNNF for In has size 2Ω(∥In∥).

4 Properties of the Decomposability Notions

In this section we state important properties about (uniform) blockwise decomposability –
all omitted proofs are contained in the full version [5]. We start by observing that these
notions are closed under projection and selection.

▶ Lemma 11. Let R(u⃗) be a blockwise decomposable, resp. uniformly blockwise decomposable,
constraint and let Y ⊆ ũ, z ∈ ũ, and S ⊆ D. Then the projection πY R(u⃗) as well as the
selection R(u⃗)|z∈S are also blockwise decomposable, resp. uniformly blockwise decomposable.

▶ Corollary 12. If a constraint language Γ is strongly (uniformly) blockwise decomposable,
then its individualization Γ• := Γ ∪

{
{a} : a ∈ D

}
is also strongly (uniformly) blockwise

decomposable.

Next, we will show that blockwise decomposable relations allow for efficient counting of so-
lutions by making a connection to the work of Dyer and Richerby [27]. To state their dichotomy
theorem, we need the following definitions. A constraint R(x⃗, y⃗, z⃗) is balanced (w.r.t. x⃗; y⃗; z⃗),
if the |D||x⃗| × |D||y⃗| matrix M#

x⃗,y⃗ defined by M#
x⃗,y⃗ [⃗a, b⃗] =

∣∣ sol(R(x⃗, y⃗, z⃗)|x⃗=a⃗,y⃗=b⃗)
∣∣ is a block

diagonal matrix (after permuting rows/columns), where each block has rank one. A constraint
language Γ is strongly balanced if every at least ternary pp-definable constraint is balanced.
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▶ Theorem 13 (Effective counting dichotomy [27]). If Γ is strongly balanced, then there is a
polynomial time algorithm that computes | sol(I)| for a given CSP(Γ)-instance I. If Γ is not
strongly balanced, then counting solutions for CSP(Γ)-instances is #P-complete. Moreover,
there is a polynomial time algorithm that decides if a given constraint language Γ is strongly
balanced.

Our next lemma connects blockwise decomposability with strong balance and leads to a
number of useful corollaries. We sketch the proof for the case when R(x⃗, y⃗, z⃗) is ternary, a
full proof can be found in [5].

▶ Lemma 14. Every strongly blockwise decomposable constraint language is strongly balanced.

Proof sketch. Let Γ be strongly blockwise decomposable and R(x, y, z) a pp-defined ternary
constraint. Then the selection matrix M

R(x,y,z)
x,y is a block matrix, where each block

(A, B) is decomposable in some (V, W ), either ({x, z}, {y}) or ({x}, {y, z}). In any case,
for the corresponding block (A, B) in M#

x,y we have M#
x,y[a, b] = sa · tb where sa =

| sol(πV (R(x, y, z)|x=a,y∈B))| and tb = | sol(πW (R(x, y, z)|x∈A,y=b))|. Thus, the block has
rank 1. ◀

▶ Corollary 15. Let Γ be a strongly blockwise decomposable constraint language.
1. Given a Γ-formula F (u⃗) and a (possibly empty) partial assignment α, the number∣∣ sol(F (u⃗)|α)

∣∣ of solutions that extend α can be computed in polynomial time.
2. Given a pp-formula F (u⃗) over Γ and x, y ∈ ũ, the blocks of M

F (u⃗)
x,y can be computed in

polynomial time.
3. Given a pp-formula F (u⃗) over Γ, the indecomposable factors of F (u⃗) can be computed in

polynomial time.

Proof sketch. Claim 1 follows immediately from the combination of Lemma 14 with Theo-
rem 13 and the fact that strongly blockwise decomposable constraint languages are closed
under selection (Corollary 12). For Claim 2 let F (u⃗) = πũ(F ′(v⃗)) for some Γ-formula F ′(v⃗).
To compute the blocks of M

F (u⃗)
x,y , we can use Claim 1 to compute for every x = a and y = b

whether | sol(MF ′(v⃗)
x,y [a, b])| > 0 and hence M

F (u⃗)
x,y ̸= ∅. Claim 3 is a bit more subtle and

deferred to the full version [5]. ◀

We close this section by stating the following property that applies only to uniformly
decomposable constraints.

▶ Lemma 16. Let R(u⃗) be a constraint that is uniformly blockwise decomposable in x and y.
Then there exist v⃗ and w⃗ with ũ = {x, y} ∪̇ ṽ ∪̇ w̃ such that

R(u⃗) = πx,ṽR(u⃗) ∧ πy,w̃R(u⃗) ∧ πx,yR(u⃗). (9)

Furthermore, if R is defined by a pp-formula F over a strongly uniformly blockwise decom-
posable Γ, then v⃗ and w⃗ can be computed from F in polynomial time.

5 Algorithms

5.1 Polynomial time construction of ODDs for strongly uniformly
blockwise decomposable constraint languages

The key to the efficient construction of ODD for uniformly blockwise decomposable constraints
is the following lemma, which states that any such constraint is equivalent to a treelike
conjunction of binary projections of itself.
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▶ Lemma 17 (Tree structure lemma). Let R(u⃗) be a constraint that is uniformly blockwise
decomposable. Then there is an undirected tree T with vertex set V (T ) = ũ such that

R(u⃗) =
∧

{p,q}∈E(T ) π{p,q}(R(u⃗)).

Furthermore, T can be calculated in polynomial time in ∥F∥, if R is uniformly blockwise
decomposable and given as pp-formula F .

Note that from Lemma 17 is follows in particular that any uniformly decomposable constraint
is a conjunction of binary constraints. Thus, it follows from Theorem 9, our main result for
ODD-representations, that any constraint language that allows efficient ODD-representations
can essentially only consist of binary constraints. Hence, for example affine constraints, for
which it is known that they allow efficient counting [19], are hard in our setting.

Proof of Lemma 17. We first fix x and y arbitrarily and apply Lemma 16 to obtain a
tri-partition (ṽ, {x, y}, w̃) of ũ such that R(u⃗) = πx,ṽ(R(u⃗)) ∧ πx,y(R(u⃗)) ∧ πy,w̃(R(u⃗)). We
add the edge {x, y} to T . By Lemma 11, πx,ṽ(R(u⃗)) and πy,w̃(R(u⃗)) are uniformly blockwise
decomposable, so Lemma 16 can be recursively applied on both projections. For (say)
πx,v⃗(R(u⃗)) we fix x, choose an arbitrary z ∈ ṽ, apply Lemma 16, and add the edge {x, z} to
T . Continuing this construction recursively until no projections with more than two variables
are left yields the desired result. ◀

From this tree structure we will construct small ODDs by starting with a centroid, i. e., a
variable whose removal splits the tree into connected components of at most n/2 vertices each.
From the tree structure lemma it follows that we can handle the (projection on the) subtrees
independently. A recursive application of this idea leads to an ODD of size O(nlog |D|+1).

Proof of part 1 in Theorem 9. Let I be a CSP(Γ)-instance and FI(u⃗) the corresponding Γ-
formula. By Lemma 17 we can compute a tree T such that FI(u⃗) =

∧
{p,q}∈E(T ) π{p,q}(FI(u⃗)).

By Corollary 15.1 we can explicitly compute, for each {p, q} ∈ E(T ), a binary relation
R{p,q} ⊆ D2 such that R{p,q}(p, q) = π{p,q}(FI(u⃗)). Now we define the formula FT (u⃗) =∧

{p,q}∈E(T ) R{p,q}(p, q) and note that sol(FT (u⃗)) = sol(FI(u⃗)). It remains to show that such
tree-CSP instances can be efficiently compiled to ODDs. This follows from the following
inductive claim, where for technical reasons we also add unary constraints UDv

(v) for each
vertex v (setting Dv := D implies the theorem).

▷ Claim. Let T be a tree on n vertices and FT (u⃗) =
∧

{v,w}∈E(T ) R{v,w}(v, w)∧
∧

v∈ũ UDv
(v)

be a formula. Then there is an order <, depending only on T , such that an ODD< of size at
most f(n) := n|D|log(n) deciding FT (u⃗) can be computed in nO(1).

We proof the claim by induction on n and the start n = 1 is trivial. If n ≥ 2 let z be
a centroid in this tree, that is a node whose removal splits the tree into ℓ ≥ 1 connected
components T1,. . . , Tℓ of at most n/2 vertices each. Let v⃗1, . . . , v⃗ℓ be vectors of the variables
in these components, so ({z}, ṽ1, . . . , ṽℓ) partitions ũ. Let xi ∈ V (Ti) be the neighbors of z

in T . We want to branch on z and recurse on the connected components Ti. To this end, for
each assignment z 7→ a we remove for each neighbor xi those values that cannot be extended
to z 7→ a. That is, Da

xi
:= {b : {xi 7→ b, z 7→ a} ∈ sol(UDxi

(xi) ∧ R{xi,z}(xi, z) ∧ UDz
(z))}.

Now we let F a
i (v⃗i) :=

∧
{v,w}∈E(Ti) R{v,w}(v, w) ∧

∧
v∈ṽi\{xi} UDv

(v) ∧ UDa
xi

(xi) and observe
that

sol(FT (u⃗)) =
⋃̇

a∈D
sol(Ua(z)× F a

1 (v⃗1)× · · · × F a
ℓ (v⃗ℓ)). (10)
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By induction assumption, for each i ∈ [ℓ] there is an order <i of ṽi such that each F a
i (v⃗i) has

an ODDa
<i

of size f(ni) for ni := |ṽi|. Now we start our ODD for FT (u⃗) with branching on z

followed by the sequential combination of ODDa
<1

, . . . , ODDa
<ℓ

for each assignment a ∈ D to z.
This completes the inductive construction. Since its size is bounded by 1 + |D|

∑
i∈[ℓ] f(ni),

the following easy estimations finish the proof of the claim (recall that
∑

i∈[ℓ] ni = n− 1):
1 + |D|

∑
i∈[ℓ] f(ni) ≤ 1 + |D|

∑
i∈[ℓ] ni|D|log(n/2) = 1 + |D|log(n)(n− 1) ≤ n|D|log(n) ◀

5.2 Polynomial size FDDs for strongly blockwise decomposable
constraint languages

For blockwise decomposable constraints that are not uniformly blockwise decomposable, a
good variable order may depend on the values assigned to variables that are already chosen,
so it is not surprising that the tree approach for ODDs does not work in this setting.

For the construction of the FDD, we first compute the indecomposable factors (this can
be done by Corollary 15.3 and treat them independently. This, of course, could have also
been done for the ODD construction. The key point now is how we treat the indecomposable
factors: every selection matrix MR

x,y for a (blockwise decomposable) indecomposable constraint
necessarily has two non-empty blocks. But then every row x = a must have at least one
empty entry sol(MR

x,y[a, b]) = ∅. This in turn implies that, once we have chosen x = a, we
can exclude b as a possible value for y! As we have chosen y arbitrarily, this also applies to
any other variable (maybe with a different domain element b). So the set of possible values
for every variable shrinks by one and since the domain is finite, this cannot happen too
often. Algorithm 1 formalizes this recursive idea. To bound the runtime of this algorithm,
we analyze the size of the recursion tree; the details are found in [5].

6 Lower Bounds

In this section, we will prove the lower bounds of Theorem 9 and Theorem 10. In the proofs,
we will use the approach developed in [8] that makes a connection between DNNF size and
rectangle covers. We will use the following variant:

▶ Lemma 18. Let O be a DNNF of size s representing a constraint R(x⃗) and let Z ⊆ x̃.
Then there is a Z-balanced rectangle cover of f is size s. Moreover, if O is structured, then
the rectangles in the cover are all with respect to the same variable partition.

The proof of Lemma 18 is very similar to existing proofs in [8] and given in the full version [5].

6.1 Lower Bound for DNNF
In this Section, we show the lower bound for Theorem 10 which we reformulate here.

▶ Proposition 19. Let Γ be a constraint language that is not strongly blockwise decomposable.
Then there Γ-formulas Fn of size Θ(n) and ε > 0 such that any DNNF for Fn has size at
least 2ε∥Fn∥.

In the remainder of this section, we show Proposition 19, splitting the proof into two
cases. First, we consider the case where MR

x,y is not a proper block matrix.

▶ Lemma 20. Let R(x, y, z⃗) be a constraint such that MR
x,y is not a proper block matrix.

Then there is a family of {R}-formulas Fn and ε > 0 such that any DNNF for Fn has size
at least 2ε∥Fn∥.
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Algorithm 1 FDD construction algorithm.
Input: Γ-formula F (x1, . . . , xn) for strongly blockwise decomposable Γ over domain D.
Output: An FDD deciding F (x1, . . . , xn).

1: Initialize variable domains Dxi
← D for i = 1, . . . , n.

2: return ConstructFDD(F (x1, . . . , xn); Dx1 ,. . . ,Dxn)

3: procedure ConstructFDD(R(x1, . . . , xn); Dx1 ,. . . ,Dxn)
4: R(x1, . . . , xn)← R(x1, . . . , xn) ∧

∧
i∈[n] UDxi

(xi)
5: if n = 1 then
6: return 1-node FDD deciding R(x1), branching on all values Dx1 .
7: Compute the indecomposable factors R1(u⃗1), . . . , Rm(u⃗m) of R(x1, . . . , xn).
8: if m ≥ 2 then
9: for i = 1 . . . m do FDDi ← ConstructFDD(R1(u⃗1); Dy for y ∈ ũi)

10: return Sequential composition of FDD1, . . . , FDDm

11: else
12: Introduce branching node for x1.
13: for a ∈ Dx1 do
14: for i = 2, . . . , n do
15: for b ∈ Dxi

do
16: if sol(MR

x1,xi
[a, b]) = ∅ then

17: Dxi ← Dxi \ {b} ▷ This happens for at least one b ∈ Dxi .
18: Sa(x2, . . . , xn)← πx2,...,xn(R(x1, . . . , xn)|x1=a)
19: FDDa ← ConstructFDD(Sa(x2, . . . , xn); Dx2 ,. . . ,Dxn

)
20: Connect x

a→ FDDa for all a ∈ Dx1 and return resulting FDD

In the proof of Lemma 20, we will use a specific family of graphs. We remind the reader
that a matching is a set of edges in a graph that do not share any end-points. The matching
is induced if the graph induced by the end-points of the matching contains exactly the edges
of the matching.

▶ Lemma 21. There is an integer d and a constant ε > 0 such that there is an infinite family
(Gn) of d-regular, bipartite graphs such that for each set X ⊆ V (Gn) with |X| ≤ n = |V (G)|/2
there is an induced matching of size at least ε|X| in which each edge has exactly one endpoint
in X.

Proof of Lemma 20. If MR
x,y is not a proper block matrix, then, by Lemma 5, the matrix

MR
x,y has a 2× 2-submatrix with exactly three non-empty entries. So let a, b, c, d ∈ D such

that MR
x,y(b, d) = ∅ and MR

x,y(a, c), MR
x,y(a, d) and MR

x,y(b, c) are all non-empty.
We describe a construction that to every bipartite graph G = (A, B, E) gives a formula

F (G) as follows: for every vertex u ∈ A, we introduce a variable xu and for every vertex
v ∈ B we introduce a variable xv. Then, for every edge e = uv ∈ E where u ∈ A and v ∈ V ,
we add a constraint R(xu, xv, z⃗e) where z⃗e consists of variables only used in this constraint.
We fix the notation XA := {xv | v ∈ A}, XB := {xv | v ∈ B} and X := XA ∪XB .

Let (Fn) be the family of formulas defined by Fn = F (Gn) where (Gn) is the family from
Lemma 21. Clearly, ∥Fn∥ = Θ(|E(Gn)|) = Θ(n), as required. Fix n for the remainder of
the proof. Let F ′

n be the formula we get from Fn by restricting all variables xu ∈ XA to
{a, b} and all variables xv ∈ XB to {c, d} by adding some unary constraints. Let R be an
X-balanced rectangle cover of F ′

n. We claim that the size of R is at least 2ε′n, where

ε′ = 1
3 · ε · log2

(
1 + 1

2d+1|R|d2

)
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and d is the degree of Gn. To prove this, we first show that for every r ∈ R, 2ε′|X| · | sol(r)| ≤
| sol(F ′

n)|. So let r(v⃗, w⃗) = r1(v⃗) × r2(w⃗) ∈ R. Since r is an X-balanced rectangle, we may
assume |X|/3 ≤ |v⃗∩V | ≤ 2|X|/3. By choice of Gn, we have that there is an induced matching
M in Gn of size at least ε|X|/3 consisting of edges that have one endpoint corresponding
to a variable in ṽ and one endpoint corresponding to a variable in w̃. Consider an edge
e = uv ∈M. Assume that xu ∈ ṽ and xv ∈ w̃. Since we have r(v⃗, w⃗) = r(v⃗)× r(w⃗), we get

πer(v⃗, w⃗) = πṽ∩e(r(v⃗))× πw̃∩e(r(w⃗)).

By construction πer(v⃗, w⃗) ⊆ {(a, c), (a, d), (b, c)}, so it follows that either πer(v⃗, w⃗) ⊆
{(a, c), (a, d)} = {a}×{c, d} or πer(v⃗, w⃗) ⊆ {(a, c), (b, c)} = {a, b}×{c}. Assume w.l.o.g. that
{b, c} /∈ πer(v⃗, w⃗) (the other case can be treated analogously). It follows that for each solution
β ∈ sol(r), we get a solution q(β) ∈ sol(Fn)\ sol(r(v⃗, w⃗)) by setting

q(β)(xu) := b,
For all xℓ ∈ N(xu), we set q(β)(xℓ) := c,
For all xℓ ∈ N(xu) and all xm ∈ N(yℓ) we set q(β)(z⃗mℓ) := g⃗ where g⃗ is such that
(b, c, g⃗) ∈ R.

Note that values g⃗ exist because MR
x,y(b, c) is non-empty. Observe that for two different

solutions β and β′ the solutions q(β) and q(β′) may be the same. However, we can bound
the number

∣∣q−1(q(β))
∣∣, giving a lower bound on the set of solutions not in r. To this end,

suppose that q(β) = q(β′). Since q only changes the values of xu, exactly d xℓ-variables and
at most d2 vectors of z⃗-variables (the two latter bounds come from the degree bounds on
Gn), q(β) = q(β′) implies that β and β′ coincide on all other variables. This implies∣∣q−1(q(β))

∣∣ ≤ 2d+1|R|d
2
,

because there are only that many possibilities for the variables that q might change. By
considering {xu, yv}, we have shown that

| sol(Fn)| ≥ | sol(r)|+ 1
2d+1|R|d2 | sol(r)|.

So we have constructed | sol(r)|
2d+1|R|d2 solutions not in r. Now we consider not only one edge but

all possible subsets I of edges in M: for a solution β ∈ sol(r(v⃗, w⃗), the assignment qI(β) is
constructed as the q above, but for all edges e ∈ I. Reasoning as above, we get∣∣q−1

I (qI(β))
∣∣ ≤ (

2d+1|R|d
2
)|I|

.

It is immediate to see that qI(β) ̸= qI′(β) for I ̸= I ′. Thus we get

| sol(F ′
n)| ≥

1
3 ε|X|∑
m=0

( 1
3 ε|X|

m

) (
1

2d+1|R|d2

)m

| sol(r)|

=
(

1 + 1
2d+1|R|d2

) 1
3 ε|X|

| sol(r)| = 2ε′n| sol(r)|.

It follows that every X-balanced rectangle cover has to have a size of at least 2ε′|X|. With
Lemma 18 and Lemma 1 it follows that any DNNF for Fn has to have a size of at least 2ε′n.

◀

Now we consider the case that MR
x,y is a proper block matrix, but R is not blockwise

decomposable in some pair of variables x, y.

STACS 2024



11:14 A Characterization of Efficiently Compilable Constraint Languages

▶ Lemma 22. Let R(x, y, z⃗) be a relation such that MR
x,y is a proper block matrix but

R(x, y, z⃗) in not blockwise decomposable in x and y. Then there is a family of formulas Fn

and ε > 0 such that a DNNF for Fn needs to have a size of at least 2ε∥Fn∥.

The proof of Lemma 22 is a slight variant of that of Lemma 20, see [5].
We now have everything in place to prove Proposition 19.

Proof of Proposition 19. Since Γ is not strongly blockwise decomposable, there is a relation
R ∈ ⟨Γ⟩ that is not blockwise decomposable in x and y. Then, by definition of co-clones
and Lemma 11, there is a Γ-formula that defines R. If there are variables x, y ∈ x̃ such that
MR

x,y is not a proper block matrix, then we can apply Lemma 20 to get R-formulas that
require exponential size DNNF. Then by substituting all occurrences of R in these formula
by the Γ-formula defining R, we get the required hard Γ-formulas. If all MR

x,y are proper
block matrices, then there are variables x, y such that MR

x,y is not blockwise decomposable.
Using Lemma 22 and reasoning as before, then completes the proof. ◀

6.2 Lower Bound for structured DNNF
In this section, we prove the lower bound of Theorem 9 which we formulate here again.

▶ Proposition 23. Let Γ be a constraint language that is not strongly uniformly blockwise
decomposable. Then there Γ-formulas Fn of size Theta(n) and ε > 0 such that any structured
DNNF for Fn has size at least 2ε∥Fn∥.

Note that for all constraint languages that are not strongly blockwise decomposable,
the result follows directly from Proposition 19, so we only have to consider constraint
languages which are strongly blockwise decomposable but not strongly uniformly blockwise
decomposable. We start with a simple observation.

▶ Observation 24. Let r(x⃗, y⃗) be a rectangle with respect to the partition (x̃, ỹ). Let Z ⊆ x̃∪ ỹ,
then πZ(r(x̃, ỹ)) is a rectangle with respect to the partition (x̃ ∩ Z, ỹ ∩ Z).

We start our proof of Proposition 23 by considering a special case.

▶ Lemma 25. Let R(x, y, z⃗) be a constraint such that there are two assignments a, b ∈
sol(R) such that for every partition z̃1, z̃2 of z̃ we have that a|{x}∪z̃1 ∪ b|{y}∪z̃2 /∈ sol(R) or
a|{y}∪z̃2 ∪ b|{x}∪z̃1 /∈ sol(R). Consider

Fn :=
∧

i∈[n]

R(xi, yi, z⃗i)

where the z⃗i are disjoint variable vectors. Let (x̃, ỹ) be a variable partition for Fn and R be a
rectangle cover of Fn such that each rectangle rj in R respects the partition (x̃, ỹ). If for all
i ∈ [n] we have that all xi ∈ x̃ and yi ∈ ỹ or xi ∈ ỹ and yi ∈ x̃, then R has size at least 2n.

Proof. We use the so-called fooling set method from communication complexity, see e.g. [32,
Section 1.3]. To this end, we will construct a set S of satisfying assignments of Fn such that
every rectangle of R can contain at most one assignment in S.

So let ai be the assignment to {xi, yi} ∪ z̃i that assigns the variables analogously to a,
so ai(xi) := a(x), ai(yi) := a(y), and ai(z⃗i) := a(z⃗). Define analogously bi. Then the set
S consists of all assignments that we get by choosing for every i ∈ [n] an assignment di as
either ai or bi and then combining the di to one assignment to all variables of Fn. Note
that S contains 2n assignments and that all of them satisfy Fn, so all of them must be in a
rectangle of R.
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We claim that none of the rectangles rj of R can contain more than one element d ∈ S.
By way of contradiction, assume this were not true. Then there is an rj that contains
two assignments d, d′ ∈ S. Then there is an i ∈ [n] such that in the construction of d we
have chosen ai while in the construction of d′ we have chosen bi. Let x̃j := z̃j ∩ x̃ and
ỹj := z̃j ∩ ỹ. Since d, d′ ∈ sol(rj), we have that ai, bi ∈ sol(π{xi,yi}∪x̃j∪ỹj

(rj)). Moreover, by
Observation 24, π{xi,yi}∪x̃j∪ỹj

(rj) is a rectangle and so we have that ai|{xi}∪x̃j
∪ bi|{yi}∪yj

∈
sol(π{xi,yi}∪x̃j∪ỹj

(rj)) and ai|{yi}∪yj
∪ bi|{xi}∪yj

∈ sol(π{xi,yi}∪x̃j∪ỹj
(rj)). But r consists

only of solutions of Fn and thus sol(π{xi,yi}∪x̃j∪ỹj
(r)) ⊆ sol(R(xi, yi, z⃗i)), so ai|{xi}∪x̃j

∪
bi|{yi}∪yj

, ai|{yi}∪yj
∪ bi|{xi}∪yj

∈ sol(R(xi, yi, z⃗i)). It follows by construction that there is
a partition (x̃, ỹ) of z̃ such that a|{x}∪x̃ ∪ b|{y}∪ỹ and a|{y}∪ỹ ∪ b|{x}∪x̃ are in sol(R). This
contradicts the assumption on a and b and thus rj can only contain one assignment from S.

Since S has size 2n and all of assignments in S must be in one rectangle of R, it follows
that R consists of at least 2n rectangles. ◀

We now prove the lower bound of Proposition 23.

Proof of Proposition 23. Since Γ is not strongly uniformly blockwise decomposable, let
R(x, y, z⃗) be a constraint in ⟨Γ⟩ that is not uniformly blockwise decomposable in x and
y. If R(x, y, z⃗) is such that MR

x,y is not a proper block matrix, then the lemma follows
directly from Lemma 20, so we assume in the remainder that MR

x,y is a proper block matrix.
We denote for every block D1 ×D2 of R(x, y, z⃗) by RD1×D2(x, y, z⃗) the sub-constraint of
R(x, y, z⃗) we get by restricting x to D1 and y to D2. Since R(x, y, z⃗) is not uniformly
blockwise decomposable, for every partition (z̃1, z̃2) of z̃ there is a block D1 ×D2 such that
RD1×D2(x, y, z⃗) ̸= π{x}∪z̃1RD1×D2(x, y, z⃗)× π{y}∪z̃2RD1×D2(x, y, z⃗).

Given a bipartite graph G = (A, B, E), we construct the same formula F (G) as in the
proof of Lemma 20. Consider again the graphs Gn of the family from Lemma 21 and let
Fn := F (Gn). Fix n in the remainder of the proof. Let O be a structured DNNF representing
Fn of size s. Then there is by Proposition 18 a balanced partition (X1, X2) of XA ∪XB such
that there is a rectangle cover of FG of size at most s and such that all rectangles respect the
partition (X1, X2). Let E′ be the set of edges uv ∈ E such that xu and xv are in different
parts of the partition (X1, X2). By the properties of Gn, there is an induced matching M of
size Ω(|A|+ |B|) consisting of edges in E′.

For every edge e = uv ∈M let z̃e,1 := z̃e ∩X1 and z̃e,2 := z̃2 ∩X2. Assume that xu ∈ X1
and yv ∈ X2 (the other case is treated analogously). Then we know that there is a block
D1 ×D2 of MR

x,y such that

RD1×D2(xu, yv, z⃗e) ̸= π{xu}∪z⃗e,1RD1×D2(xu, yv, z⃗e)× π{yv}∪z⃗e,2RD1×D2(xu, yv, z⃗e). (11)

Since there are only at most |D| blocks in MR
x,y, there is a block D1 ×D2 such that for at

least Ω
(

|A|+|B|
|D|

)
= Ω(|A|+ |B|) edges Equation (11) is true. Call this set of edges E∗.

Let X∗ := {xu | u is an endpoint of an edge e ∈ E∗}. We construct a structured DNNF
O′ from O by existentially quantifying all variables not in a constraint R(xu, yv, z⃗e) for
e = uv ∈ E∗ and for all xu ∈ X∗ restricting the domain to D1 u ∈ A and to D2 if u ∈ B.
Note that every assignment to X∗ that assigns every variable xv with v ∈ A to a value in D1
and every xv with v ∈ B to a value in D2 can be extended to a satisfying assignment of Fn,
because D1 ×D2 is a block. Thus, O′ is a representation of

F ∗ :=
∧

e=uv∈E∗

RD1×D2(xu, yv, z⃗e).
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We now use the following simple observation.

▷ Claim 26. Let R′(x⃗, y⃗) be a constraint such that R′(x⃗, y⃗) ̸= πx⃗(R′(x⃗, y⃗))× πy⃗(R′(x⃗, y⃗)).
Then there are assignments a, b ∈ sol(R′(x⃗, y⃗)) such that a|x⃗∪b|y⃗ /∈ sol(R′(x⃗, y⃗)) or a|x⃗∪b|y⃗ /∈
sol(R′(x⃗, y⃗)).

Proof. Since R(x⃗, y⃗) ̸= πx⃗(R(x⃗, y⃗))×πy⃗(R(x⃗, y⃗)) and thus R(x⃗, y⃗) ⊊ πx⃗(R(x⃗, y⃗))×πy⃗(R(x⃗, y⃗)),
we have that there is ax ∈ sol(πx⃗(R(x⃗, y⃗))) and by ∈ sol(πy⃗(R(x⃗, y⃗))) such that a|x⃗ ∪ b|y⃗ /∈
sol(R(x⃗, y⃗)). Simply extending ax and by to an assignment in R(x⃗, y⃗) yields the claim. ◁

Since Claim 26 applies to all constraints in F ∗, we are now in a situation where we
can use Lemma 25 which shows that any rectangle cover respecting the partition (X1, X2)
for F ∗ has size 2|E∗| = 2Ω(|A|+|B|). With Lemma 18, we know that ∥O′∥ = 2Ω(|A|+|B|)

and since the construction of O′ from O does not increase the size of the DNNF, we get
s = ∥O∥ = 2Ω(|A|+|B|) = 2Ω(∥F ∗∥) = 2Ω(∥F ∥). ◀

7 The Boolean Case

In this section, we will specialize our dichotomy results for the Boolean domain {0, 1}. A
relation R over {0, 1} is called bijunctive affine if it can be written as a conjunction of the
relations x = y and x ̸= y and unary relations, so R ⊆ E with E = ⟨{=, ̸=, U0, U1}⟩ where
U0 = {0} and U1 = {1}}. A set of relations Γ is called bijunctive affine if all R ∈ Γ are
bijunctive affine. We will show the following dichotomy for the Boolean case:

▶ Theorem 27. Let Γ be a constraint language. If all relations in Γ are bijunctive affine,
then there is an polynomial time algorithm that, given a Γ-formula F , constructs an OBDD

for F . If not, then there are formulas Fn and ε > 0 such that an DNNF for Fn needs to
have a size of at least 2ε∥Fn∥.

Let us remark here that, in contrast to general domains D, there is no advantage of FDD
over ODD in the Boolean case: either a constraint language allows for efficient representation
by ODD or it is hard even for DNNF. So in a sense, the situation over the Boolean domain
is easier. Also note that the tractable cases over the Boolean domain are very restricted,
allowing only equalities and disequalities.

8 Conclusion

We have seen that there is a dichotomy for compiling systems of constraints into DNNF
based on the constraint languages. It turns out that the constraint languages that allow
efficient compilation are rather restrictive, in the Boolean setting they consist essentially only
of equality and disequality. From a practical perspective, our results are thus largely negative
since interesting settings will most likely lie outside the tractable cases we have identified.

One question that we leave for future work is that of decidability. Given a constraint
language, can one decide if it is (uniformly) blockwise decomposable? We remark that for the
similar property in counting complexity from [27], it is known that the dichotomy criterion
is decidable. But we do currently not yet understand if a similar result is possible in our
setting.
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Abstract
Is it possible to write significantly smaller formulae, when using more Boolean operators in addition
to the De Morgan basis (and, or, not)? For propositional logic a negative answer was given by
Pratt: every formula with additional operators can be translated to the De Morgan basis with only
polynomial increase in size.

Surprisingly, for modal logic the picture is different: we show that adding bi-implication allows
to write exponentially smaller formulae. Moreover, we provide a complete classification of finite
sets of Boolean operators showing they are either of no help (allow polynomial translations to the
De Morgan basis) or can express properties as succinct as modal logic with additional bi-implication.
More precisely, these results are shown for the modal logic T (and therefore for K). We complement
this result showing that the modal logic S5 behaves as propositional logic: no additional Boolean
operators make it possible to write significantly smaller formulae.
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1 Introduction

Many classical logics such as propositional logic, first-order and second-order logic, temporal
and modal logics incorporate a complete set of Boolean operators in their definitions – mostly
the De Morgan basis (∧, ∨, ¬). While for the expressiveness it is clearly irrelevant which
complete operator set is used, this choice may have an impact on the succinctness of formulae.
The main aim of this paper is to understand which additional operators allow to express
properties with strictly more succinct formulae.

A first simple observation is that if an additional operator defines a read-once function,
i.e., it can be expressed in the De Morgan basis in such a way that every variable occurs
at most once, then it can easily be eliminated without blowing-up the formula too much.
Thus, read-once operators such as x → y ≡ ¬x ∨ y are really just syntactic sugar. For
operators that are not read-once, such as bi-implication x ↔ y or the ternary majority
operator maj(x, y, z), the situation is less clear, because mindlessly replacing them with any
equivalent De Morgan formula may lead to an exponential explosion of the formula size. So
can it be that such additional operators actually allow to write exponentially more succinct
formulae? For propositional logic, a negative answer was given by Pratt [11]: first balance
the formula so that it has logarithmic depth and then replace the additional operators by
any De Morgan translation. This clearly leads to a linear increase in formula depth and
therefore only to a polynomial increase in formula size.
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12:2 Succinctness of Modal Logic

Balancing a formula is, however, not possible for logics that contain quantifiers. For such
logics it is still possible to efficiently remove certain operators that are not read-once. We
show that if an operator op(x1, . . . , xk) is “locally read-once”, that is, has for every i ∈ [k]
an equivalent De Morgan formula in which xi appears only once, then it can be efficiently
eliminated. While we prove this result explicitly for modal logic in Section 2, it actually
holds for other logics with quantifiers as well. An example of an operator that is locally
read-once, but not read-once, is maj(x, y, z) (see Example 3).

One of our main results is that this characterisation is tight for modal logic: for operators
that are not locally read-once, there is no way of removing them without increasing the
formula size exponentially in the worst-case. Thus, adding any operator that is not locally
read-once to the De Morgan basis allows to write exponentially more succinct formulae. One
example of such a useful operator is bi-implication x ↔ y, for which it is not hard to show
that any equivalent expression over (∧, ∨, ¬) contains x and y twice and hence it is not locally
read-once. Furthermore, we analyse the succinctness classes of modal logic wrt. polynomial
translations. Can it be that adding even more Boolean operators allows to express properties
even more succinct? Here we show that any extension of modal logic by a set of operators
containing at least one that is not locally read-once has the same succinctness. Thus there are
exactly two succinctness classes that are exponentially separated: one containing standard
modal logic and the other containing its extension by bi-implication.

Since this dichotomy is in contrast with propositional logic, where only one succinctness
class exists, we also investigate what happens for fragments of modal logic defined by
restrictions on the Kripke structures. Here we obtain the same dichotomy for structures with
a reflexive accessibility relation. But upon considering equivalence relations only, we can
show that the two succinctness classes collapse, as they do in propositional logic.

Related work. It seems that this paper is the first to consider the influence of Boolean
operators to the succinctness of modal logics. Other aspects have been studied in detail.

Pratt [11] studied the effect of complete bases of binary operators on the size of pro-
positional formulae and proved in particular that there are always polynomial translations.
Wilke [15] proved a succinctness gap between two branching time temporal logics, Adler and
Immerman [1] developed a game-theoretic method and used it to improve Wilke’s result and
to show other succinctness gaps. The succinctness of further temporal logics was considered,
e.g., in [2, 10].

Lutz et al. [9, 8] study the succinctness and complexity of several modal logics. French et
al. [3] consider multi-modal logic with an abbreviation that allows to express “for all i ∈ Γ and
all i-successors, φ holds” where Γ is some set of modalities. Using Adler-Immerman-games,
they prove (among other results in similar spirit) that this abbreviation allows exponentially
more succinct formulae than plain multi-modal logic.

Grohe and Schweikardt [5] study the succinctness of first-order logic with a bounded
number of variables and, for that purpose, develop extended syntax trees as an alternative
view on Adler-Immerman-games. These extended syntax trees were used by van Ditmarsch
et al. [14] to prove an exponential succinctness gap between a logic of contingency (public
announcement logic, resp.) and modal logic.

Hella and Vilander [6] define a formula size game (modifying the Adler-Immerman-game)
and use it to show that bisimulation invariant first-order logic is non-elementarily more
succinct than modal logic.
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2 Where “all” logics coincide

Suppose L is some classical logic like propositional logic, predicate logic, second-order
predicate logic, temporal logic (linear or branching), or modal logic. All these logics use
Boolean connectives, usually {∨,¬}, {∨,∧,¬}, {→}, or {∨,∧,¬,→,↔}. One could also
allow connectives like majority (“at least two of the statements s1, s2, and s3 are true”) or
divisibility by three (“all or none of the statements s1, s2, and s3 are true”) without changing
the expressive power. But what about the succinctness? More precisely: if, in addition
to the De Morgan basis {∨,∧,¬}, we allow Boolean connectives from the sets F and G,
respectively, is the resulting logic L[F ] more succinct than L[G]? The main result of this
section demonstrates that there are at most two “succinctness classes” (up to a polynomial),
namely the one containing plain logic L and the other one containing the extension of L
with bi-implication ↔.

Formulae. Let P be a countably infinite set of propositional variables and let B = {⊤,⊥}
be the Boolean domain where we assume ⊤ > ⊥. For a set F of Boolean functions, we let
ML[F ] be the set of all formulae in modal logic that may use operators from F in addition
to the constants ⊤ and ⊥ as well as the Boolean operators ¬,∧, and ∨. Formally, ML[F ] is
defined by the syntax

φ ::= ⊥
∣∣ ⊤

∣∣ p ∣∣ ¬φ
∣∣ (φ ∧ φ)

∣∣ (φ ∨ φ)
∣∣ f(φ, . . . , φ)

∣∣ ♢φ,
for propositional variables p ∈ P and operators f ∈ F 1. We write ML for ML[∅], the set of
formulae in standard modal logic, and ML[f ] for ML[{f}]. Furthermore, PL[F ] ⊆ ML[F ]
denotes the set of propositional formulae that may use functions from F as well; more
precisely, PL[F ] is the set of formulae from ML[F ] that do not use the operator ♢. Since we
always include the null-ary functions ⊤ and ⊥ and the unary functions p and ¬p, we can
assume that all functions in F are of arity at least two.

The size |φ| of a formula from ML[F ] is the number of nodes in its syntax tree.

Semantics. Formulae are interpreted over pointed Kripke structures, i.e., over tuples S =
(W,R, V, ι), consisting of a set W of possible worlds, a binary accessibility relation R ⊆ W×W ,
a valuation V : W → P(P ), assigning to every world in W the set of propositional variables
that are declared to be true at this world, and an initial world ι ∈ W .

The satisfaction relation |= between a world w of S and an ML[F ]-formula is defined
inductively, where

S,w |= p if p ∈ V (w),
S,w |= ♢φ if S,w′ |= φ for some w′ ∈ W with (w,w′) ∈ R, and
S,w |= f(α1, . . . , αk) if f(b1, . . . , bk) = ⊤ where, for all i ∈ [k], bi = ⊤ iff S,w |= αi

(the definitions of S,w |= φ for φ ∈ {⊤,⊥,¬α, α ∨ β, α ∧ β} are as expected). A pointed
Kripke structure S is a model of φ (S |= φ) if φ holds in its initial world, i.e., S, ι |= φ.

Now let C be some class of pointed Kripke structures. A formula φ is satisfiable in C if it
has a model in C and φ holds in C if every structure from C is a model of φ. The formula φ
entails the formula ψ in C (written φ |=C ψ) if any model of φ from C is also a model of ψ; φ
and ψ are equivalent over C (denoted φ ≡C ψ) if φ |=C ψ and ψ |=C φ.

1 Depending on the context, we consider an element f ∈ F as a Boolean function or as a symbol in a
formula.
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Classes of Kripke structures. For different application areas (i.e., interpretations of the
operator ♢), the following classes of Kripke structures have attracted particular interest. For
convenience, we define them as classes of pointed Kripke structures.

The class SK of all pointed Kripke structures.
The class ST of all pointed Kripke structures with reflexive accessibility relation.
The class SS5 of pointed Kripke structures where the accessibility relation is an equivalence
relation.

Suppose φ is a propositional formula. Then S, ι |= φ only depends on the set V (ι) of
variables that hold in the world ι. Thus, instead of evaluating propositional formulae (as
special modal formulae) in Kripke structures, it suffices to evaluate them (as is usually done)
in sets of propositional variables or, equivalently, mappings from the set of variables into the
Boolean domain B.

▶ Definition 1 (Translations). Let F and G be sets of Boolean functions, C a class of pointed
Kripke structures, and κ : N → N some function. Then ML[F ] has κ-translations wrt. C in
ML[G] if, for every formula φ ∈ ML[F ], there exists a formula ψ ∈ ML[G] with φ ≡C ψ and
|ψ| ≤ κ(|φ|).

The logic ML[F ] has polynomial translations wrt. C in ML[G] if it has κ-translations
wrt. C for some polynomial function κ; sub-exponential and exponential translations are
defined similarly.

In this section, we aim at sufficient conditions for the existence of polynomial translations
wrt. SK of ML[F ] in ML[G], i.e., we will always consider the class of all pointed Kripke
structures. For notational convenience, we will regularly omit the explicit reference to
the class SK, e.g., “equivalent” means “equivalent over SK”, φ |= ψ means φ |=SK ψ, and
“κ-translations” means “κ-translations wrt. SK”.

In this paper, [n] = {1, 2, . . . , n} for all n ∈ N.

2.1 Polynomial translations
Suppose F and G are sets of Boolean functions. Recall that formulae from ML[F ] can use
operators from F as well as ¬,∧, and ∨ (and similarly for ML[G]). Since the De Morgan
basis is complete, for every function f ∈ F , there is some formula ω ∈ PL ⊆ ML[G] such
that the formulae f(p1, . . . , pk) and ω(p1, . . . , pk) are equivalent. Consequently, to translate
a formula φ ∈ ML[F ] into a formula ψ ∈ ML[G], we only need to replace every sub-formula
f(α1, . . . , αk) in φ by ω(α1, . . . , αk). In general, this translation leads to an exponential size
increase. But if, in the formula ω, every variable pi appears only once, we obtain a linear
translation. In this section, we provide polynomial (and in general non-linear) translations
of ML[F ] in ML[G] under the following weaker assumption.

▶ Definition 2 (Representations). Let G be a set of Boolean functions, f a Boolean operator
of arity k, and i ∈ [k].

A PL[G]-representation of (f, i) is a PL[G]-formula ωi(p1, . . . , pk) that is equivalent to
the PL[f ]-formula f(p1, . . . , pk) and uses the variable pi at most once.

A set F of Boolean functions has PL[G]-representations if there are PL[G]-representations
for all f ∈ F and i ∈ [ar(f)].

▶ Example 3. Consider the majority function maj(p, q, r) that is true iff at least two
arguments are true. Then (maj, 1) has the PL-representation

(
p ∧ (q ∨ r)

)
∨ (q ∧ r). Using

the symmetry of maj, it follows that {maj} has PL-representations.
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f

p1 ∨
p2 f

∧
p3 p4

f

p5 p6

f

∨
p1 f

p2 p3

f

p4 ∧
p5 p6

Figure 1 Syntax trees of φ = f(p1, p2∨f(p3∧p4, f(p5, p6)) and ψ = f(p1∨f(p2, p3), f(p4, p5∧p6)).

Next, consider bi-implication ↔, where the following observation seems folklore: if the
PL-formula ψ(p, q) is equivalent to p ↔ q and mentions p only once (say, under an even
number of negations), then ⊤ ≡ (⊥ ↔ ⊥) ≡ ψ(⊥,⊥) ≤ ψ(⊤,⊥) ≡ ⊥, a contradiction.

Assuming that F has PL[G]-representations, we will construct, from a formula in ML[F ],
an equivalent formula in ML[G] of polynomial size. Since this will be done inductively, we
will have to deal with formulae from ML[F ∪ G] and the task then is better described as
elimination of functions f ∈ F from formulae in ML[F ∪G].

Before we present the details of our construction, we briefly demonstrate the main idea
behind the proof (for F = {f} and G = ∅). The main results (Lemma 7 and Proposition 8)
will appear at the end of the section.

Assume that f is of arity 2 and consider the two formulae

φ = f
(
p1, p2 ∨ f

(
p3 ∧ p4, f(p5, p6)

) )
and ψ = f

(
p1 ∨ f(p2, p3), f(p4, p5 ∧ p6)

)
,

whose syntax trees are depicted in Fig. 1. A distinguishing property of the left tree is
the existence of a branch (a path from the root to a leaf) that contains all F -vertices.
Assuming f to have PL[G]-representations (with G = ∅), there exist Boolean combinations
ω1(x, y) ≡ ω2(x, y) ≡ f(x, y) of the variables x and y, such that x occurs only once in ω1(x, y)
and y only once in ω2(x, y). Proceeding bottom-up, we now replace each F -vertex f(α, β) in
the syntax tree of φ by either ω1(α, β) or ω2(α, β), depending on whether we have previously
modified the left or the right sub-tree (regarding f(p5, p6), we are free to choose between ω1
and ω2). Note that, although ω1 and ω2 may duplicate some parts of φ, our choice ensures
that we never duplicate such parts whose size has already changed. Consequently, this
procedure results in a linear increase ℓ · |φ| in the size of φ, where the coefficient ℓ essentially
depends on how often y occurs in ω1(x, y) and how often x occurs in ω2(x, y). The resulting
formula φ′ belongs to ML[G] and is equivalent to φ. Hence ML[F ∪G]-formulae for which
all F -vertices lie on some common branch have ML[G]-translations of linear size.

The formula ψ on the other hand does not have the property that all F -vertices lie
on some common branch, but the two sub-formulae α and β rooted at the children of
the root do. Hence we can apply the above transformation to them separately, yielding
equivalent ML[G]-formulae α′ and β′ whose size increases at most by a factor of ℓ. Then
ψ′ = f(α′, β′) ≡ ψ is of size |ψ′| ≤ ℓ · |ψ|. Note that this step reduces the total number of F
vertices – in particular, ψ′ now contains only a single operator from F . Applying the step
again yields an equivalent ML[G]-formula ψ′′ of size |ψ′′| ≤ ℓ · |ψ′| ≤ ℓ2 · |ψ|. For arbitrary
ML[F ∪G]-formulae, the number of steps relates to the “nesting depth” D of those F -vertices
that have at least two arguments in ML[F ∪G] \ ML[G], thus resulting in a formula of size
ℓD · |ψ|. In this section, we will show that D is at most logarithmic in the size of ψ, thus
giving a polynomial bound and establishing the main part of the succinctness result.
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f

f

f

p p′

f ′

p p

∧

p′ f ′

p p

f

f

q1 q2

q3

q′
1

Figure 2 Syntax trees of φ = f
(
f
(
f(p, p′), f ′(p, p)

)
, p′ ∧ f ′(p, p)

)
, dF (φ) = f

(
f(q1, q2), q3

)
, and

d2
F (φ) = q′

1.

Let F and G be disjoint sets of Boolean functions and let NF,G ⊆ ML[F ∪G] be described
by the syntax

φ ::= ψ
∣∣ (φ ∧ φ)

∣∣ (φ ∨ φ)
∣∣ ¬φ

∣∣ f(ψ, . . . , ψ, φ, ψ, . . . , ψ)
∣∣ g(φ, . . . φ)

∣∣ ♢φ,
where ψ ∈ ML[G], f ∈ F , and g ∈ G. The formulae from NF,G have a slightly more general
property than ψ in the example above. More precisely, a formula φ belongs to NF,G if, and
only if, for any sub-formula f(α1, . . . , αk) of φ with f ∈ F , at most one αi contains some
operator from F . Conjunction, disjunction, and operators from G on the other hand may
have occurrences of operators from F in any number of arguments.

▶ Definition 4 (Derivative). Let φ = φ(p) ∈ ML[F ∪ G] with p = (p1, . . . , pm). The F -
derivative dF (φ) of φ is the smallest ML[F ∪G]-formula γ(p, q1, . . . , qn) (up to renaming of
the variables q1, . . . , qn), such that

qi occurs exactly once in γ(p, q1, . . . qn) for all i ∈ [n] and
there exist α1, . . . , αn ∈ NF,G \ ML[G] such that φ and γ(p, α1, . . . , αn) are identical.

Intuitively, γ(p, q1, . . . , qn) is obtained from φ(p) by simultaneously replacing all “maximal
(NF,G \ ML[G])-formulae” by distinct fresh variables q1, . . . , qn (where multiple occurrences
of the same formula are replaced by different variables). An example is depicted in Fig. 2
(with F = {f, f ′} and G = ∅).

Let φ ∈ ML[F ∪ G] \ ML[G]. Then dF (φ) contains fewer occurrences of operators
from F than φ. Hence there exists a smallest integer r ≥ 0 for which the r-th derivative
drF (φ) = dF (dF (· · · dF (φ) · · · )) is an ML[G]-formula, where d0

F (φ) = φ.

▶ Definition 5 (Rank). Let φ ∈ ML[F ∪ G]. The F -rank rankF (φ) of φ is the smallest
integer r ≥ 0 for which drF (φ) ∈ ML[G].

We first show that a formula with high F -rank must also be large.

▶ Lemma 6. Let F and G be disjoint sets of Boolean functions and φ ∈ ML[F ∪G]. Then
|φ| ≥ 2rankF (φ).

Proof. Recall that we can assume that all functions in F have arity at least 2. Since we only
refer to the F -rank of a formula, we will simply speak of the rank of a formula.

We prove the stronger claim that the syntax tree of a formula φ of positive rank has at
least 2rankF (φ)−1 sub-trees of the form f(β1, . . . , βk) with f ∈ F and β1, . . . , βk ∈ ML[G] (in
the following, we call such a sub-tree an F -leaf ).

Since counting the F -leaves in all derivatives of φ results in a lower bound on the total
number of operators from F in φ, it follows that φ contains at least 1+2+ . . .+2rankF (φ)−1 =
2rankF (φ) − 1 operators from F . Hence |φ| ≥ 2rankF (φ) since none of the functions in F has
arity zero.
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It now remains to prove the bound on the number of F -leaves. Recall that we consider
formulae of rank at least one. If rankF (φ) = 1, φ contains at least one operator from
F and hence has at least 21−1 = 1 F -leaf. Now, assume that φ = φ(p) is of rank at
least two. Let γ(p, q1, . . . , qn) be the derivative of φ, and let α1, . . . , αn ∈ NF,G such that
φ = γ(p, α1, . . . , αn). Then, for every F -leaf f(β1, . . . , βk) of γ(p, q1, . . . , qn), there exist
indices i ̸= j such that βi, βj ∈ {q1, . . . , qn}. By induction hypothesis, γ(p, q1, . . . , qn) has
at least 2rankF (φ)−2 F -leaves, each of which contains at least two of the fresh variables
{q1, . . . , qn}. Since each αi contains at least one operator from F , φ = γ(p, α1, . . . , αn) has at
least twice the number of F -leaves compared to γ(p, q1, . . . , qn), i.e., 2rankF (φ)−1 F -leaves. ◀

We can now turn to the main ingredient for our succinctness result.

▶ Lemma 7. Let F and G be disjoint sets of Boolean functions and, for f ∈ F and
i ∈ [ar(f)], let ωf,i ∈ PL[G] be a PL[G]-representation of (f, i). Let, furthermore, κ : N → N
be a monotone function such that 1 ≤ κ(1) and |ωf,i| ≤ κ(ar(f)) for any f ∈ F and i ∈ [ar(f)].
Finally, let κ′ : N → N : n 7→ κ(n)log2 n · n.

Then ML[F ∪G] has κ′-translations in ML[G].

Proof. For φ ∈ ML[F ∪G], let Kφ denote the maximal arity of any f ∈ F occurring in φ

(or 1 if φ ∈ ML[G]). Note that κ(Kφ) ≥ 1 for all φ ∈ ML[F ∪G].
We prove the following claim: every φ ∈ ML[F ∪G] is equivalent to an ML[G]-formula of

size at most
(
κ(Kφ)

)rankF (φ) · |φ|. Since Kφ ≤ |φ| and rankF (φ) ≤ log2 |φ| by Lemma 6, this
claim ensures that every ML[F ∪G]-formula φ of size n has an equivalent ML[G]-formula of
size at most κ(n)log2 n · n = κ′(n).

The proof of the claim proceeds by induction on the F -rank of φ. Since F remains fixed,
we will refer to the F -rank simply as rank. As before, we assume that all operators in F are
at least binary.

Let φ ∈ ML[F ∪ G] be of rank at most one. We show by induction on the structure
of φ that there exists an equivalent ML[G]-formula φ′ of size |φ′| ≤ κ(Kφ) · |φ|. If φ is a
propositional variable or one of the constants ⊤ or ⊥, |φ| = 1 ≤ κ(1) · |φ| since κ(1) ≥ 1.

Now, assume that φ = α1 ∧ α2. By induction hypothesis, there exist ML[G]-formulae
β1, β2 with |βj | ≤ κ(Kαj ) · |αj | and βj ≡ αj for j ∈ [2]. Since κ is monotone and Kαj ≤ Kφ,
|βj | ≤ κ(Kαj

) · |αj | ≤ κ(Kφ) · |αj | for j ∈ [2]. Set φ′ = β1 ∧β2. Then φ′ is an ML[G]-formula,
equivalent to φ, and of size

|φ′| = |β1| + |β2| + 1 ≤ κ(Kφ) · (|α1| + |α2|) + 1 ≤ κ(Kφ) · |φ| , since κ(Kφ) ≥ 1.

A similar argument establishes the cases α1 ∨ α2, ¬α, ♢α, and g(α1, . . . , αn) for g ∈ G.
Finally, assume that φ is of the form f(α1, . . . , αk) with f ∈ F . Since φ is of rank

one and therefore a formula in NF,G, there exists an index i ∈ [k] such that no argument
other than αi contains an operator from f , i.e., with αj ∈ ML[G] for all j ̸= i (and
αi ∈ ML[F ∪G]). By induction hypothesis, αi is equivalent to an ML[G]-formula βi of size
|βi| ≤ κ(Kαi

) · |αi| ≤ κ(Kφ) · |αi|. Set βj = αj for all j ̸= i. Then β1, . . . , βk ∈ ML[G].
Recall that ωf,i(p1, . . . , pk) is a PL[G]-representation of (f, i) that uses the variable pi at
most once and has size ≤ κ(k) ≤ κ(Kφ). Set φ′ = ωf,i(β1, . . . , βk). Then φ′ is equivalent to
f(α1, . . . , αk) = φ and belongs to ML[G]. Furthermore, φ′ is obtained from ωf,i(p1, . . . , pk)
by replacing one variable with βi and all others with formulae of size at most

∑
j ̸=i |βj |.

Since all functions in F are at least binary, it follows that
∑
j ̸=i |βj | ≥ 1. Hence
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|φ′| = |ωf,i (β1, . . . , βk)|

≤ |βi| + κ(k) ·
∑

j∈[k]\{i}

|βj | , since
∑

j∈[k]\{i}

|βj | ≥ 1

≤ κ(Kφ) · |αi| + κ(Kφ) ·
∑

j∈[k]\{i}

|αj |

≤ κ(Kφ) · |f(α1, . . . , αk)| = κ(Kφ) · |φ|.

This shows the claim for formulae of rank at most one.
We proceed by induction on the rank of φ. Let φ = φ(p) ∈ ML[F ∪G] be of rank r ≥ 2.

Let γ(p, q1, . . . , qn) be the derivative of φ(p) and α1, . . . , αn be NF,G-formulae, such that
φ = γ(p, α1, . . . , αn). Since the αi are of rank one, there exist β1, . . . , βn ∈ ML[G] with
αi ≡ βi and |βi| ≤ κ(Kαi) · |αi| ≤ κ(Kφ) · |αi| for i ∈ [k]. Set ψ = ψ(p) = γ(p, β1, . . . , βk).
Then ψ is equivalent to φ and of size |ψ| ≤ κ(Kφ) · |φ|. Intuitively, ψ is obtained from φ by
replacing the “maximal” ML[F ∪G] sub-formulae of rank 1 by equivalent ML[G]-formulae.
Since ψ is of rank r − 1, it follows by induction hypothesis that ψ is equivalent to a formula
φ′ ∈ ML[G] of size |φ′| ≤ κ(Kψ)r−1 · |ψ| ≤ κ(Kφ)r · |φ|. Since φ ≡ ψ ≡ φ′, this finishes the
verification of the claim from the beginning of this proof. ◀

From Lemma 7, we can get the main result of this section, stating that ML[F ∪ G]
is not more succinct than ML[G], provided F is a finite set of Boolean functions with
PL[G]-representations.

▶ Proposition 8. Let F and G be disjoint finite sets of Boolean functions such that F has
PL[G]-representations. Then ML[F ∪G] has polynomial translations in ML[G].

Since ML[F ] ⊆ ML[F ∪G], this implies in particular that ML[F ] has polynomial transla-
tions in ML[G]. In view of Example 3, it ensures specifically that ML[maj] has polynomial
translations in plain ML.

Proof. Since F is finite, there is some constant c such that any f ∈ F and i ∈ [ar(f)] have
a PL[G]-representation of size at most c. By the previous lemma, any φ ∈ ML[F ∪ G] is
thus equivalent to an ML[G]-formula of size at most clog2 |φ| · |φ| = |φ|1+log2 c ≤ |φ|d for some
constant d. ◀

2.2 A decidable characterisation of representations
Proposition 8 gives a condition (“has PL[G]-representations”) for the existence of polynomial
translations. In this section, we demonstrate that this condition is decidable.

▶ Definition 9 (Local monotonicity). A Boolean function f : Bk → B is monotone in the i-th
argument if either
(M1) for all a ∈ Bi−1, b ∈ Bk−i, f(a,⊥, b) ≤ f(a,⊤, b) or
(M2) for all a ∈ Bi−1, b ∈ Bk−i, f(a,⊥, b) ≥ f(a,⊤, b).

That is, when changing the i-th argument from ⊥ to ⊤, while keeping the remaining ones
fixed, the truth value of f uniformly increases or decreases (where, in both cases, the value
may also remain unchanged). A function is called locally monotone if it is monotone in every
argument and non-locally-monotone otherwise. Then conjunction, disjunction, negation,
implication, as well as majority are locally monotone functions, while bi-implication is not.
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▶ Proposition 10. Let F and G be disjoint sets of Boolean functions. Then F has PL[G]-
representations if, and only if, all functions in F are locally monotone or some function from
G is non-locally-monotone.

Proof. First, suppose that all functions in F are locally monotone. We prove that, under
this assumption, F even has PL-representations, which ensures the claim since PL ⊆ PL[G].
So, let f ∈ F be of arity k (as before, we can assume k ≥ 2). To simplify notation, we will
only construct a PL-representation of (f, k). In addition, we assume that f is increasing
in the k-th argument, i.e., f(a,⊥) ≤ f(a,⊤) for all a ∈ Bk−1. There exists a PL-formula
ω(x1, . . . , xk) that is equivalent to f(x1, . . . , xk). Since f(a,⊥) ≤ f(a,⊤) for any a ∈ Bk−1,
it follows that

f(x1, . . . , xk) ≡
(
ω(x1, . . . , xk−1,⊤) ∧ xk

)
∨ ω(x1, . . . , xk−1,⊥) .

In particular, the formula on the right uses the variable xk only once and therefore forms a
PL-representation of (f, k).

Next, suppose there is some g ∈ G that is non-locally-monotone. We have to provide
PL[G]-representations for all functions f ∈ F . So let f ∈ F be arbitrary and of arity k; for
notational simplicity, we prove that there is some PL[G]-representation of (f, k).

Let A denote the set of tuples a ∈ Bk−1 with f(a,⊤) = f(a,⊥) = ⊤ and let B denote
the set of tuples b ∈ Bk−1 with f(b,⊤) > f(b,⊥). Let x ∈ A abbreviate the PL-formula

∨
a∈A

 ∧
i∈[k−1],ai=⊤

xi ∧
∧

i∈[k−1],ai=⊥

¬xi


and let x ∈ B be defined likewise. Then the formula f(x, xk) is equivalent to the formula

x ∈ A ∨
(
x /∈ A ∧ (x ∈ B ↔ xk)

)
, (1)

which belongs to PL[↔] (and mentions the variable xk only once).
Let ℓ be the arity of the function g ∈ G and suppose, for notational simplicity, that it is

not monotone in its last argument. Hence there are a, b ∈ Bℓ−1 such that g(a,⊥) < g(a,⊤)
and g(b,⊥) > g(b,⊤). For i ∈ [ℓ− 1], set

θi =


ai if ai = bi

x ∈ B if ai > bi

x /∈ B if ai < bi

and write θ for the tuple (θi)i∈[ℓ−1]. Note that, for all i ∈ [ℓ−1], θi is equivalent to ai if x ∈ B,
and to bi if x /∈ B. By choice of a and b it follows that the formulae (x ∈ B ↔ xk) ∈ PL[↔]
and g(θ, xk) ∈ PL[G] are equivalent. We finally replace (x ∈ B ↔ xk) in the formula (1) by
g(θ, xk) which yields the PL[G]-representation x ∈ A ∨ (x /∈ A ∧ g(θ, xk)) of (f, k).

It remains to be shown that the existence of PL[G]-representations implies that (i) or (ii)
holds. So assume that F has PL[G]-representations and that (ii) does not hold, i.e., that
all functions from G are locally monotone. We prove by induction on the size of a formula
φ(p1, . . . , pk) ∈ PL[G] the following: if the variable pk appears only once in φ, then the
function represented by φ is monotone in its k-th argument. The claim is trivial for formulae
of the form ⊤, ⊥, and pi.
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For the induction step, let φ = g(α1, . . . , αℓ) with g ∈ G. Since the formula φ contains
the variable pk only once, it appears in at most one of the arguments αi; for notational
simplicity, we assume it appears in αℓ. By the induction hypothesis, there is ⊗ ∈ {≤,≥}
such that

∀a ∈ Bℓ−1 : αℓ(a,⊥) ⊗ αℓ(a,⊤) . (2)

Since we assumed all functions from G to be locally monotone, there also is ⊙ ∈ {≤,≥} such
that

∀a ∈ Bℓ−1 : g(α1(a), . . . , αℓ−1(a),⊥) ⊙ g(α1(a), . . . , αℓ−1(a),⊤) . (3)

Putting (2) and (3) together, we obtain

∀a ∈ Bℓ−1 : φ(a,⊥) ≤ φ(a,⊤) if ⊗ = ⊙, and
∀a ∈ Bℓ−1 : φ(a,⊥) ≥ φ(a,⊤) if ⊗ ̸= ⊙ .

Intuitively, ⊙ indicates whether φ increases (when going from ⊥ to ⊤ in the last argument
of g, i.e., in αℓ), while ⊗ may flip the direction if the truth-value of αℓ decreases, when
increasing pk. Hence, the formula φ represents a function that is locally monotone in its last
argument provided φ is of the form g(α1, . . . , αℓ) for some g ∈ G. The arguments are similar
if φ is of the form α1 ∧ α2, α1 ∨ α2, or ¬α1.

This finishes the inductive proof.
Recall that F has PL[G]-representations. Since each PL[G]-representation of (f, i) de-

scribes a function (namely f) that is monotone in the i-th argument, we obtain that all
functions from F are locally monotone, which completes the proof. ◀

Now Propositions 8 and 10 yield the following central result.

▶ Theorem 11. Let C be some class of pointed Kripke structures. Let F and G be disjoint
finite sets of Boolean functions such that all functions from F are locally monotone or some
function from G is non-locally-monotone. Then ML[F ] has polynomial translations wrt. C in
ML[G].

Proof. By the assumptions on F and G, F has PL[G]-representations by Proposition 10.
Hence, by Proposition 8, ML[F ] has polynomial translations wrt. SK in ML[G], i.e., for any
formula φ ∈ ML[F ], there exists a formula ψ ∈ ML[G] of polynomial size with φ ≡SK ψ.
Since C ⊆ SK, this implies φ ≡C ψ. Hence, indeed, ML[F ] has polynomial translations wrt. C
in ML[G]. ◀

As we have mentioned at the beginning of this section, all the results also hold for
other logics L such as predicate logic, second-order predicate logic, temporal logic (linear or
branching), and probably many more. Suppose that some function from G is non-locally-
monotone. Since ↔ is non-locally-monotone, it follows that L[G] and L[↔] have polynomial
translations in each other, i.e., they are equally succinct (up to a polynomial). Similarly, if all
functions from G are locally monotone, then L[G] and L = L[∅] have polynomial translations
in each other since all functions from ∅ are locally monotone. In other words, for any set of
Boolean functions G, L[G] is as succinct as L[↔] or as L.

Thus, the situation looks similar for many logics: there are at most two “succinctness
classes”. For propositional logic, it was shown by Pratt [11] that also PL[↔] has polynomial
translations in PL, i.e., that there is just one such class. In the following section, we will
show that, whether or not modal logic has two “succinctness classes”, depends on the class
of Kripke structures.
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3 Where modal logics diverge

So far, we saw that for many logics L, there are at most two “succinctness classes” (up to a
polynomial), namely those of L and L[↔], respectively. In this section, we will show that
these classes differ for the modal logic T (and hence also for K) but coincide for the modal
logic S5. We will therefore, from now on, be precise and return to the original notation, i.e.,
write ≡SK instead of ≡ etc.

3.1 Where the “succinctness classes” differ
Our aim in this section is to show that ML[↔] is exponentially more succinct than ML.
Formally, we prove ML[↔] does not have sub-exponential translations wrt. ST in ML (recall
that ST is the class of pointed Kripke structures with reflexive accessibility relation).

▶ Lemma 12. The logic ML[↔] does not have sub-exponential translations wrt. ST in ML.

Proof. Let φ0 = p0 and φn+1 = pn⊕1 ∧ (p ↔ ♢φn) for n ≥ 0, where m⊕n := (m+n) mod 2.
We will prove that |ψ| ≥ 2n for any n ≥ 0 and any ψ ∈ ML with ψ ≡ST φn. Since |φn| is
linear in n, this ensures the lemma’s claim.

In this proof, we use the following notation. Let ψ ∈ ML be any ML-formula. Then ψ is
a Boolean combination of formulae of the form ⊤, ⊥, p ∈ P , and ♢λ with λ ∈ ML. By Eψ,
we denote the set of all formulae λ ∈ ML such that ♢λ appears in this Boolean combination
with even negation depth. Similarly, Oψ denotes the set of all formulae λ ∈ ML such that
♢λ appears in this Boolean combination with odd negation depth.

A more formal definition proceeds as follows by induction:

Eψ =


∅ if ψ ∈ {⊤,⊥} ∪ P

{λ} if ψ = ♢λ, λ ∈ ML
Oα if ψ = ¬α
Eα ∪ Eβ if ψ ∈ {α ∧ β, α ∨ β}

Oψ =


∅ if ψ ∈ {⊤,⊥} ∪ P

∅ if ψ = ♢λ, λ ∈ ML
Eα if ψ = ¬α
Oα ∪Oβ if ψ ∈ {α ∧ β, α ∨ β}

We now show, by induction on n, that any ML-formula ψ with ψ ≡ST φn satisfies |ψ| ≥ 2n.
Since φn uses (at most) the propositional variables p, p0, and p1, we can assume the same
about ψ.

The case n = 0 is easy to see since any formula has size at least 1 = 20. Let now n ≥ 0
and consider the formula φn+1 = pn⊕1 ∧ (p ↔ ♢φn) and assume there were an ML-formula
ψ ≡ST φn+1 that satisfies |ψ| < 2n+1.

Note that, although the sets Eψ and Oψ may have non-empty intersection,∣∣∣∨Eψ

∣∣∣ +
∣∣∣∨Oψ

∣∣∣ ≤ |ψ| < 2n+1 ,

hence at least one of these disjunctions must be of size < 2n.

Case 1: |
∨

Oψ| < 2n. Then, by the induction hypothesis, φn ̸≡ST

∨
Oψ. Let m denote

the size of the formula φn ∧ ¬ψ.
Let α be a formula from ML that is satisfiable in ST, of size at most m, and that uses

no propositional variables other than p, p0, p1. Then α has a model Aα ∈ ST that uses, at
most, the propositional variables from α. Since there are only finitely many such formulae α,
there exists a finite set Cm ⊆ ST of pointed Kripke structures such that every ML-formula
has a model in Cm, provided it is satisfiable in ST, of size at most m, and uses at most the
propositional variables from {p, p0, p1}.
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ι

ι′

B1
B2

. . .

Br

A ι1 ι2 ιr

ιA

Figure 3 Schematic representation of Kripke structure S with V (ι) = V (ι′) = {pn⊕1}.

Let O+
ψ be the set of formulae λ from Oψ with λ |=ST φn. Since

∣∣∣∨O+
ψ

∣∣∣ ≤ |
∨
Oψ| < 2n,

the induction hypothesis ensures
∨
O+
ψ ̸≡ST φn. On the other hand,

∨
O+
ψ |=ST φn, hence

the formula φn ∧ ¬
∨
O+
ψ is satisfiable in ST and of size at most m. Consequently, there

exists a structure A = (WA, VA, RA, ιA) ∈ Cm with A |= φn but A ̸|=
∨
O+
ψ .

Let B1, . . . , Br ∈ Cm with Bi = (Wi, Ri, Vi, ιi) be the models of ¬φn from Cm. We assume
that the sets Wi for i ∈ [r] and WA are mutually disjoint.

We now define a Kripke structure S = (W,R, V ) ∈ ST as follows (cf. Fig. 3):

W = {ι, ι′} ⊎
⋃
i∈[r]

Wi ∪WA

R =
{

(ι, ι), (ι, ι′), (ι′, ι′), (ι, ιA)
}

∪
(
{ι, ι′} × {ιi | i ∈ [r]}

)
∪

⋃
i∈[r]

Ri ∪RA

V (w) =


{pn⊕1} if w ∈ {ι, ι′}
Vi(w) if w ∈ Wi for some i ∈ [r]
VA(w) if w ∈ WA

From S, we obtain the pointed Kripke structures (S, ι) and (S, ι′) by choosing the initial
world as ι and ι′ respectively. Note that both structures belong to ST since the accessibility
relation R is reflexive. Our aim is to prove (S, ι) |= ¬φn+1 ∧ ψ, which contradicts the
equivalence of φn+1 and ψ.

First, we show (S, ι) |= ¬φn+1. Recall that A |= φn and therefore (S, ιA) |= φn. From
(ι, ιA) ∈ R, we obtain (S, ι) |= ¬p ∧ ♢φn, implying (S, ι) |= ¬φn+1.

To prove (S, ι) |= ψ, we first show (S, ι′) |= φn+1, implying (S, ι′) |= ψ since we assumed
φn+1 ≡ST ψ. From this, we will infer that also (S, ι) |= ψ.

Recall that Bi |= ¬φn and therefore (S, ιi) |= ¬φn for all i ∈ [r]. Furthermore, (S, ι′) |=
¬pn mod 2 implies (S, ι′) |= ¬φn. Since {ι′, ιi | i ∈ [r]} is the set of worlds accessible from ι′,
this implies (S, ι′) |= ¬♢φn. Since, in addition, (S, ι′) |= pn⊕1 ∧ ¬p, we obtain (S, ι′) |= φn+1.
Now φn+1 ≡ST ψ and (S, ι′) ∈ ST imply (S, ι′) |= ψ.

The final step in our proof is the verification of (S, ι) |= ψ. Recall that ψ is a Boolean
combination of atomic formulae and of formulae ♢λ with λ ∈ Oψ ∪ Eψ. Note that (S, ι) and
(S, ι′) agree in the atomic formulae holding there. Since Oψ and Eψ are the formulae ♢λ
appearing in the Boolean combination with odd and even, respectively, negation depth, it
suffices to show the following:
1. If λ ∈ Eψ with (S, ι′) |= ♢λ, then (S, ι) |= ♢λ.
2. If λ ∈ Oψ with (S, ι′) ̸|= ♢λ, then (S, ι) ̸|= ♢λ.

To demonstrate the former, suppose λ ∈ Eψ with (S, ι′) |= ♢λ. Then (S, ι′) |= λ or there
is i ∈ [r] with (S, ιi) |= λ. Since (ι, ι′) ∈ R and (ι, ιi) ∈ R, we obtain (S, ι) |= ♢λ in either
case.
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To demonstrate the second claim regarding λ ∈ Oψ, we proceed by contraposition: so let
λ ∈ Oψ with (S, ι) |= ♢λ. Here, we distinguish two cases.

Suppose λ |=ST φn, i.e., λ ∈ O+
ψ . From (S, ι) |= ♢λ, we obtain that the formula λ holds

in one of the worlds ι, ι′, ιA, or ιi for some i ∈ [r]. But (S, ιA) |= λ implies A |= λ, which
is impossible since A ̸|=

∨
O+
ψ and λ ∈ O+

ψ . But also (S, ιi) |= λ and therefore Bi |= λ is
impossible since λ |=ST φn, Bi ∈ ST, and Bi |= ¬φn. Consequently, the formula λ holds
in one of the worlds ι and ι′. Again using λ |=ST φn, we obtain that also φn holds in
ι or in ι′. But this cannot be the case since pn mod 2 does not hold in either of the two
worlds – a contradition. This finishes the verification of the second claim above in case
λ ∈ O+

ψ ⊆ Oψ.
Finally, the case λ ̸|=ST φn remains to be considered. But then the formula λ ∧ ¬φn is
satisfiable in ST. Since the size of this formula is bounded by m, there is some pointed
Kripke structure B ∈ Cm with B |= λ∧ ¬φn. The choice of the pointed Kripke structures
B1, . . . Br implies B = Bi for some i ∈ [r]. Hence (S, ιi) |= λ. From (ι′, ιi) ∈ R, we obtain
(S, ι′) |= ♢λ.

This finishes the proof of the two numbered claims above. As explained there, they imply
(S, ι) |= ψ.

So, we proved (S, ι) |= ¬φn+1 ∧ ψ in case
∣∣∨Oψ

∣∣ < 2n contradicting the equivalence of
φn+1 and ψ.

Case 2: |
∨

Eψ| < 2n. We consider the formula ¬pn⊕1 ∨
(
(¬p) ↔ ♢φn

)
≡SK ¬φn+1 ≡ST

¬ψ. Observe that O¬ψ = Eψ, such that |
∨
O¬ψ| < 2n. Hence we can use the same argument

as before for ¬ψ to obtain a contradiction: simply label the worlds ι and ι′ with {p, pn⊕1}
instead of {pn⊕1}. ◀

We now come to the classification of modal logics ML[F ] that have polynomial translations
in ML.

▶ Theorem 13. Let C be either of the classes SK or ST. Let F be a finite set of Boolean
functions. Then the following are equivalent:
(1) All functions from F are locally monotone.
(2) The set F has PL-representations.
(3) ML[F ] has polynomial translations wrt. C in ML.
(4) ML[↔] does not have sub-exponential translations wrt. C in ML[F ].
(5) ML[↔] does not have polynomial translations wrt. C in ML[F ].

Proof. The implication (1)⇒(2) follows from Proposition 10 (with G = ∅), the implication
(2)⇒(3) is Proposition 8 (again, with G = ∅). Now suppose (3) and assume, towards a
contradiction, that (4) does not hold. Then ML[↔] has sub-exponential translations in
ML[F ] and ML[F ] has polynomial translations in ML. Since f(n)k is sub-exponential for
any sub-exponential function f and any constant k, we get that ML[↔] has sub-exponential
translations in ML, contradicting Lemma 12. Thus, the implication (3)⇒(4) holds. The
implication (4)⇒(5) is trivial. Finally, suppose (5) holds. Then, by Proposition 8 again,
{↔} does not have PL[F ]-representations. Hence, by Proposition 10 (with F = {↔} and
G = F ), all functions in F are locally monotone. ◀
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3.2 Where the “succinctness classes” collapse
In this section we show that, for every finite set of operators F , ML[F ] has polynomial
translations wrt. SS5 in ML. Recall that SS5 is the set of pointed Kripke structures whose
accessibility relation is an equivalence relation. Note that two formulae φ and ψ are equivalent
wrt. SS5 if, and only if, they are equivalent wrt. the class of pointed Kripke structures S from
SS5 whose accessibility relation is total. These pointed Kripke structures have the pleasant
property that a ♢-quantified formula either holds in every world or in none, i.e.,

S,w |= ♢φ iff S,w′ |= ♢φ . (4)

We use the above equivalence to prove that ML[↔]-formulae can be “balanced” when
considering structures from SS5 only. That ML[↔] has polynomial translations wrt. SS5
in ML then forms an easy corollary. The general result for any set F then follows from
Theorem 11.

For a formula φ ∈ ML[F ], let ∥φ∥ denote the number of leaves of the syntax tree of
φ, i.e., the total number of occurrences of propositional variables and constants ⊤ and ⊥.
Furthermore, let d(φ) be the depth of the syntax tree of φ, that is, the length of a longest
path from the root to a leaf. In particular, d(φ) = 0 if, and only if, φ ∈ P ∪ {⊤,⊥}. If all
operators in φ have arity at most r, the number of leaves, the size, and the depth of φ satisfy
∥φ∥ ≤ |φ| ≤ rd(φ)+1.

▶ Lemma 14. For every φ ∈ ML[↔] there exists a formula φ′ ∈ ML[↔] with φ′ ≡SS5 φ and
d(φ′) ≤ 8 ·

(
1 + log2 ∥φ∥

)
.

▶ Remark 15. Since PL[↔] ⊆ ML[↔], the above lemma implies that each formula φ ∈ PL[↔]
is equivalent to some PL[↔]-formula of depth logarithmic in ∥φ∥. According to Gashkov
and Sergeev [4], a more general form of this result for propositional logic was known to
Khrapchenko in 1967, namely that it holds for any complete basis of Boolean functions (e.g.,
for {∧,∨,¬,↔} as here). They also express their regret that the only source for this is a
single paragraph in a survey article by Yablonskii and Kozyrev [16], see also [7]. Often, it
is referred to as Spira’s theorem who published it in 1971 [13], assuming that all at most
binary Boolean functions are allowed in propositional formulae. Khrapchenko’s general form
was then published by Savage [12].

Proof. Throughout the proof, we consider the logic ML[↔] only and therefore simply speak
of formulae when referring to ML[↔]-formulae.

The proof proceeds by induction on ∥φ∥. First assume that ∥φ∥ = 1. Then φ =
op1op2 · · · oprλ with r ≥ 0, opi ∈ {¬,♢} for all i ∈ [r], and λ ∈ P ∪ {⊤,⊥}. Using the
equivalences ¬¬α ≡SS5 α, ♢♢α ≡SS5 ♢α, and ♢¬♢α ≡SS5 ¬♢α (the latter two following from
(4)), the formula φ is equivalent over SS5 to a formula ψ of depth at most 3 ≤ 8 ·

(
1+log2 ∥φ∥

)
.

This establishes the case ∥φ∥ = 1.
Otherwise, ∥φ∥ ≥ 2 and φ contains some binary operator. Let m = ∥φ∥. Intuitively, we

split the formula φ into two parts, each containing about half the leaves from φ. Formally,
there are formulae α(x) with only one occurrence of x and β such that φ = α(β),

∥β∥ > m
2 , and

β = op(β1, β2) with op ∈ {∧,∨,↔} and ∥β1∥, ∥β2∥ ≤ m
2 .

It is not difficult to find such formulae: simply start at the root of the syntax tree of φ and
proceed towards the leaves in the direction of the child that contains more than half the
leaves of φ (while there is one). The vertex, in which the procedure stops, corresponds to
the operator op in β = op(β1, β2) above. Note that ∥α(x)∥ = m− ∥β∥ + 1 < m− m

2 + 1, i.e.,
∥α(x)∥ ≤ m

2 .
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First assume that x does not occur under a ♢-operator in α(x). Then

φ = α(β) ≡SS5

(
α(⊥) ∧ ¬β

)
∨

(
α(⊤) ∧ β

)
(5)

since, in both formulae, β is interpreted in the initial-world (hence the formulae are even
equivalent over SK). By induction hypothesis, there exist formulae α′(x), β′

1, and β′
2 with

α′(x) ≡SS5 α(x) and d(α′(x)) ≤ 8 · (1 + log m
2 ) = 8 · log2 m as well as

β′
i ≡SS5 βi and d(β′

i) ≤ 8 · (1 + log m
2 ) = 8 · log2 m for i ∈ {1, 2}.

Set β′ = op(β′
1, β

′
2). Then β′ is equivalent to β over SS5 and of depth at most 1 + 8 · log2 m.

From (5), it follows that φ ≡SS5

(
α′(⊥) ∧ ¬β′) ∨

(
α′(⊤) ∧ β′) =: φ′. Furthermore, the depth

of φ′ satisfies

d(φ′) = max
{

2 + d
(
α′(x)

)
, 3 + d

(
β′)}

= max {2 + 8 · log2 m, 3 + 1 + 8 · log2 m} ≤ 4 + 8 · log2 m ≤ 8 · (1 + log2 m),

which completes the first case, where x does not occur under a ♢ in α(x).
Otherwise, the variable x occurs in the scope of a ♢-operator. Now, we split α(x) at

the last such ♢, i.e., there exist formulae α1(y) with only one occurrence of y and α2(x)
with only one occurrence of x that, furthermore, does not lie under a ♢-operator, such that
α(x) = α1(♢α2(x)). In particular, ∥α1(y)∥, ∥α2(x)∥ ≤ ∥α(x)∥ ≤ m

2 . By induction hypothesis,
there exist α′

1(y), α′
2(x), β′

1, and β′
2 with

α′
i(z) ≡SS5 αi(z) and d(α′

i(z)) ≤ 8 · log2 m for i ∈ {1, 2} as well as
β′
i ≡SS5 βi and d(β′

i) ≤ 8 · log2 m for i ∈ {1, 2}.
As before, let β′ = op(β′

1, β
′
2) with β′ ≡SS5 β and d(β′) ≤ 1 + 8 · log2 m. Now, consider the

formulae

ψ′ =
(
α′

2(⊥) ∧ ¬β′) ∨
(
α′

2(⊤) ∧ β′) and φ′ =
(
α′

1(⊥) ∧ ¬♢ψ′) ∨
(
α′

1(⊤) ∧ ♢ψ′) .
Then ψ′ ≡SS5 α2(β), since x does not occur under a ♢ in α2(x), hence β is interpreted in the
initial world in both formulae. But also φ′ ≡SS5

(
α1(⊥)∧¬♢ψ′)∨

(
α1(⊤)∧♢ψ′) ≡SS5 α1(♢ψ′)

since, whether or not ♢ψ′ holds in a particular world, does not depend on the choice of the
world (see (4)). Hence φ′ ≡SS5 α1(♢ψ′) ≡SS5 α1(♢α2(β)) = φ. Similar to the first case, one
can show

d(ψ′) = max
{

2 + d
(
α′

2(x)
)
, 3 + d

(
β′)}

≤ 4 + 8 · log2 m and
d(φ′) = max

{
2 + d

(
α′

1(y)
)
, 4 + d

(
ψ′)}

≤ max {2 + 8 · log2 m, 8 + 8 · log2 m} ≤ 8 · (1 + log2 m) ,

which completes the second case and hence the inductive proof. ◀

Let φ ∈ ML[↔]. By the previous lemma, there exists an ML[↔]-formula ψ that is
equivalent to φ over SS5 and has depth d(ψ) ≤ 8 · (1 + log2 ∥φ∥). Let φ′ be obtained
from ψ by replacing each sub-formula α ↔ β by (α ∧ β) ∨ (¬α ∧ ¬β). Then φ′ belongs to
ML, is equivalent to φ over SS5, and the depth increases at most by a factor of three, i.e.,
d(φ′) ≤ 3 · d(ψ) ≤ 3 · 8 · (1 + log2 ∥φ∥) = 24 · (1 + log2 ∥φ∥). Since all operators in φ′ are at
most binary, it follows that

|φ′| ≤ 2d(φ′)+1 ≤ 224·(1+log2 ∥φ∥)+1 ≤ c · ∥φ∥c
′

≤ c · |φ|c
′

for some constants c, c′ > 0.

Hence we verified the following claim.
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▶ Lemma 16. ML[↔] has polynomial translations wrt. SS5 in ML.

Therefore, the modal logic S5 has only one “succinctness class”.

▶ Theorem 17. Let F be a finite set of Boolean functions. Then ML[F ] has polynomial
translations wrt. SS5 in ML.

Proof. Since ↔ is non-locally-monotone, it follows by Theorem 11 that ML[F ] has polynomial
translations wrt. SS5 in ML[↔] and therefore in ML by Lemma 16 above. ◀

4 Conclusion

This paper considers the question whether or not the use of additional Boolean functions
allows for more succinct formulae. For many logics, elimination of locally monotone functions
is possible with polynomial size increase; for arbitrary functions, this holds if we allow
bi-implication to appear in the resulting formula. Regarding propositional logic, it is known
that also bi-implication can be eliminated with polynomial size increase. The same applies
for modal logic if we restrict the class of Kripke structures to equivalence relations. When
considering all reflexive Kripke structures however, this is no longer the case – bi-implication
cannot be eliminated in modal logic without introducing an exponential size increase when
considering a class of Kripke structures that contains all reflexive structures. It remains open,
where exactly the change from polynomial to exponential size increase occurs, e.g., whether
bi-implication can be eliminated with polynomial size increase when considering all reflexive
and symmetric or all reflexive and transitive Kripke structures.
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Abstract
In a directed graph D on vertex set v1, . . . , vn, a forward arc is an arc vivj where i < j. A pair
vi, vj is forward connected if there is a directed path from vi to vj consisting of forward arcs. In the
Forward Connected Pairs Problem (FCPP), the input is a strongly connected digraph D, and the
output is the maximum number of forward connected pairs in some vertex enumeration of D. We
show that FCPP is in APX, as one can efficiently enumerate the vertices of D in order to achieve a
quadratic number of forward connected pairs. For this, we construct a linear size balanced bi-tree T

(an out-branching and an in-branching with same size and same root which are vertex disjoint in
the sense that they share no vertex apart from their common root). The existence of such a T was
left as an open problem (Brunelli, Crescenzi, Viennot, Networks 2023) motivated by the study of
temporal paths in temporal networks. More precisely, T can be constructed in quadratic time (in
the number of vertices) and has size at least n/3. The algorithm involves a particular depth-first
search tree (Left-DFS) of independent interest, and shows that every strongly connected directed
graph has a balanced separator which is a circuit. Remarkably, in the request version RFCPP of FCPP,
where the input is a strong digraph D and a set of requests R consisting of pairs {xi, yi}, there is no
constant c > 0 such that one can always find an enumeration realizing c.|R| forward connected pairs
{xi, yi} (in either direction).
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1 Introduction

Motivated by network design applications, the following problem of scheduling the arcs of a
multi-digraph was mentioned as an open problem in [8] and formally introduced in [2]. The
Maximum Reachability Edge Temporalisation (MRET) consists in assigning a time label
txy ∈ N to each arc xy of a digraph D = (V, A) so as to maximize the number of pairs x, z of
vertices connected by a temporal path, that is a path from x to z where time labels strictly
increase along the path. In the acyclic case, all existing paths can be made temporal using a
topological ordering of the vertices, and transferring the index of a node x to every arc leaving
x. The problem becomes particularly intriguing in the strongly connected case in which
every pair of vertices are connected by a path. It was shown in [2] that MRET is NP-hard
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even restricted to strongly connected digraphs. In the same paper, the authors suggest that
MRET is in APX by conjecturing, in any strongly connected digraph, the existence of some
arc-disjoint in-branching T − and out-branching T + (allowing arbitrary overlapping in terms
of vertices), both with linear size and rooted at the same vertex r.

We show that this conjecture holds, and since the branchings can be constructed in
polynomial time, that MRET is indeed in APX in the strongly connected case. The reason is
that given such branchings T − and T +, it is then straightforward to schedule the arcs of
T − from leaves to r, and then the arcs of T + from r to leaves, to obtain an arc scheduling
temporally connecting |T −| · |T +| pairs of vertices. If both branchings span a fraction c of
vertices, for some c > 0, then this scheduling temporally connects at least a fraction c2 of all
pairs which guarantees approximation ratio at most 1/c2.

Related work

The undirected version of the MRET problem is studied in [10] where it is proven that it is
NP-complete to decide whether an undirected graph has an edge scheduling connecting all
pairs. However, one can easily produce an edge scheduling connecting a constant fraction
of pairs by decomposing a spanning tree at a centroid c so as to produce two disjoint trees
T, T ′ with the same root c and each of them covering one third of the vertices. It is then
straightforward to schedule edges so as to connect a constant fraction of pairs. A similar
(undirected) problem where an edge can be scheduled several times is considered in a series
of papers [1, 11, 12]. The goal is then to minimize the total number of time labels used while
respecting some constraints with respect to connnectivity or the maximum time label used
in particular. Note that scheduling each edge twice is sufficient for temporally connecting
every pair of nodes of a connected undirected graph (a first set of labels can allow each
vertex to reach the root of a spanning tree, while a second set of labels can allow the root
to reach every node). The MRET problem can be seen as a simplified version of the problem
of scheduling buses in a public transit network [8]. Related problems [9, 13] target the
minimization of temporally connected pairs and are driven by applications to mitigation of
epidemic propagation.

It is shown in [3] that it is NP-complete to decide whether a strongly connected digraph
contains an in-branching and an out-branching with same root, which are edge disjoint, and
that both span all vertices. The same paper also relates the conjecture that such branchings
exist if the digraph is c-edge-connected for sufficiently large c. The conjecture holds for
c = 2 in digraphs with independence number at most 2 [4]. It is also shown in [5] that it is
NP-complete to decide whether a strongly connected digraph has a partition of its vertices
into two parts of size at least 2, such that the first part is spanned by an in-branching and
the second part is spanned by an out-branching.

Main results

Our approach is to address these problems from a vertex point of view, which is enough
to obtain an approximation algorithm for MRET. Specifically, we consider two maximization
problems: In the Forward Connected Pairs Problem (FCPP) the goal is to find an enumer-
ation (or ordering) v1, . . . , vn of a strongly connected digraph D = (V, A) such that the
number of pairs vi, vj joined by a directed path with increasing indices (called forward pairs)
is maximized. In the Balanced Bi-Tree Problem (BBTP) the goal is to find an in-tree and
an out-tree only intersecting at their root (thus making a bi-tree) with equal size (to be
maximized). (We use in-tree and out-tree instead of in-branching and out-branching to stress
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the requirement that they share no vertex apart from their common root, and hence do
not span the digraph.) Notice that the former problem, FCPP, is NP-hard, as finding an
enumeration joining n(n − 1)/2 pairs of vertices with forward paths is equivalent to finding a
Hamilton path in the instance (and Hamilton path in general digraphs can easily be reduced
to Hamilton path in strong digraphs).

The main result of this paper is that one can find a solution T of BBTP in time O(n2)
with size at least n/3 − 1. Therefore each in-tree and out-tree has size at least n/6, and by
considering any enumeration of V extending a topological ordering of T , we obtain a solution
of FCPP of size at least n2/36. Since the maximum possible solution of FCPP is n2/2, this
gives a 1/18 approximation for the Forward Connected Pairs Problem. Our construction
can be extended to a weighted digraph where each vertex u is associated to a weight wu. It
then produces a bi-tree where the in-tree and the out-tree both have total weight at least
W/6, where W =

∑
u∈V wu is the total weight of the digraph.

We also consider a covering version CFCPP of FCPP where we look for a minimal set of
orderings of the vertex set such that for every pair x, y, one of xy or yx is a forward pair in
one of the orderings. Since we can cover a positive fraction of pairs, it is natural to wonder if
CFCPP always admits a solution with a constant number of orderings (or at most log n). To
this end, we consider a request variant of the problem, called RFCPP, where we ask to connect
by forward paths a maximum number of pairs among a given set R ⊆

(
V
2
)

of requested pairs.
We provide a family of instances of RFCPP where the number of needed ordering to satisfy
all the requests of R is more than a constant fraction of |R|. We do not know if CFCPP and
RFCPP can be efficiently approximated. This still leaves open the existence of an O(log n)
solution for CFCPP. Note that both CFCPP and RFCPP are NP-hard for the same reason as
FCPP. The approximation of the variant of FCPP extended to general digraphs is also left
open. We think that solving the strong case is a key step towards this more ambitious goal
since the acyclic case can easily be solved exactly as mentioned previously.

Main techniques: left-maximal DFS and balanced circuit separators

From an algorithmic perspective, our solution relies on finding a cyclic balanced separator
C of D. Specifically, the vertex set of D is partitioned into three parts I, C, O such that C

spans a circuit, no arc links a node from I to a node in O, and which is balanced in the sense
that both I ∪ C and C ∪ O have size at least n/3. Note that I and O can be empty, as this
is the case when D is a circuit.

Such a partition can be computed in linear time from a left-maximal depth-first-search
(DFS) tree, that is a DFS tree such that the children of any node are ordered from left-to-right
by non-increasing sub-tree size. Both of these structures could be of independent interest in
the field of digraph algorithms. The computation of a left-maximal DFS is the (quadratic)
complexity bottleneck of our algorithm. We feel that a linear-time algorithm for finding a
cyclic balanced separator should be achievable either by other means, or by relaxing the
requirement on left-maximal DFS (we just need it to be “not too much unbalanced to the
right”). However, actually computing in linear time a left-maximal DFS tree could prove
more challenging. Could decremental SCC help [7]?

2 Definitions

In this paper we consider directed graphs D = (V, A) (digraphs) in which cycles of length
two are allowed. The set V is the set of vertices (usually n of them) and A is the set of arcs.
We say that x, y are connected in D if there exists a directed path from x to y. A digraph
is strongly connected, or simply strong, if all x, y are connected. In particular, if D has n
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13:4 Temporalizing Digraphs via Linear-Size Balanced Bi-Trees

vertices, the number of connected couples x, y is n2. The out-section generated by a vertex x

of D is the set of vertices y for which x, y are connected. We say that x out-generates D if
the out-section of x is V .

A schedule is an injective mapping f of A into the positive integers. In a scheduled
digraph (D, f) we say that a couple of vertices x, y is connected if there is a directed path
x = x1, x2, . . . , xk = y such that f(xixi+1) < f(xi+1xi+2) for all i = 1, . . . , k − 2. We denote
by c(D, f) the number of connected couples and by s(D) the maximum over all choices of
f of c(D, f). We now define our scheduled ratio rs which is the infimum of s(D)/n2 over
strongly connected digraphs D on n vertices, when n goes to infinity.

This ratio rs is based on scheduling arcs, and a similar ratio rt can be defined via a total
order on vertices. We consider for this a digraph D and a total ordering < on its vertices. An
arc xy of D is forward if x < y. We say that a couple (x, y) is connected in (D, <) if there
is a directed path from x to y consisting of forward arcs, and we then call (x, y) a forward
couple. We denote by c(D, <) the number of forward couples and by t(D) the maximum over
all choices of < of c(D, <). The ordered ratio rt is the infimum of t(D)/n2 over strongly
connected digraphs D on n vertices, when n goes to infinity.

The main problem we address in this paper is to show that both rs and rt are positive.
Let us first prove that these questions are related.

▶ Theorem 1. rt ≤ rs

Proof. Given (D, <), we can consider that < is a bijective mapping g from V to 0, . . . , n − 1
respecting the order (that is x < y whenever g(x) < g(y)). Now observe that if one define
f(xy) = n.g(x) + g(y) for every arc, then every forward couple in (D, <) is a connected pair
in (D, f). ◀

Thus we can focus on the following problem.

▶ Problem 2. What is the value of rt?

The fact that rt > 0 is not obvious and is indeed our central result. Observe that we
can assume that D is minimally strongly connected, i.e. every arc xy of D is the unique
directed x, y-path in D. A classical result using ear-decompositions asserts that the number
of arcs of a minimally strongly connected digraph is at most 2n − 2 (see [6] for instance).
Unfortunately we were unable to use these decompositions to prove the positivity of rt. Our
strategy instead is to find inside D a particular type of oriented tree.

An out-tree T + is an orientation of a tree in which one root vertex out-generates T +.
Reversing all arcs, we obtain an in-tree. When identifying the root r of an in-tree T − and
the root of an out-tree T +, we obtain a tree orientation called a bi-tree T where r is the
center. Note that x, y are connected for every x ∈ T − and y ∈ T +. We say that a bi-tree is
balanced if |T +| = |T −|. In particular, if every strongly connected D contains a balanced
bi-tree of linear size, one directly obtains that rt > 0 for Problem 2.

▶ Problem 3. What is the maximum cb for which every strongly connected directed graph on
n vertices has a balanced bi-tree of size at least cb.n?

We show in Theorem 11 that cb ≥ 1/3, where both |T +| and |T −| have size at least 1/6.
One can naturally ask if the enumeration problem directly implies the bi-tree problem. But
the following example shows that this is not true in general.
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▶ Proposition 4. For every integer k, there exists a minimally strongly connected digraph D

on n = 3k2 + 2k + 2 vertices admitting an enumeration E = v1, . . . , vn such that:
the number of forward couples in E is quadratic in n (at least k4), and
the maximal size of a balanced bi-tree only using forward arcs in E is 2k + 5 = O(

√
n).

Proof. Let D be the digraph with vertex set {x} ∪ A ∪ A′ ∪ X ∪ B′ ∪ B ∪ {y} where A′,
B′ have size k and A, B and X all have size k2. Consider (Ai)1≤i≤k a partition of A into
k sets of size k and (Bi)1≤i≤k a partition of B into k sets of size k. Moreover, we denote
by a1, . . . ak the vertices of A′, b1, . . . bk the vertices of B′, and (xi,j)1≤i,j≤k the vertices
of X. Now, add to D the following sets of arcs: {xa : a ∈ A}, {aai : a ∈ Ai} for all
1 ≤ i ≤ k, {aixi,j : j = 1, . . . , k} for all 1 ≤ i ≤ k, {xi,jbj : i = 1, . . . , k} for all 1 ≤ j ≤ k,
{bjb : b ∈ Bj} for all 1 ≤ j ≤ k, {by : b ∈ B} and {yx}. The construction is depicted in
Figure 1.

A X B

x1,2
x1,k

x1,1

x2,1

xk,1
xk,2

xk,k

b2

bk

x y

A′ B′

A1

A2

Ak

ak

a2

a1
B1

b1
B2

Bk

Figure 1 The digraph D in the proof of Proposition 4. An arc between a block and a particular
vertex stands for all the arcs between each vertex of the block and the particular vertex. The arc yx

is not drawn.

The digraph D is strongly connected and has n = 3k2 + 2k + 2 vertices. Furthermore, D

is minimally strongly connected, as for every arc uv we have either d+(u) = 1 (if uv = yx or
u ∈ A ∪ X ∪ B) or d−(v) = 1 (if v ∈ A ∪ X ∪ B).

Consider now any enumeration of D where x is the first vertex, then A is before A′, then
A′ is before X, then X is before B′, then B′ is before B, and finally y is the last vertex. For
such an enumeration all the arcs of D are forward except yx. For every 1 ≤ i, j ≤ k, any
vertex of Ai has a path to any vertex of Bj using the vertex xij . So the number of forward
couples is at least |A|.|B| = k4, which is quadratic in n. However, the largest balanced bi-tree
only using forward arcs has its center in X and has size 2k + 5 = O(

√
n). Indeed, any node

xi,j ∈ X has only one in-neighbor which has itself k in-neighbors, and only one out-neighbor
which has itself k out-neighbors, resulting in 2k + 3 nodes which can further connect to x

and y only. ◀

3 Computing a left-maximal depth first search tree

Given an out-tree T and a node x of T , we denote by Tx the subtree rooted at x consisting
of all vertices in the out-section of x in T . A child of x is an out-neighbor of x in T . Let
D = (V, A) be a directed graph. A depth first search tree T of D (dfs-tree for short) is an
out-tree which is a spanning subgraph of D with the following properties:
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For every node x, there is a total order ≤x on the children of x, which is called a left-right
order.
If y, z are two children of x and there exists an arc of D from Tz to Ty, then y ≤x z (i.e.
arcs between disjoint subtrees goes from right to left).

We are interested in a particular type of dfs-tree called left-maximal in which we have
|Ty| ≥ |Tz| for every node x and children y, z such that y ≤x z. In other words the size of
the child subtrees of any vertex is non-increasing from left to right.

▶ Theorem 5. If x out-generates D, then there exists a left-maximal dfs-tree T rooted at x.
Moreover T can be computed in quadratic time in minimally strongly connected digraphs.

Proof. We construct a left-maximal dfs-tree rooted at x as follows. Compute the strongly
connected components of D \ {x} and their sizes. Consider the acyclic digraph D′ between
components where an arc (C, C ′) indicates that there is an arc from C to C ′ in D. By
traversing D′ according to a reverse topological order, we obtain the size of the out-section
of each node in D \ {x}. Let y be a node with out-section Sy having maximum size. Note
that y belongs to some strongly connected component C which is a source in D′. Since D is
strongly connected, C contains an out-neighbor of x. Free to choose y in C, we assume for
simplicity that xy is indeed an arc. Construct recursively a left-maximal dfs-tree T ′ rooted
at x in D \ Sy, and a left-maximal dfs-tree T ′′ rooted at y in the digraph induced by Sy.
The final out-tree T is obtained by inserting T ′′ as the leftmost child of x in T ′. It is indeed
a dfs-tree as there exists no arc from Sy to any node in D \ T ′ by the definition of outsection.
To realize that it is also left-maximal, consider the leftmost child z of x in T ′. The outsection
Sz of z in D \ {x} has size at most |Sy|, and we thus have |Tz| ≤ |Sz| ≤ |Sy| = |Ty|.

As the computation of strongly connected components, digraph D′, and outsection sizes
can be done in linear time, the whole computation can be done in O(n2) time in minimally
strongly connected graphs (where the number of arcs is linear in the number of vertices). ◀

▶ Problem 6. Can we compute a left-maximal dfs-tree in o(n2) time in minimally strongly
connected digraphs? What about the complexity in the general case?

Let us now introduce our key-definition which is a particular type of partition of a strongly
connected digraph D. To get beforehand a bit of intuition, one can picture a connected
(undirected) graph G with a depth first search tree T drawn on the plane. The key-feature
here is that any path P from the root to a leaf partitions the rest of the graph into two
subsets L and R which are respectively the vertices of V \ P to the left and to the right of P .
In other words, G has a cutset V (P ) (i.e. its removal splits the graph into several connected
components) with a remarkable property since it is spanned by a path. Observe also that
any root-leaf path can be used, so by a classical left-right sweeping argument, one can find
P such that both L and R have size at most 2n/3 (so that the cut is balanced). We now
generalize this argument to strongly connected digraphs, where a directed cycle takes over
the role of P .

An (I, C, O)-decomposition of a strongly connected digraph is defined as:
a partition of V into three subsets I, C, O,
C is spanned by a directed cycle,
there is no arc from I to O.
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Figure 2 Left: a strong digraph (all arcs) with a left-maximal dfs-tree T (plain arcs) and the
(I, C, O) decomposition associated to Tx,y. Nodes are numbered according to the corresponding
dfs traversal. Right: the cycle spanning C (plain arcs), two in-trees spanning I and one out-tree
spanning O.

Observe that, by strong connectivity and the fact that there is no arc from I to O, for
every vertex x in I, there exists a directed path from x to C with internal vertices inside
I. Similarly, for every vertex x in O, there exists a directed path from C to x with internal
vertices inside O. We now show how to get a (I, C, O)-decomposition which is additionally
balanced, that is such that both I ∪ C and O ∪ C have size greater than n/3.

Given a dfs-tree T , we call left path LT the path starting at the root of T and which
iteratively selects the leftmost child of the current vertex as the next vertex of the path. In
particular, in a planar drawing respecting the left-right order of children, LT is the path
from the root to the leftmost leaf. Let x be a vertex of the left path of LT . Given a child y

of x, we define the subtree Tx,y of T as the subtree of Tx containing x and all Tz for z ≤x y.
We call Tx,y a left subtree of T . Note that Tx is the left subtree Tx,y obtained by selecting y

as its rightmost child. Also, if y is the leftmost child, x has only one child in Tx,y.

▶ Proposition 7. For every left subtree Tx,y, there exists an (I, C, O)-decomposition such
that Tx,y is included in I ∪ C and V \ Tx,y is included in O ∪ C.

Proof. As T is a dfs-tree, any arc outgoing from Tx,y \ {x} reaches a vertex in Tx,y or in LT .
By strong connectivity, some arc uv with u ∈ Tx,y \ {x} reaches some vertex in LT between
the root and x (possibly the root or x), and we select uv such that v has minimum distance
from the root in T (see Figure 2 (Left) for an example). Note that v can be equal to x (some
arc u′v′ with u′ ∈ Tx \ Tx,y must then lead to a vertex v′ ∈ LT closer to the root by strong
connectivity). We define C as the cycle formed the path Pvu from v to u in T and the arc
uv. We now set I := V (Tx,y) \ C and O = V \ (C ∪ I). Every arc leaving Tx,y \ {x} reaches
a vertex w of the left-path between v and x by the choice of v. Thus w is in C, and hence
there is no arc from I to O. ◀

▶ Proposition 8. Every strongly connected directed graph with n ≥ 4 vertices has a dfs-tree
T which has a left subtree Tx,y such that n/3 < |Tx,y| < 2n/3.
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Proof. We consider a left-maximal dfs-tree T of D. Scanning the left-path of T from
the root, we consider the first node z such that |Tz| ≤ n/3. Let x be the parent of z. If
|Tz| = n/3, the left subtree Tx,z with size n/3 + 1 is the solution we are looking for. Let y be
the rightmost child of x such that |Tx,y| < 2n/3. Assume for contradiction that |Tx,y| ≤ n/3.
By the definition of z, we have |Tx| > n/3, hence y is not the rightmost child of x. In
particular, y has a (next) right sibling y′. As |Ty′ | ≤ |Tz| < n/3 by left-maximality, we reach
a contradiction to the choice of y since |Tx,y′ | < 2n/3. Thus Tx,y is our solution. ◀

▶ Corollary 9. Every strongly connected directed graph has a balanced (I, C, O)-decomposition.
(i.e. both I ∪ C and O ∪ C have size strictly greater than n/3).

Proof. If n ≥ 4, then this is a direct consequence of Proposition 7 and Proposition 8. The
case n ≤ 3 follows by enumerating the cases. ◀

We now compute a linear size bi-tree from it.

4 Bi-labels

We now consider a directed graph D equipped with a bi-label, that is every vertex x receives
a couple (i(x), o(x)) of positive integers. The weight of D is (i(V ), o(V )), the sum of all i and
o values respectively. Assume that D is a bi-labelled digraph which is the union of a digraph
D′ and an out-tree T + rooted at r ∈ V (D′) such that D′ ∩ T + = {r}. We can transfer the
weight o(T +) to D′ by adding o(T + \ r) to o(r) and removing all the vertices of T + \ r. We
define similarly the transfer operation of i for an in-tree.

Given a bi-tree B of D, the value of B is the pair (a, b) where a is the sum of all i(x) for
x in B− and b is the sum of all o(x) for x in B+. In other words, the value of B is the label
of the center after the transfers of B+ and B−. Observe that if D′ is obtained from D by
some transfer and D′ has a bi-tree with value (a, b), then D also has a bi-tree with value
(a, b).

▶ Theorem 10. If C is a cycle equipped with a bilabel (i, o) of weight (w, w), it contains a
bi-tree with value at least (w/2, w/2).

Proof. Consider a shortest path P in C = x1, . . . , xn such that i(P ) ≥ w/2 or o(P ) ≥ w/2.
Assume without loss of generality that P = C[x1, . . . , xk]. First consider the case where we
have i(P ) ≥ w/2. By minimality of P , we have o(C[xk, . . . , xn]) ≥ w/2, and therefore the
bi-tree B centered at xk such that B+ = C[xk, . . . , xn] and B− = C[x1, . . . , xk] satisfies the
hypothesis. In the case o(P ) ≥ w/2, we proceed similarly with x1 as center. ◀

The bound in Theorem 10 is sharp. Consider for this a directed 4-cycle in which all labels
are (w/4, w/4): any bi-tree has value (a, b) with min{a, b} = w/2.

▶ Theorem 11. Every strong digraph D = (V, A) on n vertices contains a bi-tree B such
that both B+ and B− have size at least n/6.

Proof. By Corollary 9, D has an (I, C, O)-decomposition such that both I ∪ C and O ∪ C

have size at least n/3. Observe that D is spanned by a subgraph S consisting of the directed
cycle spanning C, together with a disjoint collection of in-trees rooted at some vertices
of C and with other vertices in I, and a collection of out-trees rooted at some vertices of
C and with other vertices in O (see Figure 2 (Right) for an example). This comes from
strong connectivity which implies that any node u in I has at least one out-neighbor v and v

must be either in I or in C by the definition of the (I, C, O)-decomposition which forbids
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any arc from I to O. Selecting arbitrarily one out-neighbor for each node in I results in a
collection of in-trees rooted at vertices in C and spanning I. Similarly, selecting arbitrarily
one in-neighbor for each node in O results in a collection of out-trees rooted at vertices in C

and spanning O. We consider that S is a bi-labelled digraph by setting the value (1, 1) to
every vertex. We can then transfer the weight of all in-trees and out-trees to their respective
roots to obtain a bi-label on C with weight at least (n/3, n/3). We now invoke Theorem 10
to obtain a bi-tree with value at least (n/6, n/6) for the cycle, and unfold it by reversing
appropriate transfers to get a bi-tree of S with same value. ◀

As mentioned in the introduction, from the previous results we obtain the following.

▶ Corollary 12. FCCP admits a 1/18-approximation in quadratic time.

Note that the above constructions of left-maximal DFS and bi-tree can be extended to
a weighted digraph D where each vertex u has a non-negative weight wu. Given a subset
U ⊆ V of n′ vertices, we can set wu = 1 for u ∈ U and wu = 0 for u /∈ U to compute similarly
a bi-tree B such that B− and B+ both span n′/6 vertices of U . One can then easily obtain
an ordering of V such that a constant fraction of pairs in U × U are forward-connected.

We now consider the more general version of the problem where we want to connect pairs
in a given set R ⊆

(
V
2
)

of requests.

5 Forward connecting a set of requested pairs

In the Request Forward Connected Pairs Problem (RFCPP), the input is a strongly con-
nected digraph D = (V, A) and a set R ⊆

(
V
2
)

of requests, and the output is a vertex ordering
of D maximizing the number of forward pairs {x, y} ∈ R, that is unordered pairs {x, y}
such that either x, y or y, x is forward. Note that FCPP is the particular instance of RFCPP
satisfying R =

(
V
2
)
. Since FCPP is in APX, it is natural to raise the following problem:

▶ Problem 13. Is there a polytime constant approximation algorithm for RFCPP?

In particular, is it always possible to satisfy a linear fraction of R? In the more restricted
variant where R is a set of couples (x, y) instead of pairs (where one wants to maximize
the number of forward couples x, y), one cannot expect to satisfy a large proportion of R.
Indeed, if D is the circuit (v1, . . . , vn) and R consists of all couples (vi+1, vi), any vertex
ordering can only satisfy at most one request of R, hence only a ratio of 1/n can be realized
as forward couples.

Surprisingly, when requests are pairs, we could not find any set of request R which is not
satisfied within a ratio of 1/ log n. However, contrary to the case of FCPP where a positive
ratio is achievable, the following result shows that there are instances of RFCPP for which
only a logarithmic ratio can be realized as forward pairs.

▶ Proposition 14. For all n, there exists an instance of RFCPP where D has 2n+1 −1 vertices,
R has size n2n−1, and no more than 2n requested pairs can be realized as forward paths.

Proof. The graph D is the complete binary tree of height n seen as a directed graph by
letting each edge to be a circuit of length two. The set of requests is recursively defined in
the following way. We consider the set Ll of all leaves which are descendants of the left child
of the root r and the set Lr of leaves descendants of its right child. Now we pick an arbitrary
perfect matching M between Ll and Lr and set as requests all the |M | pairs formed by the
edges of M . We call this set R1, and recursively define in the same way a set of requests
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for each of the two children of r. We stop when reaching leaves. With the right choice of
matchings, the set of requests can correspond for instance to a hypercube of dimension n on
the leaves. We shall not need it, but it gives a good intuition of the possible structure of
requests.

To sum up, D has 2n+1 − 1 nodes, 2n of them being leaves. Each internal node creates a
matching of requests in its set of descendant leaves, hence the total number of requests is
n.2n−1.

Any ordering < of V (D) can be considered as the sub-digraph D′ of D where we keep
only arcs xy satisfying x < y. Note that this corresponds to an orientation of the edges of
the tree. Our goal is to show that the number of requests x, y which are connected by a
forward path is at most 2n. To show this, for a given node x we denote by rf (x) the number
of requests between descendants of x (in the tree D) which are realized by a forward path.
We also denote by in(x) the number of leaves y descendant of x such that there is a forward
path from y to x. Finally out(x) is the number of leaves z descendant of x such that there is
a forward path from x to z.

We now show by induction that both rf (x) + in(x) and rf (x) + out(x) are upper bounded
by ℓ(x), the number of leaves descendant of x. This is true if x has two leaves as children
since either x is a source (resp. a sink) in D′ and rf (x) + max(in(x), out(x)) = 0 + 2, or x

has both in and out-degree 1 and rf (x) + in(x) = rf (x) + out(x) = 1 + 1. For the induction
step, we assume that x has two children y, z.

if we have both arcs xy, xz in D′, we have rf (x)+ in(x) ≤ rf (x)+out(x) = rf (y)+ rf (z)+
out(y) + out(z), which by induction is at most ℓ(y) + ℓ(z) = ℓ(x).
if we have both arcs yx, zx, we conclude similarly.
if we have both arcs yx, xz, note that rf (x) ≤ rf (y) + rf (z) + min(in(y), out(z)). Also
in(x) = in(y) and out(x) = out(z). Thus, if in(y) ≤ out(z) we have rf (x) + in(x) ≤
rf (x)+out(x) ≤ rf (y)+rf (z)+min(in(y), out(z))+out(z) = rf (y)+in(y)+rf (z)+out(z) ≤
ℓ(y) + ℓ(z) = ℓ(x). And the same conclusion holds when in(y) > out(z).
if we have both arcs xy, zx, we conclude as previously.

Thus the maximum number of forward requests is 2n. ◀

Noteworthily, for the instance in Proposition 14, there is a set of 2n orderings such that
every pair x, y of leaves is forward connected in one of the orderings. Let us call a forward
cover of D a set of vertex orderings ≤1, . . . , ≤k such that for every pair {x, y}, there is some
i such that x, y or y, x is a forward pair in ≤i. This suggests the following conjecture:

▶ Conjecture 15. Every strong digraph D on n vertices has a O(log n) size forward cover.

Conjecture 15 holds when D is a bi-oriented graph, that is an undirected graph considered
as a digraph by replacing each edge {u, v} by two arcs uv and vu. Here is a sketch: it suffices
to consider a spanning tree T of D and to fix a centroid c. We then let T = T1 ∪ T2 where
T1 ∩ T2 = {c} and both T1, T2 have size at least n/3. We consider any vertex enumeration
T1 ≤ c ≤ T2. Now we find recursively in T1 and T2 two families F1 and F2 of vertex
enumerations of size logarithmic in 2n/3. We conclude by gluing (on c) the orderings in F1
and F2 by pairs. We get in total 1 + max(|F1|, |F2|) orders, hence a logarithmic size family.

Another intriguing question is the “forward orientation” of a pair x, y. We have seen that
in some cases, like the circuit, pairs vi, vi+1 are (obviously!) much more likely to be forward
than pairs vi+1, vi. If indeed a forward cover of logarithmic size exists, it could be that some
couples x, y are more involved in a small cover than their reverse y, x. This suggests a kind
of “forwardness” of a pair of vertices which might be interesting to characterize.
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6 Questions

Our main open question concerns Conjecture 15. A possible way to solve it would be to
find O(log n) bi-trees such that for any pair {x, y}, there exists a bi-tree T such that either
x ∈ T − and y ∈ T +, or y ∈ T − and x ∈ T +. The reason is that each bi-tree can easily be
converted to an ordering where each couple (x, y) with x ∈ T − and y ∈ T + is a forward couple.
Note that Conjecture 15 would imply that any instance of RFCPP always have a solution
realizing a 1/O(log n) fraction of requested pairs, opening the possibility for polynomial time
O(log n)-approximation.

Another question concerns the maximum size of a balanced bi-tree that can be found
in any strongly connected digraph with n vertices. Our construction shows that any such
digraph contains a balanced bi-tree where both trees have size n/6. The construction given
in [2] implies that there exists strongly connected digraphs such that in any bi-tree T , either
T − or T + has size at most n/3 + O(1). This leaves a factor 2 gap.

If we relax the bi-tree definition by requiring that the in-branching and the out-branching
are edge disjoint (an in-out-branching) and may overlap over more than one vertex (and
still share the same root). What is the maximum size of a balanced in-out-branching in any
strongly connected digraph? The upper-bound of n/3 + O(1) given in [2] indeed holds for
in-out-branchings. Is there a gap between the maximum size of a balanced in-out-branching
and that of a balanced bi-tree?

More generally, what are the exact values of rs and rt? In other words, what is the
maximum ratio of couples that can be connected through an ordering of the arcs, or an
ordering of the vertices respectively? Is it possible to obtain an interesting lower-bound of rt

as a function of rs?
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Abstract
The online bisection problem is a natural dynamic variant of the classic optimization problem, where
one has to dynamically maintain a partition of n elements into two clusters of cardinality n/2.
During runtime, an online algorithm is given a sequence of requests, each being a pair of elements:
an inter-cluster request costs one unit while an intra-cluster one is free. The algorithm may change
the partition, paying a unit cost for each element that changes its cluster.

This natural problem admits a simple deterministic O(n2)-competitive algorithm [Avin et al.,
DISC 2016]. While several significant improvements over this result have been obtained since the
original work, all of them either limit the generality of the input or assume some form of resource
augmentation (e.g., larger clusters). Moreover, the algorithm of Avin et al. achieves the best known
competitive ratio even if randomization is allowed.

In this paper, we present the first randomized online algorithm that breaks this natural quadratic
barrier and achieves a competitive ratio of Õ(n23/12) without resource augmentation and for
an arbitrary sequence of requests.
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1 Introduction

The clustering of elements into subsets that are related by some similarity measure is
a fundamental algorithmic problem. The problem arises in multiple contexts: a well-known
abstraction is the bisection problem [12] that asks for partitioning of n graph nodes (elements)
into two clusters of size n/2, so that the number of graph edges in the cut is minimized.
This problem is NP-hard and its approximation ratio has been improved in a long line of
papers [20, 1, 8, 7, 13]; the currently best approximation ratio of O(log n) was given by
Räcke [17].

Recently this problem has been studied in a dynamic variant [3, 18], where instead of
a fixed graph, we are given a sequence of element pairs. Serving a pair of elements that are
in different clusters costs one unit, while a request between two elements in the same cluster
is free. After serving a request, an algorithm may modify the partition, paying a unit cost
for each element that changes its cluster.

A natural motivation for this problem originates from data centers where communicating
virtual machines (elements) have to be partitioned between servers (clusters) and the overall
communication cost has to be minimized: by collocating virtual machines on the same
server, their communication becomes free, while the communication between virtual machines
in different clusters involves using network bandwidth. Modern virtualization technology
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supports the seamless migration of virtual machines between servers, but migrations still
come at the cost of data transmission. The goal is to minimize data transmission (across the
network), comprising inter-cluster communication and migration.

This practical application motivates yet another aspect of the problem: the communication
pattern (and, in particular, the sequence of communication pairs) is typically not known
ahead of time. Accordingly, we study the dynamic variant in the online setting, where the
sequence of communication pairs is not known a priori to an online algorithm Alg: Alg has
to react immediately without the knowledge of future communication requests. To evaluate
its performance, we use a standard notion of competitive ratio [6] that compares the cost of
Alg to the cost of the optimal (offline) solution Opt: the Alg-to-Opt cost ratio is subject
to minimization.

Previous Results. Avin et al. introduced the online bisection problem and presented
a simple deterministic online algorithm that achieves the competitive ratio of O(n2) [3].
Their algorithm belongs to a class of component-preserving algorithms (formally defined in
Section 2). Roughly speaking, it splits the request sequence into epochs. Within a single
epoch, it glues requested element pairs together creating components and assigns all elements
of any component to the same cluster. If such an assignment is no longer feasible, i.e.,
components cannot be preserved (kept on the same cluster), an epoch terminates. It is easy
to argue (cf. Section 2) that Opt pays at least 1 in an epoch, and any component-preserving
algorithm pays at most n2, thus being n2-competitive.

Perhaps surprisingly, no better algorithm (even a randomized one) is known for the
online bisection problem. On the negative side, a lower bound of Ω(n) [2] for deterministic
algorithms follows by the reduction from online paging [21].

Our Contribution. We present the first algorithm for the online bisection problem that
beats the quadratic competitive ratio. All previous results with better ratios required some
relaxation: either used resource augmentation or restricted the generality of the input
sequence. Our Improved Component Based algorithm (Icb) is randomized, follows
the component-preserving framework outlined above, and achieves the competitive ratio of
O(n23/12 ·

√
log n).

Our Algorithmic Ideas. Assume that an algorithm follows the component-preserving
framework and we want to improve its cost within a single epoch. We may look at the
problem more abstractly: there is a set of “allowed” partitions (the ones that map elements
to clusters in a component-preserving way), and this set is constantly shrinking. Consider
an algorithm that, whenever it needs to change its partition, changes it to one chosen
uniformly at random from the set of still allowed partitions. Using standard arguments, we
may argue that the algorithm changes its partition at most O(log y) times within an epoch,
where y is the number of “allowed” partitions at the beginning. As the cost of serving the
request and the cost of changing the partition is at most 1 + n, the overall cost of such
routine is O(n · log y).

At the beginning of an epoch y = 2 ·
(

n
n/2

)
, and thus O(n · log y) = O(n2). That is, the

randomized routine itself would fail to beat the quadratic upper bound of [3] if it is applied
to the entire epoch. However, we may execute it in the second stage of an epoch, once the
number of “allowed” partitions drops appropriately.
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In the first stage of an epoch, our proposed algorithm Icb carefully tracks the component
sizes. In a single step, it needs to merge two components into a single one and to map all
elements of the resulting component to the same cluster. To this end, it usually has to move
one of the merged components to the other cluster. A crucial insight is that, most of the time,
the moved component size can be expressed as a linear combination of a moderate number
of existing component sizes: in such case, only limited number of existing components have
to change their clusters.

Converting this intuition into an actual algorithm is not easy. To this end, we provide
a way of maintaining the greatest common divisor (GCD) of a large subset of components, so
that this GCD changes only a few times within an epoch. We use number-theoretic properties
to argue that whenever Icb merges two components into a single one, then usually one of
them is divisible by the current value of GCD, and thus the resulting repartitioning incurs
the movement of only a moderate number of other components.

The low-cost argument depends, however, on the property that not only there are many
components of sizes divisible by GCD, but also both clusters contain sufficiently many of
them. Icb ensures this property by regularly running a “rebalancing” routine. At some
point, maintaining this property is no longer possible. We prove that such failure guarantees
that the total number of “allowed” partitions is appropriately low: Icb switches then to the
second stage of an epoch, where it executes the randomized policy outlined above.

Related Work. The lack of progress toward improving the O(n2) upper bound motivated
the investigation of simplified variants.

A natural relaxation involves resource augmentation, where each cluster of an online
algorithm can accommodate (1 + ε) · (n/2) elements. The performance of an online algorithm
is compared to Opt whose both clusters still have capacity n/2. Surprisingly, the competitive
ratio remains Ω(n) even for large ε (but as long as ε < 1) [2]. On the positive side, Rajaraman
and Wasim showed an O(n log n)-competitive deterministic algorithm for a fixed ε > 0 [19].

Another relaxation was introduced by Henzinger et al. [11] who initiated the study of
the so-called learning variant. In this variant, there exists a fixed partition p̄ (unknown to
an algorithm), and all requests are consistent with p̄ (i.e., given between same-cluster pairs).
Clearly, the optimal solution simply changes its partition to p̄ at the very beginning. The
deterministic variant is asymptotically resolved: the optimal competitive ratio is Θ(n) [15, 16].
For the model where the learning variant is combined with resource augmentation, Henzinger
et al. gave a Θ(log n)-competitive deterministic solution (for any fixed ε > 0) [10].

The online bisection problem has also been studied in a generalized form, where there are
ℓ > 2 clusters, each of size n/ℓ. This extension is usually referred to as online balanced graph
partitioning. Some of the results presented above can be generalized to this variant [2, 3, 10,
11, 15, 16, 19]. This generalization was investigated also in models with a large augmentation
of ε > 1 [2, 9, 10, 18] and in settings with small (or even constant-size) clusters [2, 4, 16].

2 Preliminaries

We have a set V of n elements and two clusters 0 and 1. A valid partition of these elements
is a mapping p : V → {0, 1} such that |p−1(0)| = |p−1(1)| = n/2, i.e., each cluster contains
exactly n/2 elements. For two partitions p and p′, we use dist(p, p′) = |{v ∈ V : p(v) ̸= p′(v)}|
to denote the number of elements that change their clusters when switching from partition p

to p′.
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Problem Definition. An input for the online bisection problem consists of an initial par-
tition p0 and a sequence of element pairs ((ut, vt))t≥1. In step t ≥ 1, an online algorithm
Alg is given a pair of elements (ut, vt): it pays a service cost of 1 if pt−1(ut) ̸= pt−1(vt)
and 0 otherwise. Afterward, Alg has to compute a new partition pt (possibly pt = pt−1)
and pay dist(pt−1, pt) for changing partition pt−1 to partition pt.

For an input I and an online algorithm Alg, we use Alg(I) to denote its total cost
on I, whereas Opt(I) denotes the optimal cost of an offline solution. Alg is γ-competitive
if there exists β, such that Alg(I) ≤ γ ·Opt(I) + β for any input I. While β has to be
independent of I, it may be a function of n. For a randomized algorithm Alg, we replace
Alg(I) with its expectation E[Alg(I)], taken over all random choices of Alg.

Component-Preserving Framework. A natural way of tackling the problem is to split
requests into epochs. In a single epoch, an online algorithm Alg treats requests as edges
connecting requested element pairs. Edges in a single epoch induce connected components of
elements. A component-preserving algorithm always keeps elements of each component in
the same cluster. If it is no longer possible, the current epoch ends, all edges are removed
(each element is now in its own singleton component), and a new epoch begins with the next
step. We note that the currently best O(n2)-competitive deterministic algorithm of [3] is
component-preserving.

Now, we recast the online bisection problem assuming that we analyze a component-
preserving algorithm Alg. First, observe that Alg completely ignores all intra-component
requests (they also incur no cost on Alg). Consequently, we may assume that the input for
Alg (within a single epoch) is a sequence of component sets Ct, where:
C0 is the initial set of n singleton components;
Ct (presented in step t ≥ 1) is created from Ct−1 by merging two of its components,
denoted ct

x and ct
y. They are merged into a component, denoted ct

z, i.e.

Ct = Ct−1 ∪{ct
z} \ {ct

x, ct
y}.

For a given set of components C, let P(C) denote the set of all C-preserving partitions of
n elements into two clusters, i.e., ones that place all elements of a single component of C
in the same cluster. In response to Ct, Alg chooses a Ct-preserving partition pt. If P(Ct)
is empty though, then Alg does not change its partition, and an epoch terminates. The
following observations let us focus on Alg’s behavior in a single epoch only.

▶ Lemma 1. The epoch of any component-preserving algorithm contains at most n− 1 steps,
and the single-step cost is at most n + 1.

Proof. In each step, the number of components decreases. Thus, after n−1 steps, all elements
would be in the same component, and hence P(Cn−1) = ∅. In a single step, an algorithm
pays at most 1 for serving the request and changes the cluster of at most n elements. ◀

▶ Lemma 2. If a component-preserving algorithm Alg pays at most R in any epoch, then
Alg is R-competitive.

Proof. Fix any finished epoch E in an input (any epoch except possibly the last one).
The final step of E serves as a certificate that any algorithm keeping a static partition
throughout E has a non-zero cost. On the other hand, changing partition costs at least 1,
and thus Opt(E) ≥ 1.

The lemma follows by summing costs over all epochs except the last one. Observe that
the cost of the last epoch is at most n2 − 1 (by Lemma 1), and thus can be placed in the
additive term β in the definition of the competitive ratio (cf. Section 2). ◀
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Note that by Lemma 1 and Lemma 2 the competitive ratio of any component-preserving
algorithm (including that of [3]) is at most (n− 1) · (n + 1) < n2.

Notation. For an integer ℓ, we define [ℓ] = {1, 2, . . . , ℓ}. For any finite set A ⊂ N>0, we
use gcd(A) to denote the greatest common divisor of all integers from A; we assume that
gcd(∅) =∞.

For any component c, we denote its size (number of elements) by size(c). Fix any
component set C and an integer i. Let cnti(C) ≜ |{c ∈ C : size(c) = i}| denote the number
of components in C of size i.

Furthermore, fix a partition p ∈ P(C) and a cluster y ∈ {0, 1}. As p is C-preserving,
it is constant on all elements of a given component c ∈ C, and thus we may extend p to
components from C. We define

cnti(C, p, y) ≜ |{c ∈ C : p(c) = y ∧ size(c) = i}|

as the number of components in C of size i that are inside cluster y in partition p.
We extend both notions to sets of sizes, i.e., for any set A, we set cntA(C) ≜

∑
i∈A cnti(C)

and cntA(C, p, y) ≜
∑

i∈A cnti(C, p, y).

3 A Subquadratic Algorithm

Our Improved Component Based algorithm (Icb) is component-preserving. It splits
an epoch into two stages. The first stage is deterministic: with a slight “rebalancing” exception
that we explain later, the components are remapped to minimize the cost of changing the
partition in a single step. At a carefully chosen step that we define later, Icb switches to
the second stage. In any step t of the second stage, if the current partition pt−1 is not
Ct-preserving, Icb chooses pt uniformly at random from P(Ct).

We now focus on describing the first stage of an epoch. Our algorithm Icb uses a few
integer parameters defined below.

Parameter q ∈ [n]. A component size is large if it is greater than q and is small otherwise.
Parameter w ∈ [n]. If cnti(C) ≥ w, we call size i popular (in C).
Parameter d ∈ [n].

Icb works with any values of q, w, d, as long as they satisfy 6 · q4 + 3 ≤ w, q · (2 ·w + 1) ≤ d,
and 2 · d ≤ n. The parameter values yielding the competitive ratio of O(n23/12 ·

√
log n) are

chosen in Theorem 11.

3.1 Helper Notions
First, for any k ∈ N>0 ∪ {∞} we define

⟨k⟩ ≜ {ℓ · k : ℓ ∈ N} ∩ [q].

In particular, ⟨∞⟩ = ∅. That is, ⟨k⟩ contains all small component sizes that are divisible
by k. Observe that

k = gcd(⟨k⟩) for any k ∈ [q] ∪ {∞}. (1)

Second, we introduce the notion of a balanced partition. Fix a set of components C,
a value k, and an integer ℓ. For a given partition p ∈ P(C), we say that p is (k, ℓ)-balanced if

cnt⟨k⟩(C, p, y) ≥ ℓ for y ∈ {0, 1}.
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Algorithm 1 The first stage of an epoch of Icb.
Input: initial partition p0, sequence of component sets C1, C2, . . . , Ct, . . .

Output: sequence of partitions p1, p2, . . . , pt, . . . , where pt is Ct-preserving.
Initialization: g0 ← 1.

Processing Ct (step t ≥ 1)
1: if P(Ct) = ∅ then ▷ no Ct-preserving partition
2: pt ← pt−1
3: terminate the current epoch
4: Bt = {i ∈ [q] : cnti(Ct) ≥ w} ▷ Bt contains small popular sizes
5: gt ← gcd(⟨gt−1⟩ ∩Bt)
6: if P(Ct, gt, 2d) = ∅ then ▷ no Ct-preserving (gt, 2d)-balanced partition
7: pt ← pt−1
8: terminate the first stage of the current epoch
9: p∗

t ← arg minp{dist(pt−1, p) : p ∈ P(Ct)} ▷ pick closest Ct-preserving candidate
10: if p∗

t ∈ P(Ct, gt, d) then ▷ rebalance if necessary
11: pt ← p∗

t

12: else
13: pt ← any partition from P(Ct, gt, 2d)

That is, a (k, ℓ)-balanced partition p of C keeps at least ℓ small components of sizes divisible
by k in each cluster. We use P(C, k, ℓ) ⊆ P(C) to denote the set of all (k, ℓ)-balanced
C-preserving partitions.

3.2 Definition of the First Stage

The pseudo-code of Icb for the first stage is given in Algorithm 1; we describe it also below.

Computing GCD Estimator. Initially, in step t, in Lines 1–3, Icb verifies whether a Ct-
preserving partition exists, and terminates the epoch without changing the current partition
otherwise.

Next, Icb sets Bt to be the set of small popular component sizes of Ct and computes
the value of GCD estimator gt ∈ [q] ∪ {∞}. The computation balances two objectives: on
one hand, we want gt to be the greatest common divisor of Bt, on the other hand, we do
not want gt to change too often. Therefore, gt is defined by the following iterative process
(cf. Lines 4–5): We initialize g0 = 1 (i.e., ⟨g0⟩ = [q]). In step t, we set gt = gcd(⟨gt−1⟩ ∩Bt).
Note that this process ensures that gt ∈ [q] ∪ {∞} for any t.

Triggering the Second Stage. Lines 6–8 ensure that there exists a (gt, 2d)-balanced partition
of Ct. If this is not the case, Icb terminates the first stage without changing its partition
and switches to the second stage of an epoch in the next step.

Choosing a New Partition. Finally, in Lines 9–13, Icb chooses its new partition pt. First,
it computes a candidate partition p∗

t as a Ct-preserving partition closest to pt−1. If p∗
t is

(gt, d)-balanced, it simply outputs pt = p∗
t . Otherwise, it discards p∗

t , and picks any (gt, 2d)-
balanced partition as pt. We call such action rebalancing; we later show that it occurs rarely,
i.e., in most cases pt = p∗

t .
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4 Analysis Roadmap

In this section, we describe the framework of our analysis in a top-down approach, listing the
necessary lemmas that will be proven in the next sections, and showing that their combination
yields the desired competitiveness bound.

Lemma 2 allows us to focus only on the cost of Icb in a single epoch E . We denote its
two stages by E1 and E2; the second stage may be empty if Icb terminates the first stage
already in Lines 1–3. We identify E1 and E2 with the sets of the corresponding steps. In
particular, we use T as the number of steps in the first stage, i.e., E1 = [T ].

The Second Stage. We start from a simpler case, the cost analysis in E2. The lemmas
stated below are proven in Section 6. We assume that E2 is non-empty as otherwise the
associated cost is trivially zero. That is, Icb switches to the second stage because the
condition in Line 6 becomes true, i.e., P(CT , gT , 2d) = ∅.

By observing that in the second stage, Icb is essentially a randomized algorithm solving
the metrical tasks system (MTS) problem [5] on a uniform metric of |P(CT )| points, we
obtain the following bound.

▶ Lemma 3. E[Icb(E2)] = O(n · log |P(CT )|).

The usefulness of the lemma above depends on how well we can bound |P(CT )|, the number
of CT -preserving partitions. The second stage is executed only when P(CT , gT , 2d) = ∅, i.e.,
at step T , all CT -preserving partitions have less than 2d components of sizes from ⟨gT ⟩ in one
of the clusters. This, together with combinatorial counting arguments, implies the following
bound.

▶ Lemma 4. |P(CT )| = exp(O(d · log n + z)), where z = cnt[n]\⟨gT ⟩(CT ).

The term cnt[n]\⟨gT ⟩(CT ) denotes the number of components of sizes outside set ⟨gT ⟩
and we will bound it later using the behavior of Icb in E1.

The First Stage: Rebalancing Costs. Now we switch our attention to the core of our
approach, the first stage of an epoch. Recall that in a single step t, Icb pays at most 1 for
serving the request and dist(pt−1, pt) for changing the partition. We may upper-bound the
latter term by dist(pt−1, p∗

t ) + dist(p∗
t , pt); we call the corresponding summands switching

cost and rebalancing cost. It turns out that the latter part can be upper-bounded using the
former. We define

Icbss(t) ≜ 1 + dist(pt−1, p∗
t ),

Icbrb(t) ≜ dist(p∗
t , pt).

Clearly, Icb(t) ≤ Icbss(t) + Icbrb(t).

▶ Lemma 5. It holds that Icbrb(E1) ≤ O(n · log q) + O(n/d) · Icbss(E1).

The rough idea behind the lemma above (proved formally in Subsection 5.2) is that the
rebalancing cost is at most n and between two consecutive rebalancing actions, Icb pays
already Ω(d) of switching cost. This statement is not always true, but it fails at most for
O(log q) consecutive rebalancing actions.
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14:8 A Subquadratic Bound for Online Bisection

The First Stage: Serving and Switching Costs. By the argument above, it now suffices
to estimate Icbss(E1). In Subsection 5.1 we study the evolution of gt as a function of time
step t. Recall that g0 = 1 and gt ∈ [q] ∪ {∞} for any t. We say that a step t is g-updating if
gt ̸= gt−1.

▶ Lemma 6. The number of g-updating steps within E1 is at most 1 + log q. Furthermore,
⟨gt⟩ ⊆ ⟨gt−1⟩ for each step t of E1.

Recall that ct
x and ct

y are the components merged in step t. To bound the switching cost,
we distinguish between regular and irregular steps. In regular ones, at least one merged
component is small and its size is divisible by gt−1.

▶ Definition 7. A step t is regular if size(ct
x) ∈ ⟨gt−1⟩ or size(ct

y) ∈ ⟨gt−1⟩ and irregular
otherwise.

In Subsection 5.3, we argue that the switching and serving cost in regular steps is o(n). To
this end, we observe that Lines 10–13 executed in step t− 1 ensure (by running rebalancing
if necessary) that pt−1 is (gt−1, d)-balanced partition from P(Ct−1), i.e., both clusters of
partition pt−1 contain at least d small components of sizes divisible by gt−1. This property
becomes useful at the beginning of step t: using number-theoretic arguments, we may bound
the number of components that need to be moved between clusters, so that eventually ct

x

and ct
y end up in the same cluster.

▶ Lemma 8. For any regular and not g-updating step t of E1, Icbss(t) = O(q4).

Finally, in Subsection 5.4, we argue that there are o(n) irregular steps and we also bound
the number of components whose sizes are either large or not divisible by gt.

▶ Lemma 9. There are at most O(q · w + n/q) irregular steps in E1. Moreover, at any
time t of E1, cnt[n]\⟨gt⟩(Ct) = O(q · w + n/q).

Estimating the Total Cost. We may now combine the bounds presented above to prove
the desired competitive ratio.

▶ Lemma 10. For any epoch E, E[Icb(E)] = O((n2/d) · (q4 + q · w + n/q) + n · d · log n).

Proof. We split epoch E into two stages, E1 and E2, and let T = |E1|.
We first upper-bound the cost within E1. Let R ⊆ [T ] be the set of regular steps of E1

that are not g-updating. Then each step from [T ] \R is either irregular or g-updating. By
Lemma 6 and Lemma 9,

|[T ] \R| ≤ (1 + log q) + O(q · w + n/q) = O(q · w + n/q). (2)

This allows us to upper-bound the serving and switching cost of Icb in E1 as

Icbss(E1) =
∑
t∈R

Icbss(t) +
∑

t∈[T ]\R

Icbss(t)

≤
∑
t∈R

O(q4) +
∑

t∈[T ]\R

(n + 1) (by Lemma 8 and Lemma 1)

= |R| ·O(q4) + O(q · w + n/q) · (n + 1) (by (2))
= O(n · (q4 + q · w + n/q)). (as R ≤ T ≤ n− 1)
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The total cost in E1 (including rebalancing) is then

Icb(E1) = Icbss(E1) + Icbrb(E1)
= Icbss(E1) + O(n · log q) + O(n/d) · Icbss(E1) (by Lemma 5)
= O(n2/d) · (q4 + q · w + n/q)).

The total expected cost in E2 (assuming E2 is present) is

E[Icb(E2)] = O(n · log |P(CT )|) (by Lemma 3)
= n ·O(d · log n + cnt[n]\⟨gT ⟩(CT )) (by Lemma 4)
= O(n · (d · log n + q · w + n/q)). (by Lemma 9)

Summing up, the total expected cost in the whole epoch is

E[Icb(E)] = Icb(E1) + E[Icb(E2)]
= O((n2/d) · (q4 + q · w + n/q) + n · d · log n). (as d ≤ n) ◀

▶ Theorem 11. Icb is O(n23/12 ·
√

log n)-competitive for the online bisection problem.

Proof. We set q = ⌈n1/6⌉, w = 6 · q4 + 3, and d = ⌈n11/12/
√

log n⌉. Note that these values
satisfy q · (2 ·w + 1) ≤ d and 2 · d ≤ n for sufficiently large n. Applying Lemma 10, we obtain,

E[Icb(E)] = O
(

(n2/d) · n5/6 + n · d · log n
)

= O
(

n23/12 ·
√

log n
)

.

The theorem follows immediately by Lemma 2. ◀

5 Analysis: the First Stage of ICB

5.1 Structural Properties
For succinctness of arguments, we extend the notion of divisibility. Recall that a | b means
that b is divisible by a and is well defined for any two positive integers a and b. We extend it
also to the cases where a and b are possibly infinite: a | ∞ for any a ∈ N>0 ∪ {∞} and ∞ ∤ b

for any b ∈ N>0.

▷ Claim 12. For any sets of integers A and B, it holds that gcd(A) | gcd(A ∩B).

Proof. The claim follows trivially if A ∩ B = ∅ as in such case gcd(A ∩ B) = ∞. Thus,
we may assume that A ∩ B ≠ ∅ (and hence also A ̸= ∅). Fix any i ∈ A ∩ B: as i ∈ A,
we have gcd(A) | i. Hence, gcd(A) is a divisor of all numbers from A ∩ B, and therefore
gcd(A) | gcd(A ∩B). ◁

We now show that not only is gt monotonically non-increasing, but when it grows in
a g-updating step, the new value is a multiplicity of the old one.

▶ Lemma 6. The number of g-updating steps within E1 is at most 1 + log q. Furthermore,
⟨gt⟩ ⊆ ⟨gt−1⟩ for each step t of E1.

Proof. Fix any step t of E1. By Claim 12, gcd(⟨gt−1⟩) | gcd(⟨gt−1⟩ ∩ Bt). Note, however,
that gcd(⟨gt−1⟩) = gt−1 by (1), and gcd(⟨gt−1⟩ ∩Bt) = gt by the definition of gt (cf. Line 4
of the algorithm). Thus, gt−1 | gt for any step t.
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If gt <∞, then gt−1 <∞, and consequently ⟨gt⟩ ⊆ ⟨gt−1⟩ follows by the definition of ⟨·⟩.
Otherwise gt = ∞, in which case ⟨gt⟩ = ∅ ⊆ ⟨gt−1⟩. Thus, the second part of the lemma
follows.

For the first part, let ℓ be the number of all g-updating steps within E1; we denote them
by τ(1), τ(2), . . . , τ(ℓ). Let τ(0) = 0. For any i ∈ {0, . . . ℓ − 1}, it holds that gτ(i) | gτ(i+1)
and gτ(i) ̸= gτ(i+1), which implies gτ(i+1) ≥ 2 · gt(i). While it is possible that gτ(ℓ) =∞, we
have gτ(ℓ−1) <∞, and thus gτ(ℓ−1) ≤ q. Hence, gτ(ℓ−1) ≥ 2ℓ−1 · gτ(0) = 2ℓ−1, and therefore
2ℓ−1 ≤ q, which concludes the first part of the lemma. ◀

5.2 Rebalancing Cost
We first argue that between two consecutive rebalancing events Icb accrues sufficiently large
serving and switching costs.

▷ Claim 13. Let a and b be two consecutive steps where rebalancing is executed. If ga = gb,
then

∑b
t=a+1 Icbss(t) ≥ d/3.

Proof. For any step t ∈ {a + 1, . . . , b− 1}, there is no rebalancing in t, and thus pt = p∗
t .∑b

t=a+1 Icbss(t) =
∑b

t=a+1(1 + dist(pt−1, p∗
t ))

= (b− a) +
(∑b−1

t=a+1 dist(pt−1, p∗
t )

)
+ dist(pb−1, p∗

b)

= (b− a) +
∑b−1

t=a+1 dist(pt−1, pt) + dist(pb−1, p∗
b)

≥ (b− a) + dist(pa, p∗
b),

where the final relation follows by the triangle inequality. If b− a ≥ d/3, the lemma follows
immediately, and thus we assume otherwise and we will show that dist(pa, p∗

b) ≥ d/3. Let
g = ga = gb.

As rebalancing was triggered in step b, we have p∗
b /∈ P(Cb, g, d). That is, partition p∗

b has
less than d components from Cb of sizes from ⟨g⟩ in one of the clusters (say, in cluster 0).
Observe that Ca can be obtained from Cb by going back in time and reversing component
merges, i.e., performing b− a splits of components. Each such split may create two extra
components of size from ⟨g⟩. Hence, partition p∗

b keeps less than d + 2 · (b− a) < d + (2/3) · d
components of Ca of sizes from ⟨g⟩ in cluster 0.

Due to rebalancing in step a, we have pa ∈ P(Ca, g, 2d), i.e., pa keeps 2d components
of Ca in cluster 0. Therefore, dist(pa, p∗

b) ≥ d/3, which concludes the proof. ◁

▶ Lemma 5. It holds that Icbrb(E1) ≤ O(n · log q) + O(n/d) · Icbss(E1).

Proof. Let ℓ be the number of rebalancing events within E1. Thus, there are ℓ− 1 disjoint
chunks between two consecutive steps with rebalancing events. By Lemma 6, at most 1+log q

of these chunks contain g-updating steps. We may apply Claim 13 to the remaining chunks,
which yields Icbss(E1) =

∑
t∈[T ] Icbss(t) ≥ (ℓ − 2 − log q) · (d/3). On the other hand, the

cost of a single rebalancing event is at most n, and thus

Icbrb(E1) ≤ ℓ · n = (2 + log q) · n + (ℓ− 2− log q) · (d/3) · (3n/d)
≤ O(n · log q) + (3n/d) · Icbss(E1). ◀

5.3 Bounding Switching Costs in Regular Steps
In this section, we show that the switching cost in regular steps is small. We start with
a number-theoretic bound; its proof is deferred to the appendix.
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▷ Claim 14. Let A = {a1, a2, . . . , ak} ⊂ N>0 and B = {b1, b2, . . . , bℓ} ⊂ N>0 be two
non-empty and disjoint sets of positive integers. Let g = gcd(A ⊎B) and H = max(A ⊎B).
Then, there exist non-negative integers r1, r2, . . . rk, s1, s2, . . . sℓ, such that

k∑
i=1

ri · ai = g +
ℓ∑

i=1
si · bi.

Moreover,
∑k

i=1 ri · ai ≤ 3 · (k + ℓ) ·H2.

We now proceed to prove several helper claims showing that, in a non-g-updating step t,
both clusters contain sufficiently many components whose sizes are divisible by gt−1.

▷ Claim 15. For any step t of E1, it holds that gt−1 <∞.

Proof. As g0 = 1, the lemma holds trivially for t = 1. Hence, we assume that t > 1. Suppose
that gt−1 = ∞. Then, ⟨gt−1⟩ = ∅, and therefore, there is no Ct−1-preserving (gt−1, 2d)-
balanced partition. Thus, when Icb executes Lines 6–8 in step t− 1, it would terminate E1
already in step t− 1. ◁

▷ Claim 16. For any non-g-updating step t, there exists a non-empty set A ⊆ [q], such that
gcd(A) = gt,
cnti(Ct−1) ≥ w − 1 for any i ∈ A,
cntA(Ct−1, pt−1, y) ≥ q · w for any cluster y ∈ {0, 1}.

Proof. We will show that set A ≜ ⟨gt−1⟩ ∩Bt ⊆ [q] satisfies the properties of the lemma.
For the first property, observe that by Line 5 of the algorithm, gt = gcd(⟨gt−1⟩ ∩Bt), and

thus gcd(A) = gt. As step t is not g-updating, gt = gt−1. By Claim 15, gt−1 <∞, and thus
gt <∞ as well, which implies that A is non-empty.

As A ⊆ Bt, the definition of Bt implies that cnti(Ct) ≥ w for any i ∈ A. There is only
one component, ct

z, that is present in Ct, but not present in Ct−1. Thus, cnti(Ct−1) ≥ w − 1
for any i ∈ A. This proves the second property of the lemma.

Finally, to show the third property, we fix any y ∈ {0, 1}. Lines 10–13 executed in
step t− 1 ensure that pt−1 ∈ P(Ct−1, gt−1, d), i.e., cnt⟨gt−1⟩(Ct−1, pt−1, y) ≥ d.

Fix any size i ∈ ⟨gt−1⟩ \A. By the definition of A, we have i /∈ Bt, and thus cnti(Ct) ≤
w− 1. As there are only two components, ct

x and ct
y, that are present in Ct−1 but not present

in Ct, we have cnti(Ct−1) ≤ w + 1. Hence,

cntA(Ct−1, pt−1, y) = cnt⟨gt−1⟩(Ct−1, pt−1, y)− cnt⟨gt−1⟩\A(Ct−1, pt−1, y)
≥ d− |⟨gt−1⟩ \A| · (w + 1)
≥ d− q · (w + 1)
≥ q · w.

where the last inequality follows as we assumed that d ≥ q · (2 · w + 1) in the definition of
the algorithm. ◁

▷ Claim 17. For any non-g-updating step t, at least one of the following properties holds:
cntgt(Ct−1, pt−1, y) ≥ w for each cluster y ∈ {0, 1}.
There exists two disjoint, non-empty sets A0, A1 ⊆ [q], such that gcd(A0 ⊎A1) = gt and
for each y ∈ {0, 1} and i ∈ Ay, it holds that cnti(Ct−1, pt−1, y) ≥ (w − 1)/2.
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Proof. Let A be the set guaranteed by Claim 16. As |A| ≤ q, the third property of Claim 16
implies that

cntA(Ct−1, pt−1, y) ≥ |A| · w for any y ∈ {0, 1}. (3)

If |A| = 1, then gcd(A) = gt implies that A = {gt}. In such a case, the first condition of the
lemma holds.

Hence, below we assume |A| ≥ 2 and we will partition A into A0 and A1, satisfying the
second property of the lemma. For any cluster y ∈ {0, 1}, let

A′
y ≜ { i ∈ A : cnti(Ct−1, pt−1, y) ≥ (w − 1)/2 }.

By the second property of Claim 16, cnti(Ct−1) ≥ w−1 for any i ∈ A, and thus A′
0∪A′

1 = A.
By (3) both A′

0 and A′
1 are non-empty. Thus, they satisfy all conditions of the second lemma

property except being possibly non-disjoint. To fix it, we consider three cases.
If A′

0 \A′
1 ̸= ∅, then we set A0 = A′

0 \A′
1 and A1 = A′

1.
If A′

1 \A′
0 ̸= ∅, then we set A1 = A′

1 \A′
0 and A0 = A′

0.
If A′

0 \ A1 = A′
1 \ A′

0 = ∅, then A′
0 = A′

1 = A. As |A| ≥ 2, we simply take any element
j ∈ A, and set A0 = {j} and A1 = A \ {j}. ◁

▶ Lemma 8. For any regular and not g-updating step t of E1, Icbss(t) = O(q4).

Proof. Recall that Icbss(t) = 1 + dist(pt−1, p∗
t ), and p∗

t is the partition from P(Ct) closest to
pt−1. Thus, our goal is to construct a partition p ∈ P (Ct) (on the basis of pt−1), such that
dist(pt−1, p) = O(q4).

Recall that ct
x and ct

y are the components merged in step t. We may assume that partition
pt−1 maps ct

x and ct
y to two different clusters, as otherwise pt−1 ∈ P (Ct), and the lemma

follows by simply taking p = pt−1.
By the lemma assumption, gt = gt−1. As step t is regular, the size of either ct

x or ct
y (or

both) is from ⟨gt−1⟩ = ⟨gt⟩. Without loss of generality, we assume that size(ct
x) ∈ ⟨gt⟩ and

let x = size(ct
x). As x ∈ ⟨gt⟩, we have gt <∞ and gt | x. Without loss of generality, we may

assume that pt−1(ct
x) = 1, i.e., ct

x is in cluster 1 at the beginning of step t.
We will create p from pt−1 by moving components between clusters so that ct

x changes
its cluster, ct

y does not change its cluster, and in total, at most O(q4) elements change their
clusters. This will ensure that p ∈ P(Ct) and dist(pt−1, p) = O(q4).

Assume first that pt−1 maps at least x/gt + 1 components of size gt to cluster 0 (i.e.,
cntgt

(Ct−1, pt−1, 0) ≥ x/gt + 1). At least x/gt of these components are different than ct
y,

and thus, we may simply swap ct
x with them, at a total cost of 2x ≤ 2q.

Hence, in the following, we assume that cntgt
(Ct−1, pt−1, 0) < x/gt + 1. This implies

cntgt(Ct−1, pt−1, 0) < q+1 ≤ w. As the first property of Claim 17 is false, the second one must
hold. That is, there exist two disjoint, non-empty sets A0, A1 ⊆ [q], such that gcd(A0⊎A1) =
gt. Furthermore, for any y ∈ {0, 1} and i ∈ Ay, it holds that cnti(Ct−1, pt−1, y) ≥ (w− 1)/2.
By Claim 14 applied to sets A0 and A1, there exist non-negative integers ri, such that∑

i∈A0
ri · i = gt +

∑
i∈A1

ri · i.

and
∑

i∈A0
ri · i ≤ 3 · (|A0| + |A1|) · q2 ≤ 3 · q3. This also implies that ri ≤ 3 · q3 for any

i ∈ A0 ⊎A1. Multiplying both sides by x/gt, we obtain∑
i∈A0

x · ri

gt
· i = x +

∑
i∈A1

x · ri

gt
· i. (4)

We create p from pt−1 by executing the following actions:
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For any i ∈ A0, move x · ri/gt components of size i (other than ct
y) from cluster 0 to

cluster 1.
For any i ∈ A1, move x · ri/gt components of size i (other than ct

x) from cluster 1 to
cluster 0.
Move component ct

x from cluster 1 to cluster 0.
We observe that these actions are feasible: For any i ∈ A0, we have x · ri/gt ≤ q · ri ≤
3 · q4 ≤ (w − 1)/2− 1, so cluster 0 contains an appropriate number of components of size i

(different from ct
y). Analogously, for any i ∈ A1, cluster 1 contains an appropriate number

of components of size i (different from ct
x). Next, the resulting partition p is Ct-preserving

as both ct
x and ct

y end up in cluster 0, and (4) ensures that the total number of elements in
each cluster remains unchanged.

Finally, the number of elements that change their cluster is

dist(pt−1, p) = 2
∑
i∈A0

x · ri

gt
· i ≤ 2 · q ·

∑
i∈A0

ri · i ≤ 6 · q4. ◀

5.4 Bounding the Number of Irregular Merges

To bound the number of irregular steps, we trace the evolution of components. Recall that
Ct = Ct−1 ∪{ct

z}\{ct
x, ct

y}, i.e., components ct
x and ct

y are merged in step t into component ct
z.

We say that components ct
x and ct

y are destroyed in step t and component ct
z is created in

step t. We extend these notions also to the (singleton) components of C0, where we say that
they are created in step 0, and to components of CT , where we say that they are destroyed
in step T + 1.

We now fix a small component c created at time a and destroyed at time b. Note that
0 ≤ a < b ≤ T + 1. By Lemma 6, ⟨gb−1⟩ ⊆ ⟨ga⟩. We say that the component c is

typical if size(c) ∈ ⟨gb−1⟩,
mixed if size(c) ∈ ⟨ga⟩ \ ⟨gb−1⟩,
atypical if size(c) /∈ ⟨ga⟩.

That is, each component is either large, typical, atypical, or mixed. In particular, in a regular
merge, at least one of the merged components is typical.

▷ Claim 18. Assume step t is not g-updating and both ct
x and ct

y are typical. Then, ct
y is

not atypical.

Proof. As components are typical, size(ct
x) ∈ ⟨gt−1⟩ and size(ct

y) ∈ ⟨gt−1⟩, and therefore
gt−1 | size(ct

x) and gt−1 | size(ct
y). As size(ct

z) = size(ct
x)+size(ct

y), we have gt−1 | size(ct
z).

Finally, as step t is not g-updating, gt = gt−1, and hence gt | size(ct
z). If ct

z is large then the
lemma follows immediately. If ct

z is small, then we have size(ct
z) ∈ ⟨gt⟩, and thus ct

z cannot
be atypical. ◁

Merge Forest. It is convenient to consider the following merge forest F , whose nodes
correspond to all components created within E1. We connect these nodes by edges in
a natural manner: the leaves of F correspond to initial singleton components of C0, and each
non-leaf node of F corresponds to a component created by merging its children components.
We say that the node of F is large/typical/atypical/mixed if the corresponding component
is of such type.

STACS 2024
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Types of Irregular Merges. To upper-bound the number of irregular merges, we subdivide
them into three types.

All-large irregular merges: both merged components are large (and the resulting component
is clearly large as well).
Mixed-resulting irregular merges: the created component is mixed.
Ordinary irregular merges: all other irregular merges.

We bound the number of these merges separately in the following three lemmas.

▷ Claim 19. F contains at most n/q large nodes whose both children are also large.

Proof. Let L be the set of large nodes of F . Clearly, L is “upward-closed”, i.e., if L contains
a node, then it also contains its parent. Let FL be the sub-forest of F induced by nodes
from L. We partition L into three sets: L0, L1 and L2, where a component from Li has
exactly i children in FL. We need to show that |L2| ≤ n/q.

As L2 contains the branching internal nodes of FL and L0 contains the leaves of FL, we
have |L2| < |L0|. All components from L0 are large, i.e., each of them consists of at least
q + 1 nodes. Fix any two components from L0. As they are leaves of FL, they are not in the
ancestor-descendant relation in FL (and not in F), and hence the sets of their elements are
disjoint. Thus, all components of L0 are disjoint, which implies |L0| · (q + 1) ≤ n. Summing
up, |L2| < |L0| ≤ n/(q + 1). ◁

▷ Claim 20. F contains at most q · w mixed nodes.

Proof. Fix any mixed node corresponding to component c that is created at step a and
destroyed at step b > a. By Lemma 6, ⟨ga⟩ ⊇ ⟨ga+1⟩ ⊇ . . . ⊇ ⟨gb−1⟩. As size(c) ∈ ⟨ga⟩ and
size(c) /∈ ⟨gb−1⟩, there exists a step t ∈ [a + 1, b− 1], such that size(c) ∈ ⟨gt−1⟩ \ ⟨gt⟩. We
say that component c is t-mixed.

We now fix a step t and show that the number of t-mixed components is at most
w · |⟨gt−1⟩ \ ⟨gt⟩|. Fix j ∈ ⟨gt−1⟩ \ ⟨gt⟩. We show that at step t, the number of components
of size j is at most w. Suppose for a contradiction that cntj(Ct) ≥ w. Then, j ∈ Bt. As
j ∈ ⟨gt−1⟩, we have j ∈ ⟨gt−1⟩ ∩ Bt. On the other hand, gt = gcd(⟨gt−1⟩ ∩ Bt), and thus
gt | j. However, as j ∈ [q], we would then have j ∈ ⟨gt⟩, a contradiction.

As any mixed node is t-mixed for a step t ∈ [T ], the total number of all mixed nodes is at
most

∑
t∈[T ] w · |⟨gt−1⟩ \ ⟨gt⟩| ≤ w · |⟨g0⟩ \ ⟨gT ⟩| ≤ w · |⟨g0⟩| = w · q. ◁

It remains to bound the number of ordinary irregular merges. To this end, we define the
following amounts (for any step t ≥ 0).

at is the number of components in Ct that are atypical or mixed.
It is the number of ordinary irregular merges in steps 1, 2, . . . , t.

▷ Claim 21. For any step t ≥ 0, it holds that at = O(q · w) and It = O(q · w).

Proof. Let Rt be the number of (regular or irregular) merges in steps 1, 2, . . . , t in which
ct

z (the created component) is mixed. Let Ut be the number of g-updating steps among steps
1, 2, . . . , t. We inductively show that

at + It ≤ 2 · (Rt + Ut). (5)

The lemma will follow as Rt = O(q · w) by Claim 20 and Ut ≤ 1 + log q by Lemma 6.
The base case (t = 0) holds as both sides are then trivially equal to 0. We assume that

(5) holds for step t− 1 and we show it for step t. Let ∆a = at − at−1; we define ∆I, ∆R,
and ∆U analogously. It suffices to show that

∆a + ∆I ≤ 2 · (∆R + ∆U). (6)
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Observe that ∆a ∈ {−2,−1, 0, 1} and ∆I ∈ {0, 1}. Thus, if either ∆R ≥ 1 or ∆U ≥ 1,
then (6) holds trivially. This happens when step t is g-updating or ct

z is mixed.
Thus, in the remaining part of the proof, we assume that step t is not g-updating and

the ct
z is not mixed. In such case, ∆R = 0 and ∆U = 0, and thus it remains to show that

∆a + ∆I ≤ 0. (7)

We consider a few cases depending on the merge type at step t. As ct
z is not mixed, the

merge cannot be mixed-resulting irregular.
Merge is regular, i.e., at least one of the merged components, say ct

x, is typical. Then,
∆I = 0, and we will show that ∆a ≤ 0.

If ct
y is also typical, then Claim 18 implies that ct

z cannot be atypical. As we assumed
ct

z is not mixed, it must be either large or typical. Hence, ∆a = 0.
If ct

y is large, then ct
z is large as well, and then ∆a = 0.

If ct
y is atypical or mixed, then ∆a ≤ 0.

Merge is all-large irregular. Then, ∆I = 0 and ∆a = 0.
Merge is ordinary irregular, i.e., ∆I = 1. We will show that ∆a ≤ −1. If both ct

x and ct
y

are atypical or mixed, then we immediately obtain ∆a ≤ −1. Otherwise, we note that the
merge is irregular, and hence neither ct

x nor ct
y is typical. Thus, one of them is large and

the second one is atypical or mixed. Then, ct
z is large as well, and thus ∆a ≤ −1 as well.

In either case, (7) follows, which concludes the inductive proof. ◁

▶ Lemma 9. There are at most O(q · w + n/q) irregular steps in E1. Moreover, at any
time t of E1, cnt[n]\⟨gt⟩(Ct) = O(q · w + n/q).

Proof. There are at most n/q all-large irregular steps by Claim 19, at most q · w mixed-
resulting irregular steps by Claim 20, and IT = O(q ·w) ordinary irregular steps by Claim 21.
This shows the first part of the lemma.

For the second part, fix any step t. Observe that components whose sizes are from
[n] \ ⟨gt⟩ are not typical, i.e., they must be either large, atypical, or mixed. Trivially, there
are at most n/(q + 1) large components, and the number of atypical and mixed components
is at = O(q · w) by Claim 21. ◀

6 Analysis: the Second Stage of ICB

▶ Lemma 3. E[Icb(E2)] = O(n · log |P(CT )|).

Proof. At the beginning of E2, there are |P(CT )| CT -preserving partitions. In a step t of E2,
Icb chooses a new partition only when its current partition is not Ct-preserving. In such
case, it chooses a new partition pt uniformly at random from P(Ct).

Thus, we may treat the problem as the metrical task system (MTS) on |P(CT )| states,
where the adversary makes the states (partitions) forbidden in some specified order. Icb
then basically executes (a single phase of) the known randomized algorithm for MTS on
a uniform metric [5]. By the result of [5], the expected number of times when Icb is forced
to choose a new partition is O(log |P(CT )|). Whenever that happens, Icb pays at most n + 1
(cf. Lemma 1), and thus E[Icb(E2)] = (n + 1) ·O(log |P(CT )|). ◀

▶ Lemma 4. |P(CT )| = exp(O(d · log n + z)), where z = cnt[n]\⟨gT ⟩(CT ).
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Proof. Recall that |P(CT )| is the number of ways we can feasibly assign components of CT to
two clusters at the end of the first stage. We partition components of CT into set A containing
components of sizes from ⟨gT ⟩ and set B containing components of sizes outside ⟨gT ⟩, i.e.,
|B| = z. We separately upper-bound the number of ways of assigning components from A

and components from B to two clusters.
We assume that the second stage is present as otherwise |P(CT )| = 0. Thus, the condition

in Line 6 of the algorithm guarantees that P(CT , gT , 2d) = ∅, i.e., each feasible mapping has
less than 2 · d of components from A at least on one side. Thus, the overall number of ways
of partitioning sets of A among two clusters is at most

2d−1∑
i=0

2 ·
(
|A|
i

)
≤

2d−1∑
i=0

2 ·
(

n

i

)
≤ 4d ·

(
n

2d

)
≤ 4d · e2d · n2d

(2d)2d
= exp(O(d · log n)).

As the components of B can be assigned to two clusters in at most 2|B| = 2z ways, we
have |P(Ct)| ≤ 2z · exp(O(d · log n)). ◀

7 Final Remarks

In this paper, we provided the first algorithm for the online bisection problem with the
competitive ratio of o(n2). Extending the result to a more general setting of online balanced
graph partitioning (i.e., multiple-cluster case) is an intriguing open problem. We note that
our algorithm Icb has non-polynomial running time; we conjecture that without resource
augmentation, achieving a subquadratic competitive ratio in polynomial time is not possible.
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A Proof of Claim 14

▷ Claim 14. Let A = {a1, a2, . . . , ak} ⊂ N>0 and B = {b1, b2, . . . , bℓ} ⊂ N>0 be two
non-empty and disjoint sets of positive integers. Let g = gcd(A ⊎B) and H = max(A ⊎B).
Then, there exist non-negative integers r1, r2, . . . rk, s1, s2, . . . sℓ, such that

k∑
i=1

ri · ai = g +
ℓ∑

i=1
si · bi.

Moreover,
∑k

i=1 ri · ai ≤ 3 · (k + ℓ) ·H2.

Proof. By the bound given by Majewski and Havas [14], there exist coefficients r̃1, r̃2, . . . r̃k

and s̃1, s̃2, . . . s̃ℓ, such that |r̃i| ≤ max{H/2g, 1} ≤ H and |s̃i| ≤ max{H/2g, 1} ≤ H for
any i, and

k∑
i=1

r̃i · ai = g +
ℓ∑

i=1
s̃i · bi. (8)
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However, these coefficients are not necessarily non-negative. To fix it, let

r1 = r̃1 + ⌈H/b1⌉ · b1 +
∑ℓ

i=1⌈H/a1⌉ · bi,

ri = r̃i + ⌈H/b1⌉ · b1 for i ∈ {2, . . . , k},

s1 = s̃1 + ⌈H/a1⌉ · a1 +
∑k

i=1⌈H/b1⌉ · ai,

si = s̃i + ⌈H/a1⌉ · a1 for i ∈ {2, . . . , ℓ}.

We argue that the values above satisfy the lemma conditions. First, note that ri ≥ r̃i + H

and si ≥ s̃i + H, and thus ri and si are non-negative for every i.
To show that ri’s and si’s satisfy the identity required by the lemma, we analyze the

following term∑k
i=1(ri − r̃i) · ai = (r1 − r̃1) · ai +

∑k
i=2(ri − r̃i) · ai

=
(
⌈H/b1⌉ · b1 +

∑ℓ
i=1⌈H/a1⌉ · bi

)
· a1 +

∑k
i=2⌈H/b1⌉ · b1 · ai

= ⌈H/a1⌉ · a1 ·
∑ℓ

i=1 bi + ⌈H/b1⌉ · b1 ·
∑k

i=1 ai. (9)

In the same way, but swapping the roles of a’s and r’s with b’s and s’s, we obtain∑ℓ
i=1(si − s̃i) · bi = ⌈H/b1⌉ · b1 ·

∑k
i=1 ai + ⌈H/a1⌉ · a1 ·

∑ℓ
i=1 bi. (10)

Therefore, (9) and (10) together imply
∑k

i=1(ri − r̃i) · ai =
∑ℓ

i=1(si − s̃i) · bi. Combining
this relation with (8), immediately yields

k∑
i=1

ri · ai = g +
ℓ∑

i=1
si · bi.

It remains to upper-bound
∑k

i=1 ri ·ai. Note that for any z ≤ H, it holds that ⌈H/z⌉ ·z <

(H/z + 1) · z ≤ H + z ≤ 2H. Hence, using r̃i ≤ H (for every i) and (9), we obtain∑k
i=1 ri · ai =

∑k
i=1 r̃i · ai +

∑k
i=1(ri − r̃i) · ai

≤ H ·
∑k

i=1 ai + ⌈H/a1⌉ · a1 ·
∑ℓ

i=1 bi + ⌈H/b1⌉ · b1 ·
∑k

i=1 ai

≤ H ·
(

3 ·
∑k

i=1 ai + 2 ·
∑ℓ

i=1 bi

)
≤ (3 · k + 2 · ℓ) ·H2. ◁
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Abstract
The dynamic offline linear arrangement problem deals with reordering n elements subject to
a sequence of edge requests. The input consists of a sequence of m edges (i.e., unordered pairs of
elements). The output is a sequence of permutations (i.e., bijective mapping of the elements to n

equidistant points). In step t, the order of the elements is changed to the t-th permutation, and
then the t-th request is served. The cost of the output consists of two parts per step: request cost
and rearrangement cost. The former is the current distance between the endpoints of the request,
while the latter is proportional to the number of adjacent element swaps required to move from one
permutation to the consecutive permutation. The goal is to find a minimum cost solution.
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1 Introduction

This paper is motivated by a growing interest in optimization problems in a dynamic
setting [22, 26]. By dynamic we mean that constrains or penalties associated with requests
are ephemeral (i.e., disappear after the request is served). Such problems are well established
in the online setting (e.g., metrical task systems [21] or server problems [17]), but are also of
interest in the offline case.

A special case of dynamic optimization is the dynamic version of the classic Minimum
Linear Arrangement problem (MLA). In the Minimum Linear Arrangement (MLA) problem,
the input consists of a graph G = (V, E). The output is an ordering of elements of V (i.e.,
a bijection π from V to {1, . . . , n}). The cost of the solution is the total stretch of the edges,
i.e.,

∑
(u,v)∈E |π(u) − π(v)|, and the goal is to find an ordering with minimum cost. The

MLA problem is NP-hard [11]. A large variety of ideas and approximation techniques were
developed for MLA [14, 7, 28] culminating in an O(

√
log n · log log n)-approximation [2, 8].

Recently, the MLA problem has been studied in a dynamic setting, where the input consists
of a sequence of m edges, and an algorithm has to output a sequence of permutations [22]. For
a given edge (u, v) (a request) appearing in the input sequence, an algorithm may first change
its current permutation π of elements paying γ for each swap of adjacent elements, and then
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it has to pay the usual price of |π(u) − π(v)|. The parameter γ > 0 is used to quantify the
ratio between the cost of swapping an adjacent pair and serving a request between adjacent
vertices. While the problem is appealing from the theoretical point of view, its solution can
be also used for track management in domain wall memory [13, 22]. Olver et al. [22] proved
that the dynamic variant of MLA admits a randomized O(log2 n)-approximation for γ = 1.

As our problem definition does not specify the initial permutation1, setting γ > n · m

penalizes rearrangement to the extent that every solution with even one swap is suboptimal.
Hence, in this setting, the DMLA problem reduces to the static MLA problem, thus proving
that DMLA is NP-hard.

1.1 Our Result and Techniques
We present a deterministic approximation algorithm for the dynamic offline MLA problem,
achieving an improved approximation ratio of O(log n log log n). We emphasize that the
constants of the approximation ratio do not depend on the parameter γ nor the input
length m. Similarly to Olver et al. [22], we work on a time-expanded graph that contains
copies of the element set (one for each time step), and whose edges encode requests and
rearrangements.

The O(log2 n)-approximation algorithm of [22] is based on a non-trivial divide-and-
conquer argument, where the time-expanded graph is recursively and randomly partitioned
using a balanced cut routine. The translation of the recursive partitioning to a sequence of
permutations requires a “delicate shuffling” argument. One of the challenges in their analysis
is locally bounding the cost of rearrangements induced by the recursive decomposition.
In contrast to their approach, we propose an algorithm that computes the sequence of
permutations in a unified and straightforward manner directly from the decomposition of
the time-expanded graph.

Our approach builds on the following ideas. First, apply a spreading LP relaxation to
assign lengths to edges of the time-expanded graph (cf. Section 3). Next, apply a tree decom-
position algorithm [7] to the time-expanded graph (cf. Section 4). This binary decomposition
tree represents a laminar partitioning of the time-expanded graph. For every time step,
the permutation is simply extracted by applying an in-order traversal of the decomposition
tree intersected with the corresponding time-slice. (See Section 5 for a description of the
algorithm.)

A key component of our analysis is a local charging scheme that bounds the solution cost
by the cost of the decomposition tree (see Section 6). We rely on [7] to bound the latter by
a function of the cost of the optimal solution to the LP relaxation.

1.2 Related Work on Dynamic Graph Problems
Dynamic MLA Problem. Our paper is among the few that study the approximability of
graph problems, where the input is a sequence of requests in the form of edges and the
output is a sequence of “configurations”. The cost of a solution consists of “serving” the
request and the cost of “moving” from one configuration to the next configuration. These
problems have been usually considered in the context of online algorithms, where the solution
must be created without knowledge of future edges, and its time complexity is of secondary
importance.

1 We discuss the implication of this assumption in Section 7.
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Indeed, the dynamic MLA problem has been studied also in online flavor. As every request
incurs the cost of at least 1 and at most n, the competitive ratio of an online algorithm
that does not change its permutation is trivially O(n). Surprisingly, it is unknown whether
an online algorithm that beats this ratio exists. On the negative side, Olver et al. showed
that many natural online policies have competitive ratios of Ω(n/ log n); the best known
lower bound is merely Ω(log n) [22]. We believe that the techniques of this paper will help
improve our understanding of the problem, and provide insights that could eventually be
used to design online algorithms for dynamic MLA with non-trivial competitive ratios.

Dynamic Balanced Graph Partitioning. Another (seemingly similar) task is the balanced
graph partitioning problem [1, 9, 19], where the goal is to split n graph vertices into ℓ clusters,
each containing n/ℓ vertices, so that the number of crossing edges is minimized. For ℓ = 2,
the problem becomes the bisection problem [18, 25]. This problem has been recently extended
to a dynamic online setting, where edges arrive one by one, and the algorithm may change
the clustering on the fly [3, 5, 10, 15, 16, 23, 24, 27]. Large competitive ratios of online
solutions motivated the study of the problem in the dynamic offline setting, and recently
Räcke et al. [26] constructed an O(log n)-approximation for this variant.

On a high level, the framework of Räcke et al. [26] bears some similarities to ours: they
also create a time-expanded graph, solve an LP-relaxation of the problem on this graph,
use the edge lengths returned by the LP to partition this graph, and finally transform the
partition into the final solution (sequence of graph clusterings). Similarities end here as
the details of their approach are quite different. In particular, their LP relaxation is based
on a distinct type of spreading metric (using knapsack-like constraints), they use Bartal’s
randomized decomposition [4] to partition the graph, and the final step of transforming the
partition to a sequence of clusterings is completely different.

That said, we hope that their and our paper will inspire further work on dynamic graph
optimization problems, and eventually a coherent set of tools will be developed to tackle
such problems.

2 Preliminaries

For an integer ℓ, we use [ℓ] ≜ {1, . . . , ℓ}. The union of mutually disjoint sets X and Y is
denoted by X ⊎ Y . Throughout this paper, we work with a set of elements Q and we denote
its cardinality by n. A permutation of Q (or simply a permutation) is a bijection from Q

to [n]. We say that two elements a and b are adjacent in permutation π if |π(a) − π(b)| = 1.
To reduce ambiguity, we refer to members of Q as elements, to vertices of decomposition
trees as nodes, and use the vertices only for vertices of the time-expanded graph defined
in Section 3.

Permutation Distances. An unordered pair {x, y} of distinct elements of Q is discordant
with respect to permutations π and π′ if (π(x) − π(y)) · (π′(x) − π′(y)) < 0. We use two
notions of distance between partitions π and π′:

Kendall’s tau-distance tdist(π, π′) equal to the minimum number of swaps of adjacent
elements required to reach permutation π’ from π. This distance is also equal to the
number of discordant pairs between π and π′.
Spearman’s footrule distance defined as fdist(π, π′) ≜

∑
v∈Q|π′(v) − π(v)|.

STACS 2024
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While tdist(π, π′) is convenient for establishing relations between decomposition trees and
permutations, fdist(π, π′) is better suited for defining spreading metrics in LP relaxations.
The Diaconis-Graham inequality [6, 20] states that these two distances can differ at most by
a factor of 2, i.e.,

tdist(π, π′) ⩽ fdist(π, π′) ⩽ 2 · tdist(π, π′). (1)

Problem Definition. The Dynamic Minimum Linear Arrangement (DMLA) problem is
specified by a tuple I = (n, m, in), where n is the number of elements (i.e., |Q| = n), m is
the number of requests, and in is the input sequence consisting of m requests, each being
an unordered pair of distinct elements. That is, in ≜ {(at, bt)}m

t=1, where (at, bt) ∈ Q × Q

and at ̸= bt.
A feasible solution is a sequence of m permutations {πt}m

t=1, and its cost is

cost(I, {πt}m
t=1) ≜

m∑
t=1

{γ · fdist(πt−1, πt) + |πt(at) − πt(bt)|}.

where we assume that π0 = π1, i.e., fdist(πt−1, πt) = 0. The goal is to find a feasible
solution with minimum cost. We call fdist(πt−1, πt) the rearrangement cost at time t and
|πt(at) − πt(bt)| the request cost at time t. Finally, for an algorithm A, we denote its cost
on I by A(I), and we use Opt to denote the optimal algorithm.

As the cost incurred in every time step is at least 1 and at most n − 1, we have the
following trivial bounds on the value of Opt.

▷ Claim 1. m ⩽ Opt(I) ⩽ m · (n − 1) for an instance I = (n, m, in).

Note on the Parameter γ. Consider the following greedy algorithm that at time t moves
the element bt so that it becomes adjacent to at. It pays at most (n − 2) · γ for rearrangement
and then 1 for the request. For γ < 1/n, this amounts to at most 2. As Opt pays at
least 1 for the request cost alone, the greedy algorithm is trivially an O(1)-approximation for
γ < 1/n. Hence, in the remaining part of the paper, we assume that γ ⩾ 1/n.

Consider an algorithm that does not employ rearranging. Namely, it finds an α-
approximation for the (static) MLA instance that contains an edge for every request. This
algorithm would also be an α-approximation for the DMLA instance if γ > m · (n − 1).
Indeed, as Opt ⩽ m · (n − 1), employing even one swap would be suboptimal. Because
the (static) MLA problem admits an O(log n log log n)-approximation, we may assume that
γ ⩽ m · (n − 1).

Our algorithm crucially requires the assumption γ ⩾ 1/n to guarantee the approximation
ratio. The assumption γ ⩽ m·(n−1) is used to ensure that the edge costs of our time-expanded
graphs are polynomially bounded, and thus to ensure polynomial runtime.

3 Time-Expanded Graph and Linear Relaxation

In this section, we present a linear-programming relaxation for DMLA. The relaxation is
defined over a time-expanded graph that represents the DMLA instance. We note that
equivalent definitions of time-expanded graphs appeared in the papers of Olver et al. [22]
and Räcke et al. [26].

Consider a a DMLA instance I = (n, m, in). We represent I by a weighted time-
expanded graph G = (V, E, c) as follows. Recall that Q is the set of elements. The set of
vertices V ≜ Q × {0, . . . , m} contains a copy of Q for every time t ∈ {0, . . . , m}. We refer to
each such copy as a time-slice.



M. Bienkowski and G. Even 15:5

To simplify notation, we denote the vertex (v, t) ∈ V by vt, namely, vt is the t-th copy
of the element v ∈ Q. The t-th time-slice of graph G is Qt ≜ Q × {t}. Furthermore, for
a subset of elements A ⊆ Q, we use At ≜ {vt | v ∈ A} to denote the corresponding set of
vertices in the t-th time-slice.

There are two types of edges in E. First, we introduce a set of request edges Ein containing
an edge {at

t, bt
t} for every request (at, bt) in the input in. Second, we introduce n ·m migration

edges between copies of elements in consecutive time-slices. That is, the set of migration edges
is Em ≜ {{vt−1, vt} | v ∈ Q, t ∈ [m]}. We identify each edge e ∈ E with a set containing two
of its endpoints.

Finally, for an edge e ∈ E, we define its cost by

c(e) ≜
{

1 if e ∈ Ein,
γ if e ∈ Em.

We extend the function c(e) to all subsets of edges E′ ⊆ E, i.e., c(E′) =
∑

e∈E′ c(e).

Naming Convention. Sometimes we want to refer to a vertex from V without specifying its
time-slice. In such case, we use star instead of time superscript, i.e., we use names such as
u∗ or v∗, to emphasize that we refer to vertices (members of V ) and not elements (members
of Q).

Edge Lengths. A solution to the DMLA problem induces the assignment of lengths to
edges of E in the following way:

the length of a request edge {at
t, bt

t} is set to |πt(at) − πt(bt)|;
the length of a migration edge {vt−1, vt} is set to |πt−1(v) − πt(v)|.

In particular, the total length of all (migration) edges between two consecutive time-slices Qt−1

and Qt is equal to fdist(πt−1, πt).
A valid solution to DMLA cannot induce an arbitrary assignment of edge lengths. As the

permutation πt assigns distinct positions to elements, the pairwise distances (shortest path
distances induced by lengths) between their corresponding vertices can be lower-bounded
appropriately. We make this observation more concrete when we create a linear relaxation of
the problem. This hints at a possible way of tackling the problem: we first find an assignment
of lengths to edges, and we use them to compute a sequence of permutations.

Spiders. To create a linear relaxation of the DMLA problem, we introduce a helper notion.
For a vertex v∗ ∈ V and set U ⊆ V \ {v∗}, a multi-set of edges from E is called a (v∗, U)-
spider if it is a union of |U | paths from v∗ to each vertex from U . (If an edge belongs to k

such paths, the spider contains k copies of such edge.) We use H(v∗, U) to denote the set of
all possible (v∗, U)-spiders.

LP Relaxation. The LP relaxation is obtained by introducing spreading constraints [7] to
every time-slice. Consider a DMLA instance I = (n, m, in), and let G = (V, E, c) denote the
corresponding time-expanded graph. Let S′

j ≜
∑j

i=1 i and Sk ≜ S′
⌊k/2⌋ + S′

⌈k/2⌉.
The LP relaxation introduces a variable ze for every edge e ∈ E and is formulated as

follows.

min
∑
e∈E

c(e) · ze (2a)

s.t.
∑
e∈H

ze ⩾ S|A| ∀v ∈ Q, ∀A ⊆ Q \ v, ∀t ∈ {0, . . . , m}, ∀H ∈ H(vt, At), (2b)

ze ⩾ 0 ∀e ∈ E. (2c)
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Before we argue that the formulation above is indeed a relaxation of the original DMLA
problem, we first discuss the interpretation of spreading constraints (2b). For any two
vertices v∗, u∗ ∈ V , let distz(v∗, u∗) denote their shortest-path distance in G induced by
edge lengths {ze}e∈E . For a fixed time t, element v ∈ Q and a set of elements A ⊆ Q \ {v},
constraints (2b) state that

∑
e∈H ze ⩾ S|A| for every spider H ∈ H(vt, At). That is, the total

length of |A| paths from vt to all vertices of At has to be at least S|A|. Constraints (2b) are
thus equivalent to∑

u∈A

distz(vt, ut) ⩾ S|A|, ∀v ∈ Q, ∀A ⊆ Q \ {v}, ∀t ∈ {0, . . . , m}. (3)

▶ Lemma 2. The minimization program above is a linear relaxation of the DMLA problem.

Proof. Fix an instance I of the DMLA problem specified by (n, m, in) and the corresponding
instance of the minimization LP above. Consider a solution to I, that is, a sequence of
permutations {πt}m

t=1. We have to show that there exists a solution to the LP whose cost is
at most cost(I, {πt}m

t=1).
For the purpose of defining variables {ze}e∈E , we set π0 ≜ π1. For an edge e = {ut1 , vt2} ∈

E, we set the variable ze = |πt1(u) − πt2(v)|. The cost of the LP solution is then∑
e∈E

c(e) · ze =
∑

e∈Em

γ · ze +
∑

e∈Ein

ze

=
m∑

t=1

∑
v∈Q

γ · |πt(v) − πt−1(v))| +
m∑

t=1
|πt(at) − πt(bt)|

= cost(I, {πt}m
t=1).

It remains to show that the edge length variables satisfy the constraints; the only non-trivial
one is (2b).

Fix such a constraint, given by element v ∈ Q, a subset A ∈ Q \ {v}, time t, and
a spider H ∈ H(vt, At). We decompose H into |A| paths: for an element u ∈ A, let Hu be
the path from vt to ut in spider H. By a simple induction on path length, we have∑

e∈Hu

ze ⩾ |πt(u) − πt(v)| (4)

for every element u ∈ A. By summing (4) over all elements from A, we obtain that∑
e∈H

ze =
∑
u∈A

∑
e∈Hu

ze ⩾
∑
u∈A

|πt(u) − πt(v)|.

We split the elements of A into two disjoint parts A− ≜ {u ∈ A | πt(u) < πt(v)} and
A+ ≜ {u ∈ A | πt(u) > πt(v)}. As πt is bijective,

∑
u∈A+ |πt(u) − πt(v)| ⩾ S′

|A+| and∑
u∈A− |πt(u) − πt(v)| ⩾ S′

|A−| = S′
|A|−|A+|. Thus,

∑
e∈H

ze ⩾ S′
|A+| + S′

|A|−|A+| ⩾ S′
⌊|A|/2⌋ + S′

⌈|A|/2⌉ = S|A|.

The last inequality follows as the expression S′
ℓ + S′

|A|−ℓ is minimized for ℓ = ⌊|A|/2⌋. This
shows that constraints (2b) hold and concludes the proof. ◀
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4 Graph Decomposition

In this section, we present a poly-time deterministic graph decomposition procedure that is
based on [7]. The input for the graph decomposition consists of an undirected graph with
non-negative edge costs G = (V, E, c) and non-negative edge lengths {ze}e∈E . A diameter
parameter d > 0 specifies the “granularity” of the decomposition.

Distances and Diameters. For any two vertices u, v ∈ V , let distz(u, v) denote the shortest-
path distance in G induced by the edge lengths z. Furthermore, for a non-empty set U ⊆ V ,
let diamz(U) = maxu,v∈U distz(u, v) be the diameter of U . If U contains two vertices that
are not connected in G, then its diameter is infinite.

Decomposition Tree. Fix a real number d > 0. A d-decomposition tree of the graph
G = (V, E, c) is a triple T = (VT, ET, α) where (VT, ET) is a rooted binary tree where each
internal node has two children, one marked left, and the other one right. The function
α : VT → 2V \ {∅} maps tree nodes to non-empty subsets of graph vertices V and satisfies
the following conditions:

α(wr) = V , where wr is the root of T ;
α(w) = α(wL) ⊎ α(wR) for an internal node w ∈ VT and its two children wL and wR;
diamz(α(w)) ⩾ d for every internal node w ∈ VT and diamz(α(w)) < d for every leaf
w ∈ VT.

Note that the decomposition tree T represents a laminar decomposition of the graph
vertices V .

Cuts. For any subsets of graph nodes U, U ′ ⊆ V , let E[U ] ⊆ E be the subset of edges with
both endpoints in U , and let E[U, U ′] ⊆ E be the subset of edges with one endpoint in U

and the other one in U ′. For an internal tree node w ∈ VT with children wL and wR, we
define cut(w) ⊆ E as the set of edges between α(wL) and α(wR), i.e.,

cut(w) ≜ E[α(wL), α(wR)]
= E[α(w)] \ (E[α(wL)] ⊎ E[α(wR)]).

For a leaf w ∈ VT, we define cut(w) to be the empty set.

▶ Definition 3. The cost of a decomposition tree T = (VT, ET, α) of a graph G = (V, E, c)
with non-negative edge lengths {ze}e∈E is defined as

costG,z(T ) ≜
∑

w∈VT

c(cut(w)) · diamz(α(w)).

In the definition above, we assume that 0 · ∞ = 0.

Cheap Decomposition Tree. The following theorem is implicitly proven (in a slightly
different form) in [7]. For completeness, we present its proof in the appendix.

▶ Theorem 4. Fix a real d > 0 and a graph G = (V, E, c) with non-negative edge
lengths {ze}e∈E. It is possible to construct, in polynomial time, a d-decomposition tree T =
(VT, ET, α) of G, such that

costG,z(T ) ⩽ ξ · O(log(fc,d · ξ) · log log(fc,d · ξ)),

where ξ =
∑

e∈E c(e) · ze, fc,d = max{1, 1/(d · cmin)}, and cmin = mine∈E c(e).

STACS 2024



15:8 An Improved Approximation Algorithm for Dynamic Minimum Linear Arrangement

We emphasize that Theorem 4 does not depend on particular properties of graph G

or the edge lengths {ze}e∈E . In particular, G does not have to be a time-expanded graph
of a DMLA instance, and the theorem does not assume that lengths {ze}e∈E satisfy the
spreading constraints (2b). In [7], the stopping condition for the decomposition is when one
reaches an independent set with respect to an auxiliary graph defined over the same vertex
set. Conceptually, our stopping condition can be viewed as reaching an independent set with
respect to an auxiliary hypergraph defined over the same vertex set. Indeed, the auxiliary
hypergraph in a d-decomposition contains a hyperedge for every subset of vertices whose
diameter is at least d.

5 Approximation Algorithm for DMLA

Algorithm definition. Consider an instance I = (n, m, in) of the DMLA problem. Our
algorithm Alg first constructs a time-expanded graph G = (V, E, c) for I. Next, Alg
solves the LP relaxation defined by (2a)–(2c), obtaining an optimal solution {ze}e∈E to
this LP. Then, it computes a (1/4)-decomposition tree T = (VT, ET, α) of G using the routine
guaranteed by Theorem 4.

Finally, Alg decodes T into a sequence of permutations {πt}m
t=1. To this end, let

w1, w2, . . . , wℓ denote the sequence of leaves of T ordered by an in-order traversal of T (that
scans the left subtree before the right subtree). Note that the corresponding sequence of
sets {α(wi)}ℓ

i=1 is a partition of V . For a fixed time t, we define a sequence of sets {Bt
i }ℓ

t=1,
where Bt

i ≜ α(wi)∩Qt. By Lemma 9 (cf. Section 6), every set Bt
i contains either one element

of Qt or is empty. Thus, the sequence {Bt
i }ℓ

t=1 induces a permutation of Qt (and hence of Q).
Let πt denote this permutation.

Handling Arbitrary Input Lengths. In the next section, we prove the following bound.

▶ Theorem 5. On an instance I, Alg returns a feasible solution of cost O(log(n · Opt(I)) ·
log log(n · Opt(I))) · Opt(I), where Opt(I) denotes the cost of the optimal solution on I.

We are interested in obtaining a smaller asymptotic approximation ratio even if Opt(I)
is super-polynomial in n.

▶ Theorem 6. There is a poly-time deterministic approximation algorithm for DMLA that
achieves an approximation ratio of O(log n · log log n).

Proof. By Claim 1, Opt(I) is super-polynomial in n only if m is. In this case, we modify
Alg as follows. Split the input sequence into L phases I1, . . . , IL, each consisting of m′ = n2

requests, with the last phase possibly being shorter. Apply Alg separately to each phase,
and return the concatenation of the permutation sequences output by Alg for each phase.

As Opt needs to pay 1 for each request, Opt(I) ⩾ (L − 1) · m′. On the other hand,
by Claim 1, Opt(Iℓ) ⩽ n · m′ = n3 for every phase Iℓ. The rearrangement cost incurred by
the transition from a permutation ending a phase to the permutation beginning the next
phase at most n2. The cost of the whole solution is then

Alg(I) = (L − 1) · n2 +
∑L

ℓ=1 Alg(Iℓ)

⩽ Opt(I) +
∑L

ℓ=1 O(log(n · Opt(Iℓ)) · log log(n · Opt(Iℓ))) · Opt(Iℓ)

= Opt(I) + O(log n · log log n) ·
∑L

ℓ=1 Opt(Iℓ)
= O(log n · log log n) · Opt(I) ,

where in the inequality above we used Theorem 5 for upper-bounding Alg(Iℓ) for each ℓ. ◀
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Polynomial Runtime. Alg can be implemented in time polynomial in n and m. This follows
trivially except for its two building blocks: solving the LP and computing the decomposition
tree. The latter runs in polynomial time by Theorem 4.

For the former (solving the LP), we note that although the linear programming formulation
contains exponentially many constraints, it can be solved in polynomial time by the Ellipsoid
method [12] with a separation oracle that returns a violating constraint if one exists. To this
end, following [7], given edge lengths {ze}e∈E , the oracle first computes all-pairs shortest paths,
i.e., the value of function distz. To find a violated constraint among constraints (3), it suffices
to check, for every time t and every element v ∈ Q, whether there exists a set A ⊆ Q \ {v},
such that

∑
u∈A distz(vt, ut) ⩾ S|A|. This becomes simple once we fix the cardinality k

of A: if inequality is violated, it is violated by the set A, such that Ak contains k elements
of Qt \ {vt} that are closest to vt (with respect to distz).

6 Approximation Ratio

In this section, we prove the approximation ratio stated in Theorem 5. Fix a DMLA
instance I = (n, m, in). Let G = (V, E, c) be the time-expanded graph, {ze}e∈E be the edge
lengths returned by the LP relaxation, and T = (VT, ET, α) be the (1/4)-decomposition tree
of G computed according to Theorem 4.

6.1 Relating OPT to the Decomposition Tree

▶ Lemma 7. It holds that costG,z(T ) ⩽ Opt(I) · O(log(n · Opt(I)) · log log(n · Opt(I))).

Proof. Let cmin = mine∈E{c(e)}. Note that cmin = min{1, γ} by the definition of graph G.
As we assumed (cf. Section 2) that γ ⩾ 1/n, it holds that cmin ⩾ 1/n. Let ξ =

∑
e∈E c(e) · ze.

By Theorem 4, the computed (1/4)-decomposition tree satisfies

costG,z(T ) ⩽ ξ · O(log(4n · ξ) · log log(4n · ξ)).

As ξ is the optimal solution to the fractional relaxation of the problem (cf. Lemma 2),
ξ ⩽ Opt(I), which concludes the proof. ◀

6.2 Graph Cost and its Relation to the Decomposition Tree

In the previous section, we related costG,z(T ) to Opt(I), and thus it remains to relate
Alg(I) to costG,z(T ). As we show later, Alg(I) can be naturally expressed as a sum of
costs of particular edges in G taken with some multiplicity. On the other hand, costG,z(T )
is defined as

∑
w∈VT

c(cut(w)) · diamz(α(w)), i.e., in terms of edge lengths. To facilitate
a combinatorial comparison between Alg(I) and costG,z(T ), we first provide an alternative
lower bound on costG,z(T ), called graph cost, which is be easier to relate to Alg(I). To
this end, we start with a few helper notions.

Least Common Ancestor. We define the function lca : 2V \ {∅} → VT as follows. Fix
a non-empty set of vertices U ⊆ V . The set of tree nodes w such that α(w) ⊇ U forms a path
in T starting at the root. Let lca(U) be the last node on this path (furthest from the root).

We drop the set notation and use lca(u1, u2, . . . , uℓ) instead of lca({u1, u2, . . . , uℓ}). Note
that for every internal tree node w and every edge {u, v} ∈ cut(w), it holds that lca(u, v) = w.
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Width. For a non-empty subset of vertices U ⊆ V , we define

width(U) ≜ max
0⩽t⩽m

|U ∩ Qt| − 1.

Graph Cost. The cost of a graph G = (V, E, c) with respect to its decomposition tree
T = (VT, ET, α) is defined as

cost∗
T (G) ≜

∑
e∈E

c(e) · width(lca(e)).

Relating Graph Cost to Decomposition Tree Cost. We show that cost∗
T (G) ⩽ 4 ·

costG,z(T ). To this end, we use spreading properties of {ze}e∈E to relate the width of a set
to its diameter.

▶ Lemma 8. For a non-empty set U ⊆ V , it holds that width(U) ⩽ 4 · diamz(U).

Proof. Let t = arg maxs∈{0,...,m} |U ∩ Qs|, i.e., width(U) = |U ∩ Qt| − 1. For succinctness,
let Y = U ∩ Qt. Below, we prove that

diamz(Y ) ⩾ (|Y | − 1)/4. (5)

This will imply the lemma as width(U) = |Y | − 1 ⩽ 4 · diamz(Y ) ⩽ 4 · diamz(U).
If |Y | = 1, then diamz(Y ) = 0, and (5) follows trivially. Thus, in the following, we assume

that |Y | > 1. Let vt be an arbitrary vertex from Y . As {ze}e∈E satisfies LP constraints and
thus also (3), we obtain∑

ut∈Y \{vt}

distz(vt, ut) ⩾ S|Y |−1. (6)

A simple calculation shows that Sk ⩾ k2/4 + k/2 for every k ⩾ 0 (the relation is tight for
even k). Thus, Sk/k = k/4 + 1/2 > k/4 for every k ⩾ 1. Applying the averaging argument
to (6), we obtain that there exists ut ∈ Y \ {vt}, such that

distz(vt, ut) ⩾
S|Y |−1

|Y | − 1 >
|Y | − 1

4 .

As diamz(Y ) ⩾ distz(vt, ut), (5) follows. ◀

▶ Lemma 9. Fix a leaf w ∈ T . Then, width(α(w)) = 0, and consequently, |α(w) ∩ Qt| ⩽ 1
for every time t.

Proof. As T is a (1/4)-decomposition tree, diamz(α(w)) < 1/4. Thus, width(α(w)) < 1 by
Lemma 8. The first part of the lemma follows as width(α(w)) is an integer. The second part
follows as |α(w) ∩ Qt| ⩽ width(α(w)) + 1 by the definition of width. ◀

▶ Lemma 10. It holds that cost∗
T (G) ⩽ 4 · costG,z(T ).

Proof. Fix an edge e ∈ E. We first claim that

width(α(lca(e)) =
∑

w∈VT : e∈cut(w)

width(α(w)). (7)

Indeed, if lca(e) is a leaf of T , then by Lemma 9, the left-hand side is 0 and the sum on the
right-hand side is empty. If, however, lca(e) is an internal node of T , then e ∈ cut(lca(e)),
and thus the sum on the right-hand side contains only one element w = lca(e), and the claim
follows.
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Now, by the definition of cost∗
T (G),

cost∗
T (G) =

∑
e∈E

c(e) ·
∑

w∈VT : e∈cut(w)

width(α(w)) (by (7))

=
∑

w∈VT

∑
e∈cut(w)

c(e) · width(α(w))

=
∑

w∈VT

c(cut(w)) · width(α(w))

⩽ 4 ·
∑

w∈VT

c(cut(w)) · diamz(α(w)) (by Lemma 8)

= 4 · costG,z(T ). ◀

6.3 Relating ALG to the Graph Cost
Now we may relate Alg(I) to the graph cost cost∗

T (G) =
∑

e∈E c(e) · width(lca(e)). Our
charging scheme preserves time locality: we relate the request and the rearrangement costs
in step t to the graph cost pertaining to edges of G corresponding to time t.

▶ Lemma 11. For every time t, it holds that |πt(at) − πt(bt)| ⩽ width(α(lca(at
t, bt

t))).

Proof. It is convenient to look at the permutation πt output by Alg as an ordered sequence
of vertices from Qt (cf. Section 5). Recall that this sequence is obtained by an in-order
traversal of T restricted to vertices from Qt. In particular, all vertices from α(lca(at

t, bt
t))∩Qt

form a contiguous part of permutation πt and this part contains both at
t and bt

t. Therefore,
|πt(at) − πt(bt)| ⩽ |α(lca(at

t, bt
t)) ∩ Qt| − 1 ⩽ width(α(lca(at

t, bt
t))). ◀

▶ Lemma 12. Fix a time t and let {u, v} be a discordant pair of elements from Q with respect
to permutations πt−1 and πt. Then, either vt ∈ α(lca(ut−1, ut)) or ut ∈ α(lca(vt−1, vt)) (or
both).

Proof. Let U = {ut−1, ut, vt−1, vt} and let w = lca(U). As α(w) contains both ut and vt,
Lemma 9 implies that w is an internal node of T . Let wL and wR be the children of w in T .
By the definition of lca, α(wL) ∩ U ̸= ∅ and α(wR) ∩ U ̸= ∅.

It is not possible that {ut−1, ut} ⊆ α(wL) and {vt−1, vt} ⊆ α(wR): in such case, {u, v}
would not be a discordant pair, i.e., u would be before v in both permutations πt−1 and πt.
For the same reason, it is not possible that {ut−1, ut} ⊆ α(wR) and {vt−1, vt} ⊆ α(wL).

This means that either {ut−1, ut} ∈ cut(w) or {vt−1, vt} ∈ cut(w) (or both). In the former
case lca(ut−1, ut) = w while in the latter lca(vt−1, vt) = w, which concludes the proof. ◀

▶ Lemma 13. For every time t, it holds that tdist(πt−1, πt) ⩽
∑

v∈Q width(α(lca(vt−1, vt))).

Proof. We create an injective mapping M from all tdist(πt−1, πt) discordant pairs (with
respect to permutations πt−1 and πt) to pairs in VT × V . A discordant pair {u, v} is mapped:

to the pair (lca(ut−1, ut), vt) if vt ∈ α(lca(ut−1, ut)), or
to the pair (lca(vt−1, vt), ut) if ut ∈ α(lca(vt−1, vt)).

By Lemma 12, at least one of the conditions above must hold. If both hold, then we map
the discordant pair arbitrarily to one of the pairs above.

Because the domain of M contains all discordant pairs, its cardinality equals tdist(πt−1, πt).
Moreover, the range of M is contained in the set of the following pairs⊎

v∈Q

{(
lca(vt−1, vt), yt

)
| yt ∈ α

(
lca(vt−1, vt)

)
∩

(
Qt \ {vt}

)}
.
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Thus, the cardinality of the range of M is at most
∑

v∈Q

(
|α(lca(vt−1, vt)) ∩ Qt| − 1

)
. As

M is injective, its range is not smaller than its domain, i.e.,

tdist(πt−1, πt) ⩽
∑
v∈Q

|α(lca(vt−1, vt)) ∩ Qt| − 1

⩽
∑
v∈Q

width(α(lca(vt−1, vt))). ◀

▶ Lemma 14. It holds that Alg(I) ⩽ 2 · cost∗
T (G).

Proof. Let {πt}m
t=1 be the output of Alg on instance I. The total rearrangement cost of

Alg is

m∑
t=1

γ · fdist(πt−1, πt) = 2 ·
m∑

t=1
γ · tdist(πt−1, πt) (by (1))

⩽ 2 ·
m∑

t=1

∑
v∈Q

γ · width(α(lca(vt−1, vt))) (by Lemma 13)

= 2 ·
∑

e∈Em

c(e) · width(α(lca(e))). (by the definition of Em)

Moreover, its total request cost is

m∑
t=1

|πt(at) − πt(bt)| ⩽
m∑

t=1
1 · width(α(lca(at

t, bt
t))) (by Lemma 11)

=
∑

e∈Ein

c(e) · width(α(lca(e))). (by the definition of Ein)

Summing up, we obtain that Alg(I) ⩽ 2 ·
∑

e∈E c(e) · width(α(lca(e))) = 2 · cost∗
T (G). ◀

6.4 Calculating Approximation Ratio

We are now ready to prove our main result, restated for convenience below.

▶ Theorem 5. On an instance I, Alg returns a feasible solution of cost O(log(n · Opt(I)) ·
log log(n · Opt(I))) · Opt(I), where Opt(I) denotes the cost of the optimal solution on I.

Proof. Fix an instance I, corresponding graph G, output {ze}e∈E of the LP, and the
decomposition tree T of G. Then,

Alg(I) ⩽ 4 · cost∗
T (G) (by Lemma 14)

⩽ 8 · cost∗
G,z(G) (by Lemma 10)

⩽ 8 · Opt(I) · O(log(n · Opt(I)) · log log(n · Opt(I))). (by Lemma 7) ◀

As stated in Theorem 6, the algorithm can be easily transformed into an O(log n·log log n)-
approximation. We also note that the constants hidden in O-notation do not depend on γ.
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7 Final Remarks

In this paper, we present an O(log n · log log n)-approximation algorithm for the dynamic
minimum linear arrangement (DMLA) problem, improving over O(log2 n) bound by Olver
et al. [22].

We note that in the variant considered by Olver et al. [22], the initial permutation π0 is
fixed and is the part of the input instance. A small modification of their approach yields the
same approximation ratio for the case where the input does not specify the initial permutation
(as in our solution).

Conversion in the other direction is trivial, albeit it comes at a certain cost. Let π1, . . . , πm

denote the output of our algorithm without an initial permutation. Simply prepend the
given initial permutation π0 as the initial one. The extra cost of the rearrangement from
permutation π0 to π1 is at most O(n2). This additive cost does not influence the asymptotic
approximation ratio if m = Ω(n2). We leave handling shorter instances more efficiently as
further work.
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A Constructing Decomposition Tree

In this section, we show how to construct a d-decomposition tree satisfying the guarantees of
Theorem 4. In the description below, we fix a real number d > 0, a graph G = (V, E, c) with
non-negative edge costs c, and a set of edge lengths {ze}e∈E . Recall that for all subsets of
vertices U, U ′ ⊆ V , we defined E[U ] ≜ E ∩ (U × U) and E[U, U ′] ≜ E ∩ (U × U ′ ∪ U ′ × U).
Furthermore, let G[U ] be the graph G restricted to set U . Note that G[U ] might be
disconnected even if G is connected. Let

vol U ≜
∑

e∈E[U ]

c(e) · ze

be the volume of U .
In Appendix A.1, we argue that for an arbitrary subset U ⊆ V satisfying diamz(U) ⩾ d,

we may efficiently partition U into two parts, and relate the cost of the cut between these
two parts, the diameter of U , and the volume of U (cf. Lemma 17).

The d-decomposition tree T of G is simply a binary tree, constructed by the iterative
application of set partitioning procedure: we start with the whole vertex set V and terminate
when the diameter of the considered set of vertices is less than d. In Appendix A.2 and
Appendix A.3, we show that the resulting tree T satisfies the properties of Theorem 4.

We present our construction and cost bound assuming that mine∈E c(e) ⩾ 1/d. Later,
we show how to get rid of this assumption by a simple scaling.

A.1 Partitioning a Vertex Set
We start with two technical lemmas.

▶ Lemma 15 (Lemma 5 of [7]). Let f : [r0, r1] → R be a nonnegative monotone increasing
function that is differentiable almost everywhere. If the derivative f ′ is continuous almost
everywhere, then there exists an r ∈ (r0, r1) such that f ′(r) is defined and satisfies

f ′(r) ⩽ f(r)
r1 − r0

· ln
(

e · f(r1)
f(r)

)
· ln ln

(
e · f(r1)

f(r0)

)
.

▶ Lemma 16. Fix 0 < x ⩽ y. Then,

ln
(

e · (x + y)
2 · x

)
⩽

1
ln 2 · ln

(
x + y

x

)
.

Proof. Since y ⩾ x, we have ln((x + y)/x) ⩾ ln 2. Therefore,

ln
(

e · (x + y)
2 · x

)
= ln

(
x + y

x

)
+

(
1

ln 2 − 1
)

· ln 2

⩽ ln
(

x + y

x

)
+

(
1

ln 2 − 1
)

· ln
(

x + y

x

)
= 1

ln 2 · ln
(

x + y

x

)
. ◀

▶ Lemma 17. Fix a real d > 0. Fix a graph G = (V, E, c) with edge costs c satisfying
c(e) ⩾ 1/d for every e ∈ E. Let {ze}e∈E be the (non-negative) lengths of edges. For a subset
of vertices U ⊆ V satisfying diamz(U) ⩾ d, it is possible to partition U , in polynomial time,
into two disjoint non-empty sets UL and UR, satisfying the following conditions.
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If G[U ] is disconnected, then c(E[UL, UR]) = 0 and vol UL + vol UR = vol U .
If G[U ] is connected, then

c(E[UL, UR]) · diamz(U) ⩽ g · β · ln
(

vol U
β

)
· ln ln(vol V ),

where g is a universal constant, and β satisfies the following constraints:

β ⩾ max{vol UL, 1/4},

vol U − β ⩾ max{vol UR, 1/4}.

Proof. If G[U ] is disconnected, then we simply take UL to be an arbitrary connected
component of U and set UR = U \ UL. The lemma follows immediately as c(E[UL, UR]) = 0
and vol UL + vol UR = vol U . Thus in the following, we assume that G[U ] is connected.

We first show the existence of UL and UR satisfying the constraints above, and later we
argue how to find them using a polynomial-time procedure.

For any two vertices a, b ∈ U , we define distU
z (a, b) as the shortest-path distance between a

and b that uses edges only from G[U ]; we call it U -distance. Clearly, distU
z (a, b) ⩾ distz(a, b).

Let u, u′ ∈ U be the vertices satisfying distz(u, u′) = diamz(U), and let

∆ ≜ distU
z (u, u′)

be their U -distance. Then, ∆ ⩾ distz(u, u′) = diamz(U) ⩾ d. From this point on, we focus
on the graph G[U ] only and use U -distances exclusively.

For a vertex a ∈ U and a real r ⩾ 0, let

Ba(r) ≜ {v ∈ U | distU
z (a, v) < r}

be the set of vertices in U whose U -distance to a is strictly smaller than r, i.e., contained in
a ball centered at a of radius r. For an edge e ∈ E[U ], we define its (a, r)-adjusted length as

za
e (r) ≜


ze if e ∈ Ba(r) × Ba(r),
r − distU

z (a, v1) if e = (v1, v2) ∈ Ba(r) × (U \ Ba(r)),
0 otherwise.

Intuitively, the (a, r)-adjusted length of an edge e is the length of e “contained” (entirely or
partially) in the ball of radius r centered at a.

Next, we introduce the function vol∗a : R⩾0 → R⩾0 as

vol∗a(r) ≜
∑

e∈E[U ]

c(e) · za
e (r)

= vol(Ba(r)) +
∑

e=(v1,v2)∈E∩(Ba(r)×(U\Ba(r)))

c(e) · (r − distU
z (a, v1)).

As ∆ = distU
z (u, u′), the balls of radii ∆/2 centered at u and u′ are disjoint. In particular,

for each edge e ∈ E[U ], it holds that zu
e (∆/2) + zu′

e (∆/2) ⩽ ze. This implies that vol∗u(∆/2) +
vol∗u′(∆/2) ⩽ vol U . Without loss of generality, we may assume that vol∗u(∆/2) ⩽ vol U/2;
otherwise we may swap the roles of u and u′.

As G[u] is connected, vol∗u(r) is monotonically increasing in the interval [0, ∆]. Moreover,
except finitely many points it holds that

∂ vol∗u(r)
∂r

= c(Bu(r) × (U \ Bu(r))).
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That is, vol∗u(r) satisfies the conditions of Lemma 15 as the function of r in the interval [0, ∆],
and thus also in the interval [∆/4, ∆/2]. By Lemma 15, there exists r∗ ∈ (∆/4, ∆/2), such
that

c(E[Bu(r∗), U \ Bu(r∗)]) ⩽ vol∗u(r∗)
∆/4 · ln

(
e · vol∗u(∆/2)

vol∗u(r∗)

)
· ln ln

(
e · vol∗u(∆/2)

vol∗u(∆/4)

)
. (8)

Recall that G[U ] is connected and contains a path between u and u′ of length ∆ ⩾ d.
As c(e) ⩾ 1/d for every edge e, we have vol U ⩾ ∆ · (1/d) ⩾ 1. Similarly, vol∗u(∆/4) ⩾
(∆/4) ·(1/d) ⩾ 1/4. We set UL = Bu(r∗) and UR = U \UL. Furthermore, we set β = vol∗u(r∗).
By plugging these values into (8), and recalling that vol∗u(∆/2) ⩽ vol U/2, we obtain

c(E[UL, UR]) · ∆ ⩽ 4 · β · ln
(

e · vol U
2 · β

)
· ln ln(2e · vol U)

⩽
4

ln 2 · β · ln
(

vol U
β

)
· ln ln(2e · vol V ). (by Lemma 16 and U ⊆ V )

It remains to argue that β satisfies the constraints of the lemma.
By the definition of vol∗u, we have β = vol∗u(r∗) ⩾ vol(Bu(r∗)) = vol UL.
By the monotonicity of vol∗u, we have β = vol∗u(r∗) ⩾ vol∗u(∆/4) ⩾ 1/4.
By the monotonicity of vol∗u, we have β = vol∗u(r∗) ⩽ vol∗u(∆/2) ⩽ vol U/2, and thus
vol U − β ⩾ vol U/2 ⩾ 1/2 > 1/4.
Observe that zu

e (r∗) = 0 for every edge e ∈ E[UR]. (This follows as both endpoints of e are
from UR, and thus their distance to u is at least r∗.) In effect, vol∗u(r∗) + vol UR ⩽ vol U ,
or equivalently vol U − β ⩾ vol UR.

The argument above shows the existence of r∗, such that setting β = vol∗u(r) satisfies the
constraints of the lemma. To make the argument constructive and efficient, we note that
the left-hand side of (8) is constant except for at most |U | values of r∗ (more concretely,
these are values from the set Du = {distz(u, v) | v ∈ U}) and the right-hand side is
monotonically increasing in the interval [∆/4, ∆/2]. Thus, it is sufficient to look for r∗ only
in the set Du ∪ {∆/2}. ◀

A.2 Using Set Partitioning for Tree Decomposition
As stated earlier, the d-decomposition tree T = (VT, ET, α) of graph G = (V, E, c) with edge
lengths {ze}e∈E is obtained by the iterative application of Lemma 17, starting at V and
terminating with leaves corresponding to sets whose diameter is less than d.

Throughout this section, we use the function F : R⩾0 → R⩾0 defined as

F (x) ≜ max{x · ln(4x), 0}.

That is, F (x) = 0 for x ⩽ 1/4 and F (x) = x·ln(4x) for x ⩾ 1/4. Note that F is monotonically
non-decreasing. Moreover, it satisfies the following superadditivity property.

▶ Lemma 18. Fix x, y ⩾ 0. Then, F (x) + F (y) ⩽ F (x + y). Moreover, if x ⩾ 1/4 and
y ⩾ 1/4, then F (x) + F (y) + x · ln((x + y)/x) ⩽ F (x + y).

Proof. If x < 1/4, then F (x) = 0, and hence the lemma follows by monotonicity of F . The
case when y < 1/4 is analogous. Hence, we may now assume that x ⩾ 1/4 and y ⩾ 1/4.
Using the definition of F ,

F (x + y) − F (x) − F (y) = x · (ln(4x + 4y) − ln(4x)) + y · (ln(4x + 4y) − ln(4y))

⩾ x · ln
(

x + y

x

)
+ y · 0. ◀
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▶ Lemma 19. For a node w ∈ VT, let VT(w) be the set of nodes of a subtree of T rooted
at w. Let

A(w) ≜ 1
g · ln ln(vol V ) ·

∑
w′∈VT(w)

c(cut(w′)) · diamz(α(w′)),

where g is the universal constant of Lemma 17. Then, A(w) ⩽ F (vol α(w)).

Proof. For brevity, for a node w ∈ VT, we use vol w instead of vol α(w).
We show the lemma by induction. For the induction base (w is a leaf), we observe that

cut(w) = ∅, and thus c(cut(w)) = 0. Hence, A(w) = 0 ⩽ F (vol w).
For the induction step, we consider an internal node w ∈ VT with children wL and wR.

We assume that the lemma inequality follows for both wL and wR, and we prove it for w.
By the definition of A it follows that

A(w) = A(wL) + A(wR) + 1
g · ln ln(vol V ) · c(cut(w)) · diamz(α(w)). (9)

We consider two cases depending on whether G[α(w)] is connected or not.
If G[α(w)] is disconnected, Lemma 17 implies c(cut(w)) = 0 and vol(w) = vol(wL) +
vol(wR). Thus,

A(w) = A(wL) + A(wR) (applying c(cut(w)) = 0 to (9))
⩽ F (vol wL) + F (vol wR) (by the inductive assumption)
⩽ F (vol wL + vol wR) = F (vol w). (by Lemma 18)

If G[α(w)] is connected, Lemma 17 guarantees that

c(cut(w)) · diamz(α(w)) ⩽ g · βw · ln
(

vol w
βw

)
· ln ln(vol V ), (10)

where βw satisfies max{vol wL, 1/4} ⩽ βw and max{vol wR, 1/4} ⩽ vol w − βw. Thus,

A(w) ⩽ A(wL) + A(wR) + βw · ln(vol w/βw) (applying (10) to (9))
⩽ F (vol wL) + F (vol wR) + βw · ln(vol w/βw) (by the inductive assumption)
⩽ F (βw) + F (vol w − βw) + βw · ln(vol w/βw) (by the monotonicity of F )
⩽ F (βw + vol w − βw) = F (vol w). (by Lemma 18)

As in both cases A(w) ⩽ F (vol w), this concludes the inductive proof. ◀

A.3 Bounding Cost of Decomposition Tree
Before we prove Theorem 4, we prove its variant, where we assume that mine∈E c(e) ⩾ 1/d.
Theorem 4 follows then by scaling as a simple corollary.

▶ Lemma 20. Fix a real d > 0, a graph G = (V, E, c) such that c(e) ⩾ 1/d for every e ∈ E,
and non-negative edge lengths {ze}e∈E. It is possible to construct, in polynomial time,
a d-decomposition tree T = (VT, ET, α) of G, such that

costG,z(T ) ⩽ ξ · O(log ξ · log log ξ),

where ξ =
∑

e∈E c(e) · ze.
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Proof. We construct a d-decomposition tree T as described in the previous section. Let
wr be its root. Using Definition 3,

costG,z(T ) =
∑

w∈VT(wr)

c(cut(w)) · diamz(α(w))

⩽ O(1) · F (vol(α(wr))) · ln ln(vol V ) (by Lemma 19)
= vol V · O(ln(vol V ) · ln ln(vol V )). (by the definition of F )

The lemma follows by observing that vol V = ξ. ◀

▶ Theorem 4. Fix a real d > 0 and a graph G = (V, E, c) with non-negative edge
lengths {ze}e∈E. It is possible to construct, in polynomial time, a d-decomposition tree T =
(VT, ET, α) of G, such that

costG,z(T ) ⩽ ξ · O(log(fc,d · ξ) · log log(fc,d · ξ)),

where ξ =
∑

e∈E c(e) · ze, fc,d = max{1, 1/(d · cmin)}, and cmin = mine∈E c(e).

Proof. Let cthr = 1/d. Note that fc,d = max{1, cthr/cmin}. If cmin ⩾ cthr, then G satisfies
the requirements of Lemma 20 and fc,d = 1. The theorem follows immediately by invoking
this lemma.

In the following, we thus assume that cmin < cthr. In this case, fc,d = cthr/cmin. We take
the graph G′ = (V, E, c′), where c′(e) = (cthr/cmin) · c(e) for every edge e ∈ E. We construct
a d-decomposition tree T of G′ using Lemma 20. We now argue that T satisfies the theorem
statement with respect to the original graph G. Let ξ′ =

∑
e∈E c′(e) · ze. Then,

costG,z(T ) = (cmin/cthr) · costG′,z(T ) (by Definition 3)
⩽ (cmin/cthr) · ξ′ · O(log ξ′ · log log ξ′) (by Lemma 20)
= ξ · O(log((cthr/cmin) · ξ) · log log((cthr/cmin) · ξ)))
= ξ · O(log(fc,d · ξ) · log log(fc,d · ξ)). ◀
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Abstract
In Gapped String Indexing, the goal is to compactly represent a string S of length n such that
for any query consisting of two strings P1 and P2, called patterns, and an integer interval [α, β],
called gap range, we can quickly find occurrences of P1 and P2 in S with distance in [α, β]. Gapped
String Indexing is a central problem in computational biology and text mining and has thus
received significant research interest, including parameterized and heuristic approaches. Despite this
interest, the best-known time-space trade-offs for Gapped String Indexing are the straightforward
O(n) space and O(n + occ) query time or Ω(n2) space and Õ(|P1| + |P2| + occ) query time.

We break through this barrier obtaining the first interesting trade-offs with polynomially
subquadratic space and polynomially sublinear query time. In particular, we show that, for every
0 ≤ δ ≤ 1, there is a data structure for Gapped String Indexing with either Õ(n2−δ/3) or Õ(n3−2δ)
space and Õ(|P1| + |P2| + nδ · (occ + 1)) query time, where occ is the number of reported occurrences.

As a new fundamental tool towards obtaining our main result, we introduce the Shifted Set
Intersection problem: preprocess a collection of sets S1, . . . , Sk of integers such that for any query
consisting of three integers i, j, s, we can quickly output YES if and only if there exist a ∈ Si and
b ∈ Sj with a + s = b. We start by showing that the Shifted Set Intersection problem is
equivalent to the indexing variant of 3SUM (3SUM Indexing) [Golovnev et al., STOC 2020]. We
then give a data structure for Shifted Set Intersection with gaps, which entails a solution to
the Gapped String Indexing problem. Furthermore, we enhance our data structure for deciding
Shifted Set Intersection, so that we can support the reporting variant of the problem, i.e.,
outputting all certificates in the affirmative case. Via the obtained equivalence to 3SUM Indexing,
we thus give new improved data structures for the reporting variant of 3SUM Indexing, and
we show how this improves upon the state-of-the-art solution for Jumbled Indexing [Chan and
Lewenstein, STOC 2015] for any alphabet of constant size σ > 5.
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1 Introduction

The classic string indexing (or text indexing) problem [28, 19] is to preprocess a string S into
a compact data structure that supports efficient pattern matching queries; i.e., decide if the
pattern occurs or not in S or report the set of all positions in S where an occurrence of the
pattern starts. An important variant of practical interest is the Gapped String Indexing
problem; the goal is to preprocess a string S of length n into a compact data structure, such
that for any query consisting of two patterns P1 and P2, and a gap range [α, β], one can
quickly find occurrences of P1 and P2 in S with distance in [α, β].

Searching for patterns with gaps is of great importance in computational biology [11,
30, 24, 46, 43, 48, 50]. In DNA sequences, a structured DNA motif consists of two smaller
conserved sites (patterns P1 and P2) separated by a spacer, that is, a non-conserved spacer
of mostly fixed or slightly variable length (gap range [α, β]). Thus, by introducing an efficient
data structure for Gapped String Indexing, one can preprocess a DNA sequence into a
compact data structure that facilitates efficient subsequent searches to DNA motifs.

Searching for patterns with gaps appears also in the area of text mining [42, 37, 44, 54].
Here, the task of finding co-occurrences of words is important, because they can indicate
semantic proximity or idiomatic expressions in the text. A co-occurrence is a sequence
of words (patterns P1, P2, . . . , Pk) that occur in close proximity (gap range [α, β] or, most
often, gap range [0, β]). By giving a data structure for Gapped String Indexing, one
can pre-process large bodies of text into a compact data structure that facilitates efficient
subsequent co-occurrence queries for the first non-trivial number of patterns, i.e., for k = 2.

The algorithmic version of the problem, where a string and a single query is given as
input, is well-studied [10, 9, 24, 45, 48, 51]. The indexing version, which is arguably more
useful in real-world applications, is also much more challenging: Standard techniques yield
an O(n)-space and O(n + occ)-query time solution (see Appendix A) or an O(n3)-space and
O(|P1| + |P2| + occ)-query time solution, where occ is the size of the output. A more involved
approach yields Õ(n2) space and Õ(|P1| + |P2| + occ) query time (see Appendix B).

The Combinatorial Pattern Matching community has been unable to improve the above-
mentioned long-standing trade-offs. Precisely because of this, practitioners have typically been
engineering algorithms or studying heuristic approaches [4, 11, 12, 24, 29, 44, 45, 46, 48, 50, 54].
Theoreticians, on the other hand, have typically been solving restricted or parameterized
variants [49, 5, 31, 38, 8, 35, 7, 17, 39, 25, 40]. Thus, breaking through the quadratic-space
linear-time barrier for gapped string indexing is likely to have major consequences both in
theory and in practice. This work is dedicated to answering the following question:

Is there a subquadratic-space and sublinear-query time solution for
Gapped String Indexing?

1.1 Results
We assume throughout the standard word-RAM model of computation and answer the above
question in the affirmative. Let us start by formally defining the existence variant of Gapped
String Indexing as follows:



P. Bille, I. L. Gørtz, M. Lewenstein, S. P. Pissis, E. Rotenberg, and T. A. Steiner 16:3

Gapped String Indexing
Preprocess: A string S of length n.
Query: Given two strings P1 and P2 and an integer interval [α, β], output YES if and
only if there exists a pair (i, j) such that P1 occurs at position i of S, P2 occurs at
position j ≥ i of S and j − i ∈ [α, β].

Similarly, in the reporting variant of Gapped String Indexing, a query answer is all
pairs satisfying the above conditions.

Gapped String Indexing w. Reporting
Preprocess: A string S of length n.
Query: Given two strings P1 and P2 and an integer interval [α, β], output all pairs (i, j)
such that P1 occurs at position i of S, P2 occurs at position j ≥ i of S and j − i ∈ [α, β].

Our main result is the following trade-offs for Gapped String Indexing with reporting:

▶ Theorem 1. For every 0 ≤ δ ≤ 1, there is a data structure for Gapped String Indexing
w. Reporting with either:

(i) Õ(n2−δ/3) space and Õ(nδ · (occ + 1) + |P1| + |P2|) query time; or
(ii) Õ(n3−2δ) space and Õ(nδ · (occ + 1) + |P1| + |P2|) query time,

where occ is the size of the output.

For the existence variant, the bounds above hold with occ = 1: we can terminate the querying
algorithm as soon as the first witness is reported. (Note that n3−2δ is smaller than n2−δ/3

for δ > 3/5.) Hence, we achieve the first polynomially subquadratic space and polynomially
sublinear query time for Gapped String Indexing.

Our main technical contribution is a data structure for Gapped Set Intersection
w. Reporting, which is a generalization of a problem related to 3SUM Indexing. We
then show that our improved result for Gapped String Indexing w. Reporting follows
via new connections to Gapped Set Intersection w. Reporting.

We show that the Gapped Set Intersection and 3SUM Indexing problems (and
their reporting variants) are equivalent, but with an increase in universe size in the reduction
to 3SUM Indexing. Thus, as a result, we obtain a new data structure for the indexing
variant of the 3SUM problem [27], which not only outputs an arbitrary certificate, but it
outputs all certificates. This is an interesting contribution on its own right and also has
applications e.g., to the Jumbled Indexing problem [14].

1.2 Overview of Techniques and Paper Organization

As a new fundamental tool towards obtaining our main result for Gapped String Indexing,
we introduce the following problem, which we call Shifted Set Intersection (see Figure 1).

Shifted Set Intersection
Preprocess: A collection of k sets S1, . . . , Sk of total size

∑
i |Si| = N of integers from

a universe U = {1, 2, . . . , u}.
Query: Given i, j, s, output YES if and only if there exist a ∈ Si and b ∈ Sj such that
a + s = b.

We start by showing that the Shifted Set Intersection problem is equivalent to the
indexing variant of 3SUM. We formally define the 3SUM Indexing problem next.
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Shifted Set

Intersection

Universe: [u]

3SUM Indexing

Universe: [k2u]

Shifted Set

Intersection

Universe: [u]

3SUM Indexing

Universe: [k2u]

w. Reporting

Gapped Set

Intersection

Gapped String

Indexing

w. Reporting

Jumpled Indexing

w. Reporting

|Σ| = O(1)

w. Reportingw. Reporting

Figure 1 We show that Shifted Set Intersection and 3SUM Indexing are equivalent, and
our reduction also transfers to the reporting variants of the two problems. In fact, we solve a
problem that is even harder than the Shifted Set Intersection problem; namely, the Gapped
Set Intersection problem, which leads to a solution to the Gapped String Indexing problem.

3SUM Indexing
Preprocess: A set A of N integers from a universe U = {1, 2, . . . , u}.
Query: Given c ∈ U output YES if and only if there exist a, b ∈ A such that a + b = c.

The following breakthrough result is known for 3SUM Indexing; see also [36].

▶ Theorem 2 (Golovnev et al. [27]). For every 0 ≤ δ ≤ 1, there is a data structure for 3SUM
Indexing with space Õ(N2−δ) and query time Õ(N3δ). In particular, this data structure
returns a certificate, i.e., for a query c, such that the answer is YES, it can output a pair
a, b ∈ A such that a + b = c in Õ(N3δ) time.

In Section 2, we show a two-way linear-time reduction between Shifted Set Intersec-
tion and 3SUM Indexing. In particular, this tells us that the two problems admit the
same space-query time trade-offs. While the direction from 3SUM Indexing to Shifted
Set Intersection is immediate, the opposite direction requires some careful manipulation
of the input collection based on the underlying universe. Furthermore, in the same section,
we give a different trade-off for Shifted Set Intersection in the case where the set of
possible distances is small, which is based on tabulating large input sets.

The main advantage of the Shifted Set Intersection formulation is that it gives
extra flexibility which we can exploit to solve several generalizations of the problem. In
particular, in Section 3, we show that we can augment any Shifted Set Intersection
instance of k sets and total size N by O(k log N) extra sets, such that we can represent any
subset of consecutive elements in a set of the original instance by at most O(log N) sets in
the augmented instance. We use this to solve the reporting variant of the Shifted Set
Intersection problem, called Shifted Set Intersection w. Reporting, where instead
of deciding whether two elements of a given shift exist, we report all such elements. The
idea is to first locate one output pair using the solution for the existence variant, then split
the sets into elements smaller or bigger than the output element, and recurse accordingly.

Shifted Set Intersection w. Reporting
Preprocess: A collection of k sets S1, . . . , Sk of total size

∑
i |Si| = N of integers from

a universe U = {1, 2, . . . , u}.
Query: Given i, j, s, output all pairs (a, b) such that a ∈ Si and b ∈ Sj and a + s = b.

We show the following result.
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▶ Theorem 3. For every 0 ≤ δ ≤ 1, there is a data structure for Shifted Set Intersection
w. Reporting with Õ(N2−δ/3) space and Õ(N δ · (occ + 1)) query time, where occ is the
size of the output.

As a consequence, we also give a reporting data structure for 3SUM Indexing, which
may be of independent interest. Let us first formalize the problem.

3SUM Indexing w. Reporting
Preprocess: A set A of N integers from a universe U = {1, 2, . . . , u}.
Query: Given c ∈ U output all pairs (a, b) ∈ A such that a + b = c.

▶ Corollary 4. For every 0 ≤ δ ≤ 1, there is a data structure for 3SUM Indexing
w. Reporting with Õ(N2−δ/3) space and Õ(N δ · (occ + 1)) query time, where occ is the
size of the output.

Furthermore, in Section 4, we show that we can augment any Shifted Set Intersection
instance by O(k log u) sets to solve the more general problem of Gapped Set Intersection,
where instead of a single shift, the query asks for an interval of allowed shifts.

Gapped Set Intersection
Preprocess: A collection of k sets S1, . . . , Sk of total size

∑
i |Si| = N of integers from

a universe U = {1, 2, . . . , u}.
Query: Given i, j and an integer interval [α, β], output YES if and only if there exist
a ∈ Si, b ∈ Sj and s ∈ [α, β] such that a + s = b.

We solve this problem by first considering an approximate variant of the problem, where
the interval length is a power of two plus one, and we allow false positives in an interval of
roughly twice the size. Then we carefully cover the query interval by O(log u) approximate
queries to obtain Theorem 5.

▶ Theorem 5. For every 0 ≤ δ ≤ 1, there is a data structure for Gapped Set Intersection
with Õ(N2−δ/3) space and Õ(N δ) query time.

We combine the reduction underlying Theorem 5 with the reporting solution underlying
Theorem 3 to obtain a solution for the reporting variant of Gapped Set Intersection.

Gapped Set Intersection w. Reporting
Preprocess: A collection of k sets S1, . . . , Sk of total size

∑
i |Si| = N of integers from

a universe U = {1, 2, . . . , u}.
Query: Given i, j and an integer interval [α, β], output all pairs (a, b) such that a ∈ Si,
b ∈ Sj and there is an s ∈ [α, β] such that a + s = b.

▶ Theorem 6. For every 0 ≤ δ ≤ 1, there is a data structure for Gapped Set Intersection
w. Reporting with Õ(N2−δ/3) space and Õ(N δ · (occ + 1)) query time, where occ is the
size of the output.

In Section 5, we finally use all of these acquired tools to solve the Gapped String
Indexing problem. In particular, we cover the suffix array of string S in dyadic subintervals,
which we then preprocess into the data structure from Theorem 6. Note that the total size
of these sets is O(n log n), where n is the length of S. Moreover, any interval of consecutive
elements in the suffix array can be covered by O(log n) sets in the instance. Putting everything
together we obtain our main result (Theorem 1).
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In Section 6, we show a reduction from 3SUM Indexing to Jumbled Indexing, giving
a data structure for Jumbled Indexing which improves on the state-of-the-art solution
for constant alphabet sizes σ > 5. We give new upper bounds for the existence and the
reporting variants of Jumbled Indexing. In order to define Jumbled Indexing, we need
the following notion of a histogram of a string:

▶ Definition 7. Given a string S over an alphabet Σ, a histogram h of S is a vector of
dimension |Σ| where every entry is the number of times the corresponding letter occurs in S.

Jumbled Indexing w. Reporting
Preprocess: A string S of length n over an alphabet Σ.
Query: For any pattern histogram P ∈ (N0)|Σ|, return all substrings of S whose
histogram is P .

We call a substring of S whose histogram is P an occurrence of P in S. In the existence
variant of the Jumbled Indexing problem, the query answer is YES or NO depending on
whether there is at least one occurrence of P in S. We show the following result:

▶ Corollary 8. Given a string S of length n over an alphabet of size σ = O(1), for every
0 ≤ δ ≤ 1, there is a data structure for Jumbled Indexing w. Reporting with Õ(n2−δ)
space and Õ(n3δ · (occ + 1)) query time, where occ is the size of the output. The bounds are
Õ(n2−δ) space and Õ(n3δ) query time for the existence variant.

The best-known previous bounds for the existence variant of Jumbled Indexing use
O(n2−δ) space and O(m(2σ−1)δ) query time [34], where m is the norm of the queried pattern
(i.e., the sum of histogram entries), or Õ(n2−δ) space and Õ(nδ(σ+1)/2) query time [14].
Interestingly, the reporting variant of Jumbled Indexing is, in general, significantly harder
than the existence variant: There is a recent (unconditional) lower bound stating that any
data structure for Jumbled Indexing w. Reporting with O(n0.5−o(1) + occ) query time
needs Ω(n2−o(1)) space, and this holds even for a binary alphabet [1]. By our reduction, this
in particular implies that a data structure with Õ(N2−δ) space and Õ(N3δ + occ) query
time is not possible for 3SUM Indexing w. Reporting. For a more complete overview,
see Section 6. We conclude this paper in Section 7 with some future proposals.

In Appendix C, we show a better trade-off for the related Smallest Shift problem.

Smallest Shift
Preprocess: A collection of k sets S1, . . . , Sk of total size

∑
i |Si| = N of integers from

a universe U = {1, 2, . . . , u}.
Query: Given i, j, output the smallest s such that there exists a ∈ Si and b ∈ Sj with
a + s = b.

▶ Proposition 9. There is a data structure for Smallest Shift with O(N) space and
Õ(

√
N) query time. Moreover, the data structure can be constructed in O(N

√
N) time.

Gapped Set Intersection reduces to Smallest Shift in the special case where we
only allow query intervals of the form [0, β]. Together with our other results, this reduction
yields a Õ(N) space and Õ(|P1| + |P2| +

√
N · (occ + 1)) query time trade-off for Gapped

String Indexing if the query intervals are restricted to [0, β]. However, let us remark that for
this restricted version of the problem, a Õ(N) space and Õ(|P1|+ |P2|+

√
N · (occ + 1)+occ)

query time trade-off already follows from [7].
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Subsequent work. Since the first publication of this paper [6], Aronov et al. [3] proposed
a combination of range searching and the Fiat-Naor inversion scheme [21] (which was has
already been used to prove Theorem 2), recovering our main result (Theorem 1) as a corollary.

2 3SUM Indexing is Equivalent to Shifted Set Intersection

Here we show a two-way linear-time reduction between 3SUM Indexing and Shifted Set
Intersection. We thus obtain the same space-time bounds for the two problems.

2.1 From 3SUM Indexing to Shifted Set Intersection
▶ Fact 10. Any instance of 3SUM Indexing of input size N and universe size u can be
reduced to a Shifted Set Intersection instance of total size O(N) with universe size
O(u) in time O(N).

Proof. We denote the 3SUM Indexing instance by A = {a1, a2, . . . , aN } (the input set). We
construct the Shifted Set Intersection instance: S1 = A and S2 = {−a1, −a2, . . . , −aN }
in O(N) time. For any 3SUM Indexing query c, we construct the Shifted Set Intersec-
tion query (S2, S1, c)1 in O(1) time, and observe that: ai + aj = c ⇐⇒ c − ai = aj . Thus
the answer to the 3SUM Indexing query is YES if and only if the answer to the Shifted
Set Intersection query is YES. ◀

2.2 From Shifted Set Intersection to 3SUM Indexing
▶ Theorem 11. Any instance of Shifted Set Intersection with

∑k
i=1 |Si| = N and

universe size u can be reduced to a 3SUM Indexing instance of input size O(N) and universe
size O(k2u) in time O(N).

Proof. Let us start by considering an alternative yet equivalent formulation of 3SUM
Indexing. Preprocess two sets A and B from a universe U ′ = {1, 2, . . . , u′} to answer
queries of the following form: Given an element c ∈ U ′, output YES if and only if there exist
(a, b) ∈ A × B such that a + b = c. To see why it is equivalent, notice that the formulation
with one set reduces trivially to this formulation by setting A = B. For the other direction,
given A and B from universe U ′, define A′ = A ∪ {b + 2u′ | b ∈ B}. We verify that querying
c + 2u′ on A′ for any c ∈ [2, . . . , 2u′] in the 3SUM Indexing formulation with one set is
equivalent to querying c on A and B in the 3SUM Indexing formulation with two sets. We
now reduce Shifted Set Intersection to the 3SUM Indexing formulation with two sets.

We denote the Shifted Set Intersection instance by S1, . . . , Sk (the input collection
over universe U = {1, 2, . . . , u}) and

∑
i∈[k] |Si| by N . We construct the following instance

of the above 3SUM Indexing reformulation in O(N + k) = O(N) time:

A = {e + j · (k + 1) · 2u | e ∈ Sj , 1 ≤ j ≤ k}, B = {−e + i · 2u | e ∈ Si, 1 ≤ i ≤ k}.

The 3SUM Indexing instance has input size 2N = Θ(N) and universe size U ′ = O(k2 · u).
Let us denote a query of Shifted Set Intersection by Q(Si, Sj , s). Now, we construct

the 3SUM Indexing query Q3SUM(s + (j · (k + 1) + i) · 2u) in O(1) time. The following
claim concludes the proof.

1 We may write (Si, Sj , c) for a Shifted Set Intersection query instead of (i, j, c) for clarity.
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▷ Claim 12. Q(Si, Sj , s) outputs YES if and only if Q3SUM(s + (j · (k + 1) + i) · 2u) outputs
YES.

Proof. (⇒): Let e1 ∈ Si, e2 ∈ Sj such that e1 + s = e2. Then a = e2 + j · (k + 1) · 2u ∈ A,
b = −e1 + i · 2u ∈ B, and a + b = s + (j · (k + 1) + i) · 2u. Thus Q3SUM(s + (j · (k + 1) + i) · 2u)
outputs YES.

(⇐): Assume there is a ∈ A and b ∈ B such that a + b = s + (j · (k + 1) + i) · 2u. By
definition of A and B, there exist i′, j′, and e2 ∈ Sj′ , e1 ∈ Si′ such that a = e2 +j′ ·(k+1) ·2u

and b = −e1 + i′ · 2u, thus s + (j · (k + 1) + i) · 2u = (e2 − e1) + (j′ · (k + 1) + i′) · 2u. Since
−u < s < u and −u < (e2 − e1) < u, we have that j · (k + 1) + i = j′ · (k + 1) + i′ and
e2 − e1 = s. Since i ≤ k and i′ ≤ k, we have j = j′ and i = i′. Thus Q(Si, Sj , s) outputs
YES. ◁

◀

By employing Theorem 2 we obtain the following corollary:

▶ Corollary 13. For every 0 ≤ δ ≤ 1, there is a data structure for Shifted Set Intersec-
tion with space Õ(N2−δ) and query time Õ(N3δ).

We also show how we can obtain a different trade-off in the case where the number of
possible shifts is bounded by some ∆ (this gives us a better trade-off for some δ in the
application of Gapped String Indexing). In this case, call all sets of size at most N δ small,
and other sets large. Note that there are at most N1−δ large sets. For every pair of large sets
and any possible shift, we precompute the answer, using space O(∆N2−2δ). Additionally, we
store a dictionary on every set using space O(N) (using e.g., perfect hashing [23]). For a
query Q(Si, Sj , s), if both sets Si and Sj are large, we look up the precomputed answer. If
one set is small, wlog Si, we check if a + s ∈ Sj for every a ∈ Si using the dictionary. Note
that in particular, ∆ < u. This gives the following lemma:

▶ Lemma 14. For every 0 ≤ δ ≤ 1, there is a data structure for Shifted Set Intersection
with space O(u · N2−2δ) and query time O(N δ).

3 Reporting: 3SUM Indexing and Shifted Set Intersection

In this section, we explain how we can answer reporting queries for both Shifted Set
Intersection and 3SUM Indexing, as defined in Section 1. The following fact is trivial.

▶ Fact 15. There is a data structure for Shifted Set Intersection w. Reporting with
O(N) space and O(|Si| + |Sj |) query time.

The other extreme trade-off is also straightforward.

▶ Lemma 16. There is a data structure for Shifted Set Intersection w. Reporting
with O(N2) space and O(occ) query time, where occ is the size of the output.

Proof. For every existing shift s, we save all the pairs of sets (A, B) for which Q(A, B, s) =YES
using perfect hashing [23]. For every such pair, we save all pairs (a, b) ∈ A × B, such that
a + s = b, in a list. There are O(N2) pairs (a, b) in total. The space is thus O(N2). ◀

We next prove the main result (Theorem 3) of this section.
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▶ Theorem 3. For every 0 ≤ δ ≤ 1, there is a data structure for Shifted Set Intersection
w. Reporting with Õ(N2−δ/3) space and Õ(N δ · (occ + 1)) query time, where occ is the
size of the output.

▶ Corollary 4. For every 0 ≤ δ ≤ 1, there is a data structure for 3SUM Indexing
w. Reporting with Õ(N2−δ/3) space and Õ(N δ · (occ + 1)) query time, where occ is the
size of the output.

Proof of Theorem 3. The main idea behind the proof is the following: We use the fact that
the data structure for 3SUM Indexing from Theorem 2 returns a certificate, i.e., for a
query c ∈ U such that the answer to the query is YES it can additionally output a pair (a, b)
satisfying a + b = c. By our reduction from Shifted Set Intersection, when we query for
Si, Sj and s we can return a ∈ Si and b ∈ Sj such that a + s = b. We then conceptually split
Si and Sj into two sets each, those elements in Si which are smaller than a, those which
are bigger, and similarly for Sj and b. We then want to use the fact that if a′ + s = b′ and
a′ < a, then b′ < b and vice versa, to recurse on the smaller subsets. However, we cannot
afford to preprocess all subsets of any set Si into the Shifted Set Intersection data
structure. To solve this issue, we partition each set into the subsets which correspond to the
dyadic intervals on the rank of the elements in sorted order, and preprocess them into our
Shifted Set Intersection data structure.

In detail, our data structure is defined as follows: Let S1, . . . , Sk be the input to Shif-
ted Set Intersection w. Reporting. We build the data structure for Shifted Set
Intersection from Corollary 13 containing, additionally to S1, . . . , Sk, the following subsets:
Let S = {s1, s2, . . . , sm} be a set in our Shifted Set Intersection w. Reporting
instance, where s1 < s2 < · · · < sm.

We partition S into subsets which correspond to the dyadic intervals on the rank. That
is, for j = 0, . . . , ⌊log m⌋, we partition S into {si+1, si+2, . . . , si+2j }, for all i = κ · 2j and
0 ≤ κ ≤ ⌊m/2j⌋ − 1. We call these sets the dyadic subsets of S. Note that for a fixed j, the
union of these sets is a subset of S and thus has size at most m. Hence, the total size of all
dyadic subsets is O(m log m).

▶ Observation 17. Any subset of S of the form {x ∈ S | a ≤ x ≤ b} is the union of at most
2 log |S| dyadic subsets of S.

The data structure for Shifted Set Intersection w. Reporting consists of the
Shifted Set Intersection data structure on all sets S1, . . . , Sk and their dyadic subsets.
Further, for each dyadic subset, we store its minimum and its maximum element as auxiliary
information. The total size of all dyadic subsets is O(N log N). The space is thus Õ(N2−δ/3).

To perform a query on Si, Sj , s, we first perform a query on the Shifted Set Intersec-
tion data structure for the same inputs. If it returns NO, we are done. If it returns YES,
let a and b be the certificate pair such that a + s = b. Define A1 = {a′ ∈ Si | a′ < a} and
A2 = {a′ ∈ Si | a′ > a}, and similarly B1 = {b′ ∈ Sj | b′ < b} and B2 = {b′ ∈ Sj | b′ > b}.
Then any additional solution pair (a′, b′) has to either satisfy a′ ∈ A1 and b′ ∈ B1 or a′ ∈ A2
and b′ ∈ B2. Further, by Observation 17, we can decompose A1, A2, B1, and B2 into
O(log N) dyadic subsets in O(log N) time. Call these decompositions A1, A2, B1, B2. We
could now recurse on any (A, B) where A ∈ A1 and B ∈ B1 or A ∈ A2 and B ∈ B2, dividing
into O(log2 N) subproblems. Since every time before we recurse we obtain a new certificate,
this brings the query time to Õ(N δ · (occ + 1)), which proves the theorem. We nevertheless
show next (Lemma 18) how we can reduce the recursion pairs to O(log N).

STACS 2024



16:10 Gapped String Indexing in Subquadratic Space and Sublinear Query Time

Fix i ∈ {1, 2}. For A′ ∈ Ai, let amin be its minimum element and amax its maximum
element. For B′ ∈ Bi define bmin and bmax analogously. We say A′ and B′ match if
[amin + s, amax + s] and [bmin, bmax] have a non-empty intersection.

▶ Lemma 18. There are O(log N) matching pairs (A′, B′), A′ ∈ Ai, B′ ∈ Bi, and i ∈ {1, 2}.

Proof. For a fixed A′ ∈ Ai, consider all B′ such that A′ matches B′ ∈ Bi. Since the intervals
[bmin, bmax] are disjoint, all except at most two B′ that match A′ have the property that the
corresponding interval [bmin, bmax] is fully contained in [amin + s, amax + s]. Hence, those B′

match only A′. Let Ai = {A1
i , . . . , Ak1

i } and |Bi| = k2 with k1, k2 = O(log N). The number
of matching pairs is given by

k1∑
j=1

(Number of B′ matching Aj
i ) ≤ 2k1 +

k1∑
j=1

(Number of B′ matching only Aj
i ) ≤ 2k1 +k2.

The last inequality follows since the sets {B′ matching only Aj
i } form disjoint subsets of Bi.

◀

For one A′, we can identify all matching B′ in O(log N) time using the precomputed
information (i.e., searching for the predecessor of amin + s in the minima of Bi and the
successor of amax + s in the maxima of Bi). In total all matching pairs can be identified in
time O(log2 N). Thus, instead of recursing on all pairs (A′, B′), where A′ ∈ Ai and B′ ∈ Bi,
we can recurse only on the matching pairs, which saves a log N factor in the query time. ◀

4 Gapped Set Intersection

Here we show how to solve the more general problem of Gapped Set Intersection, where
we allow any shift within a given interval. Recall that the problem is defined in Section 1.

The main idea is to use the solution from Corollary 13 on O(log u) carefully constructed
Shifted Set Intersection instances. To do this, we first show how we can approximately
answer Gapped Set Intersection queries for query intervals whose length is a power
of two plus one (approximately in the sense that we allow false positives within a larger
interval), then use O(log u) such queries to “cover” [α, β].

We formally define approximate Gapped Set Intersection.

Approximate Gapped Set Intersection
Preprocess: A collection of k sets S1, . . . , Sk of total size

∑
i |Si| = N of integers from

a universe U = {1, 2, . . . , u} and a level l with 1 ≤ l ≤ log u.
Query: Given i, j and a center distance d = κ · 2l, for some positive integer κ, output
YES or NO such that:

The output is YES if there exists a pair a ∈ Si, b ∈ Sj such that b − a ∈ [d − 2l−1, d +
2l−1];
The output is NO if there exists no pair a ∈ Si, b ∈ Sj such that b−a ∈ (d−2l, d+2l).

Note that by the definition of the Approximate Gapped Set Intersection problem,
if for a query i, j and d = κ · 2l there exists a pair a pair a ∈ Si, b ∈ Sj such that
b − a ∈ (d − 2l, d + 2l), but no pair a ∈ Si, b ∈ Sj such that b − a ∈ [d − 2l−1, d + 2l−1], we
may answer either YES or NO.

▶ Lemma 19. Assume there is a data structure for Shifted Set Intersection with s

space and t query time. Then there is a data structure for Approximate Gapped Set
Intersection with O(s) space and O(t) query time.
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Proof. For any set Si in the collection, define S′
i = {⌊a/2l−1⌋, a ∈ Si} and build the assumed

data structure for Shifted Set Intersection on sets S′
1, . . . , S′

k. To answer a query
(i, j, d = κ ·2l) on Approximate Gapped Set Intersection, make the queries (i, j, 2κ−1),
(i, j, 2κ) and (i, j, 2κ + 1) on the Shifted Set Intersection instance. Return YES if and
only if one of the queries to the Shifted Set Intersection instance returns YES.

To show correctness, first notice that if we return YES, then there exist a ∈ Si and
b ∈ Sj satisfying 2κ − 1 ≤ ⌊b/2l−1⌋ − ⌊a/2l−1⌋ ≤ 2κ + 1. This implies 2κ − 2 ≤ ⌊b/2l−1⌋ −
⌊a/2l−1⌋−1 < ⌊b/2l−1⌋−a/2l−1 ≤ b/2l−1−a/2l−1 and b/2l−1−a/2l−1 ≤ b/2l−1−⌊a/2l−1⌋ <

⌊b/2l−1⌋ − ⌊a/2l−1⌋ + 1 ≤ 2κ + 2. Thus, b − a ∈ (κ · 2l − 2l, κ · 2l + 2l) = (d − 2l, d + 2l).
Next, assume there is a pair a ∈ Si and b ∈ Sj such that b − a ∈ [d − 2l−1, d + 2l−1] =

[κ · 2l − 2l−1, κ · 2l + 2l−1]. Then clearly b/2l−1 − a/2l−1 ∈ [2κ − 1, 2κ + 1]. Similar to
above, we have ⌊b/2l−1⌋ − ⌊a/2l−1⌋ ≤ b/2l−1 − ⌊a/2l−1⌋ < b/2l−1 − a/2l−1 + 1 ≤ 2κ + 2
and 2κ − 2 ≤ b/2l−1 − a/2l−1 − 1 < ⌊b/2l−1⌋ − a/2l−1 ≤ ⌊b/2l−1⌋ − ⌊a/2l−1⌋. Thus,
⌊b/2l−1⌋ − ⌊a/2l−1⌋ ∈ (2κ − 2, 2κ + 2) and, because ⌊b/2l−1⌋ − ⌊a/2l−1⌋ is an integer,
⌊b/2l−1⌋ − ⌊a/2l−1⌋ ∈ [2κ − 1, 2κ + 1]. Thus we answer YES in this case. ◀

▶ Corollary 20. For every 0 ≤ δ ≤ 1, there is a data structure for Approximate Gapped
Set Intersection with Õ(N2−δ/3) space and Õ(N δ) query time.

We now show how to reduce Gapped Set Intersection to O(log u) Approximate Gapped
Set Intersection instances, giving the following theorem:

▶ Theorem 5. For every 0 ≤ δ ≤ 1, there is a data structure for Gapped Set Intersection
with Õ(N2−δ/3) space and Õ(N δ) query time.

Proof. Given S1, . . . , Sk, we build a Shifted Set Intersection data structure and an
Approximate Gapped Set Intersection data structure for S1, . . . , Sk and every level l

with 1 ≤ l ≤ log u. Assume we want to answer a query for Si, Sj and [α, β]. We show how to
answer the query using O(log(β − α)) Approximate Gapped Set Intersection queries.
We query Approximate Gapped Set Intersection for i, j and different choices of l and
d. We call a query i, j and d to Approximate Gapped Set Intersection of level l a
2l-approximate query centered at d. We say the query covers the interval [d − 2l−1, d + 2l−1].
We call all elements in interval (d − 2l, d + 2l) uncertain. Now, for the interval [α, β], we
want to find O(log(β − α)) = O(log u) queries which together cover [α, β] such that there
are no uncertain elements outside of [α, β]. In detail:

We show how to cover a continuous interval [α, α + ∆] for growing ∆ over several phases
(inspect Figure 2). In the lth phase, we use a constant number of 2l-approximate queries.

If at any point we cover [α, α + ∆] such that ∆ ≥ (β − α)/2, we stop.
If we never cover past α + ∆ with ∆ ≥ (β − α)/2 in phase l, we do exactly three
2l-approximate queries in that phase:
In phase 0, we do regular Shifted Set Intersection queries for α, α + 1, α + 2.
In phase l, if we have covered up until α + ∆ in phase l − 1, we center the first 2l-
approximate query at the largest κ · 2l such that κ · 2l − 2l−1 ≤ α + ∆. Then we center
the next two queries at (κ + 1) · 2l and (κ + 2) · 2l.
When we stop, we do a symmetric process starting from β.

▷ Claim 21. We stop after O(log(β − α)) phases, after which we will have covered the full
interval [α, α + ∆] for ∆ ≥ (β − α)/2.
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1 · κ
2 · κ
4 · κ
8 · κ
16 · κ

0 α

phase 0

α + ∆

phase 1

phase 2

Figure 2 Illustration of the phases from the proof of Theorem 5: At the lth phase of the algorithm,
we use at most three 2l-approximate queries to cover at least 2 · 2l elements in [α, β] which were not
covered by previous phases. The centers of the queries are shown by short vertical line segments.
The covered elements for each query are shown dashed, and the uncertain elements are shown by
the black horizontal arrows. The dots at the bottom show all potential centers for the approximate
queries; the ones our algorithm uses are marked in red.

Proof. By the choice of the first query in each phase, the interval we cover with that query
starts at some position κ · 2l − 2l−1 ≤ α + ∆. Thus, there are no gaps. The first interval
covers up until κ · 2l + 2l−1 = (κ + 1) · 2l − 2l−1 > α + ∆. Thus, only the first query of a phase
covers part of an interval that was covered in a previous phase, while the next two queries
cover 2 · 2l elements which were not covered in a previous phase. Thus, after O(log(β − α))
phases, we have covered at least until α + (β − α)/2. ◁

▷ Claim 22. All uncertain elements introduced during the algorithm are included in [α, β].

Proof. By the argument before, if we enter phase l and have not stopped, we have covered at
least 2

∑l−1
j=0 2j = 2(2l − 1) = 2l+1 − 2 elements, i.e., ∆ ≥ 2l+1 − 2. Further, ∆ < (β − α)/2.

The first query in phase l is centered at κ · 2l with κ · 2l − 2l−1 ≤ α + ∆ < κ · 2l + 2l−1.
Thus, κ · 2l ≤ α + ∆ + 2l−1 and κ · 2l ≥ α + ∆ − 2l−1 + 1 and the uncertain interval
(κ · 2l − 2l, κ · 2l + 2l) is contained in [α + ∆ − 2l−1 + 2 − 2l, α + ∆ + 2l−1 + 2l − 1]. Since
∆ ≥ 2l+1 − 2 ≥ 2l + 2l−1 − 2, we have that α + ∆ − 2l−1 − 2l + 2 ≥ α and thus there are no
uncertain elements smaller than α. Since ∆ + 2l + 2l−1 − 1 ≤ 2∆ + 1 ≤ β − α, we have that
α + ∆ + 2l + 2l−1 − 1 ≤ β and thus there are no uncertain elements bigger than β.

If there are subsequent queries in phase l, then before the query we cover up to α + ∆
for ∆ < (β − α)/2. The next query is centered at κ · 2l = α + ∆ + 2l−1, thus the argument
as to why we do not introduce uncertain elements past β is analogous. Since ∆ ≥ 2l and
κ ·2l > α +∆, the uncertain interval centered at κ ·2l cannot include elements smaller than α.

◁

Combining Claim 21 and Claim 22, we obtain the theorem. ◀

Next, we show how we can solve Gapped Set Intersection w. Reporting, the
reporting variant of the Gapped Set Intersection problem. The reduction is basically
the same, but using a solution to Shifted Set Intersection w. Reporting instead of
a solution to Shifted Set Intersection. Again, we use an approximate variant of the
problem, now defined as follows:
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Approximate Gapped Set Intersection w. Reporting
Preprocess: A collection of k sets S1, . . . , Sk of total size

∑
i |Si| = N of integers from

a universe U = {1, 2, . . . , u} and a level l with 1 ≤ l ≤ log u.
Query: Given i, j and a center distance d = κ · 2l, for some positive integer κ, output a
set P of pairs (a, b) such that a ∈ Si and b ∈ Sj and

P contains all pairs (a, b), a ∈ Si, b ∈ Sj such that b − a ∈ [d − 2l−1, d + 2l−1];
P contains no pair (a, b) such that b − a /∈ (d − 2l, d + 2l).

▶ Corollary 23. For every 0 ≤ δ ≤ 1, there is a data structure for Approximate Gapped
Set Intersection w. Reporting with Õ(N2−δ/3) space and Õ(N δ · |P |) query time.

Proof. The reduction is essentially the same as Lemma 19, just that instead of the Shifted
Set Intersection data structure, we use the Shifted Set Intersection w. Reporting
data structure from Theorem 3. That is, we construct a Shifted Set Intersection
w. Reporting data structure for sets S′

i = {⌊a/2l−1⌋, a ∈ Si}. Additionally, for any
a′ ∈ S′

i, we store a list La′ of all values a ∈ Si such that ⌊a/2l−1⌋ = a′. To answer a query
(i, j, d = κ · 2l), we query the Shifted Set Intersection w. Reporting data structure for
(i, j, 2κ − 1), (i, j, 2κ) and (i, j, 2κ + 1). Whenever one of the queries returns a pair (a′, b′),
we return all pairs (a, b) for a ∈ La′ and b ∈ Lb′ . By the same arguments as in the proof
of Lemma 19, we never return a pair with b − a /∈ (d − 2l, d + 2l), and we return all pairs
b − a ∈ [d − 2l−1, d + 2l−1]. ◀

▶ Theorem 6. For every 0 ≤ δ ≤ 1, there is a data structure for Gapped Set Intersection
w. Reporting with Õ(N2−δ/3) space and Õ(N δ · (occ + 1)) query time, where occ is the
size of the output.

Proof. We use the same reduction as in Theorem 5, only using the data structures for
Approximate Gapped Set Intersection w. Reporting from Corollary 23 instead of
the data structures for Approximate Gapped Set Intersection. We perform exactly
the same queries. By the same arguments as in the proof of Theorem 5, we find all pairs
(a, b) with a ∈ Si and b ∈ Sj and b − a ∈ [α, β] and only those. However, we might report
the same pair many times, so we need to argue about the total size of the output. Note that
any single query to Approximate Gapped Set Intersection w. Reporting reports any
pair at most once, thus, any pair is reported O(log u) times and the total size of the output
is O(occ · log u). To avoid multiple outputs we can collect all pairs, sort them, and delete
duplicates, before outputting. ◀

5 Gapped String Indexing

Let us recall some basic definitions and notation on strings. An alphabet Σ is a finite set
of elements called letters. A string S = S[1 . . n] is a sequence of letters over some alphabet
Σ; we denote the length of S by |S| = n. The fragment S[i . . j] of S is an occurrence of the
underlying substring P = S[i] . . . S[j]. We also write that P occurs at position i in S when
P = S[i] . . . S[j]. A prefix of S is a fragment of S of the form S[1 . . j] and a suffix of S is a
fragment of S of the form S[i . . n].

For a string S of length n over an ordered alphabet of size σ, the suffix array SA[1 . . n]
stores the permutation of {1, . . . , n} such that SA[i] is the starting position of the ith
lexicographically smallest suffix of S. The standard SA application is as a text index, in
which S is the text: given any string P [1 . . m], known as the pattern, the suffix array of S

allows us to report all occ occurrences of P in S using only O(m log n + occ) operations [41].

STACS 2024



16:14 Gapped String Indexing in Subquadratic Space and Sublinear Query Time

We do a binary search in SA, which results in an interval [s, e) of suffixes of S having P as a
prefix. Then, SA[s . . e − 1] contains the starting positions of all occurrences of P in S. The
SA is often augmented with the LCP array [41] storing the length of longest common prefixes
of lexicographically adjacent suffixes. In this case, reporting all occ occurrences of P in S can
be done in O(m + log n + occ) time [41] (see [18, 22, 47] for subsequent improvements). The
suffix array can be constructed in O(n) time for an integer alphabet of size σ = nO(1) [20].
Given the suffix array of S, we can compute the LCP array of S in O(n) time [32].

The suffix tree of S, which we denote by ST(S), is the compacted trie of all the suffixes
of S [52]. Assuming S ends with a unique terminating symbol, every suffix S[i . . n] of S is
represented by a leaf node that we decorate with i. We refer to the set of indices stored at
the leaf nodes in the subtree rooted at node v as the leaf-list of v, and we denote it by LL(v).
Each edge in ST(S) is labeled with a substring of S such that the path from the root to the
leaf annotated with index i spells the suffix S[i . . n]. We refer to the substring of S spelled
by the path from the root to node v as the path-label of v and denote it by L(v). Given any
pattern P [1 . . m], the suffix tree of S allows us to report all occ occurrences of P in S using
only O(m log σ + occ) operations. We spell P from the root of ST(S) (to access edges by the
first letter of their label, we use binary search) until we arrive (if possible) at the first node v

such that P is a prefix of L(v). Then all occ occurrences of P in S are precisely LL(v). The
suffix tree can be constructed in O(n) time for an integer alphabet of size σ = nO(1) [20]. To
improve the query time to O(m + occ) we use randomization to construct a perfect hash
table [23] accessing edges by the first letter of their label in O(1) time.

We next show how to reduce Gapped String Indexing w. Reporting to Gapped
Set Intersection w. Reporting. A query for P1, P2 and [α, β] corresponds to a Gapped
Set Intersection w. Reporting query for S1, S2 and [α, β], where S1 is the set of
occurrences of P1 in S and S2 is the set of occurrences of P2 in S. An obvious strategy
would be to preprocess all sets which correspond to leaves below a node in the suffix tree
into a Gapped Set Intersection w. Reporting data structure. The issue is that the
total size of these sets can be Ω(n2). However, any such set corresponds to a consecutive
interval within the suffix array. Thus, the strategy is as follows: We store the suffix tree
and the suffix array for S. We cover the suffix array in dyadic intervals and preprocess the
resulting subarrays into the Gapped Set Intersection w. Reporting data structure. In
detail, let D be the set of dyadic intervals covering [1, n]. That is, D includes all intervals
of the form [1 + κ · 2j , (κ + 1) · 2j ] for all 0 ≤ κ ≤ ⌊ n

2j ⌋ − 1 and 0 ≤ j ≤ ⌊log n⌋. For any
interval [γ1, γ2] ∈ D, we define a set containing the elements in SA[γ1 . . γ2]. We preprocess
all of these sets into the Gapped Set Intersection w. Reporting data structure. The
total size of the sets in the data structure is O(n log n). For a query, we find the suffix array
intervals (I1, I2) for P1 and P2, respectively, in O(|P1| + |P2|) time, using standard pattern
matching in the suffix tree. Now, let A be the collection of sets corresponding to dyadic
intervals covering I1 and B the collection of sets corresponding to dyadic intervals covering I2.
We can find all pairs (i, j) of occurrences of P1 and P2 satisfying j − i ∈ [α, β] by querying
Gapped Set Intersection w. Reporting for (A, B, [α, β]) for all A ∈ A and B ∈ B.

In conclusion, we have shown the following:

▶ Theorem 24. Assume there is a data structure for Shifted Set Intersection with s(N)
space and t(N) query time, where N is the input size, and which outputs a witness pair (a, b) ∈
Si × Sj satisfying a + s = b for a query (i, j, s). Then there is a data structure for Gapped
String Indexing w. Reporting with Õ(n+s(n)) space and Õ(|P1|+ |P2|+ t(n) · (occ+ 1))
query time, where n is the length of the input string and occ is the size of the output.
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The following two corollaries follow from Theorem 24 together with Theorem 6 and
Lemma 14, respectively.

▶ Corollary 25. For every 0 ≤ δ ≤ 1, there is a data structure for Gapped String Indexing
w. Reporting with Õ(n2−δ/3) space and Õ(|P1| + |P2| + nδ · (occ + 1)) query time, where
occ is the size of the output.

▶ Corollary 26. For every 0 ≤ δ ≤ 1, there is a data structure for Gapped String Indexing
w. Reporting with Õ(n3−2δ) space and Õ(|P1| + |P2| + nδ · (occ + 1)) query time, where
occ is the size of the output.

Note that n3−2δ is smaller than n2−δ/3 for δ > 3/5. We have arrived at Theorem 1.

6 Jumbled Indexing

A solution to 3SUM Indexing w. Reporting implies solutions to other problems. As
proof of concept, we show here the implications to Jumbled Indexing w. Reporting:
preprocess a string S of length n over an alphabet Σ into a compact data structure that
facilitates efficient search for substrings of S whose characters have a specified histogram.
For instance, P = acaacabd has the histogram h(P ) = (4, 1, 2, 1): h(P )[a] = 4 because a

occurs 4 times in P , h(P )[b] = 1, etc. The existence variant, Jumbled Indexing, answers
the question of whether such a substring occurs in S or not. We show the following result:

▶ Corollary 8. Given a string S of length n over an alphabet of size σ = O(1), for every
0 ≤ δ ≤ 1, there is a data structure for Jumbled Indexing w. Reporting with Õ(n2−δ)
space and Õ(n3δ · (occ + 1)) query time, where occ is the size of the output. The bounds are
Õ(n2−δ) space and Õ(n3δ) query time for the existence variant.

Before proving the above statement, we will briefly overview the related literature.

Related work. Previous work on Jumbled Indexing has achieved the bounds of O(n2−δ)
space and O(m(2σ−1)δ) query time [34], where m is the norm of the pattern and σ = |Σ|.
Later, a data structure with Õ(n2−δ) space and Õ(nδ(σ+1)/2) query time was presented [14].

For the special case of a binary alphabet, more efficient algorithms exist; namely, O(n)
space and O(1) query time [16]. The data structure in [16] has a preprocessing time of O(n2),
which can be improved to Õ(n1.5) using the connection to min-plus-convolution [14, 15].

Jumbled Indexing has also seen interest from the lower-bound side, where [1] shows that
if a data structure can report all the occ matches to a histogram query in O(n0.5−o(1) + occ)
time, then it needs to use Ω(n2−o(1)) space, even for the special case of a binary alphabet. In
fine-grained complexity, the problem has also received attention; [2] shows that under a 3SUM
hardness assumption, for alphabets of size ω(1), we cannot get O(n2−ϵ) preprocessing time
and O(n1−δ) query time for any ϵ, δ > 0. Furthermore, under the now refuted Strong 3SUM
Indexing conjecture, [26] gives conditional lower bounds, that are contradicted by our results.
In particular, their conditional lower bound (conditioned on the now refuted Strong 3SUM
Indexing conjecture) argues against a O(n2− 2(1−α)

σ−1−α −Ω(1)) space and O(n1− 1+α(σ−3)
σ−1−α −Ω(1))

query time solution for any 0 ≤ α ≤ 1. Setting α = 0 and σ = 9, this would imply that
there does not exist a O(n2− 1

4 −Ω(1)) space and O(n1− 1
8 −Ω(1)) query time solution. However,

setting δ = 1/4+ϵ for ϵ = 1/48, we obtain an Õ(n2− 1
4 −ϵ) space and Õ(n 3

4 +3ϵ) = Õ(n 6
8 + 1

16 ) =
Õ(n1− 1

8 − 1
16 ) query time, a contradiction. We now return back to the proof of Corollary 8:
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Proof of Corollary 8. Let us first remind the reader of the well-known reduction to d-
dimensional 3SUM Indexing, as introduced by Chan and Lewenstein in [14]. The d-
dimensional 3SUM Indexing problem is defined as follows: Preprocess two sets A and B of
N vectors from [0, . . . , u−1]d each such that we can efficiently answer queries of the following
form: for some c ∈ [0, . . . , u − 1]d, decide if there exists a ∈ A and b ∈ B such that c = a + b.

We reduce Jumbled Indexing to σ-dimensional 3SUM Indexing as follows. Let σ = |Σ|.
Let A be the set of all histograms of prefixes of the input string S, and similarly, let B be
the set of all histograms of suffixes of S. We thus have that the cardinality of these two sets
is the length of the string S, i.e., |A| = |B| = |S| = n, and may thus build a σ-dimensional
3SUM Indexing data structure for A and B. Additionally, we store the histogram h(S) of
S. For a query histogram P , compute c = h(S) − P , and query the σ-dimensional 3SUM
Indexing data structure for c. Any match a, b returned by the data structure corresponds
to a histogram of the complement of some substring p whose histogram is P : a corresponds
to the prefix of everything before p, and b corresponds to the suffix of everything after p.

Now, we note that there is a reduction from d-dimensional 3SUM Indexing over a universe
of size u to 3SUM Indexing over a universe of size O(ud). Our reduction works by doing the
following transformation on sets A and B: define A′ = {a1+a2·u+a3·u2+. . . ad·ud−1 : a ∈ A};
and define B′ in the same way. For a query c, define the query c′ = c1+c2 ·u+c3 ·u2 . . . cd ·ud−1.
Thus, by spacing out using u-factors, we ensure that any match to a query c to the sets
A and B corresponds exactly to a match to the corresponding query c′ to the sets A′ and
B′. With this reduction, the set size remains unchanged, that is, |A| = |A′| and |B| = |B′|,
however, we are now indexing with a universe of size u′ = O(ud).

Thus, finally, for Jumbled Indexing, let n be the length of the string S. Our reductions
would result in a universe of size u′ = nσ. For constant σ this value u′ is polynomial in n.
Therefore, by Corollary 4, we obtain a data structure for Jumbled Indexing over constant
sized alphabets with Õ(n2−δ) space and Õ(n3δ · (occ + 1)) query time. ◀

7 Final Remarks

Our solutions show new and interesting relations between Gapped String Indexing,
Shifted Set Intersection, and 3SUM Indexing; in particular, we contribute new
trade-offs for 3SUM Indexing w. Reporting. Chan showed that the 3SUM problem has
direct applications in computational geometry [13]; it would be interesting to see if our data
structure yields improved bounds for the data structure versions of these geometric problems.
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pairs until we arrive at a position of P2 which is larger than i1 + β. Then we advance to the
next position i2 of P1, and from the last position we considered in the list for P2, we scan
first backward and then forward to output all positions in [i2 + α, i2 + β]. Every position we
scan is charged to an occurrence we output, thus we achieve a running time of O(n + occ).

B A Near-Quadratic-Space Solution for Gapped Indexing

Let us start with a data structure of O(n3) space and O(|P1| + |P2| + occ) query time: We
store, for each pair (v, w) of nodes in the suffix tree of S, the set of distances that appear
between the set of occurrences defined by v and w. To answer a query, we search for P1 and
P2 in the suffix tree to locate the corresponding pair of nodes and then report the distances
within the gap range [α, β]. Since the number of distinct distances is at most n − 1 this
leads to a solution using O(n3) space and O(|P1| + |P2| + occ) query time, where occ is the
size of the output. A more sophisticated approach can reduce the space to Õ(n2) at the
cost of increasing the query time by polylogarithmic factors. Namely, the idea is to consider
subarrays of the suffix array of S [41] corresponding to the dyadic intervals on [1, n], and store,
for every possible distance d, all pairs of subarrays (A, B) containing elements at distance d.
Further, we store a list of all (a, b), a ∈ A and b ∈ B such that b − a = d. Since the total size
of the subarrays is O(n log n), the total number of pairs of elements is O(n2 log2 n), thus this
solution can be stored using Õ(n2) space. We also store the suffix tree of S, which takes
Θ(n) extra space. To answer a query, we search for P1 and P2 in the suffix tree to find their
suffix array intervals: their starting positions in S sorted lexicographically with respect to the
corresponding suffixes. We cover each interval in dyadic intervals and use the precomputed
solution for any pair consisting of a subarray in the cover of P1’s interval and a subarray in
the cover of P2’s interval. This results in query time O(|P1| + |P2| + log2 n · (occ + 1)).

C Smallest Shift

When studying the problem of deciding whether a given shift incurs an intersection between
sets, a natural next question is the optimization (minimization) variant of the problem: what
is the smallest shift that yields an intersection? We formally define this problem next.

Smallest Shift
Preprocess: A collection of k sets S1, . . . , Sk of total size

∑
i |Si| = N of integers from

a universe U = {1, 2, . . . , u}.
Query: Given i, j, output the smallest s such that there exists a ∈ Si and b ∈ Sj with
a + s = b.

Note that the problem is symmetric in i and j in the sense that finding the smallest
positive shift transferring Si to intersect Sj is equivalent to finding the largest negative
shift transferring Sj to intersect Si. Note also that by constructing a predecessor/successor
data structure [53] at preprocessing time, we may answer the query in Õ(|Si|) time: simply
perform a successor (or predecessor) query in Sj for each element a ∈ Si, and report the
smallest element-successor distance.

Thus, we are safely able to handle Smallest Shift queries in O(
√

N log log N) time in
all cases where either Si or, because of symmetry, Sj , is of size at most

√
N . Remaining is

the case where both sets are of size larger than
√

N . Here, however, we note that at most
O(

√
N) such sets can exist, so we can tabulate all answers in O(

√
N ·

√
N) = O(N) space.

In other words, we have the following solution:
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Preprocessing. Store for each i whether |Si| ≤
√

N . Let l denote the number of sets
L1, . . . , Ll of size larger than

√
N . For each set Si with |Si| >

√
N store its index in the list

of large sets L1, . . . , Ll.
For all i, with |Si| ≤

√
N , compute and store predecessor pre(Si) and successor suc(Si)

data structures for the set Si.
Store an l × l table in which the (i, j)th entry stores the smallest shift s such that there
exists a ∈ Li and b ∈ Lj with a + s = b.

Query i, j.
If |Si| ≤

√
N , perform |Si| successor queries in suc(Sj), and return the smallest difference.

If |Sj | ≤
√

N , similarly, perform |Si| predecessor queries in pre(Si).
If |Si| >

√
N and |Sj | >

√
N , use the precomputed information to output the smallest

shift.

▶ Proposition 27. The above data structure for Smallest Shift uses O(N) space and has
Õ(

√
N) query time. Moreover, the data structure can be constructed in O(N

√
N) time.

Proof. We construct predecessor and successor queries for all sets in
∑

i |Si| log log |Si| =
O(N log log N) total time and

∑
i |Si| = O(N) space, with O(log log N) query time [53],

surmounting to an O(
√

N log log N) query time when either Si or Sj is smaller than
√

N .
For constructing the l × l table, we note that l ≤

√
N . Since the (i, j)th entry of the table

can be computed in time O(|Li| + |Lj |) by a merge-like traversal of the sorted respective
sets, the total preprocessing time becomes:

∑
i

∑
j ̸=i

(|Li| + |Lj |) ≤
∑

i

(
√

N |Li| +
∑

j

|Lj |) ≤
∑

i

(
√

N |Li| + N)

=
√

N
∑

i

|Li| +
∑

i

N = O(
√

NN).

Here, we are using that
∑

i |Si| = N and that there are l ≤
√

N large sets. This
O(N

√
N) term dominates the

∑
i Õ(|Si|) terms needed to sort the sets and construct

predecessor/successor data structures for each of them. ◀
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We study the seeded domino problem, the recurring domino problem and the k-SAT problem on
finitely generated groups. These problems are generalization of their original versions on Z2 that
were shown to be undecidable using the domino problem. We show that the seeded and recurring
domino problems on a group are invariant under changes in the generating set, are many-one reduced
from the respective problems on subgroups, and are positive equivalent to the problems on finite
index subgroups. This leads to showing that the recurring domino problem is decidable for free
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k-SAT problem, we introduce a new generalization that is compatible with decision problems on
finitely generated groups. We show that the subgroup membership problem many-one reduces to the
2-SAT problem, that in certain cases the k-SAT problem many one reduces to the domino problem,
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1 Introduction

The domino problem, as originally formulated, is the decision procedure of determining if a
given finite set of unit squares with colored edges, known as Wang tiles, can tile the infinite
plane while respecting an adjacency condition: two squares can be placed next to each other
if there shared edge has the same color. This problem was introduced by Wang to study the
decidability of the ∀∃∀ fragment of first order logic [47], who conjectured that the domino
problem was decidable. It turns out that this is not the case; a now classic result by Berger
states that this problem is undecidable [10]. Since then, many proofs of the undecidability of
the problem have been found (see [28]).

Perhaps one of the fundamental features of the domino problem is its usefulness in proving
the undecidability of many decision problems, ranging from problems in symbolic dynamics
such as the infinite snake problem [1] and the injectivity and surjectivity of two-dimensional
cellular automata [30, 31], to problems from other areas such as the k-SAT problem on
Z2 [17], the spectral gap problem of quantum many-body systems [15] and translation
monotilings [19]. In fact, the Wang tiling model can be seen as a natural model to encode
computation and prove complexity lower bounds [46].

In recent years, the domino problem has found new life in the context of symbolic
dynamics over finitely generated groups [2]. The aim has been to establish which algebraic
conditions make the problem of deciding whether the group is tileable subject to a finite
number of local constraints – i.e., the domino problem on the group – undecidable. This
project has culminated in a conjecture stating that the class of groups with decidable
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domino problem is the class of virtually free groups. This same turn towards generalizing
to groups has been made for different problems, such as aperiodic tilings [42] and domino
snake problems [3]. This article follows the same path for three different decision problems:
the seeded domino problem, the recurrent domino problem, and the k-SAT problem. We
introduce generalizations of these problems for finitely generated groups to understand how
the algebraic and computational properties of the underlying group influence the decidability
and to obtain new tools to show the undecidability of problems on finitely generated groups.

Variants of Tiling Problems

Variations on the domino problem have been present since its conception. This is the case of
the seeded domino problem, whose undecidability was established even before the domino
problem’s [29, 11]. In the years since many more variations have been introduced: the periodic
domino problem [20, 25], domino snake problems [39], the recurrent domino problem [21],
the aperiodic domino problem [12, 18], and even a variant where the underlying structure is
fixed to be a geometric tiling of the plane [23].

In this article, we generalize the seeded and recurrent problems to the context of finitely
generated groups. The seeded version asks, given an alphabet, a finite set of local rules
and a target letter from the alphabet, if there exists a coloring of the group subject to the
local rules where the target letter appears. The recurrent version has the same input but
asks if such a configuration exists where the target letter appears infinitely often. We will
begin by formally introducing these problems and establishing connections to the domino
problem: the problem many-one reduces to both variants (Section 2). Next, we show that the
decidability of both problems is independent of the chosen generating set for the group, that
the problems many-one reduce from subgroups and are in fact equivalent in the case of finite
index subgroups (Section 3). Furthermore, we show that the recurrent problem is decidable
on free groups, which paired with the domino conjecture and inheritance properties, allows
us to state the following extension of the domino conjecture

▶ Conjecture 1. Let G be a finite generated group. The following are equivalent,
G is virtually free,
the domino problem on G is decidable,
the seeded domino problem on G is decidable,
the recurrent domino problem on G is decidable.

k-SAT and the Limit of Polynomial Time Problems

The k-SAT problem on groups was introduced by Freedman in [17]. The idea of the
generalization was to extend the difference between 2-SAT and 3-SAT, which are in P and
NP respectively, to an infinite context making the former problem decidable and the latter
undecidable. This is inserted into the broader program outlined in [16] that searches to
separate the complexity classes P and NP by limit processes, the idea being that limiting
behaviors of polynomial time problems should be decidable.

In this article, we slightly alter the generalization proposed by Freedman to make the
decision problem compatible with finitely generated groups (Section 4). Similar generaliz-
ations have been made for other classic decision problems, such as Post’s correspondence
problem [38, 14, 13]. We show that the subgroup membership problem of the group many-one
reduces to the complement of the 2-SAT problem and that in the class of groups where the
former is decidable, the k-SAT problem many-one reduces to the domino problem for all
k > 1. In conjunction with the work of Piantadosi [41] and the domino problem’s inheritance
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properties, this result implies that the k-SAT problem is decidable for virtually free groups.
We introduce the class of scalable groups to find an equivalence between both decision
problems. A finitely generated group is scalable if it contains a proper finite index subgroup
that is isomorphic to the group. We show that for this class of groups, the domino problem
many-one reduces to the 3-SAT problem. The proof of this result is inspired by techniques
from [17] that are adapted to better suit our definition of the decision problem.

We begin the article by introducing some preliminary notions from computability and
symbolic dynamics in Section 1. Section 2 introduces the domino problem, the seeded and
recurrent variants, and some basic properties. In Section 3, we establish the invariance of the
decidability of the seeded and recurrent problems under changes in the generating set of the
group, in addition to some inheritance properties, most notably subgroups. We also prove
that the recurrent domino problem is decidable for free groups and show that the seeded
and recurrent problems are subject to the same conjecture as the normal one. Section 4
is devoted to the study of the k-SAT problem on finitely generated groups. We formally
introduce the decision problem as well as its connection to the subgroup membership problem
and a reduction to the domino problem. We finally present the class of scalable groups and
show that for them, the domino problem many-one reduces to the 3-SAT problem.

2 Preliminaries

Given a finite alphabet A, we denote the set of words of length n by An, the set of words of
length less or equal to n by A≤n, and the set of all finite words over A by A∗, including the
empty word ε. The length of a word w is denoted by |w|. We denote the free group on n

generators by Fn. Throughout the article, G will be an infinite group.

2.1 Computability and Group Theory
We quickly recall some notions from computability theory and combinatorial group theory
that will be needed in the article. See [45] for a reference on computability and reductions,
and see [35] for a reference on combinatorial group theory.

▶ Definition 2. Let L ⊆ A∗ and L′ ⊆ B∗ be two languages. We say,
L many-one reduces to L′, denoted L ≤m L′, if there exists a computable function
f : A∗ → B∗ such that w ∈ L if and only if f(w) ∈ L′ for every w.
L positive-reduces to L′, denoted L ≤p L

′ if for any w one can compute finitely many
finite sets F1(w), ..., Fn(w) such that w ∈ L if and only if there exists i ∈ {1, ..., n} such
that Fi(w) ⊆ L′.

For both notions of reducibility, the induced notion of equivalence will be denoted by L ≡∗ L
′,

meaning L ≤∗ L
′ and L′ ≤∗ L.

Notice that many-one reducibility implies positive-reducibility. The complement of a decision
problem D, denoted coD, is the set of all “no” instances of D.

Given G a finitely generated group (f.g.) and S a finite generating set, elements in the
group are represented as words over the alphabet S ∪ S−1 through the evaluation function
w 7→ w. Two words w and v represent the same element when w = v, and we denote it by
w =G v. We say a word is reduced if it contains no factor of the form ss−1 or s−1s with
s ∈ S. The length of an element g ∈ G with respect to S, denoted |g|S , is the length of a
shortest word w ∈ (S ∪S−1)∗ such that g = w. A group is virtually free if it contains a finite
index subgroup isomorphic to a free group.
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2.2 Subshifts of Finite Type
Let A be a finite alphabet and G a finitely generated group. The full-shift on A is the set
of configurations AG = {x : G → A}. This space is acted upon by G in the form of left
translations: given g ∈ G and x ∈ AG,

g · x(h) = x(g−1h).

Let F be a finite subset of G. We call p ∈ AF a fpattern of support F . We say a pattern
p appears in a configuration x ∈ AG if there exists g ∈ G such that p(h) = x(gh) for all
h ∈ F . The cylinder defined by a pattern p ∈ AF at g ∈ G is given by

[p]g = {x ∈ AG : ∀h ∈ F, x(gh) = p(h)}.

Given a set of patterns F , we define the G-subshift XF as the set of configurations where
no pattern from F appears. That is,

XF = {x ∈ AG : ∀p ∈ F , p does not appear in x} = AG \
⋂

g∈G,p∈F
[p]g.

If F is finite, we say XF is a G-subshift of finite type (G-SFT). We will simply write SFT
when the group is clear from context.

Let S be a finite generating set for G. We say a pattern p is nearest neighbor if its support
is given by {1G, s} with s ∈ S. We will denote nearest neighbor patterns through tuples
(a, b, s) representing p(1G) = a and p(s) = b. A subshift defined by a set of nearest neighbor
forbidden patterns is known as a nearest neighbor subshift. These subshifts are necessarily
SFTs. Given a set of nearest neighbor patterns F , we define its corresponding tileset graph,
ΓF , by the set of vertices A, and edges given by (a, b, s) ̸∈ F , where a is its initial vertex, b
its final vertex and s its label (see Figure 1 for an example).

0

1

2

s s

s

t

t

s

t

t

Figure 1 An example of a tileset graph ΓF for the alphabet {0, 1, 2} and a group with generators
s and t. Edges present in the graph are exactly those that are not in F , for example (2, 1, t) ∈ F .

These graphs will help us in Section 4.2 when working with free groups. It is a well known
fact [33] that nearest neighbor SFTs over Z are characterized as the set of bi-infinite walks
on their corresponding tileset graph.

3 The Domino Problem and its Variants

We begin with a formal definition of the domino problem that generalizes the original
formulation with Wang tiles.
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▶ Definition 3. Let G be a finitely generated group and S a finite generating set. The domino
problem on G with respect to S is the decision problem that, given an alphabet A and a finite
set of nearest neighbor forbidden patterns F , determines if the corresponding subshift XF is
empty. We denote this problem by DP(G,S).

It has been shown that the decidability of the problem is invariant under changes
in the generating set, that is, if S1 and S2 are two finite generating sets for G, then
DP(G,S1) ≡m DP(G,S2). We can therefore talk about the domino problem on G, denoted
DP(G). The problem also satisfies many inheritance properties: both the domino problem of
a finitely generated subgroup and the domino problem of a quotient by a finitely generated
kernel many-one reduce to the domino problem of the group. Furthermore, the word problem
of the group many-one reduces to the complement of the domino problem. Proofs of these
facts can be found in [2].

A particularly important property enjoyed by the problem, is that it can be expressed
in the monadic second order (MSO) logic of the group’s Cayley graph [6]. Coupled with
the fact that virtually free groups have decidable MSO logic [37, 32], this implies that the
domino problem is decidable for virtually free groups. It is possible to go even further, this
characterization of virtually free groups tells us that if a group is not virtually free its Cayley
graphs contain arbitrarily large grids as minors [44]. This prompted Ballier and Stein [7] to
state the following conjecture.

▶ Conjecture 4 (The Domino Conjecture). Let G be a finitely generated group. Then DP(G)
is decidable if and only if G is virtually free.

Since then, many classes of groups have been shown to satisfy the conjecture, such as
Baumslag-Solitar groups [5], polycyclic groups [26], hyperbolic groups [9], Artin groups [4],
direct products of two infinite groups [27], among others.

3.1 Seeded Domino Problem
Perhaps the most natural variant of the domino problem is its seeded version. In fact, it was
introduced simultaneously to the original problem [47] and, as previously mentioned, was
shown to be undecidable on Z2 before the domino problem [11, 29].

▶ Definition 5. Let G be a finitely generated group and S a finite generating set. The seeded
domino problem on G with respect to S is the decision problem that, given an alphabet A, a
finite set of nearest neighbor forbidden patterns F and a letter a0 ∈ A, determines if there
exists x ∈ XF such that x(1G) = a0. We denote the decision problem by SDP(G,S).

As its definition suggests, this problem is computationally harder than the unseeded
version: for a set of nearest neighbor forbidden patterns F over the alphabet A, we create
an instance of the seeded domino problem per letter.

▶ Lemma 6. Let G be a finitely generated group and S a finite generating set. Then,
DP(G,S) ≤p SDP(G,S).

Just as the domino problem, there is a behavioral jump from the one-dimensional case
to the two-dimensional case. Using the fact that nearest neighbor Z-SFTs are defined as
bi-infinite walks on a finite graph, SDP(Z, {t}) is decidable. This difference in computability
prompts the study of this problem on finitely generated groups. In fact, the problem can
be shown to be decidable on the entire class of virtually free groups. Just as the domino
problem, the seeded version can be expressed in monadic second order logic (see [8]), making
the problem decidable in this class.
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3.2 Recurring Domino Problem
The recurring domino problem was originally introduced by Harel as a natural decision
problem that is highly undecidable, in order to find other highly undecidable problems [21].
He showed that in Z2 the problem is not only undecidable, but it is beyond the arithmetical
hierarchy: it is Σ1

1-complete [22]. We expand the problem’s definition to finitely generated
groups.

▶ Definition 7. Let G be a finitely generated group and S a finite generating set. The recurrent
domino problem on G with respect to S is the decision problem that, given an alphabet A, a
finite set of nearest neighbor forbidden patterns F and a letter a0 ∈ A, determines if there
exists x ∈ XF such that the set {g ∈ G : x(g) = a0} is infinite. We denote the decision
problem by RDP(G,S).

As was the case with the seeded variant, this problem is computationally harder that the
standard domino problem.

▶ Lemma 8. Let G be a finitely generated group and S a finite generating set. Then,
DP(G,S) ≤p RDP(G,S).

Proof. Let F be a set of nearest neighbor patterns for DP(G,S). Notice that this is already
part of the input for the recurring version, we simply create an instance for RDP(G,S) for
each of the letters of the alphabet. Because G is infinite, if the subshift defined by F is
non-empty, then at least one letter is forced to repeat itself infinitely often. ◀

Nevertheless, the behavioral jump that occurs between Z and Z2 for the original problem is
still present.

▶ Proposition 9. RDP(Z, {t}) is decidable.

Proof. Let F be a finite set of nearest neighbor forbidden patterns and a0 ∈ A. Recall that
we can define a graph ΓF , that is effectively constructible from F , such that configurations
on XF correspond exactly with bi-infinite walks on ΓF . Therefore, to decide our problem we
simply have to search for a simple cycle on ΓF that is based at a0. If there is such a cycle,
c = a0a1a2...ana0 with ai ∈ A, we define the periodic configuration x = (a0a1a2a3...an)∞ ∈
XF . If, on the other hand, there exists a configuration y ∈ XF on which a0 appears infinitely
often; take two consecutive occurrences of a0, say y(k) = y(k′) = a0 with k < k′. Then,
because configurations correspond to bi-infinite walks, there is a cycle on ΓF given by
c′ = a0y(k + 1)y(k + 2) ... y(k′ − 1)a0. As searching for simple cycles on a finite graph is
computable, our problem is decidable. ◀

4 Properties for Seeded and Recurring Variants

4.1 General Inheritance Properties
Let us try and recover some inheritance properties enjoyed by the standard domino problem
for the two variants, starting by the invariance under changing generating sets. We use
strategies and procedures used to prove the corresponding results for the normal problem,
as done in [2]. We begin by making use of pattern codings, which are a computationally
tractable way of defining forbidden patterns whose support is not {1G, s}.

▶ Definition 10. Let G be a f.g. group, S a finite set of generators and A a finite alphabet. A
pattern coding c is a finite set of tuples c = {(wi, ai)}i∈I , where wi ∈ (S ∪ S−1)∗ and ai ∈ A.
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Given a set of pattern codings C, we define its corresponding subshift as:

XC = AG \
⋃

g∈G

⋂
c∈C

(w,a)∈c

[a]gw.

▶ Definition 11. The seeded (recurrent) emptiness problem on G with respect to S asks if,
given C a set of pattern codings and a0 ∈ A, there exists x ∈ XC such that x(1G) = a0 (resp.
a0 appears infinitely often in x, that is, |{g ∈ G : x(g) = a0}| is infinite).

Let us denote this problem by SEP(G,S) (resp. REP(G,S)).

▶ Lemma 12. Let G be a f.g. group along with two finite generating sets S1 and S2. Then,
SDP(G,S1) ≡p SDP(G,S2),
RDP(G,S1) ≡p RDP(G,S2).

Proof. We begin by noticing that we can re-write a pattern coding into any other generating
set. This means that SEP(G,S1) ≡m SEP(G,S2). We therefore just need to show that
SDP(G,S) ≡p SEP(G,S).

It is straight forward to re-write nearest neighbor patterns as pattern codings: each pattern
(a, b, s) becomes c = {(ε, a), (s, b)}. Thus, we have the reduction SDP(G,S) ≤m SEP(G,S).
Let us now focus on proving that SEP(G,S) positive-reduces to SDP(G,S). Given a set of
pattern codings C and a letter a0, we can compute both

N = max
c∈C

max
(w,a)∈c

|w|,

and a new alphabet, Â, consisting of colorings of words of length at most N with no pattern
from C:

Â =
{
ϕ : S≤N → A : ∀c ∈ C, ∃(w, a) ∈ c, ϕ(w) ̸= a

}
.

In addition, we are able to compute a set of forbidden patterns over Â denoted by F ′

such that:

q ∈ F ′ ⇐⇒ q ∈ Â{1,s} : ∃w ∈ S≤N−1, q1(sw) ̸= qs(w).

Finally, we compute the set of all functions ϕ ∈ Â such that ϕ(ε) = a0, and denote this set
by A. We create |A| sets of inputs for SDP(G,S) given by the forbidden patterns F ′ and a
target letter ϕ ∈ A.

If there exists a configuration x ∈ XC such that x(1G) = a0, we define y ∈ XF ′ ⊆ ÂG

by y(g)(w) = x(gw̄). This way, y contains no pattern from F ′, as x does not contain a
pattern coding from C, and y(1G)(ε) = x(1G) = a0. Conversely, if there is function ϕ ∈ A
and a configuration y ∈ XF ′ such that y(1G) = ϕ, we construct x ∈ XC by x(g) = y(g)(ε).
From the definition of F ′, if we take g ∈ G with |g|S ≤ N and a word w ∈ S≤N such that
w̄ = g, we have that y(1G)(w) = y(g)(ε). Therefore, x is well-defined and contains no pattern
codings from C. Furthermore, x(1G) = y(1G)(ε) = a0.

All the previous arguments are analogous for the case of RDP(G,S) and REP(G,S). ◀

This Lemma allows us to talk about the seeded domino problem on G, SDP(G), and the
recurring domino problem on G, RDP(G).

▶ Lemma 13. Let G be a f.g. group along with a finitely generated subgroup H. Then,
SDP(H) ≤m SDP(G),
RDP(H) ≤m RDP(G).

STACS 2024



17:8 Contributions to the Domino Problem: Seeding, Recurrence and Satisfiability

Proof. Let SH and SG be finite sets of generators for H and G respectively. We will work
with the seeded version, as the recurring one is analogous. Notice that an instance, (F , a0),
of SDP(H,SH) is also an instance of SDP(G,SG ∪ SH).

Now, if there exists x ∈ XF ⊆ AG with x(1G) = a0, then the configuration y = x|H ∈ AH

contains no patterns from F and verifies y(1H) = a0. On the other hand, if there exists
y ∈ XF ⊆ AH ; let L be a set of left representatives for G/H. We define x ∈ AG as
x(lh) = y(h) for all l ∈ L and all h ∈ H. Because the forbidden patterns are supported on
SH , we have that x ∈ XF ⊆ AG. ◀

▶ Lemma 14. Let G be a f.g. group along with a subgroup H such that [G : H] < ∞. Then,
SDP(G) ≡p SDP(H),
RDP(G) ≡p RDP(H).

Proof. Because finite index subgroups of finitely generated groups are finitely generated,
SDP(H) ≤m SDP(G) by Lemma 13. We now prove that SDP(H) ≤p SDP(G). Without loss
of generality, we may assume H ⊴ G: every finite index subgroup H contains a normal finite
index subgroup N , then if we prove SDP(G) reduces to SDP(N), we can conclude it reduces
to SDP(H) by Lemma 13.

Let X ⊆ AG be a subshift, and R a set of right co-set representatives for G/H , containing
the identity 1G. We define what is known as the R-higher power shift of X as:

X [R] = {y ∈ (AR)H : ∃x ∈ X : ∀(h, r) ∈ H ×R, y(h)(r) = x(hr)}.

It is clear that X [R] is an H-subshift, and we will show that if X is a G-SFT, then X [R] is a
H-SFT. Let SH be a finite set of generators for H . We define the sets D = SH ∪(RRR−1 ∩H)
and T = RDR−1. Because 1G ∈ R and H is a normal subgroup, H = ⟨T ⟩.

We will positive-reduce SDP(G,SH ∪ R) to SDP(H,T ). Let (F , a0) be an instance of
SDP(G,SH ∪R). Let us construct a set F ′ of forbidden patterns over the alphabet AR, such
that XF ′ = X

[R]
F . We begin by defining the set of R-patterns containing a0:

A = {p ∈ AR : p(1G) = a0}.

Now, take (a, b, s) ∈ F . We will add patterns to F ′ depending on where s belongs.
If s ∈ SH , we add for each r ∈ R all patterns q of support {1H , rsr

−1} such that
q(1H)(r) = a and q(rsr−1)(r) = b.
If s ∈ R, notice that for any r ∈ R, we have rs = hr′ where r′ ∈ R and h ∈ RRR−1 ∩H,
as R is a set of right coset representatives. Therefore, for each r ∈ R, h and r′ as before,
we all patterns q of support {1H , h} such that q(1H)(r) = a and q(h)(r′) = b.

A straightforward computation shows XF ′ = X
[R]
F . Finally, we create |A| inputs for

SDP(H,T ) given by F ′ and a letter from A. Suppose there exists x ∈ XF such that
x(1G) = a0. Define y ∈ X

[R]
F as y(h)(r) = x(hr) for all h ∈ H, r ∈ R, which implies

y(1H) = x|R ∈ A. Conversely, if there exists y ∈ X
[R]
F such that y(1H) ∈ A, define x ∈ XF

by x(hr) = y(h)(r) for all h ∈ H and r ∈ R. Thus, x(1G) = y(1H)(1G) = a0.
Because |R| < +∞, the case for RDP is analogous. ◀

4.2 Recurring Domino Problem on Free Groups
In this section we prove the following result:

▶ Theorem 15. RDP(Fn) is decidable.
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Fix S a free generating set for Fn. Let A be an alphabet, F a set of nearest neighbor
forbidden patterns and a0 ∈ A the tile we want an infinity of. The goal of our algorithm will
be to find a particular structure within the tileset graph ΓF called a simple balloon. We will
then show that there is such a structure if and only if there is a configuration in XF where
a0 occurs infinitely often.

▶ Definition 16. A balloon B is an undirected path in ΓF , starting and ending at a0, which
is specified by a sequence of letters and generators B = a0s1a1 ... sn−1an−1sna0, with ai ∈ A,
si ∈ S ∪ S−1, such that si = s if (ai−1, ai, s) is an edge in ΓF , and si = s−1 if (ai, ai−1, s)
is an edge in ΓF , its label s1 ... sn is reduced, and if there exists k ≤ ⌈ n

2 ⌉ − 1 such that

s1 ... sk = (sn−k+1 ... sn)−1,

then ai = an−i for i ∈ {1, ..., k}. We say the balloon is simple if for every i ∈ {1, ..., n− 1}
the pair aisi+1 never repeats.

The last condition in the definition of a balloon asks that if the label is not cyclically
reduced, w = uvu−1 for instance, then the first |u| must be the same as the last |u| tiles in
reverse order (see Figure 2).

Given a simple balloon, we want to create a configuration by repeating the letter/generator
sequence it defines. Nevertheless, this only covers a portion of the group. To guarantee we
will be able to complete a configuration we must ask for each letter to have the ability to be
extended to cover the whole group, and thus any portion.

a

b

b

a

b

a
b

a

b

a
b

a

b

Figure 2 On the left, a balloon given by C = b a b a b−1 based at a0 = , and
generators a, b ∈ S. On the right, a portion of a configuration from XF obtained by repeating the
motif defined by the vertices of the balloon.

▶ Definition 17. We say the set of forbidden patterns is complete if there exists C(A) ⊆ A

and a map f : C(A) × (S ∪ S−1) → C(A) such that for all a ∈ C(A), both (a, f(a, s), s) and
(f(a, s−1), a, s) are edges in ΓF for s ∈ S.1

Piantadosi showed in [41] that XF is non-empty if and only if F is complete. Furthermore,
C(A) is computable from A and F , and every letter in a configuration x ∈ XF is contained
in C(A).

▶ Lemma 18. There exists a configuration x ∈ XF containing a0 infinitely many times if
and only if there exists a simple balloon B in ΓF based at a0, whose vertices are all in C(A).

1 This is also known as condition (⋆) in [24]
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Proof. Suppose we have a simple balloon B = a0s1a1 ... sn−1an−1sna0 in ΓF based at a0
with ai ∈ C(A) and label w = uvu−1 where u = s1 ... sk with k ≤ ⌈ n

2 ⌉ − 1. The condition
over k implies that v ̸= ε. We define a configuration x ∈ XF as follows: for every t ∈ N,
x(wt) = a0 and x(wts1 ... si) = ai with i ∈ {1, ..., n − 1} (see Figure 2). Because B is a
balloon, x is well defined, as the balloon’s definition guarantees

x(wtuvs−1
k ... s−1

i ) = an−i = ai = x(wt+1s1 ... si).

Finally, because every letter belongs to C(A), the rest of the configuration can be completed
without forbidden patterns. Therefore, x ∈ XF .

Conversely, suppose there exists x ∈ XF where a0 occurs infinitely often. Without loss of
generality we can assume x(1Fn) = a0. Recall that x(Fn) ⊆ C(A). Let us denote the set of
elements w ∈ Fn where x(w) = a0 by O. Because O is infinite, there exists s0 ∈ S∪S−1 such
that infinitely many words in O begin with s0. Furthermore, there exists s1 ∈ S ∪ S−1 with
s1 ̸= s−1

0 such that infinitely many words in O begin with s0s1. By iterating this argument,
we obtain a one-way infinite sequence y ∈ (S ∪ S−1)N such that y(i) ̸= y(i + 1)−1 for all
i ∈ N. Let ω(i) = y(0) ... y(i − 1) ∈ Fn. By definition, for every i ∈ N there are infinitely
many words in O that begin with ω(i). We will say w ∈ O is rooted at i ∈ N if w = ω(i)v
for some v ∈ (S ∪ S−1)∗, and such that the concatenation is reduced. Because there are
infinitely many words rooted along some point of y, and C(A) is finite, there exist j1 < i < j2
and w ∈ O such that x(ω(j1)) = x(ω(j2)) and w is rooted at i. Using this fact, we will create
a balloon depending on two cases.
1. If y(j1 − 1) ̸= y(j2 − 1), and calling aj = x(ω(j)), define the balloon that represents

going from x(1G) to x(ω(j2)) by the path ω(j2) and then return via the path ω(j1) (see
Figure 3). Formally,

B = a0 y(0) a1 ... y(j1 − 1) aj1 ... y(j2 − 1) aj2 y(j1 − 1)−1 aj1−1 ... y(0)−1a0,

which is labeled by ω(j2)ω(j1)−1, a reduced word.

a0

y(0)

a1

a
y(j1 − 1)

a

y(j2 − 1)
=⇒

a0

a1

...

a

aj1+1

aj2−1

y(0)

y(j1 − 1) y(j1)

y(j2 − 1)

Figure 3 On the left, the path defined by y in the configuration. This is an example of the first
case, where y(j1 − 1) ̸= y(j2 − 1) and the repeated letter is a = x(ω(j1)) = x(ω(j2)). On the right,
the corresponding balloon within the tileset graph ΓF .

2. If y(j1 −1) = y(j2 −1), then y(j1) ̸= y(j2 −1)−1. Let v ∈ (S∪S−1)k such that w = ω(i)v.
Once again, calling aj = x(ω(j)) and bj = x(wv1...vj), we define the balloon

B = a0 v
−1
k bk−1 v

−1
k−1 ... v

−1
1 ai y(i) ... y(j2 − 1) aj2 y(j1) ... y(i− 1) ai v1 b1 ... vk a0,

which is labelled by vy(i) ... y(j2 − 1)y(j1) ... y(i− 1)v−1, a reduced word (see Figure 4).
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a0

vk

y(j1)
a

ai

a
y(j2 − 1)

v1

b1
v2

=⇒

a0

bk−1

...

ai

ai+1

ai−1

a

v−1
k

v−1
1

y(i)

y(i− 1)

Figure 4 On the left, the path defined by y in the configuration as well as the path leading from
the root x(ω(i)) to w. This is an example of the second case, where y(j1 − 1) = y(j2 − 1) and the
repeated letter is a = x(ω(j1)) = x(ω(j2)). On the right, the corresponding balloon within the tileset
graph ΓF .

Finally, if B contains a repeated letter/generator pair, we can simply cut the portion between
them while preserving all other balloon conditions. This guarantees that B will be a simple
balloon in ΓF based at a0, with all its vertices in C(A). ◀

Proof of Theorem 15. Given a finite set of nearest neighbor forbidden patterns F and a
letter a0, by Lemma 18, it suffices to search for simple balloons in ΓF whose vertices are
contained in C(A). A simple balloon passes through each vertex-label pair at most once; and
there are a finite number of such paths starting and ending in a0, so we can check whether
they satisfy the simple balloon conditions. Therefore, we can effectively decide whether the
conditions of Lemma 18 are met, making the recurrence problem decidable. ◀

4.3 Consequences and Conjectures
As previously stated, we are interested in understanding the class of groups that have
decidable seeded domino problem, and the class of groups that have decidable recurring
domino problem.

▶ Theorem 19. Let G be a virtually free group. Then, both SDP(G) and RDP(G) are
decidable.

Proof. By Theorem 15 we know the recurring domino problem is decidable on free groups.
Adding Lemma 14, we have that it is decidable for virtually free groups. For the seeded
version, as we mentioned earlier, we have that the problem is expressible in MSO logic and
is therefore decidable for virtually free groups. ◀

Are these the only groups where each individual problem is decidable? The combination
of Conjecture 4 and Lemmas 6 and 8 suggest so.

▶ Corollary 20. If the Domino Conjecture is true the following are equivalent:
G is virtually free,
DP(G) is decidable,
SDP(G) is decidable,
RDP(G) is decidable.
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Nevertheless, virtually free groups being the only groups where the seeded domino problem
or the recurring domino problem is decidable does not directly imply Conjecture 4. We
can nonetheless state a conjecture for the seeded domino problem due to the fact it can be
expressed in MSO logic.

▶ Conjecture 21. Let G be a finitely generated group. Then, SDP(G) is decidable if and
only if G is virtually free.

5 The k-SAT Problem on Groups

As mentioned in the introduction, we define a generalized version of the k-SAT problem
for finitely generated groups. This version is slightly different from the one introduced by
Freedman [17] in order to correctly capture the structure of finitely generated groups.

Let G be a finitely generated group and H ≤ G a finitely generated subgroup. As
variables for our formulas we use elements of G. For g ∈ G, we denote its negation by ¬g
and we use the ambiguous notation g′ to refer to either g or ¬g depending on the formula.
We denote the set of formulas over G containing k literals as Nk, that is, ϕ ∈ Nk if

ϕ =
m∧

i=1
((gi1)′ ∨ ... ∨ (gik)′) .

Next, we define the set of formulas HNk as all the formulas of the form:∧
h∈H

m∧
i=1

((hgi1)′ ∨ ... ∨ (hgik)′)

We use ϕ(h) to denote the formula ϕ with each literal left-multiplied by h.

▶ Definition 22. We say a formula ϕ ∈ HNk is satisfiable, if there exists an assignment of
truth values α : G → {0, 1} such that:

∧
h∈H

m∧
i=1

(α(hgi1)′ ∨ ... ∨ α(hgik)′) = 1.

Let S be a finite generating set for G. To arrive at a valid decision problem, we will
specify a function by a set of words over S ∪ S−1 that will evaluate to the literals of the
function, and a list of words, also over S ∪ S−1, that will specify a generating set for a
subgroup. Formally, an input formula is a formula of the form

ϕ =
m∧

i=1
(v′

i1 ∨ ... ∨ v′
ik),

where vij ∈ (S ∪S−1)∗ for all i ∈ {1, ...,m} and j ∈ {1, ..., k}, such that its evaluated version

ϕ̄ =
m∧

i=1
(v̄′

i1 ∨ ... ∨ v̄′
ik)

belongs to Nk.

▶ Definition 23. Let G be a finitely generated group, S a finite generating set and k > 1. The
k-SAT problem over G is the decision problem that given an input formula ϕ and {wi}n

i=1
determines if the formula

∧
h∈H ϕ̄(h) is satisfiable, where H = ⟨w1, ..., wn⟩.
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Notice that the decidability of this problem does not depend on the chosen generating
set, as we can re-write any input into any other generating set. We therefore denote this
problem by k-SAT(G).

The first observation to make is that this problem depends on the computational structure
of the group.

▶ Lemma 24. The subgroup membership problem of G many-one reduces to co2-SAT(G).

The subgroup membership problem of a f.g. group G is the decision problem that takes
as input words u, {wi}n

i=1 over S ∪ S−1 and determines if ū ∈ ⟨w1, ..., wn⟩.

Proof. Let u, {wi}n
i=1 ∈ (S ∪ S−1)∗ be an instance of the subgroup membership problem.

We define the formula

ψ = (¬ε ∨ s) ∧ (u ∨ s) ∧ (¬ε ∨ ¬s) ∧ (u ∨ ¬s),

for some fixed s ∈ S, which along with the words wi is an input to 2-SAT(G). Notice that ψ
is equivalent to the formula ¬ε ∧ u. Let us denote H = ⟨w1, ..., wn⟩ and Ψ =

∧
h∈H ψ̄(h).

Suppose ū ∈ H. Then, we have that ψ̄(1G) ∧ ψ̄(ū) = (¬1G ∧ ū) ∧ (¬ū ∧ ū2) is never
satisfiable, and thus Ψ is not satisfiable. On the other hand, if ū ̸∈ H, we can define the
assignment α : G → {0, 1} by α(h) = 0 and α(hu) = 1 for all h ∈ H, and α(g) = 0 for all
other g ∈ G \H. This way ¬α(h) ∧ α(hu) = 1 for all h, and therefore Ψ is satisfied. ◀

Examples of groups with undecidable subgroup membership problems are Fn × Fn [36],
some hyperbolic groups [43], as well as groups with undecidable word problem.

▶ Lemma 25. Let G be a finitely generated group with decidable subgroup membership
problem. Then, for every k ≥ 2 we have that k-SAT(G) ≤m DP(G).

Proof. Let S be a finite generating set for G, ϕ an input formula and {wi}i words over
S ∪ S−1 that form an instance of k-SAT(G) such that

ϕ =
m∧

i=1
(v′

i1 ∨ ... ∨ v′
ik),

with vij ∈ (S ∪ S−1)∗. Let us once again denote H = ⟨w1, ..., wn⟩. Our alphabet, A, consists
of 0-1 matrices of size m× k that satisfy ϕ, that is, all matrices M ∈ {0, 1}m×k such that

m∧
i=1

((Mi1)′ ∨ ... ∨ (Mik)′) = 1.

To obtain this alphabet we must solve the standard k-SAT problem, which is computable.
For convenience, let us denote the finite subset of words involved in the formula by

L = {vij | 1 ≤ i ≤ m, 1 ≤ j ≤ k}. In addition, we define the set HL as the set of all
habcd ∈ H ∩ LL−1, where

habcd =
{
vabv

−1
cd if vabv

−1
cd ∈ H,

1H otherwise.

Notice that |HL| ≤ |L|2 = m2k2, and that this set is computable as G has decidable
subgroup membership problem. Let us proceed by specifying a set of nearest neighbor
forbidden rules, F , with respect to the generating set S ∪HL. Given a configuration x ∈ XF
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the idea is that, for h ∈ H, the matrix x(h) will stock the values assigned to the elements of
hL. For each habcd ∈ HL, we forbid patterns q of support {1H , habcd}, such that if q(1H) = M

and q(habcd) = M̂ ,

Mab ̸= M̂cd.

Suppose XF contains a configuration x. The assignment of truth values α : G → {0, 1} is
defined by

α(g) =
{

0 if g ̸∈ H · L,
x(h)ab if g = hv̄ab

.

It follows that α is well defined; if g = h1v̄ab = h2v̄cd, then h2 = h1habcd, and by the
forbidden patterns we know (xh1)ab = (xh2)cd. In addition, because x ∈ AG, for all h ∈ H,

m∧
i=1

(α(hv̄i1)′ ∨ ... ∨ α(hv̄ik)′) =
m∧

i=1
(x(h)′

i1 ∨ ... ∨ x(h)′
ik) = 1.

This means that the assignation α satisfies
∧

h∈H ϕ̄(h).

Finally, suppose we have an assignation of truth values β : G → {0, 1} that satisfies∧
h∈H ϕ̄(h). Given a set of right coset representatives R containing 1G, we define z ∈

{0, 1}m×k by z(hr)ab = β(hgab), for all h ∈ H and r ∈ R. Because β satisfies
∧

h∈H ϕ̄(h), for
all h ∈ H

m∧
i=1

(z(h)′
i1 ∨ ... ∨ z(h)′

ik) =
m∧

i=1
(β(hv̄i1)′ ∨ ... ∨ β(hv̄ik)′) = 1.

Therefore, z ∈ AG. For habcd ∈ HL, h1 ∈ H and h2 = h1habcd we have that

z(h1)ab = β(h1v̄ab) = β(h1habcdv̄cd) = β(h2v̄cd) = z(h2)cd

Therefore z satisfies the local rules and is thus in XF . This concludes our reduction. ◀

Virtually free groups not only have decidable domino problem, as previously mentioned,
but also have decidable subgroup membership problem (see [34]).

▶ Corollary 26. For G a virtually free group, k-SAT(G) is decidable for all k > 1.

To determine when the converse reduction is true, we introduce a new class of groups
that has the required properties.

▶ Definition 27. Let G be a finitely generated group. We say G is scalable if there exists a
proper finite index subgroup H ⪇ G that is isomorphic to G.

Examples of such groups are finitely generated abelian groups, the Heisenberg group,
solvable Baumslag-Solitar groups BS(1, n), Lamplighter groups F ≀ Z with F a finite abelian
group, the affine group Zd ⋊GL(d,Z) for d ≥ 2 [40], among others. Examples of non-scalable
groups are finitely generated free groups.

▶ Theorem 28. For G a scalable group, DP(G) ≤m 3-SAT(G).
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Proof. Let A be a finite alphabet of size n, and F a finite set of nearest neighbor for-
bidden patterns for G with generating set S. As G is scalable, there exists H a proper
subgroup of finite index as well as an isomorphism F : G → H. Let f : S → S∗ the function
that is extended to the isomorphism F , that is, {f(s)}s∈S is a generating set for H. Fix
R ⊆ (S ∪ S−1)∗ a set of words representing a finite set of right coset representatives for H
that includes 1G. Notice that for every m ∈ N the subgroup Hm = Fm(G) is isomorphic
to G with [G : Hm] = [G : H]m ≥ m. In addition, a simple computation shows that
Rm = Fm−1(R) ... F (R)R defines a set of right coset representatives for Hm.

The idea of the reduction is to represent each letter of the alphabet by a unique code on
the left coset representatives and then create a formula that assigns a letter to each element
of Hm. The index of the subgroup, m, will be chosen so there is enough room to code the
alphabet and write our formula in the required form.

First off, take as a preliminary estimate m ≥ ⌈log2(n)⌉, and denote fm = fm. Let
{ϕa}a∈A be the set of formulas that code the elements of the alphabet A using the words in
Rm as variables. This way ϕa(h) ≡ 1 means we place the letter a at g = (Fm)−1(h), and
the variables are contained in hRm. Our formula is given by,

φ =
(∨

a∈A

ϕa(1G)
)

∧

 ∧
(a,b,s)∈F

¬ϕa(1G) ∨ ¬ϕb(fm(s))

 ,

which represents the fact that we place one letter at the given point (1G in this case) and
that there are no forbidden patterns in its neighborhood. If modified to be in CNF form, φ
is a conjunction of |F| + ⌈log2(n)⌉n clauses of ≤ n literals (the clauses coding the forbidden
patterns contain 2⌈log2(n)⌉ literals). By adding (|F| + ⌈log2(n)⌉n)n dummy variables we
can transform φ into an equivalent formula φ′ whose clauses contain exactly 3 literals.

Therefore, take m ≥ (|F| + ⌈log2(n)⌉n)n + ⌈log2(n)⌉, which gives us enough space in
the set of left coset representatives to code the elements of the alphabet and the dummy
variables. Furthermore, φ′ is computable from A and F , and Φ′ =

∧
h∈H φ̄′(h) ∈ HmN3.

Let us prove the reduction. If there exists x ∈ XF ⊆ AG, we create an assignment such
that for all g ∈ G, the variables in Fm(g)Rm are given values so as to satisfy the code for
ϕx(g)(Fm(g)) ≡ 1. Because x contains no patterns from F ,

∧
h∈H φ̄(h) will be satisfied. We

finish by filling out the rest of the variables so that Φ′ ≡ 1.
Now, if Φ′ is satisfied so is

∧
h∈H φ̄(h). Let y ∈ AG be the configuration defined by

y(g) = a if ϕa(Fm(g)) ≡ 1. Because the codes used make sure that the values in Fm(g)Rm

code a unique letter, for each g ∈ G a unique ϕa(Fm(g)) is satisfied. Thus y is well
defined. Finally, y ∈ XF because if there was g ∈ G such that y(g) = a and y(gs) = b

with (a, b, s) ∈ F we would have that ϕa(Fm(g)) ∧ ϕb(Fm(g)fm(s)) is true. This shows
DP(G) ≤m 3-SAT(G). ◀

▶ Corollary 29. 3-SAT(G) is undecidable for finitely generated abelian groups, solvable
Baumslag-Solitar groups, the Heisenberg group and affine groups.
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Abstract
In the proportional knapsack problem, we are given a knapsack of some capacity and a set of variably
sized items. The goal is to pack a selection of these items that fills the knapsack as much as possible.
The online version of this problem reveals the items and their sizes not all at once but one by one.
For each item, the algorithm has to decide immediately whether to pack it or not. We consider
a natural variant of this online knapsack problem, which has been coined removable knapsack. It
differs from the classical variant by allowing the removal of any packed item from the knapsack.
Repacking is impossible, however: Once an item is removed, it is gone for good.

We analyze the advice complexity of this problem. It measures how many advice bits an omniscient
oracle needs to provide for an online algorithm to reach any given competitive ratio, which is –
understood in its strict sense – just the algorithm’s approximation factor. The online knapsack
problem is known for its peculiar advice behavior involving three jumps in competitivity. We show
that the advice complexity of the version with removability is quite different but just as interesting:
The competitivity starts from the golden ratio when no advice is given. It then drops down to 1 + ε

for a constant amount of advice already, which requires logarithmic advice in the classical version.
Removability comes as no relief to the perfectionist, however: Optimality still requires linear advice
as before. These results are particularly noteworthy from a structural viewpoint for the exceptionally
slow transition from near-optimality to optimality.

Our most important and demanding result shows that the general knapsack problem, which
allows an item’s value to differ from its size, exhibits a similar behavior for removability, but with
an even more pronounced jump from an unbounded competitive ratio to near-optimality within
just constantly many advice bits. This is a unique behavior among the problems considered in the
literature so far.

An advice analysis is interesting in its own right, as it allows us to measure the information content
of a problem and leads to structural insights. But it also provides insurmountable lower bounds,
applicable to any kind of additional information about the instances, including predictions provided
by machine-learning algorithms and artificial intelligence. Unexpectedly, advice algorithms are
useful in various real-life situations, too. For example, they provide smart strategies for cooperation
in winner-take-all competitions, where several participants pool together to implement different
strategies and share the obtained prize. Further illustrating the versatility of our advice-complexity
bounds, our results automatically improve some of the best known lower bounds on the competitive
ratio for removable knapsack with randomization. The presented advice algorithms also automatically
yield deterministic algorithms for established deterministic models such as knapsack with a resource
buffer and various problems with more than one knapsack. In their seminal paper introducing
removability to the knapsack problem, Iwama and Taketomi have indeed proposed a multiple
knapsack problem for which we can establish a one-to-one correspondence with the advice model;
this paper therefore even provides a comprehensive analysis for this up until now neglected problem.
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1 Introduction

In this first section, we briefly summarize what online algorithms and advice are, then
informally present the problem whose advice complexity we will be analyzing, and finally
describe several applications of such advice complexity results.

1.1 Online Algorithms and Advice Complexity

Online algorithms receive their input piece by piece and have to determine parts of the
solution before knowing the entire instance. This often leaves them unable to compete with
offline algorithms, which know the entire input in advance, in a meaningful way. In the
advice model, we assume an omniscient oracle that provides the online algorithm with some
information on how to solve the upcoming instance best. If the oracle can communicate
to the algorithm an unlimited amount of such advice, it will of course be able to lead the
algorithm to an optimal solution for every instance. The advice complexity measures the
minimum amount of information necessary for the online algorithm to achieve any given
approximation ratio, which is commonly called strict competitive ratio or competitivity in
this context. Advice complexity is a well-established tool to gauge the information content of
an online problem [3, 9, 15]. For a detailed and careful introduction to the theory, we refer
to the textbook by Komm [20]. Another classical textbook on online problems is written by
Borodin and Yaniv [5]. The trade-off between a low number of transmitted advice bits on
the one hand and achieving a good competitive ratio on the other hand has been examined
for a wealth of problems – see the survey by Boyar et al. [6] – but one stands out for its
peculiar behavior: the knapsack problem.

1.2 Knapsack and Removability

A knapsack instance presents the online algorithm with a sequence of items of different sizes.
Upon the arrival of each item, the algorithm has to decide whether to pack it into a knapsack
or discard it. The goal is to fill the knapsack as much as possible without ever exceeding the
knapsack’s given capacity. This problem is sometimes also referred to as the proportional or
simple knapsack problem, as opposed to the general knapsack problem, in which every item
has not only a size but also a value.1 In the generalized version, the goal is to maximize the
total value of all packed items. With no further specification given, we are always referring
to the proportional case.

A variant of the knapsack problem has been proposed by Iwama and Taketomi [17] under
the name of removable knapsack. In this model, we can discard an item not only when it
is first presented to us; we may also remove a packed item from the knapsack at any point.
This is possible only once for each item, however; once removed, an item cannot be repacked.
As for the classical problem without removability, the capacity of the knapsack may not
be exceeded at any point in time. Recently, Rossmanith has introduced a similar relaxed
online setting for graph problems where decisions are taken only when constraints make it
inevitable [23].

1 It is also quite common for the proportional and general knapsack problem to be called unweighted and
weighted, respectively. The notion weight is ambiguous, however, as some authors [4] use it for what is
called size here, while others [18] use it for what is called the value here or profit elsewhere. For the
sake of clarity, we are well advised to avoid the term weight altogether.
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This model is arguably just as natural a way to translate the knapsack problem into the
online setting as the more well-examined variant without removability. In many cases, it will
not be hard to discard items at regular intervals, only the chance of obtaining specific objects
is subject to special circumstances. For a practical example, consider a storage room in
which you can store all kinds of objects that you come across over time. In the beginning you
can just keep collecting everything, but by doing so you inevitably run out of space before
too long. Then you will have to start disposing of some of your possessions to make room for
new, potentially more interesting acquisitions. Your goal is to end up with a selection of just
the most meaningful and useful items that you could have. This paper analyzes the advice
complexity of both the proportional and general removable knapsack problem. It is telling
you how much information about upcoming opportunities you need to ensure an outcome
that is either optimal or off by at most a given factor.

1.3 Advice Applications
Besides inherently interesting insights into the information complexity of the knapsack
problem, our advice algorithms also offer more concrete applications. Any algorithm reading
a bounded number of advice bits can be implemented by running a bounded number of
deterministic algorithms in parallel and selecting the best result. An advice analysis thus
tells us, for example, how to optimally organize a betting pool in a winner-take-all scenario.
Our main result in particular provides a smart selection of strategies to be assigned to a
mere constant number of actors such that one is guaranteed to be as close to optimality
as we desire, no matter how difficult the instances of the general knapsack problem with
removability may become.

A further advantage of analyzing the advice complexity of a problem is that the resulting
bounds are very versatile. The lower bounds are particularly strong. They show that a
certain competitivity cannot be achieved with a given amount of additional information,
regardless of the form this advice may take. The oracle is indeed able to convey to the
algorithm all kinds of structural information about the adversarial instance; for example, in
the case of our knapsack problem, whether items smaller than a given threshold should or
must not be ignored, whether replacing packed items by later ones will ever be beneficial,
whether the values span more than a certain range, whether an optimal solution fills the
knapsack completely, whether there are multiple optimal solutions, and so on. Lower bounds
on the competitivity of advice algorithms imply lower bounds for randomized algorithms,
and our results indeed improve upon the best bounds known for randomization; Theorem 12
even completely closes the remaining gap in the analysis of barely random algorithms for the
general knapsack problem.

There are also interesting implications for deterministic algorithms. Consider the multiple
knapsack problem in which every item is either rejected or packed into one of k > 1 knapsacks;
the goal is for the algorithm to have in the end one knapsack that is as full as possible. This
problem has been analyzed with removability by Iwama and Taketomi in the proportional
case. In the conclusion of their paper [17], they pose it as an open problem to analyze this
model if we are allowed to copy items and pack them into arbitrarily many of the available
knapsacks. It turns out that deterministic algorithms for this problem with different ks are
equivalent to advice algorithms: An advice algorithm restricted to log k advice bits can read
up to k different advice strings. Even if the algorithm reads the entire advice string right
at the beginning, before taking any decision, it will thus implement one of k deterministic
strategies. Having k knapsacks and being able to pack each item into several of them at the
same time means that we can just simulate each possible strategy in one of the knapsacks
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and see which one leads to the best result in the end. Conversely, the oracle in our model
already knows the optimal choice and can communicate to an advice algorithm which of
the knapsacks it should be simulating. Knowing the advice complexity of our problem with
only one knapsack therefore automatically yields a comprehensive competitive analysis for
this deterministic problem for any k > 1. All of this remains true for the general knapsack
problem; thus our results provide a comprehensive picture for the proposed model in both
the proportional and non-proportional case. We remark that algorithms for the resource
buffer model are generally not applicable here. Algorithm 2 by Han et al. [13, Thm. 9], for
example, keeps regrouping items in every step and thus crucially relies on having a single
large buffer instead of multiple standard-sized knapsacks without an option to shuffle items
between them.

2 Preliminaries

Throughout this paper, log denotes the binary logarithm. We formally define the removable
knapsack problem as follows.

▶ Definition 1 (Removable Knapsack Problem). RemKnap is an online maximization problem.
An instance I is a sequence (s1, v1), . . . , (sn, vn) of n items, each of which is a pair of some
real positive size si and value vi. Where useful, we denote size and value of an item i

functionally by s(i) = si and v(i) = vi. The domain of this function naturally extends to
arbitrary subsets T ⊆ {1, . . . , n} of items by defining s(T ) =

∑
i∈T s(i) and v(T ) =

∑
i∈T v(i).

The knapsack has a maximum size capacity, which we normalize to be 1.
The instance is presented item by item to an online algorithm A that has to maintain a

packing, a set of packed items. We call the total size of the currently packed items the current
filling of the knapsack. The algorithm starts out with an empty knapsack, represented by the
empty set T0 = ∅. When presented with item i, the algorithm may first remove any of the
items Ti−1 packed so far; then it may pack the new item if this does not exceed the knapsack
capacity. In other words, the algorithm selects a subset Ti ⊆ Ti−1 ∪ {i} with s(Ti) ≤ 1 in
step i. The algorithm learns the size of item i only once it is presented and only learns the
total number n of items after selecting Tn. The final packing computed by A is denoted by
T = Tn. The gain that we aim to maximize is the total value v(T ) of the final packing.

The proportional variant PropRemKnap additionally satisfies si = vi for each item i.

▶ Definition 2 (Competitive Ratio). Let an online maximization problem with instance set
I be given and let A be an online algorithm solving it. For any instance I ∈ I, denote by
alg(I) the gain that A achieves on I and by opt(I) the gain of an optimal solution to I

computed offline. The competitive performance of A on an instance I ∈ I is opt(I)/alg(I).
For any ρ ∈ R, the algorithm A is called strictly ρ-competitive if it performs ρ-competitively
across all instances, that is, if ∀ I ∈ I : opt(I)/alg(I) ≤ ρ. The infimal competitivity
inf{ ρ ∈ R | A is strictly ρ-competitive } is called strict competitive ratio of A. We can
weaken the defining inequality above so that it only needs to hold asymptotically in the sense
of ∃ α ∈ R+ : ∀ I ∈ I : opt(I) ≤ ρ ·alg(I)+α. If this condition is met, we call A nonstrictly
ρ-competitive.

Note that strict ρ-competitivity implies nonstrict ρ-competitivity but not vice versa,
making it harder to prove lower bounds for nonstrict competitivity. For the knapsack problem,
however, it makes sense to always analyze competitivity in the strict sense: On the one hand,
we obtain a nonstrict lower bound from a strict one by scaling up the knapsack capacity
and all item sizes in a hard instance set such that the smallest item is strictly larger than α.
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If, on the other hand, scaling is impossible due to the problem being defined with a fixed
knapsack capacity of 1, for example, then choosing α = 1 shows any online algorithm is
1-competitive in the nonstrict sense.

3 Related Work

Knapsack is one of the 21 NP-complete decision problem in Karp’s famous list [19]. An
algorithm based on dynamic programming solves both the proportional and the general
version in pseudo-polynomial time; see Bellman [1, Section 1.4] for the general technique and
Dantzig [8, p. 275] for a concrete description of its application to the knapsack problem. The
pseudo-polynomial time algorithm can be adapted to the optimization version, yielding a
fully polynomial-time approximation scheme [16]. In the following two subsections, we list
the known results on the advice complexity of the proportional knapsack problem, first for
the classical version and then for the variant allowing the removal of packed items.

3.1 Knapsack without Removability

Marchetti-Spaccamela and Vercellis were the first to consider the classical online version of
the knapsack problem in 1995. They called it the {0, 1} knapsack problem to distinguish it
from the fractional knapsack problem, which allows for packing items partially. They proved
that both versions have an unbounded competitive ratio if items are allowed to have sizes
different from their values [21, Thm. 2.1]. We denote the classical problem with neither
fractional items nor removability by Knap and its proportional variant by PropKnap.

The concept of advice emerged much later. When it did, Knap quickly became one of
the prime examples of a problem with an interesting advice complexity.

First, just a single advice bit brings with it a jump from non-competitivity to a
2-competitive algorithm [4, Thm. 4]. More advice bits do not help however, as long as
the number stays below ⌊log(n − 1)⌋ [4, Thm. 5]. Once this threshold is surpassed, logarith-
mic advice allows for a competitive ratio that is arbitrarily close to 1 [4, Thm. 6]. Achieving
optimality, finally, requires at least n − 1 advice bits [4, Thm. 3].

The situation for the general variant is simpler: Any algorithm reading less than log n

advice bits has an unbounded competitive ratio, but O(log n) advice suffices for a near-
optimal solution [4, Thms. 11 and 12]. A schematic plot of the advice complexity behaviors
just described can be found in Figure 1 in light gray.

3.2 Online Knapsack Variants

Iwama and Taketomi [17] proposed the online knapsack model with removability as it is
examined in the present paper. They proved that the competitive ratio for the proportional
variant of this problem, which we denote by PropRemKnap, is exactly the golden ratio.
Iwama and Zhang later considered the problem with resource augmentation, that is, for
online algorithms that may use a larger knapsack than the offline algorithm [18].

Later still, Han et al. [12] proved an upper bound of 5/3 on the competitive ratio for a
variant of PropRemKnap where the value v of an item is not necessarily proportional to
its size s but not arbitrary either; instead, the value is given by a convex function v = f(s)
known to the algorithm. They also proved the golden ratio to be optimal if f has some
further technical properties. Han et al. [10] considered online knapsack with removal costs, a
variant of PropRemKnap where items can be removed, but not for free.
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Figure 1 A schematic plot of the advice complexity behavior of the classical online knapsack
problem in light gray and the relaxed variant with removability in dark gray. For the proportional
version without removability there are two large plateaus; removability collapses to a single vast
expanse. For the general version, in which an item’s value may differ from its size, there is only one
but a more extreme jump directly from an unbounded competitive ratio to near optimality; with
removability, this jump is occurring earlier and even steeper.

Noga and Sarbua [22] considered a knapsack variant, where it is possible to split each
arriving item in two parts of not necessarily equal size, and combine this with resource
augmentation. Han and Makino [14] considered another partially fractional variant of Prop-
RemKnap where each item can be split a constant number of times at any time. Most
importantly in our context, Han et al. [11] examined randomized algorithms for Prop-
RemKnap, proving an upper bound of 10/7 and a lower bound of 5/4 on the expected
competitivity. Cygan et al. [7] extended the study of randomization for PropRemKnap to
a variant with multiple knapsacks. Recently, Böckenhauer et al. [2] have introduced a new
model for the online proportional knapsack problem in which items can be stored outside of
the knapsack until the instance ends after paying a reservation fee that is a fixed fraction α

of the item’s value.

4 Results for Proportional Removable Knapsack

In Section 4.1, we consider how much – or rather, how little – removability helps when trying
to obtain an optimal solution. In Section 4.2, we prove bounds on what is possible with
a single advice bit. Finally, we prove in Section 4.3 that a constant amount of advice is
sufficient to achieve a competitive ratio of 1 + ε, for an arbitrary ε > 0, and a constant
depending on ε. See Figure 1 for a rough representation of these results in dark gray.
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4.1 Achieving Optimality
We begin by briefly considering PropKnap, the classical proportional knapsack problem
without removability. Solving it optimally is trivial with n advice bits: The algorithm reads
one bit per item, telling it whether to accept or reject. Theorem 3 proves this to be tight
by lifting the best known lower bound from n − 1 advice bits [4, Thm. 3] to n advice bits.
Proofs immediately follow the theorems or are deferred to the full version of the paper.

▶ Theorem 3. Any algorithm for PropKnap reading less than n advice bits is suboptimal.

Having determined PropKnap’s advice complexity for optimality, we now do the same for
PropRemKnap, the variant with removability. It turns out that the option to remove items
hardly helps at all in achieving optimality. We begin the upper bound, which is simple but
instructive as to what is possible with removability.

▶ Theorem 4. There is an optimal algorithm for PropRemKnap reading n − 1 advice bits.

Proof. Consider an algorithm that packs the first item without reading any advice bits. For
each subsequent item, it reads one advice bit, telling it whether the new item is part of a
fixed optimal solution. If so, then the new item is packed; otherwise, it is rejected. The
first item, which has been packed without advice, is kept in the knapsack as long as there is
enough room for it. If the first item is part of the fixed optimal solution, then it will always
fit in beside the other items being packed; otherwise, it will be discarded at some point. Thus
the algorithm is able to reproduce the fixed optimal solution exactly. ◀

▶ Theorem 5. Solving PropRemKnap optimally requires more than n − log n advice bits.

4.2 A Single Advice Bit
The previous section covered the upper end of the advice spectrum, showing that, asymp-
totically, reading one advice bit for each item in the instance is necessary and sufficient for
ensuring an optimal solution. We now turn to the other extreme and ask what can be done
with the least nonzero amount of advice, one single bit for the entire instance.

First, we describe a very simple 3/2-competitive advice algorithm where a single advice
bit indicates whether there is an optimal solution containing more than one item from the
interval [1/3, 2/3]: If the answer is yes, the algorithm maintains the smallest item in this
interval until a second item fits in, while ignoring all items outside of the interval. As soon
as a second item fits, it is packed and all remaining items are rejected. If the answer is no,
the algorithm maintains in the knapsack the largest item of size at least 1/3 seen so far
while packing all items smaller than 1/3 as long as they fit. If the knapsack capacity is never
exceeded, the solution is optimal. If the knapsack capacity is exceeded at some point, then
there are items that are all smaller than 1/3 but have a total size of more than 1/3. Discard
these items one by one, in arbitrary order, until we are within the capacity of the knapsack
again. The remaining gap is at most 1/3.

Han et al. [11, Thm. 6] have presented a randomized algorithm that relies on a partition
of the items into six size classes. It is rather involved and hard to analyze, yet yields an
expected competitive ratio of 10/7 ≈ 1.428571. Because it uses only a single random bit, it
provides an upper bound for our case of one advice bit as well. In Theorem 6, we undercut
this bound with a more manageable

√
2-competitive algorithm that needs only five classes.

We then complement this with a lower bound of (1 +
√

17)/4 = 4/(
√

17 − 1) ≈ 1.2808.

▶ Theorem 6. There is a
√

2-competitive algorithm for PropRemKnap reading only one
advice bit.
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tiny small medium big huge

little large

0 a b c d 1

Figure 2 The partition of the interval (0, 1] of possible sizes into the five subintervals used in the
proof of Theorem 6 – namely (0, a], (a, b], (b, c], (c, d], and (d, 1] – plus the corresponding class names.
The values are a = 1 − 1/

√
2 ≈ 0.293, and b =

√
2 − 1 ≈ 0.414, and c = 1/2, and d = 1/

√
2 ≈ 0.707.

Proof. We split the interval (0, 1] of possible sizes into subintervals at four points a < b <

c < d. We will call the items with sizes in one of these five intervals tiny, small, medium, big,
and huge, respectively. Formally, we partition the items into the five classes

Ptiny = { i | 0 < s(i) ≤ a }, Psmall = { i | a < s(i) ≤ b }, Pmedium = { i | b < s(i) ≤ c },

Pbig = { i | c < s(i) ≤ d }, Phuge = { i | d < s(i) ≤ 1 },

where a = 1 − 1/
√

2 ≈ 0.29289, b =
√

2 − 1 ≈ 0.41421, c = 1/2, and d = 1/
√

2 ≈ 0.70711.
We will call the small and medium items the little ones collectively and refer to the

big and huge items as the large ones. Accordingly, we let Plittle = Psmall ∪ Pmedium and
Plarge = Pbig ∪ Phuge. See Figure 2 for an illustration of the subintervals and class names.

The oracle uses the one available advice bit to tell the algorithm which of the two strategies
described below to apply. For the decision, the oracle picks an arbitrary optimal solution S

to the given instance. If S contains a large item, the first strategy will be chosen, with one
exception: If the instance contains no huge item but a little and a big item that fit into the
knapsack together, then the first strategy is chosen only if a minimal big item appears in the
instance before a minimal small item. In all other cases, the second strategy is implemented.

Strategy One If at any point a huge item appears, the algorithm packs it and keeps it until
the end, discarding everything else. Otherwise, the algorithm operates with two slots, a
primary and a secondary one. In the primary slot, it maintains the minimal big item
and in the secondary slot it maintains the minimal little item. The primary slot takes
precedence; that is, in case of a conflict where a new minimal item for one slot is presented
that does not fit with the minimal item in the other slot, we discard the little item.
While maintaining the slot contents, tiny items are always packed greedily. If at any
point a presented tiny item does not fit, the current contents of the knapsack are frozen
and kept as they are until the instance has ended. The same happens after a step in
which only tiny items have been discarded.

Strategy Two This strategy manages not only two but three slots, all of which maintain
minimal items of some class. In order of precedence, the primary slot maintains two
medium items, the secondary slot up to three small items, and the tertiary one big one.
As an exception, if at any point a big item appears that can be packed alongside a
currently packed small item by discarding everything else, then this is done and these
two items are kept till the end. The tiny items are handled as before: They are packed
greedily and if either a presented tiny item does not fit or only tiny items have been
discarded in one step, then the current knapsack configuration is kept up to the very end.

We now need to carefully work through a case distinction according to the conditions
listed in Table 1 and show that the algorithm’s competitivity is indeed bounded from above
by max{1/d, d/c, 1/2b, 1/(a + b), 1/(1 − a), b/a} =

√
2. For the details, we refer to the full

version of the paper. ◀
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Table 1 The mutually exclusive cases considered in Theorem 6.

Case Strategy Competitivity Case Conditions

A One 1/d |Phuge| > 0
B One/Two d/c |Phuge| = 0 |S ∩ Pbig| > 0 |Pmedium| ≤ 1
C Two 1/2b |Phuge| = 0 |S ∩ Pbig| ≥ 0 |Pmedium| > 1
D Two 1/(a + b) |Phuge| = 0 |S ∩ Pbig| = 0 |Pmedium| = 1 |Psmall| > 0
E Two b/a |Phuge| = 0 |S ∩ Pbig| = 0 |Pmedium| = 0 |Psmall| > 0
F Two 1/(1 − a) |Phuge| = 0 |S ∩ Pbig| = 0 |Pmedium| ≤ 1 |Psmall| = 0

▶ Theorem 7. No algorithm for PropRemKnap reading only a single advice bit can have a
better competitive ratio than (1 +

√
17)/4.

Note again that an advice bit is at least as powerful as a random bit, hence Theorem 7
also improves the best known lower bound of 5/4 for one random bit due to Han et al. [11,
Thm. 8].

4.3 Near Optimality with Constant Advice
Having seen how much advice is necessary for optimality and what the effect of a single advice
bit can be, we now address the entire range in between. For this, we prove the following
generalization of Theorem 7.

▶ Theorem 8. Let an arbitrary integer k > 1 be given. No algorithm for PropRemKnap
reading at most log k advice bits can achieve a better competitive ratio than 4/(3 − 2k +√

4k(k + 1) − 7).

We remark that Theorem 8 and its analogue for RemKnap instead of PropRemKnap,
Theorem 13, improve upon the best known lower bounds implied by Han et al.’s results on
the resource buffer model [13, Thms. 17 and 6]. In this model, the online algorithm may
use a knapsack of some increased capacity R > 1, but only until the instance ends, at which
point it has to choose from the reserved items a selection that fits a knapsack of capacity
one. A resource buffer of some natural size R allows us to simulate any algorithm using up
to log R advice bits: We think of the resource buffer as split into R knapsacks of capacity
1, allowing us to accommodate the items stored by the advice algorithm for every possible
advice string simultaneously.

Clearly, the lower bound of Theorem 8 tends to 1 for increasingly large but still constant
advice. With our most surprising result for the proportional knapsack problem, Theorem 10,
we will prove that the true competitive ratio displays the same general behavior as the lower
bound of Theorem 8: For any given ε > 0, we can guarantee a competitive ratio of 1 + ε

with a constant number of advice bits. It is of course also possible to derive more specific
upper bounds for very few advice bits such as the following one.

▶ Theorem 9. There is a 4/3-competitive algorithm for PropRemKnap reading two advice
bits.

We now turn to our main result for the proportional knapsack problem, which complements
Theorem 8 with an upper bound. Theorem 14 will generalize this result to the general version
where an item’s size may differ from its value, albeit with a far more complicated proof. To
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make it as easily understandable as possible, we first present here the proof for the simple
variant, which introduces the idea of slots that are reserved for items with certain properties.
This will serve as a useful foundation for the proof of the general variant, which is also
making use of such a slot system, although as merely one besides many more components.

▶ Theorem 10. For any ε > 0, there is a strictly (1 + ε)-competitive algorithm for Prop-
RemKnap reading a constant number of advice bits.

Proof. We describe such an algorithm called PropPack; see the full version of the paper
for a pseudo-code implementation. We begin by describing the advice communicated to
PropPack with a constant number of bits, then explain how the algorithm operates on this
advice, prove that it is correct and terminates, and finally analyze its competitive ratio.

Notions and Notation. Without loss of generality, we assume that all items have size at
most 1 and that ε ≤ 1/2. We define the constant K = ⌈log1−ε/2 ε/2⌉.

Let an instance with n items be given. Denote the items in the order of their appearance
in the instance by 1, 2, . . . , n and denote the size of item i by s(i). We divide the n items
into small and big ones, with δ = (1 − ε/2)K serving as the dividing line: Csmall = { i |
s(i) ≤ δ } and Cbig = { i | δ < s(i) }. We further partition the big items into the subclasses
Ck = { i | (1 − ε/2)k < s(i) ≤ (1 − ε/2)k−1 } for k ∈ {1, . . . , K}. To alleviate the notation,
we will often refer to Ck as class k and to Csmall as class 0. We also use this convention when
writing C(i) to indicate the class to which item i belongs: We have C(i) ∈ {0, . . . , K}, with
C(i) = 0 meaning that i ∈ Csmall and C(i) = k ̸= 0 meaning that i ∈ Ck.

The oracle chooses an arbitrary but fixed optimal solution S ⊆ {1, . . . , n}. We denote
the partition classes that are naturally induced by this solution by Ssmall = S ∩ Csmall,
Sbig = S ∩ Cbig, and Sk = S ∩ Ck for k ∈ {1, . . . , K}. Let m = |Sbig| be the number of big
items in the optimal solution and denote them by i1 < . . . < im in order of appearance.

Constant Advice. The oracle communicates to the algorithm a tuple (b1, . . . , bm) with the
classes of the big items in the chosen optimal solution in order of appearance; that is, we
have bj = C(ij) for each j ∈ {1, . . . , m}. We remark that this tuple needs to be encoded in
a self-delimiting way. A constant number of bits suffices for this because bj is bounded by
the constant K for every j ∈ {1, . . . , m} and m is bounded by the constant 1/δ. The latter
bound is an immediate consequence of the fact that s(Sbig) ≤ 1 and that any big item has a
size larger than δ.

Algorithm Description. The algorithm PropPack proceeds in m phases as follows. In
every phase, the algorithm opens a new virtual slot within the knapsack that can store
exactly one item at a time; multiple items in succession are allowed, however. The slot
opened in phase i will accommodate items belonging to class bi exclusively; we say that
items from this class match slot i. Slots are never closed, thus there are exactly m of them
in the end. Small items are generally packed in a greedy manner and discarded one by one
whenever necessary to pack a big item.

In the first phase, the algorithm rejects all big items until one of class b1 appears. As
soon as this is the case, said item is packed into the first slot, ending the first phase.

In the second phase, the algorithm opens the second slot to pack a matching item, that
is, one of class b2. It waits for the first item from this class that fits into the knapsack
alongside the item in the first slot. As soon as such an item appears, it is packed and the
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phase ends. In the meantime, whenever an item of class b1 appears during the second round,
the algorithm substitutes it for the one stored in the first slot if and only if this reduces the
size of the stored item.

In general, phase i begins with the opening of slot i, which is reserved for items of class bi.
The phase continues until an item appears that both matches the newly opened slot and
fits in beside the items currently stored in the previously opened and filled slots without
exceeding the capacity. Then this item is packed into the new slot, which ends the phase.
During the entire phase, the algorithm maintains in all filled slots the smallest matching
items seen so far: Whenever the algorithm is presented with a big item that either belongs
to a class other than bi or does not fit in alongside the items in the previously opened slots,
then the new item replaces a largest item in the matching open slots, unless the new item
itself is even larger.

The entire time, even after the last phase has terminated, small items are packed greedily
and discarded one by one whenever this is necessary to make room for a big item according to
the description above. Moreover, we may assume that, whenever a new item has been packed
into the knapsack, the algorithm sorts the items in the matching open slots in increasing
order. This sorting is not necessary for the algorithm to fulfill its duty, but it facilitates the
proof by induction below.

Termination of All Phases. We need to show that PropPack does in fact finish all m

phases; that is, all m slots will be filled with a matching item without ever exceeding the
knapsack capacity. Consider the big items of the optimal solution, which we denote by
u1 < · · · < um in their order of appearance. To ensure the termination of all phases, we
prove by induction over i ≤ m that, after processing item ui, the first i slots store items with
a total size of s(u1) + · · · + s(ui) or less.

We may start from i = 0 as the trivial, if degenerate, base case. For the induction step,
assume the hypothesis for i < m and observe that no item in a slot is ever replaced by a larger
one. Therefore, the items in the first i slots still have a total size of at most s(u1) + · · · + s(ui)
when ui+1 is presented.

There are now three possibilities. If slot i + 1 has remained closed up to this point, it is
now opened and filled with ui+1, which fits in because s(u1) + · · · + s(ui+1) ≤ s(Sbig) ≤ 1.
Otherwise, slot i + 1 is already storing an item: If said item is larger than s(ui+1), then
ui+1 replaces either this item or one that is at least as large. During the subsequent sorting,
ui+1 is then moved to slot i + 1 or one of the slots from 1 to i, which may force some items
from slots 1 through i into higher slots but never beyond slot i + 1. The third possibility is
that slot i + 1 contains an item of size at most s(ui+1) already. We immediately obtain the
induction claim for i + 1 in all three cases.

Competitive Analysis. We still denote by S the optimal solution that served as the basis for
the given advice, by T the final output of the online algorithm, and the respective partition
classes by Ssmall, Sbig, Sk and Tsmall, Tbig, and Tk.

Since PropPack opens one slot for each big item in the optimal solution T and fills it with
an item from the same subclass, as proved above, we have |Sk| = |Tk| for every k ∈ {1, . . . , K}.
Moreover, the sizes within a subclass Ck vary by a factor of at most 1 − ε/2; this means that
we can bound both s(Sbig) and s(Tbig) from below by L =

∑K
k=1 |Sk|(1 − ε/2)k and from

above by L/(1 − ε/2). We conclude s(Tbig) ≥ s(Sbig) · (1 − ε/2).
Furthermore, since small items are packed greedily and only discarded one by one whenever

necessary to make room for the big items, we will not lose much from their side either. If the
presented small items have a total size of at most 1 − L/(1 − ε/2), none is ever discarded.
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In this case, we have s(Tsmall) ≥ s(Ssmall) and thus immediately s(T ) ≥ s(S) · (1 − ε/2). If
small items are discarded, however, the worst case is the following type of instance: It starts
with only small items of the largest possible size δ, some of which are then discarded to
accommodate big items with sizes right at the upper limit for the classes indicated by the
advice, leaving a gap of almost δ, follows up with slightly smaller big items that are in the
optimal solution and would not have lead to any discarded small items, and finally presents
big items at the lower end of the size span, replacing all previously packed big items.

Even in this worst case, the algorithm remains (1 − ε/2)-competitive on the big items and
detracting the largest possible loss of δ on the small items yields s(T ) ≥ s(S) · (1 − ε/2) − δ.
By the definition of δ and K and due to the simple fact that s(S) is at most 1, we have
δ = (1 − ε/2)K ≤ ε/2 ≤ s(S) · ε/2. This implies s(T )/s(S) ≥ 1 − ε, as desired. ◀

5 Results for General Removable Knapsack

First, we note that all lower bounds for the proportional removable knapsack problem carry
over to the general removable knapsack problem, in particular Theorem 5.

Iwama and Zhang [18] have shown that the competitive ratio of RemKnap is unbounded
without advice. This can be seen using an interactive instance that starts with an item (1, 1)
and then presents items (ε2, ε) repeatedly, up to 1/ε2 times, until one is packed, at which
point the instance ends.

The following two theorems show RemKnap’s competitivity for one advice bit to be
exactly 2.

▶ Theorem 11. There is a 2-competitive algorithm for RemKnap reading only a single
advice bit.

▶ Theorem 12. No algorithm for RemKnap reading only a single advice bit can have a
competitive ratio better than 2.

The existence of a 2-competitive algorithm already follows from a result by Han et al. [11,
Thm. 9], who proved the statement even for a single random bit instead of an advice bit.
We can prove Theorem 11 by describing a concrete advice algorithm. Advice being more
powerful than randomness, Theorem 12 also closes the remaining gap for barely random
algorithms by lifting the previously best known lower bound by Han et al. [11, Thm. 12]
from 1 + 1/e ≈ 1.367 to 2.

The analysis of the hard instance presented in the proof of Theorem 12 could be adapted
to the case of more than one advice bit. Two advice bits would mean that the oracle can
provide to the algorithm one out of four advice strings instead of the two advice strings
possible with one bit. We may also consider an intermediate advice algorithm limited to three
advice strings, which corresponds to log 3 advice bits. Such an algorithm cannot achieve a
competitive ratio better than 2/Φ = 4/(1 +

√
5) ≈ 1.2361 since it is forced to use one of

the three advice strings to keep the most valuable item x0, one to pack the items y1, . . . , yk

yield-greedily, and one to keep the xj with the value Φ ≈ 1.618, resulting in a competitive
ratio of 2/Φ = 2Φ/(1 + Φ).

This approach deteriorates too quickly, however. Adapting Theorem 8 to the case of
RemKnap is the better choice; this results in Theorem 13, which already yields a better
bound in the case of three advice strings, that is, for k = 3.

▶ Theorem 13. Let an arbitrary integer k > 1 be given. No algorithm for RemKnap reading
at most log k advice bits can achieve a better competitive ratio than 1/2 +

√
1/4 + 1/k.
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We point out again that Theorem 13 slightly improves over the lower bounds known
from the resource buffer model by Han et al. [13, Thm. 6], as illustrated after the proof of
Theorem 13 in the full version of the paper.

We now move on to the core result of this paper, proving that a constant amount of
advice bits is sufficient to reach a near-optimal competitive ratio not only for the proportional
but even for the general removable knapsack problem. This will complete the picture of the
global advice behavior of the online knapsack problem with removability outlined in Figure 1.

We first point out that algorithm PropPack generally does not work on instances
where the value of an item can vary independently of its size, as seen by the following
counterexample: Assume that 1/2 lies in the interior of some size class and choose an ε > 0
such that 1/2 + ε and 1/2 − ε are still in the same class. Present two items (1/2 + ε, 2) and
(1/2, 1). If the algorithm picks the first one, (1/2, 2) is presented as the last item; otherwise,
the instance ends with the item (1/2 − ε, 1). In both cases, the algorithm achieves a total
value of 2, whereas the optimum is 3. The advice does not help us to distinguish the two
cases, it only tells us that the optimal solution contains two items from the class. Clearly, we
have to adapt the algorithm to take the value of the items into account somehow. A major
obstacle is that the online algorithm has no bound on the values of appearing items, thus
the algorithm has no way of reconstructing the constantly many value classes used by the
oracle just from the parameter ε.

Moreover, the proof of Theorem 10 cannot be adapted for the general case in any simple
way. Using only classes based on size, it is impossible for the algorithm to know, when
maintaining an item in a slot, how to balance minimizing the size against maximizing the
value. On the one hand, if the size is not minimized, then the excess size may prevent other
slots from being filled. On the other hand, not maximizing the values, the algorithm may
incur an arbitrarily high loss because the potential values of items cannot be bounded. This
is also the reason why simple value classes do not work either. The algorithm does not know
the maximal value occurring in the instance until it has ended and can therefore not use it
as a reference point, in contrast to the size classes that can be chosen relative to the known
knapsack capacity.

A first step toward solving these issues is the definition of dynamic value classes that are
anchored to both the value of the first item appearing in the instance and to the optimal
solution value. The latter is of course also unknown to the algorithm until the instance ends.
However, we are able to define our classes with some additional properties that enable our
algorithm to compute at any point useful provisional bounds on the optimal solution value.
These bounds will either turn out to be valid or the algorithm is able to notice that they
are off just in time to adjust and take a fresh start before having lost too much due to bad
decisions. The adversary may foil the algorithm over and over, forcing it to abandon its
plans and adjust the bounds arbitrarily often.

To properly deal with these repeated resets, we develop a level system. One major
challenge is to square the level system with some sort of slot system as used by the algorithm
for the proportional case. We manage to do this by introducing the concept of a virtual
algorithm, which has the special, even though only imagined, capability of keeping one item
in a splitting slot and use arbitrary fractions of the item stored in it. We then describe
an actual algorithm that tries to equal the idealized performance of the virtual algorithm
without making use of the splitting slot. While it cannot quite achieve this, it will fare
well enough in the end. Having one algorithm emulating another, we are going to prove
the claimed competitivity in two stages, first for the virtual version and then for the actual
algorithm.
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This split analysis presents several further challenges, for example, a desynchronization
of the current phase and the number of slots filled by the algorithm, which coincided in
the proportional case. The necessary adaptations entail a number of further challenges, for
example a judicious handling of the paltry items, which are worth almost nothing individually,
yet may be too numerous to neglect. In fact, the algorithm will need to partition the items
not only by their value but simultaneously by their size as well. Overcoming these and a few
other obstacles, we are able to prove in the full version of the paper our final theorem.

▶ Theorem 14. For any ε > 0, there is a strictly (1+ε)-competitive algorithm for RemKnap
reading a constant number of advice bits.

Proof. Proving this theorem requires far more effort than what was necessary for its propor-
tional counterpart Theorem 10, where an item’s value is always identical to its size. Having
explained already why any straightforward adaption of the substantially simpler approach
for the proportional variant is impossible, we now provide a high-level outline of the proof.

High-Level Outline. As announced, we first provide a high-level outline of the workings of
the advice algorithm.

The oracle chooses an arbitrary optimal solution S and, based on its value v(S), partitions
the items of the instance into precious and paltry ones; the paltry ones are those worth less
than εpaltry · v(S) for a suitable εpaltry > 0. The precious items are further split into finitely
many classes such that the item values within any class are at most some factor 1 − εspread
apart from each other.

The advice will encode exactly the classes of the precious items from the optimal solution
S in their order of appearance; the goal is to ensure that the algorithm packs just as many
precious items from each class as the optimal solution does, thus achieving a competitive
factor of 1/(1 − εspread) on these items. Assuming that the algorithm knows the exact value
ranges of each class, it can achieve this using a system of slots, which will be filled with
precious items in two stages: first just virtually – assuming the algorithm were able to do
certain things that are in fact impossible – and then also actually at some point. Each virtual
filling of a slot starts a new phase of the algorithm.

However, the algorithm knows only the target value but nothing about the size of the
items belonging into each slot; it is necessary to prove that despite this, the algorithm is
able to fill the slots in the right order without blocking important items yet to come.

And there is another problem: It is even impossible for the oracle to communicate to the
algorithm the exact value range of each class with a constant amount of advice since there is
no bound on the potential values occurring in an instance. Instead, the value ranges will
be described in relation to the value of the first item of the instance, and merely modulo
some constant factor. The algorithm will then operate under the assumption that the first
item is a precious one, in which case all of the above will work out. Since the algorithm
cannot know for sure which items are precious, it divides them into presumably precious and
provenly paltry ones according to some computations based on the advice and the instance
seen so far. If the algorithm’s assumption is mistaken, it is able to recognize this just in
time by continually comparing the best solution realizable with the already presented items
– whether they have been accepted or not – to a rather intricate estimate for the optimal
solution value v(S). Once the algorithm discovers its mistake, it resets with a revised set of
assumptions on the value ranges; we say that the algorithm levels up. This is done such that
the algorithm can go through arbitrarily many levels, resetting and taking a fresh start as
often as necessary without incurring more than a negligible value loss.
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The algorithm also needs to take care of the paltry items, which might constitute a
considerable part of the optimal solution if there are sufficiently many of them. The algorithm
is packing the paltry items in a somewhat inhibited greedy manner that optimizes the value-
to-size ratio, which we also call yield. The volume taken up by the paltry items will be
restricted sufficiently to guarantee that the precious items can always fill their slots, but
not as severely as to lose too much value on the paltry items. The right volume restrictions
in each phase of the algorithm are communicated via a constant amount of advice as well.
Again, this cannot happen directly, since the right volume range might be infinitesimally
small. Instead, the volume is controlled indirectly, via bounds not on some size but instead
on the value that is provided by the paltry items packed before filling the current slot with a
precious item.

Communicating the necessary volumes in this way is possible only up to some precision
εround, and an overestimation could mean the loss of a crucial precious item. If we always
round down, then this cannot happen, but the algorithm might reject some paltry item it
should have kept for a selection of maximum yield. This is negligible if it happens only once,
but we cannot tolerate taking such a loss in every phase, with every new volume bound. The
solution is to analyze the situation using a special splitting slot, which can accommodate one
paltry item at the time outside of the knapsack. We imagine the splitting slot lending us
from the item stored in it any desired fraction at any time – just always the same fraction
of the value and size. We refer to the item currently stored in the splitting slot as the split
item. We will consider an algorithm that maintains a split item of highest yield after the
remaining paltry items kept in the knapsack. This imaginary algorithm is an antecedent to
our real advice algorithm, which builds on it but cannot actually split any items of course;
we refer to the purely hypothetical precursor as the virtual version of our actual algorithm.

The actual algorithm will mimic the virtual version as closely as possible and deliver a
result that is only marginally worse. Whenever the virtual version splits an item, the actual
algorithm needs to decide whether to discard this item or store it completely. The challenge
is to take the right decisions to allow for all slots to be filled in time and also avoid an undue
accumulation of losses by passing on too many split items.

The advice helps the actual algorithm by indicating for every phase whether an item
stored in the splitting slot by the virtual version is to be packed or discarded. This is done
in such a way that in the end, the actual algorithm will have relinquished only the value of a
single paltry item, namely the one kept in the splitting slot when the instance ends.

Packing entire items from the splitting slot comes with problems on its own; these paltry
items might block for the actual algorithm some precious items that are packed by the virtual
version. This problem is addressed by further advice to the algorithm on how to prioritize
the packing of precious versus paltry items in each phase. This advice, telling the algorithm
when to actualize a virtual packing of an item, is based on the solution that the virtual
version would eventually produce if it existed. The virtual version does not depend on the
actual algorithm and has no need for the part of the advice on actualization, which avoids
any circular reasoning.

There are a few more technical issues to be dealt with, for example the special case that
the precious items contribute only marginally to the value of the optimal solution. This
undermines the estimates for the optimal solution value, is thus flagged by a dedicated advice
bit bsmall, and handled by switching from the elaborate value-based limits that dampen the
general yield-greedy strategy to a simpler size-sensitive strategy. ◀
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Representing graphs by their homomorphism counts has led to the beautiful theory of homomorphism
indistinguishability in recent years. Moreover, homomorphism counts have promising applications in
database theory and machine learning, where one would like to answer queries or classify graphs
solely based on the representation of a graph G as a finite vector of homomorphism counts from
some fixed finite set of graphs to G. We study the computational complexity of the arguably
most fundamental computational problem associated to these representations, the homomorphism
reconstructability problem: given a finite sequence of graphs and a corresponding vector of natural
numbers, decide whether there exists a graph G that realises the given vector as the homomorphism
counts from the given graphs.
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1 Introduction

Representing a graph in terms of homomorphism counts has proven to be fruitful in theory
and applications. Many graph properties studied in logic [16, 21], algebraic graph theory [15],
quantum information theory [40], and convex optimisation [51, 23] can be expressed as
homomorphism counts from some family of graphs. Homomorphism counts provide a basis
for other counting problems [10] and have been studied extensively using diverse tools ranging
from algorithmics [15] to algebra [23, 40], from combinatorics [50, 53] to category theory [14, 1].
In database theory, they correspond to evaluations of Boolean conjunctive queries under bag
semantics [7, 34]. In graph learning, representations of graphs as vectors of homomorphism
counts yield embeddings into a continuous latent space and underpin theoretically meaningful
and successfully field-tested machine learning architectures [45, 6, 58].

In this work, we consider representations of a graph G as a finite vector of homomorphisms
counts hom(I, G) ∈ NI for some finite set of graphs I, which we call a homomorphism
embedding. The rich theory of homomorphism counts calls for algorithmic applications of
homomorphism embeddings: in database theory, one would ideally like to decide properties
of the graph G having access to the vector hom(I, G) only [22, 8]. In graph learning, certain
entries of the homomorphism embedding might be associated with desirable properties of
the graph being embedded, and one would like to be able to synthesise a graph having
these desirable properties from a vector in the latent space [5, 24]. Despite its ubiquity in
the contexts described above, homomorphism embeddings have not undergone a systematic
complexity-theoretic analysis yet. The arguably most fundamental computational problem
associated to them is to decide whether a vector h ∈ NI actually represents a graph, i.e.
it is of the form h = hom(I, G) for some graph G. Therefore, we consider the following
homomorphism reconstructability problem for graph classes F and G:

HomRec(F , G)
Input Pairs (F1, h1), . . . , (Fm, hm) ∈ F × N where h1, . . . , hm are given in binary.
Question Is there a graph G ∈ G such that hom(Fi, G) = hi for every i ∈ [m]?

We simply write HomRec(F) if G is the class of all graphs. While the problem has a clean-
cut motivation in practical applications, one quickly encounters surprising connections to deep
theoretical results and long-standing open questions. One does not only have to carefully keep
distance to the notorious graph reconstruction conjecture of Ulam [46], but also be aware that
various decision problems involving the set R(I) of all vectors hom(I, G) ∈ NI where G ranges
over all graphs have received much attention recently, e.g. the homomorphism domination
problem [32], whose decidability is open, the homomorphism determinacy problem [34],
or the undecidable problem of determining whether inequalities of homomorphism counts
hold [28, 25]. Beyond computational concerns, an abstract characterisation of the set R(I)
akin to [18, 37] is desirable, yet elusive [3].

In this paper, we establish a firm grasp on the computational complexity of the homo-
morphism reconstructability problem HomRec(F , G) by exploring from which of its aspects
computational hardness arises and then finding restrictions for which efficient algorithms can
be found. Despite the interest in the problem, surprisingly little progress on this question has
been made. The only result related to our work is a theorem from [31], which asserts that
a variant of HomRec(F , G) with Boolean subgraph constraints instead of homomorphism
counts is NPNP-complete. In particular, a formal definition of HomRec(F , G) has not been
made before, and we would like to remark on a curious peculiarity of the definition we have
chosen: a polynomial-time algorithm for HomRec(F , G) may exploit algebraic properties of
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homomorphism numbers and deduce via arithmetic operations on the given numbers whether
these can be realised by a graph G or not; let us call an algorithm of this type arithmetic.
However, it is also conceivable that an algorithm for HomRec(F , G) would operate by
explicitly constructing the graph G, for example, in a dynamic-programming fashion; let us
call such an algorithm constructive. A constructive algorithm seems just as reasonable as an
arithmetic one but may not be a polynomial-time algorithm for HomRec(F , G) since the
order of G does not have to be polynomial in the length of the binary encoding of the given
homomorphism numbers, even if one of the constraint graphs is Fi = . Hence, it also seems
reasonable to define the bounded homomorphism reconstructability problem BHomRec(F , G)
where an additional input n ∈ N given in unary imposes a bound on the number of vertices in
G that is linear in the input encoding. This bound, however, poses an additional constraint to
the graph G, which may make the design of arithmetic algorithms more difficult or impossible.
Hence, both HomRec(F , G) and BHomRec(F , G) are arguably reasonable definitions of
the reconstructability problem, each in their own right, and we consider both.

The Ocean of Hardness

Let C=P denote the class of all decision problems L for which there is a function f ∈ #P
and a polynomial-time computable function g such that, for every instance x of L, we have
x ∈ L ⇐⇒ f(x) = g(x) [54, 57, 26]. We first show that both the unbounded and the
bounded reconstructability problem are NPC=P-hard when not restricted in any way. Note
that NPC=P = NP#P since, whenever we issue a call to the #P-oracle, we may guess the
output using nondeterminism and verify it using a C=P-oracle instead [56, 9]; we refer to the
full version [4] for more details about counting classes.

▶ Theorem 1. Let F denote the class of all graphs. Then, HomRec(F) is in NEXP and
BHomRec(F) is in NPC=P. Moreover, both problems are NPC=P-hard. Hence, they are not
contained in the polynomial hierarchy unless it collapses.

This result illustrates two intertwined sources of hardness in the reconstructability problem:
first, the reconstruction hardness of finding a graph G, which corresponds to the class NP,
and secondly, the counting hardness of verifying that G actually satisfies the given constraints,
which corresponds to the C=P-oracle. The reconstruction hardness is what we are interested
in since the counting hardness simply reflects the hardness of counting homomorphisms,
which is well understood: the problem #Hom of counting the number of homomorphisms
from a graph F to a graph G is #P-complete and, under the complexity-theoretic assumption
that FPT ̸= #W[1], becomes tractable if and only if one restricts the graphs F to come from
a (recursively enumerable) class of bounded treewidth [12].

To isolate the reconstruction hardness, we restrict F to be a class of bounded treewidth,
which allows us to verify in polynomial time that a graph G satisfies all given constraints. In
particular, the bounded problem is then in NP since one can guess a graph G of the given
size and verify that it satisfies all constraints in polynomial time. We show that the intuition
conveyed by Theorem 1 is correct: HomRec(F) is still NP-hard if F has bounded treewidth
and even remains NP-hard when only a constant number of constraints is allowed to appear
in the input.

▶ Theorem 2. There is a class F of graphs of bounded treewidth such that HomRec(F)
and BHomRec(F) are NP-hard.

The reduction used to prove Theorem 2 further demonstrates that both problems remain
NP-hard when only allowing some fixed number of constraints: it produces a family of
instances with graphs from F where the number of constraints, all homomorphism numbers,

STACS 2024



19:4 The Complexity of Homomorphism Reconstructibility

0 10 20 30 40 50 60 70 80
# triangles

0

10

20

30
# 

ed
ge

s

Figure 1 Reconstructable and subgraph counts (yellow) for graphs on nine vertices. The
grey area depicts the values which are not ruled out by the Kruskal–Katona bound [33, 30], cf. [36,
13.31b], or the Razborov bound [49], cf. [38, Theorem 16.14]. The -counts realisable by graphs on
nine vertices correspond to columns with at least one yellow box.

and all but one constraint graph are fixed. This raises the question what happens if we fix all
input graphs and allow the homomorphism numbers to vary instead, i.e. does HomRec(F)
become tractable if F is finite? Even though the input to HomRec(F) for finite F essentially
consists only of natural numbers encoded in binary, we are still able to show that HomRec(F)
is also NP-hard in this case. In contrast, however, BHomRec(F) is sparse for finite F , i.e.
it only has polynomial number of yes-instances, and hence, unlikely to be NP-hard [39].

▶ Theorem 3. There is a finite set F of graphs such that HomRec(F) is NP-hard. If
BHomRec(F) is NP-complete for a finite set F of graphs, then P = NP.

Hence, the complexity of the reconstructability problem becomes much more nuanced
for finite F , and in order to design efficient algorithms for it, we seemingly have to focus
on BHomRec(F) for finite F . The fact that there are only polynomially many feasible
combinations of homomorphism numbers in this case might be somehow exploitable, e.g. by
a dynamic-programming algorithm operating on a table indexed by them.

Islands of Tractability

The first tractable instance of HomRec(F) that comes to mind is given by F1 = and
F2 = and h1, h2 ∈ N. In this case, we need to decide whether h2 ≤ h1(h1 − 1) and h2
is even. Although this is fairly trivial, we encounter severe combinatorial difficulties when
attempting to generalise this even to F1 = and F2 = . Figure 1 shows that the set of
reconstructible vectors has a non-trivial shape. In particular, while highly engineered results
from extremal combinatorics [38, 49, 27, 20] provide insights in the (asymptotic) behaviour
of the upper and lower boundary of that set, we are unable to characterise the seemingly
erratic gaps and spikes depicted in Figure 1. On the positive side, we are able to map out
large regions of reconstructible vectors using number-theoretic insights:

▶ Theorem 4. There exists a function γ : N → N such that for every k ≥ 2, n ≥ 1, h ≤
(

n
k

)
,

there exists a graph G on n + γ(k − 1) − 1 vertices such that sub(Kk, G) = h.
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Theorem 4 allows for the construction of graphs with almost all possible numbers of
clique subgraphs. Indeed, the proportion of covered values is

(
n
k

)/(
n+γ(k−1)−1

k

)
= 1 − o(1)

for n → ∞ and fixed k. In other words, all sensible values can be realised by only slightly
deviating from the stipulated size constraint.

The problem arising when dealing with the remaining admissible parameters, i.e.
(

n
k

)
<

h ≤
(

n+γ(k−1)−1
k

)
, seems to be that the constraints on the number of vertices and cliques

interact in an elusive fashion. Although understanding such interactions better remains a
direction for future investigations, we are able to identify certain combinatorial conditions
under which the constraints are somewhat independent. This yields fixed-parameter algo-
rithms for variants of HomRec(F , G) contrasting Theorem 3. Here, Proviso 20 stipulates
mild constraints on the graph classes F and G. For example, G can be taken to be the class
of all graphs and F to be the class of all connected graphs.

▶ Theorem 5. For graph classes F , G as in Proviso 20, the following problem is in FPT:

p-SingleHomRec(F , G)
Input a graph F ∈ F , an integer h ∈ N given in binary
Parameter |V (F )|
Question Does there exist a graph G ∈ G such that hom(F, G) = h?

Curiously, any fpt-algorithm for p-SingleHomRec(F , G) has to be arithmetic: In FPT,
one can neither construct the graph G nor count homomorphisms from F to G [12]. Indeed,
our algorithm essentially only operates with integers and exploits number-theoretic properties
of the set of reconstructible numbers. In Theorem 21, we apply similar ideas to derive an
fpt-algorithm for a version of HomRec(F , G) with multiple equi-sized subgraph constraints.

2 Preliminaries and Conventions

Write N = {0, 1, 2, . . . } for the set of natural numbers. A ≤p B denotes that a decision
problem A is polynomial-time many-one reducible to the decision problem B. A graph is a
pair G = (V, E) of a set of vertices V and a set of edges E ⊆

(
V
2
)
. We usually write V (G)

and E(G) for V and E, respectively, and use n to denote the order n := |V (G)| of G. For
ease of notation, we denote an edge {u, v} by uv or vu. A homomorphism from a graph F

to a graph G is a mapping h : V (F ) → V (G) such that h(uv) ∈ E(G) for every uv ∈ E(F ).
A (C-vertex-)coloured graph is a triple G = (V, E, c) where (V, E) is a graph, the underlying
graph, and c : V (G) → C a function assigning a colour from a set C to every vertex of G. An
(L-)labelled graph is defined analogously with a function ℓ : L → V (G) assigning a vertex
of G to every label from a set of labels L instead. Homomorphisms between coloured graphs
and between labelled graphs are then defined as homomorphisms of the underlying graphs
that respect colours and labels, respectively.

A graph G′ is a subgraph of a graph G, written G′ ⊆ G, if V (G′) ⊆ V (G) and E(G′) ⊆
E(G). The subgraph induced by a set U ⊆ V (G), written G[U ], is the subgraph of G with
vertices U and edges E(G)∩

(
U
2
)
. We write hom(F, G) for the number of homomorphisms from

F to G, sub(F, G) for the number of subgraphs G′ ⊆ G such that G′ ∼= F , and indsub(F, G)
for the number of subsets U ⊆ V (G) such that G[U ] ∼= F . This notation generalises to
coloured and labelled graphs in the straightforward way.

The definition of HomRec(F , G) from the introduction directly generalises to classes F
and G of relational structures over the same signature, and in particular, classes of labelled
and coloured graphs. We call a pair (F, h) of a structure F and a number h ∈ N a constraint
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and also denote the pair by hom(F ) = h, or for example in the context of reconstructability
of subgraph counts, by sub(F ) = h. As stipulated in the introduction, if F is a class of
graphs, we abbreviate HomRec(F , G) for the class of all graphs G to HomRec(F). We
use the abbreviation BHomRec(F) in the same way, and for a class of labelled or coloured
graphs F , we analogously abbreviate the problem name if G is the class of all labelled or all
coloured graphs, respectively. We define the problems SubRec(F , G) and BSubRec(F , G)
analogously to HomRec(F , G) and BHomRec(F , G), respectively, with subgraph counts
instead of homomorphism counts and also follow the conventions agreed upon above. See
the full version [4] for details.

3 Decidability

The problem BHomRec(F , G) is trivially decidable if membership in G is decidable since it
is possible to perform a brute-force search for G by testing all graphs up to order n. For
HomRec(F , G), decidability is implied by the following lemma:

▶ Lemma 6. Let F and G be classes of structures over the same signature. Suppose that
G is closed under taking induced substructures. Let (F1, h1), . . . , (Fm, hm) ∈ F × N. Let
G ∈ G be such that hom(Fi, G) = hi for all i ∈ [m]. Then there exists H ∈ G such that
|H| ≤

∑m
i=1 hi |Fi| and hom(Fi, H) = hi for all i ∈ [m].

Proof. Let U denote the union over all images of homomorphisms Fi → G, i ∈ [m]. Clearly,
|U | ≤

∑m
i=1 hom(Fi, G) |Fi|. Let H := G[U ] ∈ G. For all i ∈ [m], hom(Fi, H) = hom(Fi, G).

Indeed, every homomorphism Fi → H gives rise to a homomorphism Fi → G by composition
with the embedding H ↪→ G. Conversely, observe that every homomorphism Fi → G is in
fact a homomorphism Fi → H since its image is contained in U . It remains to observe that
this correspondence establishes a bijection. ◀

Under the assumptions of the previous lemma, HomRec(F , G) can be decided via a brute-
force search on all graphs in G up to order

∑m
i=1 hi |Fi|. Together with our insights on

BHomRec(F , G), this shows the following theorem.

▶ Theorem 7. Let F and G be classes of structures over the same signature. Suppose that
membership in G is decidable. Then BHomRec(F , G) is decidable. If G is closed under
taking induced substructures, then also HomRec(F , G) is decidable.

4 Hardness

In this section, we prove the hardness results presented in the introduction. First, we remark
that, for the class F of all graphs, HomRec(F) is in NEXP since we can non-deterministically
guess a graph G of exponential size by Lemma 6 and then count homomorphisms to G in
exponential time by simply going through all mappings from the given constraint graphs to G.
For the bounded problem, we are given a size bound on G as part of the input, which means
that BHomRec(F , F) is in NPC=P since we can non-deterministically guess a graph G of
linear size and then verify that G satisfies all constraints by using the C=P-oracle.

▶ Theorem 8. Let F denote the class of all graphs. Then, HomRec(F) is in NEXP and
BHomRec(F) is in NPC=P.

Let F denote the class of all graphs. The fact that BHomRec(F) ∈ NPC=P reflects
the intuition on the hardness on BHomRec(F) that we gave in the introduction, i.e. that
there are two intertwined sources of hardness, the reconstruction hardness, manifested as NP,
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and the counting hardness, manifested as the C=P-oracle. In Section 4.1, we show that this
intuition is in fact correct and that HomRec(F) and BHomRec(F) are NPC=P-hard. In
Section 4.2, we further reinforce this intuition by presenting a reduction from the well-known
NP-complete problem SetSplitting to HomRec(F) and BHomRec(F) for a class of
bounded treewidth F that proves that these problems are NP-hard for a family of inputs
where the number of constraints, all homomorphism numbers, and all graphs but one are fixed.
This isolates the reconstruction hardness and supports our intuition of the reconstruction
hardness being NP-hardness.

In our reduction from SetSplitting, the given instance to SetSplitting is encoded
as a constraint graph that grows with the size of the given instance while the number of
produced constraints and the produced homomorphism numbers remain fixed. This raises the
question if we can achieve tractability by restricting the order of the constraint graphs instead,
i.e. if HomRec(F) and BHomRec(F) become tractable if F is finite. In Section 4.3, we
show that there is a finite class F for which HomRec(F) is NP-hard by reducing from the
NP-complete problem QPoly of solving an equation involving a quadratic polynomial. We
further show that this reduction cannot be adapted to work for BHomRec(F , G) and then
prove that BHomRec(F , G) is sparse, i.e. it only has polynomial number of yes-instances,
which means that it cannot be NP-hard under the assumption that P ̸= NP. In Section 4.4,
we briefly discuss which of our hardness results also hold for the subgraph reconstructability
problem.

For the sake of presentability, we only provide the reductions to the reconstructability
problem for labelled or coloured graphs in the main body of this paper. In the full version [4],
we show that all these reductions be adapted to (unlabelled and uncoloured) graphs via
gadget constructions that employ Kneser graphs, cf. the full version [4].

4.1 NPC=P-Hardness
We first show that both problems HomRec(F) and BHomRec(F) are NPC=P-hard. We
reduce from the following NPC=P-complete variant of 3-Colouring, cf. the full version [4].

EC-3-Colouring
Input A graph G, a subset of vertices S ⊆ V (G), and a k ∈ N given in binary.
Question Is there a homomorphism c : G[S] → such that there are exactly k

homomorphisms ĉ : G → such that ĉ|S = c?

The idea is that the number of homomorphisms from a graph F to the complete graph
on three vertices is precisely the number of 3-colourings of F . Then, one can formulate
constraints that can only be satisfied by , and by adding an additional constraint hom(F ) =
h, one obtains a yes-instance to the reconstructability problem if and only if the number of
3-colourings of F is exactly h. By additionally employing labels on F and , we obtain a
reduction from EC-3-Colouring.

▶ Theorem 9. Let LF denote the class of all labelled graphs. Then, EC-3-Colouring ≤p

HomRec(LF) and EC-3-Colouring ≤p BHomRec(LF).

Proof. Given an instance (F, S, k) of EC-3-Colouring, let m := |S|. Fix an arbitrary
linear order on S, i.e. S = {s1, . . . , sm}. We use the labels ℓ1, . . . , ℓm to classify vertices of F

as members of S: let F ′ be the labelled graph obtained from F and S by assigning label ℓi

to the vertex si ∈ S for every i ∈ [m]. The reduction then produces the following constraints,
where for BHomRec(LF), we set the additional size constraint to three:
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(a) hom(F ′) = k,
(b) hom( ) = 3,
(c) hom( ) = 6, and
(d) hom( ℓi) = 1 for every i ∈ [m].
Note that is the unique graph that satisfies hom( ) = 3 and hom( ) = 6. The remaining
constraints enforce that each label from {ℓ1, . . . , ℓm} appears exactly once in G. For a
partition L = {L1, L2, L3} of these labels into at most three parts, let GL denote the with
its three vertices labelled by the labels in L1, L2, and L3, respectively. Then, (F, S, k) is in
EC-3-Colouring if and only if there is a partition L as above such that hom(F ′, GL) = k,
which again is the case if and only if there is a labelled graph G that satisfies the constraints
produced by the reduction. ◀

By encoding vertex labels by gadgets consisting of Kneser graphs, we can also obtain a
reduction for uncoloured graphs. Since the number of labels used in the reduction above
depends on the input instance, we can view every label as indexed by a binary number and
construct a gadget from distinct Kneser graphs for 0 and 1 to encode its index. This allows
us to only use a constant and finite set of Kneser graphs, which means that we do not have
to worry about their size, and guarantees that the resulting reduction still runs in polynomial
time. The proof can be found in the full version [4].

▶ Theorem 10. Let F denote the class of all graphs. Then, EC-3-Colouring ≤p

HomRec(F) and EC-3-Colouring ≤p BHomRec(F).

Together with the following observation, this then finishes the proof of Theorem 1.

▶ Corollary 11. Let F denote the class of all graphs. Then, HomRec(F) and BHomRec(F)
are not in PH unless PH collapses.

Proof. This follows from Toda’s Theorem [55] since every oracle query in the computation
of a P#P-machine can be simulated by a nondeterministic polynomial-time machine guessing
the answer and then verifying it with an oracle query to a problem in C=P. ◀

4.2 NP-Hardness for Constraints of Bounded Treewidth
The reduction used to prove NPC=P-hardness in the previous section uses the graph given as
input for EC-3-Colouring as a constraint, which has the side effect that the treewidth of the
produced instances is not bounded. Moreover, the same reduction cannot be easily adapted
to prove NP-hardness of HomRec(F) for a class of graphs F of bounded treewidth by simply
considering input graphs of bounded treewidth: the NP-complete problem 3-Colouring [19]
restricted to graphs of bounded treewidth is polynomial-time solvable [2]. Hence, we need a
different approach to such a reduction. We reduce from the following problem SetSplitting,
which is well-known to be NP-complete [35].

SetSplitting
Input A collection C of subsets of a finite set S.
Question Is there a partition of S into two subsets S1 and S2 such that no subset in

C is entirely contained in either S1 or S2?

The idea is that we represent every element i of S by a vertex of colour i. A set T ∈ C
is encoded by a star that has a leaf for every element of T and a root vertex of some fixed
colour that is distinct from the colours used for elements of S. Intuitively, the graph G
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(a) hom(F1) = 1.
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(b) hom(F2) = 2.
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P

(c) hom(F3) = 0.

Figure 2 The three constraints produced by the reduction of Theorem 12.

then consists of two stars that encode the two sets S1 and S2. To ensure that no subset
in C is entirely contained in S1 or S2, we use the constraints to require that there are no
homomorphisms from our constraint graphs to G.

The idea sketched above produces a single constraint for every set T ∈ C. We can use the
following trick to combine these constraints into a single one: a graph F consisting of several
connected components has exactly one homomorphism to G if and only if all its connected
components have exactly one homomorphism to G. Hence, if we choose G to consist of two
stars that encode S1 and S2 and also add a star that has all elements of S as its leaves, we
can instead require to have exactly one homomorphism from all our constraint graphs to G

and, thus, combine all these constraint graphs into a single (disconnected) graph from which
we require to have exactly one homomorphism.

▶ Theorem 12. Let CS denote the class of all disjoint unions of coloured stars. Then,
SetSplitting ≤p HomRec(CS) and SetSplitting ≤p BHomRec(CS), where the reduc-
tion only produces three constraints hom(F1) = 1, hom(F2) = 2, and hom(F3) = 0.

Proof. Given a collection C of subsets of a finite set S, we may assume that S = [k] by
re-labelling the elements of S. In the construction of the graphs F1, F2, F3, we use the
colours 1, . . . , k and also B (“black”), E (“everything”), and P (“partition”). We construct
these graphs as shown in Figure 2 and add the constraints hom(F1) = 1, hom(F2) = 2,
hom(F3) = 0. Note that the constraint hom(F1) = 1 is equivalent to hom(F ) = 1 for every
connected component F of F1. For BHomRec(CS), we set the size bound to 2k + 6.

Given a partition of S into sets S1 and S2 such that no subset in C is entirely contained
in either S1 or S2, the graph GS1,S2 in Figure 3 satisfies all constraints. Conversely, let
G be a coloured graph that satisfies all constraints. By the constraint hom(F2) = 2, the
graph F2 occurs exactly twice as a subgraph in G; call these occurrences G1 and G2. Let
S1 ⊆ [k] be the set of all i ∈ [k] such that a vertex of colour i is connected to the B-vertex of
G1. If the B-vertex in G2 ⊆ G is distinct from the B-vertex in G1 ⊆ G, then let S2 ⊆ [k]
be the set of all i ∈ [k] such that a vertex of colour i is connected to the B-vertex of G2;
otherwise, let S2 := ∅. The first constraint yields that the i-B-P -graph occurs exactly once
as a subgraph of G for every i ∈ [k]. By the second constraint, every i-B-P graph has to
be a supergraph of one of the two occurrences G1 and G2 of F2. Hence, the sets S1 and S2
cover S. Moreover, as every i-B-P graph occurs exactly once as a subgraph of G, the sets S1
and S2 have to be a partition of S. Finally, by the first constraint, the 1-k-B-E-graph is
a subgraph of G. Observe that, for every T ∈ C, the set T cannot be a subset of either S1
or S2 as the T -B-graph occurs exactly once in G by the first constraint and it already is a
subgraph of the 1-k-B-E-graph whose B-vertex has to be distinct from the B-vertices of the
occurrences of F2 by the third constraint. ◀
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Figure 3 The graph GS1,S2 constructed from S1 and S2 in the proof of Theorem 12.

Note the following curiosity of Theorem 12: the numbers in the constraints produced by
the reduction are constant, i.e. they do not depend on the specific problem instance given as
an input. Hence, the hardness solely lies in the graphs and not the homomorphism numbers;
more specifically, there is only a single constraint graph that depends on the input instance
and is the cause of hardness.

We again use Kneser graphs to turn this reduction into one for uncoloured graphs. We
view the colours as numbers and use gadgets of Kneser graphs that encode these numbers in
binary. This allows us to argue that the reduction is still correct, where in particular, we
have to argue that, if there is a graph G satisfying all constraints, then we can extract a
solution to the given SetSplitting instance from it; this is not straightforward since such a
graph G does not have to adhere to our encoding of coloured graphs. This then yields the
following theorem, which implies Theorem 2. The proof can be found in the full version [4].

▶ Theorem 13. There is a class of graphs F of bounded treewidth such that SetSplitting ≤p

HomRec(F) and SetSplitting ≤p BHomRec(F), where the number of constraints, the
homomorphism numbers, and all constraint graphs but one are constant.

4.3 NP-Hardness for a Finite Set of Graphs
The previous sections shows that restricting the constraint graphs to be from a class F of
bounded treewidth and the number of constraints to a constant is not enough to achieve
tractability: both HomRec(F) and BHomRec(F) remain NP-hard. What happens if we
go even further and consider a finite class F? Then, the treewidth of F is trivially bounded
and so is the number of constraints. At first glance, hardness in this case seems unlikely
since the reductions presented in the previous sections rely heavily on encoding the input
instance as the constraint graphs and only used small constants for the homomorphism
numbers. Now, the input essentially consists just of homomorphism numbers encoded in
binary and, for BHomRec(F), also the size of the desired graph encoded in unary. This
makes it all the more surprising that we can actually prove the NP-hardness of HomRec(F).
We reduce from the following decision problem, which only takes three natural numbers in
binary encoding as input and is NP-complete [41, Theorem 1]:

QPoly
Input Natural numbers a, b, and c in binary encoding.
Question Are there natural numbers x and y such that ax2 + by = c?

The idea of the reduction is simple: we encode the polynomial ax2 + by as a coloured
star F from which we require exactly c homomorphisms. This star has a leaf of colour A and
two leaves of colour X to encode the monomial ax2. Furthermore, it has a leaf of colour B

and of colour Y to encode the monomial by. Then, the sum ax2 + by is realised by encoding
x and y as two separate components of G – additional constraints are used to enforce that G

has precisely two components, that the first component has exactly a leaves of colour A, and
that the second component has exactly b leaves of colour B.
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(a) The graph Fpoly.
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(b) The graph Ga,b,x,y constructed from a, b, x, y ∈ N.

Figure 4 The most important graphs used in the reduction of Theorem 14.

▶ Theorem 14. There is a finite set F of coloured stars such that QPoly ≤p HomRec(F).

Proof. We use the colours R, A, X, B, Y, M1 and M2. The main observation is that, for the
graphs Fpoly and Ga,b,x,y from Figure 4, we have hom(Fpoly, Ga,b,x,y) = ax2 + by. Note that,
however, the size of Ga,b,x,y is not polynomial in log a + log b + log c, i.e. in the size of an
instance (a, b, c) of QPoly. Given an instance (a, b, c) of QPoly, we produce the following
constraints and denote the set of all coloured graphs used in these constraints by F ; note
that F is independent of the instance (a, b, c):
(a) hom( RA ) = a + 1,
(b) hom( RB ) = b + 1,
(c) hom(Fpoly) = c,
(d) hom( R ) = 2,
(e) hom( RM1 ) = 1,
(f) hom( RM2 ) = 1,

(g) hom
(

R
M1
M2

)
= 0,

(h) hom
(

RM1
B Y

)
= 1,

(i) hom
(

RM2
A X

)
= 1.

If (a, b, c) is an instance of QPoly with x, y ∈ N such that ax2 + by = c, then Ga,b,x,y

from Figure 4b satisfies all these constraints. Conversely, if there is a coloured graph G that
satisfies all constraints, we know by (d)–(g) that there are two R-coloured vertices v1 and v2
such that v1 is connected to an M1-coloured vertex but not an M2-coloured vertex and v2 is
connected to an M2-coloured vertex but not an M1-coloured vertex. By (h) and (i), v1 has
exactly one B-coloured neighbor and exactly one Y -coloured neighbor and v2 has exactly
one A-coloured neighbor and exactly one X-coloured neighbor. Hence, by (a) and (b), v1
has exactly a neighbors of colour A and v2 has exactly b neighbors of colour B. Let x be the
number of X-coloured neighbors of v1 and y be the number of Y -coloured neighbors of v2.
Then, we have c = hom(Fpoly, G) = ax2 + by. ◀

We can again use Kneser graphs to obtain a reduction for uncoloured graphs, which
implies the hardness stated in Theorem 3. The proof can be found in the full version [4].

▶ Theorem 15. There is a finite set F of graphs such that QPoly ≤p HomRec(F).

Can such a reduction also be used to prove NP-hardness of BHomRec(F) for a finite
class F? This is not possible, since for a fixed graph F , the number of homomorphisms from
F to a graph G is polynomial in the order of G. Hence, with a finite set F of graphs and a
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graph G of order up to n, we can only realise polynomially many distinct homomorphism
numbers, while the hardness of solving the equation ax2 + by = c stems from the fact that
there is an exponential number of solution candidates. This implies that BHomRec(F) is
sparse for every finite F , which means that it cannot be NP-hard unless P = NP [39].

▶ Theorem 16. If BHomRec(F) is NP-hard for a finite set of graphs F , then P = NP.

4.4 Subgraph Counts
While subgraphs counts can be expressed as linear combinations of homomorphism numbers
via injective homomorphism numbers, cf. [10], adapting our reductions to subgraph counts is
not as straightforward. There is no obvious way of adapting the reduction of Theorem 9 since
non-injectivity is crucial to encode colourability of graphs. The reduction of Theorem 12 can
partially be salvaged by producing individual constraints instead of only three constraints.
Then, all constraint graphs are colourful, which means that their subgraph counts are
homomorphism counts, which can be computed efficiently. However, the gadget construction
used in Theorem 13 then produces constraint graphs of unbounded vertex-cover number.
Hence, this reduction is uninteresting since the determining factor for tractability of subgraphs
counts is the vertex-cover number [11].

The results for finite F transfer to subgraphs and are meaningful since subgraph counts
can trivially be computed in polynomial time in this case. However, for subgraph counts, the
reduction of Theorem 3 encodes the binomial equation a

(
x
2
)

+ by = c instead of ax2 + by = c.
Luckily, the problem BPoly of solving this equation is still NP-complete, cf. the full version [4].
Moreover, BSubRec(F) is still sparse for every finite class of graphs F .

▶ Theorem 17. There is a finite set F of graphs such that BPoly ≤p SubRec(F). If
BSubRec(F) is NP-hard for a finite set of graphs F , then P = NP.

5 Towards Tractability: Reconstructing Clique Counts

In this section, we show that BHomRec(F) is tractable when the only constraint graph is a
clique and the constraints are in a certain range. The proofs rely on number-theoretic insights
and tailored combinatorial constructions. Using a number-theoretic result by Kamke [29],
we show that for almost all sensible n, h, k ∈ N there exists a graph G on slightly more than
n vertices containing h copies of the k-vertex clique Kk as a subgraph.

▶ Theorem 18 (Kamke [29], cf. [42, Theorem 11.10]). There exists a function γ : N → N
such that for every k ≥ 1 and n ≥ 1 there exist a1, . . . , aγ(k) ∈ N such that n =

∑γ(k)
i=1

(
ai

k

)
.

Nečaev [43] showed that γ(k) can be chosen to be of order at most O(k log k) and gave a
similar lower bound in [44]. Specific values of γ include γ(1) = 1, Gauß’ Eureka Theorem,
cf. [47], stating γ(2) = 3 and the unproven Tetrahedral Numbers Conjecture of Pollock [48]
asserting γ(3) = 5.

▶ Theorem 4. There exists a function γ : N → N such that for every k ≥ 2, n ≥ 1, h ≤
(

n
k

)
,

there exists a graph G on n + γ(k − 1) − 1 vertices such that sub(Kk, G) = h.

Proof. Let γ denote the function from Theorem 18. For every fixed k, the proof is by
induction on n. For n ≤ k, the claim is trivial. Suppose subsequently that n > k. Inductively,
we may suppose that there exists a graph G on n − 1 + γ(k − 1) − 1 vertices with h ≤

(
n−1

k

)
copies of Kk. One may add an isolated vertex to obtain a graph on n + γ(k − 1) − 1 vertices
with h copies of Kk, as desired.
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. . . v2 with deg(v2) = a2

v3 with deg(v3) = a3

v1 with deg(v1) = a1

Kn−1

Figure 5 Example for k = 3, building a graph G with n − 1 + γ(k − 1) vertices and sub( , G) =
h >

(
n−1

3

)
. Since γ(2) = 3, there are a1, a2, a3 such that h −

(
n−1

3

)
=

(
a1
2

)
+

(
a2
2

)
+

(
a3
2

)
. Connecting

a fresh vertex vi with ai vertices from the Kn−1, adds
(

ai
2

)
subgraphs to G.

Thus, it remains to construct a graph with
(

n−1
k

)
< h ≤

(
n
k

)
copies of Kk and n+γ(k−1)−1

vertices. Write h′ := h −
(

n−1
k

)
≤

(
n−1
k−1

)
. By Theorem 18, there exist non-negative integers

a1, . . . , aγ(k−1) such that h′ =
∑γ(k−1)

i=1
(

ai

k−1
)
. It can be easily seen that

(
h
k

)
>

(
n
k

)
for

all integers h > n ≥ k ≥ 1. Hence,
(

ai

k−1
)

≤ h′ ≤
(

n−1
k−1

)
implies that ai ≤ n − 1 for all

1 ≤ i ≤ γ(k − 1).
Define the graph G by taking the disjoint union of a clique Kn−1 and fresh vertices

v1, . . . , vγ(k−1). For 1 ≤ i ≤ γ(k − 1), the vertex vi is connected to an arbitrary selection of
ai many vertices of the clique. Note that this adds

(
ai

k−1
)

copies of Kk to the graph. The
resulting graph on n−1+γ(k −1) vertices satisfies sub(Kk, G) =

(
n−1

k

)
+

∑γ(k−1)
i=1

(
ai

k−1
)

= h.
For an example with k = 3, see Figure 5. ◀

For the special case of k = 3, i.e. , we can do slightly better than in Theorem 4.
While Theorem 4 requires γ(2) − 1 = 2 extra vertices to realise any sensible h, we show in
Theorem 19 that for large n one additional vertex suffices. While Theorem 4 builds on an
(n − 1)-vertex clique to which new vertices and edges are added, for Theorem 19 we start
with an (n + 1)-vertex clique and remove edges to realise the precise subgraph count. The
proof of Theorem 19 can be found in the full version [4].

▶ Theorem 19. For every n ≥ 130 and h ≤
(

n
3
)
, there is a graph G on n + 1 vertices such

that sub( , G) = h.

6 Parametrised Complexity

For graph classes F and G, we consider the parametrised version p-HomRec(F , G) of
the homomorphism reconstructability problem. For an instance (F1, h1), . . . , (Fm, hm), the
parameter is k :=

∑m
i=1|V (Fi)|. We aim for an fpt-algorithm, i.e. an algorithm that runs in

f(k) polylog(h1, . . . , hm) for some computable function f . By Theorem 15, p-HomRec(F , G)
is para-NP-hard and thus we cannot expect to obtain an fpt-algorithm unless P = NP,
cf. [17, Corollary 2.13], which means that we have to restrict the problem in some way.
Surprisingly, it turns out that a certain restriction of p-HomRec(F , G) and of the analogous
p-SubRec(F , G) are in FPT. Curiously, in FPT, one cannot even count homomorphisms or
subgraphs from arbitrary graphs [12, 11]. Our algorithm has to make do with the integers
from the input and cannot construct the graph G explicitly.

Given constraint graphs I ⊆ F , the overall strategy is to compute in time only depend-
ing on I a data structure representing the (infinite) set of all reconstructable vectors of
homomorphism counts

R(I) :=
{

hom(I, G) ∈ NI | G ∈ G
}

(1)
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or analogously of subgraph counts. This data structure is required to admit a polynomial-time
procedure for testing whether a given vector h ∈ NI is in this set. We identify various
combinatorial conditions sufficient for guaranteeing the feasibility of this approach. To start
with, we impose the following conditions on the graph classes F and G:

▶ Proviso 20.
(i) membership in G is decidable,
(ii) G is closed under taking induced subgraphs,
(iii) G is closed under disjoint unions,
(iv) all F ∈ F are connected.
Items (iii) and (iv) imply that the set R(I) of all reconstructable vectors is closed under
addition. Indeed, for all connected graphs F and graphs G and H it holds that hom(F, G +
H) = hom(F, G) + hom(F, H) and sub(F, G + H) = sub(F, G) + sub(F, H). Thus, we can
use the vectors realised by small graphs, i.e. those which can be inspected in FPT time, to
construct vectors realised by bigger graphs. More formally, writing

S(I) :=
{

hom(I, G) ∈ NI
∣∣∣∣ G ∈ G with |V (G)| ≤ max

I∈I
|V (I)|

}
, (2)

it holds that the set of all finite linear combinations of elements in S(I) with coefficients
from N is contained in R(I), i.e. NS(I) ⊆ R(I). The challenge is to ensure that all
reconstructable vectors can be constructed in this way.

We require item (ii) to relate vectors realised by large graphs to those realised by small
graphs, cf. Lemmas 22 and 24. However, this assumption is not sufficient to yield an
fpt-algorithm. To that end, we make further assumptions which ensure that the set of
realised vectors is in a sense linear and thus admits the aforementioned desired data structure.
Combinatorially, these assumptions mean that the various constraints may not interact
non-trivially.

6.1 Equi-Size Subgraph Constraints
The restriction we impose on p-SubRec(F , G) to put it in FPT is that all constraint graphs
are of the same size:

▶ Theorem 21. For graph classes F , G as in Proviso 20, the following problem is in FPT:

p-EquiSizeSubRec(F , G)
Input Pairs (F1, h1), . . . , (Fm, hm) ∈ F × N with |V (F1)| = · · · = |V (Fm)| =: k

Parameter km

Question Is there a G ∈ G such that sub(Fi, G) = hi for every i ∈ [m]?

Given an instance I ⊆ F , define R(I) and S(I) as in Equations (1) and (2) but with sub
instead of hom. As argued in the previous section, we have NS(I) ⊆ R(I). In the context of
p-EquiSizeSubRec(F , G), the following Lemma 22 yields that NS(I) = R(I).

▶ Lemma 22. Let F and G be graphs. Then

sub(F, G) =
∑

H s.t. |V (H)|=|V (F )|

sub(F, H) indsub(H, G)

where the sum ranges over all isomorphism types of graphs H on |V (F )| vertices.
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Indeed, by Lemma 22, every vector sub(I, G) ∈ R(I) is an N-linear combination of the
vectors sub(I, H) where H has exactly k vertices. It is crucial that all graphs in I have the
same number of vertices since otherwise any statement akin to Lemma 22 would involve
negative coefficients stemming from Inclusion–Exclusion. In virtue of Lemma 22, testing
membership in R(I) reduces to solving a system of linear equations over N.

▶ Example 23. Let p, c ≥ 0 be integers. There exists a graph G with sub( , G) = p and
sub( , G) = c if and only if p ≥ 3c.

Proof. By Lemma 22, there exists a graph G with sub( , G) = p and sub( , G) = c if and
only if the system ( p

c ) = ( 1 3
0 1 ) ( x

y ) has solutions x, y ∈ N, i.e. sub( , y + x ) = x + 3y

and sub( , y + x ) = y. The columns of this matrix correspond to the two graphs on
three vertices which have a subgraph or , namely and . Solving this system yields
that y = c and x = p − 3c, as desired. ◀

The matrix constructed in Example 23 via Lemma 22 can clearly be computed in FPT.
It remains to solve its system of linear equations, which is also possible in FPT [13].

Proof of Theorem 21. Let I ⊆ F denote the instance. As observed above, NS(I) = R(I).
Write H for the set of all isomorphism types of graphs on k vertices. Write A ∈ NI×H for
the matrix with entries sub(F, H) for (F, H) ∈ I × H. This matrix can be computed in FPT.
Then b = (h1, . . . , hm) ∈ R(I) if and only if Ax = b has a solution over the non-negative
integers. Testing the latter condition can be done in FPT by [13]. ◀

6.2 A Single Homomorphism Constraint
For p-HomRec(F , G), the restriction to ensure fixed parameter-tractability is that there is
only one (connected) constraint graph.

▶ Theorem 5. For graph classes F , G as in Proviso 20, the following problem is in FPT:

p-SingleHomRec(F , G)
Input a graph F ∈ F , an integer h ∈ N given in binary
Parameter |V (F )|
Question Does there exist a graph G ∈ G such that hom(F, G) = h?

Define R(F ) and S(F ) as in Equations (1) and (2) replacing I by the singleton set {F}.
As before, NS(F ) ⊆ R(F ). Dealing with p-SingleHomRec(F , G) is more complicated
than tackling p-EquiSizeSubRec(F , G) in the sense that we will not be able to prove
that NS(F ) = R(F ). In fact, these sets only coincide for large enough numbers. The key
combinatorial identity is the following, whose proof is deferred to the full version [4]:

▶ Lemma 24. Let F be a graph on k vertices. Then for all graphs G on more than k vertices,

hom(F, G) =
∑

H s.t. |V (H)|≤k

hom(F, H) indsub(H, G)(−1)k−|V (H)|
(

|V (G)| − |V (H)| − 1
k − |V (H)|

)
,

where the sum ranges over all isomorphism types of graphs H on at most k vertices.

Lemma 24 yields that R(F ) ⊆ ZS(F ), i.e. every realised number is a linear coefficient
of numbers in S(F ) with (not necessarily non-negative) integer coefficients. What allows
us to obtain Theorem 5 is the purely number-theoretic observation that NS(F ) and ZS(F )
coincide on sufficiently large numbers. Lemma 25 is based on Bézout’s identity and proven
in the full version [4].
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▶ Lemma 25. Given y1, . . . , yn ∈ N, one can compute integers y and N such that

X ∩ {N, N + 1, . . . } = yN ∩ {N, N + 1, . . . }

where X := N{y1, . . . , yn}.

▶ Example 26. Let y1 = 6 and y2 = 16. Their greatest common divisor is 2. The set of
their N-linear combinations is X = N{6, 16} = 2N \ {2, 4, 8, 10, 14, 20}, i.e. the set of all even
numbers except 2, 4, 8, 10, 14, 20.

This concludes the preparations for the proof of Theorem 5:

Proof of Theorem 5. The algorithm operates as follows: Compute S(F ) in time only de-
pending on |V (F )|. Let y denote the greatest common divisor of the numbers in S(F ). By
Lemmas 24 and 25, there exists a number N only depending on |V (F )| such that for every
h ≥ N there exists a graph G with hom(F, G) = h if and only if h is a multiple of y. This
settles the question for all h ≥ N . It remains to consider the case h < N . By Lemma 6, it
suffices to consider graphs G of size bounded in |V (F )| to conclude. ◀

To illustrate our algorithm, we include an example:

▶ Example 27. Consider the constraint graph F = . Enumerating all graphs on at most 4
vertices yields that S( ) = {0, 6, 16, 48}. For example, hom( , ) = 6, hom( , ) = 16,
and hom( , ) = 48. Hence, R( ) is a subset of the set in Example 26. It remains to check
the finitely many exceptions 2, 4, 8, 10, 14, 20. By Lemma 6, this can be done by inspecting
graphs on at most 20 · 4 = 80 vertices.

7 Conclusion

This paper provides the first systematic study of the homomorphism reconstructability
problem. Our results show that this deceivingly simple-to-state problem generally is hard
– not only in terms of its computational complexity but also in terms of finding efficient
algorithms for the simplest of cases, being subject to intricate phenomena from combinatorics
and number theory. The following questions remain open and warrant further investigation:

Is BHomRec(F) NP#P-complete for every class of unbounded treewidth F , analogous to
the #W[1]-completeness of #Hom(F) [12]? Is HomRec(F) NEXP-complete for the class
of all graphs F? Is there a graph class F for which HomRec(F) is not only NP-hard
but actually NP-complete?
While p-SingleHomRec(F , G) is fpt, Theorem 3 implies that there exists a constant C

such that p-HomRec(F , G) restricted to instances with ≤ C constraints is para-NP-hard.
What is the minimal such C? Is p-HomRec(F , G) with two connected constraints fpt?
Is there a sharp threshold from fixed-parameter tractability to para-NP-hardness?
The proof of Theorem 12 suggests that in some cases the number of constraints can be
decreased by increasing the number of connected components of the constraint graphs.
Notably, a crucial ingredient in Proviso 20 is that the constraint graphs are connected.
How do the parameters number of constraints and number of connected components
affect the complexity of HomRec(F , G)? What does the complexity hierarchy under
these two parameters look like?
In [18, 37], the functions f : G → N which are of the form f = hom(−, G) for some
graph G were characterised. Here, G denotes the class of all graphs. For which finite
graph classes I does a characterisation of functions f : I → N of this form exist? Our
Theorem 3 implies that in some cases deciding whether a given f is of this form is
NP-hard.
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Are there non-trivial examples of combinations of constraint graphs for which recon-
structability is tractable? Is there an effective description of the yellow area in Figure 1?
Is HomRec(F , G) self-reducible [52]? That is, can we efficiently construct a graph G

that realises the given constraints if we have access to an oracle for HomRec(F , G)?
What is the computational complexity of deciding whether homomorphism constraints
are approximately reconstructable?
More generally, one could study the complexity of questions about the set of graphs
satisfying a given set of homomorphism constraints – such as computing its cardinality.
How can one sample graphs satisfying homomorphism constraints uniformly at random?
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1 Introduction

It has been understood quite recently that it is possible to program with Ordinary Differential
Equations (ODEs): for any discrete model such as Turing machines, it is possible to build a
polynomial ODE that simulates its evolution. This possibility of programming with ODEs has
already been exploited to obtain various results and solve various open problems. Examples
include: characterization of computability and complexity classes using ODEs [22, 21, 30, 17];
proof of the existence of a universal (in the sense of Rubel) ODE [6]; proof of the strong
Turing completeness of biochemical reactions [15], or more generally various statements
about the completeness of reachability problems (e.g. PTIME-completeness of bounded
reachability) for ODEs [29].

Most of these studies and conclusions originated as a side effect of attempts to relate
the computational power of analog computational models to classical computability. Indeed
all these results relate classical computations, such as computation with Turing machines,
to polynomial ordinary differential equations. One fascinating question is to understand
whether it could be possible to formulate stronger models than Turing machines using classes
of ODEs that are more general than polynomial ODEs. The question is interesting both
from a computability point of view (can we compute more?) and a complexity point of view
(can we compute faster?). In general, this investigation has pertinence in the broader context
of analog computation, or computation by various alternative models, and is not limited to
the framework of ODEs.

▶ Remark 1 (A parallel that may help). If this helps, our discussions can be put in parallel
with the context of quantum computations, often better known than the context of analog
computations. Quantum computations are mathematically based on computation over the
continuum using complex numbers. Quantum models can solve some problems faster than
digital models: Grover’s algorithm is corroborative evidence for such an argument. This
seems to suggest that models of computations based on the continuum might have additional
power compared to discrete ones. Is it true for the case of models based on polynomial
ODEs? The answer is clearly no with polynomial ODEs if the point of view is computability.
However, from the results of [30, 29], this is more subtle and related to lengths of solutions
when considering time complexity. Is it true for the case of ODEs that are more general than
polynomial ones? In this article, we prove that it is possible to solve undecidable problems
with discontinuous (hence non-polynomial) ODEs: we prove that it is possible to simulate
transfinite computations with some ODEs.

▶ Remark 2 (Is this “realistic”? Can considered results be used “in practice”?). It is important
to realise that this relates to deep philosophical questions about the relations between
mathematical models, physics and our real world. For example, are mathematical models of
ODEs capturing the dynamics of our physical world? Are models of physics related to our
physical world? We do not aim to discuss this. However, we point out that these questions
are already present for any alternative model of computation. Using the above parallel,
we mean: the statement about Grover’s algorithm above is that the mathematical model,
considered by Grover and others, based on quantum postulates, can solve a problem faster
than by digital means. But then, today’s question of constructing a quantum computer
can be seen as whether this mathematical model can be implemented in our real world and
hence whether this mathematical model is relevant. We try to avoid these questions as much
as possible in the current article, and we stay at a mathematical model level. We however
think that our statements help to discuss these issues and how various models relate to our
physical world.
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▶ Remark 3 (So what is our positioning). The point of the current article is to consider a
mathematically well-founded natural notion of ordinary differential equation in a context
where there is a (unique, hence unambiguous) solution. We then explore its computational
power and relate it to models from computability. From a mathematical point of view, we
prove that it corresponds exactly to transfinite computations.

Indeed, we identify such a robust class of ODEs as the class whose dynamic is ruled by
functions that we call solvable functions. We prove that for such a class, the solution concept
is well defined, and a transfinite procedure can solve these systems. To demonstrate that, we
describe the transfinite procedure in detail revealing that the maximum number of transfinite
steps needed is countable. This result is expressed clearly by our main result in Section 5.
Moreover, for each countable ordinal α < ω1 (or α < ωCK

1 if effectivness is involved, where
ωCK

1 is the first non-recursive ordinal), we show that is possible to construct examples of
discontinuous IVPs with unique solution whose solution can be obtained only after α steps
of our procedure. This suggests that, according to the spirit of the approach of [3], this class
of IVPs can be used in order to simulate oracle machines deciding the α-jump of the empty
set, fully populating the hierarchy of hyperarithmetical reals.

More on some historical accounts and related work
About Denjoy’s totalization method for integration. It is clear that ODE solving and
integrations are related since integrating is a particularly simple (restricted) case of ODE
solving where the derivative is given explicitly. The question we solve has great similarities
with a historical question in the context of mathematics about antidifferentiation and
integration: does a method exist that can reconstruct a function f from its derivative f ′ in
the most general setting? Unfortunately, two of the most well-known integration methods, the
Riemann and Lebesgue integrals, are insufficient since they both require specific conditions
on the derivative to work. Historically, Denjoy was the first to propose a concept of integral
that extends the two and that is sufficiently general to solve the problem: starting from
f ′, using some transfinite process, one can find back f for any derivative f ′. He called the
method describing his integral the totalization method [12]. The method was purely rooted
on analysis and made use of transfinite iterations of operations such as taking limits and
repeated Lebesgue integrations. Starting from the derivative f ′, the method can retrieve f

within a maximum number of countably many transfinite steps.
Our method for solving ODEs can be related to the ideas of Denjoy, and our class

of solvable ODEs have similar properties: solving such systems of ODEs can always be
done at the price of a transfinite computational process. And as such ODEs can simulate
any transfinite computation, they capture transfinite computations and relate transfinite
computations over digital models to computations with analog models that use solvable
dynamics.

ODEs as analog model of computation. From Shannon’s model to (polynomial) ODEs.
The idea of using ordinary differential equations (ODEs) as a computational model dates
back to the original work of Claude Shannon. Shannon’s theoretical interest was focused
on defining a general model of computation that could describe the behaviour of integrator
devices. He called the model GPAC, for general purpose analog computer. The key element
immediately evident to Shannon in designing his model was that every function that can
be produced as output of these machines is differential-algebraic [36]. It was therefore the
first stone that led years later to interpret systems of polynomial ODEs as a proper analog
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computational model. The details of this evolution from algebraic differential equations
to polynomial ODEs are articulate and technical: in [31], it has been demonstrated that
Shannon’s model was lacking of completeness and formality and hence required modifications.
The authors of [20] solved these problems by restricting the connections allowed within
the circuits described in the model. This modification naturally produced the interesting
phenomenon of restricting the class of considered GPAC models, and the proof that its
dynamics correspond precisely to solutions of polynomial ODEs.

What is known about polynomial ODEs: lower bounds. This was later proved to be
equivalent to computable analysis, generating all computable functions over the reals [3].
This result was important to establish a practical bridge that could be crossed to pass from
an analog model such as the GPAC to a discrete model such as the model of Turing machines.
Specifically, the proofs included in [3] were based on the idea of simulating Turing machine
computations by only using initial value problems (IVPs) constructed with polynomial ODEs.
These particular results opened the doors for further investigations into the complexity of the
GPAC model. It was subsequently discovered that the length of the solution of the ODEs
involved was the right parameter to consider to measure complexity [4].

This correspondence between length and complexity can be effectively used to define a
zoo of different complexity classes within the model, capturing for each of them a natural
equivalence with discrete time-complexity classes such as FP or FEXP [4], [18]. The
introduction of proper robustness conditions for the dynamical systems utilized to simulate
Turing machines was then the last missing ingredient, which proved to be enough also to
capture an equivalence with the polynomial-space-complexity class FPSPACE, as shown in
[5]. The collection of all these results forms wide and substantial evidence of the fact that
polynomial ODEs represent a valid paradigm for analog computation as well as showcasing
their Turing completeness.

What is known about ODEs: upper bounds. Computing properties and solutions of ODEs.
On the other side of the spectrum, various investigations have been conducted to outline
computability and complexity properties of the more general operation of ODEs solving.
The approach from this line of work is conceptually different from what we have discussed
so far. Instead of producing a continuous version of an originally discrete computation,
it wonders which classes of ODEs solutions can be solved algorithmically. Undecidability
of related problems is quick to arise in this context even in the presence of computable
data. For example, the authors of [19] proved that the boundedness of the domain of
definition is undecidable even when only polynomial ODEs are considered. For the class
of polynomial-time computable, Lipschitz continuous ODEs, it is known that the solution
is computable since [28]. In this specific realm, a careful analysis of the complexity of this
operation has been conducted in [25], where it is proved that the solution of such problems
is indeed PSPACE-complete. Following the clue provided by the Lipschitz condition, it
is reasonable to assume that the uniqueness of the solution of a given IVP is a necessary
prerequisite for hoping to be able to compute it. It is not a sufficient condition, as there are
cases of IVPs with a unique solution and computable data for which the unique solution
is not computable, such as the one in [32]. The authors have further investigated the gap
between necessary and sufficient conditions for these systems in [9], where they show that
solutions of continuous ODEs with unique solutions are always computable. The algorithm
formulated in [9] has been called Ten Thousand Monkeys algorithm, since it relies on a search
method on the whole solution space by listing all finite sequences of open rational boxes.
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Notations
We start the coming technical part by introducing the notation and the main definitions that
will be used throughout this work. We use the standard notation N, R and Q for the set
of natural, real and rational numbers respectively while R+ and Q+ represent the positive
reals and the positive rationals. When making use of the norm operator, we always consider
Euclidean norms. We refer to a compact domain of an Euclidean space as a nonempty,
bounded, connected, closed subset of such space. Given a metric space X we indicate with
the notation dX the distance function in such space and with the notation BX(x, δ) the
open ball centred in x ∈ X with radius δ > 0. By default, we describe as open rational
ball or as open rational box an open ball or box with rational parameters. Precisely, an
open rational box B is a set of the form (a1, b1) × . . . × (ar, br) ⊂ Rr for some r ∈ N where
ai, bi ∈ Q for i = 1, . . . , r. We indicate with the notations diam(B) and rad(B) its diameter
and its radius. Moreover, given a function f : [a, b] → Rr for some a, b ∈ R, a < b and
some r ∈ N we indicate with the notation f ′ : [a, b] → Rr the derivative of such function,
where the derivative on the extremes a and b is defined as the limit on the left and on the
right respectively. Given a function f : X → Y and a set K ⊆ X we indicate with the
notation f ↾K the restriction of the function f to the set K, i.e. f ↾K is the function from
K to Y defined as f ↾K (x) = f(x). Given two topological spaces X and Y and a function
f : X → Y we indicate with the notation Df the set of discontinuity points of f on X. If
A and B are two sets, we refer to the set difference operation using the symbol A \ B and
indicate with the notation A + B the Minkowski sum of set A with set B. The expression
cl(A) indicates the closure of A, ∅ stands for the empty set, while the notation ω1 stands for
the first uncountable ordinal number. Given a property of a function f : X → Y , we say
that this property is satisfied almost everywhere if the property is satisfied on X \ D, where
D is a set with Lebesgue measure equal to zero.

2 IVPs with discontinuous ODEs

In this section we formally present the class of IVPs and dynamical systems considered,
providing examples and motivations leading to the definition of our hypothesis over the
right-hand term of the ODEs involved.

First, we recall the classical settings of initial value problems (IVPs) and ordinary
differential equations (ODEs): Consider an interval [a, b] ⊂ R, a compact domain E ⊂ Rr for
some r ∈ N, a point y0 ∈ E and a function f : E → E such that the dynamical system:{

y′(t) = f(y(t))
y(a) = y0

(1)

has one unique solution y : [a, b] → Rr with y([a, b]) ⊂ E. Given y0 and f , obtaining the
solution in such a setting is called an initial value problem. The condition y(a) = y0 (or, in
short, just the point y0) is referred to as the initial condition of the problem and function f

is referred to as the right-hand term of the problem. Since the solution is uniquely defined in
this case, we refer to function y : [a, b] → E satisfying Equation (1) as the solution of the
problem.

Then, we discuss methods to solve initial value problems: In this particular
setting, different ways exist to obtain the solution analytically when the right-hand term is
continuous. Many of these methods, such as building Tonelli sequences, are often introduced
for proving Peano’s theorem related to the existence of the solution for IVPs with continuous
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right-hand terms and are based on the concept of defining sequences of continuous functions
eventually converging to the solution. Once it is known that the solution is unique, every
sequence considered in each of these methods can be shown to converge to the unique solution.
Their argument generally relies on fixed point theorems on the function space; therefore, it is
not constructive. An analysis based on these methods can also achieve computability for
the solution, where computability has to be intended in the sense of computable analysis,
as proved by the authors of [9] in the description of their (so-called) ten thousand monkeys
algorithm. The idea of this algorithm is to exploit the hypothesis of unicity for enclosing the
solution into covers of arbitrarily close rational boxes in E. Nonetheless, all these methods
are correctly functioning as long as the right-hand term of the IVP is continuous.

It is very natural to relax continuity for the right-hand term of the IVP. This is
motivated by the observation that we can easily have a discontinuous IVP with a unique
solution as in the coming example.

▶ Example 4 (A discontinuous IVP with a unique solution). As the simplest case of discon-
tinuous IVP, we consider the following example: let E = [−5, 5] × [−15, 15] and define the
function f : E → E as f(x, z) = (1, 2x sin 1

x − cos 1
x ) if x ̸= 0 and f(0, z) = (1, 0). It is easy

to see that f is a function of class Baire one, i.e. it is the pointwise limit of a sequence of
continuous functions. Note also that in this case the set of discontinuity points of function f

on E is the closed set Df = {(0, z) for z ∈ [−15, 15]}. Then consider the following IVP, with
y : [−2, 2] → R2 and y0 = (−3, 9 sin(− 1

3 )):{
y′(t) = f(y(t))
y(−2) = y0

(2)

It is easy to verify that the solution of such a system is unique, and it is for the first
component: y1(t) = t − 1, and for the second component y2(t) = (t − 1)2 sin( 1

t−1 ) for
t ̸= 1 and y2(1) = 0. Therefore the solution y : [−2, 2] → R2 is differentiable and can be
expressed as the unique solution of the IVP above with right-hand side f discontinuous on
E. Note that the only discontinuity of f encountered by the solution is the point (0, 0), i.e.
Df ∩ y([−2, 2]) = (0, 0).

▶ Remark 5 (Such an ODE cannot be solved using numerical methods from literature). It is
very important to stress that neither the ten thousand monkeys algorithm nor any (at least
that we know) of the general well-known methods used in analysis for obtaining the solution
of IVPs we know works when applied to the above example. The reason for it being the
discontinuity of the right-hand term on a straight line in the domain and the fact that these
methods assume continuity.

However, one would expect to be able to solve such an ODE, as its solution is very clear,
and solving such an ODE is a very classical mathematical exercise or example found in most
of the books about ODEs: see similar examples in [23].

The construction of this simple example (and of the solution of this classical exercise) is
based on the well-known fact that the real function f(x) = x2 sin( 1

x ) if x ̸= 0 and f(0) = 0
is differentiable over [0, 1] and its derivative is bounded and discontinuous in 0. Moreover,
we avoided some problems that arise for mono-dimensional ODEs with null derivative by
introducing a time variable y1 whose role is to prevent the system from stalling and ensure
the unicity of the solution.
▶ Remark 6 (About literature & discontinuous ODEs). Several mathematical theories exist for
discussing discontinuous ODEs: see for example [16, 1, 11]. It is important to realize that
the concept of solution differs from one theory to the other (there is not a unique theory for
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discontinuous ODEs) and that the existence of a solution is often a non-trivial problem in all
these theories. We are here, and in all the examples, in the case where we know that there is
a solution and a unique solution, so in a case where there is no ambiguity and agreement
about the solution concept. Furthermore, all the theories we know consider that equality
almost everywhere in (1) is sufficient, mostly to be able to use Lebesgue integration. We
indeed consider the notion of solution above: this must hold for all points. This is different
in spirit to all these theories1.

The concept behind such an example can be easily generalized. The following example
provides an intuitive tool that can be deployed to construct a huge class of discontinuous
IVPs with unique solutions.

▶ Example 7 (Converting complex derivatives into complex IVPs). Whenever we consider a
differentiable function g : [a, b] → R such that g(a) = g0 and with derivative g′ : [a, b] → R
we can obtain such function as a solution of an IVP of the type of (1) by constructing a
system as the following:{

y′
1(t) = 1

y′
2(t) = g′(y1(t))

{
y1(a) = a

y2(a) = g0
(3)

Getting to more and more complex examples. This consideration allows us to construct
examples for which the set of discontinuity points of the right-hand term on the domain is
more and more sophisticated.

For instance, we might consider a function whose set of discontinuity points is uncountable
and nowhere dense. This case is considerably more complex to construct compared to the
previous one, from a technical standpoint, but it is theoretically based on the same concept.
Indeed, the idea is to use the discontinuous derivative seen in the previous case and copy
it inside the Cantor set. This is done similarly to what happens when defining Volterra’s
function [7]. We first make use of the following statement.

▶ Lemma 8. There exists a function g : [0, 1] → R such that g is differentiable and its
derivative g′ is bounded and discontinuous on the Cantor set C.

At this point, by using function g′ just defined as the derivative involved with the
construction of an IVP of the type of (3), we can construct an IVP with a right-hand term
f with set of discontinuity points homeomorphic to the Cantor set.

More generally, the above technique makes it possible to introduce solutions that are more
and more complicated depending on how discontinuous is the derivative used as function g′

in (3). There are at least two possible directions in which the latter could be done.
First, since every uncountable closed subset of the Cantor set is homeomorphic to the

Cantor set, it is possible to construct the differentiable function g in such a way that the
restriction of its derivative to the Cantor set, i.e. g′ ↾C is discontinuous on an uncountable
closed subset of C. This sets the basis for iterating the procedure any infinitely countable
number of times due to homeomorphism.

Second, we can construct examples using the known possible complexity of a differentiable
function. Several differentiabiliy ranks for measuring descriptive complexity of differentiable
functions have been introduced in the literature. These ranks can be used for the purpose of

1 And this also explains that we are closer to the question of Denjoy, which was asking about antidifferen-
tiation of a derivative, observing that restricting to Lebesgue’s integration was not solving the problem
in the general case. Notice that ODE solving is a more general problem than integration, so we are also
not exactly in the framework of Denjoy.
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providing in a structured way more and more complex functions to play the role of function
g in (3): indeed, several different differentiable ranks have been proposed in literature, such
as the Kechris-Woodin rank or the Zalcwasser rank, which can be found in [26] and [38]
respectively. The relations between all the existing notions is not yet fully clear, and [34]
and [27] detail interesting comparisons. However, independently of which of these two routes
is taken, the key concept behind the creation of highly elaborate examples is the same: one
elementary discontinuous derivative (such as the one in Example 4) is used as a building
block that is then rescaled and concatenated into smaller and smaller intervals converging
to a new discontinuity point. It is then clear that the nature of the discontinuity on this
point of the new function obtained this way would be strictly more complex than the nature
of the discontinuities featured in the example used as an elementary block. Then, by using
the function obtained this way as a new elementary block to rescale and concatenate, the
process can continue in a fractal-like iterative fashion.

Therefore, our study establishes the premises for ranking discontinuous IVPs depending
on the complexity required to solve them and foretells the development of a related hierarchy.
Up to that point, all examples were mostly obtained from integrating various derivatives.
However, ODE solving is a more general problem than integration, and more complicated
examples can be constructed. We now go in particular to constructing an ODE that solves
the halting problem of Turing machines2.

3 Undecidability: solving the halting problem with discontinuous IVPs

We now show how these dynamical systems can be used for the purpose of obtaining precise
undecidability results: given a Gödel enumeration of Turing machines, we define the halting
problem as the problem of deciding the halting set H = {e : Me(e) ↓} where Me(e) ↓ means
that machine represented by natural e halts on input e. We consider a one-to-one total
computable function over the naturals h : N → N that enumerates such a set. It is known that
any such function enumerating a noncomputable set naturally generates a noncomputable
real number [33]. The following definition expresses this:

▶ Proposition 9. Let h : N → N be a one-to-one computable function such that h(i) > 0
for all i ∈ N and such that it enumerates a non-computable set A. Then the real number µ

defined as:

µ =
∞∑

i=0
2−h(i) (4)

is noncomputable.

Note that in this way we always have 0 < µ < 1. We now describe a bidimensional
dynamical system that generates the real number µ associated in the sense of the definition
above to function h enumerating the halting problem.

The example mentioned above of the IVP that can assume value µ is illustrated by the
following theorem:

▶ Theorem 10. Let E = [0, 5]×[0, 5]. There exists an IVP with unique solution y : [0, 5] → E,
rational initial condition and right-hand term computable everywhere on E except a straight-
line, with y2(5) = µ.

2 We believe this is not feasible using integration only.
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▶ Remark 11. The spirit of the construction of such an example is inspired by the technique
used in [19], where the solution of the IVP considered is stretched in a controlled manner
so that it grows infinitely approaching a fixed noncomputable time. In our case instead,
with the above example, we are replacing their indefinite growth with a dumped oscillation
whose frequency increases as we approach the noncomputable target but whose absolute
value decreases accordingly, yielding a finite convergence for the solution. This introduces
many complications, and the fact that we want to guarantee the derivability of the solution
is a true difficulty.

The sketch of the proof of the theorem above is the following. We first discretize time by
introducing specific time slots in which both components of the solution, y1 and y2, have a
well-defined behaviour. Specifically, we require the first component, which is negative, to
increase by a factor of 2 in each of these time slots, converging to zero. Instead, the second
component, which is positive, is required to incrementally converge to the real µ by adding
to itself the quantity 2−h(i) on the i-th time step. We need two components because we
want the right-hand term to be computable outside its set of discontinuity points. This is
achievable in this way since indeed it is possible to implement the correct derivative for y1 in
each time slot by only going through the enumeration described by function h while looking
at the value of the second component y2. Then, the existence and continuity of the solution
is granted by designing an infinitely countable sequence of time slots that converges suitably.

We first define the function that represents the discretized time evolution of the dynamical
system:

▶ Definition 12. Let h : N → N be a one-to-one computable function such that h(i) > 0 for
all i ∈ N and such that it enumerates the halting set H. Define the function τ : N → Q to be
the total computable function such that:

τ(i) =
{

2− h(i)
2 if h(i) < i

2− i
2 if h(i) ≥ i

(5)

That means that τ∗ =
∑∞

i=0 τ(i) is finite and τ∗ < µ + 2 +
√

2 < 5. This quantity τ∗

represents the time required for the solution to reach the noncomputable value µ.

▶ Remark 13. The reason for measuring time steps with Definition 12, instead of directly
exploiting the construction of µ via Proposition 9, is technical. The intuition behind it is
that we want time to evolve slowly enough when compared to the increasing rate of the
solution. This consideration takes care of the construction’s main difficulty: the solution’s
differentiability at time τ∗, when the derivative is discontinuous.

Let us now proceed to analyze the behaviour of the solution y. For the first component
y1 we have a dynamic given by a function f1 such that, for all i ∈ N, if we have:{

y′
1(t) = f1(y1(t)) ∀t ∈ [0, τ(i)]

y1(0) = −2−i
(6)

then we have y1(τ(i)) = −2−(i+1). In other words, we require y1 to be an increasing function
such that at every time step τ(i) its value increases by a factor of 2, converging then to 0 as
time converges to τ∗. Therefore, to make it continuous, we require y1(τ∗) = 0. Moreover,
we define y′

1(τ∗) = 0. Note also that to achieve this goal we require f1 to be autonomous,
with no explicit dependence on time. It is clear that if we construct y1 this way, then its
derivative will be discontinuous in τ∗.
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For the second component y2 we have a dynamic given by a function f2 such that, for all
i ∈ N, if we have:

y′
2(t) = f2(y1(t)) ∀t ∈ [0, τ(i)]

y1(t) ∈ [−2−i, −2−(i+1)) ∀t ∈ [0, τ(i)]
y2(0) =

∑i
m=0 2−h(m)

(7)

then we have y2(τ(i)) =
∑i+1

m=0 2−h(m) (condition ∗). In other words, we require y2 to be
an increasing function such that at every time step τ(i) its value increases of the quantity
2−h(i+1), converging then to µ as time converges to τ∗. Once again, we require y2(τ∗) = 0
and y′

2(τ∗) = 0 and it is clear that if we construct y2 this way then its derivative will be
discontinuous in τ∗.

Such a solution y is indeed differentiable at time τ∗ and the derivative of both components
exists and equals zero at such time. Moreover, we have that y1(τ∗) = 0 and y2(τ∗) = µ. At
this point, forcing the dynamic to remain constant for the remaining time to obtain y2(5) = µ

is sufficient. This yields the desired outcome since the IVP has reached, at a computable
time, a noncomputable value that encodes the halting problem. This ends the sketch of the
proof of Theorem 10.

▶ Remark 14. Even if this is not fully formal: it is important to observe that the obtained
function f remains very “simple” from a (possibly effective) descriptive point of view. Outside
its straight-line of discontinuity, it is computable, and from the fact that Turing machines
computations can be done using polynomial ODEs, we could even assume that it has a very
simple form outside this straight-line: we basically only need to get condition (*).

We mean, it is important to realize that the fact that the solution is not computable
does not come from the intrinsic uncomputability of the function f , nor from the form of the
subset of discontinuities, but actually from the fact that it has a discontinuity and that the
whole process and above construction is intrinsically forcing the solution to compute a limit.

Iterating limits. For a set A, let us call real number
∑

i∈A 2−i the real encoding of A. We
just described a dynamics that maps some rational initial condition to the real µ encoding
the halting set H. Writing A′ for the jump of set A, H corresponds to ∅′.

It is possible to extend the previous construction to make it work for any set A (not only
the empty set): starting from some initial condition corresponding to the real encoding of A,
it eventually reaches the real encoding of A′.

We can climb the arithmetical hierarchy by iterating finitely many times this technique.
Indeed, by repeating the ODE twice, we get a way to map a real encoding of A to a real
encoding of A′′, then A′′′, and so on.

We can even go up to higher levels. Indeed, for example, we can go up to Aω: Aω is
the set of the pairs (n, w) such that word w is in the nth jump of A. Iterating the trick, we
can reach the upper levels of the hyperarithmetical hierarchy. Given any recursive ordinal
α < ω1

CK , this provides a technique to map some real encoding of A in the initial condition to
the encoding of Aα, where Aα is the αth jump: see [35] for the concepts from computability
theory involved. Doing it in a recursive manner requires technically to deal with the encoding
of ordinals, and in particular to deal with fixed point constructions as in [13, 37].
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4 Transfinite analysis of complexity

4.1 The concept of solvable system
We propose the following definition.

▶ Definition 15 (Solvable function). Let E ⊂ Rr for some r ∈ N and f : E → Rr. We say
that f is solvable if it is a function of class Baire one such that for every closed set K ⊆ E

the set of discontinuity points of the restriction f ↾K is a closed set.

It is important first to make the following observation:
▶ Remark 16. All the examples of dynamical systems discussed in Section 2 as well as the
IVP introduced by Theorem 10 have a right-hand term that is a solvable function.

We say that a dynamical system or some ordinary differential equation is solvable when
this holds: the right-hand term of the ordinary differential equation is a solvable function.

It is easy to see that the remarks still apply to the case of any of the more complicated
examples that can be constructed based on the previous ones and on Theorem 10, once the
techniques for building such examples are the ones mentioned at the end of Section 2.

The choice of the terminology solvable for these right-hand terms is made more clear by
the coming Theorem 22. It says basically that solutions of such initial value problems can be
solved, through a transfinite recursion process.

4.2 A ranking for solvable systems
Before getting to this, we introduce a ranking that allows us to quantify involved levels of
discontinuities.

We have seen in previous sections that we can build examples of unique solutions of
IVPs that are extremely complicated and that even simple examples can be used to obtain
noncomputable reals. We now want to produce a more precise quantification of these
statements.
▶ Remark 17 (Using differentiability ranks?). Following previous arguments, the most intuitive
direction seems to derive such quantification directly from the examples and the differentiab-
ility ranks. Nonetheless, this approach does not suit our purpose, since it only characterizes
a limited subclass of systems, i.e. the systems yielded by application of the trick introduced
with (3). Despite being a relevant and insightful subclass, this approach “from below” fails
to exhaust the generality of the problem. We instead propose an approach “from above”
which builds from the commonalities of those examples and extends beyond them to a more
complete analysis that is not just tailored on derivatives defined over the reals.

As a first step, we prepare the right setting for a transfinite classification of the right-hand
terms of our systems. As it is clear by the examples illustrated in previous sections, such
stratification should be based upon the degree of discontinuity for the right-hand term of the
system. We can quantify this precisely by introducing the following definition.

▶ Definition 18 (Sequence of f -removed sets on E). Consider a compact domain E ⊂ Rr

for some r ∈ N and a function f : E → Rr. Let {Eα}α<ω1 be a transfinite sequence of sets
and {fα}α<ω1 a transfinite sequence of functions such that fα = f ↾Eα

: Eα → Rr defined as
following:

Let E0 = E

For every α = β + 1, let Eα = Dfβ

For every α limit ordinal, let Eα = ∩βEβ with β < α

we call the sequence {Eα}α<ω1 the sequence of f -removed sets on E.
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We remark that since functions in the sequence {fα}α<ω1 above are allowed to be defined
over disconnected sets, the notion of continuity in the above definition has to be intended
with respect to the induced topology relative to Eα as a subset of Rr. Moreover, note that it
follows from the definition of the sequence that such sequence is decreasing, meaning that
Eδ ⊆ Eγ if δ > γ for every Eδ and Eγ in the sequence.

▶ Remark 19 (Similar ranking for measuring discontinuities in literature). The definition of this
sequence, or of slight variations of the same sequence, has already been considered in the
literature. For instance, the author of [24] selects a version of this sequence where the closure
of the sets is taken at each level and relates such sequence of functions with a bound for the
topological complexity of any algorithm that computes them while using only comparisons
and continuous arithmetic (and information) operations. Similarly, starting from the same
transfinite sequence of functions applied to countably based Kolmogorov spaces, it is shown
in [10] that a given function is at the α level of the hierarchy if and only if it is realizable
through the α-jump of a representation.

Since computing the unique solution of continuous IVP is always possible, from the argu-
ments of [9], being able to obtain analytically the unique solution of any given discontinuous
IVP should be directly related to the amount of discontinuity for the right-hand term f , and
consequently to the ordinal number of nonempty levels of the above sequence of f -removed
sets. Moreover, we would like to obtain the solution within a countable number of steps.
Hence, we want to pinpoint some sufficient conditions on f that permit us to restrict our
attention to these well-behaved classes of discontinuous systems.

This ranking turns out to provide a way to rank the concept of solvable systems. Using
the Cantor-Baire stationary principle, we can prove:

▶ Theorem 20. Consider a closed domain E ⊂ Rr for some r ∈ N and a function f : E → Rr.
If f is solvable, then there exists an ordinal α < ω1 such that Eα = ∅.

Once we have singled out which conditions we must require for the right-hand term f , we
can present the main tool used to converge to the solution of the IVP. In a similar fashion
to the method designed by Denjoy, where the tool to be repeatedly applied was Lebesgue
integration, we need to be able to apply such tool for each considered level of the sequence of
f -removed sets on E until we finally reach the empty set. This is why we created a tool that
can be defined for any countable ordinal in a uniform manner. We call the tool (α)Monkeys
approach in honor of the ten thousand monkey algorithm from [9], since such an algorithm
inspires the definition.

▶ Definition 21 ((α)Monkeys approach). Consider an interval [a, b] ⊂ R, a domain E ⊂ Rr

for some r ∈ N and a right-hand term f : E → Rr for an ODE of the form of (1) with initial
condition y0. Let {Eγ}γ<ω1 be the sequence of f -removed sets on E and let Eα be one set in
the sequence for some α < ω1. We call the (α)Monkeys approach for (f, y0) the following
method: consider all tuples of the form (Xi,β,j , hi,β,j , Bi,β,j , Ci,β,j , Yi,β,j) for i = 0, . . . , l − 1,
β < α, j = 1, . . . , mi,β, where hi,β,j ∈ Q+, l, mi ∈ N and Xi,β,j, Bi,β,j, Ci,β,j and Yi,β,j

are open rational boxes in E. A tuple is said to be valid if y0 ∈
⋃

β,j X0,β,j and for all
i = 0, . . . , l − 1, β < α, j = 1, . . . , mi,β we have:
1. Either (Bi,β,j = ∅) or (cl(Bi,β,j) ∩ Eβ ̸= ∅ and cl(Bi,β,j) ∩ Eβ+1 = ∅)
2. f ↾Eβ

(cl(Bi,β,j)) ⊂ Ci,β,j ;
3. Xi,β,j ∪ Yi,β,j ⊂ Bi,β,j ;
4. Xi,β,j + hi,β,jCi,β,j ⊂ Yi,β,j ;
5.

⋃
β,j Yi,β,j ⊂

⋃
β,j Xi+1,β,j ;
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We spend a few words explaining the rationale behind such a definition. Similarly to the
case of the ten thousand monkey algorithm, this definition defines a search method within
the space E where the solution of the IVP lives. The search is performed by considering
tuples of the form (Xi,β,j , hi,β,j , Bi,β,j , Ci,β,j , Yi,β,j) which describe finite sequences of l open
sets. Each of these tuples should be thought as an expression of its related finite sequence of
l open sets that is {

⋃
β,j Xi,β,j}i=0,2,...,l. Each of these open sets is the union of a transfinite

collection of open rational boxes. Stating that one of these tuples is valid means two things:
one, that the related sequence starts from a set that contains the initial condition, and two,
that the sets in the sequence are concatenated correctly according to the five rules above.
These rules are chosen so that the concatenation between the sets is dictated by the action
of f , but only in a controlled fashion, i.e. in a manner that takes care of the portions of the
domain where each restriction fβ is continuous, for all β < α. This is clarified by the first
item in the above list, whose direct consequence is that fβ is continuous on all rational boxes
Bi,β,j . This consideration allows to interpret the sequences expressed by valid tuples as good
candidates for possibly containing the solution. This sets the premises for the next section,
where the method to obtain the solution of the IVP is finally presented.

5 Obtaining the solution: an analytical method

We now have all the elements needed to describe the transfinite method that obtains
analytically the solution of the IVP considered and hence proves our main result.

The idea is, as in [9], to use a search method based on boxes covering the domain. By
considering smaller and smaller radii for these boxes, we can derive a sequence of continuous
piecewise linear functions that eventually converge to a solution. As we know that the
solution is unique, it must converge to the solution.

However, compared to the authors of [9], we have to deal with possibly transfinitely
many boxes, unlike their framework where everything remains finite. This requires some
modifications (e.g. the domain must be bounded in the reasoning), and more technical care
(e.g. for concatenating the boxes).

▶ Theorem 22. Consider a closed interval, a compact domain E ⊂ Rr for some r ∈ N and
a function f : E → E such that, given an initial condition, the IVP of the form of (1) with
right-hand term f has a unique solution on the interval. If f is solvable, then we can obtain
the solution analytically via transfinite recursion up to an ordinal α such that α < ω1.

Proof. Let [a, b] be the closed interval such that y : [a, b] → E is the unique solution of the
IVP with right-hand term f and initial condition y0 = y(a). Let {Eγ}γ<ω1 be the sequence of
f -removed sets on E. Since f is solvable, by means of Theorem 20 we know that there exists
an α < ω1 such that Eα = ∅ and Eβ = ∅ for all β ≥ α. Therefore by transfinite recursion up
to α based on repeated application of f we can consider the whole sequence of f -removed sets
on E. We now show how to obtain the solution y([a, b]). We first pick a n ∈ N and consider
a valid tuple of the (α)Monkeys approach for (f, y0) for this value of n. We consider a valid
tuple with (Xi,β,j , hi,β,j , Ci,β,j , Yi,β,j) for i = 0, . . . , l − 1, β < α, j = 1, . . . , mi,β dependent
on this fixed n. To do so, consider a set

⋃
β,j X0,β,j such that y0 ∈

⋃
β,j X0,β,j . Then, for all

sets
⋃

β,j Xi,β,j for all i = 0, . . . , l − 1 we can select each open rational box Xi,β,j so that it
satisfies either (Xi,β,j = ∅) or (Xi,β,j ∩ Eβ ̸= ∅ and Xi,β,j ∩ Eβ+1 = ∅) for all i = 0, . . . , l − 1,
β < α, j = 1, . . . , mi,β . Moreover, because every continuous function on a closed domain
is uniformly continuous, we can define for all i = 0, . . . , l − 1, β < α, j = 1, . . . , mi,β the
function δi,β,j : R+ → R+ to be a modulus of continuity of fβ on cl (Xi,β,j) ∩ Eβ , i.e. a
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function such that ∥fβ(x) − fβ(z)∥ < δi,β,j(∥x − z∥) for all x, z ∈ cl (Xi,β,j) ∩ Eβ , for all
i = 0, . . . , l − 1, β < α, j = 1, . . . , mi,β . By convention, for all ϵ > 0, if there are no points
x, z ∈ cl (Xi,β,j) ∩ Eβ such that ∥x − z∥ < ϵ then we define δi,β,j(ϵ) = ϵ. Let us now call
K ∈ Q+ a rational such that maxx∈E ∥x∥ < K. At this point, by taking the partition
sufficiently small, we can make sure to take each nonempty open rational box Xi,β,j and
rational hi,β,j such that 0 < rad(Xi,β,j) < δi,β,j( 1

2n ) − Khi,β,j and such that its Khi,β,j

neighborhood has no intersection with Eβ+1 and has the same modulus of continuity δi,β,j .
Take then each one of these neighborhoods as the set Bi,β,j for all i = 0, . . . , l − 1, β < α,
j = 1, . . . , mi,β . It follows that rad(Bi,β,j) < rad(Xi,β,j) + Khi,β,j < δi,β,j( 1

2n ). We then
choose open rational boxes Ci,β,j such that they satisfy fβ(cl(Bi,β,j)) ⊂ Ci,β,j . Note that
we can make the choice in a way that ensures rad (Ci,β,j) < 1

2n by definition of the moduli
of continuity. From these choices it follows that we can pick open rational boxes Yi,β,j

satisfying Xi,β,j + hi,β,jCi,β,j ⊂ Yi,β,j and rad (Yi,β,j) < δi,β,j( 1
2n ) for all i = 0, . . . , l − 1,

β < α, j = 1, . . . , mi,β . Finally, we consider as the set
⋃

β,j Xi+1,β,j a set such that⋃
β,j Yi,β,j ⊂

⋃
β,j Xi+1,β,j for all i = 0, . . . , l − 1. It is clear that the tuple described this

way is a valid tuple of the (α)Monkeys approach for (f, y0).

Let us now define two sequences {hi,β(i),j(i)}i=0,...,l−1 and {ti}i=0,...,l where t0 = a and
ti = a +

∑i−1
k=0 hk,β(k),j(k) for all i = 1, . . . , l and a piecewise linear function ηn : [a, tl] → E

such that ηn(a) = y0 and such that for all i = 0, . . . , l − 1 we have ηn(ti) ∈ Xi,β(i),j(i) and
ηn(t) = ηn(ti) + (t − ti)ci,β(i),j(i) for all ti < t ≤ ti+1, for some ci,β(i),j(i) ∈ Ci,β(i),j(i). Note
that this function is well defined because |ti+1 − ti| = hi,β(i),j(i) for all i = 0, . . . , l − 1 and
so it follows that ηn(t) ∈ Yi,β(i),j(i) ⊂

⋃
β,j Xi+1,β,j for all ti < t ≤ ti+1. In other words, we

can always choose the sequences in such a way that function ηn is well defined. Moreover,
note that η′

n(t) = ci,β(i),j(i) ∈ Ci,β(i),j(i) for all ti < t < ti+1, for all i = 0, . . . , l − 1; note
also that since ηn(t) ∈ Bi,β(i),j(i) we have fβ(i)(ηn(t)) ∈ Ci,β(i),j(i) for all ti < t < ti+1, for
all i = 0, . . . , l − 1. Therefore we have

∥∥η′
n(t) − fβ(i)(ηn(t))

∥∥ ≤ diam (Ci,β,j) < 1
n for all

ti < t < ti+1 such that ηn(t) ∈ Eβ(i), for all i = 0, . . . , l − 1.

Suppose we have just considered a valid tuple of the (α)Monkeys approach for (f, y0) for a
fixed value n̄ ∈ N following the above procedure and we have defined function ηn̄ : [0, tl] → E

in the way described. Let us indicate this tl with the symbol T . It is clear that we can consider
a new valid tuple and a new function ηn : [0, T ] → E for each value of n > n̄ while maintaining
the same domain for each function. We can then consider a sequence of the functions
{ηn}n>n̄ as defined above, where each function in the sequence is defined based on the valid
tuple (Xi,β,j , hi,β,j , Ci,β,j , Yi,β,j) with rad (Xi,β,j) < δi,β,j( 1

2n ), rad (Bi,β,j) < δi,β,j( 1
2n ) and

rad (Ci,β,j) < 1
2n for all n > n̄, i = 0, . . . , l − 1, β < α, j = 1, . . . , mi,β as described above.

We want to show that such sequence {ηn}n>n̄ is uniformly bounded and equicontinuous. To
prove that it is uniformly bounded we need to prove that there exists a constant R ∈ R+

such that ∥ηn(t)∥ ≤ R for all n > n̄, for all a ≤ t ≤ T . This is indeed trivial since
ηn(t) ∈

⋃
i,β,j Bi,β,j for all n > n̄, for all a ≤ t ≤ T and each open rational box Bi,β,j ⊂ E

for all n > n̄, i = 0, . . . , l − 1, β < α, 1 ≤ j ≤ mi,β . For equicontinuity it is enough to prove
that there exists a constant M ∈ R+ such that

∥∥ηn(t̃) − ηn(t)
∥∥ ≤ M

∣∣t − t̃
∣∣ for all n > n̄, for

all a ≤ t, t̃ ≤ T . The existence of M follows from the fact that the sequence is uniformly
bounded together with the fact that ∥η′

n(t)∥ < K for all n > n̄, for almost all a ≤ t ≤ T .
Therefore, since the sequence is uniformly bounded and equicontinuous, we can apply a
well-known theorem in analysis (Ascoli’s theorem, Theorem 28) in order to conclude that
the sequence {ηn}n>n̄ has a subsequence {ηn(u)}u>n̄ that converges uniformly on [a, T ] to a
function η : [a, T ] → E. Moreover, another known result for the differentiability of the limit
of sequences (Theorem 29) tells us that function η is differentiable almost everywhere on
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[a, T ]. Note that by taking limit of n → ∞ we have l → ∞ and rad (Bi,β,j) , rad (Ci,β,j) → 0
and hi,β,j → 0 for all i = 0, . . . , l − 1, β < α, j = 1, . . . , mi,β . Therefore the inequality
∥η′

n(t) − fβ(ηn(t))∥ ≤ diam (Ci,β,j) < 1
n for all ti < t < ti+1 such that ηn(t) ∈ Eβ(i), for

all i = 0, . . . , l − 1, leads to the equation η′(t) = f(η(t)) for almost all t ∈ [a, T ]. Since
η(a) = y0, continuity and unicity of the solution of the IVP imply η(t) = y(t) for all t ∈ [a, T ].
Specifically, this means that any convergent subsequence converges to the same function,
which is precisely the solution y of the IVP.

Finally, to obtain the solution over the whole domain [a, b], it is sufficient to consider
the initial valid tuple of the (α)Monkeys approach for (f, y0) as described above but in such
a way that, when defining the sequence of times {ti}i=0,...,l we have tl ≥ b and then take
T = b. This is always possible due to the definition of a valid tuple and the fact that f is
bounded within E. ◀

The above statement, combined with the constructions from Section 3, hence proves that
the computational power of solvable ODEs is the one of transfinite computations, up to
some limit ordinal. We now discuss what this ordinal is, according to the adopted viewpoint
(the issue is about which functions are considered definable in the above reasonings, and
appears only for ordinals that would be countable but non-recursive, i.e. non-countable in
the considered model of set theory).

▶ Remark 23 (On ω1 vs ωCK
1 , Boldface view). The statement of Theorem 22 is formulated in

an approach based on descriptive set theory, using the approach of the so-called boldface
hierarchies. The description of the examples in Section 3 follows an approach that is closer
to a computability theoretic point of view, that is to say using the approach of the so-called
lightface hierarchies. From a boldface point of view, what the constructions of Section 3 say
is that it is possible to reach the level of Baire’s hierarchy using limits constructed in the
spirit of the examples of this section. This can be done up to level ω1 (non-included), the
first uncountable ordinal. Combined with Theorem 22, the computational power of solvable
ODEs corresponds to transfinite iterations of limits up to any ordinal less than ω1.

▶ Remark 24 (On ω1 vs ωCK
1 , Lightface view). From a lightface point of view, it makes sense

to replace the hypothesis “of Class Baire one” (it is the pointwise limit of a sequence of
continuous functions) in the definition of Solvable function (Definition 15) by the fact that
it is the pointwise limit of a computable sequence of computable functions. All solvable
examples that we considered are solvable in this new sense. Hyperarithmetic sets are known
to correspond to sets that can be defined using transfinite induction up to ωCK

1 , which is
the first non-recursive ordinal [2]. The above reasoning of the proof of Theorem 22 provides
a way to obtain (define) the solution in the hyperarithmetical hierarchy via a transfinite
recursion up to an ordinal α such that α < ωCK

1 : we are using arguments similar to the ones
of [13]. We hence obtain that there is a precise correspondence between computations by
the class of solvable systems and the hyperarithmetic hierarchy, as the hyperarithmetical
hierarchy is known to correspond to transfinite recursion up to ordinal ωCK

1 : see [35, 2].

6 Conclusions and future work

We have discussed the properties of IVPs involving discontinuous ODEs that have a unique
solution. This study has led us to the identification of a robust class of these systems, which
we called solvable, for which the solution can always be obtained analytically by means
of transfinite recursion up to a countable number of maximum steps. We have presented
several examples of such systems and illustrated a technique that constructs examples of
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ever-increasing complexity. We have established that the solutions of solvable systems can be
used, even in the simple case of a basic set of discontinuity points, to yield noncomputable
values and solve the halting problem.

Due to the similarity of our approach to the method proposed by Denjoy for the problem
of antidifferentiation, and in light of results and constructions illustrated in papers such
as [13] and [37], we believe in having set the tables for a more in-depth light-face and bold-face
analysis of the class of systems at hand, possibly leading to a rank and a hierarchy of these
systems, as well to a classification of hyperarithmetical real numbers as targets reachable
by solutions of discontinuous IVPs. More precisely: the integrability rank that inspired the
modus operandi of our ranking is the Denjoy rank. The creation of such rank is directly
based on a transfinite method.

An analysis has been done for the Denjoy rank: an unpublished theorem from Ajtai,
whose proof is included in [13], demonstrates that once a code for a derivative f is given
as a computable sequence of computable functions converging pointwise to f , then the
antiderivative F of f is Π1

1 relative to f . This fact has direct implications related to the
hierarchy of hyperarithmetical reals. The hyperarithmetical reals, or ∆1

1, are defined as
the reals x for which the set {r ∈ Q : r < x} is ∆1

1. The implication mentioned above
is expressed formally by a Theorem from [13], which proves that the hyperarithmetical
reals are exactly those reals x such that x =

∫ 1
0 f for some derivative f of which we know

the code of.
An alternative computability theoretic analysis of Denjoy’s rank has been done in [37],
relating levels of the hierarchy to levels of the arithmetical hierarchy in some precise
manner, using a slightly alternative setting, on the way objects are encoded.

We believe that adapting similar analysis to the framework of solvable systems can be
done using both views, and could lead to similar statements, with a more precise analysis of
involved rankings, and of involved ordinals, given some class of functions or dynamics.

The latter, combined with papers such as [3] and [4] that describe simulations of discrete
models of computations by analog models based on systems of ODEs, open the doors
for identifying the model of solvable IVPs as an analog model for simulating transfinite
computation, or as an alternative approach for presenting transfinite computations.

Notice that our discussions also pointed out classes of ordinary differential equations
with solutions with levels of complications that we did not see discussed in any books about
ordinary differential equations, in addition to many already existing counterexamples in
literature. In particular, from arguments similar to [13], it follows that our results show
that the totality of countable ordinals is necessary in any constructive process for solving an
ODE in the general case and that for any countable ordinal, we can construct an example of
solvable ODE of that difficulty.
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A Appendix: Useful definitions and results

We include in this appendix some definitions and theorems that can be used to integrate the
main document for a deeper understanding of its arguments.

A.1 Ordinal numbers
We describe the process of transfinite recursion as the process that for each ordinal α

associates with α an object that is described in terms of objects already associated with
ordinals β < α. Moreover, we use the expression transfinite recursion up to α if the process
associates an object for all ordinals β < α. We present the Cantor-Baire stationary principle
[14], as expressed by the following theorem:

▶ Theorem 25 (Cantor-Baire stationary principle). Let {Eγ}γ<ω1
be a transfinite sequence

of closed subsets of Rr for some r ∈ N. Suppose {Eγ}γ<ω1
is decreasing; i.e., Eγ ⊆ Eβ if

γ ≥ β. Then there exists α < ω1 such that Eβ = Eα for all β ≥ α.

A.2 Sequences
Given a set X of elements and an index set Y we indicate sequences of elements from X with
the notation {xn}n∈Y where xn ∈ X for each n ∈ Y . If the index set is the set of natural
numbers, we simply write {xn}n. Instead, if the index set is some ordinal number, we talk
about transfinite sequences. Given a sequence {xn}n for some set of elements X we indicate

https://doi.org/10.1145/3127496
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a subsequence of such sequence with the notation {xn(u)}u where n : N → N is the function
determining the elements of the subsequence considered. We now define uniformly bounded
sequences of functions:

▶ Definition 26 (Uniformly bounded). Let I ⊂ R, E ⊂ Rr for some r ∈ N and let {gn}n :
I → E be a sequence of functions. We say that the sequence is uniformly bounded if there
exists a constant K > 0 such that ∥gn(t)∥ ≤ K for all gn ∈ {gn}n and for all t ∈ I.

We then define equicontinuous sequences of functions:

▶ Definition 27 (Equicontinuous). Let I ⊂ R, E ⊂ Rr for some r ∈ N and let {gn}n : I → E

be a sequence of functions. We say that the sequence is equicontinuous if for any ϵ > 0 there
exists a δϵ > 0 such that

∥∥gn(t) − gn(t̃)
∥∥ ≤ ϵ whenever

∣∣t − t̃
∣∣ ≤ δϵ for all gn ∈ {gn}n and

for all t, t̃ ∈ I.

For infinite, uniformly bounded, equicontinuous sequence of functions over the reals there
exists a famous result due to Ascoli [8]:

▶ Theorem 28 (Ascoli). Let I ⊂ R be a bounded interval, E ⊂ Rr for some r ∈ N and let
{gn}n : I → E be an infinite, uniformly bounded, equicontinuous sequence of functions. Then
the sequence {gn}n has a subsequence {gn(u)}u that converges uniformly on I.

It follows a theorem concerning differentiability of limits of converging sequences of
functions:

▶ Theorem 29. Let {fn}n be sequence of functions from the closed interval [a, b] ⊂ R
to Rr for some r ∈ N and pointwise converging to function f . Let M > 0 be such that∥∥fn(t̃) − fn(t)

∥∥ ≤ M
∣∣t − t̃

∣∣ for all n ∈ N, for all a ≤ t, t̃ ≤ b. Then f is differentiable almost
everywhere and f(x) =

∫ x

a
f ′(t)dt for all ∈ [a, b].

A.3 Functions of class Baire one
We define the set of discontinuity points of a given function:

▶ Definition 30 (Set of discontinuity points). Let f be a function f : X → Y where X and Y

are two complete metric spaces. We define the set of discontinuity points (of f on X) as the
the set:

Df = {x ∈ X : ∃ϵ > 0 : ∀δ > 0 ∃y, z ∈ BX(x, δ) : dY (f(y), f(z)) > ϵ}

We define what it means for a given function to be of class Baire one:

▶ Definition 31 (Baire one). Let X, Y be two separable, complete metric spaces. A function
f : X → Y is of class Baire one if it is a pointwise limit of a sequence of continuous
functions, i.e. if there exists a sequence of continuous functions from X to Y , {fm}m, such
that lim

m→∞
fm(x) = f(x) for all x ∈ X.

An important property of functions of class Baire one is that the composition of a function
of class Baire one with a continuous functions yields a function of class Baire one [39]. We
now refresh a well known topological concept:

▶ Definition 32 (Nowhere dense set). Let X be a topological space and let S be a subset of
X. We say that S is nowhere dense (in X) if its closure has empty interior.
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Abstract
Local certification is a distributed mechanism enabling the nodes of a network to check the correctness
of the current configuration, thanks to small pieces of information called certificates. For many
classic global properties, like checking the acyclicity of the network, the optimal size of the certificates
depends on the size of the network, n. In this paper, we focus on properties for which the size of the
certificates does not depend on n but on other parameters.

We focus on three such important properties and prove tight bounds for all of them. Namely, we
prove that the optimal certification size is: Θ(log k) for k-colorability (and even exactly ⌈log k⌉ bits in
the anonymous model while previous works had only proved a 2-bit lower bound); (1/2) log t+o(log t)
for dominating sets at distance t (an unexpected and tighter-than-usual bound) ; and Θ(log ∆)
for perfect matching in graphs of maximum degree ∆ (the first non-trivial bound parameterized
by ∆). We also prove some surprising upper bounds, for example, certifying the existence of a
perfect matching in a planar graph can be done with only two bits. In addition, we explore various
specific cases for these properties, in particular improving our understanding of the trade-off between
locality of the verification and certificate size.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Local certification, local properties, proof-labeling schemes, locally checkable
proofs, optimal certification size, colorability, dominating set, perfect matching, fault-tolerance,
graph structure

Digital Object Identifier 10.4230/LIPIcs.STACS.2024.21

Related Version Full Version: https://arxiv.org/abs/2312.13702 [5]

Funding This work is supported by the ANR grant GrR (ANR-18-CE40-0032).

Acknowledgements The authors thank anonymous reviewers for useful comments.

1 Introduction

Local certification. Local certification is a topic at the intersection of locality and fault-
tolerance in distributed computing. Very roughly, the main concern is to measure how much
information the nodes of a network need to know in order to verify that the network satisfies
a given property. Local certification originates from self-stabilization and is tightly related to
the minimal memory needed to be sure that a self-stabilizing algorithm has reached a correct
configuration locally. The topic is now studied independently, and the area has been very
active during the last decade. We refer to the survey [14] for an introduction to the topic.

The standard model for local certification is the following. The nodes are first assigned
labels, called certificates, and then every node looks at its certificate and the certificates of
its neighbors, and decides to accept or reject. A certification scheme for a given property is
correct if, for any network, the property is satisfied if and only if there exists a certificate
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assignment such that all the nodes accept. (We discuss variations later, and give proper
definitions in Section 3.) The usual measure of performance of a certification scheme is the
maximum certificate size over all nodes, and all networks of a given size.

One of the fundamental results in local certification is that any property can be certified
if the network is equipped with unique identifiers [21, 20], but this is at the expense of huge
certificates. Indeed, the scheme consists in giving to every node the full map of the graph,
which takes Θ(n2) bits in n-node graphs. The question then is: when can we do better? There
exist three typical certificate sizes. For some properties, e.g. related to graph isomorphism,
Θ(n2) bits is the best we can do [20]. For many natural properties, the optimal certificate
size is Θ(log n); for example most properties related to trees (acyclicity, spanning tree, BFS,
and minimum spanning tree for small edge weights [21]). A recent research direction tries to
capture precisely which properties have such compact certification (see [4, 19, 18]). Finally,
some properties are local from the certification point of view, in the sense that the optimal
certification size does not depend on n. This third type of property is the topic of this paper.

Local certification of local properties

Until recently, studying local properties has not been the focus of the community, since the
usual parameter for measuring complexity is the network size. A recent paper by Ardévol
Martínez, Caoduro, Feuilloley, Narboni, Pournajafi and Raymond [22] is the first to target
this regime. We refer to [22] for the full list of motivations to study this topic, and we just
highlight a few points here.

First, it will appear in this paper that the size of the certificates for local properties is
often expressed as functions of parameters different from the number of nodes. Therefore,
one should not (always) see these are constants. It has been highlighted before (see discussion
before Open problem 4 in [14]) that we have basically no understanding of certification size
expressed by other parameters than the number of nodes.

Second, locally checkable languages (LCL) are at the core of the study of the LOCAL
and CONGEST models. These are basically the properties that are local from a certification
point of view: the output can be checked by looking at all the balls of some constant radius.
Certification is a way to question the encoding of LCLs. A typical example is coloring,
for which one uses the colors as output of a construction algorithm, and as certificates
for colorability certification. If there would exist a better certification, this would shed
a new light on the encoding of this LCL. For example, the celebrated round elimination
technique [25] is very sensitive to the problem encoding, and one could hope that feeding
it with a different encoding could provide new bounds. In a more general perspective, we
argue that just like understanding the complexity of LCLs, understanding certification of
local properties is a fundamental topic.

In addition to these two general motivations, our work is guided by two open problems,
the k-colorability question and the trade-off conjecture, that we detail now.

The k-colorability question

Let us first discuss the case of colorability, which will be central in this paper. The property
we want to certify is that the graph is k-colorable, that is, one can assign colors from {1, . . . , k}
to vertices such that no two neighbors have the same color. It is straightforward to design
a local certification with k certificates for this property: the certificates encode colors in
{1, . . . , k} and the nodes just have to check that there is no conflict.1 This uses O(log k) bits.
The natural open problem here is the following.

1 A conflict being an edge whose two endpoints are colored the same.
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▶ Open problem 1 (Open problem 1 in [14]). Is Θ(log k) optimal for k-colorability certifica-
tion?

The first result on that question is the very recent paper [22] which establishes that one
bit is not enough to certify k-colorability. This lower bound holds in the anonymous and in
the proof-labeling scheme models, that we will define later. In a nutshell, the technique is
an indistinguishability argument: assuming that there exists a 1-bit certification, one can
argue about the number of 1s in a node neighborhood and take an accepting certification
of some k-colorable graph to derive an accepting certification of a k + 1-clique, which is a
contradiction.

Interestingly, [22] also shows a case where the natural encoding is not the best certification.
Namely, certifying a distance-2 3-coloring can be done with only 1 bit, while the obvious
encoding of the colors takes 2 bits. Finally, let us mention that non-k-colorability, the
complement property, is much harder to certify. Indeed, it is proved in [20] that one needs
Ω̃(n2) bits to certify non-3-colorability (where Ω̃ hides inverse logarithmic factors).

Trade-off conjecture

We finish this general introduction, with yet another motivation to study local properties.
The trade-off conjecture, first stated in [15], basically states that for any property, if the
optimal certification size is s for the classic certification mechanism, where the nodes see
their neighbors certificates, then it is in O(s/d) if the vertices are allowed to see their whole
neighborhood at distance d. This was proved to be true for many classic properties, and
in many large graph classes [15, 17, 24]. Implicitly, the big-O of the conjecture refers to
functions of n, but for local properties, the conjecture is interesting only if it refers to the
parameters that appear in the certificate size.

▶ Open problem 2 (Trade-off conjecture). Consider a property with optimal certification
size s at distance 1 (where s depends on the natural parameters of the problem). Is it true
that if we allow the verification algorithm to look at distance d, then the optimal size is at
most α · s/d for some constant α?

The authors of [22] argue that the conjecture might actually be wrong for local properties.
In other words, there might exist properties such that looking further in the graph is useless
(unless you can see the whole graph), or at least not as useful as claimed in [15] (instead
of being s/d the optimal size could be a less-decreasing function of d). We consider this
question to be very intriguing and important to the study of locality, and we will discuss it
several times in the paper.

A sample of local properties

Local properties have different behaviors, which prevented us to establish general theorems
capturing all of them. Instead, we looked for a sample of properties widely studied in the
distributed community having diverse behaviors, and such that many other properties would
behave similarly to one of the sample. First, we chose to study the colorability question, for
the reasons cited above. Second we looked at domination at distance t, where a set of nodes is
selected, and we want to check that every node is at distance at most t from a selected node.
This property has inputs and an external parameter, which makes it very different from
colorability. Moreover, a dominating set distance t is a building block for many self-stabilizing
algorithms. Third, we study the property of “having a perfect matching”. This differs from
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the two first ones by being an edge-related problem instead of the node-related problem,
and it appears that the key parameter there is the maximum degree, a new parameter for
certification. One more motivation is that matchings are classic objects in distributed graph
algorithms.

Organization of the paper

The paper is organized the following way. After this introduction, we give a detailed overview
of the context, results. We also give the proof techniques of the main results. Then, after
a definition section, there are technical sections that correspond to the local properties we
study. For perfect matchings, the proofs of the results does not appear in this version due to
the page limit. All the omitted proofs can be found in the full version [5]. The overview and
the technical parts can be read independently. Readers interested in motivations, general
discussions, proof ideas and comparison with previous techniques can read the first and
cherry-pick specific proofs they are curious about in the second; while others will prefer to
go directly to the model section and formal proofs. The overview and the technical part are
organized in the same way to allow easy back-and-forth reading.

2 Overview of our results and techniques

Quick description of the models

In order to state the results, we need to informally define the different models of certification
(see Section 3 for more formal definitions).

In the anonymous model, the nodes have no identifiers/port-numbers.
In the proof-labeling scheme model, every node has a unique identifier (encoded on
O(log n) bits) but it cannot access the identifiers of the other nodes.
In the locally checkable proof model, nodes have identifiers and can see the identifiers of
the other nodes.

The anonymous model is the one for which we have the largest number of results. It is
usually less considered in the literature, but argue that for local properties it is the most
natural. See the discussion in Subsection 3.2.

The standard assumption is that the nodes can only see their neighbors. Since we are
interested in the trade-off conjecture, we will also consider certification at distance d, where
the view is the full neighborhood at distance d.

It is often handy to say that the certificates are given by a prover, that intuitively tries
to convince the nodes that the network is correct (both on correct and incorrect instances).

Now that we are equipped with these notions, we will review our results and techniques,
problem by problem.

2.1 Overview for colorability
In this subsection, we consider the k-colorability property, already mentioned, which states
that the graph is k-colorable.

Two lower bounds for colorability

We have already discussed the colorability property, and cited Open problem 1. Our first
result is in the anonymous model, where we strongly solve Open problem 1 by determining
the exact bound: in the anonymous model it is necessary and sufficient to have k different
certificates.
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▶ Theorem 3. For every k ⩾ 2, in the anonymous model where vertices can see at distance 1,
k certificates are needed in order to certify that a graph is k-colorable. Therefore, in the
anonymous model, exactly ⌈log(k)⌉ bits are needed to certify k-colorability.

The upper bound is trivial since we can simply give the colors as certificates. The
technique to establish this lower bound is a form of crossing technique. We take a large
enough complete k-partite graph, thus a graph that is maximally k-colorable, in the sense
that any edge added to it would make it non-k-colorable. The idea of the proof is to
argue by counting, that for any certificate assignment that would make all nodes accept
this graph, there must exist two edges that we can cross (that is replace (a, b); (x, y) by
(a, x); (b, y) for example) such that all neighborhoods appearing in this instance did appear
in the previous one, thus no node rejects. In addition, the graph obtained after this crossing
is non-k-colorable, which is a contradiction with the correctness of the scheme.

Now in the most general model, we also give an (asymptotic) tight bound, fully answering
Open question 1. We actually prove a more general lower bound parametrized by the
verification distance.

▶ Theorem 4. In the locally checkable proofs model, at least Ω(log(k)/d) bits are needed to
certify k-colorability when the vertices are allowed to see their neighborhoods at distance d.

We describe the proof of this result in a communication complexity framework to provide
more intuition, although the actual proof does not rely on any black-box result from
communication complexity. The instances we use have the typical shape of communication
complexity constructions: the graph has two parts that correspond to the players (left and
right) and a part in the middle. The middle part has a large diameter (to be sure that
left and right cannot communicate at distance d), and has two sets of k special vertices on
the left (top left and bottom left), and two sets of k special vertices on the right (top right
and bottom right). The part of the left (resp. right) player is an antimatching between the
top left and bottom left (resp. top right and bottom right), where an antimatching is a
complete bipartite graph in which a matching has been removed. The middle part has a very
constrained structure whose role is to enforce that the graph is k-colorable, if and only if, the
left and right antimatchings are intuitively mirrors one of the other. The idea is then that
the information about the exact matchings on the left and right parts has to be transferred
to some node, to be compared, and this can happen only via the certificates. There are k!
possible forms for the left and right antimatchings, (because there are k! possible matching
in a complete bipartite graph of size k basically). Thus, the information that has to be
transferred from one side of the graph to the other has size k log k (via Stirling equivalent)
and since our graph has cuts of order k, we get the Ω(log k) lower bound.

Uniquely k-colorable graphs and other natural counterexample candidates

Our two lower bound constructions have in common to be very constrained, in a precise
sense: for every vertex v, every ball centered in v of radius at least 2 admits a unique proper
k-coloring (up to color renaming). In this case, we say that the graph is uniquely k-colorable
at distance d (where d is the radius of the neighborhood). It is easy to see that if a graph
is uniquely k-colorable at distance d, then either it has a unique k-coloring or it is not
k-colorable. Intuitively, graphs with this property are hard for certification, since there is no
slack in the coloring, thus the transfer of information between different parts of the graph
cannot a priori be compressed. Perhaps surprisingly, we prove that for these graphs the
trade-off conjecture does hold, even in the anonymous model.
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▶ Theorem 5. For every d ⩽ log k, in the anonymous model where vertices can see at
distance d, O(log k/d) bits are sufficient to certify that a uniquely k-colorable graph at
distance d − 2 is k-colorable.

Let us briefly explain the main ingredient of that proof. Since the coloring is locally
unique, by looking far enough, a node can decide which other nodes are in the same color
class in a k-coloring, if one exists globally. This is not enough to be sure that the graph is
k-colorable, because the color classes might not coincide nicely. For example, every cycle is
uniquely 2-colorable at distance 1, but this does not certify that the full cycle is 2-colorable.
The key idea is that a node will recover the name of its color by gathering the bits of
information spread on the nodes of its own color class at distance at most d from it. This
allows to spread the information of the color classes on several vertices and then use smaller
certificates. Slightly more formally, the certifier will assign to a well-chosen subset of nodes
X a special certificate. The vertices of X are chosen far enough from each other so that we
can store information of the different color classes on the nodes close to it. But they are
also chosen not too far away from each other to be sure that all the vertices are close to a
vertex of X. Now every node just have to perform the following verification: (i) if it is too
far from any vertex of X, it rejects, (ii) it checks that its color is the same for all vertices of
X close to it, (iii) it checks that for all the vertices of X close to it, the color associated to it
is different from colors given to its neighbors.

After Theorem 5, a question is whether we can go down to a constant number of bits, or
in other words, how large the constant of the big-O needs to be. We prove that at a distance
O(log k), one bit is sufficient (in other words only two different certificates are needed). Note
that it means in particular that we can avoid the special certificate of the proof of Theorem 5
by being very careful on how we represent each vertex of X and the colors classes around it
(and proving that even if a node makes a mistake in the choice of X when some vertices are
indistinguishable, its decision will be anyway correct).

▶ Theorem 6. In the anonymous model where vertices can see to distance d, 2 certificates
are enough to certify that a uniquely k-colorable graph at distance d − 2 is k-colorable, if
d ⩾ 9⌈log2 k⌉ + 8.

The scheme for this is built on the same framework, but with more ideas and technicalities,
and we refer to the technical part for the details.

Now that we proved that locally uniquely colorable graphs are not going to help, we
wonder what would be a good candidate to disprove the trade-off conjecture (of course one
might not exist, if the conjecture is true). We believe that for graphs that are almost locally
uniquely colorable (that is, they have few correct colorings locally, up to color renaming) the
proof of Theorem 5 could be adapted, with more layers of technicalities. Hence, one might go
for graphs that have many possible colorings. This could make sense from a communication
complexity point of view, because there also exist difficult problems with many correct
pairs of inputs (e.g. the disjointness problem). What is problematic here is that unlike in
communication complexity, in our case, on a k-colorable graph, the prover has the choice of
the coloring, thus can choose one that is easier to encode compactly.

Since graphs that are very structured seem to admit a linear scaling, another approach
could be to consider graphs with a more chaotic structure. Random graphs are natural
candidates here, but even if we could come up with a satisfying definition for what it means
to certify the colorability of a random graph, it is not clear that this would be hard. Indeed,
there exist efficient algorithms to k-color k-colorable graphs (e.g. [27]) that exploit only the
local structure of the graph, so one could even hope for a verification without certificates.
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In the end, graphs with large girth and large chromatic number might be the right type
of graphs to consider because they have both a large number of colorings locally and a rigid
structure globally. Several constructions for these have been designed (see e.g. [13, 23, 10]),
but they are randomized or complex, which makes their study rather challenging.

Certification versus output encoding

More generally, it is interesting to explore the links between (1) certifying that a given
structure exists (e.g. a coloring here, but also a perfect matching a bit later in the paper) (2)
explicitly describing it, and (3) implicitly describing it, that is giving enough information to
recover the structure, but not directly (e.g. with fewer bits than the natural encoding). We
refer to [3] for the related topic of distributed zero-knowledge proofs.

For colorability, the case of perfect graphs is a nice example of the discrepancy that
can exist between these. A graph is perfect if its chromatic number is equal to the size of
its maximum clique for every induced subgraph. Many classic graph classes are perfect,
e.g. bipartite graphs, chordal graphs, comparability graphs (see [26] for a survey on perfect
graphs). If we are promised to be in such a graph, the verification (at distance 2) is very easy:
a vertex just has to check whether it belongs to a clique of size larger than k (in which case
it rejects, otherwise it accepts). Thus, no certificates are needed for colorability certification,
while it seems really difficult to have the nodes output a coloring without giving them quite
a lot of information. Proving formally such a discrepancy would be a nice result.

Finally, let us mention yet another lower bound approach, related to problem encodings.
One can note that if we have certification using s bits for a property, where the local
verification algorithm runs in polynomial time in the network size, then we have a centralized
decision algorithm for this property in time snpoly(n). Indeed, one can just enumerate all
the possible certificate assignments of this size and check whether one is accepted. One could
hope that having a too-good bound for certification would imply that some big conjecture
(e.g. SETH, the strong exponential hypothesis) is wrong, and get a conditional lower bound.2
Unfortunately, this does not help us much for certification, since there are known algorithms
for computing the chromatic number of a graph in time O(cn) with c < 3 (e.g. in [7]).

2.2 Overview for domination
The domination at distance t property applies to graphs with inputs: every node should be
labeled with 0 or 1, and every node should be at distance at most t from a node labeled 1.
To avoid confusion, let us highlight that in the domination property, the inputs are part of
the instance and are different from the certificates.

This problem is quite different from colorability, in several ways. First, it is a problem
that is centered on inputs: for any graph there are inputs that are correct, so in some sense
it is the inputs that are certified more than the graph itself. (This is actually closer to the
original self-stabilizing motivation of certifying the output of an algorithm.) Second, the
natural certification has a different flavor: we give every node its distance to the closest node
of the dominating set (that is, a node labeled 1), and every node checks that these distances
do make sense. One can then consider domination at distance t to be the local analogue of
acyclicity, which is certified by providing the nodes of the network with the distance to the
root.

2 Such bounds are not common in certification, but not unseen, see [11].
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Given this analogy with acyclicity, a Θ(log t/d) optimal certificate size is expected, and
indeed we prove it. But we go one step further by providing precise bounds on the number
of different certificates. First, for the anonymous model at distance 1, we prove that the
optimal number of different certificates is basically

√
t.

▶ Theorem 7. Let t ∈ N∗. In the anonymous model where vertices can see to distance 1, at
least

√
t − 1 different certificates are needed to certify a dominating set at distance t, even if

the graphs considered are just paths and cycles.

The lower bound is again quite expected: the proof for this kind of bound is based on
arguing whether the same pair of certificates can appear several times on a path or not, thus
the square root pops up naturally.

▶ Theorem 8. In the anonymous model where vertices can see to distance 1, 3 · ⌈
√

t⌉
certificates are sufficient to certify a dominating set at distance t.

This upper bound is more surprising. It reveals that the natural encoding (consisting
of giving the minimum distance to a labeled vertex) is not the best, and that the square
root is not an artifact of the lower bound proof but is necessary. The proof of Theorem 8
is based on an elegant argument using de Bruijn words. Roughly, for some parameters k

and n, a de Bruijn word is a (cyclic) word on an alphabet of size k, which contains all the
factors (that is subwords of consecutive letters) of size n exactly once. The idea here is that
instead of giving the certificate r to nodes at distance r from a node labeled 1, we will give
them the r-th letter in a predefined de Bruijn word that corresponds to n = 2 and k =

√
t.

Since every node will see its neighbors’ certificates, thus a factor of size at least 2, it will
be able to decode what is its position in the word, thus its distance to the 1-labeled node.
The parametrization k =

√
t ensures that the de Bruijn word of the correct length exists.

Finally, we generalize these bounds to larger distances using generalizations of the techniques
described above.

▶ Theorem 9. In the anonymous model where vertices can see to distance d < t
2 , at least

2d
√

t − 2d + 1 different certificates are needed to certify a dominating set at distance t, even
if the graphs considered are just paths and cycles.

▶ Theorem 10. In the anonymous model where vertices are allowed to see to distance d,
O( d+1

√
t) certificates are sufficient to certify a dominating set at distance t.

2.3 Overview for perfect matchings
A graph has the perfect matching property if it has a perfect matching, that is, a set of edges
such that every vertex belongs to exactly one such edge. It is yet another type of property,
that differs from the others by the fact that it has no built-in parameter (no number k of
colors, or distance t). As we will see, the relevant parameter here is the maximum degree of
the graph.

Perfect matching certification upper bounds

The natural way to locally encode a matching in distributed computing is to make every
node know which port number corresponds to a matched edge (if the vertex is matched). In
the port-number model, this directly leads to a certification: give the relevant port number
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to each node, and let them check the consistency. This takes O(log ∆) bits per node, but
it requires port numbers, and the ability for the nodes to know the port numbers of their
neighbors.

Our first result is that we do not need port-numbers (nor any kind of initial symmetry-
breaking). The strategy for the prover is the following. First, choose a perfect matching, and
color the matched edges such that there are no two edges (u, v) and (w, z) of the same color
with (v, w) being an edge of the graph. We call this a matching coloring. Then, give to every
node the color of its matched edge. Then every node simply checks that it has exactly one
neighbor with the same color.

▶ Theorem 11. Let k ∈ N∗. Let C be a class of graphs such that, for every G ∈ C, if G has
a perfect matching then G has a k-matching coloring. Then, in the anonymous model at
distance 1, k certificates are enough to certify the existence of a perfect matching in G for
every G ∈ C.

We can easily show (see Lemma 28 in the full version [5]) that if G has a perfect matching
then it admits a (2∆ − 1)-matching coloring.

▶ Corollary 12. For every graph G, 2∆ − 1 certificates are enough to certify the existence of
a perfect matching, in the anonymous model at distance 1.

To better appreciate the lower bound of the next paragraph, let us mention a surprising
result on the upper bound side. Note first that if we can get a matching coloring using fewer
colors, then we automatically get a more compact certification. Now consider a planar graph
with an arbitrary perfect matching. We claim that this perfect matching can be colored with
only four colors, even though planar graphs can have an arbitrary large maximum degree.
Indeed, if we contract the edges of the matching, we still have a planar graph, and we can
color this graph with four colors, by the four color theorem. Now undoing the contraction,
and giving to the matched edges the color of their contracted vertices, we get a proper
matching coloring with only four colors. We also prove a more general result on minor-free
and bounded treewidth graphs.

▶ Corollary 13. In the anonymous model at distance 1:
Only 2 bits are enough to certify the existence of a perfect matching for planar graphs.
Only O(log k) bits are needed to certify the existence of a perfect matching in Kk-minor-free
graphs.
Only ⌈log2(k + 1)⌉ bits are needed to certify the existence of a perfect matching in graphs
of treewidth at most k.

Note that, all our upper bounds follow from the existence of k-matching colorings. One
can easily remark that, if instead of certifying a perfect matching one is simply interested in
representing and certifying a matching, we can also do it with the same method by simply
coloring all the unmatched vertices with an additional color. Since all the graph classes we
mention in the upper bounds are closed under vertex deletion, our results ensure that the
following holds: We can represent and certify matchings with 2∆ certificates for general
graphs, 5 certificates for planar graphs and t + 2 certificates for graphs of treewidth at most t.

Perfect matching certification lower bounds

In the full version [5], we prove the following lower bound for perfect matching certification.
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▶ Theorem 14. For every ∆⩾ 2, in the anonymous model where vertices can see at distance 1,
∆ different certificates are needed to certify the existence of a perfect matching for graphs of
maximum degree ∆.

Before we sketch the proof, let us note that there is no natural candidate for a lower
bound: on the one hand, graphs that are sparse are ruled out by Corollary 13, and on the
other hand many dense graph classes are known to always have perfect matchings, e.g. even
cliques, or even random graphs with at least n log n edges [12].

The key to the proof is the notion of half-graphs. Half-graphs are bipartite graphs with
vertices u1, ..., un and v1, ..., vn such that ui is linked to v1, ..., vi. In such a graph, there
exists a unique perfect matching, and it uses the edges (ui, vi). Indeed, u1 must be matched
with v1, thus u2 must be matched with v2 etc. Now, we prove by counting argument that
if such a graph is accepted with fewer than ∆ certificates, we can create a graph without
perfect matching that is also accepted. The idea is to take two copies of this certified graph,
and then to carefully remove edges from within these graphs to add edges in between. Again,
we refer to the technical section for the details.

Discussion of the parameter ∆

A remarkable feature of the perfect matching property is that the optimal certificate size is
completely captured by the maximum degree (if we do not consider restricted graph classes).
As far as we know, it is the first time that ∆ appears as a natural parameter for local
certification. This is interesting, since there are few results that use graph parameters other
than the size of the graph to measure certificate size. To our knowledge, the only pure
graph parameter that has been used before and that does not appear as a parameter of the
problem is the girth, for approximate certification [11].3 It has been highlighted, e.g. in [14]
(discussion before open problem 5), that developing a theory of parametrized certification is
an interesting research direction.

Let us note however that it is maybe not very surprising that the maximum degree
appears as a key parameter for matching-related problems, since celebrated papers have
proved that it is central to the complexity of such problems in other models of computation,
e.g. the LOCAL model [1, 6].

3 Model and definitions

3.1 Graphs

All the graphs we consider are finite, simple, and non-oriented. For completeness, let
us recall the following classical graph definitions. Let G = (V, E) be a graph, u, v ∈ V ,
S ⊆ V , i ∈ N. The distance between u and v, denoted by d(u, v), is the length (number
of edges) of the shortest path from u to v. The layer at distance i from u, denoted by
N i(u), is the set of vertices v ∈ V such that d(u, v) = i. The ball of radius i centered in u, is
B(u, i) :=

⋃
0⩽j⩽i N j(u). The closed (resp. open) neighborhood of u is N [u] := B(u, 1) (resp.

N1(u)). We can similarly define d(u, S), N(S) and N [S] when S is a subset of vertices.

3 The maximum edge weight also appears for problems in weighted graphs, e.g. minimum spanning
tree [21], max-weight matching [20, 8].
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3.2 Certification
Let G = (V, E) be a graph, and let C, I be non-empty sets. A certificate function of G (with
certificates in C) is a mapping c : V → C. An identifier assignment of G (with identifiers
in I) is an injective mapping Id : V → I.

▶ Definition 15. Let c be a certificate function of G and Id be an identifier assignment of G.
Let u ∈ V , d ∈ N∗. The view of u at distance d consists in all the information available at
distance at most d from u, that is:

the vertex u;
the graph with vertex set B(u, d) and the edges (v1, v2) ∈ E(G) such that
{v1, v2} ∩ B(u, d − 1) ̸= ∅;
the restriction of c to B(u, d);
the restriction of Id to B(u, d).

▶ Remark 16. For a vertex u, the subgraph induced by B(u, d − 1) is included in the view of
u at distance d. However, the subgraph induced by B(u, d) is not included in the view of
u at distance d in general (because the view of u does not contain the edges between two
vertices v1 and v2 which are both at distance exactly d from u).

A verification algorithm (at distance d) in the locally checkable proof model is a function
which takes as input the view (at distance d) of a vertex, and outputs a decision, accept
or reject. For a property P on graphs, we say that there is a certification for P using
k certificates (resp. k bits) if C has size k (resp. 2k), and if there exists a verification
algorithm A such that for every graph G and every identifier assignment Id, G has property
P if and only if there exists a certificate function c such that A accepts for every v ∈ V (G).

A verification algorithm in the anonymous model is defined in the exact same way that a
verification algorithm in the locally checkable proof model, but vertices are not equipped
with a unique identifier (or equivalently, the output is invariant with respect to the identifier
assignment).

In this paper, we do not use the proof-labeling scheme model, where the node has access
only its own ID, but it appears in a relevant previous work [22].

Discussion of the anonymous model

Note that the model we chose as our main model is the anonymous one. Indeed, all our
results are for this model, except for the lower bound on colorability which we wanted to
strengthen to the model with identifiers in order to fully solve Open Problem 1.

We think that the natural model for local properties is anonymous. Indeed, the main
reason why identifiers are common in local certification is that they are often necessary,
which is not the case for local properties. For example, certifying tree-like structures requires
certifying that there is a unique connected component, and for this identifiers are needed. Note
that in the LOCAL model, identifiers are also used to break symmetry, but in certification,
the certificates can do this.

Moreover, the anonymous model is very common in the self-stabilizing literature (see e.g.
[16, 2, 9]) which is the origin of local certification.

Third, in the paper, we draw a parallel between certification of local properties and LCLs,
and the identifiers do not appear in the definition of LCLs.
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Finally, in the cases known in the literature where anonymous and “with-ID” bounds
match (e.g. acyclicity), the proofs are similar in spirit, except that the ID case involves
more counting arguments (usually assuming that the ID interval is not of linear size), which
implies loosing constants everywhere, getting results that are less crisp, and proofs that are
more obfuscated.

4 Colorability certification

In this section, we will consider the certification of the k-colorability property. Let us recall
that a graph G is said to be k-colorable if there exists proper k-coloring of G, that is, is a
mapping φ : V → {1, . . . k} such that for all (u, v) ∈ E, φ(u) ̸= φ(v).

For completeness, let us start by proving the following simple upper bound.

▶ Proposition 17. In the anonymous model where vertices can see at distance 1, k-colorability
can be certified with ⌈log k⌉ bits.

Proof. For a graph G = (V, E) which is k-colorable, the certificate function given by the
prover is the following. The prover chooses a proper k-coloring φ of G, and assigns certificate
c(u) := φ(u) to every u ∈ V . The verification algorithm of every vertex u consists in checking
if for every neighbor v, c(u) ̸= c(v). If it is the case, u accepts. Otherwise, u rejects. It is
clear that the graph is accepted if and only if it is k-colorable. ◀

Lower bounds

▶ Theorem 3. For every k ⩾ 2, in the anonymous model where vertices can see at distance 1,
k certificates are needed in order to certify that a graph is k-colorable. Therefore, in the
anonymous model, exactly ⌈log(k)⌉ bits are needed to certify k-colorability.

Proof. Assume by contradiction that there exists a certification of k-colorability in the
anonymous model using only k − 1 different certificates. The idea of the proof is to consider
a specific k-colorable graph Gk, for which there must exist an accepting certification function.
We will prove that we can flip (i.e. cross) two edges of Gk such that the resulting graph G′

k is
not k-colorable and no vertex is able to detect it (meaning that the local view of each vertex
will be unchanged). Thus, in the new graph G′

k, each vertex accepts, which is a contradiction
since G′

k is not k-colorable.
Let us denote by Gk the complete k-partite graph, where each set has size max(k, 3).

More formally, let V1, . . . , Vk be k disjoint sets, each of size max(k, 3). Let Gk be the graph
with vertex set V =

⋃k
i=1 Vi where (u, v) is an edge if and only if u and v do not belong

to the same set Vi. Since {V1, . . . , Vk} is a partition of V into k independent sets, Gk is
k-colorable. Thus, by hypothesis, there exists a certificate function c : V → {1, . . . , k−1} such
that every vertex accepts. By the pigeonhole principle, for every i ∈ {1, . . . , k} there exist
two different vertices ui, vi ∈ Vi such that c(ui) = c(vi) (since each set has size at least k).
Again, by the pigeonhole principle, there exist i ̸= j such that c(ui) = c(uj). Thus, we get
c(ui) = c(vi) = c(uj) = c(vj), with ui, vi ∈ Vi and uj , vj ∈ Vj . Let G′

k be the graph obtained
from Gk by removing the two edges (ui, uj), (vi, vj) and adding the two edges (ui, vi), (uj , vj),
as depicted on Figure 1.

We claim that, with the same certificate function c, all the vertices of G′
k accept. Indeed,

the only vertices whose neighborhood have been modified between Gk and G′
k are ui, vi, uj , vj .

So every vertex in V \ {ui, vi, uj , vj} accepts. For ui, the only difference between its
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•

•

•

K4,4 (complete bipartite)︷ ︸︸ ︷
ui

vi

uj

vj

Vi Vj

•

•

•

•

ui

vi

uj

vj

Vi Vj

G4 G′
4

Figure 1 Our constructions for the proof of Theorem 3, in the case of k = 4. The gray strips
indicate complete bipartite graphs. The edges we are interested in appear explicitly.

neighborhood in Gk and G′
k is that uj is replaced by vi. Since c(uj) = c(vi), the view of ui

is the same in Gk and G′
k, so ui accepts in G′

k as well. Similarly, one can prove that vi, uj ,
and vj accept in G′

k.
However, G′

k is not k-colorable. Indeed, assume by contradiction that it is, and let φ be
a proper k-coloring of G′

k. For any r /∈ {i, j}, let wr ∈ Vr. Let wj be a vertex of Vj \ {uj , vj}
which exists, since each set contains at least 3 vertices. Then, K = {w1, . . . , wi−1, wi+1, . . . wk}
is a clique in G′

k, so the (k − 1) vertices of K receive pairwise different colors in φ. Moreover,
both ui and vi are complete to K. So if G′

k is k-colorable, then ui and vi have to be colored
the same, which is a contradiction since (ui, vi) ∈ E(G′

k). ◀

Obtaining lower bounds is usually harder in the locally checkable proofs model. In this
more demanding model, we do not get the exact bound in terms of number certificates, but
still we get a bound that would be considered optimal by the usual standards. Namely,
we will prove that Ω(log k) bits are needed to certify the k-colorability of a graph. More
generally, we prove that, if vertices can see their neighborhoods at distance d, at least
Ω(log k/d) bits are needed to certify k-colorability. Note that the graph constructed in the
proof of Theorem 3 has diameter two, thus no lower bound at distance at least 3 can be
obtained from that construction. The lower bound of the following theorem is obtained with
a completely different graph.

▶ Theorem 4. In the locally checkable proofs model, at least Ω(log(k)/d) bits are needed to
certify k-colorability when the vertices are allowed to see their neighborhoods at distance d.

Proof. For r, s ⩾ 2, let us denote by Pr,s the graph on vertex set V = {1, . . . , r} × {1, . . . , s}
with the following edges:

for all i ̸= j ∈ {1, . . . , r} and all p ∈ {1, . . . , s}, ((i, p), (j, p)) ∈ E

for all i ̸= j ∈ {1, . . . , r} and all p ∈ {1, . . . , s − 1}, ((i, p), (j, p + 1)) ∈ E
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In other words, the graph Pr,s is a sequence of s cliques K1, . . . , Ks, each having size r,
with an antimatching4 between Ki and Ki+1 for all i ⩽ s−1. The second coordinate indicates
the index of the clique the vertex belongs to, and for all (i, p) with p ⩽ s − 1, (i, p) is the
only vertex in Kp which is not adjacent to (i, p + 1). For instance, the graph P3,5 is depicted
on Figure 2.

Figure 2 The graph P3,5. Here the cliques are triangles, and two consecutive cliques are linked
by all possible edges except for the horizontal ones (the antimatching).

Now, for any pair of permutations σ, τ of {1, . . . , r}, let us denote by Gr,s(σ, τ ) the graph
obtained in the following way. We take two copies of Pr,s, and we denote their cliques by
K1, . . . , Ks and K′

1, . . . , K′
s. We give 2rs different identifiers to the vertices of the two copies

(the identifiers are fixed, they do not depend on σ and τ). Finally, we add the antimatching
{(i, σ(i))}i between K1 and K′

1, and the antimatching {(i, τ(i))}i between Ks and K′
s (see

Figure 3 for an illustration).

3

1

2

3

1

2

3

1

2

3

1

2

σ τ

Figure 3 The graph G3,5(σ, τ), where σ is the permutation (1, 2) and τ the cycle (1, 2, 3).

▷ Claim 18. The graph Gr,s(σ, τ) is r-colorable if and only if σ = τ .

Proof. Since K1 is a clique of size r, in a proper coloring with r colors, every color appears
exactly once inside K1. Similarly, every color appears exactly once in a proper coloring
of K2. For all i ∈ {1, . . . , r}, the vertex (i, 1) is a neighbor of every vertex in K2 except
(i, 2). Thus, the vertices (i, 1) and (i, 2) are colored the same. Hence, given a coloring of K1,
there exists a unique way to properly color K2. This propagates along the cycle of cliques
K2, . . . Ks, K′

s, . . . , K′
1, and it leads to a proper coloring of the whole graph if and only if the

coloring of K′
1 is compatible with the coloring of K1, that is, if and only if σ = τ . ◁

4 Remember that an antimatching between two sets of nodes is an edge set containing all the possible
edges between the two sets, except for a matching.
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Using Claim 18, we will deduce a lower bound on the number of bits needed to certify
k-colorability, when vertices are allowed to see at distance d. We consider the construction
above with parameters r = k and s = 2d. Assume that m bits are sufficient. Then, for
any permutation σ, there exists a certificate function cσ : V → {0, . . . , 2m − 1} such that all
the vertices of Gk,2d(σ, σ) accept. Suppose that there are two different permutations σ, τ

such that the certification functions are the same: cσ = cτ , that is, all vertices receive the
same certificate in both instances. Then Gk,2d(σ, τ) would be accepted with this certificate
function, since the view of every vertex would be identical as its view in Gk,2d(σ, σ) (for
vertices in the left part) or in Gk,2d(τ, τ) (for vertices in the right part). This would be a
contradiction because Gk,2d(σ, τ) is not k-colorable (by Claim 18).

Hence, all the certificate functions cσ are different. In particular, there are no more
permutations of {1, . . . , k} than functions V → {0, . . . , 2m − 1}. The set V has size 4kd since
it is made of two copies of a graph of size k × 2d. Therefore, we get k! ⩽ 24mkd, leading to
m ⩾ log2(k!)

4kd . Finally, since log2(k!) = Ω(k log k), we get the result. ◀

▶ Remark 19. Two ingredients of the proof, the communication complexity insight and the
antimatchings to propagate the coloring, have already been used in [20], to get a lower bound
on the certification of not-3-colorable graphs.

5 Dominating sets at distance t

Most of the results concerning dominating sets at distance t can be found in the full version [5].
We simply give a proof of Theorem 8 with an elegant argument using de Bruijn words:

▶ Theorem 8. In the anonymous model where vertices can see to distance 1, 3 · ⌈
√

t⌉
certificates are sufficient to certify a dominating set at distance t.

Before proving Theorem 8, we will define a few notions. Let A be an alphabet, and
ω, ω′ ∈ A∗. We say that ω is a factor of ω′ if there exists a sequence of consecutive letters in
ω′ which is equal to ω. Let us now define de Bruijn words, whose existence is well-known.

▶ Proposition 20. Let k, n ∈ N∗, and A be an alphabet of size k. There exists a word ω ∈ A∗

of length kn, such that every word of An appears at most once as a factor of ω. Such a word
ω is called a (k, n)-de Bruijn word.5

Proof of Theorem 8. Let τ =
⌈√

t
⌉
. Let us prove that 3τ certificates are sufficient to certify

a dominating set at distance t (in the anonymous model, where vertices can see at distance 1).
Let A := {1, . . . , τ}. The certificates used in the scheme will be pairs in C := {0, 1, 2} × A.
For (x, y) ∈ C, let π1(x, y) := x and π2(x, y) := y. Let ω′ ∈ A∗ be a (τ, 2)-de Bruijn word
(which, by definition, has length at least t), and let us denote by ω = ω1 . . . ωt its prefix of
length exactly t.

Let G = (V, E) be a graph and S ⊆ V be the set of labeled vertices. If S is dominating
at distance t, the certificate function given by the prover is the following. The vertices of S

are given an arbitrary certificate, and for every u ∈ V \ S at distance i from S, the prover
gives to u the certificate c(u) which is (i mod 3, ωi).

5 Usually, de Bruijn words are defined as words of length kn such that each word of An appears at least
once when ω is considered circularly. But due to the length of ω, each word of An actually appears
exactly once circularly, so at most once if ω is not seen as a circular word.
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The informal idea of the verification is the following one. In its certificate, every vertex u

is given a letter of ω. By looking at its neighbors, u will be able to determine its position in ω

(since a pair of letters defines a unique position in the de Bruijn word ω), which corresponds
to its distance to S.

More formally, let c be a certificate function. Each vertex u checks the certificate as
follows :

(i) If N [u] ∩ S ̸= ∅, then u accepts.6

(ii) Else, u checks that, for all u′, u′′ ∈ N [u], if π1(c(u′)) = π1(c(u′′)) then π2(c(u′)) =
π2(c(u′′)). If it is not the case, u rejects.

(iii) Then, u checks if it has at least one neighbor v such that π1(c(v)) = π1(c(u)) − 1 mod 3,
and if π2(c(v))π2(c(u)) is a factor of ω. If it is not the case, u rejects.

(iv) Finally, for every neighbor w such that π1(c(w)) = π1(c(u)) + 1 mod 3, u checks if ω

has π2(c(v))π2(c(u))π2(c(w)) as a factor. If it is not the case, then u rejects.
(v) If u did not reject at this point, it accepts.

It remains to show that there exists a certificate function such that all the vertices of
G accept if and only if S is dominating at distance t. If S is a dominating set at distance
t, then one can easily check that all the vertices accept with the certificates assigned by
the prover as described previously. Note that with this certificate function, for step (ii), if
u′, u′′ ∈ N [u] satisfy π1(c(u′)) = π1(c(u′′)), then d(u′, S) = d(u′′, S) so π2(c(u′)) = π2(c(u′′)).

For the converse, assume that G is accepted with some certificate function c. By (iii),
every u ∈ V such that no vertex is labeled in N [u] should have a neighbor v such that
π1(c(v)) = π1(c(u)) − 1 mod 3 and π2(c(v))π2(c(u)) = ωℓωℓ+1 for some ℓ. Note that since
ω is a de Bruijn word, this ℓ is unique. Let us prove by induction on ℓ ∈ {1, . . . , t − 1} that
d(u, S) ⩽ ℓ + 1.

For ℓ = 1, we have π2(c(v))π2(c(u)) = ω1ω2. Let us prove that d(u, S) ⩽ 2. It is
sufficient to prove that d(v, S) ⩽ 1. If v accepts at step (i), the conclusion holds.
So we can assume that v accepts at step (v). By (iii), v has a neighbor v′ such
that π1(c(v′)) = π1(c(v)) − 1 mod 3 and π2(c(v′))π2(c(v)) is a factor of ω. Since v

does not reject at step (iv), π2(c(v′))π2(c(v))π2(c(u)) is a factor of ω. So the letters
ω1ω2 = π2(c(v))π2(c(u)) appear at least twice as a factor of ω, which is a contradiction
with the definition of de Bruijn words. Indeed, π2(c(v))π2(c(u)) are already the first two
letters of ω. So if a factor π2(c(v′))ω1ω2 appears somewhere, ω1ω2 must appear at least
twice. Hence, v accepts at step (i), so d(v, S) ⩽ 1.
Assume now that ℓ⩾ 2. To prove that d(u, S)⩽ ℓ+1, it is sufficient to prove that d(v, S)⩽ ℓ.
If v accepts at step (i) the conclusion holds. So we can assume that v accepts at step (v). By
(iii), v has a neighbor v′ such that π1(c(v′)) = π1(c(v)) − 1 mod 3 and π2(c(v′))π2(c(v)) is
a factor of ω. Since v does not reject at step (iv), π2(c(v′))π2(c(v))π2(c(u)) is a factor of ω.
Since the factor π2(c(v))π2(c(u)) appears exactly once in ω and π2(c(v))π2(c(u)) = ωℓωℓ+1,
we have π2(c(v′))π2(c(v)) = ωℓ−1ωℓ by (iv). By induction hypothesis, it implies that
d(v, S) ⩽ ℓ.

Thus, for any vertex u ∈ V , if u accepts at step (i) we have d(u, S) ⩽ 1, otherwise we have
d(u, S) ⩽ t by the previous induction. So S is indeed a dominating set at distance t. ◀

6 We could verify that π2(c(u)) corresponds to a letter in the beginning of ω, but it is not necessary.
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Abstract
We propose a linear algebraic method, rooted in the spectral properties of graphs, that can be used
to prove lower bounds in communication complexity. Our proof technique effectively marries spectral
bounds with information-theoretic inequalities. The key insight is the observation that, in specific
settings, even when data sets X and Y are closely correlated and have high mutual information, the
owner of X cannot convey a reasonably short message that maintains substantial mutual information
with Y . In essence, from the perspective of the owner of Y , any sufficiently brief message m = m(X)
would appear nearly indistinguishable from a random bit sequence.

We employ this argument in several problems of communication complexity. Our main result
concerns cryptographic protocols. We establish a lower bound for communication complexity of multi-
party secret key agreement with unconditional, i.e., information-theoretic security. Specifically, for
one-round protocols (simultaneous messages model) of secret key agreement with three participants
we obtain an asymptotically tight lower bound. This bound implies optimality of the previously
known omniscience communication protocol (this result applies to a non-interactive secret key
agreement with three parties and input data sets with an arbitrary symmetric information profile).

We consider communication problems in one-shot scenarios when the parties inputs are not
produced by any i.i.d. sources, and there are no ergodicity assumptions on the input data. In this
setting, we found it natural to present our results using the framework of Kolmogorov complexity.
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1 Introduction

Within computer science, a broad range of communication complexity problems has been
studied in recent decades. In these problems several (two or more) agents solve together
some task (compute a function, search an elements in a set, sample a distribution, and so on)
when the input data are distributed among the agents. In different context we may impose
different constraints on the class of admissible protocols (protocols can be deterministic or
randomized, one-way or interactive, with a one shot of simultaneous messages or with several
rounds, etc.). The cost of a communication protocol is the total number of bits that must be
exchanged between participants, typically in the worst-case situation.
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In this paper we focus on communication problems with three parties (Alice, Bob, and
Charlie), though our techniques can be extended to bigger number of participants. We deal
with the situation when the input data accessible to Alice, Bob, and Charlie are correlated.
In a popular model number-on-forehead, the datasets given to Alice, Bob, and Charlie have
large intersections, which is a very particular form of correlation between the data. We study
a more general setting (more usual in cryptography and information theory) where the input
data sets given to the parties have large mutual information, but it might be impossible to
materialize this mutual information as common chunks of bits shared by several parties.

The principal communication problem under consideration is secret key agreement: Alice,
Bob, and Charlie use the correlation between their input data sets to produce a common
secret key. A special feature of this setting is the implicit presence of another participant
in the game, Eve (eavesdropper/adversary). The eavesdropper can intercept all messages
between Alice, Bob, and Charlie, but this should not give Eve any information about the
final result of the protocol – the produced secret key. A secret key agreement (for two or
many participants) is one of the basic primitives in cryptography; it can serve as a part
of more sophisticated protocols (the produced secret key can be used in a one-time pad
encryption or in more complicated cryptographic schemes).

In practice, the most standard and well known method of secret key agreement is the
Diffie-Hellman key exchange [8, 22] and its generalizations, see [27]. The security of this
protocol is based on assumptions of computational complexity. In particular, the Diffie-
Hellman scheme is secure only if the eavesdropper cannot solve efficiently the problem of
discrete logarithms. Such an assumption looks plausible for most practical applications.
However, theoretical cryptography studies also secret key agreement in information-theoretic
settings, where we impose no restrictions on the computational power of the eavesdropper.
Besides a natural theoretical interest, such a scheme can be useful as a building block in more
complex protocols. In particular, a protocol of information-theoretic secret key agreement
(pretty conventional, involving communication and computational tools conceivable in the
framework of the classical physics) is an indispensable component of the protocol of quantum
key distribution ([4, 7, 16]). Besides quantum cryptography, secret-key agreement based on
correlated information appears in various cryptographic schemes connected with noisy data
(biometric information, observations of an inherently noisy communication channel or other
physical phenomenon, see the discussions in [17, 10]), in the bounded-storage model ([9, 11]),
and so on. We refer the reader to the survey [5] for a more detailed discussion.

In the Diffie-Hellman scheme, the parties may start the protocol from zero, holding
initially no secret information. In contrast, a secret key agreement with information-theoretic
secrecy is impossible if the parties start from scratch. To produce a key that is secret in
information-theoretic sense, the participants of the protocol need to be given some input data
(inaccessible to the eavesdropper). The pieces of input data provided to the parties must be
correlated with each other, and the measure of this correlation determines the optimal size
of the common secret key that can be produced.

So far we were very informal and did not specify the mathematical definitions behind
the words secrecy (of the key) and correlation (between parties’ inputs). Let us describe the
settings of information-theoretic secret key agreement more precisely. This can be done in
different mathematical frameworks.

Historically, information-theoretically secure protocols of secret key agreement were
introduced in classical information theory, [1, 21]. In this setting, the input data of the
parties are produced by correlated random variables. In the settings with two parties it is
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usually assumed that there is a sequence of i.i.d. pairs of random variables with finite range,
(Xi, Yi), i = 1, . . . , n, and Alice and Bob receive the values of (X1 . . . Xn) and (Y1 . . . Yn)
respectively. Then Alice and Bob run a communication protocol and try to produce a
common value (secret key) W asymptotically independent of the transcript (the transcript
consist of the messages sent by Alice and Bob to each other). Ahlswede–Csiszar [1] and
Maurer [21] found a characterization of the optimal size of W in terms of Shannon’s entropy
of the input data. They showed that the optimal size of the secret key is asymptotically
equal to the mutual information between Alice’s and Bob’s inputs. A similar characterization
of the optimal secret key is known for multi-party protocols, with k ≥ 3 parties, [6]. The
problem of secret key agreement and a related problem of common randomness generation
were extensively studied in the information theory community and also (in somewhat different
settings) in theoretical computer science, see, e.g., [28, 13] and the survey [29].

In this paper we follow the paradigm of building the foundations of cryptography in the
framework of algorithmic information theory, as suggested in a general form in [2] and more
specifically for secret key agreement in [24, 15]. In this approach, the information-theoretic
characteristics of the data are defined not in terms of Shannon’s entropy but in terms of
Kolmogorov complexity. In this setting, we can talk about properties of individual inputs,
keys, transcripts, and not about probability distributions. We assume that the parties (Alice,
Bob, Charlie) are given as inputs binary strings x, y, z respectively, and that the parties
know the complexity profile of these strings, i.e., the optimal compression rate of these inputs
(precisely or at least approximately, see below). The secrecy of the produced key means that
this key must be incompressible, even conditional on the public data including the transcript
of the communication protocol. In other words, the mutual information (in the sense of
Kolmogorov complexity) between the key and the messages sent via the communication
channel (the transcript) must be negligibly small. Practically, this property guarantees that
the adversary can crack an encryption scheme based on this key only by the brute-force
search, see the discussion in [15].

▶ Remark 1.1. The approach based on Kolmogorov complexity seems more general since we
do not need to assume that inputs have any property of stationarity or ergodicity, we do
not fix in advance the probability distribution of the pairs of inputs, we do not even assume
the existence of such a distribution. However, the frameworks of Shannon and Kolmogorov
for the definition of secrecy have similar practical interpretations. Indeed, a distribution
W on {0, 1}n has a high entropy, i.e., H(W ) ≈ n, if and only if with a high probability
W returns an n-bit string with Kolmogorov complexity close to n. For a more detailed
discussion of the connection between Shannon’s and Kolmogorov’s formalism see [14]. The
formal statements in Kolmogorov’s framework are usually stronger than their homologues in
Shannon’s framework, and theorems from the former theory in most cases formally imply
the corresponding results from the latter theory, see [24]. ⌟

A characterization of the optimal size of the secret key in term of Kolmogorov complexity
was suggested in [24]. We begin with the case of two parties, see Theorem 1.2 below. In
this theorem, a communication protocol is randomized (we assume that the parties may use
a public source of random bits, which is also accessible to the eavesdropper). Let x and y

stand for inputs of Alice and Bob, r denote the string of bits produced by a public source
of randomness (used by the parties and accessible to the eavesdropper), and t denote the
transcript of the protocol.
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▶ Theorem 1.2 ([24]).
(i) For any numbers k, ℓ ∈ N and ϵ, δ > 0 there exist a randomized communication protocols

πk,ℓ,ϵ,δ such that on every pair of input strings (x, y) (of length at most n) satisfying1

C(x) δ= k and C(x | y) δ= ℓ, Alice and Bob with probability 1 − ϵ both obtain a result
w = w(x, y, r) such that

[length of w in bits] = C(x)−C(x | y)−O(δ)−o(n) and C(w | ⟨t, r⟩) ≥ |w|−o(n) (1)

(for n = |x| + |y|), which means that the size of the produced secret key is asymptotically
equal to the mutual information between Alice’s and Bob’s inputs, and the leakage of
information on the key to the eavesdropper (who can access the transcript of the protocol
t and public randomness r) is negligibly small.

(ii) The size of the key in (i) is pretty much optimal: no communication protocol can produce
a key w longer than C(x) − C(x | y) + O(δ) + o(n) without loosing the property of
secrecy C(w | ⟨t, r⟩) ≥ [length of w in bits] − o(n) (the size of a secret key cannot be
made asymptotically greater than the mutual information between Alice’s and Bob’s
inputs).

▶ Remark 1.3. In Theorem 1.2, the values of k and ℓ are embedded in the communication
protocol πk,ℓ,ϵ,δ. This means that the parties in some sense “know” (at least approximately)
the values of C(x) and C(x | y). This is similar to the settings of the classical information
theory, where the parties “know” the probability distribution on random inputs and can use
a suitable protocol. The theorem is nontrivial if the approximation rate δ = o(n) as n → ∞.

The secrecy of the key is understood in the information-theoretic sense: the last inequality
in (1) claims that complexity of the key w conditional one all data accessible to the adversary
must be (almost) maximal. The theorem can be adapted to a non-uniform setting where the
adversary is given an auxiliary inputs sn. In this case, all terms of Kolmogorov complexity
appearing in the theorem should be relativized conditional on sn. The theorem remains
meaningful if the size of sn is o(n). ⌟

Theorem 1.2 can be extended to the multi-party setting, where k > 2 parties are given
correlated data and need to agree on common secret key communicating via a public channel.
Let us discuss in more detail the version with k = 3 participants. We assume now that
three parties (Alice, Bob, and Charlie) are involved in the protocol. They are given inputs
x, y, z respectively. We assume that all parties have an access to a common source of random
bits (we denote by r the bits produced by this source) and exchange messages via a public
channel (we use the conventional definition of a multi-party communication protocol with a
public source of random bits, see [19]). It is assumed that every message sent by any party
reaches every other party (and the eavesdropper). In what follows we consider only triples of
inputs (x, y, z) with a “symmetric” complexity profile such that C(x) ≈ C(y) ≈ C(z) and
C(x, y) ≈ C(x, z) ≈ C(y, z).

▶ Theorem 1.4 (symmetric version of [24, Theorem 5.11]).
(i) For any profile (k1, k2, k3) ∈ N3 and ϵ, δ > 0 there exist a randomized communication

protocols πk1,k2,k3,ϵ,δ for three parties such that on every triple of binary input strings
(x, y, z) (of length at most n) satisfying

C(x) δ= C(y) δ= C(z) δ= k1, C(x, y) δ= C(x, z) δ= C(y, z) δ= k2, C(x, y, z) δ= k3 (2)

1 The term C(x) stands for the plain Kolmogorov complexity of x (optimal compression of x), the term
C(x|y) stands for conditional Kolmogorov complexity of x conditional on y (optimal compression of x

given advice y), and the notation C(x) δ= k and C(x|y) δ= ℓ means that |C(x)−k| ≤ δ and |C(x|y)−ℓ| ≤ δ.
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Alice, Bob, and Charlie can agree with probability 1 − ϵ on a key w = w(x, y, z, r) such
that

[length of w in bits] = I(x:y|z)+I(x:z|y)+I(y:z|x)
2 + I(x : y : z) − O(δ) − o(n), (3)

C(w | ⟨t, r⟩) ≥ |w| − o(n), (4)

where r is the bit string produced by the public source of randomness, and t is the
communication transcript (concatenation of the messages sent by Alice, Bob, and
Charlie).

(ii) The size of the key in (i) is asymptotically optimal, i.e., no communication protocol can
give a key w asymptotically longer than

1
2 (I(x : y | z) + I(x : z | y) + I(y : z | x)) + I(x : y : z) + O(δ) + o(n) (5)

without loosing the property of secrecy (4).
▶ Remark 1.5. The general version of [24, Theorem 5.11] applies to a triple of inputs with
arbitrary (possibly non-symmetric) complexity profile. In the general case, the characteriza-
tion of the optimal size of the secret key is more involved than (3), see [24]. We discuss only
symmetric complexity profiles in order to avoid cumbersome formulas and focus on the most
essential combinatorial ideas behind the proofs.

Ineq. (4) means that the eavesdropper (who can access the communication transcript t

and the public randomness r) gets no information on the produced secret key. Similarly to
Theorem 1.2, this secrecy condition remains meaningful even if the adversary is a non-uniform
agent having advice sn of size o(n). ⌟

The known proofs of the positive parts of Theorem 1.2 and Theorem 1.4 (the existence of
protocols) are quite explicit and constructive: we know specific communication protocols
that allow to produce a secret key of the optimal size. More specifically, the proofs suggested
in [24] provide a protocol for Theorem 1.2(i) with communication complexity

min {C(x | y), C(y | x)} + O(δ) + O(log n) (6)

and a protocol2 for Theorem 1.4(i) with communication complexity

C(x, y, z) − 1
2

(
I(x : y | z) + I(x : z | y) + I(y : z | x)

)
− I(x : y : z) + O(δ) + O(log n). (7)

The communication complexity (6) from Theorem 1.2(i) is known to by asymptotically
optimal, see [15]. In this paper we study the communication complexity of the problem from
Theorem 1.4. In fact, (7) is not optimal for general communication protocols; however, we
show that this communication complexity is asymptotically optimal in the class of protocols
with simultaneous messages, i.e., in the model where Alice, Bob, and Charlie send their
messages in parallel, receive the messages sent by their vis-a-vis, and compute the result
(secret key) without any further interaction.

2 The scheme proposed in [24] is the so called omniscience protocol. In this protocol, all parties send
simultaneously their messages (random hash-values of the inputs) so that each of them learns completely
the entire triple of inputs (x, y, z) (this explains the term omniscience). The total length of the sent
messages is less than C(x, y, z), so an eavesdropper can learn only a partial information on the inputs.
The gap between the total complexity of C(x, y, z) and the divulged information is used to produce a
secret key.
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▶ Theorem 1.6 (main result). In the setting of Theorem 1.4, communication complexity of a
protocol with simultaneous messages (the total number of bits sent by Alice, Bob, and Charlie)
for triples of inputs (x, y, z) with a symmetric complexity profile (2)) cannot be smaller than

C(x, y, z) − 1
2

(
I(x : y | z) + I(x : z | y) + I(y : z | x)

)
− I(x : y : z) − O(δ) − O(log n). (8)

Communication complexity (8) is not optimal for general (multi-round) communication
protocols of secret key agreement, see Proposition 8.1.

The proof of our main result combines information-theoretic techniques and spectral
bounds for graphs (the expander mixing lemma). Spectral bounds per se are not new in
communication complexity (see, e.g., the usage of Lindsey’s lemma in [3]). Information-
theoretic methods are also pretty common in this area. But the combination of these two
techniques seems to be less standard. The key step of the proof is the observation that in
some setting, when parties hold correlated data sets, for each of them it is hard to send a
message that has non-negligible mutual information with the partners’ data. In other words,
a “too short” message sent by Alice would have zero mutual information with the data (y, z)
given to Bob and Charlie. For secret key agreement protocols, this observation implies that
the messages of every party inevitably have to be quite long. A similar argument can be
used in problems that are not connected with cryptography, see Theorem 5.1.

▶ Remark 1.7. It is instructive to compare our work with [15], where similar questions were
addressed in the setting of two parties. Our work was motivated by the observation that the
argument from [15] fails in the setting with k > 2 parties. In fact, the multi-party setting is
qualitatively different. This becomes clear when we consider secret key agreement with a
sub-optimal size of the key. The technique of [15] (in the setting with two parties) implies
that communication complexity of the secret key agreement cannot be reduced even if Alice
and Bob agree on a key of a pretty small size, see the “threshold phenomenon” discussed
in [15]. Apparently, this phenomenon does not occur in the multi-party setting.

Thus, to deal with multi-party setting, we have to revise significantly the techniques
from [15]. We have to change both the information-theoretic and algebraic components
of the proof. The most important new components appear in the information-theoretic
part of the proof. In particular, we need to use the exact expression (5) for the size of
the secret key. The key new element of our argument is the observation Alice must send a
message having large mutual information with Bob’s and Charlie’s inputs, and the cost of
this task can be high, see the discussion in Sections 3.3-3.4 (this idea was irrelevant in the
setting with two parties). In the algebraic component of the proof, we adapt the definition
of a spectral expander to hypergraphs and then construct a hypergraph with the required
properties (see Definition 3.5 and Section 3.5). Only the bridge between the algebraic and
the information-theoretic components is pretty much the same as in [15] (in the proof of
Theorem 4.1 we use an argument very similar to [15, Lemma 6]). ⌟

The rest of the paper is organized as follows. In Section 2 we recall several standard
definitions and introduce the notation. In Section 3 we explain informally the scheme of
our argument. In Section 4 we prove the main technical tool of this paper, Theorem 4.1
(which claims that in some setting, it is hard to send a message that has non-negligible
mutual information with the partners’ data). In Section 5 we illustrate the application of our
technique with a simple example that is not related to cryptography. In Section 6 we prove
Theorem 1.6 for a restricted (“the most important”) class of complexity profiles. In Section 7
we extend this result and prove Theorem 1.6 for all (symmetric) complexity profiles. We
conclude with a discussion of limitations of our technique and open problems.
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2 Preliminaries and Notation

2.1 General notation

For a binary string x we denote its length |x|. For a finite set S we denote its cardinality #S.
We manipulate with equalities and inequalities for Kolmogorov complexity. Since many

of them hold up to a logarithmic term, we use the notation A
lg= B, A ≤lg B, and A ≥lg B for

|A − B| = O(log n), A ≤ B + O(log n), and B ≤ A + O(log n) respectively, where n is clear
from the context (n is usually the length of the strings involved in the inequality).

Fq denotes the field of q elements (usually q = 2n). A k-dimensional vector over Fq is
a k-tuple (x1, . . . , xk) ∈ Fk

q . We say that two vectors (x1, . . . , xk) and (y1, . . . , yk) in Fk
q

are orthogonal to each other if x1y1 + . . . + xkyk = 0 (the addition and multiplication are
computed in the field Fq). A vector is called self-orthogonal if it is orthogonal to itself. In a
k-dimensional space over the field of characteristic 2 there are 2k−1 self-orthogonal vectors
(x1, . . . , xk) and they form a linear subspace of co-dimension 1 (a vector is self-orthogonal iff
x1 + . . . + xk = 0). A direction in Fk

q is an equivalence class of non-zero vectors over Fq that
are proportional to each other (a direction can be understood as a point in the projective
space of dimension k − 1).

C(x) stands for Kolmogorov complexity of x (the length of the shortest program3 produc-
ing x) and C(x | y) (the length of the shortest program producing x given input y) stands
for Kolmogorov complexity of x given y. Respectively, I(x : y) and I(x : y | z) denote the
mutual information between x and y and the conditional information between x and y given
z. We use the notation I(x : y : z) := I(x : y) − I(x : y | z). For a tuple of strings (x1, . . . , xn)
its complexity profile is the vector consisting of the complexity values C(xi1 , . . . , xis

) (for
all 2n − 1 sub-tuples 1 ≤ i1 < . . . < is ≤ n). Kolmogorov complexity can be relativized:
CO(x) and CO(x | y) stand for Kolmogorov complexity of x (conditional on y) assuming
that the universal decompressor can access oracle O. If the oracle is a finite string s, then
CO(x) = C(x | s) + O(1). For more detail on the basic facts about Kolmogorov complexity,
see the full paper. A comprehensive introduction in the theory of Kolmogorov complexity
can be found in [20] and [26].

2.2 Communication complexity

We use the conventional notion of a communication protocol for two or three parties, see for
detailed definitions [19]. We discuss deterministic protocols and randomized protocols with a
public source of random bits (see the full version of the paper for more detail).

In general, a communication protocol may consist of several rounds, when each next
message of every party depends on the previously sent messages. In the simultaneously
messages model there is no interaction: all parties send in parallel their messages that depend
only on their own input data (and the random bits), and then compute the final result.

We will assume that the communication protocol has a “uniform” description. More
technically, we assume that for n-bit inputs (the full description of such a protocol) has an
efficient description of size O(log n). For such a protocol we do not loose much security even
if the description of the protocol is available to the eavesdropper. Thus, we cannot “cheat” by
embedding in the structure of the protocol any secret information hidden from the adversary.

3 In an optimal programming language, see [20, 26] for more detail.
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2.3 Reminder of the spectral graph technique
Let G = (L ∪ R, E) be a bi-regular bipartite graph where each vertex in L has degree DL,
each vertex in R has degree DR, and each edge e ∈ E connects a vertex from L with a vertex
from R (observe that #E = #L · DL = #R · DR). The adjacency matrix of such a graph is a

zero-one matrix M =
(

0 A

A⊤ 0

)
where A is a matrix of dimension (#L) × (#R) (Axy = 1

if and only if there is an edge between the x-th vertex in L and the y-th vertex in R). Let
λ1 ≥ λ2 ≥ . . . ≥ λN be the eigenvalues of M , where N = #L + #R is the total number of
vertices. Since M is symmetric, all λi are real numbers. It is well known that for a bipartite
graph the spectrum is symmetric, i.e., λi = −λN−i+1 for each i, and λ1 = −λN =

√
DLDR

(see, e.g., [12]). The graphs with a large gap between λ1 and λ2 have the property of good
mixing, see [25].

▶ Lemma 2.1 (Expander Mixing Lemma for bipartite graphs, see [12]). Let G = (L∪R, E) be a
regular bipartite graph where each vertex in L has degree DL and each vertex in R has degree
DR. Then for each A ⊆ L and B ⊆ R we have

∣∣∣E(A, B) − DL·#A·#B
#R

∣∣∣ ≤ λ2
√

#A · #B,

where λ2 is the second largest eigenvalue of the adjacency matrix of G and E(A, B) is the
number of edges between A and B.

▶ Corollary 2.2. Let G = (L ∪ R, E) be a graph from Lemma 2.1. Then for A ⊆ L and
B ⊆ R such that #A · #B ≥

(
λ2#R

DL

)2
we have E(A, B) = O

(
DL·#A·#B

#R

)
.

3 Main technical tools and the scheme of the proof

In this section we sketch the main ideas used in the proof of our principal result (Theorem 1.6).

3.1 Setting the parameters
Let us assume that δ = O(log n), i.e., all parties of the protocol “know” the complexity
profile of the triple of inputs (x, y, z) up to an additive logarithmic term4. This assumption
does not affects significantly the argument, but it helps to avoid minor technical details and
makes the explanation more transparent. To simplify the notation, in this section we discuss
only triples of inputs with the profile

C(x) lg= C(y) lg= C(z) lg= kn, C(x, y) lg= C(x, z) lg= C(y, z) lg=(2k − 1)n,

C(x, y, z) lg=(3k − 3)n
(9)

In this setting, Theorem 1.4 gives the optimal size of a secret key

1
2

(
I(x : y | z) + I(x : z | y) + I(y : z | x)

)
+ I(x : y : z) lg= 1.5n. (10)

Our aim is to bound communication complexity for inputs with this complexity profile:

▶ Theorem 3.1 (special case of Theorem 1.6). In the setting of Theorem 1.4, communication
complexity of a protocol with simultaneous messages for some triples of inputs (x, y, z) with
complexity profile (9) cannot be smaller than (3k − 4.5)n, which matches Eq. (8).

4 A logarithmic error term is, in some sense, the finest meaningful precision for Kolmogorov complexity. All
our arguments can be repeated mutatis mutandis for any coarser precision δ such that log n ≪ δ(n) ≪ n.
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3.2 Preliminary consideration: the need for hard inputs

The optimal size of the secret key in Theorem 1.2 and Theorem 1.4 depends only on the
complexity profile of (x, y, z) and not on the combinatorial structure of the input. The
situation with communication complexity (the number of bits sent by the parties) is different:
it may vary significantly for different tuples of inputs with the same complexity profile.
When we talk about the communication complexity of a protocol, we mean the worst-case
complexity, i.e., the maximal number of sent bits among all admissible inputs. To prove a
lower bound for the worst-case communication complexity, we need to provide a triple of
inputs for which the parties have to send long messages. We provide a class of inputs that
are guaranteed to be “hard” (for all valid protocol, for most triples of inputs from this class,
communication complexity is high).

3.3 First step of the argument: conditional on Charlie’s message, the
mutual information between Alice’s and Bob’s inputs must increase

We begin with an observation that might seem to have nothing to do with communication
complexity. We recall the lower bound for the size of the secret key (that applies to protocols
with any communication complexity). In [24] (see Theorem 1.2(ii)) it is shown that two
parties, Alice and Bob, can agree on secret key of complexity k only if the mutual information
between Alice’s input x and Bob’s input y is greater than k. The proof of this statement can
be easily adapted to the following slightly more general setting:

▶ Lemma 3.2. Assume that there is a publicly available information s (accessible to Alice,
Bob, and the eavesdropper); besides this, Alice is given a private input x and Bob is given a
private input y. Then, by communication via a public channel accessible to the eavesdropper,
Alice and Bob cannot agree on a secret key of complexity greater than I(x : y | s).

We apply this proposition to a protocol with three parties. Let tC denote the concatenation
of the messages sent by Charlie. This is a piece of publicly available information (accessible
to Alice, Bob, and the eavesdropper). Due to Lemma 3.2, Alice and Bob cannot agree on a
secret key with Kolmogorov complexity greater than I(x : y | tC) (at this point we ignore
whether Charlie can learn the same key or not). Hence, in the settings (9), a secret key of
size (10) can be produced only if I(x : y | tC) ≥lg 1.5n. Observe that in the setting (9) the
mutual information between x and y is equal to n. This means that the mutual information
between Alice’s and Bob’s inputs conditional on Charlie’s message, i.e., I(x : y | tC), is
bigger than the unconditional mutual information between Alice’s and Bob’s inputs, i.e.,
I(x : y). A pretty standard information-theoretic argument implies that the gap between
I(x : y) and I(x : y | tC) is not greater than the mutual information between ⟨x, y⟩ and
tC , and we conclude that I(x, y : tC) ≥lg n/2. In other words, Charlie must send a message
tC that has ≥ n/2 bits of mutual information with the pair of inputs of Alice and Bob. A
similar argument implies that Alice must send a message tA such that I(y, z : tA) ≥lg n/2
and Bob must send a message tB such that I(x, z : tB) ≥lg n/2.

This part of the argument is based on Lemma 3.2, which re-employs an argument from [24]
in a pretty direct way. So at this stage we need no substantially new ideas.
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3.4 Second step of the argument: it may be difficult for Alice to send a
message increasing the mutual information between Bob’s and
Charlie’s inputs

We have shown above that in the setting (9) Alice, Bob, and Charlie can agree on a secret
key of optimal size only if each of them sends a messages that contains ≥lg n/2 bits of mutual
information with the inputs of two other parties

We are going to show that this may require sending very long messages (much longer
than n/2 bits). This part of the argument is the main technical contribution of our paper.
To explain this idea, we make a digression and discuss a similar problem in simpler settings.

Digression: how to say something that the interlocutor already knows. Let us consider
randomized communication protocols with two participants playing non-symmetric roles. We
call the participants Speaker and Listener and assume that Speaker holds an input string
a and Listener holds another input string b. This is a one-way protocol: Speaker sends a
message to Listener in one round, without any feedback. The aim of Speaker is to send to
Listener a message that is not completely unpredictable from the point of view of Listener.
More precisely, Speaker’s message must have positive (and non-negligible) mutual information
with Listener’s input b. We start with a simple example when the task of Speaker is trivial.

▶ Example 3.3. Let Speaker is given a string a = uv and Listener is given a string b = uw,
where u, v, and w are independent incompressible strings of length n, i.e., C(uvw) lg= C(u) +
C(v) + C(w) lg= 3n. Observe that

C(a) lg= 2n, C(b) lg= 2n, I(a : b) lg= n (11)

In this setting, if Speaker wants to communicate a message of length n with a high mutual
information with Listener’s y, she may send a part of u, which is know to both participants
of the protocol. On the other hand, if Speaker wants to communicate a message with a low
mutual information with Listener’s b, this is also possible: Speaker may send a part of v,
which is know to Speaker but not to the Listener. ⌟

▶ Example 3.4. Now we consider a pair (a, b) with the same complexity profile as in
Example 3.3 but with a different combinatorial structure. Let a be a line in the projective
plane over the finite field F2n and b be a point in the same projective plane incident to a, and
the pair (a, b) have the maximal possible complexity (among all incident pairs (line, point)
in the plane). For these a and b we have the same complexity profile (11). Indeed, we need
two elements of the field (2n bits of information) to specify a line or a point, but we need
only one element of the field (n bits of information) to specify a point when a line is known.
However, the combinatorial properties of this pair are very different from the properties of
the pair in Example 3.3.

If Speaker is given a and Listener is given b as above, then Speaker cannot send a
reasonably short message having non-negligible mutual information with Listener’s input b.
In fact, if Speaker wants to send to Listener a message m = m(a) having δ bits of mutual
information with b, then the size of m must be at least n + δ. In particular, if the message
m is shorter than n, then it cannot contain any information on b, see Section 4. ⌟

Example 3.4 is an instance of a much more general phenomenon. Let us have a bipartite
graph G = (VL, VR, E), where the set of vertices is VL∪VR and the set of edges is E ⊂ VL×VR.
We assume that the graph is bi-regular, i.e., all vertices in VL have the same degree DL and
all vertices in VR have the same degree DR (we always assume that DL ≥ DR). We say that
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G is a spectral expander5 if the second eigenvalue of its adjacency matrix λ2 = O(
√

DL). Let
(x, y) ∈ E be a “typical” edge of this graph (in the sense that its Kolmogorov complexity
is close to the maximum possible value), and let x and y be the inputs given to Alice and
Bob respectively. Then we have a property similar to Example 3.3: if Alice wants to send a
message having δ bits of mutual information with Bob’s data y, she must send a message of
size at least log DR + δ. We prove this fact using the Expander Mixing Lemma. (Example 3.4
corresponds to the graph G = (VL, VR, E) where VL consists of all lines in the plane, VR

consists of all points in the plane, and E is the set of all pairs of incident lines and points; it
is known that this graph is a spectral expander.) [End of Digression.]

Now we generalize the observations from the Digression above and explain the main idea
of the proof of Theorem 3.1. We need the following extension of the notion of expander.

▶ Definition 3.5. Let G = (V1, V2, V3, H) be a hypergraph where the set of vertices consists
of three disjoint parts V1, V2, V3 of the same cardinality, and the set of hyperedges is a set
H ⊂ V1 × V2 × V3. We consider three bipartite graphs G1, G2, G3 associated with hypergraph
G: each Gi is a bipartite graph (Vi, Vjℓ, Ei) (here j = i + 1 mod 3 and ℓ = i + 2 mod 3),
where Vjℓ is the sets of ⟨y, z⟩ ∈ Vj ×Vℓ that are connected in G and (x, ⟨y, z⟩) ∈ Ei if and only
if the triple {x, y, z} corresponds to a hyperedge in H. The hypergraph is called tri-expander
if the graphs G1, G2, G3 are bi-regular spectral expanders6.

We show that the communication is costly for a triple of inputs (x, y, z) that is a hyperedge
in a tri-expander. To this end, we combine the idea from section 3.3 with an argument
similar to the observation sketched in the Digression: each party must send a message having
non-negligible mutual information with two other inputs (an information-theoretic argument)
but this is only possible when each of the messages is very long (due to the spectral bound
and the expander mixing lemma).

3.5 Construction of a tri-expander
To conclude the proof of the main result it remains to show that there exists a tri-expander
with suitable parameters:

▶ Proposition 3.6. For all integer numbers k ≥ 0 and n ≥ 1 there exists a tri-expander
G = (V1, V2, V3, H) such that #V1 = #V2 = #V3 = Θ(2kn), #H = Θ(2kn · 2(k−1)n · 2(k−2)n),
and for all i ̸= j, for every x ∈ Vi there exists Θ(2(k−1)n) vertices y ∈ Vj such that x and y

are adjacent in the hypergraph.

Proof. We construct such a tri-expander explicitly. We fix the finite field F2n with q = 2n

elements, the (k + 2)-dimensional space L over this field, and the subspace Lso ⊂ L that
consists of self-orthogonal vectors. Observe that #Lso = #L/q = qk+1 (a subspace of
co-dimension 1 in L). Let V denote the space of all directions in Lso except for the direction
(1, . . . , 1) (which is self-orthogonal for even k). Observe that #V = Θ(qk).

We let V1 = V2 = V3 = V and define H as the set of all triple (x, y, z) ∈ V 3 such that
x, y, z are distinct and pairwise orthogonal directions in Lso.

For every vector x ∈ Lso, the condition of being orthogonal to x determines in Lso a
subspace of co-dimension 1; this subspace consists of qk vectors (including x itself as it is
self-orthogonal) and, respectively, (qk − 1)/(q − 1) directions (again, including the direction

5 We use the term expander without assuming that the degree of a graph is constant.
6 The usage of the expander mixing lemma for a tri-expander seems to be similar but not literally

equivalent to the hypergraph generalization of the expander mixing lemma from [18].
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collinear with x). If we have two non-collinear vectors x, y ∈ Lso, then the condition of being
orthogonal to x and y determines in Lso a subspace of co-dimension 2; this subspace consists
of qk−1 vectors (including x and y), which corresponds to (qk−1 − 1)/(q − 1) = Θ(qk−2)
directions (once again, including the directions collinear with x and with y).

Thus, we have Θ(qk) individual vertices, Θ(qk · qk−1) pairs of adjacent vertices, and
Θ(qk · qk−1 · qk−2) adjacent triples (hyperedges). It remains to compute the eigenvalues of
the associated bipartite graphs.

▶ Lemma 3.7. The hypergraph G = (V1, V2, V3, H) defined above is a tri-expander.

(We give a proof in the full version of the paper.) ◀

▶ Remark 3.8. A standard counting shows that for most hyperedges (x, y, z) in the graph
from Proposition 3.6 we have C(x) lg= log Θ(qk) lg= kn, C(x, y) lg= log Θ(qk · qk−1) lg=(2k − 1)n,

C(x, y, z) lg= log Θ(qk · qk−1 · qk−2) lg=(3k − 3)n, and we get the profile (9). ⌟

4 When it is hard to say anything that the interlocutor already knows

In this section we explain our main technical tool. We consider randomized communication
protocols with two participants, Speaker and Listener. We assume that Speaker holds an
input string a and Listener holds another input string b; we assume also that the complexity
profile of the pairs (a, b) is known to all parties. The aim of Speaker in this protocol is
to send to Listener a message that has non-negligible mutual information with Listener’s
input b, as we discussed in Section 3.

▶ Theorem 4.1. Let G = (VL, VR, E) be a bipartite spectral expander such that N = #VL,
M = #VR, and (DL, DR) are the degrees of the edges in VL and VR respectively. Let
(a, b) ∈ E be a “typical” edge in the graph, i.e., C(a, b) lg= log #E, and C(m | a) lg= 0. Then
I(m : b) ≤lg max{0, C(m) − C(a | b)}. In particular, if the length of m is less than C(a | b),
then I(m : b) lg= 0.

▶ Remark 4.2. The statement of Theorem 4.1 remain valid if we relativize all terms of
Kolmogorov complexity in this statement conditional on a string r such that I(r : (a, b)) lg= 0.
In what follows we present the proof without r. But every step of this argument trivially
relativizes conditional on r assuming that C(a, b | r) lg= C(a, b) lg= log #E. ⌟

Proof of Theorem 4.1. Let na := log N , nb = log M , n′
a = log DR, n′

b = log DL, and
nab := na − n′

a. Using this notation, we have

C(a) lg= na, C(b) lg= nb, C(a | b) lg= n′
a, C(b) lg= nb, C(b | a) lg= n′

b, I(a : b) lg= nab.

Since Speaker computes the message m given the input data a, we have C(m | a) lg= 0. We
denote α := I(m : a | b) and β := I(m : a : b). It is easy to verify that C(m) = α + β.

Case 1. Assume that C(m) ≤ n′
a − 2 · const · log n for some const > 0 (a constant to be

specified later). In this case, to prove the theorem, we need to show that I(m : b) lg= 0. In our
notation this is equivalent to β

lg= 0. More technically, we are going to show that

β ≤ const · log n. (12)

For the sake of contradiction we assume that (12) is false. It is enough to consider the
case when β is somewhat large but not too large, i.e., just slightly above the threshold (12).
Indeed, any communication protocol violating (12) can be converted in a different protocols
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with the same or a smaller value of α and with β = const · log n + O(1). To this end, we
observe that by discarding a few last bits of Speaker’s message m we make the protocol only
simpler. So, we may replace the initial message m with the shortest prefix of the initial
message that still violates (12). Thus, in what follows, we assume w.l.o.g. that

const · log n < β ≤ const · log n + O(1).

Let us define A := {a′ : C(a′ | m) ≤ C(a | m)} and B := {b′ : C(b′ | m) ≤ C(b | m)}. We
use the following standard claim:

▷ Claim. For A and B defined above we have #A = 2C(a|m)±O(log n) = 2na−α−β±O(log n)

and #B = 2C(b|m)±O(log n) = 2nb−β±O(log n) (see, e.g. [24, Claim 4.7]).

From the claim we obtain #A · #B = 2na−α−β+nb−β±O(log n) = 2na+nb−C(m)−β±O(log n).

Since C(m) ≤ n′
a − 2 · const log n and β < const log n + O(1), we conclude

na + nb − C(m) − βn ± O(log n) ≥ na + nb − (n′
a − 2 · const · log n)

− const · log n − O(log n)
≥ nab + nb + const · log n − O(log n) ≥ nab + nb.

(To get the last inequality, we should choose the value of const in (12) so that const · log n

majorizes the term O(log n) in the inequality above.) Thus, #A · #B ≥ 2nab+nb = M2

DL
.

With the Corollary 2.2 we obtain E(A, B) = O
(

DL·#A·#B
M

)
= O

(
#A·#B
M/DL

)
. Now observe

that given m and the numbers C(a | m) and C(b | m) we can enumerate the sets A and B

and, therefore, we can describe (a, b) by the index of this edge in the list of all edges between
A and B. The size of such an index is log E(A, B). Hence,

C(a, b | m) ≤lg log E(A, B) ≤lg (na + nb − C(m) − β) − (nb − n′
b)

= na + n′
b − C(m) − β = C(a, b) − C(m) − β,

and C(a, b) ≤lg C(m) + C(a, b | m) ≤lg C(a, b) − β. The terms O(log n) hidden in the notation
≤lg and lg= in this inequality do not depend on β. Thus, we get a contradiction if the constant
in (12) is chosen large enough.

Case 2. Now we assume that C(m) = n′
a + δ for an arbitrary δ. Denote by m′ the prefix

of m of length (n′
a − const log n) and by m′′ the suffix of m of length (δ + const log n). We

know from Case 1 that I(m′ : b) lg= 0. It remains to apply the chain rule,

I(m : b) lg= I(m′ : b) + I(m′′ : b | m′) lg= I(m′′ : b | m′) ≤lg |m′′| lg= δ.

and the theorem is proven. ◀

▶ Corollary 4.3. Let G = (VL, VR, E) be a bipartite spectral expander such that N = #VL,
M = #VR, and (DL, DR) are the degrees of the edges in VL and VR respectively.
(a) We assume that Speaker and Listener are given, respectively, a and b that are ends of a

typical edge (a, b) ∈ E in the graph. We consider a one-round communication protocol
where Speaker sends to Listener a message m = m(a). Then I(m : b) ≤lg max{0, C(m) −
C(a | b)}. In particular, if the length of m is less than C(a | b), then I(m : b) lg= 0.

(b) A similar statement is true if Speaker and Listener are given instead of a and b some
inputs a′ and b′ such that C(a′ | a) lg= 0 and C(b′ | b) lg= 0 (e.g., if Speaker is given a
function of a vertex a ∈ VL and Listener is given a function of a vertex b ∈ VR).
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5 Protocols with simultaneous messages : a warm-up example

In this section we use Theorem 4.1 from the previous section to prove a lower bound for
communication complexity of the following problem. Alice and Bob hold, respectively, lines
a and b in a plane (intersecting at one point c). They send to Charlie (in parallel, without
interacting with each other) some messages so that Charlie can reconstruct the intersection
point. We argue that the trivial protocol (where Alice and Bob send the full information on
their lines) is essentially optimal.

▶ Theorem 5.1. Let Alice and Bob be given lines in the projective plane over the finite
field F2n (we denote them a and b respectively), and it is known that the lines intersect at
point c. Another participant of the protocol Charlie has no input information. Alice and Bob
(without a communication with each other) send to Charlie messages mA and mB so that
Charlie can find c. For every communication protocol for this problem, for some a, b we have
|mA| + |mB | ≥lg 4n, which means essentially that in the worst case Alice and Bob must send
to Charlie all their data (for a typical pair of lines we have C(a) + C(b) lg= 4n).

In the setting of Theorem 5.1, the inputs of Alice and Bob contain n bits of the mutual
information with c, so an easy lower bound for the communication complexity is n + n = 2n.
However, due to the spectral properties of graphs implicitly present in this construction, the
true communication complexity of this problem is twice bigger.

Sketch of the proof (see the full version of the paper for the details). In this sketch we
ignore the public randomness and explain the argument for deterministic protocols. A
generalization for protocols with public randomness is pretty straightforward, see full version
of the paper.

Let (a, b) be a pair of lines in a projective plane over F2n intersecting at a point c, such that
C(a, b) lg= C(a)+C(b) lg= 4n (which is the case for most pairs of lines in the plane). Observe that
I(a : c) lg= n and I(b : c) lg= n. It follows that for the messages mA = mA(a) and mB = mB(b)
we have I(mA : c) ≤lg n and I(mB : c) ≤lg n. Using standard information theoretic inequalities,
one can show that Alice’s message mA and Bob’s message mB determine the point c uniquely
only if I(mA : c) lg= n and I(mB : c) lg= n. Thus, Alice and Bob must send messages with large
enough information on c.

The graph of possible pairs (a, c) and the graph of possible pairs (b, c) (the configurations
(line, point)) is the same as in Example 3.4. Hence, we can apply Theorem 4.1 (Alice
and Bob play the roles of Speaker, and Charlie plays the role of Listener) and conclude
that I(mA : c) ≤lg max{0, C(mA) − n} and I(mB : c) ≤lg max{0, C(mB) − n}. In particular,
I(mA : c) lg= n and I(mB : c) lg= n only if Kolmogorov complexities of mA and mB are both at
least 2n. Thus, the total communication complexity is ≥lg 2n + 2n = 4n. ◀

6 Secret key agreement: a lower bound for the most crucial profile

In this section we prove a lower bound for communication complexity of secret key agreement
with three parties. Let us recall the setting. We assume that Alice, Bob, and Charlie are
given inputs x, y, z respectively with the complexity profile (9). This is a pretty “generic”
complexity profile; by choosing k, we control the gap between the complexities of x, y, z and
the mutual informations shared by the inputs.
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We consider communication protocols with public randomness. Denote by r the string of
random bits accessible for all the parties (including the eavesdropper). We assume that Alice,
Bob, and Charlie broadcast simultaneously messages mA = mA(x, r), mB = mB(y, r), mC =
mC(z, r) over a public communication channel. Then each of them computes the final result

keyAlice(x, r, mB , mC), keyBob(y, r, mA, mC), keyCharlie(z, r, mA, mB).

We say that a protocol is successful if keyAlice = keyBob = keyCharlie = w (i.e., the parties
agree on a common key w) and C(w | ⟨mA, mB , mC , r⟩) lg= |w| (i.e., the eavesdropper gets no
information on this key).

Theorem 1.4 claims that for any ϵ > 0 there exists a protocol that is successful with
probability (1 − ϵ), and the size of the key is equal to (5), which gives for the profile (9) the
value 1.5n. Moreover, this value of the key is optimal (up to an additive term O(log n)).

It was shown in [24] that a secret key of this size can be obtained in an omniscience
protocol. In this protocol, the parties broadcast messages so that each of them learns
completely the entire triple of inputs (x, y, z). The total length of the broadcasted messages
bits is less than C(x, y, z), so an eavesdropper can learn only a partial information on the
inputs. More specifically, communication complexity of the omniscience protocol is (7), which
is (3k − 4.5)n for a triple satisfying (9). The gap between C(x, y, z) lg=(3k − 3)n and the
amount of the divulged information is used to produce the secret key of size 1.5n.

The omniscience protocol used in [24] provides an upper bound on the communication
complexity of secret key agreement. In what follows we prove the matching lower bound (for
protocols with simultaneous messages) and show that (3k−4.5)n is the optimal communication
complexity for a protocol of secret key agreement protocols with simultaneous messages for
inputs satisfying (9). The proof follows the scheme sketched in Section 3. The first ingredient
of this proof is Lemma 3.2 (see p. 8).

Sketch of proof of Lemma 3.2. This lemma is a relativized version of [24, Theorem 4.2].
One can follow the argument from [24] step by step, substituting s as a supplementary
condition in each term of Kolmogorov complexity appearing in the proof. ◀

▶ Corollary 6.1. Consider a communication protocol with three parties where Alice is given
x, Bob is given y, and Charlie is given z. Denote by mC the concatenation of all messages
broadcasted by Charlie during the communication. If the parties agree on a secret key w on
which the eavesdropper gets no information (even given access to the messages sent by all
parties), then C(w) ≤lg I(x : y | r, mC).

Proof. We apply Lemma 3.2 substituting mC instead of the public information s. ◀

▶ Theorem 3.1 rephrased. Let Alice, Bob, and Charlie be given x, y, and z respectively such
that (x, y, z) is a hyperedge of the hypergraph G = (V1, V2, V3, H) from Proposition 3.6 (the
pairwise disjoint self-orthogonal directions in a (k + 2)-dimensional vector space over F2n).
We consider non-interactive communication protocols where Alice, Bob, and Charlie send
messages mA, mB, and mC respectively and produce a secret key w with the optimal complexity
C(w) lg= 1.5n. Then C(mA) ≥lg(k − 1.5)n, C(mB) ≥lg(k − 1.5)n, C(mC) ≥lg(k − 1.5)n, and
the communication complexity of the protocol is at least (3k − 4.5)n − O(log n).

Proof. To simplify the notation, we ignore the bits r provided by the public source of
randomness and explain the proof for deterministic protocols. Our argument trivially
relativizes given any instance of random bits r independent of (x, y) (which is true with a
probability close to 1), cf. the proof of Theorem 5.1 in the full version of the paper.
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From Corollary 6.1 we know that the size of the key (in our case 1.5n) cannot be greater
than I(x : y | mC). By the construction of the tri-expander, I(x : y) lg= n. Therefore, the
difference between I(x : y) and I(x : y | mC) is at least 0.5n.

▶ Lemma 6.2. For all binary strings x, y, s it holds I(x : y | s) − I(x : y) ≤lg I(s : xy).

(See the proof of the lemma in the full version of the paper.) We combine Corollary 6.1 with
Lemma 6.2 and obtain I(mC : xy) ≥lg 0.5n.

Then, we apply Theorem 4.1 to the bipartite graph G3 associated with the tri-expander
G (see p. 11); here Charlie plays the role of Speaker, and Alice and Bob together play the role
of Listener. Since I(mC : xy) ≥lg 0.5n, we obtain C(mC) ≥lg C(z | x, y) + 0.5n

lg=(k − 1.5)kn.

A similar argument applies to C(mA) and C(mB), and we are done. ◀

7 Secret key agreement: a lower bound for all symmetric profiles

Proof of Theorem 1.6. If the complexity profile of (x, y, z) is symmetric then it can be
specified by three real numbers:{

C(x | y, z) lg= C(y | x, z) lg= C(z | x, y) lg= α,

I(x : y | z) lg= I(x : z | y) lg= I(y : z | x) lg= β, I(x : y : z) lg= γ.
(13)

In what follows we say that the triple of numbers (α, β, γ) represent symmetric complexity
profile of the triple (x, y, z).

In Theorem 3.1 we proved that communication complexity (7) of the omniscience protocol
is optimal in case α = (k − 2)n, β = n, and γ = 0. We reduce the problem with arbitrary
α, β, γ to the special case settled in Theorem 3.1.

▶ Lemma 7.1. If communication complexity (7) is optimal (in the worst case) for some
triples of inputs (x, y, z) with complexity profile (13), then

(i) for every positive δ ≤ n, the omniscience protocol is also optimal for some triples of
inputs (x′, y′, z′) with symmetric complexity profile (α′, β′, γ′) = (α − δ, β, γ);

(ii) for every positive δ, the omniscience protocol is also optimal for some triples of inputs
(x′, y′, z′) with symmetric complexity profile (α′, β′, γ′) = (α, β, γ + δ);

(iii) if α
lg=(k − 2)n, β

lg= n, γ
lg= 0 (as in Theorem 3.1), then for every positive δ ≤ β/2 the

omniscience protocol is also optimal for some triples of inputs (x′, y′, z′) with symmetric
complexity profile (α′, β′, γ′) = (α, β + δ, γ − 3δ).

In Lemma 7.1 we show that the existence of an “excessively efficient” protocol for triples
of inputs with modified symmetric profiles (α′, β′, γ′) would imply an “excessively efficient”
protocol for the original symmetric profile (9), which is impossible due to Theorem 3.1. The
proof of this lemma uses mostly techniques of Kolmogorov complexity that are not specific
for communication problems. The argument is based on repeated application of Muchnik’s
theorem on conditional descriptions ([23]). Due to the lack of space, the proof of the lemma
is deferred to full version of the paper.

It is not hard to verify that starting with a triple (x, y, z) from Theorem 3.1 and then
applying the reductions from Lemma 7.1, we can obtain any realizable profiles (2). Indeed, we
begin with a triple of pairwise orthogonal directions (x, y, z) with α = (k − 2)n, β = n, γ = 0
for a suitable n and k, then apply Lemma 7.1 (ii) or Lemma 7.1 (iii) to get a triple (x′, y′, z′)
with a suitable I(x′ : y′ : z′) (case (ii) serves to make the triple mutual information positive,
and case (iii) is needed if we want to make it negative), and further apply Lemma 7.1 (i) to
trim the value of α. Thus, Theorem 3.1 implies optimality of (7) for triples of inputs (x, y, z)
with arbitrary symmetric complexity profile (2). ◀
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8 Conclusion and open problems

We proved that the standard omniscience protocol provides the optimal worst-case communi-
cation complexity of the problem of secret key agreement (with three parties) in the class of
protocols with simultaneous messages. A natural direction for further research is the study
of the limits of our approach. A more specific open problem is to settle the communication
complexity of multi-party secret key agreement for multi-round protocols. Indeed, in the
multi-party settings, the existing communication protocols can be actually improved at the
cost of increasing the number of rounds. In particular, the communication complexity (7) is
no longer the optimal for multi-round protocols:

▶ Proposition 8.1. In the setting of Theorem 3.1 there is a multi-round communication
protocol (not a simultaneous messages protocol) with communication complexity (2k − 2.5)n +
O(log n), where the parties agree on a secret key of the optimal size 1.5n − O(log n).

(See the proof in the full version of the paper.) Our technique implies some lower bounds
for communication complexity of interactive protocols, but this bound does not match the
known upper bounds.

Another open problem is to establish the trade-off between the size of the secret key and
the optimal communication complexity. For two-parties protocols, communication complexity
of secret key agreement cannot be reduced even if Alice and Bob agree on a very small secret
key, see the “threshold phenomenon” in [15]; for protocols with k ≥ 3 parties the situation is
different, and communication complexity may be improved if the size of the secret key is
suboptimal. It would be also interesting to extend our results to the communication model
with private sources of randomness.
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Abstract
We present approximation algorithms for the Fault-tolerant k-Supplier with Outliers (FkSO) problem.
This is a common generalization of two known problems – k-Supplier with Outliers, and Fault-tolerant
k-Supplier – each of which generalize the well-known k-Supplier problem. In the k-Supplier problem
the goal is to serve n clients C, by opening k facilities from a set of possible facilities F ; the objective
function is the farthest that any client must travel to access an open facility. In FkSO, each client v

has a fault-tolerance ℓv, and now desires ℓv facilities to serve it; so each client v’s contribution to the
objective function is now its distance to the ℓv

th closest open facility. Furthermore, we are allowed
to choose m clients that we will serve, and only those clients contribute to the objective function,
while the remaining n − m are considered outliers.

Our main result is a (4t − 1)-approximation for the FkSO problem, where t is the number of
distinct values of ℓv that appear in the instance. At t = 1, i.e. in the case where the ℓv’s are
uniformly some ℓ, this yields a 3-approximation, improving upon the 11-approximation given for the
uniform case by Inamdar and Varadarajan [2020], who also introduced the problem. Our result for
the uniform case matches tight 3-approximations that exist for k-Supplier, k-Supplier with Outliers,
and Fault-tolerant k-Supplier.

Our key technical contribution is an application of the round-or-cut schema to FkSO. Guided
by an LP relaxation, we reduce to a simpler optimization problem, which we can solve to obtain
distance bounds for the “round” step, and valid inequalities for the “cut” step. By varying how we
reduce to the simpler problem, we get varying distance bounds – we include a variant that gives
a (2t + 1)-approximation, which is better for t ∈ {2, 3}. In addition, for t = 1, we give a more
straightforward application of round-or-cut, yielding a 3-approximation that is much simpler than
our general algorithm.
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1 Introduction

Clustering problems form a class of discrete optimization problems that appear in many
application areas ranging from operations research [28, 32, 30] to machine learning [21, 1, 31,
24]. They also have formed a sandbox where numerous algorithmic ideas, especially ideas
in approximation algorithms, have arisen and developed over the years. One of the first
clustering problems to have been studied is the k-Supplier problem [19]: in this problem,
one is given a set of points in a metric space (C ∪ F, d), where C is the set of “clients” and
F is the set of “facilities”, and a number k. The objective is to “open” a collection S ⊆ F

of k centers so as to minimize the maximum distance between a client v ∈ V to its nearest
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open center in S, that is, minimize maxv∈C minf∈S d(f, v). It has been known since the
mid-80’s, due to an influential paper of Hochbaum and Shmoys [19], that this problem has a
3-approximation and no better approximation is possible1.

One motivation behind the objective function above is that d(v, S) := minf∈S d(f, v)
indicates how (un)desirable the client v perceives the the set of open facilities, and the
k-Supplier objective tries to take the egalitarian view of trying to minimize the unhappiest
client. However, in certain applications, a client v would perhaps be interested not only in
having one open facility in a small neighborhood but a larger number. For instance, the
client may be worried about some open facilities closing down. This leads to the fault-tolerant
versions of clustering problems. In this setting, each client v has an integer ℓv associated
with it, and the desirability of a subset S for v is not determined by the nearest facility in S,
but rather the ℓv

th nearest facility. That is, we sort the facilities in S in increasing order of
d(f, v) and let dℓv (v, S) denote the ℓv

th distance in this order (so d(v, S) = d1(v, S)). The
Fault-tolerant k-Supplier (FkS) problem is to find S ⊆ F with |S| = k so as to minimize
maxv∈C dℓv

(v, S). As far as we know, the Fault-tolerant k-Supplier problem has not been
explicitly studied in the literature2, however, as we show in Section 2, there is a simple
3-approximation based on the same scheme developed by Hochbaum and Shmoys [19].

One drawback of the k-Supplier objective is that it is extremely sensitive to outliers; since
one is trying to minimize the maximum, a single far-away client makes the optimal value large.
To allay this, people have considered the “outlier version” of the problem, k-Supplier with
Outliers (kSO). In kSO, one is given an additional integer parameter m, and the goal of the
algorithm is to open a subset S of k facilities and recognize a subset T ⊆ C of m-clients, so as
to minimize maxv∈T d(v, S). That is, all clients outside T are deemed outliers and one doesn’t
consider their distance to the solution. The outlier version is algorithmically interesting
and is not immediately captured by the Hochbaum-Shmoys technique. Nevertheless, in
2001, Charikar, Khuller, Mount, and Narsimhan [10] described a combinatorial, greedy-like
3-approximation for kSO3. Since then, outlier versions of many clustering problems have
been considered, and it has been a curious feature that the approximability of the outlier
version has been of the same order as the approximability of the original version without
outliers.

In this paper, as suggested by the title, we study the Fault-tolerant k-Supplier with
Outliers (FkSO) problem which generalizes FkS and kSO. This problem was explicitly studied
only recently by Inamdar and Varadarajan [20]; but that work only studies the uniformly
fault-tolerant case where all ℓv’s are the same (say, ℓ). The main result of [20] was a “reduction”
to the “non-fault-tolerant” version of the clustering problem with outliers, and their result
is that an α-approximation for the kSO problem translates4 to a (3α + 2)-approximation
for the FkSO problem with uniform fault-tolerance. Setting α = 3 from the aforementioned
work [10] on kSO, one gets an 11-approximation for the uniform case of FkSO.

1 Howard Karloff is attributed the hardness result in [19].
2 although the fault-tolerant facility location and k-median have been extensively studied [22, 17, 36, 18];

more on this in Section 1.1.
3 A different LP-based approach was taken by Chakrabarty, Goyal, and Krishnaswamy [6] and vastly

generalized by Chakrabarty and Negahbani [7]; more on this in Sections 1.1 and 2.
4 Actually, they [20] only study the “k-Center” case when F = C, and in that case the result is (2α + 2);

their proofs do reveal that for the Supplier version, one obtains (3α + 2).
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Our Contributions

We begin by providing a simple LP-based 3-approximation for the FkSO problem when
the fault-tolerances are uniform, that is, ℓv = ℓ for all v ∈ C. This improves the known
11-approximation [20]. Even this special case is interesting in that when the uniform
fault-tolerance ℓ divides k, then the “natural LP” suffices to obtain a 3-approximation using a
rounding scheme similar to a prior rounding algorithm for kSO [6]. However, when ℓ doesn’t
divide k, then we need to add in valid inequalities akin to Chvátal-Gomory cuts [13, 16]
in integer programming. Nevertheless, the rounding algorithm is simple and is described
in Section 3.

Our main contribution is to the general FkSO problem, when ℓv’s can be different for
different clients. This problem becomes much more complex for the simple reason that
if two clients v and v′ are located very close together, but ℓv < ℓv′ , then opening ℓv

facilities around v would still render v′ unhappy – this does not happen in the uniform
case. Therefore, the Hochbaum-Shmoys procedure [19], or more precisely the LP-guided
Hochbaum-Shmoys rounding that is known for kSO [6], simply doesn’t apply under non-
uniform fault-tolerance. Indeed, the natural LP relaxation and its natural strengthening,
which give us the 3-approximation for the uniform case, has large integrality gaps even when
the ℓv’s take only two values; we show this in Section 3.1.

Our main result is a (4t − 1)-approximation for the FkSO problem when there are t

distinct5 ℓv’s (that is, |{ℓv : v ∈ C}| = t). When t = 1, we recover the 3-approximation
mentioned above. This is not the most desirable result (one would hope a O(1)-approximation
for any t), but as the above integrality gap example illustrates, even when t = 2, strong LPs
have bad integrality gaps. We also use the same schema to give a (2t + 1)-approximation,
which gives better approximation factors for t ∈ {2, 3}.

Our main technical contribution is to apply the round-or-cut schema introduced for
clustering problems by Chakrabarty and Negahbani [7] to FkSO. In particular, this schema
uses a fractional solution {covv}v∈C which indicates the extent to which each client v is an
“inlier” (that is, in the final set T of at least m clients). Earlier works [6, 7] use this fractional
solution to guide the Hochbaum-Shmoys-style [19] rounding algorithm, creating a partition
on the set of clients and solving a simpler optimization problem on this partition. We also
use the same schemata, except that our partitioning scheme is a more general one warranted
by the non-uniform fault-tolerances; nevertheless, we show that we either obtain the desired
approximation factor (the “round” step), or we can prove that the covv’s cannot arise as a
combination of integral solutions (the “cut” step). Once we do this, the round-or-cut schema
implies a polynomial time approximation factor. We also show that t is the limiting factor in
our approach; more precisely, the diameter of the parts of the desired partition dictates the
upper bound on the approximation factor, and in Appendix B we construct an instance such
that the diameter needs to be Ω(t). We leave the possibility of obtaining O(1)-approximations
for FkSO, or alternatly proving a super-constant hardness, as an intriguing open problem.

5 We should point to the reader that one can’t simply solve t different uniform FkSO versions and “stick
them together” to get such a result; although it is a natural idea, note that a priori we do not know
how many outliers one will obtain from each fault-tolerant class, and enumerating is infeasible.

STACS 2024
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1.1 Related Work
The Hochbaum-Shmoys algorithm [19] gives a 3-approximation for the k-Supplier problem,
and has been extended to give approximation algorithms for multiple related problems.
Plesník [33] gave one such extension, obtaining a 3-approximation6 when each client v

has weight w(v), and this scales the client’s “unhappiness”, so that the objective function
becomes maxv∈C (w(v) ·minf∈S d(v, f)). In another direction, Chakrabarty, Goyal, and
Krishnaswamy [6] gave an extension to k-Supplier with Outliers, using an LP relaxation to
indicate which clients are outliers, and obtaining a Hochbaum-Shmoys-like 3-approximation.
This was vastly extended by Chakrabarty and Negahbani [7], implying a 3-approximation
for multiple problems, including kSO with knapsack constraints on the facilities. Bajpai,
Chekuri, Chakrabarty, and Negahbani [4] generalized the aforementioned weighted ver-
sion [33] to handle outliers, matroid constraints, and knapsack constraints, obtaining constant
approximation ratios for each.

In the early 2000s, Jain and Vazirani [22] introduced the notion of fault-tolerance for the
Uncapacitated Facility Location (UFL) problem. The notion has thereafter been studied for
various related problems: UFL [17, 36, 5]; UFL with multiset solutions, often called facility
placement or allocation [37, 38, 34]; k-Median [36, 27, 18]; matroid and knapsack Median [15];
and k-Center [26, 11, 25, 27]. In particular relevance to this paper, the FkSO problem was
studied by Inamdar and Varadarajan [20]. In addition, prior work also addresses alternate
notions of fault-tolerance and outlier-type constraints. In a 2020 preprint, Deng [14] combines
fault-tolerance with an outlier-type constraint requiring that the number of client-facility
connections, rather than the weight of satisfied clients, be at least some m. An altogether
different notion of fault-tolerance has also been studied [12, 29, 35], where clients each want
just one facility, but an adversary secretly causes some k′ ≤ k of the chosen facilities to fail.

The round-or-cut schema that this paper applies, has found widespread usage in clustering
problems, including in problems related to k-Supplier. For example, the weighted version
of k-Supplier [33, 4] can be extended to impose different budgets to different weight classes
– i.e. there is no longer one k, but one ki per distinct weight wi. This version admits a
constant-factor approximation for certain special cases [8, 23] via the round-or-cut schema.
Round-or-cut has also been used for k-Supplier with covering constraints [3], and for the
Capacitated Facility Location problem [2]. In the continuous clustering realm, where facilities
can be picked from a potentially infinite-sized ambient metric space, round-or-cut has been
used to circumvent the infinitude of the instance [9].

2 Preliminaries

Before we formally define our main problem, let us set up some important notation.

▶ Definition 1. Given a subset S ⊆ F , a client v ∈ C, and a ∈ [k], let da(v, S) be the
distance of v to its ath closest neighbor in S (breaking ties arbitrarily and consistently). So
d1(v, S) = d(v, S). Also let Na(v, S) ⊆ S denote the a facilities in S that are closest to v.

▶ Definition 2 (Fault-tolerant k-Supplier and Fault-tolerant k-Supplier with Outliers). In the
Fault-tolerant k-Supplier (FkS) problem, we are given a finite metric space (C∪F, d), where C

is a set of n clients and F is a set of poly(n) facilities. We are also given a parameter k ∈ N,
and fault-tolerances {ℓv ∈ [k]}v∈C . The goal is to open k facilities, i.e. pick S ⊆ F : |S| ≤ k,
minimizing maxv∈C dℓv

(v, S).

6 The work [33] studies the k-Center case, where F = C, and gives a 2-approximation; but the proofs
imply a 3-approximation for the Supplier version.
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In the Fault-tolerant k-Supplier with Outliers (FkSO) problem, we are given an FkS
instance along with an additional parameter m ∈ [n]. The goal is to pick S of size k as before,
along with inliers T ⊆ C : |T | ≥ m, minimizing maxv∈T dℓv

(v, S).

In the absence of fault-tolerances and outliers, i.e. in the k-Supplier problem, the Hochbaum-
Shmoys algorithm [19] achieves a 3-approximation as follows. It starts with a guess r of the
optimum value, large enough that every client j has a facility within distance r of itself, but
otherwise arbitrary. Then it picks an arbitrary client j, opens a facility within distance r of j,
and deletes the set of “children” of j, which is child(j) := B(j, 2r)∩C = {v ∈ C : d(v, j) ≤ 2r}.
Then it repeats this with the remaining clients, until there are no clients left. Observe that
the j’s picked over the iterations – call them the set R – has the following well-separated
property.

▶ Definition 3 (r-well-separated set). A set X ⊆ C is r-well-separated if for distinct x, y ∈ X,
we have d(x, y) > 2r. Where r is clear from context, we simply say that X is well-separated.

Since R is well-separated, it takes |R| clients to provide every j ∈ R with a facility in B(j, r).
So if |R| > k, then the guess of r is too small – we can double r and retry the algorithm. On
the other hand, if |R| ≤ k, then the guess is either correct or too large, so we halve r and
retry. This binary search yields the correct r, and the following guarantee: {child(j)}j∈R

partitions C, and for a v ∈ child(j), since d(v, j) ≤ 2r and we opened a facility in B(j, r),
there is a facility within distance 3r of v. This means that we have a 3-approximation.

The Hochbaum-Shmoys algorithm described above, generalizes to give a 3-approximation
for FkS via the following modifications: instead of picking j’s into R in arbitrary order,
we pick them in decreasing order of ℓv’s; we also open ℓj facilities in each B(j, r) : j ∈ R,
instead of just one. This guarantees that, if v ∈ child(j), ℓv ≤ ℓj , allowing us to extend the
Hochbaum-Shmoys [19] guarantee to FkS. We now formally state this algorithm.

Algorithm 1 Hochbaum-Shmoys [19] modified for FkS.

Input: C

1: U ← C

2: R← ∅
3: S ← ∅
4: while U ̸= ∅ do
5: j ← argmaxv∈U ℓv

6: R← R ∪ {j}
7: i1, i2, . . . , iℓj

← ℓj arbitrary facilities in B(j, r) ∩ F ▷ they exist by choice of r

8: S ← S ∪
{

i1, i2, . . . , iℓj

}
9: child(j)← {v ∈ U : d(v, j) ≤ 2r}

10: U ← U \ child(j)
Output: S ⊆ F

To show that this algorithm yields a 3-approximation, we need to argue that ∀v ∈ C,
dℓv

(v, S) ≤ 3r. To see this, consider j ∈ R : v ∈ child(j). Algorithm 1 guarantees that
ℓv ≤ ℓj , so dℓv

(v, S) ≤ dℓj
(v, S). By triangle inequalities, this is at most d(v, j) + dℓj

(j, S).
By construction of child(j), d(v, j) ≤ 2r; and since we open ℓj facilities in Line 7, dℓj (j, S) ≤ r.
We have just shown that

▶ Theorem 4. The FkS problem admits a 3-approximation.

STACS 2024
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One way to achieve a 3-approximation for the k-Supplier with Outliers problem, described
in [6], is as follows: under a guess of r as before, a linear program relaxation is used to assign
variables covv ∈ [0, 1] to each client v, representing whether v is “covered”, i.e. whether there
is an open facility in B(v, r). The LP-guided Hochbaum-Shmoys algorithm considers clients
in decreasing order of these covv’s, and we wait to pick facilities until the loop terminates.
Then, facilities are opened near those j ∈ R that have the k largest |child(j)|. The LP
relaxation is used to ensure that ≥ m clients are served in this way. This does not generalize
directly to FkSO because the decreasing order of ℓv’s that we employed above for FkS can
conflict with the decreasing order of covv’s (indeed, one may just expect clients v with large
ℓv’s would be more likely to be outliers, that is, have low covv’s). So in our algorithm for
FkSO, we elect to follow the covv order, and explicitly force ℓv ≤ ℓj for v’s that we pick into
child(j). This choice breaks the well-separated property of R, so our techniques are devoted
to obtaining other well-separated sets that can guide our rounding; details of this can be
found in Section 4. When all the ℓv’s are the same, though, we can indeed use the natural
LP relaxation (with a slight strengthening to take care of divisibility issues), and we show
this in the next section.

3 3-approximation for UFkSO

In this section, we address the uniform case, where all fault-tolerances in the instance are
the same, i.e.

▶ Definition 5 (Uniformly Fault-tolerant k-Supplier with Outliers (UFkSO)). The Uniformly
Fault-tolerant k-Supplier with Outliers problem is a special case of the FkSO problem where,
for an ℓ ∈ N, ∀v ∈ C, ℓv = ℓ.

We prove that

▶ Theorem 6. The UFkSO problem admits a 3-approximation.

Our algorithm begins by rounding a solution to the following LP relaxation, closely
mimicking the 3-approximation for kSO [6] described in the last paragraph of the previous
section. This rounding suffices when ℓ | k. When ℓ ∤ k, we identify a valid inequality for the
round-or-cut framework. In the LP, the variables {covv}v∈C denote whether or not a client
v ∈ C is covered i.e. served within distance r; and variables {xi}i∈F denote whether or not a
facility i ∈ F is open. B(v, r) is the ball of radius r around v, containing all points within
distance r of v, i.e. B(v, r) := {x ∈ C ∪ F : d(v, x) ≤ r}.∑

v∈C

covv ≥ m (WL1)∑
i∈F

xi ≤ k (WL2)

∀v ∈ C,
∑

i∈F ∩B(v,r)

xi ≥ ℓcovv (WL3)

∀v ∈ C : dℓ(v, F ) > r, covv = 0 (WL4)
∀v ∈ C, i ∈ F, 0 ≤ covv, xi ≤ 1 (WL5)

Here, (WL1) enforces that at least m clients must be covered, and (WL2) enforces that at
most k facilities can be opened. (WL3) and (WL4) connect the covv variables with the xi

variables, ensuring that a client cannot be covered unless there are sufficient facilities opened
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within distance r of it. Finally, (WL5) enforces that a client can be covered only once, and a
facility can be opened only once. Claim 7 shows that this LP is a valid relaxation of our
problem. We defer its proof to Appendix A.

▷ Claim 7. An instance of UFkSO is feasible iff it admits an integral solution satisfying
(WL1)-(WL5).

Given a solution
(
{covv}v∈C , {xi}i∈F

)
satisfying (WL1)-(WL5), we round as per Al-

gorithm 2. This algorithm constructs a well-separated set of representatives Rcov ⊆ C. Each
client v that has covv > 0 becomes the child of some representative, yielding a partition
{child(j)}j∈Rcov

of these clients. Then, facilities Scov ⊆ F are opened in a manner that serves
the

⌊
k
ℓ

⌋
largest child(j) sets within distance 3r.

Algorithm 2 3-approximation for UFkSO.

Input:
(
{covv}v∈C , {xi}i∈F

)
satisfying (WL1)-(WL5)

1: Rcov ← ∅
2: U ← {v ∈ C : covv > 0}
3: while U ̸= ∅ do ▷ filtering
4: j ← argmaxv∈U covv

5: Rcov ← Rcov ∪ {v}
6: child(j)← B(j, 2r) ∩ U

7: U ← U \ child(j)
8: Scov ← ∅
9: R′ ← Rcov

10: while |Scov| <
⌊

k
ℓ

⌋
· ℓ do ▷ picking facilities to open

11: j ← argmaxj′∈R′ |child(j′)|
12: R′ ← R′ \ {j}
13: Scov ← Scov ∪Nℓ(j, F )
14: return Scov
Output: Scov ⊆ F ▷ open facilities

We argue that Algorithm 2 opens at most k facilities, and that if Nℓ(j, F ) is opened, then
child(j) is served within distance 3r. Formally,

▶ Lemma 8. Given
(
{covv}v∈C , {xi}i∈F

)
satisfying (WL1)-(WL5),

|Scov| ≤ k, and
Let R′

cov be the clients j for which Nℓ(j, F ) was added to Scov in Line 13. Then ∀j ∈ R′
cov,

∀v ∈ child(j), dℓ(v, Scov) ≤ 3r.

Proof.
Line 13 adds ℓ facilities to Scov in each iteration. So Line 10 ensures that |Scov| ≤ k.
Consider v ∈ child(j), j ∈ R′

cov. By triangle inequalities, dℓ(v, Scov) ≤ d(v, j) + dℓ(j, Scov).
By Line 6, d(v, j) ≤ 2r. Since Nℓ(j, F ) ⊆ Scov, dℓ(j, Scov) ≤ dℓ(j, F ); and by Line 2,
covj > 0, i.e. by (WL4), dℓ(j, F ) ≤ r. ◀

It remains to show that
∑

j∈R′
cov
|child(j)| ≥ m. We have∑

j∈Rcov

|child(j)| covj ≥
∑

v∈C:covv>0
covv =

∑
v∈C

covv ≥ m , (1)
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where the first inequality is by Line 4 and the last inequality is by (WL1). We also have∑
j∈Rcov

covj ≤
∑

j∈Rcov

∑
i∈F ∩B(j,r)

xi

ℓ
≤

∑
i∈F

xi

ℓ
≤ k

ℓ
, (2)

where the first inequality is by (WL3); the second inequality is because Rcov is well-separated;
and the last inequality is by (WL2). So we can view the LHS in (1) as a weighted sum of
|child(j)| values, the weights being covj ’s. Since this weighted sum is ≥ m and the weights
sum to ≤ k/ℓ, the

⌊
k
ℓ

⌋
largest child-sets must contain at least m

k/ℓ ·
⌊

k
ℓ

⌋
elements. Hence, if

ℓ | k, we are done.
In fact, we observe the following even when ℓ ∤ k: if we can replace the RHS in (2) with⌊

k
ℓ

⌋
, then the weighted-sum argument would yield m

⌊k/ℓ⌋ ·
⌊

k
ℓ

⌋
= m. To achieve this, observe

that the argument in (2) applies to any well-separated set R ⊆ C, yielding
∑

j∈R covj ≤ k/ℓ.
Also, for any integral solution, the RHS can be replaced by its floor. Thus the following are
valid inequalities:

∀R ⊆ C : R is well-separated,
∑
j∈R

covj ≤
⌊

k

ℓ

⌋
. (WLCut)

We have showed that if (WLCut) holds for R = Rcov then we are done, i.e.

▶ Lemma 9. Given
(
{covv}v∈C , {xi}i∈F

)
satisfying (WL1)-(WL5), if (WLCut) holds for

R = Rcov where Rcov is constructed as per Lines 1-7, then Scov is a 3-approximation.

Using this, we now present our overall algorithm via a round-or-cut schema.

Proof of Theorem 6. Given
(
{covv}v∈C , {xi}i∈F

)
satisfying (WL1)-(WL5), we round as

per Lines 1-7 to obtain Rcov ⊆ C. If (WLCut) holds for R = Rcov, then we continue
Algorithm 2 to obtain Scov that satisfies the desired guarantees via Lemmas 8 and 9.
Otherwise, we know that the valid inequality (WLCut) for R = Rcov is violated. So we pass
it to the ellipsoid algorithm as a separating hyperplane, obtaining fresh covv’s with which we
restart Algorithm 2. By the guarantees of the ellipsoid algorithm, in polynomial time, we
either round to get Scov, or detect that the guess of r is too small. ◀

We conclude this section by exhibiting that the above algorithm fails for the general
problem. In particular, we exhibit an infinite integrality gap when there are just two different
fault-tolerances in the instance.

3.1 Gap example for FkSO
Consider (WL3) generalized to FkSO:

∀v ∈ C,
∑

i∈F ∩B(v,r)

xiv ≥ ℓvcovv ; (WL3′)

and a similar generalization of (WLCut):

∀R ⊆ C : R is well-separated,

⌈∑
v∈R

ℓvcovv

⌉
≤ k . (WLCut′)

These, along with (WL1)-(WL2) and (WL4)-(WL5), generalize the earlier LP to FkSO. We
now show an infinite integrality gap w.r.t. this LP.
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v1 v2 · · ·
vk

· · ·

v

1/k 1/k 1/k

1

1/k 1/k 1/k

Figure 1 One of the k identical gadgets in the gap example, showing LP values in red (x values)
and blue (cov values). The “edges” represent distance 1, and all other distances are determined by
making triangle inequalities tight. The fault-tolerances are ℓv1 = ℓv2 = · · · = ℓvk = k, and ℓv = 1.

Consider k identical gadgets, each like in Figure 1, infinitely apart from each other. Let
m = 2k. The small client in each gadget (v in Figure 1) has fault-tolerance 1. The big
clients in each gadget (v1, v2, . . . , vk in Figure 1) have fault-tolerance k. Within a gadget, an
integral solution only benefits from either picking one facility to serve just the small client,
or picking all facilities to serve all (k + 1) clients. So over all gadgets, an integral solution
can either pick one facility per gadget, or pick all facilities in exactly one gadget, either way
serving k < m clients. Since all facilities are within distance 1 of the clients in their gadget,
the above is true for an integral solution with any radius dilation α ≥ 1.

But the LP can assign xi = 1/k to each of the k2 facilities in the instance. This allows it
to assign covv = 1 to all the small clients, and covv1 = covv2 = · · · covvk

= 1/k to all the big
clients, thus serving k · 1 + k2 · 1

k = 2k = m clients.

4 Fault-tolerant k-Supplier with Outliers

In this section, we address FkSO in its full generality. We use t to denote the number of
distinct fault-tolerances in the instance, i.e. |{ℓv : v ∈ C}| = t. We prove that

▶ Theorem 10. The FkSO problem admits a (min {4t− 1, 2t + 1})-approximation.

4.1 Strong LP Relaxation and the Round-or-Cut Schema

To circumvent the gap example in Section 3, we adapt the following stronger linear program
idea from Chakrabarty and Negahbani [7]. As before, r is the guess of the optimal solution,
and we have the same fractional variables covv indicating coverage. However, we assert that
these covv’s arise as a convex combination of integral solutions. More precisely, we have
exponentially many auxilary variables {zS}S⊆F :|S|≤k indicating possible locations of open
facilities and the fractional amount to which they are open. When such a solution is opened,
a client v is “covered” if there are ℓv facilities in an r-neighborhood. To this end, for a client
v, we define the collection Fv := {S ⊆ F : |S| ≤ k ∧ |S ∩B(v, r)| ≥ ℓv} of solutions which
can serve v. Therefore, the coverage covv is simply the total fractional weight of sets in Fv.
Formally, if r is a correct guess, then the following (huge) LP has a feasible solution.
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∑
v∈C

covv ≥ m (L1)

∀v ∈ C, covv =
∑

S∈Fv

zS (L2)

∑
S⊆F :|S|≤k

zS ≤ 1 (L3)

∀S ⊆ F, ∀v ∈ C, 0 ≤ zS , covv ≤ 1 (L4)

(L1) enforces that at least m clients must be covered. (L2) connects the covv and zS

variables, ensuring that a client v can only be covered via solutions in Fv. (L3)-(L4) enforce
convexity. (L4) also enforces that each client can be covered at most once.

▶ Observation 11. All covv’s that satisfy (L1)-(L4) also satisfy (WL1)-(WL5).

Also observe that we cannot efficiently figure out whether the above system is feasible
or not; indeed, if so we would solve the Fault-tolerant k-Supplier with Outliers problem
optimally. Nevertheless, one can use the round-or-cut schema to obtain an approximation
algorithm. In order to do so, the first step is to use the dual of the above system to obtain
the collection of all valid inequalities on the covv’s. Recall, a valid inequality is one that
every feasible covv must satisfy; the lemma below from the literature [6], in some sense,
eliminates all the zS variables from the above program.

▶ Lemma 12 ([7, Lemma 10]). Given real numbers {λv}v∈C such that

∀S ⊆ F,
∑

v∈C:S∈Fv

λv < m , (λ1)

the following is a valid inequality for (L1)-(L4):∑
v∈C

λvcovv < m . (λ2)

Given {λv}v∈C , one cannot easily check (λ1), and thus, a priori, one cannot see the usefulness
of the above lemma. We now briefly describe its usefulness to the round-or-cut schema.
The algorithm begins with values of {0 ≤ covv ≤ 1}v∈C that satisfy (L1) – such cov is
straightforward to find. We then try to use these covv’s to “round” and obtain a solution
where clients are covered within distance α · r for desired factor α, and if we fail, then we
find a valid inequality that “cuts” covv away from the above system. If we can do so, then
we can feed this separating hyperplane to the ellipsoid algorithm which would give us new
covv’s. Repeating the above procedure a polynomial number of times, we would either obtain
an α-approximation, or prove that the above system is empty implying our guess r was
too small. For FkSO, the “round” step is via the abstract concept of a “good partition”
where the “radius” of the partition dictates the approximation factor; this definition and
resulting rounding algorithm is described in Section 4.2. For the “cut” step, we show that if
our rounding algorithm fails, then we can use this failure to generate {λv}v∈C ’s that satisfy
(λ1) but not (λ2), leveraging our definition of “good partitions”. This gives our separating
hyperplane using Lemma 12, and we succeed in cutting, and thus we can run the round-or-cut
schema. Subsequently, we construct good partitions. In Section 4.3, we describe two methods
to do this: one with “radius” (4t− 1) and the other with radius (2t + 1). In Appendix B, we
show a limitation of our approach, via an example where this “radius” can be Ω(t).

Before proceeding, we make one simplification: at the beginning of every rounding step,
we discard any clients that have covv = 0, and hereafter assume, without loss of generality,
that ∀v ∈ C, covv > 0.
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4.2 Good Partitions and Implementing Round-or-cut
Given covv’s for every v ∈ C, we define a notion of a “good partition”. Before formally
defining it, we explain this operationally, hopefully giving intuition for the definition. We
start with a finer partition, and the good partition P coarsens it. As in previous algorithms
discussed so far, we have R ⊆ C, a set of representatives. The finer partition is {child(j)}j∈R,
as motivated by our algorithms for FkS in Section 2 and UFkSO in Section 3. This time,
however, we want favorable properties from both of those algorithms to coincide – we want,
for j ∈ R and v ∈ child(j), covv ≤ covj as well as ℓv ≤ ℓj . These desired properties of the
finer partition are formalized as Property 1.

The property above breaks the “well-separated” property of R, which was crucial in our
other algorithms in Sections 2 and 3. Therefore, instead of requiring R to be well-separated,
we coalesce the child-sets of certain representatives, to get a coarsening P of {child(j)}j∈R

such that representatives across different parts of P are indeed well-separated. This is
Property 2.

Our approximation ratio is then determined by the diameter of the parts P ’s in the good
partition; so we impose a radius bound on each P ∈ P, requiring that the highest-fault-
tolerance client in each P be not too far from the rest of P . This is Property 3. We are now
ready to present the formal definition.

▶ Definition 13 ((ρ, cov)-good partition). Given a parameter ρ ∈ R, and {0 ≤ covv ≤ 1}v∈C

satisfying (L1), a partition P of C is (ρ, cov)-good if there exists R ⊆ C such that the
following hold.
1. Every v ∈ C is assigned to be the child of a j ∈ R, forming a partition {child(j)}j∈R of

C that refines P. Also, ∀j ∈ R, ∀v ∈ child(j), covj ≥ covv and ℓj ≥ ℓv.
2. For any two j, j′ ∈ R that lie in different parts of P, d(j, j′) > 2r.
3. For each P ∈ P, let jP := argmaxv∈P ℓv (breaking ties arbitrarily). Then ∀v ∈ P ,

d(jP , v) ≤ ρr.

Figure 2 An example of a (6, cov)-good partition P (Definition 13). The ellipses represent P,
and their subdivisions represent the child sets. All the circles are clients, with the filled-in circles
being R, and among those, the double borders indicate the jP ’s. cov values are 1 on R and 1/2
elsewhere. ℓv values are indicated by the sizes of the circles. The “edges” represent distance 2r, and
all other distances are obtained by making triangle inequalities tight.

We observe here that the child-sets constructed in Section 3 are themselves a good
partition, so for UFkSO, we did not need to coarsen it. This will not necessarily be the case
for child-sets that we construct in Section 4.3. We also observe that
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▶ Observation 14. In a (ρ, cov)-good partition P, by Property 1, the jP ’s in Property 3 can
be chosen such that ∀P ∈ P, jP ∈ R. So we can assume, without loss of generality, that all
jP ’s are in R.

We prove that a good partition suffices to achieve our desired approximation. That is,

▶ Theorem 15. If we have a feasible instance with a (ρ, cov)-good partition, then in polynomial
time, we can either obtain a (ρ+1)-approximation, or identify a valid inequality for (L1)-(L4)
that is violated by cov.

To prove Theorem 15, we solve a budgeting problem on the (ρ, cov)-good partition. We
want to distribute our budget of k facilities among the P ∈ P, assigning each P ∈ P with
kP facilities that are within distance (ρ + 1)r of the clients in P . Here kP must be at most
ℓP := ℓjP

, because at most ℓP facilities are guaranteed to exist within a bounded distance
of clients in P . The payoff from assigning kP facilities to P in this way is that the clients
{v ∈ P : ℓv ≤ kP } are served within distance (ρ + 1)r. So if

∑
P ∈P |{v ∈ P : ℓv ≤ kP }| ≥ m,

we have our (ρ + 1)-approximation. Therefore, we want our choice of kP ’s to maximize∑
P ∈P |{v ∈ P : ℓv ≤ kP }|, and this maximum to be ≥ m. However, our analysis can only

handle clients from well-separated sets; so instead, we maximize the following lower-bound
on our desired quantity:

∑
P ∈P

∑
j∈R∩P :ℓj≤kP

|child(j)|, where we under-count by only
considering v ∈ child(j) served if j is served. Formally, our budgeting problem is the
following.

▶ Definition 16 (Budgeting over a (ρ, cov)-good partition). Given a (ρ, cov)-good parti-
tion P, let ℓP := maxv∈P ℓv. Find {kP ≤ ℓP }P ∈P such that

∑
P ∈P kP ≤ k, maximizing∑

P ∈P
∑

j∈R∩P :ℓj≤kP
|child(j)|. Let optB(P) denote this maximum.

In Lemma 17, we show that if optB(P) ≥ m, then we can round. Then in Lemma 18, we
see that if optB(P) < m, then we can cut. Lemma 19 shows that optB(P) can be found
efficiently. Together, these three lemmas yield the proof of Theorem 15.

▶ Lemma 17. Given a (ρ, cov)-good partition P, if optB(P) ≥ m, then we have a (ρ + 1)-
approximation.

Proof. Let {kP }P ∈P be an optimal solution to the budgeting problem (Definition 16). Define
S := ∪P ∈PNkP

(jP , F ). So |S| ≤ k. We show that S serves ≥ m clients within distance
(ρ + 1)r.

Define T := ⊎P ∈P ⊎j∈R∩P :ℓj≤kP
child(j). Then |T | =

∑
P ∈P

∑
j∈R∩P :ℓj≤kP

|child(j)| =
optB(P) ≥ m. We complete this proof by showing that ∀v ∈ T , dℓv (v, S) ≤ (ρ + 1)r. For
this, fix v ∈ T . By triangle inequalities, we have that dℓv

(v, S) ≤ d(v, jP ) + dℓv
(jP , S). By

Property 3, d(v, jP ) ≤ ρr, so it remains to show that dℓv (jP , S) ≤ r.
By definition of T , dℓv

(jP , S) ≤ dkP
(jP , S). Since NkP

(jP , F ) ⊆ S, dkP
(jP , S) ≤

dkP
(jP , F ). By definitions of kP and ℓP , dkP

(jP , F ) ≤ dℓP
(jP , F ) = dℓjP

(jP , F ). But
covjP

> 0; so by Observation 11 and (WL4), dℓjP
(jP , F ) ≤ r. ◀

▶ Lemma 18. Given a (ρ, cov)-good partition P, if optB(P) < m, then we find a valid
inequality for (L1)-(L4) that is violated by cov.

Proof. We appeal to Lemma 12 mentioned in Section 4.1. ∀v ∈ C, define

λv :=
{
|child(v)| if v ∈ R, and
0 otherwise.
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Note that∑
v∈C

λvcovv =
∑
j∈R

λjcovj =
∑
j∈R

|child(j)| covj =
∑
j∈R

∑
v∈child(j)

covj

≥
∑
j∈R

∑
v∈child(j)

covv . . . by Property 1

=
∑
v∈C

covv . . . by Definition 13

≥ m , . . . by (L1)

i.e. these λv’s violate (λ2). So by Lemma 12, it suffices to show that (λ1) holds for these
λv’s.

Suppose not, i.e. ∃S0 ⊆ F : |S0| ≤ k and
∑

v∈C:S0∈Fv
λv ≥ m. Then, devise a candidate

solution {k′
P }P ∈P for the budgeting problem in Definition 16, as follows. For each P ∈ P , if

∃j ∈ R ∩ P such that S0 ∈ Fj , then set k′
P to be the largest fault-tolerance among such j’s;

that is, where j′
P := argmaxj∈R∩P :S0∈Fj

ℓj , set k′
P := ℓj′

P
. Otherwise, i.e. when there is no

such j and j′
P is not well-defined, set k′

P := 0. By definitions, ∀P ∈ P , k′
P ≤ ℓP .

Also, by Property 2, {B(j′
P , r)}P ∈P is pairwise disjoint. Since S0 ∈ Fj′

P
for each P ∈ P ,

we then have
∑

P ∈P k′
P ≤

∑
P ∈P |S0 ∩B(j′

P , r)| ≤ |S0| ≤ k. So {k′
P }P ∈P is indeed a

candidate solution for the budgeting problem. We evaluate the objective function of the
budgeting problem (see Definition 16) on {k′

P }P ∈P :∑
P ∈P

∑
j∈R∩P :ℓj≤k′

P

|child(j)| =
∑
P ∈P

∑
j∈R∩P :ℓj≤k′

P

λj

≥
∑
P ∈P

∑
j∈R∩P :S0∈Fj

λj . . . by choice of k′
P ’s

=
∑

j∈R:S0∈Fj

λj . . . by Definition 13

=
∑

v∈C:S0∈Fv

λv . . . by choice of λv’s

≥ m . . . by supposition.

So {k′
P }P ∈P is a candidate solution to the budgeting problem, for which the objective

function evaluates to ≥ m, contradicting optB(P) < m. Hence (λ1) holds for our chosen
λv’s, and (λ2) is the desired valid inequality that is violated by cov. ◀

▶ Lemma 19. The budgeting problem in Definition 16 can be solved in polynomial time.

Proof. We proceed via dynamic programming. Let N := |P|. Without loss of generality,
say P =: {P1, P2, . . . , PN}. For brevity, ∀a ∈ [N ], we say La := ℓPa . To handle base cases
in our DP, we set the convention that P0 := ∅. Now define the entries in our DP table:
∀ν ∈ [N ] ∪ {0} and ∀b ∈ [k] ∪ {0},

M [ν, b] := max
{ka≤La}ν

a=1:
∑ν

a=1
ka≤b

ν∑
a=1

∑
j∈R∩Pa:ℓj≤ka

|child(j)| . (DP-defn)

The desired entry is M [N, k], as the corresponding {ka}N
a=1 becomes, upon renaming as

{kPa
= ka}N

a=1, the kP ’s that we want.
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The base cases are: M [0, 0] = 0; ∀ν ∈ [N ], M [ν, 0] = 0; and ∀b ∈ [k], M [0, b] = 0. The
DP table has O(Nk) = O(nk) entries; so in polynomial time, we can fil it via the following
recurrence.

M [ν, b] :=
min(b,Lν )

max
ℓ=0

M [ν − 1, b− ℓ] +
∑

j∈R∩Pν :ℓj≤ℓ

|child(j)|

 . (DP-rec)

We also remember, for each entry M [ν, b], the ℓ that maximizes the RHS of (DP-rec). Note,
in (DP-defn), that the RHS for M [N, k] corresponds, up to renaming, with the RHS in the
objective function (see Definition 16). Thus it remains to show that (DP-rec) is correct wrt
(DP-defn).

To show that LHS ≤ RHS, consider the solution {k∗
a}

ν
a=1 corresponding to M [ν, b]. By

(DP-defn), k∗
ν ≤ min(b, Lν). So {k∗

a}
ν−1
a=1 is a candidate solution for M [ν − 1, b− k∗

a], i.e.∑ν−1
a=1

∑
j∈R∩Pa:ℓj≤k∗

a
|child(j)| ≤M [ν − 1, b− k∗

a], so

LHS = M [ν, b] =
ν∑

a=1

∑
j∈R∩Pa:ℓj≤k∗a

|child(j)|

≤M [ν − 1, b− k∗
a] +

∑
j∈R∩Pν :ℓj≤k∗

ν

|child(j)| ≤ RHS

since the RHS is a maximum.
To show that RHS ≤ LHS, fix an ℓ ∈ {0, . . . , min(b, Lν)}, and let {k′

a}
ν−1
a=1 be the solution

corresponding to M [ν − 1, b− ℓ]. Setting k′
ν = ℓ yields {k′

a}
ν
a=1, a candidate solution for

M [ν, b]. So

M [ν − 1, b− ℓ] +
∑

j∈R∩Pν :ℓj≤ℓ

|child(j)| =
ν∑

a=1

∑
j∈R∩Pa:ℓj≤k′

a

|child(j)| ≤M [ν, b] = LHS

since M [ν, b] is a maximum by (DP-defn).
As the RHS maximizes over ℓ ∈ {0, . . . , min(b, Lν)}, we are done. ◀

Proof of Theorem 15. Given a (ρ, cov)-good partition P, we solve the budgeting problem
(Definition 16), which we can do efficiently due to Lemma 19, and obtain optB(P). If
optB(P) ≥ m, Lemma 17 guarantees a (ρ + 1)-approximation; otherwise, Lemma 18 gives
a valid inequality that is violated by cov. We pass the valid inequality as a separating
hyperplane to the ellipsoid algorithm, and restart our rounding process with fresh covv’s.
By the guarantees of ellipsoid, in polynomial time, we either round to obtain a (ρ + 1)-
approximation, or detect that the guess of r is too small. ◀

4.3 Obtaining a good partition

▶ Theorem 20. Given {0 ≤ covv ≤ 1}v∈C , in polynomial time, we can obtain the following:
1. a (4t− 2, cov)-good partition, and
2. a (2t, cov)-good partition.

Theorem 15 follows from Lemmas 21 and 22.

▶ Lemma 21. Algorithm 3 yields a (4t− 2, cov)-good partition.
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Algorithm 3 Finding a (4t − 2, cov)-good partition.

Input: {0 ≤ covv ≤ 1}v∈C

1: U ← C

2: R← ∅
3: while U ̸= ∅ do
4: j ← argmaxv∈U covv

5: R← R ∪ {j}
6: child(j)← {v ∈ U : d(v, j) ≤ 2tr ∧ ℓv ≤ ℓj}
7: U ← U \ child(j)
8: P ← ∅
9: G← (R, E := {{j, j′} : d(j, j′) ≤ 2r}) ▷ undirected graph

10: C ← connected components of G

11: P ← {∪j∈V child(j)}V ∈C
Output: A partition P of C.

Proof. Consider P, the output of Algorithm 3, and the child and R constructed alongside.
Line 7 ensures that {child(j)}j∈R is a partition of C. Line 11 ensures that this partition is a
refinement of P . Lines 4 and 6 construct child as desired, ensuring that ∀j ∈ R, ∀v ∈ child(j),
covj ≥ covv and ℓj ≥ ℓv. So Property 1 holds.

Now consider P1, P2 ∈ P , x1 ∈ R ∩ P1, x2 ∈ R ∩ P2 : P1 ̸= P2. By Lines 9-10, R ∩ P1 and
R ∩ P2 are distinct connected components in C, so {x1, x2} /∈ E, i.e. d(x1, x2) > 2r. This
shows that Property 2 holds.

Finally, consider P ∈ P , and v ∈ P s.t. v ∈ child(j1) for j1 ∈ R. By Line 11, j1 ∈ R ∩ P .
Also consider a different j2 ∈ R∩P . By Lines 9-10, R∩P ∈ C. In G, consider π, the shortest
j1-j2 path passing entirely through R ∩ P . We claim that

▷ Claim. π contains at most t vertices.

Proof. Suppose not. Then, by the pigeonhole principle, π contains vertices u, v ∈ R ∩ P s.t.
u ̸= v and ℓu = ℓv. Choose such u, v minimizing d(u, v), and consider the u-v subpath π′ of
π. If π′ contains > t vertices, then we can replace j1, j2 with u, v and repeat our argument
to obtain a smaller d(u, v) – contradicting our choice of u, v. So π′ contains ≤ t vertices, i.e.
d(u, v) ≤ 2(t− 1)r; but since u, v ∈ R, this contradicts Line 6. ◁

So d(j1, j2) ≤ 2(t−1)r, i.e. by Line 6, d(v, j2) ≤ d(v, j1)+d(j1, j2) ≤ 2tr+2(t−1)r = (4t−2)r.
We have just showed that, ∀v ∈ P, j ∈ R ∩ P , d(v, j) ≤ (4t− 2)r. By Observation 14, this
implies Property 3 for ρ = (4t− 2). ◀

▶ Lemma 22. Algorithm 4 yields a (2t, cov)-good partition.

Proof. Consider P, the output of Algorithm 4, and the child and R constructed alongside.
Note that, since Line 8 only creates edges to Roots, and Line 9 updates Roots accordingly,
(R, E) is indeed a forest.

Line 12 ensures that {child(j)}j∈R is a partition of C. Line 14 ensures that this partition
is a refinement of P. Lines 6 and 11 construct child as desired, ensuring that ∀j ∈ R,
∀v ∈ child(j), covj ≥ covv and ℓj ≥ ℓv. So Property 1 holds.

Now consider P1, P2 ∈ P , x1 ∈ R ∩ P1, x2 ∈ R ∩ P2. Without loss of generality, suppose
x2 was added to R after x1; if d(x1, x2) ≤ 2r, then by Lines 8 and 10, we would have
d(x2, x1) ∈ E, i.e. x1, x2 would lie in the same connected component in T . So by Lines 13-14,
P1 = P2. This shows that Property 2 holds.
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Algorithm 4 Finding a (2t, cov)-good partition.

1: U ← C

2: (R, E)← (∅, ∅) ▷ initializing an empty directed forest
3: ∀v ∈ U , height(v)← 0 ▷ height in the forest; height(v) = 0 =⇒ v /∈ R

4: Roots← ∅ ▷ tracking roots in the forest
5: while U ̸= ∅ do
6: j ← argmaxv∈U covv

7: R← R ∪ {j}
8: E ← E ∪

{
(j, j′) : j′ ∈ Roots ∧ d(j, j′) ≤ 2height(j′)r

}
9: Roots← (Roots \ {j′ : (j, j′) ∈ E}) ∪ {j}

10: height(j)← 1 + max(j,j′)∈E height(j′) ▷ convention: max over ∅ is 0
11: child(j)←

{
v ∈ U : d(v, j) ≤ 2height(j)r ∧ ℓv ≤ ℓj

}
12: U ← U \ child(j)
13: T ← connected components in the forest (R, E) ▷ each component induces a tree
14: P ← {∪j∈V child(j)}V ∈T

Finally, note that

▷ Claim 23. (j, j′) ∈ E =⇒ ℓj > ℓj′ .

Proof. Since (j, j′) ∈ E, we know that j′ was added to R before j, and d(j, j′) ≤ 2height(j′)r.
So if ℓj ≤ ℓj′ , then by Line 11, we would have j ∈ child(j′), contradicting the fact that j ∈ R.

◁

Now fix P ∈ P , and consider jP which, by Observation 14, lies in R∩P , and hence by Lines 13-
14, R ∩ P induces a tree in (R, E). Claim 23 tells us that jP is the root in this tree, and
that height(jP ) ≤ t. So by Line 8, for any j ∈ R ∩ P , d(jP , j) ≤

(
2height(jP ) − 2height(j)) r ≤(

2t − 2height(j)) r. Now consider v ∈ P : v ∈ child(j) for a j ∈ R∩P . Then d(v, j) ≤ 2height(j),
so d(v, jP ) ≤ d(v, j) + d(j, jP ) ≤

(
2t − 2height(j) + 2height(j)) r = 2tr. Thus Property 3 holds

for ρ = 2t. ◀

5 Conclusion

In this paper, we have studied the Fault-tolerant k-Supplier with Outliers problem and
presented a (4t − 1)-approximation when there are t distinct fault tolerances. While this
gives the optimal 3-approximation for the uniform version of the problem (improving upon
the recent result [20]), the parameter t could be as large as k. To obtain our result, we
needed to resort to the powerful hammer of the round-or-cut schema, and indeed used a
very strong LP relaxation. This was necessary since, as we saw in Section 3.1, natural
LP relaxations and their strengthenings have unbounded integrality gaps. We also show a
Ω(t)-bottleneck to our approach (Appendix B), and this raises the intriguing question: are
there O(1)-approximations for the FkSO problem? As noted in Section 1, the authors are not
aware of clustering problems where the version without outliers has a constant approximation
(as we saw in Section 2, FkS does), but the outlier version doesn’t. Perhaps FkSO is such
a candidate example. This also raises the question of designing inapproximability results
for metric clustering problems, which has not been explored much. We leave all these as
interesting avenues of further study.
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A Proof of Claim 7

Consider a feasible solution S∗ that serves inliers T ∗. Set
∀v ∈ C, covv = 1v∈T ∗ , and
∀i ∈ F , yi = 1i∈S∗ .

These satisfy (WL1), (WL2), and (WL5) by construction. Now note that, for a v ∈ T ∗,
Nℓv (v, F ) ⊆ S; so (WL3) is satisfied. Furthermore, for a v ∈ C, if dℓv (v, F ) > r then v /∈ T ∗,
satisfying (WL4).

Conversely, given an integral solution satisfying (WL1)-(WL5), we can construct S∗ =
{i ∈ F : yi = 1}, and T ∗ = {v ∈ C : covv = 1}. (WL2) implies |S∗| ≤ k, and (WL1) implies
w(T ∗) ≥W . For any v ∈ T ∗,

|S∗ ∩B(v, r)| =
∑

i∈F ∩B(v,r)

yi . . . by construction of S∗

≥ ℓcovv = ℓ , . . . by (WL3) and construction of T ∗

so dℓv
(v, S∗) ≤ r.

B Limiting Example for Good-Partition Rounding

In order to achieve a better approximation factor than Ω(t), we will need to move beyond
the overall schema of using a good partition (Definition 13) to round solutions to (L1)-(L4).
This can be seen via the following example, illustrated in Figure 3. Here r = 1, n = t, m = 1.
C is the set {v1, · · · , vt}, with each client va having fault-tolerance ℓva

= a. F is the union of
t sets {Fa}t

a=1, where Fa = {ia1, ia2, . . . , iak}, for a total of tk facilities in F . Each client va

has distance 2 to va+1 and va−1, and distance 1 to each facility in Fa. Remaining distances
are determined by making triangle inequalities tight.

Consider the following (cov, z) satisfying (L1)-(L4). We set zFa = 1
aHt

for each a ∈ [t],
where Ht is the tth Harmonic number; and set all other zS ’s to zero. This allows us to set
covva = 1

aHt
for each a ∈ [t]. Under this (cov, z), observe that ∀va, vb ∈ C, va ≠ va ∧ cova ≥

covb =⇒ ℓa < ℓb; so Property 1 can only hold if all clients are in the same piece of the
partition, i.e. P = {C}. This means that a (ρ, cov)-good partition can only be attained for
ρ ≥ 2(t− 1), so upon applying Theorem 15, this approach attains a (2t− 1)-approximation
at best.

v1 v2 v3 · · · · · · · · ·
vt

i11 i12
· · ·

i1k i21 i22
· · ·

i2k i31 i32
· · ·

i3k i11 i12
· · ·

i1k

1
Ht

1
2Ht

1
3Ht

1
tHt

1
Ht

1
Ht

· · · 1
Ht

1
2Ht

1
2Ht

· · · 1
2Ht

1
3Hn

1
3Hn

· · · 1
3Hn

1
tHt

1
tHt

· · · 1
tHt

Figure 3 An example showing the limitations of good partitions, with a solution to (L1)-(L4)
shown in red (z values) and blue (cov values). The thin “edges” represent distance 1, the thick
“edges” represent distance 2, and all other distances are determined by making triangle inequalities
tight. The fault-tolerances are ℓv1 = 1, ℓv2 = 2, . . . , ℓvt = t.
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Abstract
In the k-Edit Circular Pattern Matching (k-Edit CPM) problem, we are given a length-n text T , a
length-m pattern P , and a positive integer threshold k, and we are to report all starting positions of
the substrings of T that are at edit distance at most k from some cyclic rotation of P . In the decision
version of the problem, we are to check if any such substring exists. Very recently, Charalampopoulos
et al. [ESA 2022] presented O(nk2)-time and O(nk log3 k)-time solutions for the reporting and
decision versions of k-Edit CPM, respectively. Here, we show that the reporting and decision versions
of k-Edit CPM can be solved in O(n + (n/m) k6) time and O(n + (n/m) k5 log3 k) time, respectively,
thus obtaining the first algorithms with a complexity of the type O(n + (n/m) poly(k)) for this
problem. Notably, our algorithms run in O(n) time when m = Ω(k6) and are superior to the previous
respective solutions when m = ω(k4). We provide a meta-algorithm that yields efficient algorithms
in several other interesting settings, such as when the strings are given in a compressed form (as
straight-line programs), when the strings are dynamic, or when we have a quantum computer.

We obtain our solutions by exploiting the structure of approximate circular occurrences of P in T ,
when T is relatively short w.r.t. P . Roughly speaking, either the starting positions of approximate
occurrences of rotations of P form O(k4) intervals that can be computed efficiently, or some rotation
of P is almost periodic (is at a small edit distance from a string with small period). Dealing with
the almost periodic case is the most technically demanding part of this work; we tackle it using
properties of locked fragments (originating from [Cole and Hariharan, SICOMP 2002]).

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases circular pattern matching, approximate pattern matching, edit distance

Digital Object Identifier 10.4230/LIPIcs.STACS.2024.24

Related Version Full Version: https://arxiv.org/abs/2402.14550

Funding Solon P. Pissis: Supported by the PANGAIA and ALPACA projects that have received
funding from the European Union’s Horizon 2020 research and innovation programme under the
Marie Skłodowska-Curie grant agreements No 872539 and 956229, respectively.
Jakub Radoszewski: Supported by the Polish National Science Center, grant no. 2022/46/E/
ST6/00463.
Wiktor Zuba: Received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant agreement Grant Agreement No 101034253.

Acknowledgements We thank Tomasz Kociumaka for helpful discussions.

© Panagiotis Charalampopoulos, Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter,
Tomasz Waleń, and Wiktor Zuba;
licensed under Creative Commons License CC-BY 4.0

41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024).
Editors: Olaf Beyersdorff, Mamadou Moustapha Kanté, Orna Kupferman, and Daniel Lokshtanov;
Article No. 24; pp. 24:1–24:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:p.charalampopoulos@bbk.ac.uk
https://orcid.org/0000-0002-6024-1557
mailto:solon.pissis@cwi.nl
https://orcid.org/0000-0002-1445-1932
mailto:jrad@mimuw.edu.pl
https://orcid.org/0000-0002-0067-6401
mailto:rytter@mimuw.edu.pl
https://orcid.org/0000-0002-9162-6724
mailto:walen@mimuw.edu.pl
https://orcid.org/0000-0002-7369-3309
mailto:wiktor.zuba@cwi.nl
https://orcid.org/0000-0002-1988-3507
https://doi.org/10.4230/LIPIcs.STACS.2024.24
https://arxiv.org/abs/2402.14550
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


24:2 Approximate Circular Pattern Matching Under Edit Distance

1 Introduction

In the classic pattern matching (PM) problem, we are given a length-n text T and a length-m
pattern P , and we are to report all starting positions (called occurrences) of the fragments
of T that are identical to P . This problem can be solved in the optimal O(n) time by, e.g.,
the famous Knuth-Morris-Pratt algorithm [29]. In many real-world applications, we are
interested in locating not only the fragments of T which are identical to P , but also the
fragments of T which are identical to any cyclic rotation of P . In this setting, the rotations
of P form an equivalence class, represented by a single circular string. In the circular PM
(CPM) problem, we are to report all occurrences of the fragments of T that are identical to
some cyclic rotation of P . The CPM problem can also be solved in O(n) time [14].

Applications where circular strings are considered include the comparison of DNA se-
quences in bioinformatics [23, 4] as well as the comparison of shapes represented through
directional chain codes in image processing [36, 35]. In both applications, it is not sufficient
to look for exact (circular) matches. In bioinformatics, we need to account for DNA sequence
divergence (e.g., in the comparison of different species or individuals); and in image processing,
we need to account for small differences in the comparison of images (e.g., in classifying
handwritten digits). This gives rise to the notion of edit distance on circular strings [34, 3].

We say that string U is a (cyclic) rotation of string V if U = XY and V = Y X for some
strings X, Y , and write V = roti(U), where i = |X|; e.g., U = abcde, X = ab, Y = cde, V =
cdeab = rot2(U). The edit (Levenshtein) distance δE(U, V ) of two strings U and V is the
minimal number of letter insertions, deletions and substitutions required to transform U to
V . For two strings U and V and an integer k > 0, we write U =k V if δE(U, V ) ≤ k and we
write U ≈k V if there exists a rotation U ′ of U such that U ′ =k V .

For a string U composed of letters U [0], . . . , U [|U | − 1], by U [i . . j] = U [i . . j + 1) we
denote the fragment of U corresponding to the substring U [i] · · · U [j]. We say that T [p . . p′]
is a circular k-edit occurrence of pattern P if P ≈k T [p . . p′]. By CircOcck(P, T ) we denote
the set of starting positions of circular k-edit occurrences of P in T . Let us define k-Edit
CPM (cf. Figure 1).

k-Edit CPM
Input: A text T of length n, a pattern P of length m, and a positive integer k.
Output: A representation of the set CircOcck(P, T ). (Reporting version)

Any position i ∈ CircOcck(P, T ), if there is any. (Decision version)

T = c
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d
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a
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b
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a
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b
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rot2(P ) = c d - a b
2 3 0 1

T = c
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c
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d
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d
3

a
4

b
5

a
6

b
7

c
8

rot2(P ) = c d a b
2 3 0 1

T = c
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c
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d
2

d
3

a
4

b
5

a
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b
7

c
8

rot3(P ) = d a b c
3 0 1 2

T = c
0

c
1

d
2

d
3

a
4

b
5

a
6

b
7

c
8

rot3(P ) = d a b c
3 0 1 2

T = c c d d a b a b c -
0 1 2 3 4 5 6 7 8

P = a b c d
0 1 2 3

Figure 1 Illustration of the 1-edit circular occurrences of pattern P = abcd in text T = ccddababc.
We have CircOcc1(P, T ) = {1, 2, 3, 5, 6}. The letters involved in an edit operation are coloured red.



P. Charalampopoulos et al. 24:3

Related work. The Hamming distance of two equal-length strings U and V is the number
of mismatches between U and V ; that is, the minimal number of letter substitutions required
to transform U to V . Accounting for surplus or missing letters on top of substitutions poses
significant challenges. For example, the Hamming distance of two length-n strings can be
computed in O(n) time with a trivial algorithm, while it is known that their edit distance
cannot be computed in O(n2−ϵ) time, for any ϵ > 0, under the Strong Exponential Time
Hypothesis [5]. The situation is similar for (non-circular) approximate pattern matching. The
k-Mismatch PM problem is quite well-understood as the upper bound of Õ(n + kn/

√
m) due

to Gawrychowski and Uznański [22], who provided a smooth tradeoff between the algorithms
of Amir et al. [2] with running time Õ(n

√
k) and Clifford et al. [18] with running time

Õ(n + (n/m)k2), is matched by a lower bound for so-called “combinatorial” algorithms.1
Algorithms that are faster by polylogarithmic factors have been presented in [11, 12, 16].
In contrast, the complexity of the k-Edit PM problem is not yet settled: the current
records are the classic O(nk)-time algorithm of Landau and Vishkin [33] and the very recent
Õ(n + (n/m)k3.5)-time algorithm of Charalampopoulos et al. [17] improving the classic
O(n + (n/m)k4)-time algorithm of Cole and Hariharan [20]. However, there is no known
lower bound for k-Edit PM ruling out an O(n + (n/m)k2)-time algorithm.

Recent results in pattern matching under both the Hamming distance and the edit
distance for various settings [8, 9, 13, 15, 16, 17, 19, 27, 30, 39] were fuelled by a novel
characterization of the structure of approximate occurrences. It is folklore knowledge that if
n ≤ 3m/2, either pattern P has a single exact occurrence in T or both P and the portion of
T spanned by occurrences of P are periodic (with the same period). In 2019, Bringmann et
al. [9] showed that either P has few approximate occurrences (under the Hamming distance)
or it is approximately periodic. Later, Charalampopoulos et al. [16] tightened this result and
proved an analogous statement for approximate occurrences under the edit distance.

Let us now focus on approximate circular pattern matching. The CPM problem under the
Hamming distance is called the k-Mismatch CPM problem. An O(nk)-time algorithm and
an Õ(n + (n/m)k3)-time algorithm were proposed for the reporting version of k-Mismatch
CPM by Charalampopoulos et al. in [13] and [15], respectively, whereas an Õ(n + (n/m)k2)-
time algorithm for its decision version was given in [15]. Further, the authors of [7, 26]
presented efficient average-case algorithms for k-Mismatch CPM. The k-Edit CPM problem
was considered in [15], where an O(nk2)-time algorithm and an O(nk log3 k)-time algorithm
were presented for the reporting and decision version, respectively. Until now, no algorithm
with worst-case runtime O(n + (n/m)kO(1)) was known for k-Edit CPM. Such an algorithm
is superior over O(nkO(1))-time algorithms when the number of allowed errors is small in
comparison to the length of the pattern. Here, we propose the first such algorithms.

Our result. In order to represent the output of our algorithm compactly, we need the notion
of an interval chain. For two integer sets A and B, let A ⊕ B = {a + b : a ∈ A, b ∈ B}. We
extend this notation for an integer b to A ⊕ b = b ⊕ A = A ⊕ {b}. An interval chain for an
interval I and non-negative integers a and q is a set of the form

Chain(I, a, q) = I ∪ (I ⊕ q) ∪ (I ⊕ 2q) ∪ · · · ∪ (I ⊕ aq).

Here q is called the difference of the interval chain. For example the set of underlined intervals
in Figure 4 corresponds to Chain([3 . . 8], 2, 8) = [3 . . 8] ∪ [11 . . 16] ∪ [19 . . 24].

Our main algorithmic result can be stated as follows (cf. Table 1).

1 Throughout this work, the Õ(·) notation hides factors polylogarithmic in the length of the input strings.
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24:4 Approximate Circular Pattern Matching Under Edit Distance

Table 1 The upper-bound landscape of pattern matching (PM) and circular PM (CPM) with k

edits. In the decision version of k-Edit CPM, the algorithms only find if there exists at least one
occurrence and return a witness; otherwise the algorithms report all the occurrences.

k-Edit PM Reference Note k-Edit CPM Reference Note

O(n2) [38] for any k O(nk2) [15]
O(nk2) [32] Õ(nk) [15] decision
O(nk) [33] O(n + k6 · n/m) This work

Õ(n + k
25
3 · n/m

1
3 ) [37] Õ(n + k5 · n/m) This work decision

O(n + k4 · n/m) [20]
Õ(n + k3.5 · n/m) [17]

▶ Theorem 1. The reporting version of the k-Edit CPM problem can be solved in O(n +
(n/m)k6) time, with the output represented as a union of O((n/m)k6) interval chains. The
decision version of the k-Edit CPM problem can be solved in O(n + (n/m)k5 log3 k) time.

The following notion of an anchor (see also Figure 2) is crucial for understanding the
structure of (approximate) circular pattern matching.

▶ Definition 2. A circular k-edit occurrence T [p . . p′] of P is anchored at position i (called
anchor) if δE(T [p . . i), Y ) + δE(T [i . . p′], X) ≤ k, where P = XY for some X, Y . We denote

Anchoredk(P, T, i) = { p : T [p . . p′] is anchored at i for some p′ }.

P = a
0

b
1

c
2

b
3

b
4

b
5

b
6

T = b
0

a
1

c
2

b
3

b
4

c
5

b
6

a
7

c
8

b
9

c
10

a
11

a
12

a
13

rot3(P ) = b b b b a - b c
3 4 5 6 0 1 2

rot2(P ) = c b b b b a - b
2 3 4 5 6 0 1

rot1(P ) = b c b b b b a
1 2 3 4 5 6 0

Figure 2 The starting positions of circular 2-edit occurrences of pattern P anchored at position 7
in text T are Anchored2(P, T, 7) = {0, 1, 2, 3, 4}; the occurrences at positions 1, 2, 3 are shown.

▶ Example 3. Let P = a99 b and T = P 2. Then |CircOcc0(P, T )| = 101, while we have only
two anchors (0 and 100).

Our algorithm exploits the approximate periodic structure of the two strings in scope.
On the way to our main algorithmic result we prove (in the end of Section 2) the following
structural result for k-Edit CPM:

▶ Theorem 4. Consider a pattern P of length m, a positive integer threshold k, and a text
T of length n ≤ cm + k, for a constant c ≥ 1. Then, either there are only O(k2) anchors of
circular k-edit occurrences of P in T or some rotation of P is at edit distance O(k) from a
string with period O(m/k).
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The PILLAR model. We work in the PILLAR model that was introduced in [16] with the
aim of unifying approximate pattern matching algorithms across different settings. In this
model, we assume that the following primitive PILLAR operations can be performed efficiently,
where the argument strings are fragments of strings in a given collection X :

Extract(S, ℓ, r): Retrieve string S[ℓ . . r).
LCP(S, T ), LCPR(S, T ): Compute the length of the longest common prefix/suffix of S, T .
IPM(S, T ): Assuming that |T | ≤ 2|S|, compute the starting positions of all exact occur-
rences of S in T , expressed as an arithmetic progression.
Access(S, i): Retrieve the letter S[i]; Length(S): Compute the length |S| of the string S.

The runtime of algorithms in this model can be expressed in terms of the number of primitive
PILLAR operations. The result underlying Theorem 1 can be stated as follows.

▶ Theorem 5. If n ≤ m ≤ 2n, the reporting and decision versions of the k-Edit CPM
problem can be solved in O(k6) time and O(k5 log3 k) time in the PILLAR model, respectively.

Theorem 5 implies Theorem 1 as well as efficient algorithms for k-Edit CPM in internal,
dynamic, fully compressed, and quantum settings based on known implementations of the
PILLAR model in these settings, as discussed in Appendix C.

Our approach. Every circular k-edit occurrence of P in T is anchored at some position i

of T . In the reporting and decision version of the problem, we use the following respective
results.

▶ Lemma 6 ([14, Lemma 30]). Given a text T of length n, a pattern P of length m, an
integer k > 0, and a position i of T , we can compute in O(k2) time in the PILLAR model the
set Anchoredk(P, T, i), represented as a union of O(k2) intervals, possibly with duplicates.

For an interval I denote by AnyAnchoredk(P, T, I) an arbitrarily chosen position in the
set

⋃
i∈I Anchoredk(P, T, i); if this set is empty then the result is none.

▶ Lemma 7 ([15, Section 4]). Given a text T of length n, a pattern P of length m,
an integer k > 0, and an interval I containing up to k positions of T , we can compute
AnyAnchoredk(P, T, I) in O(k2 log3 k) time in the PILLAR model.

It will be convenient and sufficient to deal separately with fragments of T of length
O(m), so we can assume w.l.o.g. that n = O(m). Let P = P1P2 be a decomposition of the
pattern with |P1| = ⌊m/2⌋. By using Lemma 6 to compute k-edit circular occurrences that
are anchored at one of O(k2) carefully chosen anchors, we reduce our problem to searching
for k-edit (non-circular) occurrences of any length-m substring of a certain fragment V of
P2P1P2 in a suitable fragment U of T , where both V and U are approximately periodic
(there is also a symmetric case where V is a substring of P1P2P1).

We achieve this as follows. Let us denote the set of standard (non-circular) k-edit
occurrences of a string X in a string Y by

Occk(X, Y ) = {i ∈ [0 . . |Y |) : Y [i . . i′] =k X for some i′ ≥ i}.

We compute the set Occk(P1, T ) using an algorithm for pattern matching with k edits [16].
If this set is small, it yields a small set of anchors for k-edit occurrences of rotations of P

that contain P1. We also do the same for P2. Then, we can apply Lemma 6 to each anchor.
The challenging case is when Occk(P1, T ) is large. The structural result for k-Edit PM

then implies that P1 and the portions of T spanned by approximate occurrences of P1 are
almost periodic, i.e., they are at small edit distance from a substring of string Q∞, where

STACS 2024



24:6 Approximate Circular Pattern Matching Under Edit Distance

Q is a short string. We extend the periodicity in each of P2P1P2 and T , allowing for more
edits. The reduction is then completed by accounting for some technical considerations and,
possibly, calling Lemma 6 O(k2) more times.

In order to develop some intuition for how to deal with the almost periodic case, let us
briefly discuss how it is dealt with in the case where we are looking for approximate (circular)
occurrences under the Hamming distance. The mismatches of each of the two strings (P

and T or U and V ) with a substring of Q∞ are called misperiods. Now, consider some
candidate starting position i of P in T , assuming that both P [0 . . |Q|) and T [i . . i + |Q|) are
approximate copies of Q: the number of mismatches of P and T [i . . i + m) can be inferred by
just looking at the misperiods: it is just the total number of misperiods in P and T [i . . i + m)
minus the misperiods that are aligned and thus “cancel out”.

For approximate PM under the edit distance, the situation is much more complicated as
deletions and insertions can be applied, and hence we cannot have an analogous statement
about misperiods “cancelling out”. Following works on (non-circular) k-edit PM, we employ
so-called locked fragments (see [16, 20]).

Roughly speaking, we partition each of U and V into locked fragments and powers of
Q, such that the total length of locked fragments is small and, if a locked fragment is to be
aligned with a substring of Q∞, we would rather align it with a power of Q. Then, intuitively,
one has to overcome technical challenges arising from the nature of the overlap of the locked
fragments with a specific circular k-edit occurrence.

We consider different cases depending on whether the fragments of U and V that yield a
match imply that any pair of locked fragments (one in U and one in V ) overlap. A crucial
observation is that, roughly speaking, as we slide a length-m fragment of V over U , |Q|
positions at a time, such that the locked fragments in the window in U remain unchanged
and do not overlap with locked fragments in V , the edit distance remains unchanged.

2 Reduction of k-Edit CPM to the PeriodicSubMatch Problem

A string S = S[0 . . |S| − 1] is a sequence of letters over some alphabet. The string S[i]S[i +
1] · · · S[j], for any indices i, j such that i ≤ j, is called a substring of S. By S[i . . j] = S[i . . j +
1) = S(i − 1 . . j] we denote a fragment of S that can be viewed as a positioned substring
S[i]S[i + 1] · · · S[j] (it is represented in O(1) space). We also denote S(j) = S[j . . j + m). An
integer p such that 0 < p ≤ |S| is called a period of S if S[i] = S[i + p], for all i ∈ [0 . . |S| − p).
We define the period of S as the smallest such p. A string Q is called primitive if Q = W k

for a string W and a positive integer k implies that k = 1. By rotj(X) we denote the string
X[j . . |X|)X[0 . . j). We generalize the rotation operation rot to arbitrary integer exponents r

as rotr(X) = rotr mod |X|(X).
By δE(X, Y ∗), δE(X, ∗Y ) and δE(X, ∗Y ∗) we denote the minimum edit distance between

string X and any prefix, suffix and substring of string Y |X|+|Y |, respectively.
We say that a string U is almost Q-periodic if δE(U, Q∗) ≤ 112k. We write a ≡d b (mod q)

if a − b ≡ i (mod q), where min(i, q − i) ≤ d (in other words, a and b are d-approximately
congruent modulo q). For example, 11 ≡3 21 (mod 8), but 11 ≡1 21 (mod 8) does not hold.

A pair of indices (p, x) satisfying p ∈ Occk(V (x), U) and p ≡77k x + r (mod q) will be
called an approximate match (app-match, in short).

The following auxiliary problem, PeriodicSubMatch, is illustrated in Figure 3.
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PeriodicSubMatch
Input: A primitive string Q, integers m, r, k, α, β, and strings U , V such that

m ≤ |U | ≤ 7
4 m + 3(k + 1), m ≤ |V | ≤ 3

2 m, q = |Q| ≤ m
256 k , r ∈ [0 . . q),

U is almost Q-periodic,
V = P 2[α . . β] (hence, length-m substrings of V are rotations of P ),
V is almost Q′-periodic, where Q′ := rotr(Q).

Output: { p ∈ Occk(V (x), U) : p ≡77k x + r (mod q), x ≤ |V | − m }.

▶ Remark 8. Due to the condition that V is a fragment of P 2, we can apply the operation
Anchoredk to compute efficiently the output of PeriodicSubMatch in the case when a
position j1 in V is aligned with a position i1 in U . The efficiency of the whole approach is
based on the efficiency of the operation Anchoredk.

p
abcdefgyhabcdefghabcefghabcdefghabcdU

Q

x
fghabcdefzghabcdefghabcdefghabcdeV

PP
α β

r r

Q′

Figure 3 We have m = 25, k = 2 and r = 5. Edits with respect to the approximate periodicity
are marked in red. Green rectangles show that V (x) =2 U [p . . p + 23). We have p = x + r + 1, so
p ≡1 x+r (mod q). The distances (in blue) from p and x to the starts of next approximate periods Q

are the same up to Θ(k). For the example purposes, we waive the constraint q = |Q| ≤ m
256 k

.

The strings U and V are both close to substrings of Q∞. The condition p ≡Θ(k) x + r

(mod q) means that we are only interested in k-edit occurrences U [p . . p′] of V (x) such that
the two substrings are approximately synchronized with respect to the approximate period Q;
see Figure 3. (In particular, no other k-edit occurrences exist.) The constants originate from
Theorem 10 and some additional requirements imposed in the proof of Lemma 12.

▶ Example 9. A very simple double fully periodic case, where both U and V are substrings
of Q∞, is depicted in Figure 4. Again, we waive the constraint q = |Q| ≤ m

256 k .

The following theorem follows as a combination of several results of [16], see Appendix A.

▶ Theorem 10 ([16]). If |T | = n < 3
2 m + k, then in O(k4) time in the PILLAR model we can

compute a representation of the set Occk(P, T ). If ⌊|Occk(P, T )|/k⌋ > 642045 · (n/m) · k, the
algorithm also returns:

a primitive string Q satisfying |Q| ≤ m/(256k), δE(P, ∗Q∗) = δE(P, Q∗) < 2k, and
a fragment T̄ of T such that δE(T̄ , ∗Q∗) ≤ δE(T̄ , Q∗) ≤ 24k, |Occk(P, T )| = |Occk(P, T̄ )|.

Moreover, i ≡24k 0 (mod |Q|) for each i ∈ Occk(P, T̄ ).
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d e f g h a b c d e f g h a b c d e f g h a b c d e f g h a b c d e f g h a b c d e f g h

Q

U

r x + r

x

a b c d e f g h a b c d e f g h a b c d e f g h

Q

Q′

V

Figure 4 A double fully periodic case. Let k = 2, q = |Q| = 8, and r = 4. For m = 23, the
set of k-edit occurrences of any length-m fragment of V (2 possibilities) in U is the (underlined)
interval chain. For m = 16 it is a single interval. Position x in V is synchronized with respect to the
periodicity with any position p in U such that p ≡ x + r (mod q).

▶ Remark 11. An O((n/m)k3.5√
log k log m)-time algorithm for computing a representation

of the set Occk(P, T ) using O(k3) arithmetic progressions was presented in [17]. The simpler
result from [16] is sufficient for our needs.

▶ Lemma 12. If n = O(m), then k-Edit CPM can be reduced in O(k4) time in the PILLAR
model to at most two instances of the PeriodicSubMatch problem. The output to k-Edit
CPM is a union of the outputs of the two PeriodicSubMatch instances and O(k4) intervals.

Sketch of the proof. The proof resembles the proof of [15, Lemma 12] for Hamming distance.
Let us partition P to two (roughly) equal chunks, P1 of length ⌊m/2⌋ and P2 of length ⌈m/2⌉.
Each circular k-edit occurrence of P in T implies a standard k-edit occurrence of at least
one of P1 and P2. We focus on the case when it implies such an occurrence of P1, noting
that the computations for P2 are symmetric.

For a fragment T ′ of T , we denote by Impliedk(P1, T ′) the set of circular k-edit occurrences
of P in T in which a k-edit occurrence of P1 is contained in T ′.

We cover T with fragments of length ⌊ 3
2 |P1|⌋+k starting at multiples of ⌊ 1

2 |P1|⌋. (The last
fragments can be shorter.) For each of the fragments T ′ of T , we will compute a representation
of a set A such that Impliedk(P1, T ′) ⊆ A ⊆ CircOcck(P, T ). If |Occk(P1, T ′)| = O(k2), we
use the following fact whose proof is based on anchors.

▷ Claim 13. If the set Occk(P1, T ′) for a fragment T ′ of T has size O(k2) and is given, then
a set of positions A such that Impliedk(P1, T ′) ⊆ A ⊆ CircOcck(P, T ), represented as a union
of O(k4) intervals, can be computed in O(k4) time in the PILLAR model.

Proof. We compute the set Anchoredk(P, T, i + s) for each position i ∈ Occk(P1, T ′), where
s is the starting position of T ′ in T (i.e., T ′ = T [s . . s + |T ′|)). By Lemma 6, this set is
represented as a union of O(k2) intervals and can be computed in O(k2) time in the PILLAR
model. Since |Occk(P1, T ′)| = O(k2), the union A of all these sets contains O(k4) intervals
and is computed in O(k4) total time. Clearly, A satisfies the required inclusions. ◁

If |Occk(P1, T ′)| = O(k2), Claim 13 can be applied. Otherwise, we can assume that
|Occk(P1, T ′)| > ck2 for a sufficiently large constant c. Then, by Theorem 10, P1 and the
relevant part T̄ ′ of T ′ are both almost Q-periodic.
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Computing V . String V is obtained by extending the approximate periodicity of the middle
fragment P1 in P2P1P2 towards both directions. (Note that all rotations of P that contain
its first half P1 are substrings of P2P1P2.) In each direction, we stop extending when either
c′k errors to a prefix (suffix) of Q|V | are accumulated, for a specified constant c′, or we reach
the end of the string. In the former case, we obtain a so-called repetitive region Rright with a
prefix P1 (Rleft with a suffix P1, respectively); see Figure 5.

P2 P1 P2

Rright

Rleft
V

Figure 5 String V (shown in brown) and repetitive regions Rleft and Rright in P2P1P2.

Intuitively, a repetitive region is a fragment that is sufficiently long and almost periodic,
but also sufficiently far from being periodic. Thus a rotation of P that contains P1 either
contains one of the repetitive regions or it is contained in V . A repetitive region is known [16]
to have O(k2) occurrences in a string of length O(m), so the former case can be solved in O(k4)
time with the aid of anchors as in Claim 13. The latter case will lead to PeriodicSubMatch.

Computing U . We obtain U by extending the approximate periodicity of T̄ ′ to T towards
both directions. We extend it to the left until one of the following conditions is satisfied:
the appended substring is at edit distance at least c′k from all suffixes of (rotx(Q))2n, for
all x ∈ [−34k . . 34k], the beginning of T is reached, or roughly m/2 + k letters have been
inspected.

The extension to the left is symmetric. Finally, we prove that all occurrences in
Impliedk(P1, T ′) that correspond to length-m substrings of V are contained in U . The
approximate congruence mod|Q| in PeriodicSubMatch follows from the analogous condi-
tion in Theorem 10. ◀

Let us now restate and prove our structural result.

▶ Theorem 4. Consider a pattern P of length m, a positive integer threshold k, and a text
T of length n ≤ cm + k, for a constant c ≥ 1. Then, either there are only O(k2) anchors of
circular k-edit occurrences of P in T or some rotation of P is at edit distance O(k) from a
string with period O(m/k).

Proof. Theorem 4 readily follows from the proof of Lemma 12. If |V | ≥ m, then some
rotation of P is almost periodic. Otherwise, we only have O(k2) anchors for approximate
circular occurrences (stemming from occurrences of some of P1, P2, or a repetitive region
obtained by extending either of P1 or P2 in some direction). ◀

3 Locked Fragments

The notion of locked fragments originates from [20]. We use them as defined in [16]. Let us
state [16, Lemma 6.9] 2 with dS = 112k, for k > 0; this characterization of locked fragments
will be sufficient for our purposes. See Figure 6 for an illustration.

2 The original lemma also concluded that L1 is a so-called k-locked prefix; however, this property is not
needed here (and, in particular, a k-locked string is also locked).
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24:10 Approximate Circular Pattern Matching Under Edit Distance

▶ Lemma 14 (see [16, Lemmas 5.6 and 6.9]). Let S denote a string, Q denote a primitive
string, q = |Q|, and suppose that δE(S, ∗Q∗) ≤ 112k and |S| ≥ 225kq for some positive
integer k.

Then there is an algorithm which in O(k2) time in the PILLAR model computes disjoint
locked fragments L1, . . . , Lℓ of S satisfying:
(a) S = L1Qα1L2Qα2 · · · Lℓ−1Qαℓ−1Lℓ, where αi ∈ Z>0 for all i,
(b) δE(S, ∗Q∗) =

∑ℓ
i=1 δE(Li,

∗Q∗) and δE(Li,
∗Q∗) > 0 for all i ∈ (1 . . ℓ),

(c) ℓ = O(k) and
∑ℓ

i=1 |Li| ≤ 676kq.

L1 L2 L3 L4

Q Q Q Q Q Q QQ Q Q Q Q

Figure 6 Illustration of Lemma 14. We have a decomposition S = L1 · Q3 · L2 · Q3 · L3 · Q1 · L4.
L1 is an approximate suffix of Q|S|, L4 is an approximate prefix of Q∞, and internal gray parts are
approximate powers of Q. The remaining (white) fragments are exact powers of Q.

Let us consider the decompositions obtained by applying Lemma 14 to strings U and V

from PeriodicSubMatch w.r.t. the string Q. Strings U and V are almost Q-periodic
and almost Q′-periodic, respectively, so δE(U, ∗Q∗), δE(V, ∗Q∗) ≤ 112k. Moreover, |U |, |V | ≥
m ≥ 256kq > 225kq. Thus, U and V satisfy the assumptions of the lemma. If any of the
decompositions starts with a locked prefix of length smaller than q (possibly empty) or ends
with a locked suffix of length smaller than q, we extend the locked fragment by a copy of Q

and possibly by a neighbouring locked fragment if this copy was the only copy separating
them. The total length of the locked fragments increases by at most 2q ≤ 2kq, so it is
bounded by 678kq.

4 Overlap Case of PERIODICSUBMATCH

We consider all possible offsets ∆ (integers ∆ ∈ (−|V | . . |U |)) by which we can shift V ,
looking for a length-m substring of V that approximately matches a substring of U .

We denote Extt(X) =
⋃

x∈X{y : |x − y| ≤ t}. Denote also by locked(U), locked(V ) the
set of positions in all locked fragments in U , V , respectively.

▶ Definition 15. ∆ is a t-overlap offset if there are positions p, x such that p − x = ∆, and

p ∈ X ⊕ {−m, 0, m}, x ∈ Y ⊕ {−m, 0, m} where X = Extt(locked(U)), Y = locked(V ).

Otherwise ∆ is a t-non-overlap offset.

An integer ∆ is called a valid offset if ∆ ≡77k r (mod q). (Recall the definition of r in
PeriodicSubMatch.) For two integer sets A and B, let A ⊖ B = {a − b : a ∈ A, b ∈ B}.

▶ Observation 16. For any intervals I, J , the set Extt(I ⊖ J) is an interval of size |I| +
|J | − 1 + 2t that can be computed in O(1) time.

▶ Lemma 17. The set of valid t-overlap offsets can be represented as a union of O(k2 +k2t/q)
intervals of length O(k) each. This representation can be computed in O(k2 + k2t/q) time in
the PILLAR model.
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Proof. Let ℓ1, . . . , ℓn1 and ℓ′
1, . . . , ℓ′

n2
be the lengths of locked fragments in U and V , respect-

ively, and s1 =
∑n1

i=1 ℓi, s2 =
∑n2

i=1 ℓ′
i. By point (c) in Lemma 14, we have n1 + n2 = O(k)

and s1 + s2 = O(kq). By Observation 16, the set of t-overlap offsets is a union of O(k2)
intervals of total length proportional to:

n1∑
i=1

n2∑
j=1

(ℓi +ℓ′
j +t) = n1n2t+n2

n1∑
i=1

ℓi +n1

n2∑
j=1

ℓ′
j ≤ n1n2t+(n1 +n2)(s1 +s2) = O(k2(t+q)).

The intervals can be computed in O(k2) time. An interval of length ℓ contains O(k + ℓk/q)
valid offsets grouped into O(1 + ℓ/q) intervals of length O(k) each. These maximal intervals
of offsets can be computed in O(1 + ℓ/q) time via elementary modular arithmetics. Therefore,
the number of intervals of t-overlap offsets that are valid is proportional to

(
n1∑

i=1

n2∑
j=1

1) + O(k2 + k2t/q) = O(k2 + k2t/q)

and all of them can be computed in O(k2 + k2t/q) time. ◀

An app-match (p, x) is called a t-overlap app-match if and only if p − x is a t-overlap offset.
In this section, we consider t-overlap app-matches. In Section 5, we consider t-non-overlap
app-matches: app-matches (p, x) such that p − x is a t-non-overlap offset, for t = Θ(qk).

It follows from the statement of PeriodicSubMatch that if (p, x) is an app-match, then
p − x is a valid offset. The following fact, together with Lemma 6, implies a fast algorithm
for computing the following set for a given offset ∆:

{p ∈ Occk(V (x), U) : ∆ = p − x, ∆ ≡77k r (mod q)}.

▶ Fact 18. If (p, x) is an app-match, ∆ = p − x and ∆′ = m − α + ∆, then the corresponding
circular k-edit occurrence U [p . . p′] is anchored at a position in [∆′ − k . . ∆′ + k]; see Figure 7.

P P

P1 P2

V P2 P1
x

U X2
p

anchor m − α + ∆ + δ

∆

α βm − α

Figure 7 The anchor in U is at position m − α + ∆ + δ, where δ = |X2| − |P2| ∈ [−k . . k] (since
δE(X2, P2) ≤ k).

Using Lemmas 6 and 7 we obtain the following corollary.

▶ Corollary 19. Let I be an interval of size O(k). All positions p for which there exists
an app-match (p, x) such that p − x ∈ I, represented as a union of O(k3) intervals, can
be computed in O(k3) time in the PILLAR model. Moreover, one can check if there is any
app-match (p, x) with p − x ∈ I in O(k2 log3 k) time in the PILLAR model.

The solution of the overlap case is presented in Algorithm 1. Lemma 17 together with
Fact 18 and Corollary 19 imply the following lemma.
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Algorithm 1 Overlap case: reporting version.

Compute the decompositions of U and V into locked fragments;

// Compute the set Λ of (t + k)-overlap offsets, being a union of O(k2) intervals:
foreach locked fragment U [imin . . imax] do

foreach locked fragment V [jmin . . jmax] do
Λ := Λ ∪ ([imin − jmax − (t + k) . . imax − jmin + (t + k)] ⊕ {−m, 0, m});

// Compute the set Γ of valid (t + k)-overlap offsets,
// represented as a union of O(k2 + k2(t + k)/q) intervals of size O(k) each:
foreach interval I of offsets in Λ do

Γ := Γ ∪ {maximal intervals representing {i ∈ I : i ≡77k r (mod q)}};

foreach interval [imin . . imax] of offsets in Γ, with imax − imin = O(k) do
J := [imin . . imax] ⊕ (m − α);
report

⋃
a∈J Anchoredk(P, U, a);

▶ Lemma 20. Let B be the output of Algorithm 1. Then B ⊆ CircOcck(P, U) and every
t-overlap app-match occurrence p is in B.

Moreover, if t = O(kq), Algorithm 1 works in O(k6) time in the PILLAR model with the
output represented as a union of O(k6) intervals.

Proof. Consider a t-overlap app-match (p, x). Then, there exists an anchor a such that
p ∈ Anchoredk(P, U, a), and y = a − (m − α) is a (t + k)-overlap offset, since we have

δE(V [x . . m − α), U [p . . a)) + δE(V [m − α . . x + m), U [a . . p′]) ≤ k.

Now, y is in some interval [imin . . imax] ∈ Γ, as the union of the elements of Γ comprises the
set of valid (t + k)-overlap offsets. Then, since y ∈ [imin . . imax], we have a = y + (m − α) ∈
[imin . . imax] ⊕ (m − α), and hence a is in one of the sets J constructed in the penultimate
line of Algorithm 1. In the case when t = O(kq), using Lemma 17, we compute, in O(k3)
time, O(k3) intervals of anchors, of size O(k) each. The time complexity and the fact that
the algorithm returns the output as a union of O(k6) intervals follows by a direct application
of Corollary 19 to each interval of anchors. ◀

To obtain the next corollary, we replace the last line of Algorithm 1 by:

if AnyAnchoredk(P, U, J) ̸= none then return AnyAnchoredk(P, U, J);

▶ Corollary 21. If t = O(kq), one can check if B ≠ ∅ and, if so, return an arbitrary element
of B, in O(k5 log3 k) time in the PILLAR model.

5 Non-Overlap Case of PERIODICSUBMATCH

Recall that an app-match (p, x) is called a t-non-overlap app-match if and only if p − x is a
t-non-overlap offset. In this section we assume t = Θ(kq). The set of t-non-overlap offsets is
too large, but it has a short representation.

▶ Lemma 22. The set of t-non-overlap offsets can be partitioned into O(k2) maximal intervals
in O(k2 log log k) time in the PILLAR model.
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Proof. There are O(k) locked fragments in U and V . By Observation 16, every pair of locked
fragments, one from U and one from V , induces an interval of t-overlap offsets that can be
computed in O(1) time. The complement of the union of these offsets can be computed in
O(k2 log log k) time by sorting the endpoints of the intervals using integer sorting [24]. ◀

We denote by NonOv(t) the set of maximal intervals yielded by the above lemma. For
simplicity, we mostly discuss the decision version of the problem in this section; the correctness
proof for the reporting version requires a few further technical arguments.

Let λk = (112k + 3) · (3k + 10) · q + 678kq.

▶ Lemma 23. If λk > m
2 , PeriodicSubMatch can be solved in O(k5) time in the PILLAR

model, with the output represented as a union of O(k5) intervals.

Proof. We have m = O(k2q). As O(k) out of every q consecutive offsets are valid and they
can be grouped in at most two intervals, there are O(mk/q) = O(k3) valid offsets, which
are grouped into O(k2) intervals of size O(k) each. Let the set of such intervals be J . The
time complexity and output size follow from an application of Corollary 19 to the O(k)-size
interval of anchors corresponding to each J ∈ J , as in the last three lines of Algorithm 1. ◀

Henceforth we assume that λk ≤ m
2 . Let W be the longest fragment of V such that each

length-m fragment of V contains W , i.e., W = V [|V | − m . . m).

▶ Observation 24. If λk ≤ m
2 , then W contains a fragment equal Q3k+9 that is disjoint

from locked fragments in V .

Proof. We have |W | ≥ m
2 since |V | ≤ 3

2 m. By Lemma 14, V contains at most 112k + 2
locked fragments. Their total length does not exceed 678kq. By the pigeonhole principle, as
λk = (112k + 3) · ((3k + 10) · q) + 678kq ≤ |W |, string W contains a substring of length at
least (3k + 10)q that is disjoint from locked fragments. By Lemma 14, this substring is a
substring of Q∞ and thus contains a copy of Q3k+9. ◀

▶ Definition 25 (sample). We select an arbitrary fragment V [j . . j′] equal Q3k+9 of W that
is disjoint from locked fragments in V ; then the middle fragment V [j1 . . j2] of V [j . . j′] equal
Qk+1 becomes an additional locked fragment. The fragment V [j1 . . j2] is called the sample.

When computing t-overlap offsets with the algorithm of Section 4, we treat the sample as
a locked fragment; the total length of the locked fragments is then still O(kq).

Henceforth we replace P by its rotation roty(P ), where y = (j1 + α) mod m. Let us
note that after this change, the sets Anchoredk can be computed equally efficiently as the
sets Anchoredk for the original P . This follows from the fact that the algorithm underlying
Lemma 6 does not use IPM queries, and the remaining queries from the PILLAR model can
easily be implemented in O(1) time if an input string is given by its cyclic rotation.

For an interval I = [i1 . . i2] and a string S, by S[I] we denote S[i1 . . i2]. We denote
q̂ = 2(k + 6)(q + 3); the constants originate from the proof of Lemma 29.

▶ Observation 26. Let [d1 . . d2] ∈ NonOv(t). If V [j1 . . j2] is the sample in V , then
U [j1 + d1 − t . . j2 + d2 + t] does not contain a position in a locked fragment, since we defined
the sample as an (exceptional) locked fragment.

▶ Definition 27. For an interval D = [d1 . . d2], denote

scope(D) = Extk([j1 . . j2] ⊕ D), CritPos(D) = Occ0(Qk+1, U [scope(D)]).

The positions in
⋃

D∈NonOv(q̂) CritPos(D) are called critical positions; see Figure 8.
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U
i1 i2

Qj1 + d1 − k j2 + d2 − k

V
j1 j2

sample V [j1 . . j2]

Figure 8 Illustration of basic parameters in the algorithm: D = [d1 . . d2], I = Extk([j1 . . j2] ⊕ D).
We have I ∩ locked(U) = ∅. CritPos(D) consists of critical positions shown as green circles.

The main idea of the proof of the next lemma is as follows: in an app-match for an offset
from D, at least one copy of Q from the sample must match a copy of Q in scope(D) exactly.
For D ∈ NonOv(q̂), scope(D) is a substring of Q∞. This implies that the whole sample
matches a fragment of scope(D) exactly, which is how critical positions were defined.

▶ Lemma 28. For each position p for which there is a q̂-non-overlap app-match (p, x), we
have p ∈

⋃
{ Anchoredk(P, U, i) : i is a critical position }.

The lemma says that it would be enough to consider Anchoredk(P, T, i) for all critical
positions i. Unfortunately, the total number of critical positions can be too large; however,
they are grouped into O(k2) arithmetic progressions and it is enough to consider the first
and the last position in each such progression. In the decision version we use Algorithm 2.

Algorithm 2 Non-overlap case: decision version.

Compute decompositions of U and V into locked fragments and the sample;
Compute NonOv(q̂);
foreach interval of non-overlap offsets D ∈ NonOv(q̂) do

i1 := min CritPos(D); i2 := max CritPos(D);
if AnyAnchoredk(P, U, i1) ̸= none then return AnyAnchoredk(P, U, i1);
if AnyAnchoredk(P, U, i2) ̸= none then return AnyAnchoredk(P, U, i2);

return none;

▶ Lemma 29. Assume that λk ≤ m
2 . Algorithm 2 works in O(k4) time in the PILLAR model

and returns a circular k-edit occurrence of P in U if any q̂-non-overlap app-match exists.

Proof of Theorem 5, decision version. If λk ≤ m
2 , Lemma 29 and Corollary 21 cover the

decision version of PeriodicSubMatch for q̂-non-overlap offsets and q̂-overlap offsets,
respectively. Together with Lemma 23 used for the corner case that λk > m

2 , they yield a
solution to a decision version of PeriodicSubMatch. The decision version from Theorem 5
is obtained through the reduction to PeriodicSubMatch of Lemma 12, as the time
complexities of all the algorithms in the PILLAR model are O(k5 log3 k). ◀

5.1 Overview of the proof of Lemma 29
The complexity of Algorithm 2 directly follows from Lemma 6 (computing Anchoredk),
Lemma 14 (computing decompositions into locked fragments) and Lemma 22 (computing
NonOv(q̂)).
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For a fragment F = U [I] (F = V [I], respectively), we denote by locked(F ) the set
I ∩ locked(U) (I ∩ locked(V ), respectively).

▶ Definition 30. Two fragments F1, F2 (both of U or both of V ) are called locked-equivalent
if locked(F1) = locked(F2) and there are no locked positions in a prefix and a suffix of length
(k + 4)q in F1 and in F2; see Figure 9.

d d′

U ′′

U ′

Figure 9 The gray boxes correspond to locked fragments, while d, d′ ≥ (k + 4)q. The fragments
U ′ and U ′′ are locked-equivalent.

We extend Definition 2 and say that a circular k-edit occurrence T [p . . p′] of P is x-
anchored at position i if δE(T [p . . i), P [x . . m)) + δE(T [i . . p′], P [0 . . x)) ≤ k. For a fragment
Y = X[i . . j] and integer y, we denote shift(Y, y) = X[i + y . . j + y].

Let i1 = min CritPos(D), i2 = max CritPos(D) as in Algorithm 2. The next lemma shows
that in many cases, if U [p . . p′] forms a q̂-non-overlap app-match that is anchored at a critical
position i such that i1 < i < i2, then the same fragment or a fragment shifted by q positions
forms a q̂-non-overlap app-match anchored at a critical position i ± q.

▶ Lemma 31. Let V [j1 . . j2] = Qk+1 be the sample, C = CritPos(D) where D ∈ NonOv(q̂/2),
and i ∈ C. If I = [p . . p′] and U [I] is x-anchored at i, then for any y ∈ {q, −q}:
(a) If U [I] and U [I ⊕ y] are locked-equivalent and i + y ∈ C, then U [I ⊕ y] is x-anchored at

i + y.
(b) If V ′ = V (x) and shift(V ′, y) are locked-equivalent and i − y ∈ C, then U [I] is (x + y)-

anchored at i − y.

Sketch of the proof. For part (a), y = −q, it suffices to show that:

δE(U [p . . i), V [x . . j1)) = δE(U [p − q . . i − q), V [x . . j1)), (1)
δE(U [i . . p′], V [j1 . . x + m)) = δE(U [i − q . . p′ − q], V [j1 . . x + m)). (2)

For example, in (1), fragments X := U [p . . i) and X ′ := U [p − q . . i − q) contain the same
locked fragments of U , just shifted by q positions. Each of X, X ′ has a length-Θ(kq) prefix
and suffix without locked positions; for the prefix, this follows from the locked-equivalence
assumption, whereas for the suffix, we use Observation 26. To prove (1), we notice that
an optimal alignment of X and Y := V [x . . j1) can be divided into parts, such that every
second part is a power of Q, and in the remaining parts, there are locked fragments in only
one of the strings. This follows from the fact that p − x is a Θ(kq)-non-overlap offset, so the
locked fragments of X and the locked fragments of Y are “well-separated”. Finally, we show
that with such an alignment, shifting X by q positions changes an optimal alignment in a
structured manner and so the edit distance to Y stays the same. ◀

The sets Anchoredk contain too little information for proving the correctness of the
algorithm. It is important that for any of the O(k2) intervals of positions of app-matches
[pl . . pr] returned by a call to Anchoredk(P, U, i), there exist positions [p′

l . . p′
r] and values
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[xl . . xr] of cyclic rotations such that U [pl . . p′
l] is xl-anchored at i, U [pl + 1 . . p′

l + 1] is
(xl + 1)-anchored at i, etc. Therefore we define

Anchored′
k(P, T, i) = { (p, p′, x) : T [p . . p′] is x-anchored at i }.

For a triad (I, J, L) of intervals of the same size, we denote the combined set of triples

zip(I, J, L) = {(a+t, b+t, c+t) : 0 ≤ t < |I|}, where (a, b, c) = (min(I), min(J), min(L)).

For example zip([1 . . 3], [5 . . 7], [2 . . 4]) = {(1, 5, 2), (2, 6, 3), (3, 7, 4)}. (Treating I, J, L as lists,
this can be written in Python as set(zip(I, J, L)). ) Just like Lemma 31 states a relation
of single elements of the sets Anchoredk for anchors at two consecutive critical positions,
the next lemma shows what happens to intervals of positions in Anchoredk (together with
end-positions of app-matches and the rotations of P ).

Denote by L-cutq(I), R-cutq(I) the operations of removing from the interval I its prefix/suf-
fix of length q, possibly obtaining an empty interval. For example, L-cut2([2 . . 5]) = [4 . . 5].

▶ Lemma 32. Let D ∈ NonOv(q̂), i1 = min CritPos(D), i2 = max CritPos(D). Assume that
for some i ∈ CritPos(D) such that i ≠ i1, i2, we have zip(I1, I2, I3) ⊆ Anchored′

k(P, U, i),
where |I1| = |I2| = |I3| ≥ q. Then:

zip(L-cutq(I1), L-cutq(I2), R-cutq(I3)) ⊆ Anchored′
k(P, U, i + q),

zip(R-cutq(I1), R-cutq(I2), L-cutq(I3) ⊆ Anchored′
k(P, U, i − q).

For every p ∈ Anchoredk(P, U, i) that satisfies the assumption of Lemma 31(b) and i1 < i < i2,
that lemma immediately shows that p ∈ Anchoredk(P, U, i − q) ∩ Anchoredk(P, U, i + q).
Unfortunately, this assumption does not always hold. However, Lemma 32 shows that this is
true for all but at most q elements p ∈ Anchoredk(P, U, i).

To prove Lemma 32, roughly speaking, we compute a superposable partition of intervals
I1, I2, I3, I3 ⊕ m, such that in each part, locked fragments can occur only in the parts
originating from one of the strings U , V . As before, this is possible thanks to the fact that
the offset is non-overlapping; here we use the fact that the definition of t-non-overlap offsets
(Definition 15) covers the cases (∆′ ± m) ⊕ [−t . . t]. Finally, we apply the appropriate point
of Lemma 31 to positions in each part in bulk.

Correctness of Algorithm 2. By Lemma 32, if I ⊆ Anchoredk(P, U, i) for an interval I,
then L-cutq(I) ⊆ Anchoredk(P, U, i+q) and R-cutq(I) ⊆ Anchoredk(P, U, i−q). In the proof
of Lemma 29, we use Lemma 31 on positions in the first and last q positions of I to show
that one of the following conditions hold:

(⋆) I ⊆ Anchoredk(P, U, i ± q) or (⋆⋆) I ⊖ q ⊆ Anchoredk(P, U, i − q).

In case (⋆), by induction we show that I ⊆ Anchoredk(P, U, i1) ∪ Anchoredk(P, U, i2). In
case (⋆⋆), we show by induction that J := I ⊕ (i1 − i) ⊆ Anchoredk(P, U, i1). This way we
prove the correctness of Algorithm 2.

Reporting version. In the reporting version of Algorithm 2, we prove that the condition
(⋆⋆) implies an interval chain of positions Chain(J, (i2 − i1)/q, q) and show a way to efficiently
verify this condition given interval I (see Algorithm 3 in Appendix B). Finally, the reporting
version of Theorem 5 follows from the reporting version of the overlap case (Lemma 20), the
correctness and the complexity of Algorithm 3, the usage of Lemma 23 for the corner case
when λk > m

2 , and the reduction to PeriodicSubMatch (Lemma 12).
▶ Remark 33. In both versions (decision, reporting), the bottleneck of the algorithm’s running
time is the overlap case, while the most technically demanding part is the non-overlap case.
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A Origin of Theorem 10

An algorithm that efficiently computes a representation of Occk(P, T ) is encapsulated in [16,
Main Theorem 9] 3. The first step of this algorithm is the analysis of the pattern specified in
[16, Lemma 6.4], which results in computing either a set of breaks, a set of repetitive regions,
or a primitive string Q that is of length at most m/(128k) and satisfies δE(P, ∗Q∗) < 2k. In
the presence of breaks or repetitive regions, we have ⌊|Occk(P, T )|/k⌋ ≤ 642045 · (n/m) · k,
see [16, Lemmas 5.21 and 5.24]. In the case where the analysis of the pattern returns an
approximate period Q, we can use [16, Lemma 6.5] to find a rotation Q1 of Q such that
δE(P, ∗Q∗

1) = δE(P, Q∗
1). Set Q := Q1. Now, let us also compute all k-edit occurrences of the

reversal of P in the reversal of T . Then, we can trim T , obtaining a string T̄ so that all k-edit
occurrences of P in T are preserved in T̄ , and P has a k-edit occurrence both as a prefix
and as a suffix of T̄ . We can then directly apply [16, Theorem 5.2] with d = 8k to obtain
the stated properties of T̄ ; for the fact that δE(T̄ , Q∗) ≤ 24k holds see the fourth paragraph
of the proof of that theorem. The length of Q can be instead bounded by m/(256k) with
all other constants remaining unchanged; this is because the bottleneck for the number of
occurrences in the case where P is not almost periodic stems from repetitive regions and is
not sensitive to the exact length of Q. That is, it is only the number of occurrences in the
case where the analysis of the pattern yields 2k breaks that can be larger (by a multiplicative
factor of 2), but the bound stated above is dominant.

3 When referring to statements of [16], we use their numbering in the full (arxiv) version of the paper.
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B Reporting Version

Algorithm 3 is a reporting version of Algorithm 2. Algorithm 3 outputs all q̂-non-overlap
app-matches as a collection of O(k4) interval chains (some of which can be single intervals).

Algorithm 3 Non-overlap case: reporting version.

foreach interval of offsets D ∈ NonOv(q̂) do
i1 := min CritPos(D); i2 := max CritPos(D);
Z1 := Anchoredk(P, U, i1);
Z2 := Anchoredk(P, U, i2);
report Z1 ∪ Z2;
foreach interval I = [pl . . pr] in Z1, with pl > 0 and pr + m + k ≤ |U | do

if ({pl − 1} ∪ I) ∩ locked(U) = ∅ then
report Chain(I, (i2 − i1)/q, q);

C k-Edit CPM in Other Settings

Theorem 5 is stated in the PILLAR model. In the standard setting, all PILLAR operations can
be implemented in O(1) time after O(n) preprocessing [14, Section 3]; this yields Theorem 1.

We now present our results for the internal, dynamic, fully compressed, and quantum
settings. In each case, in the reporting version of the problem, the output is represented as a
union of O((|T |/|P |) · k6) interval chains.

With the same implementations of operations in the internal setting as in the standard
setting, we obtain an efficient implementation.

▶ Theorem 34 (Internal Setting). Given two substrings P and T of a length-n string S,
reporting and decision versions of k-Edit CPM for P and T can be solved in O((|T |/|P |)k6)
time and O((|T |/|P |)k5 log3 k) time, respectively, after O(n) preprocessing on S.

Let X be a growing collection of non-empty persistent strings; it is initially empty, and
then undergoes updates by means of the following operations:

Makestring(U): Insert a non-empty string U to X
Concat(U, V ): Insert string UV to X , for U, V ∈ X
Split(U, i): Insert U [0 . . i) and U [i . . |U |) to X , for U ∈ X and i ∈ [0 . . |U |).

By N we denote an upper bound on the total length of all strings in X throughout all
updates executed by an algorithm. A collection X of non-empty persistent strings of total
length N can be dynamically maintained with operations Makestring(U), Concat(U, V ),
Split(U, i) requiring time O(log N + |U |), O(log N) and O(log N), respectively, so that
PILLAR operations can be performed in time O(log2 N). All stated time complexities
hold with probability 1 − 1/NΩ(1); see [21, 16]. Moreover, Kempa and Kociumaka [28,
Section 8 in the arXiv version] presented an alternative deterministic implementation,
which supports operations Makestring(U), Concat(U, V ), Split(U, i) in O(|U | logO(1) log N),
O(log |UV | logO(1) log N), and O(log |U | logO(1) log N) time, respectively, so that PILLAR
operations can be performed in time O(log N logO(1) log N). With these implementations,
we obtain the following result.
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▶ Theorem 35 (Dynamic Setting). A collection X of non-empty persistent strings of total
length N can be dynamically maintained with operations Makestring(U), Concat(U, V ),
Split(U, i) requiring time O(log N + |U |), O(log N) and O(log N), respectively, so that,
given two strings P, T ∈ X and an integer threshold k > 0, we can solve k-Edit CPM in
O((|T |/|P |) ·k6 log2 N) time for the reporting variant and O((|T |/|P |) ·k5 log3 k log2 N) time
for the decision variant. All stated time complexities hold with probability 1 − 1/NΩ(1).
Randomization can be avoided at the cost of a logO(1) log N multiplicative factor in all the
update times, with k-Edit CPM queries answered in O((|T |/|P |) · k6 log N logO(1) log N) time
(reporting version) or O((|T |/|P |) · k5 log3 k log N logO(1) log N) time (decision version).

A straight line program (SLP) is a context-free grammar G that consists of a set Σ of
terminals and a set NG = {A1, . . . , An} of non-terminals such that each Ai ∈ NG is associated
with a unique production rule Ai → fG(Ai) ∈ (Σ ∪ {Aj : j < i})∗. We can assume without
loss of generality that each production rule is of the form A → BC for some symbols B

and C (that is, the given SLP is in Chomsky normal form). Every symbol A ∈ SG := NG ∪ Σ
generates a unique string, which we denote by gen(A) ∈ Σ∗. The string gen(A) can be
obtained from A by repeatedly replacing each non-terminal with its production. We say
that G generates gen(G) := gen(An).

In the fully compressed setting, given a collection of straight-line programs (SLPs) of
total size n generating strings of total length N , each PILLAR operation can be performed
in O(log2 N log log N) time after an O(n log N)-time preprocessing [14, Section 3]. If we
applied Theorem 1 directly in the fully compressed setting, we would obtain Ω(N/M) time,
where N and M are the uncompressed lengths of the text and the pattern, respectively.
Instead, we can adapt an analogous procedure provided in [16, Section 7.2] for (non-circular)
pattern matching with edits to obtain the following result.

▶ Theorem 36 (Fully Compressed Setting). Let GT denote a straight-line program of size n

generating a string T , let GP denote a straight-line program of size m generating a string
P , let k > 0 denote an integer threshold, and set N := |T | and M := |P |. We can solve
k-Edit CPM in O(m log N + nk6 log2 N log log N) time (counting version) or O(m log N +
nk5 log3 k log2 N log log N) time (decision version). A representation of the occurrences in
the form of interval chains can be returned in O((N/M) · k6) extra time.

We say an algorithm on an input of size n succeeds with high probability if the success
probability can be made at least 1 − 1/nc for any desired constant c > 1.

In what follows, we assume the input strings can be accessed in a quantum query
model [1, 10]. We are interested in the time complexity of our quantum algorithms [6].

▶ Observation 37 ([27, Observation 2.3]). For any two strings S, T of length at most n,
LCP(S, T ) or LCPR(S, T ) can be computed in Õ(

√
n) time in the quantum model with high

probability.

Hariharan and Vinay [25] gave a near-optimal quantum algorithm for the decision version
of exact PM. We formalize this next.

▶ Theorem 38 ([25]). The decision version of PM can be solved in Õ(
√

n) time in the
quantum model with high probability. If the answer is YES, then the algorithm returns a
witness occurrence.

By employing Theorem 38 and binary search to find the period of S [31] and thus its full
list of occurrences expressed as an arithmetic progression in T , we obtain the following.
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▶ Observation 39. For any two strings S, T of length at most n, with |T | ≤ 2|S|, IPM(S, T )
can be computed in Õ(

√
n) time in the quantum model with high probability.

All other PILLAR operations are performed trivially in O(1) quantum time. Thus while
all PILLAR operations can be implemented in O(1) time after O(n)-time preprocessing in
the standard setting by a classic algorithm, in the quantum setting, all PILLAR operations
can be implemented in Õ(

√
m) quantum time with no preprocessing, as we always deal with

strings of length O(m). We obtain the following results.

▶ Theorem 40 (Quantum Setting). The reporting version of the k-Edit CPM problem can
be solved in Õ((n/

√
m)k6) time in the quantum model with high probability. The decision

version of the k-Edit CPM problem can be solved in Õ((n/
√

m)k5) time in the quantum
model with high probability.
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Abstract
The 2-Orthogonal Vectors (2-OV) problem is the following: given two tuples A and B of n Boolean
vectors, each of dimension d, decide if there exist vectors u ∈ A, and v ∈ B, such that u and v

are orthogonal. This problem, and its generalization k-OV defined analogously for k tuples, are
central problems in the area of fine-grained complexity. One of the major conjectures in fine-grained
complexity is that k-OV cannot be solved by a randomised algorithm in nk−ϵpoly(d) time for any
constant ϵ > 0.

In this paper, we are interested in unconditional lower bounds against k-OV, but for weaker
models of computation than the general Turing Machine. In particular, we are interested in circuit
lower bounds to computing k-OV by Boolean circuit families of depth 3 of the form OR-AND-OR,
or equivalently, a disjunction of CNFs.

We show that for all k ≤ d, any disjunction of t-CNFs computing k-OV requires size Ω((n/t)k).
In particular, when k is a constant, any disjunction of k-CNFs computing k-OV needs to use
Ω(nk) CNFs. This matches the brute-force construction, and for each fixed k > 2, this is the first
unconditional Ω(nk) lower bound against k-OV for a computation model that can compute it in size
O(nk). Our results partially resolve a conjecture by Kane and Williams [17] (page 12, conjecture 10)
about depth-3 AC0 circuits computing 2-OV.

As a secondary result, we show an exponential lower bound on the size of AND ◦ OR ◦ AND
circuits computing 2-OV when d is very large. Since 2-OV reduces to k-OV by projections trivially,
this lower bound works against k-OV as well.
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1 Introduction

The area of fine-grained complexity is a branch of computational complexity that studies
the complexity of functions with a finer lens than the usual approach that makes a coarse
distinction between polynomial time and super-polynomial time. The area has been focused
on functions in P that find uses in a variety of contexts. In the seminal paper by Vassilevska
Williams and Williams [26], they show eight problems that are subcubic time equivalent to
one another. Hence a truly subcubic time algorithm for any one of these problems will also
imply a subcubic algorithm for the others.

The holy grail of computation complexity is to show unconditional lower bounds to
resources used in computing an explicit function. Unfortunately, the state of affairs in terms
of unconditional lower bounds for computation, in its full generality, is rather bleak. The best
known unconditional lower bounds for the running time of computing an explicit function are

© Tameem Choudhury and Karteek Sreenivasaiah;
licensed under Creative Commons License CC-BY 4.0

41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024).
Editors: Olaf Beyersdorff, Mamadou Moustapha Kanté, Orna Kupferman, and Daniel Lokshtanov;
Article No. 25; pp. 25:1–25:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cs20resch11004@iith.ac.in
https://orcid.org/0000-0002-5044-9717
mailto:karteek@cse.iith.ac.in
https://orcid.org/0000-0001-7396-3383
https://doi.org/10.4230/LIPIcs.STACS.2024.25
https://eccc.weizmann.ac.il/report/2023/014/#revision3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


25:2 Depth-3 Circuit Lower Bounds for k-OV

merely linear. Even for functions such as SAT that do not have any polynomial time running
algorithms till date, we do not know how to show super-linear lower bounds. We do know
from the time hierarchy theorem1 that there are languages in DTIME(n2) that are not in
DTIME(nc) for any c < 2. However the languages constructed in a proof of the time hierarchy
are not natural, and not as explicit as we would like. Results such as [26] and [7] that show
equivalences among several important functions help in identifying candidate functions that
might witness the time hierarchy theorem for their time class. One such candidate function
for quadratic time2 is the 2-Orthogonal Vectors problem.

The 2-Orthogonal Vectors problem 2-OVn,d is defined as follows: Given as input two
tuples A ⊆ {0, 1}d and B ⊆ {0, 1}d of n vectors each, decide if there is a vector a ∈ A

and a vector b ∈ B such that a and b are orthogonal. To define a generalization of this
problem, we think of each vector from {0, 1}d as a characteristic vector of a subset from
[d]. Then a natural generalization of 2-OVn,d is the problem k-OVn,d that takes as input k

tuples A1, A2, . . . , Ak ⊆ {0, 1}d of n vectors each, and the task is to decide if there exists
vectors a1 ∈ A1, a2 ∈ A2, . . . , ak ∈ Ak such that a1 ∩ a2 ∩ . . . ∩ ak = ϕ. The problems
2-OV and k-OV have emerged as central problems in fine-grained complexity. An important
hypothesis is that no deterministic, or randomized, algorithm computing 2-OVn,d can run in
time O(n2−ϵ poly(d)) for any ϵ > 0. This is essentially saying that the brute force algorithm
is also the best. Interestingly, Ryan Williams in [24], shows that under the strong exponential
time hypothesis (SETH)3, 2-OV (3-OV) requires n2−o(1) time (n3−o(1) time respectively).

In the absence of techniques that can show unconditional lower bounds, two natural
directions of research emerge: (i) Conditional lower bounds to help us understand connections
between various such problems, and “bottlenecks” to better algorithms. (ii) Unconditional
lower bounds for weaker models of computation.

The first line of research has seen a tremendous body of results. There are numerous
fine-grained reductions, and lower bounds, conditioned on SETH, and the hardness of
functions such as 2-OVn,d, and k-OVn,d. In the 2018 survey [25], Vassilevska Williams aptly
describes it as “an explosion of hardness results based on OV”, and lists nineteen problems
whose complexity is connected to that of k-OV. The fact that better algorithms for so many
problems would imply better algorithms for k-OV, is perhaps not surprising. Intuitively, the
k-OV function looks “canonical” in a certain sense, and has managed to hide itself inside
several other problems that look quite different at the surface. These include seemingly
unrelated problems such as Longest Common Subsequence [1], Edit Distance [2], Fréchet
distance [4, 5], Regular Expressions Matching [3], to name a few. Their survey [25] is an
excellent source for those looking for a thorough treatment of fine-grained complexity, and in
particular, this line of research.

The second direction, of showing lower bounds against weaker models of computation,
seems to be lacking the same attention. To the best of our knowledge, the only paper
that addresses this line is that of Kane and Williams [17]. In their paper they show tight
lower bounds for formulas and branching programs computing 2-OV. We do not know any
non-trivial lower bounds for computing 2-OV by models stronger than branching programs.

Note that if a uniform circuit family of bounded fan-in, and size O(s(n, d)) computes
k-OVn,d, then an algorithm that simply evaluates the circuit, computes k-OVn,d in time
Õ(s(n, d)). So if the k-OV hypothesis is true, then we can expect any uniform circuit family
computing k-OVn,d to have size Ω(nk). This begs the question:

1 Such hierarchy theorems go through for the unit cost RAM model as well.
2 We are being imprecise here so as to remain informal. The input length of 2-OVn,d is actually nd. So

“quadratic in n” is not the same as DTIME(n2)
3 [15],[6]For every ϵ > 0, ∃k such that k-SAT problem on n variables cannot be solved in O(2(1−ϵ)n) time
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What is the largest class of circuits for which we can show Ω
(
nk poly(d)

)
size lower bounds

against computing k-OVn,d?

One class of Boolean circuits that has been extensively studied in terms of lower bounds
is AC0 (gates from {∧,∨,¬}, unbounded fan-in, O(1)-depth). In fact we know exponential
lower bounds against this class of circuits. So a good target would be to show that k-OVn,d

requires AC0 circuits of size Ω(nk poly(d)). We note that k-OVn,d can indeed be computed
by depth-3 AC0 circuits of size nkd, as shown later in equation 2. Can we show matching
lower bounds?

The best known lower bound against depth-3 AC0 circuits is 2Ω(
√

n) for computing majority.
This bound can be obtained by several classic techniques from the 80s including the switching
lemma by Håstad [13], the polynomial method by Razborov [21] and Smolensky [22], and
finite-limit vectors by [14]. One of the most important problems in circuit complexity is to
prove 2ω(n/ log log n) lower bounds to the size of depth-3 AC0 circuits computing an explicit
function. This would imply superlinear lower bounds against O(log n) depth circuits (of
bounded fan-in) due to the depth reduction procedure described by Valiant [23] (alternatively,
see Chapter 11 of Jukna [16]). With the aim of making progress on this front, Goldreich and
Wigderson proposed a new framework in [11] where they define a new model of arithmetic
circuits that use multilinear gates, as opposed to allowing gates computing sum or product
alone, and a new complexity measure on this model. The main motivation being that lower
bounds to their complexity measure implies lower bounds to a specific class of Boolean
depth-3 circuits that they call D-canonical. The best lower bounds obtained for this class
of depth-3 Boolean circuits, using their framework, is Ω(2n3/5) by Goldreich and Tal [10].
In fact, the brute force depth-3 AC0 circuits computing the negation of k-OV, described
later in equation 3, bears close resemblance to D-canonical circuits since it is a product of
set-multilinear functions, but over the Boolean algebra, as opposed to GF(2).

More recently, the status of depth-3 AC0[⊕] circuits (gates computing xor are allowed in
addition to the usual ∧, ∨, ¬) got an update. The lower bound for computing majority using
depth-3 AC0[⊕] circuits was improved from 2Ω(n1/4) to 2Ω(

√
n) by Oliveira, Santhanam and

Srinivasan [20]. This closed the gap between upper and lower bounds up to a logarithmic
factor in the exponent.

While techniques such as the switching lemma and the polynomial method work in
a “bottom-up” fashion, the techniques in [14] is a “top-down” approach specifically for
depth-3 AC0 circuits. To the best of our knowledge, the only top-down strategies for circuit
lower bounds are the Karchmer-Wigderson game by Karchmer and Wigderson [18], the
discriminator lemma for depth-2 threshold circuits by Hajnal, Masse, Pudlák, Szegedy,
Turán [12], and finite-limits by Håstad, Jukna, Pudlak [14]. Our results in this paper can be
seen as a non-trivial application of the techniques of Håstad, Jukna, Pudlak [14].

Kane and Williams [17] conjecture that any depth-3 AC0 circuit computing 2-OVn,d

requires Ω(n2) wires (see page 12, conjecture 10 in [17]). Observe that 2-OVn,d (and k-OVn,d)
can be computed by OR ◦ AND ◦ OR circuits with 2n2d wires (and knkd wires respectively):

2-OVn,d(A, B) =
∨

i1,i2∈[n]

∧
j∈[d]

(¬ai1 [j] ∨ ¬bi2 [j]) (1)

k-OVn,d(A1, . . . , Ak) =
∨

i1,...,ik∈[n]

∧
j∈[d]

(¬ai1 [j] ∨ · · · ∨ ¬aik
[j]) (2)

Hence, informally, their conjecture for 2-OVn,d, and by extension k-OVn,d, is that the
brute-force circuit is also the best.
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A second important question in [17] is about generalizing lower bounds from 2-OV to
k-OV. As they have noted, generalizing their lower bounds to k > 2 would beat the state of
the art in branching program lower bounds. Our results for depth-3 AC0 circuits generalize
to k > 2, and scale well when the bottom fan-in is bounded.

Our Results
In this paper, we show lower bounds against the size of certain classes of depth-3 AC0

circuit families computing k-OVn,d. Our main result shows lower bounds against a restricted
class of OR ◦ AND ◦ OR circuits computing k-OVn,d, while our secondary result deals with
AND◦OR◦AND circuits computing a special case of k-OVn,d. Our main result is the following:

▶ Theorem 1. For all k ≤ d, any OR ◦ AND ◦ OR circuit with bottom fan-in t computing
k-OVn,d requires top fan-in Ω

(
( n

t )k
)
.

Circuit families of the type OR ◦ AND ◦ OR can also be understood as a disjunction of
CNFs. Therefore Theorem 1 is equivalent to the following statement:

“Any disjunction of t-CNFs computing k-OVn,d requires size Ω
(
(n/t)k

)
.”

(Here, by ‘t-CNF ’, we mean a CNF whose clauses have at most t literals, and by ‘size’ we
mean the number of CNFs being used.)

The brute-force circuit described earlier in equation 2 for k-OVn,d, is a disjunction of nk

many k-CNFs, and the lower bound from Theorem 1 for this model is Ω((n/k)k). Hence
for all constant k > 1, the complexity of computing k-OVn,d as a disjunction of k-CNFs is
Θ(nk).

The proof technique used for Theorem 1 actually goes through for a more general class of
depth-3 circuits where the bottom gates can have arbitrary fan-in as long as the number of
negated literals among their inputs is at most t. We describe this in the next subsection.
The more general theorem is the following. Let C−

t be the set of all unate functions (see
Definition 7) that are negative unate on at most t variables.

▶ Theorem 2. For all k ≤ d, any OR ◦ AND ◦ C−
t circuit computing k-OVn,d requires top

fan-in Ω
(
( n

t )k
)
.

It is important to note that the usual trick of using random restrictions to get rid of the
bottom fan-in restriction in Theorem 1 is very unlikely to work as it is known that 2-OV
becomes easy to compute by AC0 circuits with high probability under random restrictions [17]
(section 3).

As a secondary result, we show an exponential lower bound on the size of AND◦OR◦AND
circuits computing 2-OVn,d when d is very large:

▶ Theorem 3. For all ℓ ≤ d, any AND ◦ OR ◦ AND circuit computing 2-OVn,d requires size
s ∈ Ω(min{2ℓ,

(
d

nℓ

)n}). In particular, for ℓ = d/2n and d ∈ Ω(n2), s ∈ Ω(2n).

Since 2-OVn,d reduces to k-OVn,d by projections trivially, the above theorem holds for
k-OVn,d as well. It must also be noted that the input size for 2-OVn,d is 2nd which, for the
choice of d in Theorem 3, is 2n3. Hence with respect to an input size of n, the lower bound
for 2-OVn,d from Theorem 3 is actually 2Ω(n1/3).

An important fact to be noted about depth-3 AC0 circuits is that, in general, the
computational power of OR◦AND◦OR circuits and AND◦OR◦AND circuits are incomparable.
As demonstrated by [14], the iterated intersection function on 2n variables (see Definition 26)
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is computable by AND ◦ OR ◦ AND circuits of linear size, but any OR ◦ AND ◦ OR circuit
family computing it requires size 2Ω(

√
n). A more thorough discussion on this topic can

be found in Chapter 11.5 of Jukna [16]. This is true in the context of k-OVn,d and our
bounds also: an idea used by Kane and Williams (Proposition 4 in [17]) can be used to
show AND ◦ OR ◦ AND circuits computing k-OVn,d that are smaller than our lower bounds
in Theorem 1 for OR ◦ AND ◦ OR circuits when d ∈ O(1).

We show in Section 5 a general construction for k-OVn,d that achieves a trade-off between
top fan-in and bottom fan-in. This shows that in general, for circuits with bottom fan-in t

our lower bound against the top fan-in of OR ◦ AND ◦ OR circuits computing k-OVn,d is at
least a factor of tk−1/k away from the corresponding upper bound.

Techniques

We note that throughout this paper, we work with the function k-Intn,d defined as the
negation of k-OVn,d. We do this because k-Intn,d is a monotone function, and hence allows
us several conveniences with regard to notation. Thus our lower bounds to AND ◦OR ◦ AND
circuits computing k-Intn,d transfer directly to OR ◦ AND ◦ OR circuits computing k-OVn,d.
More formally, k-Intn,d is defined as

k-Intn,d(A1, . . . , Ak) =
∧

i1,...,ik∈[n]

∨
j∈[d]

(ai1 [j] ∧ · · · ∧ aik
[j]) (3)

Main result. For our main result, the strategy we use is that of finite limit vectors. This is
a top-down strategy that was used by Håstad, Jukna, and Pudlák in [14] for proving depth-3
AC0 circuit lower bounds. We briefly describe the approach.

Assume an AND ◦ OR ◦ AND circuit C = C1 ∧ · · · ∧ Cs(n) computes a function f . Then
for any N ⊆ f−1(0), by an averaging argument, there is a Ci that correctly outputs 0 on at
least 1/s fraction of inputs in N . Hence showing an upper bound to |C−1

i (0) ∩N| implies a
lower bound to s(n) as s ≥ |N |/|C−1

i (0) ∩N|.
The technique of finite limits by [14] is used to show that Ci cannot be correct on many

inputs in N . The idea is to show that if C−1
i (0)∩N is large, then we can construct a 1-input

y such that for any set of t input positions, it looks identical to some string in C−1
i (0) ∩N .

Such a string y is called a t-limit for the set C−1
i (0) ∩ N . Then if the bottom gates in Ci

can each see only t bits of the input, the string y fools all of them into evaluating to 0
simultaneously, and hence Ci will output 0 on y. This is a contradiction since y ∈ C−1(1) by
construction, but Ci(y) = 0 implies C(y) = 0. It is not hard to see that if the t-limit string
y has the additional property that y ≥ x for all x ∈ C−1

i (0) ∩N , and each bottom gate in
Ci has at most t positive literals among its inputs, the same argument goes through. We
call such a y an upper t-limit for the set C−1

i (0) ∩N (as opposed to the term ‘lower t-limit’
used in [14] for the case when y ≤ x). We shall also use the term “bottom positive fan-in” to
indicate how many of the input literals are allowed to be positive for each bottom gate.

The key idea behind our construction of a t-limit is to first model any subset of maxterms
of k-Intn,d as a k-partite hypergraph such that the maxterms in the subset and the hyperedges
are in bijection. We call this hypergraph as a “Support Graph”, and construct it in Section 3.2.
Then we construct a t-limit for the case of 2-Intn,d by using Kőnig’s theorem on this graph.
To deal with the general case of k-Intn,d, we first show a sunflower lemma on this support
graph, and then use the sunflower structure to construct a t-limit. We show a version of the
sunflower lemma on our hypergraph that is very slightly less demanding than the standard
sunflower lemma [9]. We note that this does not improve the asymptotic complexity of our
final bound.
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We remark here that all t-limit strings that we construct in this paper are also upper
t-limit strings. Hence all our lower bounds for k-Intn,d go through for the circuit class
AND ◦ OR ◦ C+

t where C+
t is the set of all unate functions that are positive unate on at

most t variables. Informally, this means that the bottom gates can compute any unate
functions, have unbounded fan-in, but at most t of the inputs can be positive literals. (The
dual statement for k-OVn,d is Theorem 2 stated in the previous section.) As an example,
lower bounds using this technique will also work against depth-3 circuits where the top and
middle layers are AND and OR respectively, and the bottom layer consists of homogeneous
linear threshold functions, each of which is defined by a vector of weights that has at most t

positive weights.
An important observation about the technique described above is that it is impervious

to the fan-in of the middle OR gates. So we could use a suitable DNF for each bottom
gate and convert an AND ◦ OR ◦ C+

t circuit to an AND ◦ OR ◦ AND circuit with bottom
positive fan-in at most t and a possibly larger middle fan-in. Since the technique gives lower
bounds to top fan-in regardless of middle fan-in, all lower bounds that we can derive against
AND ◦ OR ◦ AND circuits with bottom positive fan-in t using this technique, transfer to
AND ◦OR ◦ C+

t without any change. Hence throughout this paper, we focus our attention to
AND ◦ OR ◦ AND circuits.

Secondary result. The exponential lower bound of [14] for OR◦AND◦OR circuits computing
the iterated intersection function Sn,d for d ∈

√
n is of particular interest to us. The function

Sn,d bears a close resemblance to 2-Intn,d. While Sn,d is the iterated intersection, 2-Intn,d

can be seen as “all-pairs” intersection.
We show a reduction (via projections) from Sn,d/n to 2-Intn,d. The blow-up in the

dimension of vectors is rather large, and we can conclude non-trivial lower bounds only for
d ∈ ω(n).

2 Preliminaries

We often interpret a d-dimensional vector u ∈ {0, 1}d as the characteristic vector of a subset
of [d].

▶ Definition 4 (k-OVn,d). For tuples A1, A2, . . . , Ak ⊆ {0, 1}d where ∀i ∈ [k], |Ai| = n.

k-OVn,d(A1, A2, . . . , Ak) = 1 ⇐⇒ ∃a1 ∈ A1, ∃a2 ∈ A2, · · · , ∃ak ∈ Ak, such that
a1 ∩ a2 ∩ · · · ∩ ak = ∅

For notational convenience, we work with the negation of k-OVn,d throughout the paper.
We use k-Intn,d to denote the negation of k-OVn,d, and is defined as follows:

▶ Definition 5 (k-Intn,d). For tuples A1, A2, . . . , Ak ⊆ {0, 1}d where ∀i ∈ [k], |Ai| = n.

k-Intn,d(A1, A2, . . . , Ak) = 1 ⇐⇒ ∀a1 ∈ A1, ∀a2 ∈ A2, · · · , ∀ak ∈ Ak, we have
a1 ∩ a2 ∩ · · · ∩ ak ̸= ∅

An input to the function k-Intn,d has nk vectors, each of dimension d. Hence nkd many
input bits in total.

For any x, y ∈ {0, 1}d, we write x ≤ y if ∀i, xi ≤ yi. Similarly, we write x⊕ y to denote
the string obtained by a point-wise xor between x and y.
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▶ Definition 6 (Monotone function). We say that a Boolean function f is monotone if
∀x, y ∈ {0, 1}d such that x ≤ y, we have f(x) ≤ f(y).

The notion of monotone can be generalized to the notion of being unate:

▶ Definition 7 (Unate function). A Boolean function f : {0, 1}n → {0, 1} is unate if there
exists a monotone Boolean function g : {0, 1}n → {0, 1} and a string s ∈ {0, 1}n such that
for all inputs x, we have f(x) = g(x⊕ s).

Further, a unate function is positive unate (negative unate) on a variable xi if si = 0
(si = 1 respectively).

For monotone functions such as k-Intn,d, we can define maximal 0-inputs:

▶ Definition 8 (Maximal 0-input). Let f be a monotone Boolean function. An input x is a
maximal 0-input for f if f(x) = 0 and for all strings y such that x < y, f(y) = 1.

Throughout this article, we will use the term “maxterm” and “maximal 0-inputs” inter-
changeably. This deviates from the standard definition of maxterm, but is very convenient in
our context.

For a vector u ∈ {0, 1}d, and a set of indices S ⊆ [d], we denote the restriction of u to
the indices in S as u|S .

▶ Definition 9 (t-limit). A vector y ∈ {0, 1}m is said to be a t-limit for a set B ⊆ {0, 1}m

if and only if ∀S ⊆ [m] with |S| = t, ∃x ∈ B such that y ̸= x but y|S = x|S. Further,
y ∈ {0, 1}m is said to be an upper t-limit if y ≥ x.

Note that if a string y is a t-limit for a set B and B ⊆ B′, then y is also a t-limit for B′.
We will be using Kőnig’s theorem in our proofs, which is stated as follows:

▶ Proposition 10 ([19], [8]). The maximum cardinality of a matching in a bipartite graph G
is equal to the minimum cardinality of a vertex cover of its edges.

We will always assume that the depth-3 circuits we consider are layered. i.e., inputs are
read directly by only the gates at the bottom layer, and every layer reads outputs from the
layer below it. This assumption does not affect asymptotic complexity. We say a depth-3
circuit C has bottom positive fan-in (bottom negation fan-in) t if for every gate in the bottom
layer, at most t of its inputs are positive literals (negated literals respectively).

We denote the permutation group on k distinct elements with Sk. Let P = (P1, . . . , Pk) be
an ordered partition of [d] into k parts. For any permutation σ ∈ Sk, we use Pσ to denote the
ordered partition obtained by permuting the parts of P using σ. i.e., Pσ ≜ (Pσ(1), . . . , Pσ(k))

3 AND ◦ OR ◦ AND circuits

To describe the lower bound for k-Intn,d against AND ◦OR ◦ AND circuits, we first identify a
special set of maxterms (maximal 0-inputs) of k-Intn,d. We do this by explicitly constructing
such inputs.

3.1 Maxterms of k-Intn,d

Fix any choice of integers k, d ∈ N such that 1 < k ≤ d. For any choice of n1, . . . , nk ∈ [n],
and any ordered partition P = (P1, . . . , Pk) of [d] into k parts, we will construct an input
N = (A1, . . . , Ak) where Ai ⊆ {0, 1}d with |Ai| = n such that N is a maxterm for k-Intn,d.
Throughout, we will denote the j’th vector in Ai by aj

i .
The input N = (A1, . . . , Ak) ∈ {0, 1}nkd is constructed as follows:
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Set every vector other than an1
1 , . . . , ank

k to all 1s.
In each ani

i , set the indices contained in Pi to 0s. Set every other position to 1. Formally,
for all i ∈ [k], set ani

i |Pi
← 0⃗ and ani

i |[d]\Pi
← 1⃗.

We shall call ((n1, . . . , nk),P) the support of N , and denote it by sup(N).
To see that N is indeed a maxterm of k-Intn,d, observe that since P is a partition of [d], for

every position ℓ ∈ [d], there is a unique i ∈ [k] such that ℓ ∈ Pi. Therefore, by construction
of N , ani

i [ℓ] = 0. So for every position ℓ, there is some vector among an1
1 , . . . , ank

k that is
0 in position ℓ, and hence an1

1 ∩ · · · ∩ ank

k = ∅. Moreover, due to i being unique for each
such ℓ, we also have a

nj

j [ℓ] = 1 for all j ̸= i. So changing ani
i [ℓ] from 0 to 1 results in the

vectors intersecting at ℓ. Combining this with the fact that every vector in N other than
an1

1 , . . . , ank

k is the all-1s vector, we conclude that N is indeed a maximal 0-input.
We will be particularly interested in a subset of such maxterms of k-Intn,d that are formed

by the permutations of the parts of some fixed partition into non-empty parts. We define
this formally as follows.

▶ Definition 11 (Permutation-maxterms). Fix an ordered partition P = (P1, . . . , Pk) of [d]
into k non-empty parts. A permutation-maxterm with respect to P is any maxterm N

constructed as above that has sup(N) = ((n1, . . . , nk),Pσ) for some n1 . . . , nk ∈ [n] and
σ ∈ Sk.

We shall use Nn,k,d
P to denote the set of all permutation-maxterms of k-Intn,d with respect

to some ordered partition P of [d] into k non-empty parts. We drop the subscript, and
superscripts if it is clear from context.

Note that for any partition P as in the definition above, |N n,k,d
P | = nkk! as there are nk

many k-tuples (n1, . . . , nk) and k! many permutations in Sk.
▶ Remark 12. The proofs in this paper do not depend on the exact partition chosen. Any
arbitrary ordered partition of [d] into k non-empty parts will work. For a further simplification,
one could assume k = d, and fix the permutation P = (P1, . . . , Pk) to be Pi = {i} for all
i ∈ [d].

3.2 Support Graph
We define a k-partite hypergraph to encode, and reason about, the relationship between
permutation-maxterms of k-Intn,d. Here, by k-partite hypergraph we mean that every
hyperedge must contain exactly one vertex from each part.

Fix k ≥ 2 and d ≥ k, and any ordered partition P of [d] into k non-empty parts. For any
subset S ⊆ N n,k,d

P of permutation-maxterms of k-Intn,d, we define the support graph of S as
a k-partite hypergraph GS = (V1 ∪ · · · ∪ Vk, E) such that each maxterm in S corresponds
to a hyperedge in the graph. Recall that an input to k-Intn,d consists of k tuples, each
having n vectors of dimension d. In each Vi, we include a total of nk vertices as follows: for
each j ∈ [n], we include k vertices in Vi indexed as vj,1

i , . . . , vj,k
i . So for all i ∈ [k], we have

|Vi| = nk and hence the graph GS is defined on nk2 many vertices.
We define the set E of hyperedges as follows:(

vn1,b1
1 , . . . , vnk,bk

k

)
∈ E ⇐⇒ ∃ maxterm N ∈ S such that

sup(N) = ((n1, . . . , nk),Pσ) and bi = σ(i) ∀i ∈ [k]

▶ Remark 13. Note that the set of maxterms S ⊆ NP and the set of hyperedges in GS are in
bijection. More precisely, a maxterm N with sup(N) = ((n1, . . . , nk),Pσ) corresponds to the
hyperedge

(
v

n1,σ(1)
1 , . . . , v

nk,σ(k)
k

)
and vice-versa.
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▶ Definition 14 (Co-disjoint). We call two vectors u ∈ {0, 1}d and v ∈ {0, 1}d as co-disjoint
if and only if u ∩ v = ∅. i.e., the set of positions where u is 0, and the set where v is 0 are
disjoint.

For two tuples of vectors A = (a1, . . . , an) and B = (b1, . . . , bn) where ai, bi ∈ {0, 1}d, we
say A and B are co-disjoint if for all i ∈ [n], ai and bi are co-disjoint.

Maxterms M = (M1, . . . , Mk) and N = (N1, . . . , Nk), both from Nn,k,d
P , are said to be

co-disjoint if and only if for all i ∈ [k], Mi and Ni are co-disjoint.

Intuitively, the graph GS records where the 0s in each of the maxterms in S appear. This
gives us the following close connection between co-disjointness of vectors across maxterms,
and disjointness of their hyperedges.

▶ Lemma 15. Let S ⊆ Nn,k,d
P , and let GS = (V1 ∪ · · · ∪ Vk, E) be its support graph. Let

M = (M1, . . . , Mk) and N = (N1, . . . , Nk) be two maxterms from S and let EM , and EN

respectively, denote their corresponding hyperedges in GS. Then for each i ∈ [k], we have the
following two properties:
1. If EM and EN share a vertex in Vi, then Mi = Ni.
2. If EM and EN contain different vertices from Vi, then Mi and Ni are co-disjoint.

Proof. Let sup(M) = (a1, . . . , ak,Pσ) and sup(N) = (b1, . . . , bk,Pπ).

Proof of (1). If EM and EN share a vertex in Vi for some i ∈ [k], then v
ai,σ(i)
i = v

bi,π(i)
i

and so we have ai = bi and σ(i) = π(i). Let ℓ = ai = bi, and let q = σ(i) = π(i). Then by
construction of the maxterms M and N , all vectors in Mi other than mℓ

i are all 1s, and
similarly all vectors in Ni other than nℓ

i are all 1s. The vector mℓ
i and nℓ

i both have 0s in
indices from the part Pq, and 1s elsewhere. So mℓ

i = nℓ
i . Hence the tuple Mi and Ni are

identical.

Proof of (2). If EM and EN have different vertices from Vi, then v
ai,σ(i)
i ≠ v

bi,π(i)
i . So

either ai ̸= bi or σ(i) ̸= π(i) (or both). The claim holds in both cases:
If ai ̸= bi, then recall that by construction, the only vector that has 0s in Mi is the vector
mai

i . Every other vector in Mi, and in particular mbi
i is the all 1s vector by construction.

So the tuples of vectors Mi and Ni cannot both be 0 in any vector in any position.
Else ai = bi and σ(i) ̸= π(i). By our construction of maxterms, the 0s in the vectors mai

i

and nbi=ai
i are in the indices given by Pσ(i) and Pπ(i) respectively. Since P is a partition,

and σ(i) ̸= π(i), Pσ(i) ∩ Pπ(i) = ∅. Therefore there cannot be an index where both mai
i

and nbi
i are both 0. ◀

The following lemma follows directly from Lemma 15:

▶ Lemma 16. Let S ⊆ N n,k,d
P be a set of maxterms such that all hyperedges in GS are

pairwise vertex-disjoint. Then the maxterms in S are pairwise co-disjoint. (i.e., for all
positions ℓ ∈ [nkd], there is at most one maxterm in S that has 0 in the ℓ’th position.)

Proof. Let M, N ∈ S be any two maxterms, and let the vertex set of GS be V = V1∪· · ·∪Vk.
The hyperedges EM and EN , corresponding to M , and N respectively, are vertex-disjoint
from the premise. So for each i ∈ [k], EM and EN contain different vertices from Vi. Applying
Lemma 15 to GS , we obtain that Mi and Ni are co-disjoint for all i ∈ [k]. Hence there is no
position where both M and N are 0 by definition of co-disjoint. ◀

STACS 2024



25:10 Depth-3 Circuit Lower Bounds for k-OV

3.3 Warm-up: 2-Intn,d

We give a self-contained proof of our lower bound for the case of 2-Intn,d that demonstrates
the strategy behind the proof for the general case.

▶ Theorem 17. For all d > 1, any AND ◦ OR ◦ AND circuit with bottom fan-in t computing
2-Intn,d requires top fan-in at least 2n2/t2.

Proof. Let C = C1 ∧ C2 ∧ · · · ∧ Cs be an AND ◦ OR ◦ AND circuit with bottom fan-in t

computing 2-Intn,d. Let P = (P1, P2) be any ordered partition of [d] into two non-empty parts.
Consider the permutation-maxterms N = Nn,2,d

P of 2-Intn,d as described in definition 11.
Since N is a subset of the 0-inputs of 2-Intn,d, the circuit C outputs 0 on every input in N .
By an averaging argument, there exists i ∈ [s] such that Ci correctly outputs 0 on at least
1/s fraction of inputs in N . We will show that |C−1

i (0) ∩N| ≤ t2. Then the theorem follows
as:

2n2

s
= 1

s
|N | ≤ |C−1

i (0) ∩N| ≤ t2.

Let S = C−1
i (0) ∩ N . Suppose, for the sake of contradiction, |S| > t2. We will show

later in the proof that in such a case, there is a t-limit y ∈ C−1(1) for S. This leads to a
contradiction as follows: let Ci = g1∨g2∨· · ·∨gℓ with each gj having fan-in at most t. Then,
by definition of t-limit, for all T ⊆ [nkd] with |T | = t, there exists x ∈ S such that x|T = y|T .
Now each of the gates gj is a function of at most t variables, and we know that for all inputs
x ∈ S, we have gj(x) = 0 for all j ∈ [ℓ]. Since y looks identical to some string in S when
restricted to these t positions, all the gj will output 0 on y too. This forces Ci(y) = 0, but
this cannot happen since y ∈ C−1(1). Hence it could not have been the case that |S| > t2.

We now construct a t-limit for any S ⊆ N when |S| > t2. Let S ⊆ N be any set with
size |S| > t2 and let GS be its support graph. Note that since k = 2, GS is a bipartite graph
with simple edges rather than hyperedges, and every maxterm in S corresponds to an edge
in GS and vice versa. We claim at least one of the following is true for GS :

(i) There exists a matching of size t + 1 in GS .
(ii) There exists a vertex of degree at least t + 1 in GS .

Indeed this is a consequence of Kőnig’s Theorem (stated in Proposition 10): suppose the
size of a maximum matching is at most t, then the minimum vertex-cover has size at most
t. Since there are |S| many edges in GS , there must be a vertex v in the vertex cover with
degree at least |S|

t . Since |S| > t2, it must be that deg(v) > t which satisfies (ii). In both
the above cases, we construct a string y ∈ C−1(1) that is a t-limit for S.

Case (i): Consider the set S′ of maxterms corresponding to the edges in a maximum
matching of GS . Then S′ is a set of at least t + 1 pairwise co-disjoint maxterms. Then
y ≜ 1⃗ is a t-limit for S′. To see why, consider any set of t positions. By Lemma 16, at
each of these positions, at most one of the maxterms in S′ can be 0. Since there are t + 1
such maxterms and only t positions, there must be a maxterm where the value at all the
given positions is 1, thus looking identical to y.
Case (ii): Let the vertex set of GS be V = V1 ∪ V2. Without loss of generality, let the
vertex v with deg(v) > t be in V1. Let E be the edges that have v as one endpoint, and
let ME ⊆ S be the maxterms corresponding to the edges in E. Then by property (1) of
Lemma 15, the first tuple of vectors in all these maxterms is the same. Let A1 be the
first tuple of vectors. We construct the input y = (Y1, Y2) as follows: set Y1 ← A1, and
set Y2 ← 1⃗.
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Since the string y was obtained by taking first tuple of a maxterm, and setting every
vector in the 2nd tuple to 1, it must be a 1-input.
To see that y is a t-limit, take any subset of indices T ⊆ [2nd] with |T | = t. We will
show that one of the maxterms in ME looks identical to y in these t positions. For every
position from [nd] (the 1st tuple of vectors), every maxterm in ME is identical to y since
Y1 = A1. So assume that all indices in T are from the range {nd + 1, . . . , 2nd}. By
construction, y is all-1s in this range of indices. Since edges in E have distinct endpoints
in V2, property (2) of Lemma 15 tells us that the second tuple of vectors in the maxterms
in T are pairwise co-disjoint. This is similar to case (i): we have |ME | ≥ t + 1 many
maxterms such that for any position in T , at most one of them is 0, and there are only t

positions in T . So by the pigeon-hole principle, there must be a maxterm in ME that has
1 in all positions from T , thus looking identical to y in these positions. ◀

Since 2-OVn,d is the negation of 2-Intn,d, the following is an immediate corollary of
Theorem 17.

▶ Corollary 18. For all d > 1, any OR ◦ AND ◦ OR circuit with bottom fan-in t computing
2-OVn,d requires top fan-in at least 2n2/t2.

▶ Remark 19. It is easy to see that the t-limit string y constructed in the proof of Theorem 17
is in fact an upper t-limit. Therefore the lower bound shown for 2-Intn,d works against a
slightly more general class of circuits – AND ◦ OR ◦ AND circuits that have each bottom
AND-gate seeing at most t positive literals. Analogously the lower bound for 2-OVn,d works
against OR ◦ AND ◦ OR circuits where each bottom gate has at most t negated inputs.

3.4 General case: k-Intn,d

We will need the following lemma on k-partite hypergraphs:

▶ Lemma 20. Let G be a k-partite hypergraph with m many hyperedges. Then for all t > 0
at least one of the following holds:

(i) There are more than t vertex-disjoint hyperedges in G.
(ii) There is a vertex u such that deg(u) >

⌊
m
kt

⌋
.

Proof. Let G be a k-partite hypergraph with m hyperedges. Let S be a largest set of
vertex-disjoint hyperedges in G. If |S| > t, then the lemma is true. Suppose |S| ≤ t. Let VS

be the set of vertices participating in the hyperedges in S. Since each hyperedge contains
exactly k many vertices, |VS | ≤ kt. Also, since S is a largest such set, each of the remaining
hyperedges must contain at least one vertex from VS . Therefore, by an averaging argument,
there is a vertex u ∈ VS that is part of at least m−|S|

|VS | many hyperedges outside S, and 1
hyperedge in S. Therefore, we have:

deg(u) ≥ m− |S|
|VS |

+ 1 ≥ m− t

kt
+ 1 = m

kt
− 1

k
+ 1 >

⌊m

kt

⌋
◀

We use Lemma 20 to show that if we start with enough hyperedges, then there is a subset of
them such that in each part, either all of them coincide, or they are all distinct.

▶ Lemma 21. Let k ≥ 2, and let G = (V1 ∪ · · · ∪ Vk, E) be a k-partite hypergraph with
|E| > k!tk

2 . Then there exists S ⊆ E with |S| > t such that for each i ∈ [k], exactly one of
the following holds:
1. There exists a vertex u ∈ Vi such that all hyperedges in S share the vertex u.
2. No two hyperedges in S share the same vertex in Vi.
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Proof. Induction on k. Base case k = 2 is a consequence of Kőnig’s theorem (Proposition 10):
Since k = 2, G is just a bipartite graph. If there is a matching in G of size more than t,
then let S be the edges in such a matching. Clearly the edges in S are vertex-disjoint and
statement (2) holds. Else the maximum matching has size ≤ t. Then Proposition 10 implies
that the minimum vertex cover has size at most t. By an averaging argument, there must
exist a vertex u such that deg(u) > |E|/t > k!tk

2t = 2t2

2t = t. Define S to be the set of edges
that share u. Without loss of generality, let u ∈ V1. Then all edges in S must have distinct
vertices in V2. Therefore in V1, they all coincide, and in V2 they are all distinct.

Case k > 2. Apply Lemma 20 to G. If (i) holds, then we have a set S of more than t

vertex-disjoint hyperedges. This means for all i ∈ [k], statement (2) holds and we are done.
Suppose (ii) holds, then there is a vertex u such that deg(u) > ⌊m/kt⌋ = (k−1)! tk−1

2 . Let
S be the set of all hyperedges that contain vertex u. Then |S| = deg(u). Let z ∈ [k] be such
that u ∈ Vz.

We construct a (k − 1)-partite hypergraph G′ = (V ′, E′) by removing Vz, and the z’th
coordinate from each edge. More formally:

V ′ ≜ V1 ∪ · · · ∪ Vz−1 ∪ Vz+1, · · · ∪ Vk

E′ ≜ {(v1, . . . , vz−1, vz+1, . . . , vk) | (v1, . . . , vz−1, u, vz+1, vk) ∈ S}

(Informally, an edge e′ ∈ E′ is just an edge e ∈ S with its z’th coordinate removed.)
We define V ′

i = Vi for all i ̸= z as the k − 1 parts of V ′. Note that |E′| = |S|. This is
because ∀e1, e2 ∈ S such that e1 ̸= e2, the edges e1 and e2 share the vertex u in Vz. So there
must exist j ̸= z such that e1 and e2 use different vertices in Vj . Hence e′

1 ̸= e′
2. Further,

observe that for any i ̸= z, e′
1, e′

2 ∈ E′ share a vertex in V ′
i if and only if e1 and e2 share the

same vertex in Vi.
Now G′ is a (k−1)-partite hypergraph with |E′| = |S| > (k−1)! tk−1

2 many hyperedges. By
induction on G′, there must exist a set S′ ⊆ E′ with |S′| > t such that for each i ̸= z, either
all hyperedges in S′ share a vertex in V ′

i , or they use distinct vertices in V ′
i . We already

know that since S′ ⊆ S, all edges in S′ share the same vertex in Vz, namely u. Hence for all
i ∈ [k], the edges in S′ satisfy (1) or (2). ◀

▶ Remark 22. The statement of Lemma 21 can be seen as a sunflower lemma. Take any
vertex u in the graph G that participates in at least one hyperedge from S. Then exactly
one of the following holds: (i) The vertex u participates in exactly one hyperedge in S, or
(ii) The vertex u participates in all hyperedges in S. The standard sunflower lemma would
require more than k! tk hyperedges, while our statement needs half of that.

We now describe how to construct an upper t-limit in the general case.

▶ Lemma 23. LetM⊆ N n,k,d
P be any set of permutation-maxterms of k-Intn,d for any k ≥ 2

and d ≥ k. If |M| > k! tk

2 , then there is a string y ∈ k-Int−1
n,d(1) that is an upper t-limit for

M.

Proof. Let GM = (V, E) be the k-partite support graph of M (defined in section 3.2), and
let V = V1 ∪ · · · ∪ Vk. By Lemma 21, there exists a set of hyperedges S ⊆ E with |S| ≥ t + 1
such that for each i ∈ [k], either all edges in S share the same vertex in Vi, or no two edges
share a vertex of Vi. Let MS be the set of maxterms corresponding to S.

Let B ⊆ [k] be the set of all indices i ∈ [k] such that all edges in S share the same vertex
in Vi. Then B contains indices of parts where the edges in S use distinct vertices. (Observe
that B is non-empty because otherwise all maxterms would share all vertices, and hence
would be one and the same. But we know that |S| ≥ t + 1 > 1, so this cannot happen.) By
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property (1) of Lemma 15, this implies that for each i ∈ B, the i’th tuple of vectors in the
maxterms in MS are identical. For each i ∈ B, denote the i’th tuple of vectors in all these
maxterms as Ai.

We construct the string y = (Y1, . . . , Yk) as follows:

∀i ∈ B, set Yi ← Ai

∀j ∈ B, set Yj ← 1⃗

y is a 1-input of k-Intn,d

Observe that y can also be obtained by starting with any maxterm N = (N1, . . . , Nk) from
S, and setting to 1s all vectors in Nj for all j ∈ B. Since N is a maxterm (maximal 0-input),
the string y must be a 1-input. This also means that the string y is point-wise greater than
or equal to any maxterm in S.

y is a t-limit

Let T ⊆ [nkd] with |T | = t be a set of any t positions. For all i ∈ B, the string y is identical
to every maxterm in MS . So assume that T only has positions that fall into tuples indexed
by B. By property (2) of Lemma 15, the maxterms in MS are pairwise co-disjoint on all
such positions. i.e., for any position ℓ ∈ T , at most one maxterm in MS can be 0. So we
have t positions, and |MS | = |S| ≥ t + 1 maxterms. By pigeon-hole principle, there exists a
maxterm in MS that is 1 on all these t positions, thus looking identical to y.

Since y is point-wise greater or equal to every maxterm in S, we conclude that indeed y

is an upper t-limit for M. ◀

▶ Lemma 24. Let C be any OR ◦ AND circuit with bottom positive fan-in t computing a
function f on n variables. Let y be any string that is an upper t-limit for f−1(0). Then
C(y) = 0.

Proof. Let g be any bottom AND-gate of C. Let P ⊆ [n] (Q ⊆ [n]) be the variables whose
positive literals (negated literals resp.) are input to g. Then |P | ≤ t by assumption.

Since y is an upper t-limit for g−1(0), it must be that for every set T of t positions there
exists a string x(T ) ∈ g−1(0) such that y|T = x(T )|T . In particular, this holds for the set P .
So in all positions from P , the gate g sees no difference between y and x(T ).

The gate g sees negative literals of all variables from Q. Since y is an upper t-limit, we
have x(T )|Q ≤ y|Q. Hence for all i ∈ Q such that ¬xi = 0, we also have ¬yi = 0. Hence
g(y) ≤ g(x(T )) = 0 as x(T ) ∈ g−1(0). ◀

▶ Theorem 25. For all k, d such that k ≤ d, any AND ◦ OR ◦ AND circuit with bottom
positive fan-in t computing k-Intn,d requires top fan-in Ω

((
n
t

)k
)

.

Proof. Let C = C1 ∧ · · · ∧ Cs be an AND ◦OR ◦ AND circuit with bottom positive fan-in t,
computing k-Intn,d. Consider the set N = Nn,k,d

P of all permutation-maxterms of k-Intn,d

with respect to any ordered permutation P of [d] into k non-empty parts (see Definition 11,
and Remark 12). Since C outputs 0 on all inputs from N , there must be some OR ◦ ANDt

subcircuit Ci that correctly outputs 0 on at least 1/s fraction of inputs in N . We will show
that |C−1

i (0) ∩N| ≤ k! tk/2, and the theorem follows since:

k! nk

s
= 1

s
|N | ≤ |C−1

i (0) ∩N| ≤ k! tk

2
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Let M = C−1
i (0) ∩ N . Suppose, for the sake of contradiction, |M| > k! tk/2. Since

M⊆ N , we apply Lemma 23 to conclude that there exists a string y ∈ k-Int−1
n,d(1) that is

an upper t-limit y for M. Then by Lemma 24, it must be that C(y) = 0. But this is a
contradiction since y ∈ k-Int−1

n,d(1). ◀

Since k-OVn,d is the negation of k-Intn,d, the following is an immediate corollary of The-
orem 25.

▶ Theorem 1. For all k ≤ d, any OR ◦ AND ◦ OR circuit with bottom fan-in t computing
k-OVn,d requires top fan-in Ω

(
( n

t )k
)
.

4 OR ◦ AND ◦ OR circuits

In this section, we show that any OR ◦AND ◦OR circuit requires exponential size to compute
2-Intn,d for any d ∈ Ω(n2). This result is a consequence of a known lower bound for the
iterated intersection function defined as follows:

▶ Definition 26 (Iterated Intersection). Let A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn) be
tuples of vectors from {0, 1}d,

Sn,d(A, B) = 1 ⇐⇒ ∀i ∈ [n] we have ai ∩ bi ̸= ∅

Observe that Sn,d(A, B) differs from 2-Intn,d(A, B) in that the intersection between two
vectors ai and bj when i ̸= j does not affect the value of Sn,d at all. Recall the definition of
2-Intn,d(A, B):

2-Intn,d(A, B) = 1 ⇐⇒ ∀i, j ∈ [n] we have ai ∩ bj ̸= ∅

The function Sn,d can also be defined using an AND ◦ OR ◦ AND2 circuit of size nd:

Sn,d(A, B) =
n∧

i=1

d∨
j=1

ai[j] ∧ bi[j].

The result by Håstad, Jukna, Pudlák in [14] shows the following lower bound for computing
Sn,d by OR ◦ AND ◦ OR circuits:

▶ Proposition 27 ([14]). For all ℓ ≤ nd, any OR ◦AND ◦OR circuit computing Sn,d requires
size min{2ℓ, (d/ℓ)n}.

In particular, Proposition 27 shows that S√
n,

√
n requires 2Ω(

√
n) size OR ◦ AND ◦ OR

circuits. This can be used to show lower bounds for 2-Intn,d:

▶ Theorem 28. Let C be an OR ◦ AND ◦ OR circuit computing 2-Intn,d. Then for all ℓ ≤ d,
size of C is at least min{2ℓ,

(
d

nℓ

)n}.

Proof. We show this by reducing Sn,⌊d/n⌋ to 2-Intn,d via projections. Let d′ = ⌊d/n⌋. Take
any instance A = (a1, . . . , an) and B = (b1, . . . , bn) with ai, bi ∈ {0, 1}d′ of Sn,d′ . We
create two tuples of d-dimensional vectors A′ = (a′

1, . . . , a′
n) and B′ = (b′

1, . . . , b′
n) that serve

as an instance of 2-Intn,d as follows – for all i ∈ [n], define a′
i = 1(i−1)d′

ai 1(n−i)d′ and
b′

i = 0(i−1)d′
bi 0(n−i)d′ . Note that the dimension of each ai and bi is nd′ ≤ d.

Observe that ai and bi are disjoint if and only if a′
i and b′

i are disjoint. So if (A, B) was a
0-instance of Sn,d′ , then (A′, B′) is a 0-instance of 2-Intn,d.
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Further, if bj ̸= 0⃗ for some j ∈ [n], then for all i ̸= j, we have a′
i ∩ b′

j ̸= ∅. To see this,
observe that if bj ̸= 0⃗, then there is some position p ∈ [(j − 1)d′ + 1, jd′] such that b′

j [p] = 1.
But by construction, the vector a′

i is 1 everywhere outside the interval [(i − 1)d′ + 1, id′].
Since i ̸= j, the vector a′

i must be 1 at position p.
If (A, B) was a 1-instance of Sn,d′ , then all ai intersect bi. This means all bi are non-zero

vectors. Thus for all i, j ∈ [n], a′
i ∩ b′

j ̸= ∅.
The above reduction shows that C can be used to compute Sn,⌊d/n⌋. Applying Proposi-

tion 27 to C tells us that C must have size at least min{2ℓ,
(

d
nℓ

)n} for all ℓ ≤ d. ◀

Our reduction in proof of Theorem 28 inflates the dimension of vectors by a factor
of n making the obtained bound trivial when d ∈ O(n). However, we can still conclude
an exponential lower bound by substituting ℓ = d/2n that gives us a lower bound of
min{2d/2n, 2n} ∈ 2Ω(n) when d ∈ Ω(n2).

Since 2-OVn,d is the negation of 2-Intn,d, the following is an immediate corollary.

▶ Theorem 3. For all ℓ ≤ d, any AND ◦ OR ◦ AND circuit computing 2-OVn,d requires size
s ∈ Ω(min{2ℓ,

(
d

nℓ

)n}). In particular, for ℓ = d/2n and d ∈ Ω(n2), s ∈ Ω(2n).

5 A General Upper Bound

In this section, we describe a more general construction of a depth-3 circuit to compute
k-Intn,d that allows a trade-off between the top fan-in and bottom fan-in. We recall the
construction given by equation 3 here:

k-Intn,d(A1, . . . , Ak) =
∧

i1,...,ik∈[n]

∨
j∈[d]

(ai1 [j] ∧ · · · ∧ aik
[j]) (3)

We generalize this construction to obtain the following trade-off between top and bottom
fan-in:

▶ Proposition 29. For any integer 1 ≤ t ≤ nk, the function k-Intn,d can be computed by
a monotone depth-3 AND ◦ OR ◦ AND circuit with top fan-in ⌈nk

t ⌉, middle fan-in dt, and
bottom fan-in at most kt.

Proof. Let C be the circuit described in equation 3. Observe that each OR ◦ AND subcircuit
of C is checking whether a particular choice ai1 ∈ A1, ai2 ∈ A2, . . . , aik

∈ Ak of vectors are
intersecting or not. Since there are nk many such choices, the top fan-in in C is nk. Checking
if a particular choice of k vectors intersects at some fixed coordinate uses an AND of fan-in
k, and hence the bottom fan-in in C is k.

To obtain the trade-off in the theorem statement, the idea is to construct an AND◦OR◦AND
circuit where each OR◦AND subcircuit checks whether t many such choices of vectors intersect.
Each choice can be written as a k-tuple of vectors (ai1 , . . . , aik

). For convenience, let’s assume
that t divides nk. Let T = {T1, T2, . . . , Tnk/t} be a partition of the set of nk possible k-tuples
of vectors into nk/t parts with each Tl containing exactly t many k-tuples. For the vectors in
any particular k-tuple in Tl to have non-empty intersection, there must exist a position i ∈ [d]
where all the k vectors in the k-tuple are 1. Hence to check if each of the k-tuples of vectors
in Tl have non-zero intersection, it suffices to check if there exist t positions i1, i2, . . . , it ∈ [d]
such that the j’th k-tuple of vectors intersect in ij .
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Let Aj
l [i] be the AND of the bits in the ith position of the vectors in the jth tuple in

Tl. This is an AND gate with fan-in k because there are k many vectors in each tuple. We
construct the following circuit where the ℓ’th OR ◦ AND subcircuit checks if each k-tuple of
vectors in Tℓ have non-zero intersection:

Gt =
∧

l∈{1,..., nk

t }

∨
i1,i2,...it∈[d]

(A1
l [i1] ∧A2

l [i2] ∧ . . . At
l [it])

Observe that Gt has top fan-in as nk/t, middle fan-in as dt, and bottom fan-in kt as
desired. ◀
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A Myhill-Nerode Theorem for Generalized
Automata, with Applications to Pattern Matching
and Compression
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Abstract
The model of generalized automata, introduced by Eilenberg in 1974, allows representing a regular
language more concisely than conventional automata by allowing edges to be labeled not only with
characters, but also strings. Giammaresi and Montalbano introduced a notion of determinism for
generalized automata [STACS 1995]. While generalized deterministic automata retain many proper-
ties of conventional deterministic automata, the uniqueness of a minimal generalized deterministic
automaton is lost.

In the first part of the paper, we show that the lack of uniqueness can be explained by introducing
a set W(A) associated with a generalized automaton A. The set W(A) is always trivially equal to
the set of all prefixes of the language recognized by the automaton, if A is a conventional automaton,
but this need not be true for generalized automata. By fixing W(A), we are able to derive for
the first time a full Myhill-Nerode theorem for generalized automata, which contains the textbook
Myhill-Nerode theorem for conventional automata as a degenerate case.

In the second part of the paper, we show that the set W(A) leads to applications for pattern
matching and data compression. Wheeler automata [TCS 2017, SODA 2020] are a popular class
of automata that can be compactly stored using e log σ(1 + o(1)) + O(e) bits (e being the number
of edges, σ being the size of the alphabet) in such a way that pattern matching queries can be
solved in Õ(m) time (m being the length of the pattern). In the paper, we show how to extend
these results to generalized automata. More precisely, a Wheeler generalized automata can be stored
using e log σ(1 + o(1)) + O(e + rn) bits so that pattern matching queries can be solved in Õ(rm)
time, where e is the total length of all edge labels, r is the maximum length of an edge label and n

is the number of states.
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1 Introduction

The class of regular languages can be defined starting from non-deterministic finite automata
(NFAs). In his monumental work [18] on automata theory (which dates back to 1974),
Eilenberg proposed a natural generalization of NFAs where edges can be labeled not only
with characters but with (possibly empty) finite strings, the so-called generalized non-
deterministic finite automata (GNFAs). While classical automata are only a special case of
generalized automata, it is immediate to realize that generalized automata can only recognize
regular languages, because it is well-known that epsilon transitions do not add expressive
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26:2 A Myhill-Nerode Theorem for Generalized Automata, with Applications

power [31], and a string-labeled edge can be decomposed into a path of edges labeled only with
characters. However, generalized automata can represent regular languages more concisely
than classical automata. A standard measure of the complexity of a regular language is the
the minimum number of states of some automaton recognizing the language, and generalized
automata may have fewer states than conventional automata. In generalized automata, we
assume that both the number of states and the number of edges are finite, but the number of
edges cannot be bounded by some function of the number of states and the size of the finite
alphabet (and so edge labels may be arbitrarily long). As a consequence, in principle it is not
clear whether the problem of determining the minimum number states of some generalized
automaton recognizing a given language is decidable. In [29], Hashiguchi showed that the
problem is decidable by proving that there must exist a state-minimal generalized automaton
for which the lengths of edge labels can be bounded by a function that only depends on the
size of the syntactic monoid recognizing the language.

An NFA is a deterministic finite automaton (DFA) if no state has two distinct outgoing
edges with the same label. This local notion of determinism extends to global determinism,
that is, given a string α, there exists at most one path labeled α that can be followed starting
from the initial state. However, this is not true for generalized automata (see Figure 1).
When considering generalized automata, we must add the additional requirement that no
state has two distinct outgoing edges such that one edge label is a prefix of the other edge
label. By adding this requirement, we retrieve global determinism, thus obtaining generalized
deterministic finite automata (GDFAs).

1start 2

3 4

ab

ca

bc

Figure 1 No state has two distinct outgoing edges with the same label, but there are two distinct
paths labeled abc from the initial state.

For every regular language, there exists a unique deterministic automaton recognizing
the language and having the minimum number of states among all deterministic automata
recognizing the language, the minimal DFA of the language. More generally, a classical
textbook result in automata theory is the Myhill-Nerode theorem. Let Pref(L) be the set of
all strings prefixing at least one string in the language L. We have the following result.

▶ Theorem 1 (Myhill-Nerode theorem). Let L ⊆ Σ∗. The following are equivalent:
1. L is recognized by an NFA.
2. The Myhill-Nerode equivalence ≡L has finite index.
3. There exists a right-invariant equivalence relation ∼ on Pref(L) of finite index such that

L is the union of some ∼-classes.
4. L is recognized by a DFA.
Moreover, if one of the above statements is true (and so all the above statements are true),
then there exists a unique minimal DFA recognizing L (that is, two DFAs having the minimum
number of states among all DFAs that recognize L must be isomorphic).

The problem of studying the notion of determinism in the setting of generalized automata
was approached by Giammaresi and Montalbano [28, 27]. The notion of isomorphism can be
naturally extended to GDFAs (intuitively, two GDFAs are isomorphic if they are the same
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GDFA up to renaming the states), and the natural question is whether one can analogously
define the minimal GDFA of a regular language. This is not possible: in general, there
can exist two or more non-isomorphic state-minimal GDFAs recognizing a given regular
language. Consider the two distinct GDFAs in Figure 2. It is immediate to check that the
two (non-isomorphic) GDFAs recognize the same language, and it can be shown that the no
GDFA with less than three states can recognize the same language [28].

1start 2 3
a3, ba2

ba2, aba

a2
1start 2 3

a2, ba

aba, a2b

a3

Figure 2 Two state-minimal GDFAs recognizing the same regular language.

The non-uniqueness of a state-minimal GDFAs seems to imply a major difference in the
behavior of generalized automata compared to conventional automata, so it looks like there
is no hope to derive a structural result like the Myhill-Nerode theorem in the model of the
generalized automata. It is natural to wonder whether the lack of uniqueness should be
interpreted as a weakness of the model of generalized automata, or rather as a consequence
of some deeper property. Consider a conventional automaton A that recognizes a language
L. As typical in automata theory, we can assume that all states are reachable from the
initial state, and all states are either final or they allow reaching a final state. Then, the
set W(A) of all strings that can be read starting from the initial state and reaching some
state is exactly equal to Pref(L). However this is no longer true in the model of generalized
automata: typically, we do not have W(A) = Pref(L), but only W(A) ⊆ Pref(L). For
example, consider Figure 2. In both automata we have a3 ∈ Pref(L), but we have a3 ∈ W(A)
only for the GDFA on the left.

Given W ⊆ Pref(L), we say that a GNFA A recognizing L is a W-GNFA if W(A) = W .
We will show that, if L is recognized by a W-GDFA, then there exists a unique state-minimal
W-GDFA recognizing L. In particular, our result will imply the uniqueness of the minimal
automaton for standard DFAs, because for DFAs it must necessarily be W = Pref(L).

We will actually prove much more. We will show that, once we fix W , then nondetermin-
ism and determinism still have the same expressive power, and it is possible to derive a
characterization in terms of equivalence relations. In other words, we will prove a Myhill-
Nerode theorem for generalized automata. To this end, we will introduce the notion of locally
bounded set (Definition 8), which we can use to prove the following result.

▶ Theorem 2 (Myhill-Nerode theorem for generalized automata). Let L ⊆ Σ∗ and let W ⊆ Σ∗

be a locally bounded set such that L ∪ {ϵ} ⊆ W ⊆ Pref(L). The following are equivalent:
1. L is recognized by a W-GNFA.
2. The Myhill-Nerode equivalence ≡L,W has finite index.
3. There exists a right-invariant equivalence relation ∼ on W of finite index such that L is

the union of some ∼-classes.
4. L is recognized by a W-GDFA.
Moreover, if one of the above statements is true (and so all the above statements are true),
then there exists a unique minimal W-GDFA recognizing L (that is, two W-GDFAs having
the minimum number of states among all W-GDFAs that recognize L must be isomorphic).

STACS 2024



26:4 A Myhill-Nerode Theorem for Generalized Automata, with Applications

In particular, we will show that there is no loss of generality in assuming that W ⊆ Σ∗

is a locally bounded set such that L ∪ {ϵ} ⊆ W ⊆ Pref(L), because these are necessary
conditions for the existence of a W-GNFA. We conclude that our Myhill-Nerode theorem for
GNFAs provides the first structural result for the model of generalized automata.

In the second part of the paper, we show that the set W(A) sheds new light on the String
Matching in Labeled Graphs (SMLG) problem. The SMLG problem has a fascinating history
that dates back to more than 30 years ago. Loosely speaking, the SMLG problem can be
defined as follows: given a directed graph whose nodes are labeled with nonempty strings
and given a pattern string, decide whether the pattern can be read by following a path on
the graph and concatenating the node labels. The SMLG problem is a natural generalization
of the classical pattern matching problem on texts (which requires determining whether a
pattern occurs in a text) because texts can be seen as graphs consisting of a single path.
The pattern matching problem on text can be efficiently solved in O(n+m) time (n being
the length of the text, m being the length of the pattern) by using the Knuth-Morris-Pratt
algorithm [34]. The SMLG problem is more challenging, and the complexity can be affected
by the specific variant of the pattern matching problem under consideration or the class
of graphs to which the problem is restricted. For example, in the (approximate) variant
where one allows errors in the graph the problem becomes NP-hard [5], so generally errors
are only allowed in the pattern. The SMLG problem was studied extensively during the
nineties [35, 1, 39, 5, 41, 37]; Amir et al. showed how to solve the (exact) SMLG problem on
arbitrary graphs in O(e+me) time [5], where e is the number of edges in the graph, m is the
length of the pattern, and e is the total length of all labels in the graph. Recently, the SMLG
problem has been back in the spotlight. Equi et al. [21, 19, 20] showed that, on arbitrary
graphs, for every ϵ > 0 the SMLG cannot be solved in O(me1−ϵ) or O(m1−ϵe) time, unless
the Orthogonal Vectors hypothesis fails. In applications (especially in bioinformatics) we
often need faster algorithms, so the SMLG problem has been restricted to class of graphs on
which it can be solved more efficiently. For example, Elastic Founder graphs can be used to
represent multiple sequence alignments (MSA), a central model of biological evolution, and
on Elastic Founder graphs the SMLG problem can be solved in linear time under a number
of assumptions which only have a limited impact on the generality of the model [23, 22, 42].

The pattern matching problem on texts has been revolutionized by the invention of the
Burrows-Wheeler Transform [10] and the FM-index [24, 25], which allow solving pattern
matching queries efficiently on compressed text, thus establishing a new paradigm in bioin-
formatics (where the huge increase of genomic data requires the development of space-efficient
algorithms) [43]. Recently, these ideas were extended to NFAs. In particular, Wheeler NFAs
are a popular class of automata on which the SMLG problem can be solved in linear time,
while only storing a compact representation of the Wheeler NFA [26, 3]. A special case
of Wheeler NFAs are de Bruijn graphs [9], which are used to perform Eulerian sequence
assembly [32, 40, 7]. Wheeler NFAs are also of relevant theoretical interest: for example, the
powerset construction applied to a Wheeler NFA leads to a linear blow-up in the number of
states of the equivalent DFA, and the equivalent DFA is Wheeler [4]; on arbitrary NFAs, the
blow-up can be exponential.

The missing step is to determine whether it is possible to generalize the Burrows-Wheeler
Transform and the FM-index to GNFAs, so that the resulting data structures can also be
applied to Elastic Founder graphs and other classes of graphs where labels can be arbitrary
strings. Indeed, in data compression it is common to consider edge-labeled graphs where one
compresses unary paths in the graph to save space and the path is replaced by a single edge
labeled with the concatenation of all labels. For example, some common data structures that
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are stored using this mechanism are Patricia trees, suffix trees and pangenomes [38, 6, 36].
In the following, we only consider GNFAs without ϵ-transitions (that is, GNFAs where no
edge is labeled with the empty string ϵ) because in general a GNFA may contain arbitrarily
long paths consisting of adjacent ϵ-transitions, so the SMLG problem becomes more difficult
and our mechanism, based on the FM-index, fails. We say that a GNFA is an r-GNFA if
all edge labels have length at most r (so a GNFA is a conventional NFA if an only if it is a
1-GNFA). Let m, e and e as above, let n be the number of states, and let σ = |Σ|. In Section
4, we will extend the notion of Wheelerness to GNFAs. The key ingredient will be the same
set W(A) that we use in our Myhill-Nerode theorem: we will consider a partial order ⪯A
which sorts the set of all states with respect to the co-lexicographica order of the strings in
W(A) (See Definition 21). We will then prove the following result.

▶ Theorem 3 (FM-index of generalized automata). Let A be a Wheeler r-GNFA. Then, we
can encode A by using e log σ(1 + o(1)) + O(e + rn) bits so that later on, given a pattern
α ∈ Σ∗ of length m, we can solve the SMLG problem on A in O(rm(log r + log log σ)) time.
Within the same time bound we can also decide whether α ∈ L(A).

If r = 1 (that is, if A is a conventional Wheeler NFA), we conclude that we can encode A
by using e log σ(1 + o(1)) +O(e) bits (we assume that every state is reachable from the initial
state, thus e ≥ n− 1) so that we can solve the SMLG problem in O(m log log σ) time, that
is, we retrieve the time and space bound which were already known for Wheeler automata
[26, 15]. If r = O(1), we can still solve pattern matching queries in linear time (for constant
alphabets), thus breaking the lower bound by Equi et al., while only storing a compact
representation of A.

Due to space constraints, some proofs and some auxiliary results can be found in the full
version [14].

2 Preliminary Definitions

Let Σ be a finite alphabet. We denote by Σ∗ the set of all finite strings on Σ. We denote by
ϵ the empty string, and Σ+ = Σ∗ \ {ϵ} is the set of all nonempty finite strings on Σ. For
i ≥ 0, let Σi ⊆ Σ∗ be the set of all strings of length i (we will often interpret Σi as a new
alphabet). If L ⊆ Σ∗, let Pref(L) be the set of all prefixes of some string in L. Note that if
L ̸= ∅, then ϵ ∈ Pref(L). We say that L ⊆ Σ∗ is prefix-free if no string in L is a strict prefix
of another string in L. Note that if L is prefix-free and ϵ ∈ L, then L = {ϵ}. If L ⊆ Σ∗, the
prefix-free kernel of L is the set K(L) of all strings in L whose strict prefixes are all not in L.
Note that K(L) is always prefix-free, and L is prefix-free if and only if L = K(L).

Let us recall the definition of generalized deterministic finite automaton (GDFA) [27, 28].

▶ Definition 4. A generalized non-deterministic finite automaton (GNFA) is a 4-tuple
A = (Q,E, s, F ), where Q is a finite set of states, E ⊆ Q × Q × Σ∗ is a finite set of
string-labeled edges, s ∈ Q is the initial state and F ⊆ Q is a set of final states. Moreover,
we assume that each u ∈ Q is reachable from the initial state and is co-reachable, that is, it
is either final or allows reaching a final state.

A generalized deterministic finite automaton (GDFA) is a GNFA such that for every
u ∈ Q no edge leaving u is labeled with ϵ, distinct edges leaving u have distinct labels, and
the set of all strings labeling some edge leaving u is prefix-free.

The assumption that every state is reachable and co-reachable is standard in automata
theory because all states that do not satisfy this requirement can be removed without
changing the recognized language. A conventional NFA (DFA, respectively) is a GNFA
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(GDFA, respectively) where all edges are labeled with characters from Σ. Note that we
explicitly require a GNFA to have finitely many edges (in conventional NFAs, the finiteness of
the number of states automatically implies the finiteness of the number of edges, the alphabet
being finite). If we allowed a GNFA to have infinitely many edges, then any nonempty
(possibly non-regular) language would be recognized by a GNFA with two states, where
the first state is initial, the second state is final, all edges go from the first state to the
second state, and a string labels an edge if and only if it is in the language. By requiring a
GNFA to have finitely many edges, the class of recognized languages is exactly the class of
regular languages, because it is easy to transform a GNFA into a NFA with ϵ-transitions
that recognizes the same language by proceeding as follows: for every edge (u′, u, ρ) ∈ E,
with ρ = r1, . . . , r|ρ| ∈ Σ+, where r1, . . . , r|ρ| ∈ Σ and |ρ| ≥ 2, we delete the edge (u′, u, ρ),
we add |ρ| − 1 new states z1, . . . , z|ρ|−1 and then we add the edges (u′, z1, r1), (z1, z2, r2), . . . ,
(z|ρ|−1, u, r|ρ|) (none of the new states is made initial or final).

Let us introduce some notation that will be helpful in the paper.

▶ Definition 5. Let A = (Q,E, s, F ) be a GNFA.
1. For every α ∈ Σ∗, let Iα be the set of all states that can be reached from the initial

state by following edges whose labels, when concatenated, yield α. In other words, for
some t ≥ 0 there exist edges (s, u1, α1), (u1, u2, α2), (u2, u3, α3), . . . , (ut−1, ut, αt) such
that α = α1α2α3 . . . αt.

2. Let L(A) be the language recognized by A, that is, L(A) = {α ∈ Σ∗ | Iα ∩ F ̸= ∅}.
3. For every u ∈ Q, let Iu be the set of all strings that can be read from the initial state to u

by concatenating edge labels, that is, Iu = {α ∈ Σ∗ | u ∈ Iα}. Note that for every u ∈ Q

we have ∅ ⫋ Iu ⊆ Pref(L(A)) because every state is reachable and co-reachable.
When A is not clear from the context, we write IA

α and IA
u .

Lastly, following the introduction of the paper, we can naturally define the SMLG problem
for GNFAs.

▶ Definition 6. Let A be a GNFA. The String Matching in Labeled Graphs (SMLG) problem
for GNFAs is defined as follows: build a data structure that encodes A such that, given a
string α, we can efficiently compute the set of all states reached by a path suffixed by α.

3 The Myhill-Nerode Theorem for Generalized Automata

The Myhill-Nerode theorem for conventional automata (Theorem 1) provides some algebraic
properties that Pref(L) must satisfy for L ⊆ Σ∗ to be a regular language. Intuitively, the
reason why Pref(L) captures the regularity of a regular language (that is, the link between
the algebraic characterization and the automata characterization of regular languages) is that,
given an NFA A = (Q,E, s, F ) that recognizes L, we have

⋃
u∈Q Iu = Pref(L) because if

α ∈ Pref(L), one can read α on A starting from the initial state. However, if more generally
A = (Q,E, s, F ) is a GNFA that recognizes L, then we only have

⋃
u∈Q Iu ⊆ Pref(L), because

if α ∈ Pref(L), then one can read α on A starting from the initial state, but it may happen
that we have read only a strict prefix of the label of the last edge, if the label is a string of
length at least two.

Let us give the following definition.

▶ Definition 7. Let A = (Q,E, s, F ) be a GNFA. Define:

W(A) =
⋃

u∈Q

Iu.

We say that A is a W(A)-GNFA.
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Note that for every α ∈ Σ∗ we have Iα ̸= ∅ if and only if α ∈ W(A). Moreover,
L(A)∪{ϵ} ⊆ W(A) ⊆ Pref(L(A)), because (i) if α ∈ L(A), then Iα ∩F ̸= ∅ and in particular
α ∈ W(A), (ii) ϵ ∈ Is, (iii) Iu ⊆ Pref(L(A)) for every u ∈ Q. Let us prove an additional
property of W(A). Pick α ∈ W(A), and consider the set Tα = {ρ ∈ Σ+ | αρ ∈ W(A)}.
Consider the prefix-free kernel K(Tα). If ρ ∈ K(Tα), then Iαρ ̸= ∅, but for every ρ′ ∈ Σ+

being a strict nonempty prefix of ρ we have Iαρ′ = ∅. This implies that |ρ| ≤ r, where r is
the maximum of the lengths of edge labels. We conclude that K(Tα) must be finite, because
Σ is finite. This leads to the following definition.

▶ Definition 8.
1. Let W ⊆ Σ∗. We say that W is locally bounded if for every α ∈ W we have that K(Tα)

is finite, where Tα = {ρ ∈ Σ+ | αρ ∈ W}.
2. Let A = (Q,E, s, F ) be a GNFA, and let W ⊆ Σ∗ be a locally bounded set such that

L(A) ∪ {ϵ} ⊆ W ⊆ Pref(L(A)). We say that A is a W-GNFA if W(A) = W.

▶ Remark 9. Let A = (Q,E, s, F ) be a GDFA. Let α ∈ W(A). If α = ϵ, then Iϵ = {s}
because no edge is labeled with ϵ. If |α| > 1, then there exist a prefix α1 ∈ Σ∗ of α and
u1 ∈ Q such that (s, u1, α1) ∈ E, and since A is a GDFA, we have α1 ∈ Σ+, and both α1
and u1 are unique. In particular, α1 ∈ W(A). If α1 is a strict prefix of α, we can repeat the
argument starting from u1. We conclude that for every α ∈ W(A) we have |Iα| = 1. As a
consequence, if u, v ∈ Q are distinct, then Iu ∩ Iv = ∅. In the following, if A is a GDFA and
α ∈ W(A), we will identify Iα and the state being its unique element.

Moreover, our argument shows that, if A is a GDFA, then for every α ∈ W(A) such that
|α| > 0, the longest strict prefix of α in W(A) is the unique strict prefix α′ of α in W(A) such
that, letting ρ ∈ Σ+ be the string for which α = α′ρ, we have (Iα′ , Iα, ρ) ∈ E. This implies
that if A is a GDFA and α ∈ W(A), then K(Tα) = {ρ ∈ Σ+ | αρ ∈ W(A), (Iα, Iαρ, ρ) ∈ E}.

In the classical Myhill-Nerode we consider equivalence relations defined on Pref(L). In
our setting, we will need to define equivalence relations on subsets of Pref(L). This leads to
the following general definition.

▶ Definition 10. Let W ⊆ Σ∗ and let ∼ be an equivalence relation on W. We say that ∼ is
right-invariant if:

(∀α, β ∈ W)(∀ϕ ∈ Σ∗)(α ∼ β → ((αϕ ∈ W ⇐⇒ βϕ ∈ W) ∧ (αϕ ∈ W =⇒ αϕ ∼ βϕ)).

▶ Remark 11. Notice that the property defining a right-invariant equivalence relation is
trivially true if ϕ is the empty string, so it can be rephrased as follows:

(∀α, β ∈ W)(∀ϕ ∈ Σ+)(α ∼ β → ((ϕ ∈ Tα ⇐⇒ ϕ ∈ Tβ) ∧ (ϕ ∈ Tα =⇒ αϕ ∼ βϕ)).

Let us prove that ∼ is right-invariant if and only if:

(∀α, β ∈ W)(∀ϕ ∈ Σ+)(α ∼ β → ((ϕ ∈ K(Tα) ⇐⇒ ϕ ∈ K(Tβ))∧(ϕ ∈ K(Tα) =⇒ αϕ ∼ βϕ)).

(⇒) Let α, β ∈ W such that α ∼ β, and let ϕ ∈ K(Tα). We must prove that ϕ ∈ K(Tβ)
and αϕ ∼ βϕ. Since ϕ ∈ K(Tα) ⊆ Tα, we immediately obtain ϕ ∈ Tβ and αϕ ∼ βϕ, so we
only have to prove that ϕ ∈ K(Tβ). Since for every ϕ′ ∈ Σ+ we have ϕ′ ∈ Tα if and only
if ϕ′ ∈ Tβ , then Tα = Tβ , and so K(Tα) = K(Tβ). As a consequence, from ϕ ∈ K(Tα) we
conclude ϕ ∈ K(Tβ).

(⇐) Let α, β ∈ W such that α ∼ β, and let ϕ ∈ Tα. We must prove that ϕ ∈ Tβ and
αϕ ∼ βϕ. Let ϕ1, . . . , ϕs be all prefixes of ϕ such that αϕi ∈ W for every 1 ≤ i ≤ s, where
ϕi is a strict prefix of ϕi+1 for every 1 ≤ i ≤ s− 1. Note that s ≥ 2, ϕ1 = ϵ and ϕs = ϕ. For
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every 1 ≤ i ≤ s− 1, let ψi ∈ Σ+ be such that ϕi+1 = ϕiψi. Notice that by definition we have
ψi ∈ K(Tαϕi

) for every 1 ≤ i ≤ s − 1. Since α, β ∈ W, α ∼ β and ψ1 ∈ K(Tαϕ1) = K(Tα),
we obtain ψ1 ∈ K(Tβ) and αϕ2 = αψ1 ∼ βψ1 = βϕ2. Since αϕ2, βϕ2 ∈ W, αϕ2 ∼ βϕ2 and
ψ2 ∈ K(Tαϕ2), we obtain ψ2 ∈ K(Tβϕ2) and αϕ3 = αϕ2ψ2 ∼ βϕ2ψ2 = βϕ3. By continuing
like that, we conclude that ϕ ∈ Tβ and αϕ = αϕs ∼ βϕs = βϕ.

In general, an equivalence relation is not right-invariant. Let us show how to define a
canonical right-invariant equivalence relation starting from any equivalence relation.

▶ Lemma 12. Let W ⊆ Σ∗ and let ∼ be an equivalence relation on W. For every α, β ∈ W,
let:

α ∼r β ⇐⇒ (∀ϕ ∈ Σ∗)((αϕ ∈ W ⇐⇒ βϕ ∈ W) ∧ (αϕ ∈ W =⇒ αϕ ∼ βϕ)).

Then ∼r is an equivalence relation on W, it is right-invariant and it is the coarsest right-
invariant equivalence relation on W refining ∼. We say that ∼r is the right-invariant
refinement of ∼.

The Myhill-Nerode equivalence plays a major role in the classical Myhill-Nerode theorem.
Let us show how we can extend it when W is not necessarily equal to Pref(L).

▶ Definition 13. Let L,W ⊆ Σ∗. The Myhill-Nerode equivalence on L and W is the
equivalence relation ≡L,W on W defined as the right-invariant refinement of ∼L,W , where
∼L,W is the equivalence relation on W such that for every α, β ∈ W:

α ∼L,W β ⇐⇒ (α ∈ L ⇐⇒ β ∈ L).

If W = Pref(L), then we retrieve the classical Myhill-Nerode equivalence relation for L.
Let us describe some elementary properties of ≡L,W .

▶ Lemma 14. Let L,W ⊆ Σ∗. Then ≡L,W is right-invariant and L is the union of some
≡L,W -classes.

Proof. First, ≡L,W is right-invariant because it is a right-invariant refinement by definition.
Moreover, L is the union of some ∼L,W -classes, and so also of some ≡L,W -classes because
≡L,W refines ∼L,W . ◀

Let A be a conventional NFA, and define the equivalence relation ∼A on Pref(L(A)) as
follows: for every α, β ∈ Pref(L(A)), let α ∼A β if and only if Iα = Iβ . This equivalence
relation is an intermediate tool in the Myhill-Nerode theorem for conventional automata, and
it can be also defined for a generalized automata A by considering the equivalence relation
∼A on W(A) such that for every α, β ∈ W(A) we have α ∼A β if and only if Iα = Iβ . If
A is an NFA (or an NFA with ϵ-transitions), then ∼A is right-invariant, because for every
α ∈ Pref(L(A)) and for every prefix α′ of α, any path from the initial state to a node in Iα

must go through a node in Iα′ . However, in general this property is not true if A is a GNFA,
so ∼A need not be right-invariant if A is a GNFA (see Figure 3). Since right-invariance is
crucial in the Myhill-Nerode theorem, we will consider the right-invariant refinement of ∼A.

▶ Definition 15. Let A = (Q,E, s, F ) be a GNFA. Let ≡A be the right-invariant refinement
of ∼A, where ∼A is the equivalence relation on W(A) such that for every α, β ∈ W(A):

α ∼A β ⇐⇒ Iα = Iβ .
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1start

2

3

4

a, b
c

ac

Figure 3 A GNFA A such that ∼A is not right-invariant. Indeed, a, b, ac, bc ∈ W(A) and a ∼A b,
but ac ̸∼A bc.

▶ Remark 16. Let us prove that if A is GDFA, then ∼A is right-invariant. Let α, β ∈ W
be such that Iα = Iβ , and let ϕ ∈ K(Tα). By Remark 11, we only have to prove that
ϕ ∈ K(Tβ) and Iαϕ = Iβϕ. By Remark 9, we have αϕ ∈ W(A) and (Iα, Iαϕ, ϕ) ∈ E. Hence
(Iβ , Iαϕ, ϕ) ∈ E, we obtain Iαϕ = Iβϕ and again by Remark 9, we conclude ϕ ∈ K(Tβ). Notice
that, in fact, the generalized automaton A in Figure 3 is not a GDFA.

Since ≡A is the right-invariant refinement of ∼A, we conclude that, if A is a GDFA, then
≡A and ∼A are the same equivalence relation.

Let us study the properties of ≡A.

▶ Lemma 17. Let A = (Q,E, s, F ) be a GNFA. Then, ≡A is right-invariant, it refines
≡L(A),W(A), it has finite index and L(A) is the union of some ≡A-classes.

The following lemma is crucial to derive our Myhill-Nerode theorem for generalized
automata.

▶ Lemma 18. Let L ⊆ Σ∗ and let W ⊆ Σ∗ be a locally bounded set such that L ∪ {ϵ} ⊆ W ⊆
Pref(L). Assume that L is the union of some classes of a right-invariant equivalence relation
∼ on W of finite index. Then, L is recognized by a W-GDFA A∼ = (Q∼, E∼, s∼, F∼) such
that:
1. |Q∼| is equal to the index of ∼.
2. ≡A∼ and ∼ are the same equivalence relation.
Moreover, if B is a W-GDFA that recognizes L, then A≡B is isomorphic to B.

Proof (Sketch). The desired W-GDFA A∼ = (Q∼, E∼, s∼, F∼) is defined as follows.
Q∼ = {[α]∼ | α ∈ W}.
s∼ = [ϵ]∼.
E∼ = {([α]∼, [αρ]∼, ρ) | α ∈ W , ρ ∈ K(Tα)}.
F∼ = {[α]∼ | α ∈ L}. ◀

▶ Remark 19. In the statement of Lemma 18 we cannot remove the assumption that W
is locally bounded, because we have shown that if A is a GNFA, then W(A) is locally
bounded. However, if W is not locally bounded, then A∼ is still a well-defined automaton
with finitely many states, but it has infinitely many edges. For example, W = {ϵ} ∪ a∗b is
not locally bounded because Tϵ = a∗b and K(Tϵ) = a∗b is an infinite set. If L = a∗b, then
L ∪ {ϵ} ⊆ W ⊆ Pref(L). Moreover, ≡L,W has finite index (the equivalence classes are {ϵ}
and a∗b), and by Lemma 14 we know that ≡L,W is right-invariant and L is the union of
some ≡L,W -classes. We conclude that A≡L,W is well-defined, but it has infinitely many edges
(see Figure 4).
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1start 2
b, ab, aab, aaab, . . .

Figure 4 An example where W is not locally bounded.

We can now state our Myhill-Nerode theorem for generalized automata.

▶ Theorem 20 (Myhill-Nerode theorem for generalized automata). Let L ⊆ Σ∗ and let W ⊆ Σ∗

be a locally bounded set such that L ∪ {ϵ} ⊆ W ⊆ Pref(L). The following are equivalent:
1. L is recognized by a W-GNFA.
2. The Myhill-Nerode equivalence ≡L,W has finite index.
3. There exists a right-invariant equivalence relation ∼ on W of finite index such that L is

the union of some ∼-classes.
4. L is recognized by a W-GDFA.
Moreover, if one of the above statements is true (and so all the above statements are true),
then there exists a unique minimal W-GDFA recognizing L (that is, two W-GDFAs having
the minimum number of states among all W-GDFAs that recognize L must be isomorphic).

Proof.
(1) → (2) Let A be a W-GDFA recognizing L. By Lemma 17 we have that ≡A has finite

index and it refines ≡L,W , so also ≡L,W has finite index.
(2) → (3) By Lemma 14 the desired equivalence relation is ≡L,W .
(3) → (4) It follows from Lemma 18.
(4) → (1) Every W-GDFA is a W-GNFA.

Now, let us prove that the minimum automaton is A≡L,W as defined in Lemma 18.
First, A≡L,W is well-defined because ≡L,W is right-invariant and L is the union of some
≡L,W -classes by Lemma 14, and ≡L,W has finite index by one of the statements that we
assume to be true. Now, by Lemma 18 the number of states of A≡L,W is equal to the index
of ≡L,W , or equivalently, of ≡A≡L,W

. On the other hand, let B be any W-GDFA recognizing
L non-isomorphic to A≡L,W . Then ≡B is a refinement of ≡L,W by Lemma 17, and it must
be a strict refinement of ≡L,W , otherwise A≡L,W would be equal to A≡B , which by Lemma
18 is isomorphic to B, a contradiction. We conclude that the index of ≡L,W is smaller than
the index of ≡B, so again by Lemma 18 the number of states of A≡L,W is smaller than the
number of states of A≡B and so of B. ◀

Myhill-Nerode theorem for conventional automata (Theorem 1) is a special case of
Theorem 20, because if A is an NFA, then W(A) = Pref(L(A)). Moreover, Theorem 20
is consistent with the example in Figure 2, because, calling A1 and A2 the two GDFAs in
Figure 2, we have shown that W(A1) ̸= W(A2).

4 The FM-index of Generalized Automata

In this section, we prove Theorem 3. In order to present the main ideas, it will suffice to
consider GDFAs. The more general case of GNFAs without ϵ-transitions requires minor
technical modifications and is considered in the extended version [14].

Let V be a set. We say that a (binary) relation ≤ on V is a partial order if ≤ is reflexive,
antisymmetric and transitive. A partial order ≤ is a total order if for every u, v ∈ V we have
(u ≤ v) ∨ (v ≤ u). We say that U ⊆ V is ≤-convex if for every u, v, z ∈ V , if u ≤ v ≤ z and
u, z ∈ U , then v ∈ U . For every u, v ∈ V , we write u < v if (u ≤ v) ∧ (u ̸= v).
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Let us define Wheeler GDFAs. As customary in the literature on Wheeler automata
[3, 17], we assume that there exists a fixed total order ⪯ on Σ (in our examples, we always
assume a ≺ b ≺ c ≺ . . . ), and ⪯ is extended co-lexicographically to Σ∗ (that is, for every
α, β ∈ Σ∗ we have α ≺ β if the reverse string αR is lexicographically smaller than the reverse
string βR). Let A = (Q,E, s, F ) be a GDFA. Let ⪯A be the reflexive relation on Q such
that, for every u, v ∈ Q with u ̸= v, we have u ≺A v if and only if (∀α ∈ Iu)(∀β ∈ Iv)(α ≺ β).
Since each Iu is nonempty, it is immediate to realize that ⪯A is a partial order, but in
general it is not a total order. We can then give the following definition (see Figure 5 for an
example).

▶ Definition 21. Let A = (Q,E, s, F ) be a GDFA. We say that A is Wheeler if ⪯A is a
total order.

u1start

u2

u3

ab, b

ac, c

b

bc

OUT1 = 001011
OUT2 = 001101
IN1 = 100101
IN2 = 101001
LAB1 = (b)(c)(b)
LAB2 = (ab)(ac)(bc)
FIN = 011

Figure 5 Left: A Wheeler GDFA A. States are numbered following the total order ⪯A. Right:
The Burrows-Wheeler Transform (BWT) of A (see Definition 29).

If A is a conventional DFA, it is not immediately clear that Definition 21 is equivalent to
the local definition of Wheeler DFA commonly used in the literature [3, 11, 16]. According
to the local definition, a DFA A = (Q,E, s, F ) is Wheeler if there exists a total order ≤ on
Q such that (i) s comes first in the total order, (ii) for every (u′, u, a), (v′, v, b) ∈ E, if u < v,
then a ⪯ b and (iii) for every (u′, u, a), (v′, v, a) ∈ E, if u < v, then u′ < v′. Alanko et al. [3,
Corollary 3.1] proved that, if such a total order ≤ exists, then it is unique and it is equal to
⪯A, so we only have to prove that if ⪯A is a total order, then it satisfies properties (i), (ii),
(iii). This follows from the following lemma.

▶ Lemma 22. Let A = (Q,E, s, F ) be a Wheeler GDFA. Then:
1. s comes first in the total order ⪯A.
2. For every (u′, u, ρ), (v′, v, ρ′) ∈ E, if u ≺A v and ρ′ is not a strict suffix of ρ, then ρ ⪯ ρ′.
3. For every (u′, u, ρ), (v′, v, ρ) ∈ E, if u ≺A v, then u′ ≺A v′.

In case 2 of Lemma 22 we cannot remove the assumption that ρ′ is not a strict prefix
of ρ; as a consequence, we cannot use Lemma 22 to provide an equivalent, local definition
of Wheeler GDFA (see Figure 6). The local definition of Wheeler DFA easily implies that
the problem of deciding whether a given DFA is Wheeler can be solved in polynomial time
[3], but since we do not have a local definition of Wheeler GDFA, it is not clear whether
the corresponding problem on GDFAs is also solvable in polynomial time (and we saw in
the introduction that computational problems on generalized automata are usually hard).
However, we can prove that the problem is still tractable by reducing it to computing the
partial order ⪯A∗ on a conventional DFA A∗ equivalent to a given GDFA A.

▶ Lemma 23. Let A = (Q,E, s, F ) be a GDFA, and let e be the total length of all edge labels.
In O(e log e) time we can decide whether A is Wheeler and, if so, we can compute ⪯A.
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u1start

u2

u3

u4

ba

c a

u1start

u2

u3

ac, b

c

Figure 6 Left: A Wheeler GDFA A = (Q, E, s, F ). States are numbered following the total order
⪯A. Note that (u1, u2, ba), (u4, u3, a) ∈ E, u2 ≺A u3, a is a strict suffix of ba and a ≺ ba. Right:
A GDFA A = (Q, E, s, F ) such that states are numbered following a total order ≤ such that (i) s

comes first in the total order ≤, (ii) for every (u′, u, ρ), (v′, v, ρ′) ∈ E, if u < v and ρ′ is not a strict
suffix of ρ, then ρ ⪯ ρ′ and (iii) for every (u′, u, ρ), (v′, v, ρ) ∈ E, if u < v, then u′ < v′. Note that A
is not Wheeler because u2 and u3 are not ⪯A-comparable, since b ≺ c ≺ ac, c ∈ Iu3 and b, ac ∈ Iu2 .

u1start

u2

u3

ab, b

ac, c

b

bc

u1start

u2

u3

a

b

c

c

b b

b

c

Figure 7 Left: The GDFA A in Figure 5. Right: The DFA A∗ built starting from A in the proof
of Lemma 23.

Proof. Let us build a DFA A∗ starting from A (see Figure 7 for an example). In general, if
C ⊆ Σ+, we can build a trie such that the set of all strings that can be read following a path
starting from the root is equal to the set of all strings prefixing at least one element in C. If
C is prefix-free, then a string is in C if and only if it can be read from the root to a leaf; we
say that such a leaf spells the considered string. For every u ∈ Q, let Cu be the prefix-free
set of all strings labeling some edge leaving u. We build an automaton A∗ = (Q∗, E∗, s∗, F ∗)
by picking A, removing all edges, and building a trie for every nonempty Cu is such a way
that (a) the root of the trie is u, (b) the leaf that spells ρ is the unique v ∈ Q such that
(u, v, ρ) ∈ E and (c) every internal state of the trie is a new state. Notice that Q ⊆ Q∗;
we define s∗ = s and F ∗ = F . By construction, A∗ is a DFA, and for every u ∈ Q we
have IA

u = IA∗

u (so L(A∗) = L(A)). As a consequence, A is Wheeler if and only if the
restriction of the partial order ⪯A∗ to Q is a total order. Since A∗ is a conventional DFA,
we can compute the partial order ⪯A∗ in polynomial time [17, 33, 13, 8]. For example, the
algorithm in [8] runs in O(|E∗| log |Q∗|) time, and the claimed time bound follows because
|Q∗| − 1 ≤ |E∗| = e. ◀

The remaining of the section is devoted to proving that the SMLG problem can be
solved efficiently on Wheeler GDFAs. If A = (Q,E, s, F ) is a Wheeler GDFA, we write
Q = {Q[1], Q[2], . . . , Q[n]}, where Q[1] ≺A Q[2] ≺A · · · ≺A Q[n]; if 1 ≤ i ≤ j ≤ n, let
Q[i, j] = {Q[i], Q[i+ 1], . . . , Q[j − 1], Q[j]}. If α, β ∈ Σ∗, we write α ⊣ β if and only if α is a
suffix of β.

▶ Definition 24. Let A = (Q,E, s, F ) be a Wheeler GDFA, and let α ∈ Σ∗. Define:
G≺(α) = {u ∈ Q | (∀β ∈ Iu)(β ≺ α)};
G⊣(α) = {u ∈ Q | (∃β ∈ Iu)(α ⊣ β)};
G≺

⊣ (α) = G≺(α) ∪G⊣(α) = {u ∈ Q | (∀β ∈ Iu)(β ≺ α) ∨ (∃β ∈ Iu)(α ⊣ β)}.



N. Cotumaccio 26:13

Intuitively, the set G⊣(α) is the set of states that the SMLG problem must return on
input α, and G≺(α) is the set of all states reached only by strings smaller than α. The
following lemma shows that, as in the case of conventional Wheeler automata, both G≺(α)
and G⊣(α) are intervals with respect to the total order ⪯A, and there is no state between
G≺(α) and G⊣(α).

▶ Lemma 25. Let A = (Q,E, s, F ) be a Wheeler GDFA, and let α ∈ Σ∗. Then:
1. G≺(α) ∩G⊣(α) = ∅.
2. G⊣(α) is ⪯A-convex.
3. If u, v ∈ Q are such that u ≺A v and v ∈ G≺(α), then u ∈ G≺(α). In other words,

G≺(α) = Q[1, |G≺(α)|].
4. If u, v ∈ Q are such that u ≺A v and v ∈ G≺

⊣ (α), then u ∈ G≺
⊣ (α). In other words,

G≺
⊣ (α) = Q[1, |G≺

⊣ (α)|].

In order to compute G⊣(α), it will suffice to compute G≺(α) and G≺
⊣ (α). Let us show how

to compute G≺(α) and G≺
⊣ (α); to this end, we will constantly use property 3 in Lemma 22,

which is also crucial for conventional Wheeler automata (it is a generalization of the LF
mapping in the FM-index [25]). First, let G∗(α) be the set of all states reached by an edge
labeled with a string suffixed by α. Formally:

G∗(α) = {v ∈ Q | (∃v′ ∈ Q)(∃ρ ∈ Σ∗)((v′, v, ρ) ∈ E ∧ (α ⊣ ρ))}.

Clearly, G∗(α) ⊆ G⊣(α). Now, let us give the following definition.

▶ Definition 26. Let A = (Q,E, s, F ) be a Wheeler GDFA. Let U ⊆ Q and ρ ∈ Σ+. We
denote by out(U, ρ) the number of edges labeled with ρ that leave states in U , and we denote
by in(U, ρ) the number of edges labeled with ρ that enter states in U .

If α ∈ Σ∗ and 0 ≤ k ≤ |α|, let p(α, k) and s(α, k) be the prefix and the suffix of α of length
k, respectively. If A = (Q,E, s, F ) is a GDFA and u ∈ Q, let λ(u) be the set of all strings in
Σ+ labeling an edge reaching u; we denote by minλ(u) and maxλ(u) the (co-lexicographically)
smallest and largest strings in λ(u), respectively.

The next lemma formalizes the following intuition: to compute G≺(α), we have to consider
all states whose incoming edges have a label smaller than α; moreover, if the label is s(α, k)
(for some k), then the start state must be in G≺(p(α, |α| − k)).

▶ Lemma 27. Let A = (Q,E, s, F ) be a Wheeler GDFA, and let α ∈ Σ∗. For 0 < k < |α|, let
fk = out(Q[1, |G≺(p(α, |α| − k))|], s(α, k)). Then, |G≺(α)| is the largest integer 0 ≤ j ≤ |Q|
such that (i) in(Q[1, j], s(α, k)) ≤ fk, for every 0 < k < |α|, and (ii) if j ≥ 1, then
maxλ(Q[j]) ≺ α.

The following crucial lemma shows that, in order to compute |G≺
⊣ (α)|, we only have to

consider |G≺(α)|, the biggest (w.r.t ⪯A) state in G∗(α) and the states in G≺
⊣ (α) \G∗(α).

▶ Lemma 28. Let A = (Q,E, s, F ) be a Wheeler GDFA, and let α ∈ Σ∗. For 0 < k < |α|,
let fk = out(Q[1, |G≺(p(α, |α|−k))|], s(α, k)) and gk = out(Q[1, |G≺

⊣ (p(α, |α|−k))|], s(α, k)).
Then, gk ≥ fk for every 0 < k < |α|. Moreover, |G≺

⊣ (α)| is equal to the maximum among:
1. |G≺(α)|;
2. the largest integer 0 ≤ i ≤ |Q| such that, if i ≥ 1, then Q[i] ∈ G∗(α);
3. the smallest integer 0 ≤ j ≤ |Q| such that, for every 0 < k < |α| such that gk > fk, we

have in(Q[1, j], s(α, k)) ≥ gk.
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We are now ready to generalize the Burrows-Wheeler Transform and the FM-index to
Wheeler GDFAs. Let A = (Q,E, s, F ) be a GDFA. We say that A is a r-GDFA if all edge
labels have length at most r. Fix 1 ≤ i ≤ r. Let E(i) = {(u′, u, ρ) ∈ E | ρ ∈ Σi} be
the number of edges labeled with a string of length i, and let Σ(i) = {ρ ∈ Σi | (∃u′, u ∈
Q)((u′, u, ρ) ∈ E(i)} be the set of all strings of length i labeling some edge. Let ei = |E(i)|
and σi = |Σ(i)|; we have σi ≤ min{σi, ei}. The i-outdegree (i-indegree, respectively) of a
state is equal to the number of edges in E(i) leaving (reaching, respectively) the state. The
sum of the i-outdegrees of all the states and the sum of the i-indegrees of all the states are
both equal to ei. Lastly,

∑r
i=1 ei = e and the total length of all edge labels is e =

∑r
i=1 eii.

Let us define the Burrows-Wheeler Transform of a Wheeler GDFA (see Figure 5 for an
example).

▶ Definition 29 (Burrows-Wheeler Transform of a Wheeler GDFA). Let A = (Q,E, s, F ) be a
Wheeler GDFA. The Burrows-Wheeler Transform BWT (A) of A consists of the following
strings.

1. For every 1 ≤ i ≤ r, the bit string OUTi ∈ {0, 1}ei+n that stores the i-outdegrees in unary.
More precisely, (i) OUTi contains exactly n characters equal to 1, (ii) OUTi contains exactly
ei characters equal to 0, and (iii) the number of zeros between the (ℓ− 1)-th character
equal to one (or the beginning of the sequence if ℓ = 1) and the ℓ-th character equal to 1
yields the i-outdegree of Q[ℓ].

2. For every 1 ≤ i ≤ r, the bit string INi ∈ {0, 1}ei+n that stores the i-indegrees in unary.
More precisely, (i) INi contains exactly n characters equal to 1, (ii) INi contains exactly
ei characters equal to 0, and (iii) the number of zeros between the (ℓ− 1)-th character
equal to one (or the beginning of the sequence if ℓ = 1) and the ℓ-th character equal to 1
yields the i-indegree of Q[ℓ].

3. For every 1 ≤ i ≤ r, the string LABi ∈ (Σi)ei that stores the edge labels of length i (with
their multiplicities). More precisely, we sort of all edges in E(i) by the index of the start
states (w.r.t to ⪯A). Edges with the same start state are sorted by label. Lastly, we
obtain LABi by concatenating the labels of all the edges following this edge order.

4. The bit string FIN ∈ {0, 1}n that marks the final states, that is, the i-th bit of FIN is
equal to 1 if and only if Q[i] ∈ F .

We can now prove that the BWT of a Wheeler GDFA A is a valid encoding of A, just
like the BWT of a string is a valid encoding of the string.

▶ Theorem 30. Let A = (Q,E, s, F ) be a Wheeler GDFA. If we only know BWT (A), then
we can retrieve A (up to isomorphism). In other words, BWT (A) is an encoding of A.

Proof. Consider states Q[1], . . . , Q[n]. By Lemma 22 we have s = Q[1], and by using FIN
we can retrieve the set of all final states F . We only have to show that we can retrieve E.
In other words, for every 1 ≤ i′, i ≤ n and for every ρ ∈ Σ+ we must determine whether
(Q[i′], Q[i], ρ) ∈ E. It will suffice to retrieve the set E(i) for every 1 ≤ i ≤ r, because E is
the (disjoint) union of the E(i)’s. From LABi we can retrieve the labels all edges in E(i),
with their multiplicities. From INi we can retrieve the i-indegree of each Q[ℓ]. By Lemma 22,
for every ρ ∈ Σi labeling some edge reaching some node Q[ℓ] and for every ρ′ ∈ Σi labeling
some edge reaching Q[ℓ+ 1] it must be ρ ⪯ ρ′. Since we know the labels of all edges in E(i)
with multiplicities and we know the i-indegrees, then we can retrieve the labels of all edges
entering each Q[ℓ], with multiplicities. From OUTi we can retrieve the i-outdegrees of each
Q[ℓ], and the order used in the definition of LABi implies that we can retrieve the labels of
all edges leaving each Q[ℓ]. Since we know the labels of all edges entering each Q[ℓ] and we
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know the labels of all edges leaving each Q[ℓ], then for every ρ ∈ Σi we know the set of all
states reached by an edge labeled ρ, with multiplicities, and the set of all states having an
outgoing edge labeled ρ. By Lemma 22, for every 1 ≤ j < k ≤ n, if Q[j] is reached by an
edge labeled ρ leaving the state Q[j′] and Q[k] is reached by an edge labeled ρ leaving the
state Q[k′], then it must be j′ < k′. As a consequence, we can retrieve the set E(i)ρ of all
edges labeled ρ for every ρ ∈ Σi, and so we can retrieve E(i), because E(i) is the (disjoint)
union of the E(i)ρ’s. ◀

We are ready to prove the main theorem of this section (the full proof is in the extended
version [14]). Recall that n is the number of vertices, e is the number of edges, and e is the
total length of all edge labels.

▶ Theorem 31 (FM-index of Wheeler GDFAs). Let A be a Wheeler r-GDFA. Then, we can
encode A by using e log σ(1 + o(1)) +O(e+ rn) bits so that later on, given a pattern α ∈ Σ∗

of length m, we can solve the SMLG problem on A in O(rm(log r + log log σ)) time. Within
the same time bound we can also decide whether α ∈ L(A).

Proof (Sketch). By Lemma 25, we only need to compute |G≺(α)| and |G≺
⊣ (α)|. In O(m)

steps, we recursively compute |G≺(p(α, k))| and |G⊣(p(α, k))| for every 0 ≤ k ≤ |α|. By
Lemma 27 and Lemma 28, we can reduce this problem to the problem of solving a number
of elementary queries, such as computing fk = out(Q[1, |G≺(p(α, |α| − k))|], s(α, k)) for
every 0 < k < |α|. But we only need to compute fk for 0 < k < r + 1, because otherwise
|s(α, k)| > r and all edge labels have length at most r. In general, we need to solve every
elementary query at most O(r) time. By augmenting the Burrows-Wheeler-Transform of A
with compact data structures for rank/select queries and succinct dictionaries, we can solve
every elementary query in O(log r + log log σ) time. ◀

5 Conclusions and Future Work

In this paper, we considered the model of generalized automata, and we introduced the set
W(A). We showed that W(A) plays the same role of Pref(L(A)) in conventional NFAs: the
set W(A) can be used to derive a Myhill-Nerode theorem, and it represents the starting
point for extending the FM-index to generalized automata.

Further lines of research include extending the Burrows-Wheeler Transform and the
FM-index to arbitrary GNFAs. Indeed, the Burrows-Wheeler Transform and the FM-index
were recently generalized from Wheeler NFAs to arbitrary NFAs by means of the so-called
co-lex orders [15, 17] and co-lex relations [12]. However, we remark that the efficient time
bounds for the SMLG problem that we derived in this paper cannot hold for arbitrary GNFAs
due to the (conditional) lower bounds by Equi et al. that we recalled in the introduction.

Giammaresi and Montalbano described an effective procedure for computing a minimal
GDFA equivalent to a given GDFA [28, 27], but we do not know if there exists an efficient
algorithm for minimizing a GDFA. The Myhill-Nerode theorem for generalized automata
implies that for every minimal GDFA A there exists a set W ⊆ Σ∗ such that A is isomorphic
to the minimal W-GDFA recognizing L(A). At the same time, given a W-GDFA recognizing
L, we may build the minimal W-GDFA recognizing L by extending Hopcroft’s algorithm
[30] to GDFAs. If we could prove that, for every admissible W ⊆ Σ∗, the number of states of
the minimal W-GDFA recognizing L is comparable to the number of states of a minimal
GDFA recognizing L, then we would obtain a fast algorithm that significantly reduces the
number of states of a GDFA without changing the recognized language.
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This paper leaves many questions of theoretical interest open. The class of Wheeler
languages is the class of all regular languages that are recognized by some Wheeler NFA [4].
Wheeler languages enjoy several properties: for example, they admit a characterization
in terms of convex equivalence relations [4]. In addition, every Wheeler language is also
recognized by some DFA, and, in particular, there exists a unique state-minimal DFA
recognizing a given Wheeler language [2]. The main limitation of Wheeler languages is that
they represent only a small subclass of regular languages: for example, a unary language
(that is, a language over an alphabet of size one) is Wheeler if and only if it is either finite or
co-finite [4]. The intuitive reason why most regular languages are not Wheeler is that the
definition of a Wheeler NFA A implies strong requirements on the set Pref(L(A)) (which lead
to the characterization in terms of convex equivalence relations). However, when we switch to
GNFAs, it is W(A) that plays the role of Pref(L(A)), and it may hold W(A) ⫋ Pref(L(A)),
thus now the same requirement only apply to a smaller subset. The natural question is
whether Wheeler GNFAs extend the class of Wheeler languages. The answer is affirmative:
there exists a regular L language such that L is not Wheeler (that is, no Wheeler NFA
recognizes L), but L is recognized by a Wheeler GDFA. Define L = {a2n | n ≥ 0}. Then, L
is not Wheeler [4], but L is recognized by the GDFA consisting of a single state, both initial
and final, with a self-loop labeled aa. As a consequence, the class of all languages recognized
by a Wheeler GNFA is strictly larger than the class of Wheeler languages. We can call the
languages in this new class generalized Wheeler languages: the next step is to understand
which properties of Wheeler languages are still true and how it is possible to characterize
this new class.
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Abstract
The matrix semigroup membership problem asks, given square matrices M, M1, . . . , Mk of the same
dimension, whether M lies in the semigroup generated by M1, . . . , Mk. It is classical that this
problem is undecidable in general, but decidable in case M1, . . . , Mk commute. In this paper we
consider the problem of whether, given M1, . . . , Mk, the semigroup generated by M1, . . . , Mk contains
a non-negative matrix. We show that in case M1, . . . , Mk commute, this problem is decidable subject
to Schanuel’s Conjecture. We show also that the problem is undecidable if the commutativity
assumption is dropped. A key lemma in our decidability proof is a procedure to determine, given a
matrix M , whether the sequence of matrices (Mn)∞

n=0 is ultimately nonnegative. This answers a
problem posed by S. Akshay [1]. The latter result is in stark contrast to the notorious fact that it is
not known how to determine, for any specific matrix index (i, j), whether the sequence (Mn)i,j is
ultimately nonnegative. Indeed the latter is equivalent to the Ultimate Positivity Problem for linear
recurrence sequences, a longstanding open problem.
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1 Introduction

The Membership Problem for finitely generated matrix semigroups asks, given square matrices
M,M1, . . . , Mk of the same dimension and with rational entries, whether M lies in the
semigroup generated by M1, . . . , Mk. The problem was shown to be undecidable by Markov
in the 1940s [15], thereby becoming one of the first instances of a natural undecidable
mathematical problem. The problem, however, becomes decidable under the assumption
that the matrices M1, . . . , Mk commute [2].

There are many variants of the Membership Problem. In the Mortality Problem one
asks whether the zero matrix lies in a finitely generated matrix semigroup. This problem
is undecidable already for 3 × 3 matrices [21]. Meanwhile, the Identity Problem asks to
determine whether the identity matrix lies in a given finitely generated matrix semigroup.
The latter problem is undecidable in general but decidable for certain nilpotent and low-order
matrix groups [3, 9, 10, 12].
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The present paper is concerned with the Non-negative Membership Problem, which asks
to determine whether a given finitely generated matrix semigroup contains a non-negative
matrix, i.e., a matrix all of whose entries are non-negative. We show that this problem
is undecidable in general but is decidable in the commutative case subject to Schanuel’s
Conjecture, a well-known unifying conjecture in transcendence theory. Our reliance on
Schanuel’s Conjecture arises because we reduce the commutative case of the Non-negative
Membership Problem to the decision problem for the first-order theory of real-closed fields
with exponential. As shown by Macintyre and Wilkie [14], the latter theory is decidable if
one assumes Schanuel’s Conjecture for the real exponential.

A key lemma in our main decidability result involves determining, for a given matrix M ,
whether for all but finitely many n ∈ N the matrix power Mn is non-negative. In such a case
we say that M is eventually non-negative. We give an effective characterisation of eventually
non-negative matrices, answering a question posed by S. Akshay [1]. The characterisation
is relatively straightforward and relies on classical results about rational sequences over
the semi-ring of non-negative rational numbers. We note that the problem of determining
whether, for some fixed index (i, j), the sequence of scalars ⟨(Mn)i,j : n ∈ N⟩ is ultimately
non-negative is equivalent to the Ultimate Positivity Problem for linear recurrence sequences,
decidability of which is a longstanding open problem [20].

It is immediate that a matrix semigroup contains a non-negative matrix if and only if
it contains an eventually non-negative matrix. Using a symbolic version of our criterion
characterizing eventually non-negative matrices, we reduce the Non-negative Membership
Problem to a version of integer programming with certain transcendental constants (namely
logarithms of algebraic numbers). In turn we reduce the solution of such integer programs to
the decision problem for the first-order theory of real closed fields with exponential.

A simpler variant of our main result concerns the problem of deciding whether a finitely
generated matrix semigroup contains a positive matrix, i.e., a matrix all of whose entries are
strictly positive. Here, to show decidability, we rely on a known characterisation of eventually
positive matrices, due to Noutsos [18]. While we still need to invoke Schanuel’s Conjecture
in this case, we do so through the use of a procedure of Richardson [22] for deciding equality
of elementary numbers (which is much more straightforward than the result of Macintyre
and Wilkie mentioned above).

As far as we are aware, the Non-negative Membership Problem has not been directly
addressed before. We note however that decidability of the version of this problem for
sub-semigroups of the group GL(2,Z) of 2 × 2 invertible integer matrices follows directly
from [7, Theorem 13].

2 Mathematical Background

Here we state some number-theoretic results that we will need in the sequel.
First stated in the 1960s, Schanuel’s conjecture is a unifying conjecture in transcendental

number theory that generalizes many of the classical results in the field.

▶ Conjecture 1 (Schanuel’s conjecture [13]). If α1, . . . , αk ∈ C are rationally linearly indepen-
dent, then some k-element subset of {α1, . . . , αk, eα1 , . . . , eαk } is algebraically independent.

An elementary point is an element of Cn that arises as an isolated, nonsingular solu-
tion of n equations in n variables x1, . . . , xn, with each equation being either of the form
P (x1, . . . , xn) = 0, where P ∈ Q[x1, . . . , xn] is a polynomial with rational coefficients, or of
the form xj − exi = 0 for i, j ∈ {1, . . . , n}. An elementary number is the polynomial image
of an elementary point.
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Roughly speaking, an elementary number is obtained by starting with the rationals and
applying addition, subtraction, multiplication, division, exponentiation, and taking natural
logarithms. Elementary numbers may be transcendental and, unsurprisingly, it is non-trivial
to determine whether an elementary number is equal to zero.

▶ Proposition 2 (Richardson [22]). The problem of determining zeroness of an elementary
number is semi-decidable. The problem is moreover decidable if one assumes Schanuel’s
conjecture.

We will also need the following theorem due to Masser.

▶ Theorem 3 (Multiplicative relations among algebraic numbers [16])). Let m be fixed, and let
λ1, . . . , λm be complex algebraic numbers. Consider the free abelian group L under addition
given by

L = {(v1, . . . , vm) ∈ Zm : λv1
1 . . . λvm

m = 1}.

Then L has a basis {w1, . . . , wp} ⊆ Zm (with p ≤ m), where the entries of each of the wj are
all polynomially bounded in the sum of the heights and degrees of the minimal polynomials of
λ1, . . . , λm.

3 Linear Recurrence Sequences

First, we recall some basic terminology and results about linear recurrence sequences.
A sequence u = (un)∞

n=0 of elements of a semiring K is called K-rational if there exists
d ≥ 1, v, w ∈ Kd and M ∈ Kd×d such that un = v⊤Mnw for all n. When K is a field, a
sequence is K-rational if and only if it satisfies a linear recurrence relation

un = a1un−1 + · · · adun−d (n ≥ d)

where a1, . . . , ad ∈ K. In this case we also call u a linear recurrence sequence (LRS).
With the unique minimal order recurrence satisfied by u we associate the characteristic

polynomial

P (X) = Xd − a1Xd−1 − · · · − ad .

The roots of P (X) are called the characteristic roots of u. Writing λ1, . . . , λm for the distinct
characteristic roots, in non-increasing order of absolute value, the sequence u admits a
closed-form exponential-polynomial representation:

un =
m∑

i=1
Pi(n)λn

i ,

where the Pi are univariate polynomials whose coefficients are algebraic over K. We say that
u is non-degenerate if no quotient of two distinct characteristic roots is a root of unity. We
also say that a matrix M ∈ Qd×d is non-degenerate if no quotient of two distinct eigenvalues
is a root of unity.

In this paper we exclusively consider sequences with rational entries. We say that an
LRS u is dominated if λ1 is the unique characteristic root of maximum modulus. Note that
in this case λ1 is necessarily real. We have the following three straightforward propositions
concerning dominated LRS.

STACS 2024



27:4 Nonnegativity Problems for Matrix Semigroups

▶ Proposition 4. If an LRS u is dominated then {n ∈ N : un ≥ 0} is an effectively computable
ultimately periodic set.

Proof. Consider the closed form representation un =
∑m

i=1 Pi(n)λn
i with unique dominant

root λ1, necessarily real. Suppose that P1 has degree k and leading coefficient a. Then we
have un

nk|λ1|n = a(λ1/ |λ1|)n + o(1). Hence for sufficiently large n the sign of un is determined
by the sign of a and the parity of n. ◀

▶ Proposition 5. If u is a non-degenerate LRS such that some subsequence (ucn+d)∞
n=0 is

dominated, where c is a positive integer and d ∈ {0, 1 . . . , c − 1}, then u itself is dominated.

Proof. The sequence u admits a closed-form representation un =
∑m

i=1 Pi(n)λn
i , where

λ1, . . . , λm are the characteristic roots and P1, . . . , Pm are polynomials. Then

ucn+d =
m∑

i=1
Pi(cn + d)λcn+d

i

=
m∑

i=1
Qi(n)(λc

i )n

where Qi(n) := Pi(cn + d)λd
i for i ∈ {1, . . . , m}.

Note that the polynomials Q1, . . . , Qm are non-zero and, by non-degeneracy of u, the
numbers λc

1, . . . , λc
m are pairwise distinct. Since the sequence (ucn+d)∞

n=0 is dominated, we
have that λc

1 is its unique characteristic root of maximum modulus. But then λ1 is the
unique characteristic root of u. ◀

▶ Proposition 6. An LRS that is both non-degenerate and rational over the semiring Q+ of
nonnegative rational numbers is dominated.

Proof. Berstel [4] showed that if a sequence u is Q+-rational then its characteristic roots
of maximum modulus all have the form ρω for some non-negative real number ρ and root
of unity ω. Since u is non-degenerate it follows that it has a unique dominant root. For
an exposition, see [5, Chap. 8, Thm 1.1]. We provide an alternate proof based on the
Perron-Frobenius theorem in Appendix B. ◀

▶ Theorem 7. Given M ∈ Qd×d the set S := {n ∈ N : Mn ≥ 0} is ultimately periodic and
effectively computable.

Proof. Recall that for some (effectively computable) strictly positive integer L the matrix
ML is non-degenerate. It will suffice to show that for each l ∈ {0, . . . , L − 1} we can
compute the set Sl := {n ∈ S : n ≡ l mod L}. Our procedure to do this is as follows. First,
check for every pair of indices i, j ∈ {1, . . . , d}, whether the sequence (u(i,j)

n )∞
n=0 given by

u
(i,j)
n = (MLn+l)i,j , is dominated. If yes then by Proposition 4 we can compute Sl as the

intersection over all pairs (i, j) of the sets {n ∈ N : u
(i,j)
n ≥ 0}. If no, then we claim that Sl

is empty.
Indeed, suppose n0 ∈ Sl. Then for each pair of indices i, j ∈ {1, . . . , d}, the LRS

(v(i,j)
n )∞

n=0 defined by v
(i,j)
n = (Mn0(1+Ln))i,j = e⊤

i Mn0(MLn0)ne⊤
j is both non-degenerate

and Q+-rational. By Proposition 6 each sequence (v(i,j)
n )∞

n=0 is dominated. Moreover, since
(v(i,j)

n )∞
n=0 is a subsequence of (u(i,j)

n )∞
n=0, the latter is also dominated by Proposition 5. This

proves (the contrapositive of) our claim. ◀
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▶ Remark 8. We can extract from the proof of Theorem 7 an effective characterisation of
those matrices M such that Mn ≥ 0 for some positive integer n. Let L be the least positive
integer such that ML is non-degenerate. Then some positive power of M is a non-negative
matrix iff some positive power of ML is non-negative iff for all indices (i, j) the sequence
(u(i,j)

n )∞
n=0 defined by u

(i,j)
n := (MLn)i,j is dominated and not ultimately negative.

4 The Positive Membership Problem

4.1 Eventually Positive Matrices
Recall that a positive matrix is one whose entries are all strictly positive. In this section we
show decidability of the following problem.

▶ Problem 9 (Positive Membership for Commutative Semigroup). Given a set of commuting
d × d matrices {A1, . . . , Ak} with rational entries, decide whether the generated semigroup
contains a positive matrix.

We approach this problem through the notion of eventually positive matrix.

▶ Definition 10 (Eventually Positive Matrix). We call a matrix M eventually positive if there
exists a natural number n0 such that for all n ≥ n0, the matrix Mn is positive.

We will need the following definition and result, adapted from Noutsos [18], which
characterizes eventual positivity of a matrix by proving a converse of the Perron-Frobenius
theorem.

▶ Definition 11 (Strong Perron-Frobenius property). A matrix A ∈ Rn×n has the strong
Perron-Frobenius property if there exists an eigenvalue λ with the following properties:
1. λ is real and positive,
2. λ is the unique dominant eigenvalue,
3. λ is simple,
4. λ has a corresponding eigenvector, all of whose entries are positive.

We now have:

▶ Theorem 12 (Characterizing eventual positivity [18]). A matrix A is eventually positive iff
A and A⊤ both have the strong Perron-Frobenius property.

Clearly a semigroup contains a positive matrix if and only if it contains an eventually
positive matrix. By the theorem above, this holds if and only if the semigroup contains a
matrix A such that both A and A⊤ have the strong Perron-Frobenius property.

4.2 Reduction to Integer Programming
We consider a direct-sum decomposition of Cd induced by a collection of commuting matrices
A1, . . . , Ak ∈ Cd×d. Let σ(Ai) denote the set of eigenvalues of Ai and consider a tuple of
eigenvalues

λ = (λ1, . . . , λk) ∈ σ(A1) × · · · × σ(Ak) .

Recall that ker(Ai − λiI)d is the generalized eigenspace of Ai corresponding to λi for
i ∈ {1, . . . , k}. We say that the tuple λ is a joint eigenvalue of A1, . . . , Ak if

Vλ :=
k⋂

i=1
ker(Ai − λiI)d
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27:6 Nonnegativity Problems for Matrix Semigroups

is non null. Intuitively, joint eigenvalues are tuples of eigenvalues of the Ai whose respective
generalized eigenspaces have non-trivial intersection. The set of joint eigenvalues is called the
joint spectrum of A1, . . . , Ak, denoted Σ. Using the fact that commuting matrices preserve
each other’s generalized eigenspaces, it can be shown (see, e.g., [19, Theorem 2.4]) that

Cd = ⊕λ∈ΣVλ ,

and that, for all i ∈ {1, . . . , k} and λ ∈ Σ, Ai preserves Vλ, and the restriction of Ai to Vλ

has spectrum {λi}. The commuting matrices A⊤
1 , . . . , A⊤

k induce an analogous decomposition
Cd = ⊕λ∈ΣWλ, where Wλ := ∩k

i=1 ker(A⊤
i − λiI).

Consider a matrix A := Am1 · · · Amk

k for m1, . . . , mk ∈ N. Given λ = (λ1, . . . , λk) ∈ Σ,
by the Spectral Mapping Theorem the restriction of A to the subspace Vλ has a single
eigenvalue λm1

1 · · · λmk

k . Thus all non-zero vectors in Vλ are generalized eigenvectors of A

for this eigenvalue. It follows that if A is eventually positive, then Conditions 1 and 2 of
Theorem 12 imply that there exists λ ∈ Σ such that λm1

1 · · · λmk

k is real positive and is the
unique dominant eigenvalue of A. Meanwhile, by Conditions 3 and 4 we can furthermore
choose λ such that the spaces Vλ and Wλ are both one dimensional and contain a positive
vector. In such a situation we call λ a dominant joint eigenvalue for A, Vλ a positive right
eigenspace, and Wλ a positive left eigenspace.

Conversely, suppose that there exist m1, . . . , mk ∈ N and λ ∈ Σ such that λ is a
dominant joint eigenvalue of A := Am1

1 · · · Amk

k , and Vλ and Wλ are positive right and left
joint eigenspaces respectively. Then Theorem 12 implies that A is eventually positive.

In summary, the semigroup generated by A1, . . . , Ak contains a positive matrix if and
only if there exists λ ∈ Σ, such that Vλ and Wλ are positive joint eigenspaces, and there are
m1, . . . , md ∈ N with
1.
∏k

i=1 λmi
i > 0,

2. ∀µ ∈ Σ \ {λ},
∏k

i=1 λmi
i >

∣∣∣∏k
i=1 µmi

i

∣∣∣.
It is clear that the Positive Membership Problem reduces to the restricted version of the

problem in which one asks for the existence of a positive matrix formed by a product in which
all generators of the semigroup are used at least once. Thus we can assume that the desired
exponents m1, . . . , mk in Conditions 1 and 2 are all strictly positive. In this situation we may
rewrite Condition 1 as

∑k
i=1 mi arg(λi) = 0 mod 2π and Condition 2 as either µ1 · · · µk = 0

or
∑k

i=1 mi log |µi/λi| < 0 for all µ ∈ Σ \ {λ}. Let c = (arg(λ1), . . . , arg(λk)) ∈ Rk and
let A be the (|Σ| − 1 × k)-matrix defined by writing, for all i ∈ {1, . . . , k} µ ∈ Σ \ {λ},
aµ,i := log |µi/λi| if µ1 · · · µk ≠ 0 and aµ,i = −1 if µ1 · · · µk = 0. Then the two conditions
above are equivalent to the existence of a solution x ∈ Nk of the following integer program:

(c⊤x = 0 mod 2π) ∧ Ax < 0 .

Note that by incorporating positivity constraints −xi < 0 in A we can assume without
loss of generality that x ranges over Zk. We now show that the satisfiability of such an
integer program is decidable, subject to Schanuel’s conjecture.

4.3 Integer Programming with Logs of Algebraic Numbers
▶ Problem 13 (IP-log). An instance of the IP-log problem consists of a matrix A ∈ Rm×n

whose entries are sums of logarithms of non-zero real algebraic numbers and a vector c ∈ Rn

whose entries are arguments of non-zero algebraic numbers. The problem asks to determine
whether there exists a vector x ∈ Zn such that c⊤x = 0 mod 2π and Ax < 0.
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Let us start by observing that one can eliminate the equation in the IP-log problem by an
effective linear change of variables. Indeed, exponentiation turns the linear relation c⊤x = 0
mod 2π into a multiplicative relation among algebraic numbers. We can then use Theorem 3
to find a basis {v1, . . . , vl} ⊆ Zn of the group of integer solutions of the equation c⊤x = 0
mod 2π. Let B ∈ Zn×l be the matrix that has these basis vectors as columns. Then c⊤x = 0
mod 2π iff x = By for some integer vector y. Hence the instance of IP-log has a solution iff
there exists a vector y ∈ Zl such that ABy < 0. In other words, we have reduced the initial
instance of IP-log to another instance with a trivial linear constraint.

▶ Theorem 14. The strict homogenous IP-log problem is decidable, assuming Schanuel’s
conjecture.

Proof. An instance of the strict homogenous IP-log problem asks to determine the truth of
the sentence:

∃x ∈ Zn : (c⊤x = 0 mod 2π) ∧ Ax < 0 .

As described above, we may assume without loss of generality that the equality constraint is
trivial (i.e., c = 0). It thus suffices to determine whether the system of inequalities Ax < 0
admits a solution x ∈ Zn. But, by scaling, this system of inequalities has a solution in Zn iff
it has a solution in Qn. In turn, by strictness of the constraints, there is a solution in Qn iff
there is a solution in Rn. We are thus left with the task of determining whether there exists
x ∈ Rn such that Ax < 0. Here we can apply Fourier-Motzkin elimination [8] (that is to say,
quantifier elimination in linear real arithmetic).

Recall that that Fourier-Motzkin elimination solves a system of linear inequalities by
eliminating the variables sequentially until one obtains an equisatisfiable variable-free system
of inequalites between constants. In the case at hand these constants will be rational
expressions in a fixed number of logarithms of real algebraic numbers. As such, they are
elementary numbers and so, using Richardson’s algorithm (Proposition 2), we can determine
which coefficients are zero. For a coefficient which is not zero, we need merely compute it to
sufficient precision to determine its sign. ◀

The following example illustrates the main points of the argument above: Let ω = e2πi/3

be a primitive cube root of unity and let λ1, λ2, λ3, λ4 be real positive algebraic numbers.
Consider the following system of inequations and an equation:

x1 arg(ω) + x2 arg(ω2) = 0 mod 2π

x1 log(λ1) + x2 log(λ2) < 0
x1 log(λ3) + x2 log(λ4) < 0

Clearly the equation above is satisfied when x1 = 3y1 + 2y2 and x2 = 3y1 − y2 for some
y1, y2 ∈ Z. Thus we eliminate the equation and obtain

(3y1 + 2y2) log λ1 + (3y1 − y2) log λ2 < 0
(3y1 + 2y2) log λ3 + (3y1 − y2) log λ4 < 0 ,

which is equivalent to

y1 log(λ3
1λ3

2) + y2 log(λ2
1/λ2) < 0

y1 log(λ3
3λ3

4) + y2 log(λ2
3/λ4) < 0 .
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27:8 Nonnegativity Problems for Matrix Semigroups

Assuming λ1λ2 > 1 > λ3λ4 we can isolate y1 by dividing out the coefficients (with known
signs) to get the following lower and upper bound on y1:

y1 < −y2
log(λ2

1/λ2)
log(λ3

1λ3
2) ∧ y1 > −y2

log(λ2
3/λ4)

log(λ3
3λ3

4) .

Evidently the system above has a solution iff

−y2
log(λ2

3/λ4)
log(λ3

3λ3
4) < −y2

log(λ2
1/λ2)

log(λ3
1λ3

2) ,

i.e., iff

log(λ2
1/λ2)

log(λ3
1λ3

2) <
log(λ2

3/λ4)
log(λ3

3λ3
4) .

The truth of the latter inequality can be checked by first using Richardson’s algorithm to
verify that the left-hand and right-hand expressions are unequal and then calculating to
sufficient precision to determine which of the two is greater. (In this case existence of a
solution was equivalent to the matrix A having non-zero determinant, but this will not hold
for general systems with more constraints.)

4.4 Algorithm
In summary, we have the following algorithm for the positive membership problem in the
commutative case:

INPUT: A set of commuting rational matrices {A1, . . . , Ak}.

1. Find all joint eigenvalues λ ∈ Σ for which both the corresponding right eigenspace Vλ

and the left eigenspace Wλ are one-dimensional and contain a positive vector. This can
be done, e.g., using a decision procedure for the theory of real-closed fields.

2. For each joint eigenvalue λ identified in Step 1, compute the corresponding IP-log problem
as in Section 4.2 to see if λ is dominant. If the IP-log problem is satisfiable then output
“YES” and halt.

3. Output “NO”.

We conclude:

▶ Theorem 15. The positive membership problem is decidable for commutative semigroups,
assuming Schanuel’s conjecture is true.

5 The Non-negative Membership Problem for Commutative
Semigroups

We now combine the ideas in Sections 3 and 4 to solve the problem of deciding whether a
semigroup of commuting matrices contains a non-negative matrix. For ease of exposition we
will assume that the matrices are simultaneously diagonalizable. The general commuting
case involves more complicated algebra and is proven in Appendix A.

▶ Problem 16 (Non-negative Matrix in Commutative Simultaneously Diagonalizable Semigroup).
Given a set of commuting simultaneously diagonalizable d × d matrices {A1, . . . , Ak} with
rational entries, decide whether the semigroup generated by multiplying these matrices together
contains a matrix with all its entries greater than or equal to zero.
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First, we refine our notion of dominated recurrences.

▶ Definition 17 (Positively dominated by p). Let u = (un)∞
n=0 be a linear recurrence sequence

which is non-degenerate and does not have any polynomial terms in its exponential-polynomial
form. Then u =

∑d
l=1 clλ

n
l for complex numbers λ1, . . . , λd and coefficients cl. We say u is

positively dominated by term p (here p (for positive) refers to the index) if
1. cp > 0,

2. λp > 0,

3. ∀l ̸= p, |λp| > |λl|.
Call this predicate PDp(u).

Given a single matrix M , we consider the d2 recurrences uij defined by (uij)n := e⊤
i Mnej .

We have shown in Section 3 that M being eventually non-negative is equivalent to the
decidable condition

∀i∀j(uij is ultimately zero ∨ ∃p PDp(uij)).

We now show a similar construction for multiple matrices. Let A1, . . . , Ak ∈ Qd×d be
a set of commuting simultaneously diagonalizable matrices. The idea is to search for an
eventually non-negative matrix Am1

1 . . . Amk

k .
Let m denote the tuple (m1, . . . , mk). Define the integer parameterized matrix entry

recurrence uij(m) by [uij(m)]n := e⊤
i [Am1

1 . . . Amk

k ]nej .
The existence of an eventually non-negative matrix (and thus, a non-negative matrix) in

the semigroup is equivalent to the decidable condition

ENN := ∃m ∀i∀j(uij(m) is ultimately zero ∨ ∃p PDp(uij(m))).

Let S be a matrix that simultaneously diagonalizes the matrices A1, . . . , Ak such that
Ar = S−1DrS = S−1 diag(λr1, . . . , λrd)S. The notation λrl denotes the lth eigenvalue of Ar

(with multiplicity).
Then

uij
n (m1, . . . , mk) := e⊤

i [Am1
1 . . . Amk

k ]nej

= e⊤
i S−1[Dm1

1 . . . Dmk

k ]nSej

= e⊤
i S−1[diag(λ11, . . . , λ1d)m1 . . . diag(λk1, . . . , λkd)mk ]nSej

= e⊤
i S−1

[
diag

(
k∏

r=1
λmr

r1 , . . . ,
k∏

r=1
λmr

rd

)]n

Sej

=
d∑

l=1
(S−1)il (S)lj

[
k∏

r=1
λmr

rl

]n

.

Now we have an exponential-polynomial representation for uij(m) with coefficients
(S−1)il(S)lj and roots

∏k
r=1 λmr

r1 , . . . ,
∏k

r=1 λmr

rd .

We see that uij(m) is positively dominated by p if
1. (S−1)ip (S)pj > 0,

2.
∏k

r=1 λmr
rp > 0,

3. ∀l ̸= p such that (S−1)ip (S)pj ̸= 0,
∣∣∣∏k

r=1 λmr
rp

∣∣∣ >
∣∣∣∏k

r=1 λmr

rl

∣∣∣.
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Let c(p) = (arg(λ1p), . . . , arg(λkp)) and let A(p) be the (at most) (d − 1) × k-matrix
defined by alr = log |λrl/λrp|. Here l runs over elements of {1, . . . , d} apart from p such that
(S−1)il (S)lj ̸= 0. Let m be the vector (m1, . . . , mk) ∈ Nk.

Now Condition 2 is equivalent to c(p)⊤m = 0 mod 2π and Condition 3 is equivalent to
A(p)m < 0.

For simplicity we introduce the following new notation:

Z(i, j, m) := uij(m) is identically zero
S(i, j, p) := (S−1)ip (S)pj > 0
C(p, m) := c(p)⊤m = 0 mod 2π

A(i, j, p, m) := A(p)m < 0
NND(i, j, p, m) := Z(i, j, m) ∨ (S(i, j, p) ∧ C(p, m) ∧ A(i, j, p, m)).

Note that A(i, j, p, m) depends on i and j because we only care about the eigenvalue
blocks where the coefficient is non-zero.

Writing out the predicate ENN in full with new notation, we have

ENN := ∃m ∀i∀j(uij(m) is identically zero ∨ ∃p PDp(uij(m)))
≡ ∃m ∀i∀j(Z(i, j, m) ∨ ∃p (S(i, j, p) ∧ C(p, m) ∧ A(i, j, p, m)))
≡ ∃m ∀i∀j ∃p NND(i, j, p, m)

Now observe that the quantifications over i, j and p are finite and range over {1, . . . , d}.
Thus we can replace the quantifications with finite disjunctions and conjunctions.

Our goal is to move all disjunctions outside the existential quantifier on m so that we
can use the IP-log algorithm from Section 4.3 on conjunctions of terms of the form Am < 0.

Let f range over functions assigning a particular choice of p to each sequence uij(m).
There are d(d×d) such functions.

ENN ≡ ∃m ∀i∀j(∃p NND(i, j, p, m))
≡ ∃m ∧ij (∨p NND(i, j, p, m))
≡ ∃m ∨f (∧ijNND(i, j, p = f(i, j), m))
≡ ∨f ( ∃m ∧ij NND(i, j, p = f(i, j), m)).

Essentially this means we non-deterministically choose a p for each sequence uij(m) and
then check if there is an m that works for all of them – that makes all the selected p’s into
real positively dominating terms.

Analysing the elements of NND(i, j, f(i, j), m), we see that Z(i, j, m) and S(i, j, f(i, j))
constraints are trivially checkable. Constraints ∧ijC(f(i, j), m) can be removed iteratively us-
ing Masser’s theorem. The remaining conjunctions are terms of the form ∧ijA(i, j, f(i, j), m),
but since these are linear programs A(i, j, p)m < 0 we can simply concatenate the various
matrices A(i, j, p) together. We can then use the IP-log algorithm from Section 4.3 to check
if there exists an integer solution to the conjunction of these terms.

Of course in practice we would only need to check d different matrices of size d − 1 × k

since the eigenvalues are the same for all sequences.
Thus we have reduced the diagonalizable case to a finite disjunction of predicates, each

of which can be reduced to strict homogenous IP-log. More generally, we have:

▶ Theorem 18. The non-negative membership problem is decidable for commutative semi-
groups, assuming Schanuel’s conjecture is true.

Proof. See Appendix A. ◀



J. D’Costa, J. Ouaknine, and J. Worrell 27:11

6 Undecidability in the Non-commutative Case

To complement the decidability results for commuting matrices in the preceding sections, in
this section we show undecidability of the full version of the membership problem, in which
commutativity is not assumed:

▶ Problem 19 (Non-negative Membership). Given a set of d×d matrices with rational entries,
decide whether the generated semigroup contains a non-negative matrix.

The proof of undecidability is by reduction from the threshold problem for probabilistic
automata, which is well-known to be undecidable [11].

▶ Problem 20 (Threshold Problem for Probabilistic Automata). Given vectors u and v in
Qd and a matrix semigroup S generated by stochastic matrices {A1, . . . , Ak} ∈ Qd×d, decide
whether there exists a matrix A ∈ S such that u⊤Av ≥ 1/2.

▶ Theorem 21. The Non-negative Membership Problem is undecidable.

Proof. Given non-negative integers m, n, write 0m×n for the zero matrix of dimension m × n.
Suppose that we are given an instance of the threshold problem for probabilistic automata,
defined by vectors u, v ∈ Qd and a matrix semigroup S generated by stochastic matrices
A1, . . . , Ak ∈ Qd×d. Now consider the semigroup S ′ generated by the following matrices of
dimension (d + 2) × (d + 2):

U :=

 1 −1/2 u⊤

0 0 01×d

0d×1 0d×1 0d×d

 ,

A′
i :=

 1 −1/2 01×d

0 0 01×d

0d×1 0d×1 Ai

 (i = 1, . . . , k),

and V :=

 1 −1/2 01×d

0 0 01×d

0d×1 v 0d×d

 .

Note that matrix A′
i incorporates Ai for i = 1, . . . , k, while the matrices U and V respectively

incorporate the initial and final vectors u and v of the probabilistic automaton.
We claim that the semigroup S ′ contains a non-negative matrix if and only if there exists

a matrix A ∈ S such that u⊤Av ≥ 1
2 . To this end, consider a string of matrices chosen from

the set {U, V } ∪ {A′
1, . . . , A′

k}. Any product B of such a string that does not end with a
suffix UA′

i1
· · · A′

is
V , for some i1, . . . , is ∈ {1, . . . , k}, has B1,2 = − 1

2 and hence cannot be a
non-negative matrix. It remains to consider products B of strings that do have such a suffix.
In this case we have

B1,2 = (UA′
i1

· · · A′
is

V )1,2 = u⊤Ai1 · · · Aisv − 1
2 ,

and hence B is only non-negative if u⊤Ai1 · · · Ais
v ≥ 1

2 . Since it further holds that B1,1 = 1
and Bi,j = 0 for all other entries (i, j), we conclude that exists a non-negative matrix in the
semigroup S ′ if and only if there exists a matrix A ∈ S such that u⊤Av ≥ 1

2 . ◀
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7 Further work

We leave open the question of quantitative refinements of our decidability results. These
include giving complexity upper bounds for the Non-negative and Positive Membership
Problems as well as the related question of giving upper bounds on the length of the shortest
string of generators that yields a non-negative or positive matrix in a given semigroup.
Both questions would seem to be difficult owing to the use of Schanuel’s Conjecture in
our proofs. Characterising the complexity of determining whether a matrix is eventually
non-negative would seem to be more straightforward. We claim that the decision procedure
can be implemented in non-deterministic polynomial time. Note that the analogous Eventual
Positivity problem is in PTIME [18].
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A Non-diagonalizable Case

▶ Problem 22 (Non-negative Membership for Commutative Semigroup). Given a set of
commuting d × d matrices {A1, . . . , Ak} with rational entries, decide whether the semigroup
generated by multiplying these matrices together contains a matrix with all its entries greater
than or equal to zero.

It is known that unfortunately simultaneous Jordanization of commuting matrices is not
always possible [6]. However, a slightly weaker block diagonal form [19, Thm 12] is possible.
Here we put the matrices into block diagonal form, where each block is of the form λiI + N

where N is strictly upper triangular and thus nilpotent.
Let A1, . . . , Ak ∈ Qd×d be a set of commuting matrices.
As in Section 5, define the integer parameterized matrix entry recurrence uij(m) by

uij
n (m1, . . . , mk) := e⊤

i [Am1
1 . . . Amk

k ]nej .
Let S be a matrix that simultaneously block-diagonalizes the matrices such that Ar =

S−1BDrS = S−1 diag(Br1, . . . , Brb)S. Here Brl = λrlI + Nrl denotes the lth block of
Ar, where Nrl is strictly upper triangular. Note that for fixed l the various Nrl inherit
commutativity from the original matrices. Then we have that

uij
n (m1, . . . , mk) := e⊤

i [Am1
1 . . . Amk

k ]nej

= e⊤
i S−1[BDm1

1 . . . BDmk

k ]nSej

= e⊤
i S−1[diag(B11, . . . , B1b)m1 . . . diag(Bk1, . . . , Bkb)mk ]nSej

= e⊤
i S−1

[
diag

(
k∏

r=1
Bmr

r1 , . . . ,

k∏
r=1

Bmr

rb

)]n

Sej

= [s−1
i1 , . . . , s−1

id ] diag
([

k∏
r=1

Bmr
r1

]n

, . . . ,

[
k∏

r=1
Bmr

rb

]n)n

[s1j , . . . , sdj ]⊤.

Let us examine the structure of the submatrix
[∏k

r=1 Bmr

rb

]n

. Recall that Brl = λrlI +Nrl.
Note that any power or product of powers of the nilpotents can be non-zero only upto total
degree at most d. We adopt the convention that a zero power indicates the identity matrix
of appropriate size. For ease of notation we drop the block subscript and expand out
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[
k∏

r=1
Bmr

rb

]n

=
[

k∏
r=1

(λrI + Nr)mr

]n

=
k∏

r=1
λnmr

r (I + Nr/λr)nmr

=
k∏

r=1
λnmr

r ·
k∏

r=1

(
d∑

ir=0

(
nmr

ir

)
(Nr/λr)ir

)

=
k∏

r=1
λnmr

r ·

 i1+···+ik=d∑
(i1,...,ik)=(0,...,0)

(
k∏

r=1

(
nmr

ir

)
(Nr/λr)ir

)
= MPoly(nm)

k∏
r=1

λnmr
r .

Here MPoly(nm) is shorthand for the block-matrix with entries which are polynomial of
degree at most d in the variables (m1, . . . , mk) (scaled by n) with coefficients arising from
the nilpotent submatrices.

Substituting this back into our original expression for uij
n (m1, . . . , mk) we get

uij
n (m1, . . . , mk) := e⊤

i [Am1
1 . . . A

mk
k ]nej

= [s−1
i1 , . . . , s−1

id ] diag

([
k∏

r=1

Bmr
r1

]n

, . . . ,

[
k∏

r=1

Bmr
rb

]n)n

[s1j , . . . , sdj ]⊤

= [s−1
i1 , . . . , s−1

id ] diag

(
MPoly1(nm)

k∏
r=1

λnmr
r1 , . . . , MPolyb(nmr)

k∏
r=1

λnmr
rd

)n

[s1j , . . . , sdj ]⊤

=
d∑

l=1

(
polyij

l (nm)
k∏

r=1

λnmr
rl

)
(after folding in constants).

Notice that the asymptotic top term in n in the polynomial polyij
l (nm) is the homogenous

subpolynomial of highest degree in (m1, . . . , mk) - call it hij
l (m). Once we pick a particular

p to be our positively dominating term, we only need the following three conditions for the
recurrence to be positively dominated by p:
1. hij

p (m) > 0,

2.
∏k

r=1 λmr
rp > 0,

3. ∀l ̸= p such that polyij
l (nm) is not the zero polynomial,

∣∣∣∏k
r=1 λmr

rp

∣∣∣ >
∣∣∣∏k

r=1 λmr

rl

∣∣∣.
Via the same algebraic manipulations as in the diagonalizable case, checking

ENN := ∃m ∀i∀j(uij(m) is identically zero ∨ ∃p PDp(uij(m))),

reduces to solving conjunctions of the form

∧ij(hij
l (m) > 0 ∧ c(p)⊤m = 0 mod 2π ∧ A(p)m < 0)

over the integers.
We can eliminate the second conjunct using Masser’s theorem. Now suppose there exists

a real solution on the unit sphere to hij
l (m) > 0 ∧ A(p)m < 0. By openness, there exists a

rational solution nearby. Since both these conjuncts are homogenous, m is a solution iff nm
is a solution, for all real n > 0. Thus we may clear denominators from the rational solution
to obtain an integer solution m to ENN .
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The sentence

∃m ∈ Rk : hij
l (m) > 0 ∧ A(p)m < 0

can be written in the first order theory of the reals with exponentiation, which is decidable
assuming Schanuel’s conjecture as shown by Wilkie and Macintyre [14].

We now need to prove that failing to find such a real solution implies that the semigroup
does not contain a non-negative matrix. Suppose that there exists some m = (m1, . . . , mk)
such that Am1

1 . . . Amk

k is non-negative. Then (Am1
1 . . . Amk

k )n is non-negative for all n. By
Proposition 6, each individual recurrence is ultimately zero or must have a strictly dominant
top term. Thus m satisfies Am < 0 and c⊤m = 0 mod 2π for the appropriate A and c.
The top term (as a function of n) has a polynomial coefficient which is the homogenous
polynomial we identified above. Thus the homogenous polynomial is non-negative for m,
completing the requirements necessary for the sentence ∃m ∈ Rk : hij

l (m) > 0 ∧ A(p)m < 0
to be true.

We conclude:

▶ Theorem 23. The non-negative membership problem is decidable for commutative semi-
groups, assuming Schanuel’s conjecture is true.

B Positive Rational Sequences are Dominated

We need the following classical results from Perron-Frobenius theory (see, e.g., [17, Chap. 8]).

▶ Theorem 24.
1. If A ≥ 0 is irreducible then it has cyclic peripheral spectrum, i.e., its eigenvalues of

maximum modulus have the form {ρ, ρω, . . . , ρωk−1}, where ρ > 0, k is a positive integer,
and ω is a primitive k-th root of unity.

2. If a non-negative irreducible matrix A has only one eigenvalue on the spectral circle it is
called a primitive matrix. If A is primitive, the pointwise limit limn→∞(A/ρ(A))n exists
and is a strictly positive matrix.

We now prove Berstel’s result for matrix entry recurrences.

▶ Proposition 25. Let M ∈ Qd×d be a non-negative non-degenerate matrix. Then for all
i, j ∈ {1, . . . , d} the LRS un = (Mn)i,j is dominated.

Proof. Since M ≥ 0 there exists a permutation matrix P such that M can be written in
the form M = PUP −1, where U ≥ 0 is block upper triangular. It follows that there exist
i′, j′ ∈ {1, . . . , d} such that

(Mn)i,j = (PUnP −1)i,j = (Un)i′,j′

for all n ∈ N. Now write

U =


B1,1 B1,2 . . . B1,e

0 B2,2 . . . B2,e

0 0
. . .

...
0 0 0 Be,e

 ,

where all the blocks in U are non-negative and the diagonal blocks B1,1, B2,2, . . . , Be,e are
irreducible. Then

(Un)i′,j′ =
∑

l1<l2<···<lm

n1+n2+···nm=n−(m−1)

e⊤
i′ Bn1

l1,l1
Bl1,l2Bn2

l2,l2
· · · Blm−1,lm

Bnm

lm,lm
ej′ , (1)

STACS 2024



27:16 Nonnegativity Problems for Matrix Semigroups

where the sum runs over all positive integers m and strictly increasing sequences of block
indices l1 < · · · < lm.

Consider a single block Bl,l along the diagonal. Since it is irreducible and non-negative,
it has cyclic peripheral spectrum. By our assumption of non-degeneracy, rl := ρ(Bl,l) ≥ 0
is the only eigenvalue on the spectral circle. Thus Bl,l is primitive and by our second
Perron-Frobenius result above, asymptotically Bn

l,l/rn
l ∼ Cl where Cl is a positive matrix

and the asymptotic equivalence relation ∼ applies entry-wise. Let rmax be the maximum
spectral radius of a block Bl,l lying on a path from i′ to j′.

We now analyse the asymptotic behavior of the normalized recurrence (Un)i′,j′/rn
max. Con-

sider a summand Sn in (Un)i′,j′/rn
max. Replacing the diagonal blocks with their asymptotic

limits,

Sn ∼
(

rl1

rmax

)n1 ( rl2

rmax

)n2

. . .

(
rlm

rmax

)nm

e⊤
i′ Cl1Bl1,l2Cl2 · · · Blm−1,lmClm ej′ .

Although the number of terms in the sum grows polynomially in n, we see that each term
with some rlk

< rmax that does not have nk constant tends to zero exponentially quickly.
The remaining summands in (Un)i′,j′/rn

max are thus those where nk is non-constant only for
blocks with ρ(Blk,lk

) = rmax. Let K be the sum of the constant powers for non-maximal
blocks in such a summand Qn, and P be the product of the powers of non-maximal rlk

. Then

Qn ∼ rn
max · (P/rK+m−1

max ) · e⊤
i′ Cl1Bl1,l2Cl2 · · · Blm−1,lm

Clm
ej′ .

Observe that the coefficient of rn
max is a product of spectral radii and non-negative matrices,

and is thus non-negative. This implies different such terms containing rn
max cannot cancel

out. So e⊤
i′ Unej′ ∼ A(n) · rn

max for some polynomial A with positive coefficients depending
on the non-diagonal blocks and the spectral radii of the diagonal blocks. Thus (Mn)i,j is
either dominated by rmax or ultimately zero (the latter in case rmax = 0 or the sum in (1) is
empty). ◀
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Abstract
In the famous network creation game of Fabrikant et al. [11] a set of agents play a game to build
a connected graph. The n agents form the vertex set V of the graph and each vertex v ∈ V buys
a set Ev of edges inducing a graph G = (V,

⋃
v∈V

Ev). The private objective of each vertex is to

minimize the sum of its building cost (the cost of the edges it buys) plus its connection cost (the
total distance from itself to every other vertex). Given a cost of α for each individual edge, a
long-standing conjecture, called the tree conjecture, states that if α > n then every Nash equilibrium
graph in the game is a spanning tree. After a plethora of work, it is known that the conjecture holds
for any α > 3n − 3. In this paper we prove the tree conjecture holds for α > 2n. This reduces by
half the open range for α with only (n − 3, 2n) remaining in order to settle the conjecture.
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1 Introduction

A foundational motivation for the field of algorithmic game theory was to understand the
evolution and functionality of networks, specifically, the Internet; see Papadimitriou [15].
Of particular fascination concerned how the actions of self-motivated agents affected the
structure of the World Wide Web and social networks more generally. An early attempt
to study this conundrum was undertaken by Fabrikant et al. [11] with their now classical
network creation game. Despite its extreme simplicity, their model (detailed below) has
become highly influential for two reasons. First, it inspired the development of a wide range
of network formation models, [2],[5]. Second, it has lead to one of the longest-standing open
problems in algorithmic game theory, namely, the tree conjecture. The latter motivates this
research. So let us begin by describing the model and the conjecture.

1.1 The Network Creation Game
Consider a set of vertices, V = {1, 2, . . . , n}, who attempt to construct a connected graph
between themselves. To do this, each vertex (agent) can purchase individual edges for a fixed
cost of α each. Consequently, a strategy for vertex v ∈ V is a set of (incident) edges Ev.
Together the strategies of the agents forms a graph G = (V, E), where E = E1 ∪E2 ∪· · ·∪En.
In the network creation game, the objective of each vertex is to minimize the sum of its
building and its connection cost. The building cost for vertex v is α · |Ev|, the cost of all the
edges it buys. The connection cost is D(v) =

∑
u:u̸=v dG(u, v), the sum of the distances in G

of v to every other vertex, where dG(u, v) = ∞ if there is no path between u and v. That is,
the total cost to the vertex is cv(E) = α · |Ev| + D(v).
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28:2 One n Remains to Settle the Tree Conjecture

Given the different objectives of the agents, we study Nash Equilibria (NE) in the network
creation game. A Nash equilibrium graph is a graph G = (V, E) in which no vertex v can
reduce its total cost by changing its strategy, that is, by altering the set of edges it personally
buys, given the strategies of the other vertices remain fixed. Thus Ev is a best response to
(Eu)u̸=v, for every vertex v. Observe that every Nash equilibrium graph must be a connected
graph. Attention in the literature has focused on whether or not every Nash equilibrium
graph is minimal, that is, a spanning tree.

1.2 The Tree Conjecture
The network creation game was designed by Fabrikant et al. [11]. They proved that any
network equilibrium graph which forms a tree costs at most 5 times that of a star, i.e.
the optimal network. They proposed that for α greater than some constant, every Nash
equilibrium graph is a spanning tree. This was the original tree conjecture for network
creation games.

In the subsequent twenty years, incremental progress has been made in determining the
exact range of α for which all Nash equilibria are trees. Albers et al. [1] demonstrated that
the conjecture holds for α ≥ 12n log n. However, they also provided an counterexample to
the original tree conjecture. Moreover, Mamageishvili et al. [13] proved the conjecture is
false for α ≤ n − 3.

As a result, a revised conjecture took on the mantle of the tree conjecture, namely that
every Nash equilibrium is a tree if α > n. Mihalák and Schlegel [14] were the first to
show that this tree conjecture holds for α ≥ cṅ for a large enough constant c, specifically,
c > 273. Since then, the constant has been improved repeatedly, by Mamageishvili et al. [13],
then Àlvarez and Messegué [3], followed by Bilò and Lenzner [6], and finally by Dippel and
Vetta [10] who proved the result for α > 3n − 3.

We remark that extensions and variations of the network creation game have also been
studied; we refer the interested reader to [4, 7, 8, 9, 16, 17].

1.3 Our Contribution
In this paper we improve the range in which the tree conjecture is known to hold from
α > 3n − 3 [10] to α > 2n:

▶ Theorem 1. If G is a Nash equilibrium graph for the network creation game (n, α) and
α > 2n, then G is a tree.

Our high-level strategy to prove Theorem 1 is straightforward: we assume the existence
of a biconnected component H in a Nash equilibrium and then prove, via consideration of a
collection of strategy deviations, that some vertex has a better strategy, provided α > 2n.
This contradicts the best response conditions and proves that every Nash equilibrium graph
is a spanning tree.

Our approach applies some prior methodologies and combines them with some original
tools. One important technique we exploit is that of min-cycles, introduced by Lenzner [12].
A min-cycle is a cycle in a graph with the property that, for every pair of vertices in
the cycle, the cycle contains a shortest path between the pair. For certain values of α,
currently α > 2n − 3, min-cycles are known to have the nice property that each vertex in
the cycle buys exactly one edge of the cycle. This property has been leveraged in various
ways [3, 6, 10] to show that no min-cycles can exist in a Nash equilibrium graph for large
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enough α. Importantly, the smallest cycle in any graph must be a min-cycle. Consequently,
for large enough α, there can be no smallest cycle and, thus, no cycle at all. This implies
that, for such an α, all Nash equilibrium graphs are trees.

The techniques we develop concern the analysis of the presupposed biconnected component
H in the Nash equilibrium. The existence of H implies the existence of a special vertex, called
r, which has the lowest connection cost amongst all vertices in H. That is, D(r) ≤ D(v)
for all v ∈ H. Given r, we take a shortest path tree T in G rooted at r. The key is to
exploit the structural properties inherent in T . To derive these properties, we design a new
class of strategy deviations available to vertices in H. Because these deviations must be
non-improving responses, they impose numerous beneficial restrictions on the edges in H . In
particular, we can then show that the sum of degrees of vertices within H exceeds 2 times
the number of edges within H. This absurdity proves the Nash equilibrium graph is a tree.

1.4 Overview of Paper

This paper has three main sections. Section 2 consists of preliminaries and contains three
things. First, we examine the structure of Nash equilibrium graphs which contain a hy-
pothesized biconnected component H. Second, we discuss min-cycles, which appear in
several previous papers, each of which contains a useful lemma that we take advantage of in
this paper. Third, we introduce some new lemmas pertaining to T , the shortest path tree
mentioned above.

Section 3 has two parts. The first presents a set of three deviation strategies. That is,
three specific ways a vertex in a biconnected component might consider changing which
edges it buys in order to decrease its personal cost. For a Nash equilibrium graph these
alternate strategies cannot reduce the personal cost, and this allows us to derive deviation
bounds for that vertex and the edges it buys. The second part uses these deviations bounds
to prove claims about the structure of the graph. In particular, we show that vertices which
buy edges outside T cannot be too close to one another.

Finally, Section 4 presents two main lemmas. The first shows that, in a set U of three
vertices adjacent in T , all at different depths, where the lowest buys an edge outside T , only
one vertex in U can have degree two in H. The second lemma bounds the number of times
such sets can intersect. These two lemmas are the core of the proof of Theorem 1. After
proving the main result, the paper culminates with concluding remarks on the future of the
tree conjecture.

2 Preliminaries

Recall our basic approach is to prove by contradiction the non-existence of a biconnected
component in a Nash equilibrium graph. Accordingly, we begin in Section 2.1 by introducing
the notation necessary to analyse biconnected components in network creation game graphs.
To disprove the existence of a biconnected component it suffices to disprove the existence
of a cycle. Of particular importance here is the concept of a min-cycle. So in Section 2.2
we present a review of min-cycles along with a corresponding set of fundamental lemmas
which appear in [12, 6, 13]. Finally, in Section 2.3, we prove a collection of technical results
concerning the shortest path tree T that we will utilize throughout the rest of the paper.
Lemma 9 is an especially useful tool for this method, and could prove valuable in future
work on this problem.

STACS 2024



28:4 One n Remains to Settle the Tree Conjecture

2.1 Biconnected Components

Given a subgraph W of a graph G, we let dW (v, u) denote the distance between v and u

in W . In particular, d(u, v) = dG(u, v) is the distance from v to u in the whole graph. Let
D(v) =

∑
u:u̸=v dG(u, v) be the connection cost for vertex v, the sum of the distances from v

to every other vertex.
In a Nash equilibrium graph G containing biconnected components, we will refer to the

largest biconnected component as H. For a vertex v ∈ H, we denote by C(v) a smallest
cycle containing v, breaking ties arbitrarily. Let r ∈ H be a vertex whose connection cost
is smallest amongst all the vertices in H. Once built, an edge uv of G can be traversed in
either direction. Thus G is an undirected graph. However, it will often be useful to view G

as a directed graph. Specifically, we may orient uv is from u to v if the edge was bought by
u and orient it from v to u if it was bought by v.

Given r, we will make heavy use of the shortest path tree T rooted at r. There may be
multiple options for the choice of T . So we insist our choice of T has the following property:
For all shortest paths P between r and any vertex u which is directed from r to u, we have
P ⊆ T . The proof of Lemma 3 shows that we will never have two shortest paths directed
from r to the same vertex v, so this choice of T is well-defined. Next, given an edge uv where
u is the parent of v in T , we say that uv is a down-edge of T if the edge was bought by u;
otherwise we say it is an up-edge of T . We denote by T ↓ the set of down-edges and by T ↑

the set of up-edges of T . Let T (v) be the subtree rooted at v in the tree T rooted at r. If
uv ∈ T ↓ then we define T (uv) = T (v). Otherwise, if uv /∈ T ↓ then we define T (uv) = ∅.

Finally, there remain two types of sets we need to define. The first type is the “S-sets” ,
which are sets of vertices. In a graph G, with a subgraph W , SW (v) is the set of vertices w

with the following property: a shortest path in G from w to W contains v. Therefore SW (v)
will always contain v, and it will contain no vertices of W \ v. W can even be a single vertex
u, i.e. Su(v) is the set of all vertices in G with a shortest path to u containing v. The second
type is the “X-sets” , which are sets of edges. For largest biconnected component H of G

and the shortest path tree T , the set X0 is the set of all edges in H \ T , or out-edges. For
all integers i ≥ 1, Xi contains the set Xi−1 as well as all edges uv ∈ H ∩ T ↓ bought by the
parent u and where the child v buys an edge of Xi−1. The Xi sets can be thought of as the
set of all out-edges and all down-edges in directed paths of length ≤ i to a vertex which buys
an out-edge. Sometimes it will be useful to include in the X-sets all the edges vu ∈ H ∩ T ↑,
bought by child v to parent u. To do this, we add superscript + to the X set. For instance
X+

0 = X0 ∪ T ↑ is the set of all up-edges and out-edges, which happens to be the set of all
edges e with T (e) = ∅. Similarly, X+

i = Xi ∪ T ↑.

2.2 Min-Cycles

Recall, a min-cycle is a cycle in a graph with the property that, for every pair of vertices in
the cycle, the cycle contains a shortest path between the pair. This concept, introduced by
Lenzner [12], has proved very fruitful in the study of Nash equilibria in network creation
games. In particular, we now present three useful lemmas concerning min-cycles that
appear in [12, 6, 13], respectively. For completeness and because some of the ideas used are
informative, we include short proofs of these three lemmas; similar proofs appeared in [10]

▶ Lemma 2 ([12]). The smallest cycle C containing an edge e is a min-cycle.
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v1

v2

v3

v4

Figure 1 In the diagram, edges of T are bold. Vertex u0 buys an edge u0v0 ∈ Xj for all j ≥ 0.
Similarly, each vertex ui buys edge uiui−1 ∈ Xj for all 4 ≥ i ≥ 1, j ≥ i. Each vertex vi buys
vivi+1 ∈ X+

j for all 3 ≥ i ≥ 0, j ≥ 0. v4 buys v4r ∈ X+
j and r buys ru4 ∈ Xk for j ≥ 0, k ≥ 5.

Proof. Consider the smallest cycle C containing an edge e. Suppose for the sake of contradic-
tion that there are two vertices u, v ∈ C such dG(u, v) < dC(u, v). Without loss of generality,
suppose the shortest path between u and v, labelled P , lies entirely outside C. Note that C

contains two paths between u and v. Let Q be the path of C from u to v that contains e.
Then P ∪ Q is a cycle containing e that is strictly smaller than C, a contradiction. ◀

For an edge e or vertex u in a biconnected component H, we may write C(e), C(u) to
denote the smallest cycle containing edge e, vertex u respectively, breaking ties arbitrarily.
A nice property of min-cycles is that every vertex in the min-cycle buys exactly one edge of
the cycle.

▶ Lemma 3 ([6]). Let α > 2(n − 1). Every min-cycle in a Nash equilibrium graph G is
directed.

Proof. Let C be a min-cycle that is not directed. Then there is a vertex v that buys two
edges of the cycle, say vx and vy. Let uw ∈ C be an edge furthest from v (if |C| is odd,
there is a unique choice, otherwise choose one of two furthest edges). Let u buy uw. We’ve
chosen uw so that both u and w have a shortest path to v which does not contain uw,
therefore every vertex in G has a shortest path to v without uw. Without loss of generality,
let d(u, y) < d(u, v). Then because of how we chose uw, both v and x have a shortest path
to u which does not contain vx, therefore every vertex in G has a shortest path to u without
vx.

First, consider that if u sells uw and buys uv, no vertices become farther from v. It
follows, by the Nash equilibrium conditions, that

D(u) ≤ D(v) + n − 1 (1)

because D(u) must be less than the cost to swap uw for uv and use the edge uv in followed
by the shortest path from v to each of the n − 1 vertices.

On the other hand, v can sell both vx and vy and instead buy the edge vu without
increasing the distance from u to any other vertex. All of the vertices which used vy in their
shortest paths to u become closer to u. It follows, by the Nash equilibrium conditions, that

D(v) ≤ D(u) + n − 1 − α (2)

STACS 2024



28:6 One n Remains to Settle the Tree Conjecture

Together (1) and (2) give D(v) ≤ D(v) + 2(n − 1) − α < D(v). This contradiction implies
that C must be a directed cycle. ◀

Furthermore, we may now obtain a lower bound on the girth of a Nash equilibrium graph
in terms of the cost α.

▶ Lemma 4 ([13]). Any cycle C in a Nash equilibrium graph has |C| ≥ 2α
n + 2.

Proof. Take a minimum length cycle C = v0, v1 . . . , vk−1, vk = v0 in G. First assume
ei = vivi+1 is bought by vi, for each 0 ≤ i ≤ k − 1. Now, for each vertex u ∈ V , we define a
set Lu ⊆ {0, 1, . . . , k − 1} as follows. We have i ∈ Lu if and only if every shortest path from
vi ∈ C to u uses the edge ei.

We claim |Lu| ≤ |C|−1
2 for every vertex u. If not, take a vertex u with |Lu| > |C|−1

2 .
Let d(vi, u) be the shortest distance between u and vi ∈ C. Next give vi a label ℓi =
d(vi, u) − d(vi+1, u). Observe that ℓi ∈ {−1, 0, 1}. Furthermore, the labels sum to zero as∑|C|−1

i=0 ℓi =
∑|C|−1

i=0 (d(vi, u) − d(vi+1, u)) =
∑|C|−1

i=0 d(vi, u) −
∑|C|

i=1 d(vi, u) = 0

Now take a vertex vi in C that uses ei in every shortest path to u; that is, i ∈ Lu. Then
ℓi = 1 and ℓi−1 ≥ 0. In particular, if |Lu| > |C|−1

2 then there are > |C|−1
2 positive labels

and > 1 + |C|−1
2 non-negative labels. Hence, there are < |C| −

(
1 + |C|−1

2

)
= |C|−1

2 negative
labels. But then the sum of the labels is strictly positive, a contradiction.

Now, as |Lu| ≤ |C|−1
2 for every vertex u, there must exist a vi, ei pair where vi needs ei

for its shortest paths to ≤ n
2 vertices. For the vertices that do require ei in their shortest

paths, deleting ei increases their distance by ≤ |C| − 2, as we can replace ei with C \ ei in
those paths. Therefore, if vi sells ei its cost increases by ≤ (|C| − 2) · n

2 − α. This must be
non-negative by the Nash equilibrium conditions. Rearranging, we have 2α

n + 2 ≤ |C|.
Now consider the other case, where some vertex vi buys e1 = vivi+1 and e2 = vivi−1.

Without loss of generality, vi needs e1 for its shortest paths to ≤ n
2 vertices. Therefore,

just as in the previous case, if vi sells e1 its cost increases by ≤ (|C| − 2) · n
2 − α. This

must be non-negative by the Nash equilibrium conditions. Again, rearranging, we have
2α
n + 2 ≤ |C|. ◀

An important immediate consequence of Lemma 4 is that we may assume that the girth
of any Nash equilibrium graph of interest here is at least 7.

▶ Corollary 5. Let α > 2n. All cycles in a Nash equilibrium graph have length at least 7.

2.3 The Shortest Path Tree T

Let us now consider the shortest path tree T rooted at the vertex r with smallest connection
cost amongst the vertices in the biconnected component H. In this section, we present some
technical lemmas that give useful insights into the structure of this tree T . We begin by
upper bounding the size of any subtree in T .

▶ Lemma 6. If v ̸= r then |T (v)| ≤ n
2 .

Proof. Recall T is the shortest path tree of the vertex r with the smallest connection cost
and T (v) is the subtree of T rooted at v. For any vertex x ∈ T (v), it immediately follows
that d(v, x) = d(r, x) − d(v, r). On the other hand, for any vertex x ̸∈ T (v), the triangle
inequality implies that d(v, x) ≤ d(r, x) + d(v, r). Thus
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D(v) ≤ D(r) − d(v, r) · |T (v)| + d(v, r) · (n − |T (v)|)
= D(r) + d(v, r) · (n − 2 · |T (v)|)

But D(r) ≤ D(v). Therefore d(v, r) ·(n−2 · |T (v)|) ≥ 0 and rearranging gives |T (v)| ≤ n
2 . ◀

The next two lemmas concern the properties of paths related to any vertex u that buys
an edge uv ∈ Xi where i ≤ 2.

▶ Lemma 7. Let α > 2n. If u buys uv ∈ Xi, for some i ≤ 2, then all w ∈ T (uv) have a
path to r of length ≤ d(w, r) + 2i which does not contain u.

Proof. If uv ∈ X0 then, as uv /∈ T ↓, we have |T (uv)| = ∅. Thus the claim is trivially true.
So assume uv ̸∈ X0. Then uv is the first edge in a path of length i in T from u to a vertex

x which buys xy ∈ H \ T . Thus, there is a path P0 in T of length ℓ(P0) = i − 1 from v to x.
Now let P1 be the path from y to r in T . Observe that P1 does not contain u; otherwise xy

and T would define a cycle of length ≤ 6 (because i ≤ 2), contradicting Corollary 5. Note
also that P1 has length ℓ(P1) ≤ d(r, v) + i because T is a shortest path tree.

Next, let P2 be the path from w to v. Note P2 has length d(w, r) − d(v, r) and also does
not contain u. Consequently P2, P0, xy, P1 is a path from w to r. This path has length at
most

ℓ(P2) + ℓ(P0) + 1 + ℓ(P1) ≤ (d(w, r) − d(v, r)) + (i − 1) + 1 + (d(v, r) + i)
= d(w, r) + 2i

Furthermore this path does not contain u. ◀

▶ Lemma 8. Let α > 2n. If u buys uv ∈ Xi, for some i ≤ 2, then d(u, r) ≥ ⌊ |C(u)|
2 ⌋ − i.

Proof. So uv ∈ Xi is associated with an edge xy ∈ X0, where xy = uv if uv ∈ X0. Let C be
the cycle defined by T + xy. Because T is a shortest path tree it cannot be the case that
y is an ancestor of x in T . Neither is y ∈ T (u); if so, d(u, y) ≤ 3 and therefore ℓ(C) ≤ 6,
contradicting Corollary 5. Thus y ̸∈ T (u) and, consequently, uv ∈ C.

Let z be the lowest common ancestor of x and y. Then C is a path from z to x, plus the
edge xy, plus a path from y to z. So it has length

d(x, z) + 1 + d(y, z) ≤ 2d(x, r) + 2 = 2d(u, r) + 2i + 2

Observe that to achieve this maximum length, we must have d(x, z) = d(x, r) = d(y, r) − 1,
and C must consist of two shortest paths from y to r, meaning C will also contain r.

Next consider the smallest cycle C(u) containing u. Suppose for the sake of contradiction
that d(u, r) ≤ ⌊ |C(u)|

2 ⌋ − i − 1. If |C(u)| is odd, then 2d(u, r) + 2i + 3 ≤ |C(u)|, which
contradicts the choice of C(u). Therefore, |C(u)| is even and 2d(u, r) + 2 + 2i ≤ |C(u)|.
However, |C| ≤ 2d(u, r) + 2i + 2. Thus |C| = |C(u)| and therefore C a min cycle, by
Lemma 2. Furthermore, C is directed by Lemma 3. This is a contradiction because then
xy is in a directed shortest path, and must be part of T and not an edge in X0. Hence
d(u, r) ≥ ⌊ |C(u)|

2 ⌋ − i, as desired. ◀

We present one last technical lemma in this section. We remark that this lemma is of
critical value in our analysis and, we believe, may be of importance in achieving future
improvements.

▶ Lemma 9. If uvw is a directed path in H and degH(v) = 2, then |SH(v)| ≥ α
2(|C(v)|−3) .

If, in addition, uvw is a directed path of down-edges in T , then |SH(v)| ≥ |T (w)|.
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28:8 One n Remains to Settle the Tree Conjecture

Proof. Consider the strategy change of u selling uv and buying uw. As degH(v) = 2, the
only vertices which become farther from u are those of SH(v). They all become farther from
u by 1. All the vertices in Su(w) conversely, become closer to u by 1. Therefore, by the
equilibrium conditions, we must have |SH(v)| ≥ |Su(w)|, otherwise u has an incentive to
switch strategies. Further, if uvw is a path of down-edges in T , then because u is the ancestor
of w and T is a shortest path tree, T (w) ⊆ Su(w). Thus |SH(v)| ≥ |T (w)|, as desired.

Now consider a second strategy change in which u deletes uv. There are two sets of
vertices whose distance to u increases. Shortest paths from u to SH(v) go from using uv to
using C(v) \ uv; note that as degH(v) = 2 it must be that case that uv, vw ∈ C(v). The
distance of these vertices from u then increase by |C(v)| − 2. Meanwhile, paths from u to
Su(w) go from using uvw to using at most C(v) \ {uv, vw}, an increase in distance of at
most |C(v)| − 4. No other vertices have increased distance to u. Therefore u’s cost as a
result changes by at most

(|C(v)| − 2) · |SH(v)| + (|C(v)| − 4) · |Su(w)| − α ≤ (2|C(v)| − 6) · |SH(v)| − α

Here the inequality holds as |SH(v)| ≥ |Su(w)|. This change must non-negative by the
equilibrium condition. This implies |SH(v)| ≥ α

2(|C(v)|−3) , as desired. ◀

3 A Class of Deviation Strategies

We now present a new class of deviation strategies. Specifically, in Section 3.1 we study
three related strategies that a vertex in the biconnected component may ponder. Concretely,
we derive bounds on the change in cost to the vertex resulting from using these strategy
changes. In particular, we will use the fact that, at a Nash equilibrium, these cost changes
must be non-negative. Then, in Section 3.2, we apply these deviation strategies to make
three substantial observations concerning vertices that buy multiple edges of specific types
in H.

3.1 Three Deviation Strategies
As stated, we now introduce a class of deviation strategies. The first, shown in Figure 2a,
involves a vertex u selling edges of X2. Lemma 7 guarantees that the graph is still connected
without these edges. Now u’s cost will change: it saves α for each edge sold, but its distance
to many vertices may increase by varying amounts, requiring us to bound the new total
distance to all vertices. The second deviation, depicted in Figure 2b, is very similar to the
first. The only change is that u buys the edge ur. This reduces the saving by α for the extra
edge bought, but it also reduces the bound on the increased distance to the other vertices
considerably. Finally, the third deviation, pictured in Figure 2c, is slightly different than the
second. The bound given is weaker, because u may sell edges of X+

2 , rather than just X2.
Selling the edge to u’s parent reduces some of the savings from the previous strategies.

▶ Lemma 10. If α > 2n, u buys uv1 ∈ Xi1 , ..., uvj ∈ Xij for j ≥ 1, ik ≤ 2, for all
k, 1 ≤ k ≤ j, u = u0, u1, ...ud(u,r)−1, ud(u,r) = r is the path from u to r in T , then the change
of u selling uv1, ..., uvj results in a change of cost of at most

d(u, r) · n −
d(u,r)−1∑

l=0
2 · |T (ul)| − j · α +

j∑
k=1

(2ik + 2d(u, r)) · |T (uvik
)| (3)
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(a) Application of Lemma 10. u sells its
edges to v1,..., vj .
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(b) Application of Corollary 11. u sells its
edges to v1,..., vj and buys edge ur.
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(c) Application of Corollary 12. u sells its
edges to v1,..., vj and buys edge ur.

Figure 2 The three main strategy changes for vertex u.

Proof. We commence by bounding D(u) before the changes, by comparing it to D(r). By
the triangle inequality, u’s distance to any vertex v is at most d(r, u) + d(r, v) because there
is a path from u to r and a path from r to v. This is the bound we use for vertices in
T (r) \ T (ud(u,r)−1). For other vertices this is obviously not the shortest path. For instance,
for any vertex v ∈ T (u), d(u, v) = d(r, v) − d(r, u). Furthermore, for l in 1 ≤ l ≤ d(u, r), the
length of u’s shortest path to v ∈ |T (ul)\T (ul−1)| differs from r’s by (d(u, r)−2l). Therefore
we have the bound:

D(u) ≤ D(r) − d(u, r) · |T (u)| −
d(u,r)∑

l=1
(d(u, r) − 2l) · |T (ul) \ T (ul−1)|

Now D(r) ≤ D(u). Moreover, if we rearrange, we can more concisely write this as

0 ≤ d(u, r) · n −
d(u,r)−1∑

l=0
2 · |T (ul)|

To complete the proof, consider what happens when u sells uv1, ..., uvj . First, u obviously
saves jα from it edge costs. Second, by Lemma 7, we know that all w ∈ T (uvi) have a path
of length ≤ 2ik + d(w, r) to r that does not contain u. This leads to an increase in distance
from u to w of at most

(d(u, r) + 2ik + d(w, r)) − (d(w, r) − d(u, r)) = 2d(u, r) + 2ik

This yields our desired bound on the change of cost for u:

0 ≤ d(u, r) · n −
d(u,r)−1∑

l=0
2 · |T (ul)| − j · α +

j∑
k=1

(2ik + 2d(u, r)) · |T (uvik
)| ◀

▶ Corollary 11. If α > 2n, u buys uv1 ∈ Xi1 , ..., uvj ∈ Xij
for j ≥ 1, ik ≤ 2, for all

k, 1 ≤ k ≤ j, u = u0, u1, ...ud(u,r)−1, ud(u,r) = r is the path from u to r in T , then the strategy
change of u selling uv1, ..., uvj and buying ur results in a change of cost of at most

n − |Tu d(u,r)
2

| −
∑

l<
d(u,r)

2

2 · |T (ul)| − (j − 1) · α +
j∑

k=1
(2ik + d(u, r) + 1) · |T (uvik

)|

where the second term is removed if d(u,r)
2 is not integral.
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Proof. This strategy change is identical that of to Lemma 10 except u also buys ur. This
means that the new path from u to r is now length 1, not length d(u, r). Hence we replace
d(u, r) · n with n in Equation (3). There are still vertices which are as close or closer to u

than to r. The vertices of |Tu d(u,r)
2

|, which only exists if d(u,r)
2 is integral, are at-least as

close to u as to r, therefore u does not use the edge ur on the path to any of the vertices in
|Tu d(u,r)

2
|, thus we subtract |Tu d(u,r)

2
| from Equation (3). For the remaining sets T (ul) for

l < d(u,r)
2 , each time l decreases by 1, the vertices in the set are 1 closer to u and 1 farther

from r.
Finally, the last two terms of Equation (3) are affected as well. We now buy an additional

edge, so we add α, resulting in the (j − 1) · α term. Furthermore, as previously stated. The
path from u to r now has length 1, meaning for all w ∈ T (uvi) the increase in distance from
u to w is at most

(2d(u, r) + 2ik) − (d(u, r) − 1) = 1 + d(u, r) + 2ik

This yields our desired bound on the change of cost for u:

n − |Tu d(u,r)
2

| −
∑

l<
d(u,r)

2

2 · |T (ul)| − (j − 1) · α +
j∑

k=1
(2ik + d(u, r) + 1) · |T (uvik

)| ◀

▶ Corollary 12. If α > 2n, u buys uv1 ∈ X+
i1

, ..., uvj ∈ X+
ij

for j ≥ 1, ik ≤ 2, for all
k, 1 ≤ k ≤ j, then the strategy change of u selling uv1, ..., uvj and buying ur results in a
change of cost of at most

n − (j − 1)α − (d(u, r) + 1) · |T (u)| +
j∑

k=1
(2ik + d(u, r) + 1) · |T (uvik

)|

Proof. This strategy change is nearly identical to Corollary 11, except now u is potentially
selling the edge to its parent in T . We are no longer certain that u is closer to its former
parent than r is, nor any vertices along the original path from u to r. Thus we lose the
savings of all T (ul) except for l = 0, as T (u0) = T (u). ◀

3.2 Observations arising from the Deviation Strategies
We now apply these three deviation strategies to make three observations concerning vertices
that buy multiple edges of specific types in H . In turn these observations will be instrumental
in proving the main result in Section 4. The first observation simply states that no vertex
can buy two edges in X+

1 .

▶ Observation 13. No vertex u ∈ H buys two edges uv1, uv2 ∈ X+
1 .

Proof. Suppose u ∈ H buys uv1, uv2 ∈ X+
1 . Observe r cannot buy an edge in X+

1 , as this
would imply the existence of a short cycle, contradicting Corollary 5; therefore u ̸= r. Hence,
Lemma 6 implies |T (u)| ≤ n

2 . We now apply Corollary 12 to the strategy change where u

sells uv1, uv2 ∈ X+
1 and buys ur. The change in cost for u is at most

n − α − (d(u, r) + 1) · |T (u)| +
2∑

k=1
(2ik + d(u, r) + 1) · |T (uvik

)|

= n − α − (d(r, u) + 1) · (|T (u)| − |T (uv1)| − |T (uv2)|) + 2 (|T (uv1)| + |T (uv2)|)
≤ n − α + 2 · |T (u)|



J. Dippel and A. Vetta 28:11

≤ n − α + 2n

2
≤ 2n − α

< 0

This contradicts the Nash equilibrium conditions. ◀

Next we observe that no vertex can buy three edges in X+
2 . Furthermore any vertex that

buys two edges in X+
2 must be the parent of a child at the root of a large subtree in T .

▶ Observation 14. No vertex u ∈ H buys three edges uv1, uv2, uv3 ∈ X+
2 , and if u buys

uv1, uv2 ∈ X+
2 , then |T (uv1) ∪ T (uv2)| > n

4 .

Proof. Suppose u ∈ H buys uv1, uv2, uv3 ∈ X+
2 . Again, r cannot buy edges in X2, as this

would contradict Corollary 5; so u ̸= r. Thus Lemma 6 implies |T (u)| ≤ n
2 . Now we apply

Corollary 12 to the strategy change where v sells vv1, vv2, vv3 ∈ X+
2 and buys vr. The

change in cost for v is:

n − 2α − (d(u, r) + 1) · |T (u)| +
2∑

k=1
(2ik + d(u, r) + 1) · |T (uvik

)|

= n − 2α − (d(r, u) + 1) · (|T (u)| − |T (uv1)| − |T (uv2)| − |T (uv3)|)
+4 (|T (uv1)| + |T (uv2)| + |T (uv3)|)

≤ n − 2α + 4 · |T (u)|

≤ n − 2α + 4n

2
≤ 3n − 2α

< 0

This contradicts the Nash equilibrium conditions. Now suppose u ∈ H buys uv1, uv2 ∈ X2.
We can apply Corollary 12 to the strategy change where v sells uv1, uv2 ∈ X+

2 and buys ur.
The change in cost for u is at most

n − α − (d(u, r) + 1) · (|T (v)| − |T (uv1)| − |T (uv2)|) + 4 · (|T (uv1)| + |T (uv2)|)
≤ n − α + 4 · |T (uv1) ∪ T (uv2)|
< 4 · |T (uv1) ∪ T (uv2)| − n

This is non-negative by the Nash equilibrium conditions. Therefore |T (vv1) ∪ T (vv2)| > n
4 ,

as desired. ◀

Finally, we observe some properties that follow when a vertex buys two edges in X2.

▶ Observation 15. If u buys two edges uv1, uv2 ∈ X2, then d(r, u) ≥ 3. If, in addition,
|T (uv1) ∪ T (uv2)| > n

4 then d(r, u) = 3.

Proof. By Corollary 5, r cannot buy edges of X2, therefore u ̸= r. Further, by Lemma 6,
|T (u)| ≤ n

2 .
We now apply Lemma 10 with the strategy change where u sells uv1, uv2. Its cost changes

by at most

d(r, u) · n − 2α − 2d(r, u) · |T (u)| + (2d(r, u) + 4) · |T (uv1) ∪ T (uv2)|
≤ d(r, u) · n − 2α + 4 · |T (uv1) ∪ T (uv2)|

≤ d(r, u) · n − 2α + 4n

2
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< d(r, u) · n − 2(2n) + 2n

= (d(r, u) − 2) · n

If d(r, u) ≤ 2 then this cost change is negative, a contradiction. Thus d(r, u) ≥ 3.
Now suppose |T (uv1) ∪ T (uv2)| > n

4 . Without loss of generality, let |T (uv1)| ≥ |T (uv2)|.
Therefore |T (uv1)| > n

8 , meaning T (uv1) = T (v1). As uv1 ∈ X2, we know v1 buys an edge
in X0 or X1 \ X0. Suppose v1 buys v1y ∈ X0. By Corollary 11, v selling v1y and buying v1r

changes v1’s cost by

≤ n − (d(v1, r) + 1) · |T (v1)| − (d(v1, r) − 1) · |T (u) \ T (v1)|
≤ n − 2 · |T (v1)| − (d(v, r) − 1) · |T (u)|

< n − 2n

8 − (d(v1, r) − 1)n

4
= n − d(v1, r)n

4
= n − (d(u, r) + 1)n

4
≤ n − (3 + 1)n

4
= 0

This contradicts the equilibrium condition, therefore v1 buys v1w ∈ X1 \X0. w buys wy ∈ X0.
By Corollary 11, w selling wy and buying wr changes w’s cost by

≤ n − (d(w, r) + 1)|T (w)| − (d(w, r) − 1)|T (v1) \ T (w)| − (d(w, r) − 3)|T (u) \ T (v1)|
≤ n − 2 · |T (v1)| − (d(w, r) − 3) · |T (u)|

< n − 2n

8 − (d(w, r) − 3)n

4
= 3

2n − d(w, r)n

4
= 3

2n − (d(u, r) + 2)n

4
= n − d(u, r)n

4

If d(r, u) ≥ 4, this leads to a contradiction. Thus d(r, u) = 3, as desired. ◀

4 The Tree Conjecture holds for α > 2n

We now have all the resources necessary to prove the tree conjecture holds if α > 2n. To
do this, we prove two final lemmas which together give the main result. The first of these
lemmas investigates the path to the root r from a vertex u ∈ H that buys an out-edge.

▶ Lemma 16. Let α > 2n. If u0 buys u0v ∈ X0 and u0, u1, ...ud(u,r)−1, ud(u,r) = r is the
path from u0 to r in T then at most one of u0, u1, u2 has degH = 2

Proof. By Observation 13, no vertex buys two edges in X+
1 . Thus u0 cannot buy u0u1 as

well as u0v. Therefore u1 buys u1u0. Similarly, by Observation 13, u1 cannot buy u1u2 as
well as u1u0. Therefore u2 buys u2u1.

Now if degH(u0) = 2 then SH(u0) = T (u0), because u1 is u0’s parent and v ̸∈ T (u0),
thus T (u0) ∩ H = {u0}. Similarly, if degH(u1) = 2 then SH(u1) = T (u1) \ T (u0), and if
degH(u2) = 2 then SH(u2) = T (u2) \ T (u1).
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Next by Lemma 8, we know that d(r, u2) ≥ ⌊ |C(u2)|
2 ⌋ − 2, that d(r, u1) ≥ ⌊ |C(u1)|

2 ⌋ − 1
and that d(r, u0) ≥ ⌊ |C(u0)|

2 ⌋.
Furthermore, if degH(u1) = 2 then, by Lemma 9, |SH(u1)| ≥ |T (u0)|. If degH(u2) = 2

then, by Lemma 3, u2u1 is in a directed cycle, which means u3 buys u3u2. Thus, by Lemma 9,
we have |SH(u2)| ≥ |T (u1)|

We proceed by case analysis. First, assume that degH(u2) = degH(u1) = 2. Then,
by Lemma 9, we have |SH(u1)| ≥ α

2(|C(u1)|−3) and |SH(u2)| ≥ |T (u1)|. Thus |T (u2)| =
|SH(u2)| + |T (u1)| ≥ 2|T (u1)| ≥ 2|SH(u1)| ≥ 2α

2(|C(u1)|−3) . Now, by Lemma 6, |T (u2)| ≤ n
2 .

Therefore n
2 ≥ 2α

2(|C(u1)|−3) . Rearranging gives |C(u1)| ≥ 8. By Observation 15, d(u1, r) ≥ 3.
Applying Corollary 11 when u1 sells u1u0 and buys u1r, the change in cost to u1 is at

most

n − |Tu d(u,r)
2

| −
∑

l<
d(u,r)

2

2 · |T (ul)| − (j − 1) · α +
j∑

k=1
(2ik + d(u, r) + 1) · |T (uvik

)|

= n − |Tu d(u,r)
2

| −
∑

l<
d(u,r)

2

2 · |T (ul)| + (d(u1, r) + 1 + 2) · |T (u1u0)|

= n − |Tu d(u,r)
2

| −
∑

l<
d(u,r)

2

2 · |T (ul)| + (d(u1, r) + 3) · |T (u0)|

≤ n − |Tu d(u,r)
2

| −
∑

l<
d(u,r)

2

2 · |T (ul)| + (2d(u1, r)) · |T (u0)|

≤ n − 2|T (u1)| − (d(u1, r) − 1) · |T (u2)| + (2d(u1, r)) · |T (u0)|
= n − (d(u1, r) + 1) · |T (u1)| − (d(u1, r) − 1) · (|T (u2) \ |T (u1)|) + (2d(u1, r)) · |T (u0)|
= n − (d(r, u1) + 1) · |T (u1)| − (d(u1, r) − 1) · |SH(u2)| + (d(u1, r) + 3) · |T (u0)|
≤ n − (d(r, u1) + 1) · |T (u1)| − (d(u1, r) − 1) · |T (u1)| + (2d(u1, r)) · |T (u0)|
= n − 2(d(r, u1)) · |T (u1)| + 2(d(u1, r)) · |T (u0)|
= n − 2(d(r, u1)) · |T (u1) \ T (u0)|
= n − 2(d(r, u1)) · |SH(u1)|
≤ n − 2(d(r, u1)) · α

2(|C(u1)|−3)

≤ n − 2(⌊ |C(u1)|
2 ⌋ − 1) · α

2(|C(u1)|−3)

≤ n − (|C(u1)| − 3) · α
2(|C(u1)|−3)

= n − α
2

< 0

Therefore it cannot be that degH(u2) = degH(u1) = 2.
Second, suppose degH(u0) = degH(u2) = 2. By Lemma 9, we have |SH(u0)| ≥ α

2(|C(u1)|−3)
and |SH(u2)| ≥ |T (u1)|. Because u0v ∈ X0, it follows that T (v) ̸⊆ T (u0). Thus T (u0v) = ∅.
Applying Corollary 11 when u0 sells u0v and buys u0r, the change in cost to u0 is at most

n − |Tu d(u,r)
2

| −
∑

l<
d(u,r)

2

2 · |T (ul)| − (j − 1) · α +
j∑

k=1
(2ik + d(u, r) + 1) · |T (uvik

)|

= n − |Tu d(u,r)
2

| −
∑

l<
d(u,r)

2

2 · |T (ul)|

≤ n − 2|T (u0)| − 2|T (u1)| − (d(u0, r) − 3) · |T (u2)|
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= n − 2|T (u0)| − (d(u0, r) − 1) · |T (u1)| − (d(u0, r) − 3) · |T (u2) \ T (u1)|
= n − 2|T (u0)| − (d(u0, r) − 1) · |T (u1)| − (d(u0, r) − 3) · |SH(u2)|
≤ n − 2|T (u0)| − (d(u0, r) − 1) · |T (u1)| − (d(u0, r) − 3) · |T (u1)|
= n − 2|T (u0)| − (2d(u0, r) − 4) · |T (u1)|
≤ n − (2d(u0, r) − 2)|T (u0)|
= n − (2d(u0, r) − 2)|SH(u0)|
≤ n − (2d(r, u0) − 2) · α

2(|C(u0)|−3)

≤ n − (2⌊ |C(u0)|
2 ⌋ − 2) · α

2(|C(u0)|−3)

≤ n − (|C(u0)| − 3) · α
2(|C(u0)|−3)

= n − α
2

< 0

Therefore it is not true that degH(u2) = degH(u0) = 2.
Third, suppose degH(u0) = degH(u1) = 2. By Lemma 9, we have |SH(u0)| ≥ α

2(|C(u1)|−3)
and |SH(u1)| ≥ |T (u0)|. Because u0v ∈ X0, it follows that T (v) ̸⊆ T (u0). Thus T (u0v) = ∅.
Applying Corollary 11 when u0 sells u0v and buys u0r, the change in cost to u0 is at most

n − |Tu d(u,r)
2

| −
∑

l<
d(u,r)

2

2 · |T (ul)| − (j − 1) · α +
j∑

k=1
(2ik + d(u, r) + 1) · |T (uvik

)|

= n − |Tu d(u,r)
2

| −
∑

l<
d(u,r)

2

2 · |T (ul)|

≤ n − 2|T (u0)| − (d(u0, r) − 1) · |T (u1)|
= n − (d(u0, r) + 1) · |T (u0)| − (d(u0, r) − 1) · |T (u1) \ T (u0)|
= n − (d(u0, r) + 1) · |T (u0)| − (d(u0, r) − 1) · |SH(u1)|
≤ n − (d(u0, r) + 1) · |T (u0)| − (d(u0, r) − 1) · |T (u0)|
≤ n − (2d(u0, r)) · |T (u0)|
= n − (2d(u0, r)) · |SH(u0)|
≤ n − (2d(r, u0)) · α

2(|C(u0)|−3)

≤ n − (2⌊ |C(u0)|
2 ⌋) · α

2(|C(u0)|−3)

≤ n − (|C(u0)| − 3) · α
2(|C(u0)|−3)

= n − α
2

< 0

Therefore it is not true that degH(u1) = degH(u0) = 2. Thus, at most one of u0, u1, u2
has degH = 2, as desired. ◀

We now apply a counting argument to upper bound the number of vertices in H that
buy two edges in X2.

▶ Lemma 17. The number of vertices v ∈ H that buy two edges in X2 is < degH(r).

Proof. The only vertices that can buy two edges e1, e2 in X2 are those with |T (e1)∪T (e2)| > n
4

by Observation 14. All of these vertices are distance 3 from r, by Observation 15. The
common ancestor in T of any pair of these vertices must be r, otherwise there is a vertex
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u ̸= r with |T (u)| > n
2 , contradicting Lemma 6. Furthermore, r cannot buy any edge e such

that T (e) contains such a vertex v, otherwise r could sell e and buy rv, reducing its distance
to T (v) by 2 and increasing its distance to T (e) \ T (v) by ≤ 2. This gives a net increase
in cost of ≤ 2|T (v)| − 2|T (e) \ T (v)| ≤ 4|T (v)| − 2|T (e)| < 4n

4 − 2n
2 = 0, a contradiction.

Therefore the number of vertices which buy two edges in X2 is ≤ deg−
H(r). By Lemma 3, we

must have deg+
H(r) ≥ 1, implying deg−

H(r) < degH(r) and completing the proof. ◀

Putting everything together we can now prove the main result.

Proof of Theorem 1. Here we use combine all to prove that if G is a Nash equilibrium
graph for the network creation game (n, α) and α > 2n, G is a tree.

This is a proof by contradiction based on the assumption that there exists a biconnected
component H in G containing nH vertices. Within H, the sum of degrees of all vertices in
H equals 2(nH − 1) + 2|X0|. That is twice the number of edges in the spanning tree on H

induced by T plus twice the number of out-edges in H.
Let’s instead count the degrees in the following way:
nH∑
i=2

∑
v∈H:degH (v)=i

i

= 2nH +
nH∑
i=3

∑
v∈H:degH (v)=i

i − 2

= 2nH + degH(r) − 2 +
nH∑
i=3

∑
v∈H−r:degH (v)=i

i − 2

≥ 2nH + degH(r) − 2 + 2|X0| −
|X2|∑
i=2

∑
v∈H:v is in i paths of X2 edges

i − 1 [by Lemma 16]

= 2nH + degH(r) − 2 + 2|X0| −
∑

v∈H:v is in 2 paths of X2 edges
1 [by Observation 14]

> 2nH + degH(r) − 2 + 2|X0| − degH(r) [by Lemma 17]
= 2(nH − 1) + 2|X0|

This is a contradiction, implying that H does not exist for α > 2n. ◀

5 Conclusion

In this paper we proved the revised tree conjecture holds for α > 2n. Moreover, we have
reached a natural limit in the quest to settle this conjecture. Specifically, for α ∈ (n − 3, 2n],
the range in which the conjecture is unsettled, we are no longer certain that directed cycles
must be present in non-tree equilibrium graphs. To close this remaining gap, we believe
min-cycles still have an important role to play but, to allow their usage, more precise analyses
will be necessary. A potentially useful intermediate step would be to determine conditions
that allow for an undirected min-cycle.
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We study extensions of Semënov arithmetic, the first-order theory of the structure ⟨N, +, 2x⟩. It is
well-known that this theory becomes undecidable when extended with regular predicates over tuples
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1 Introduction

This paper studies the decidability and complexity of the existential theory of an extension
of the structure ⟨N, 0, 1, +, 2x⟩, where 2x is the function mapping a natural number n to
2n. Decidability of the first-order theory of this structure was first shown by Semënov in
a more general framework using an automata-theoretic approach [13], and we henceforth
call this theory Semënov arithmetic. As shown by Cherlin and Point [7], see also [11],
Semënov arithmetic admits quantifier elimination and has a quantifier-elimination procedure
that runs in non-elementary time, and this upper bound is tight [11]. The existential
fragment of Semënov arithmetic has recently been shown decidable in NEXP [2] by giving
a more elaborate quantifier elimination procedure. Unlike its substructure Presburger
arithmetic (obtained by dropping the function 2x), Semënov arithmetic is not automatic
in the sense of the theory of automatic structures [5, 10]. Consider1 the family of formulas
Φn ≡ x1 = 1 ∧

∧
1≤i≤n xi+1 = 2xi ∧ y < xn. Then the (finite) number of solutions of Φn

is a tower of height n. Suppose Semënov arithmetic (viewed as a relational structure) was
automatic. Then each of its relations is definable by a deterministic finite automaton (DFA)

1 We thank an anonymous reviewer for suggesting this argument.
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of size at most m for some m ∈ N over some alphabet Σ. But then the DFA for Φn is acyclic
and has at most mn+2 many states, meaning that Φn has at most (m(n+2)|Σ|)(mn+2) different
solutions, a contradiction.

The decidability of Semënov arithmetic is fragile with respect to extensions of the structure.
For instance, it is not difficult to see that extending Semënov arithmetic with the Büchi
predicate V2(x, y), where V2(x, y) holds whenever x is the largest power of two dividing y

without remainder, results in an undecidable first-order theory, see e.g. [11]. However, this
undecidability result requires an ∃∗∀∗-quantifier prefix and does not rule out decidability of
the existential fragment. The main result of this paper is to show that the existential theory of
generalised Semënov arithmetic, i.e., the existential theory of ⟨N, 0, 1, +, 2x, {Ri}i≥0⟩, where
R0, R1, . . . is an enumeration of all regular languages over the alphabets {0, 1}d, d ≥ 1, is
decidable in EXPSPACE. Non-automaticity of Semënov arithmetic and undecidability of
⟨N, 0, 1, +, 2x, V2⟩ rule out the possibility of approaching this existential theory via automatic
structures based on finite-state automata or via quantifier-elimination à la Cherlin and
Point, since V2 is definable as a regular language over pairs of number strings. Instead, our
decidability result is based on a reduction to the language non-emptiness problem of a special
class of affine vector addition systems with states (affine VASS).

A VASS comprises a finite-state controller with a finite number of counters ranging
over the natural numbers. In affine VASS, counters can be updated by affine functions
x 7→ ax + b when taking a transition, provided that the resulting counter is non-negative.
While reachability in affine VASS is decidable for a single counter [8], already in the presence
of two counters reachability becomes undecidable [12]. Our reduction consequently requires
a restricted class of affine VASS to obtain decidability. We call this class restricted labelled
affine VASS (restricted LAVASS). A restricted LAVASS is an affine VASS with d pairs of
counters and hence 2d counters in total. For every pair, once the first counter achieves a
non-zero value along a run, it keeps getting incremented at every transition; the second
counter is only updated via affine functions x 7→ 2x and x 7→ 2x + 1. A configuration
consisting of a control state and 2d counter values is accepting whenever the control state
is accepting and for every pair of counters, the first counter has the same value as the
second counter. We give an EXPSPACE procedure for deciding emptiness of restricted
LAVASS whose correctness proof is based on a counter elimination procedure in which we
successively encode counters into a finite state space while preserving equi-non-emptiness.
The EXPSPACE upper bound for existential generalised Semënov arithmetic follows from
a reduction to language non-emptiness of a restricted LAVASS whose language encodes all
solutions of the given formula. Note that obtaining an elementary upper bound is non-trivial
since, e.g., the family of formulas Φn above shows that smallest solution of an existential
formula can be non-elementary in bit-length.

As an application of our EXPSPACE upper bound for existential generalised Semënov
arithmetic, we show that a certain class of string constraints with length constraints is
decidable in EXPSPACE. This class allows for existentially quantifying over bit-strings,
and to assert that the value of a string variable lies in a regular language, as well as
Presburger-definable constraints over the lengths of the bit-strings stored in string variables
and the numerical values of those variables (when viewed as encoding a number in binary).
Decidability of this class was left open in [3]. We settle this open problem by showing that
it can be reduced to the existential fragment of generalised Semënov arithmetic. Formulas
of this class of string constraints appear widely in practice – in fact, all formulas in the
extensive collection of standard real-world benchmark sets featured in [3, 4] lie in this class
or can be reduced to formulas of this class by standard methods.
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2 Preliminaries

2.1 Basic notation
By Z and N we denote the integers and non-negative integers, respectively. Given an m × n

integer matrix A, we denote by ∥A∥1,∞ the (1, ∞)-norm of A, which is the maximum over
the sum of the absolute values of the elements of the rows in A. For b ∈ Zm, ∥b∥∞ is the
largest absolute value of the numbers occurring in b.

2.2 Numbers as strings and strings as numbers
Here and below, let Σ = {0, 1} be a binary alphabet. Any string from Σ∗ has an interpretation
as a binary encoding of a natural number, possibly with an arbitrary number of leading zeros.
Conversely, any natural number in N can be converted into its bit representation as a string in
Σ∗. Finally, by considering strings over (Σk)∗ for k ≥ 1, we can represent k-tuples of natural
numbers as strings over Σk, and vice versa. Formally, given u = unun−1 . . . u0 ∈ (Σk)∗, we
define the tuple of natural numbers corresponding to u in most-significant digit first (msd)
notation as

JuK :=
n∑

i=0
2i · ui .

Note that J·K is surjective but not injective. We lift the definition of J·K to sets in the natural
way.

2.3 Generalised Semënov arithmetic
For technical convenience, the structures we consider in this paper are relational. We refer to
the first-order theory of ⟨N, 0, 1, +, 2(·)⟩ as Semënov arithmetic, where + is the natural ternary
addition relation, and 2(·) is the power relation of base two, consisting of all tuples (a, b) ∈ N2

such that b = 2a. Semënov arithmetic is an extension of Presburger arithmetic, which is
the first-order theory of the structure ⟨N, 0, 1, +⟩. It is known that Semënov arithmetic is
decidable and admits quantifier elimination [2, 7, 13].

For presentational convenience, atomic formulas of Semënov arithmetic are one of the
following:

linear equations of the form a1 · x1 + · · · + ad · xd = b, ai, b ∈ Z, and
exponential equations of the form x = 2y.

Here, x1, . . . , xd, y are arbitrary first-order variables. Clearly, richer atomic formulas such as
x + 22y + y = z + 5 can be defined from those basic class of atomic formulas, since, in this
example, x + 22y + y = z + 5 ≡ ∃u∃v u = 2v ∧ v = 2y ∧ x + u + y − z = 5. Moreover, since
we are interpreting numbers over non-negative integers, we can define the order relation in
existential Semënov arithmetic. This enables us to without loss of generality assume that
existential formulas of Semënov arithmetic are positive, since ¬(x = y) ≡ x < y ∨ y < x and
¬(x = 2y) ≡ ∃z z = 2y ∧ ¬(x = z).

The main contribution of this paper is to show that the existential fragment of a
generalisation of Semënov arithmetic is decidable. Subsequently, we write 0 to denote a tuple
of zeros in any arbitrary but fixed dimension. Generalised Semënov arithmetic additionally
allows for non-negated atomic formulas R(x1, . . . , xk), where R = 0∗ · L for some regular
language L ⊆ (Σk)∗. We interpret R as JRK ⊆ Nk, and the additional leading zeros we
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require ensure that R = JJRKK−1. Subsequently, we call a language L ⊆ (Σk)∗ zero closed
if L = 0∗ · L. Given a formula Φ(x1, . . . , xn) of generalised Semënov arithmetic, we define
JΦK ⊆ Nd as the set of all satisfying assignments of Φ.

The size of an atomic formula R(x1, . . . , xk) is defined as the number of states of the
canonical minimal DFA defining R. For all other atomic formulas φ, we define their sizes |φ|
as the number of symbols required to write down φ, assuming binary encoding of numbers.
The size |Φ| of an arbitrary existential formula Φ of generalised Semënov arithmetic is the
sum of the sizes of all atomic formulas of Φ.

The full first-order theory of generalised Semënov arithmetic is known to be undecid-
able [11]. This follows from the undecidability of ⟨N, 0, 1, +, 2(·), V2⟩, where V2 is the binary
predicate such that V2(x, y) holds if and only if x is the largest power of 2 dividing y without
remainder. Note that V2 can be defined in terms of a regular language, cf. [6]. The central
result of this paper is the following:

▶ Theorem 1. The existential fragment of generalised Semënov arithmetic is decidable in
EXPSPACE.

2.4 Affine vector addition systems with states
A technical tool for our decidability results is a tailor-made class of labelled affine
vector addition systems with states (LAVASS). Formally, an LAVASS is a tuple V =
⟨Q, d, Σ, ∆, λ, q0, F, Φ⟩, where Q is a finite set of control states, d ≥ 0 is the dimension
of V , Σ is a finite alphabet, ∆ ⊆ Q × P(Σ) × Q is a finite set of transitions, λ : ∆ → Opsd

is the update function, where Ops ⊆ Z[x] is the set of all affine functions over a single
variable, q0 ∈ Q is the initial control state, F ⊆ Q is the set of final control states, and
Φ is a a quantifier-free formula of Presburger arithmetic Φ(x1, . . . , xd) that specifies a in-
finite set JΦK ⊆ Nd of final counter values. Note that when d = 0 then V is essentially a
non-deterministic finite automaton.

The set of configurations of V is C(V ) := Q × Nd. The initial configuration of V is
c0 = (q0, 0, . . . , 0), and the set of final configurations is Cf (V ) := {(qf , v) : qf ∈ F, v ∈ JΦK} .

For an update function λ : ∆ → Opsd, we define

∥λ∥ := max{|a| + |b| : λ(t) = (f1, . . . , fd), fi = ax + b, 1 ≤ i ≤ d, t ∈ ∆} .

We define the size |V | of an LAVASS V = ⟨Q, d, Σ, ∆, λ, q0, F, Sf ⟩ as

|V | := |Q| + |∆| · (d + 1) · log(∥λ∥ + 1) + |Φ| .

An LAVASS induces an (infinite) labelled directed configuration graph G = (C(V ), −→),
where −→ ⊆ C(V ) × Σ × C(V ) such that c

a−→ c′ if and only if c = (q, m1, . . . , md) and
c′ = (q′, m′

1, . . . , m′
d) and there is t = (q, A, q′) ∈ ∆ such that a ∈ A, λ(t) = (f1, . . . , fd), and

m′
i = fi(mi) for all 1 ≤ i ≤ d. We lift the definition of −→ to words w = a1 · · · an ∈ Σ∗ in

the natural way, and thus write c
w−→ c′ whenever c

a1−→ c1
a2−→ · · · an−1−−−→ cn−1

an−−→ c′ for some
c1, . . . , cn−1 ∈ C. The language L(V ) ⊆ Σ∗ of V is defined as

L(V ) := {w ∈ Σ∗ : c0
w−→ cf , cf ∈ Cf (V )} .

If we are interested in runs of LAVASS, we write π = c1
t1−→ c2

t2−→ · · · tn−2−−−→ cn−1
tn−1−−−→ cn

to emphasise the sequence of configurations and transitions taken. For 1 ≤ i ≤ j ≤ n, we
denote by π[i, j] the subsequence ci

ti−→ ci+1
ti+1−−→ · · · tj−1−−−→ cj . We denote by val(π, xi) the

value mi of the i-th counter in the last configuration of π.
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The non-emptiness problem for an LAVASS is to decide whether L(V ) ̸= ∅. Affine VASS
are a powerful class of infinite state systems, and even in the presence of only two counters
and Φ(x1, x2) ≡ x1 = x2, the emptiness problem is undecidable [12]. In Section 4, we identify
a syntactic fragment of LAVASS for which non-emptiness can be decided in EXPSPACE.

We briefly discuss closure properties of LAVASS and show that they are closed under
union and intersection, and restricted kinds of homomorphisms and inverse homomorphisms,
using essentially the standard constructions known for finite-state automata. Let Vi =
⟨Qi, di, Σ, ∆i, λi, q

(i)
0 , Fi, Φi⟩, i ∈ {1, 2}, be two LAVASS.

▶ Proposition 2. The languages of LAVASS are closed under union and intersection.
Moreover, for V such that L(V ) = L(V1) ∩ L(V2), we have |V | ≤ |V1| · |V2|.

Proof. This result can be obtained by generalising the standard constructions known from
non-deterministic finite-state automata. The set of control states of the LAVASS V accepting
the intersection of LAVASS V1 and V2 is Q1 × Q2. The dimension of V is the sum of the
dimensions of V1 and V2, and the counters of V1 and V2 get independently simulated in the
counters of V . Upon reading an alphabet symbol a, the LAVASS V then simultaneously
simulates the respective transitions of V1 and V2 for a; further details are relegated to
Appendix A.1. ◀

Note that since LAVASS languages contain regular languages, Proposition 2 in particular
enables us to intersect LAVASS languages with regular languages.

Let Σ, Γ be two finite alphabets. Recall that a homomorphism h : Γ∗ → Σ∗ is fully defined
by specifying h(a) for all a ∈ Γ. We call h a projection if |h(a)| = 1 for all a ∈ Γ.

▶ Proposition 3. The languages of LAVASS are closed under projections and inverses of
projections.

Proof. Let h : Γ∗ → Σ∗ be a projection. Given an LAVASS V = ⟨Q, d, Σ, ∆, λ, q0, F, Sf ⟩, to
obtain closure under projections replace any t = (q, A, q′) ∈ ∆ with t′ = (q, h(A), q′), and set
λ(t′) := λ(t). To obtain closure under inverse projections, replace any t = (q, A, q′) ∈ ∆ with
t′ = (q, h−1(A), q′) and set λ(t′) := λ(t). ◀

3 Reducing Semënov arithmetic to restricted LAVASS

Let Σ = {0, 1}. In this section, we show how given a quantifier-free formula Φ(x1, . . . , xd) of
Semënov arithmetic, we can construct an LAVASS V over the alphabet Σd := {0, 1}d such
that JL(V )K = {x ∈ Nd : Φ(x)}. We will subsequently observe that the resulting LAVASS
enjoy strong structural restrictions, giving rise to the fragment of restricted LAVASS that we
then formally define. For our purposes, it will be sufficient to primarily focus on formulas Φ
of Semënov arithmetic which are conjunctions of atomic formulas.

In the previous section, we stated that for presentational convenience, the atomic formulas
of Semënov arithmetic are either linear equations or exponential equations of the type x = 2y.
It is well known that the sets of solutions of systems of linear equations A · x = b, where
x, b ∈ Z can be represented by a regular language and are hence definable via an LAVASS.

▶ Lemma 4 ([14], see also [9, Eqn. (1)]). Given a system of equations Φ ≡ A · x = b with
A ∈ Zm×d and b ∈ Zm, there is a DFA V with at most 2m · max{∥A∥1,∞, ∥b∥∞}m states
such that L(V ) is zero-closed and JL(V )K = JΦK.
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q0 q1

[
1
0

]
: id

×2

[
0
0

]
: id

×2

[
0
b

]
: ++

×2 + b

Figure 1 A gadget with two counters for the exponential equation x = 2y, where b ∈ {0, 1}.

The crucial part, which requires the power of LAVASS, are exponential equations x = 2y. An
LAVASS V with two counters and JL(V )K = Jx = 2yK is depicted in Figure 1. Control-states
are depicted as circles and transitions as arrows between them. The vector before the colon
is the alphabet symbol read. For instance, the transition from q0 to q1 reads the alphabet
symbol (1, 0) ∈ {0, 1}2. After a colon, we display the counter operations when reading the
alphabet symbol, the operation on the first counter is displayed on the top and the operation
on the second counter on the bottom. Here and subsequently, for presentational convenience,
id is the identity function x 7→ x, and ×2 and ×2+1 are the functions x 7→ 2x and x 7→ 2x + 1,
respectively. Thus, the transition from q0 to q1 applies the identity function on the first
counter, and the function x 7→ 2x on the second counter.

The idea behind the gadget in Figure 1 is as follows. For an example, suppose that y = 5,
then x = 32, and in binary the sequence of digits of x and y looks as follows:

[ x
y ] = [ 1

0 ] [ 0
0 ] [ 0

0 ] · · · [ 0
0 ] [ 0

1 ] [ 0
0 ] [ 0

1 ]

Since x = 2y, we have that x ∈ 0∗10∗, and the number of trailing zeros of x is equal to the
value of y. Thus, once a 1 in the binary representation of x has been read, the first counter
in the gadget of Figure 1 keeps incrementing and counts the number of trailing zeros of x.
At the same time, the second counter in the gadget of Figure 1 keeps the value 0 until it
reads the first 1 of the binary expansion of y, since 2 · 0 = 0. It then computes the value of y

in binary on the second counter by multiplying the value of the second counter by 2 when
reading a zero, and multiplying by two and adding one when reading a one. The LAVASS in
Figure 1 only accepts when the first and the second counter have the same value, i.e., when
the number of trailing zeros of the binary expansion of x equals the value of y, as required.

A closer look at the gadget constructed in Figure 1 reveals a number of important
structural properties:

(i) all operations performed on the first counter are either the identity map id or increments
++;

(ii) all operations performed on the second counter are affine updates ×2 and ×2+1;
(iii) once the first counter gets incremented on a run, it gets incremented at every subsequent

transition; and
(iv) only counter configurations in which the value of the first counter equals the value of

the second counter are accepted.
Those properties are crucial to obtain decidability of (generalised) existential Semënov
arithmetic.

▶ Definition 5. An LAVASS is restricted if and only if it has an even number of 2d counters
called xi, yi, 1 ≤ i ≤ d, such that every counter pair (xi, yi) adheres to the above Properties (i)–
(iv), where xi is regarded as the first counter and yi as the second counter and the set of final
counter values is defined by Φ ≡

∧
1≤i≤d xi = yi.
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For convenience, when referring to the counters in a pair, we subsequently refer to the first
counter as its x-counter and to the second counter as its y-counter. We will usually write m

for the value of the x-counter and n for the value of the y-counter. The following lemma is
an immediate result of Figure 1 together with the previous discussion.

▶ Lemma 6. There is a fixed restricted LAVASS V of dimension two such that L(V ) is zero
closed and JL(V )K = Jx = 2yK.

Next, by following the constructions in Section 2.4 and noting that the counters of different
LAVASS are simulated independently we obtain the following result.

▶ Proposition 7. The languages of restricted LAVASS are closed under union, intersection,
projection, and inverse projections.

Thus, we are ready to present the central lemma of this section.

▶ Lemma 8. Consider a positive conjunctive formula of Semënov arithmetic

Φ(x) ≡ A · x = b ∧
∧
i∈I

xi = 2yi ,

where A ∈ Zm×n, b ∈ Zm, I is a finite index set, and xi and yi are variables from x. There
is a restricted LAVASS V of dimension 2|I| and of size (∥A∥1,∞ + ∥b∥∞ + 2)O(m+|I|) such
that JL(V )K = JΦK.

This lemma follows from the combination of Lemma 4, Lemma 6, and Proposition 7.
Finally, for technical convenience, we assume that for a restricted LAVASS, we have

|Q| ≥ 2. This is with no loss of generality, since if |Q| = 1 then deciding non-emptiness is
trivial (the restricted LAVASS has non-empty language if and only if the only control state
is accepting).

The next sections will be devoted to the proof of the main result of this paper on restricted
LAVASS.

▶ Proposition 9. Language emptiness of a restricted LAVASS V with 2d counters is decidable
in NSPACE(|V | · 2O(d)).

This proposition enables us to prove Theorem 1, by appealing to Lemma 8. Further details
are relegated to Appendix A.2.

4 Certificates witnessing non-emptiness of restricted LAVASS

We now show that language emptiness for restricted LAVASS is decidable in exponential
space. Clearly, this problem reduces to deciding whether a given restricted LAVASS has
an accepting run, but witnessing runs may be of non-elementary length. To overcome
this problem, we define an abstraction for configurations of restricted LAVASS. Abstract
configurations store residue classes of counter values, as well as some further information
that is required to witnesses the existence of concrete accepting runs. Before giving the
formal definition, we provide some high level intuition that leads to our definition of abstract
configurations. Next, we introduce reachability certificates, which are abstract runs with
certain further properties. We argue that the existence of witnessing certificates, which
are special kinds of reachability certificates witnessing that the language of an LAVASS is
non-empty, are decidable in EXPSPACE. The last two sections then establish that witnessing
certificates actually witness non-emptiness of restricted LAVASS.
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4.1 Key observations
Given a restricted LAVASS V in dimension d, assuming that L(V ) ̸= ∅, there is a run
π from an initial configuration c to a final configuration c′. With no loss of generality,
throughout this section, we assume that val(c′, xi) ≥ val(c′, xi+1) > 0 for all 1 ≤ i < d.
In particular, this implies that every counter gets incremented at least once along a path
witnessing non-emptiness.

Our first observation is that if, along π, a counter yi achieves the first time a non-zero
value by taking a ×2+1 labeled transition, then the length of the remaining segment of π

is bounded by O(log(mi + 1)), where mi is the value of counter xi before the transition is
taken. The reason is that, once yi has non-zero value, its value is at least doubling for every
following transition taken. Hence if π is “long” then along π there will be loops incrementing
a counter xi before the corresponding yi achieves non-zero value.

In the latter scenario, we may actually, subject to some bookkeeping, discard concrete
values of xi and yi and only store their residue classes modulo ℓi, where ℓi is the length of
the first loop incrementing xi along π. In particular, if we are given a non-accepting run π′

such that val(π′, xi) ≡ val(π′, yi) mod ℓi and val(π′, xi) < val(π′, yi) then π′ can be turned
into a run π′′ where val(π′′, xi) = val(π′′, yi) by iterating the loop of length ℓi.

There are, however, some further subtleties that need to be taken care of. Consider the
segment π′ of π between the first transition labeled by ++ on xi and the first transition
labeled by ++ on xi+1. If π′ contains no loop then we are in a situation where the first loop
incrementing xi is also the first loop incrementing xi+1. This means that the values of xi and
xi+1 get paired together, and hence, for an accepting run, also the values of yi and yi+1 are
paired together. In our approach, we deal with such circumstances by introducing so-called
y-constraints. A y-constraint of the form yi − yi+1 = δi for some constant δi ∈ N asserts that
the counters yi+1 and yi must eventually have constant difference δi along a run.

Otherwise, if π′ above contains a loop, the difference between the values of xi and xi+1 is
not necessarily constant, but lower-bounded by the length δi of the loop-free sub path of π′.
Thus, in an accepting run, the difference between yi and yi+1 must also be at least δi, which
is asserted by a y-constraint of the form yi − yi+1 ≥ δi.

4.2 Abstract configurations for restricted LAVASS
Our decision procedure for non-emptiness of restricted LAVASS is based on reducing this
problem to a reachability problem in a carefully designed finite-state abstraction of the state-
space of LAVASS. Throughout this section, let V = ⟨Q, 2d, Σ, ∆, λ, q0, F, Φ⟩ be a restricted
LAVASS. We first define the state space of the abstracted LAVASS.

▶ Definition 10. An abstract configuration is a tuple

α = (q, m1, n1, . . . , md, nd, u1, u2, . . . , ud−1, ℓ1, . . . , ℓd)
∈ Q × (N ∪ {⊥})2d × Nd−1 × (N ∪ {⊤})d,

such that mi, ni ∈ [0, 2dMi] ∪ {⊥} and ui ∈ [0, Ui] and ℓi ∈ [0, Mi − 1] ∪ {⊤}, where
Mi := ⌊|Q|((1/8)·32i−1+1)⌋; and
Ui := |Q|(32i−1+4).

The idea is that mi, ni store the residue classes modulo ℓi of the counter pair xi, yi respectively,
where the value ⊤ for ℓi acts as an indicator that we are storing actual values and not residue
classes. The value ⊥ for some xi or yi indicates that the counter has not yet been initialised.
If for an update function f , f = ++ or f = ×2+1 then f(⊥) := 1; otherwise f(⊥) := ⊥, and
we stipulate that ⊥ mod n = ⊥. The value of ui in an abstract configuration carries the
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current difference between the value of the counters yi and yi+1. This difference is potentially
unbounded, however for our purposes it suffices to only store its value if it is less than Ui,
and to indicate the fact that it is at least Ui by the value ui = Ui.

We denote the (finite) set of all abstract configurations of V by A(V ). Let us now define a
transition relation ·−→ ⊆ A(V ) × ∆ × A(V ) such that α

t−→ α′, t = (q, a, q′) ∈ ∆ if and only if:
α = (q, m1, n1, . . . , ud−1, ℓ1, . . . , ℓd) and α′ = (q′, m′

1, n′
1, . . . , u′

d−1, ℓ1, . . . , ℓd);
λ(t) = (fx1 , fy1 , . . . , fxd

, fyd
);

fxi
= ++ for all i such that mi ̸= ⊥;

if ℓi ̸= ⊤, m′
i = fxi

(mi) mod ℓi and n′
i = fyi

(ni) mod ℓi;
if ℓi = ⊤, m′

i = fxi
(mi) and n′

i = fyi
(ni); and

for all i ∈ {1, . . . , d − 1},

u′
i =


min(2ui + 1, Ui) if fyi = ×2+1, fyi+1 = ×2
min(2ui, Ui) if fyi

= fyi+1

min(2ui − 1, Ui) if fyi
= ×2, fyi+1 = ×2+1.

Assuming that the value of yi is at least the value of yi+1, which we will always ensure, the
definition of how to update ui ensures that it exactly stores the difference yi − yi+1 unless
the difference becomes too large, in which case it is levelled off at Ui.

An abstract configuration path is a sequence of abstract configurations and transitions of
the form R = α1

t1−→ α2
t2−→ · · · tn−1−−−→ αn.

Given two consecutive y-counters yi, yi+1 and δi ∈ N, we say that yi − yi+1 = δi and
yi − yi+1 ≥ δi are y-constraints. Let Y be a set of y-constraints, an abstract configuration
α = (q, m1, n1, . . . , u1, . . . , ud−1, ℓ1, . . . , ℓd) respects Y whenever

ui ≥ δi for all constraints of type yi − yi+1 ≥ δi in Y ,
and ui < Ui and ui = δi for all constraints yi − yi+1 = δi in Y .

We say that αf is a final abstract configuration respecting Y whenever q ∈ F , mi = ni for all
1 ≤ i ≤ d, and αf respects Y .

4.3 Witnessing certificates
While any concrete accepting run of an LAVASS gives rise to an abstract configuration
path ending in an accepting abstract configuration, the converse does not hold. This
motivates the introduction of reachability and witnessing certificates, which are special
abstract configuration paths that carry further information that eventually enables us to
derive from a witnessing certificate a concrete accepting run of an LAVASS.

A reachability certificate is a tuple (R, X, Y, L) such that R = α1
t1−→ α2

t2−→ · · · tn−1−−−→ αn

is an abstract configuration path, and X, Y, L : {1, . . . , d} → {1, . . . , n}. Here, X(i) and Y (i)
indicate the position where the xi-counter and yi-counter obtain a value different from ⊥
for the first time. Moreover, L(i) is the position where a loop of length ℓi can be found.
Formally, (R, X, Y, L) is required to have the following properties:
(a) α1 = (q0, ⊥, . . . , ⊥, 0, . . . , 0, ℓ1, . . . , ℓd) and if ℓi = ⊤ then ℓj = ⊤ for all i < j ≤ d;
(b) λ(xi, tX(i)−1) = ++ and λ(yi, tY (i)−1) = ×2+1 for all 1 ≤ i ≤ d;
(c) λ(xi, tj) = id for all 1 ≤ j < X(i) − 1;
(d) λ(yi, tj) = ×2 for all 1 ≤ j < Y (i) − 1;
(e) X, Y, L are monotonic; and
(f) for all 1 ≤ i ≤ d, if ℓi ̸= ⊤ then

X(i) ≤ L(i) < Y (i), and

there is a simple αL(i)-loop αL(i)
t′

1−→ α′
2

t′
2−→ · · ·

tℓi−1−−−→ α′
ℓi−1

t′
ℓi−−→ αL(i) of length ℓi.

STACS 2024



29:10 Semënov Arithmetic, Affine VASS, and String Constraints

Those conditions can be interpreted as follows. Condition (a) asserts that the certificate
starts in an initial abstract configuration. We require that ⊤ monotonically propagates since
the absence of a loop for counter xi implies that the remainder of a path is short, hence we
can afford to subsequently store actual counter values and not residue classes. Conditions (b),
(c) and (d) assert that X(i) and Y (i) are the first position where the counters xi, yi hold
a value different from ⊥. Condition (e) states that the counters xi+1, yi+1 do not carry a
value different from ⊥ before the counters xi and yi, respectively. Condition (f) implies that,
if ℓi ̸= ⊤ then between the first update for counter xi and the first update for counter yi

there is a position L(i) where we can find a loop in the abstract configurations of length ℓi.
Notice that if xj = ⊥ or yj = ⊥ in αL(i) then xj and yj remain to hold ⊥ along this loop,
i.e., this loop does not update counters that have not been initialised already.

Given R, the set of y-constraints induced by R is the smallest set containing
yi −yi+1 ≥ δi, where δi := X(i+1)−X(i) if there is a j such that X(i) ≤ L(j) < X(i+1);
and
otherwise yi − yi+1 = δi, where δi := X(i + 1) − X(i),

for all 1 ≤ i < d such that ℓi ̸= ⊤.
We introduce some further notation. Given a reachability certificate (R, X, Y, L), we

denote by π(R) the run corresponding to R in the configuration graph of V , with the initial
configuration (q0, 0, 0, . . . , 0, 0). Given indices 1 ≤ i ≤ j ≤ n, we denote by R[i, j] the segment
αi

ti−→ αi+1 · · · tj−1−−−→ αj of R, and by R[i] := αi. We say that R is a witnessing certificate if,
for a ≤ d being the largest index such that ℓa ̸= ⊤:

R[1, Y (a)] is a simple path and n − Y (a) ≤ 2dMd+1;
αn is a final abstract configuration respecting the set of induced y-constraints; and
val(π(R), xa) ≤ val(π(R), ya).

Sometimes we will speak of witnessing certificates restricted to a set of counters. By that we
mean a witnessing certificates where the relevant Conditions (a)–(f) are only required for
that set of counters.

In the next section, we prove the following theorem that will enable us to give a proof for
Proposition 9.

▶ Theorem 11. The language of a restricted LAVASS V is non-empty if and only if there
exists a witnessing certificate for V .

5 Witnessing certificates witness non-emptiness of restricted LAVASS

In this section we prove Theorem 11. The proof is split into the two directions. First, we
argue that the existence of a witnessing certificate for an LAVASS implies that the language
of the LAVASS is non-empty. Subsequently, we show the converse direction.

▶ Proposition 12. If there exists a witnessing certificate for a restricted LAVASS V then
L(V ) ̸= ∅.

The idea behind the proof of Proposition 12 is that, from a witnessing certificate (R, X, Y, L)
of an LAVASS V , we obtain a sequence of runs of V such that the final run in that sequence
is an accepting run of V . Initially, we obtain a run that ends in a configuration where the
counters are in a congruence relation. We then carefully pump the simple loops pointed to
by L, beginning from the last counter and working towards the first. The formal proof is
presented in Appendix A.3.

We now turn towards the converse direction and show that we can obtain a witnessing
certificate from a run witnessing non-emptiness.
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▶ Proposition 13. If L(V ) ̸= ∅ for a restricted LAVASS V then there exists a witnessing
certificate for V .

We begin by defining a function that turns a configuration from C(V ) into an abstract
configuration. This function is parameterised by ℓ1, . . . , ℓd ∈ N+ ∪ {⊤}:

fV ((q, m1, n1, . . . , md, nd), ℓ1, . . . , ℓd) := (q, m1 ◦ ℓ1, n1 ◦ ℓ1, . . . , md ◦ ℓd, nd ◦ ℓd,

min(n1 − n2, U1), . . . , min(nd−1 − nd, Ud−1), ℓ1, . . . , ℓd) .

Here, m ◦ ℓ := ⊥ if m = 0; m ◦ ℓ := m mod ℓ if ℓ ∈ N+; and m ◦ ℓ := m if ℓ = ⊤. We lift
the definition of fV to concrete runs π in the natural way, and write fV (π, ℓ1, . . . , ℓd) for
the resulting sequence of abstract configurations. Let π = c1

t1−→ c2 · · · tn−1−−−→ cn be a run
witnessing L(V ) ̸= ∅. We show how to obtain a witnessing certificate R from π. Without
loss of generality, in cn we have m1 ≥ m2 ≥ . . . md > 0.

To this end, we show how from the accepting run π we can iteratively define a sequence
R0, R1, R2 . . . , Rd of abstract runs and identify the required ℓ1, . . . , ℓd ∈ N+ ∪ {⊤} and
X, Y, L such that (Rd, X, Y, L) is a reachability certificate. Let X(i) := j such that j is the
first position in π where the value of counter xi is non-zero; analogously define Y (i) to be the
first position where the value of yi is non-zero. Clearly, X, Y are monotonic and X(i) ≤ Y (i),
for all 1 ≤ i ≤ d. Otherwise, if a counter yi gets initialised before the counter xi in π, it must
be the case that ni > mi in cn and therefore cn cannot be an accepting configuration.

Recall that π has length n. In our proof, the subsequent technical lemma will allow us to
conclude that, if for a counter pair xi, yi the yi counter gets updated shortly after the xi

counter then the run will end shortly after and counter pairs xj , yj for j ≥ i will consequently
have small values.

▶ Lemma 14. If Y (i) − X(i) ≤ dMi for some 1 ≤ i ≤ d then n − Y (i) < dMi, so
mj , nj ≤ 2dMi in cn for all i ≤ j ≤ d.

Proof. We have that Y (i) − X(i) ≤ dMi implies that val(π[1, Y (i)], xi) ≤ dMi + 1, and since
val(π[1, Y (i) + k], yi) ≥ 2k we get that:

val(π, yi) ≥ 2n−Y (i); and
val(π, xi) ≤ dMi + n − Y (i) + 1.

Assume that n − Y (i) ≥ dMi. Then, 2n−Y (i) − (dMi + n − Y (i) + 1) > 2n−Y (i) − (2n −
2Y (i) + 1) > 0, if n − Y (i) ≥ 3. However, π is an accepting path, so val(π, xi) = val(π, yi),
and we get a contradiction. Thus, we must have that n − Y (i) < dMi which implies that
val(π, xi) ≤ 2dMi, so mi = ni ≤ 2dMi and for any j, i < j ≤ d, mj ≤ mi and nj ≤ ni, so
mj , nj < 2Mi in cn, for all i ≤ j ≤ d since π is an accepting path. ◀

Let R0 := fV (π, 1, 1, . . . , 1). Note that R0 together with X and Y as defined above
adhere to Conditions (a)–(e) of reachability certificates.

Suppose Ri−1 and ℓ1, . . . , ℓi−1 have been constructed. If i > 1, and L(i − 1) ≥ X(i) or
ℓi−1 = ⊤ then we choose ℓi := ℓi−1, L(i) = L(i − 1) and Ri := fV (π, ℓ1, . . . , ℓi, 1, . . . , 1).
Otherwise, we distinguish two cases.

Y (i) − X(i) < dMi: we choose ℓi := ⊤ and L(i) := X(i).
Y (i) − X(i) ≥ dMi: then there is a segment in Ri−1[X(i), Y (i)] of length greater than
Mi on which no x-counter has its first ++ transition. Let Ni be the number of different
abstract configurations on this segment. Since ℓi−1 ̸= ⊤ we know that mj , nj can take
at most Mj different values for all 1 ≤ j < i, as they can either be ⊥ or a residue class
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modulo Mj . Also, for all i ≤ j ≤ d the values of mj , nj have a constant value, either
0 or ⊥, on this segment, and ui = · · · = ud = 0 in all abstract configurations of this
segment. So

Ni ≤ |Q|
∏

1≤j<i

M2
j · Uj

≤ |Q|
∏

1≤j<i

|Q|(1/4)·32j−1+2+32j−1+4

≤ |Q|(1/3968)(5·32i−23968)+6i+1

< |Q|(1/8)·32i−1+1

= Mi

By the pigeonhole principle, there is a smallest k, X(i) ≤ k < Y (i), ℓ < Mi, and a
simple loop αk

tk−→ · · · tk+ℓ−−−→ αk+ℓ+1 = αk in Ri−1. We choose L(i) := k, ℓi := ℓ and let
Ri := fV (π, ℓ1, . . . , ℓi, 1, . . . , 1).

By construction, (Rd, X, Y, L) is a reachability certificate. It remains to turn it into a
witnessing certificate. In particular, this requires to remove loops from Rd, to ensure that
the final segment of Rd is short, and to establish that Rd is consistent with the implied
y-constraints.

Let R := Rd = fV (π, ℓ1, . . . , ℓd) and a be the largest index such that ℓa ̸= ⊤. In order to
make R loop-free, we iterate the following process:

Identify the first simple loop αk
tk−→ · · · tk+ℓ−−−→ αk+ℓ+1 in R[1, Y (a)] and replace it by αk;

observe that for I := {k + 1, . . . , k + ℓ}, we have I ∩ {X(i), Y (i), L(i) : 1 ≤ i ≤ d} = ∅
since αX(i)−1

tX(i)−1−−−−−→ αX(i) occurring in Rd means that xi has value ⊥ in αX(i)−1 and
a value different from ⊥ in αX(i), and thus αX(i) cannot be part of a loop; the same
argument applies to any Y (i). Finally, since L(i) was chosen as the index of the first
configuration of the first cycle appearing after X(i), we have L(i) ̸∈ I for all 1 ≤ i ≤ d as
well.
Update X, Y, L such that for all i such that X(i) > k, X(i) := X(i) − ℓ, and analogously
Y (i) := Y (i) − ℓ and L(i) := L(i) − ℓ for the respective i.

This process guarantees that R[1, Y (a)] is loop-free. It is easy to verify that (R, X, Y, L)
obtained in this way is a reachability certificate and that the last abstract configuration of R

is accepting.
We now show that the y-constraints induced by R are valid in the final configuration of

R. To this end, we first show that for all 1 ≤ i ≤ d such that ℓi ̸= ⊤, X(i + 1) − X(i) < Ui.
Consider the simple path αX(i)

tX(i)−−−→ αX(i)+1
tX(i)+1−−−−−→ · · ·

tX(i+1)−1−−−−−−→ αX(i+1). If Y (i) ≥
X(i + 1) then clearly X(i + 1) − X(i) ≤ Ni < Ui, where Ni is defined as above. Otherwise,
there is a k ∈ N such that the path decomposes as

αX(i)
tX(i)−−−→ · · · αY (i)

tY (i)−−−→ · · · αY (i)+k

tY (i)+k−−−−−→ · · ·
tX(i+1)−1−−−−−−→ αX(i+1)

and
ui = 0 in all abstract states αj with X(i) ≤ j ≤ Y (i);
ui = Ui in all abstract states αj with Y (i) + k ≤ j ≤ X(i + 1); and
k ≤ log Ui.
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Thus, the maximum length of R[X(i), X(i + 1)] is bounded by:

Ni · Mi + log Ui + Ni · 2Mi

≤ 2 · M3
i + log Ui

≤ |Q|(3/8)·32i−1+4 + |Q|5(i−1)+1 + 4|Q|

< |Q|32i−1+4

= Ui

We can now show that R respects the induced y-constraints. Fix some 1 ≤ i ≤ d such
that ℓi ̸= ⊤. We distinguish two cases.

There is no 1 ≤ j ≤ a such that X(i) ≤ L(j) ≤ X(i + 1). Thus, we know that
yi − yi+1 = δi is in the set of induced y-constraints. Also, val(π, yi) − val(π, yi+1) =
val(π, xi) − val(π, xi+1) = X(i + 1) − X(i) = δi since we did not remove any abstract
loops on the segment of Rd between the first ++ update for xi and the first ++ update for
xi+1. Finally, since δi < Ui by the above argument, we conclude that ui = δi in the last
abstract configuration R[n] of R.
Otherwise, X(i) ≤ L(i) ≤ Y (i), so yi − yi+1 ≥ δi is in the set of induced y-constraints.
However, val(π, yi) − val(π, yi+1) = val(π, xi) − val(π, xi+1) ≥ X(i + 1) − X(i) = δi and
again because δi < Ui we can conclude that ui ≥ δi in R[n].

This establishes that the y-constraints are satisfied. Let n be the index of the last abstract
configuration of R. For the final step, we now argue that val(π(R), xa) ≤ val(π(R), ya) and
n − Y (a) ≤ 2dMd+1. We make a case distinction:

a = d: Note that val(π, xd) = val(π, yd). Since we only remove loops from Rd[1, Y (d)],
we have that val(π(R), xd) ≤ val(π(R), yd). If n − Y (d) ≤ 2dMd+1 we are done with
(R, X, Y, L) as a witnessing certificate. Otherwise, assume n − Y (d) > 2dMd+1. This
implies that the path R[Y (d), n] must contain at least one simple loop. Consider iterating
the following process:

remove the first simple loop from R[Y (d), n] and update n := n − ℓ, where ℓ is the
length of the simple loop that was removed; and
stop if n − Y (d) ≤ 2dMd+1.

We argue that, n − Y (d) ≥ M2
d . Let R′ and n′ be the previous values of R, n before the

last iteration. It must be that n′ > 2dMd+1 and since the length of any simple loop of
R′[Y (d) + 1, n′] is bounded by Md+1, we get that n − Y (a) ≥ Md+1 ≥ M2

d . Note that
Y (d) − X(d) ≤ Md · |Q| ·

∏
1≤j<d M2

j · Uj ≤ M2
d , so val(π(R[1, Y (d)]), xd) ≤ M2

d . It must
be then the case that val(π(R), xd) ≤ val(π(R), yd).
a < d: we know n − Y (a) ≤ 2dMd+1 by Lemma 14. Moreover, we must have that
val(π(R), xa) ≤ val(π(R), ya) since val(π, xa) = val(π, ya) and we do not remove loops
after the counter ya is incremented.

We are now ready to prove Proposition 9, i.e., show that language emptiness for restricted
LAVASS can be decided in NSPACE(|V | · 2O(d)).

Proof of Proposition 9. Clearly, an abstract configuration can be stored in space |V | · 2O(d).
An NEXPSPACE algorithm can hence non-deterministically choose an initial configuration
and non-deterministically verify that it leads to a final abstract configuration along a path
that is a witnessing certificate. To this end, the algorithm computes the set of induced
y-constraints on-the-fly while guessing the reachability certificate, and verifies them in the
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last configuration. Note that the y-constraints can be stored in space |V | · 2O(d). Finally, the
requirement val(π(R), xa) ≤ val(π(R), ya) can also be verified in exponential space since we
require that R[1, Y (a)] is a simple path and n − Y (a) ≤ 2Md+1. ◀

6 A decidable class of string constraints

In this section, we show that a certain fragment of string constraints, whose decidability
status has been left open in the literature, can be reduced in logarithmic space to generalised
Semënov arithmetic, and is hence decidable in EXPSPACE. This demonstrates an important
application of our results on generalised Semënov arithmetic, with deep connections to solving
string constraints in practice, which has been one of the motivations for our work.

Let Σ = {0, 1}. The theory of enriched string constraints Tlnc is the first-order theory of
the two-sorted structure

⟨Σ∗,N; {w}w∈Σ∗ , ·, len, sn, {Ri}i∈N, 0, 1, +⟩,

where
the binary function · over Σ∗ is the string concatenation operator,
the unary function len : Σ∗ → N returns on input w the length |w| of w,
the unary function sn : Σ∗ → N on input u returns JuK, and
R0, R1, . . . ⊆ Σ∗ is an enumeration of all regular languages.

The remaining predicates, constant and function symbols are defined in their standard
semantics.

The above theory was introduced in [4], where an SMT solver addressing some fragments
of this theory was defined, implemented, and compared to other state of the art solvers
which can handle such string constraints. Extending [4], [3] presents in more details the
motivation behind considering this theory and its fragments. More precisely, the authors
of [3] analysed an extensive collection of standard real-world benchmarks of string constraints
and extracted the functions and predicates occurring in them. The works [3, 4] focused
on benchmarks that do not contain word equations, and the result of the aforementioned
benchmark-analysis produced exactly the four functions and predicates mentioned above:
len, sn, regular language membership, and concatenation of strings.

Complementing the practical results of [4], [3] showed a series of theoretical results
regarding fragments of Tlnc. In particular, the existential theory of Tlnc is shown to be
undecidable. Moreover, [3] leaves as an open problem the question whether the existential
theories of TREln and TREnc, which drop the concatenation operator and length function,
respectively, are decidable. From these two, the existential theories of TREln seems particularly
interesting, as all instances from the benchmarks considered in the analysis [3] can be easily
translated into a formula from this particular fragment of TREln. Indeed, by the results
reported in Table 1.b from [3], no instance contains both concatenation of strings and the sn
function; moreover, the concatenation of strings, which appears only in formulas involving
regular membership predicates and, in some cases, length function, can be easily removed in
all cases by a folklore technique called automata splitting (see, e.g., [1]). Therefore, showing
that the existential fragment of TREln is decidable actually shows that one can decide the
satisfiability of all the instances from the standard benchmarks analysed in [3].

In this paper, we solve this open problem. By a reduction to generalised Semënov
arithmetic, we can settle the decidability status of TREln:

▶ Theorem 15. The existential fragment of TREln is decidable in EXPSPACE.
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The idea underlying our proof is that we map a string s to the number J1sK. Note that we
cannot directly treat strings in Σ∗ as natural numbers due to the possibility of leading zeros.
This encoding enables us to treat strings as numbers and to implement the functions sn and
len in generalised Semënov arithmetic as sn(s, x) ⇐⇒ ∃y. 2y ≤ s ∧ s < 2y+1 ∧ x = s − 2y

and len(s, x) ⇐⇒ 2x ≤ s ∧ s < 2x+1 respectively. A full proof is presented in Appendix A.4.

7 Conclusion

The main result of this article has been to show that the existential theory of generalised
Semënov arithmetic is decidable in EXPSPACE. On a technical level, this result was obtained
by showing that a restricted class of labelled affine VASS has an EXPSPACE-decidable
language emptiness problem. The structural restrictions imposed on those restricted LAVASS
are rather strong, though necessary to obtain a decidable class of LAVASS.

As an application of this main result, we showed that a highly relevant class of string
constraints with length constraints is also decidable in EXPSPACE; the decidability of this
class was the main problem left open in [3]. Furthermore, our decision procedure has a better
complexity than the one reported in [15] for a fragment of generalised Semënov arithmetic.

An interesting aspect of our approach is that it establishes automaticity of the existential
fragment of a logical theory that is different from traditional notions of automaticity, which are
based on finite-state automata or tree automata over finite or infinite words and trees [5, 10],
respectively. It would be interesting to better understand whether there are natural logical
theories whose (existential) fragments are, say, Petri-net or visibly-pushdown automatic.

We have ignored algorithmic lower bounds throughout this article, but it would, of course,
be interesting to see whether the upper bounds of the decision problems we considered in
this article are tight. It is clear that generalised Semënov arithmetic is PSPACE-hard since
it can readily express the DFA intersection non-emptiness problem, but this still leaves a
considerable gap with respect to the EXPSPACE upper bound we established. In particular,
the recent results of [2] showing an NEXP upper bound for the existential fragment of
Semënov arithmetic suggest that, if an EXPSPACE lower bound for existential generalised
Semënov arithmetic is possible, it will require the use of regular predicates.
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A Appendix

A.1 Closure properties of LAVASS languages
Let Vi = ⟨Qi, di, Σ, ∆i, λi, q

(i)
0 , Fi, ϕi⟩, i ∈ {1, 2}, be two LAVASS.

▶ Proposition 16. The languages of LAVASS are closed under union and intersection.

Closure under union is trivial since we allow for non-determinism. To show closure under
intersection, we define the LAVASS V := (Q′, d1 + d2, Σ, ∆′, λ′, q′

0, F ′, ϕ′) such that
Q′ := Q1 × Q2,
((q1, q2), a, (r1, r2)) ∈ ∆′ if and only if (q1, a, r1) ∈ ∆1 and (q2, a, r2) ∈ ∆2,
λ′((q1, q2), a, (r1, r2)) := (λ1(q1, a, r1), λ2(q2, a, r2)),
q′′

0 := (q(1)
0 , q

(2)
0 ),

F ′ := F1 × F2, and
ϕ is the conjunction of ϕ1 and ϕ2, with counters renamed accordingly.

▶ Lemma 17. For any w ∈ Σ∗, q1, r(1) ∈ Q1 and q2, r2 ∈ Q2, the following are equivalent:
(i) ((q(1), q(2)), m1, . . . , md1+d2) w−→V ((r(1), r(2)), m′

1, . . . , m′
d1+d2

)

(ii) (q(1), m1, . . . , md1) w−→V1 (r(1), m′
1, . . . , m′

d1
) and (q(2), md1+1, md1+1 . . . , md1+d2) w−→V2

(r(1), m′
d1+1, . . . , m′

d1+d2
).
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Proof. Let w ∈ Σ∗, we prove the statement by induction on |w|. The base case w = ϵ is
immediate by the definition of V .

For the induction step, let w = u · a for some a ∈ Σ. The induction hypothesis yields

((q(1), q(2)), m1, . . . , md1+d+2) u−→V ((s(1), s2), m′′
1 , . . . , m′′

d1+d2
)

⇐⇒ (q(1), m1, . . . , md1) u−→V1 (s(1), m′′
1 , . . . , m′′

d1
) and

(q(2), md1+1, . . . , md1+d2) u−→V2 (s(2), m′′
d1+1, . . . , m′′

d1+d2
) .

Again, by definition of V we furthermore have

((s(1), s(2)), m′′
1 , . . . , m′′

d1+d+2) a−→V ((r(1), r2), m′
1, . . . , m′′

d1+d2
)

⇐⇒ (s(1), m1, . . . , md1) a−→V1 (r(1), m′′
1 , . . . , m′′

d1
) and

(s(2), md1+1, . . . , md1+d2) a−→V2 (r(2), m′′
d1+1, . . . , m′′

d1+d2
) .

This concludes the proof of the statement. ◀

▶ Corollary 18. Let V1, V2 be LAVASS. Then L(V1) ∩ L(V2)) = L(V1 ∩ V2).

Proof. For any w ∈ Σ∗, by Lemma 17, we have:

w ∈ L(V1 ∩ V2)

⇐⇒ (q′
0, 0, . . . , 0) w−→V ((r1, r2), m1, . . . , md1+d2)

for some (r1, r2) ∈ F ′, (m1, . . . , md1+d2) ∈ S′
f

⇐⇒ (q(1)
0 , 0, . . . , 0) w−→V1 (r1, m1, . . . , md1) for some r1 ∈ F1, (m1, . . . , md1) ∈ S

(1)
f , and

(q(2)
0 , 0, . . . , 0) w−→V2 (r2, md1+1, . . . , md1+d2)

for some r2 ∈ F2 (md1+1, . . . , md1+d2) ∈ S
(2)
f

⇐⇒ w ∈ L(V1) and w ∈ L(V2) . ◀

From the construction, it is clear that for the size of the LAVASS for L(V1) ∩ L(V2), we
have:

|Q| = |Q1| · |Q2|,
|∆| ≤ |∆1| · |∆2|,
|λ| = max(|λ1|, |λ2|), and
d = d1 + d2.

A.2 Proof of Theorem 1
We show how Theorem 1 follows from Proposition 9. Given a formula Φ of generalised
Semënov arithmetic, we can in space 2O(|Φ|) construct the disjunctive normal form of Φ.
Every disjunct can be assumed to be of the form

A · x = b ∧
∧
i∈I

xi = 2yi ∧
∧
j∈J

Rj(x),

where the Rj are predicates over regular languages. By Lemma 8, there is a restricted
LAVASS for Φ of dimension 2|I| with a number of states bounded by (∥A∥1,∞ + ∥b∥∞ +
2)O(m+|I|) = 2p(|Φ|) for some polynomial p and whose language represents the set of solutions
to A · x = b ∧

∧
i∈I xi = 2yi . Intersecting with the DFA for the Rj results in a restricted

LAVASS V with 2|I| = O(|Φ|) counters such that |V | = 2p(|Φ|) for some polynomial p. By
Proposition 9, it follows that emptiness of V is decidable in NSPACE(2p(|Φ|) · 22|I|). We
conclude the argument by recalling that NEXPSPACE=EXPSPACE by Savitch’s theorem.

STACS 2024
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A.3 Witnessing certificates imply language non-emptiness
To formally prove Proposition 12, let (R, X, Y, L) be a witnessing certificate, and let π(R)
be the run in the configuration graph of V induced by R. Let a ≤ d be maximal such that
ℓa ̸= ⊤. We now define a sequence of runs π0, . . . , πa such that the following invariant holds.
In the final configuration of πi,

(i) mj ≤ nj and mj ≡ nj mod ℓj for the j-th counter pair, 1 ≤ j ≤ a − i; and
(ii) mj = nj for the j-th counter pair, a − i < j ≤ d.

It is clear that πa then witnesses L(V ) ̸= ∅. We proceed by induction on i.

Base case i = 0. Let π0 = π(R). Since R is a witnessing certificate, val(π(R), xa) ≤
val(π(R), ya), and hence ma ≤ na in the last configuration of π0. Moreover, R respects
the set of induced y-constraints. Hence na−1 − na ≥ δa−1, where δa−1 is the length of the
path from R[X(a − 1)] to R[X(a)]. Hence na−1 − na ≥ ma−1 − ma and thus ma−1 ≤ na−1.
Iterating this argument for the remaining counters, we get that (i) of the invariant is fulfilled
for π0; (ii) trivially holds since R ends in an accepting abstract configuration.

Induction step i > 0. Let πi−1 be the path that exists by the induction hypothesis.
If ma−i = na−i in the last configuration of πi−1 then we are done and take πi = πi−1;
otherwise ma−i < na−i and ma−i ≡ na−i mod ℓa−i. Hence, there is some k ∈ N such
that na−i = k · ℓa−i. Since ℓi ̸= ⊤, let β := αL(a−i)

t1−→ α2
t2−→ · · · αℓi−1

tℓi−−→ αL(a−i) be
the simple α-loop at position L(a − i) that is guaranteed to exist since R is a witnessing
certificate. We insert the transitions of βk and the induced updated configurations into πi−1
at position L(a − i). Notice that L(a − i) < X(a − i + 1). Otherwise, by the definition of
the induced y-constraints, ya−i − ya−i+1 = δa−i is in the set of induced y-constraints, where
δi = X(a − i + 1) − X(a − i). Since the last abstract configuration of R respects the set of
y-constraints, it must be the case that in the last configuration of πi−1, na−i − na−i+1 = δa−i

and ma−i − ma−i+1 = δa−i, so ma−i = na−i, because after the position X(a − i + 1) − 1 in R

and thus πi−1, the counters xa−i, xa−i+1 get incremented simultaneously. This contradicts
our assumption that ma−i ̸= na−i. Thus, the counters xa−i+1, ya−i+1, . . . , xd, yd remain
unchanged by the insertion of βk, so (ii) and consequently (i) continues to hold in the last
configuration of πi for those counters. Moreover, due to the ordering conditions imposed on
witnessing certificates, the value of ya−i does not change either, and hence ma−i = na−i in
the last configuration of πi. Since β is a loop in the abstract configuration space, we have
mj ≡ nj mod ℓj for all 1 ≤ j < a − i and the values of uj , for all 1 ≤ j < a are preserved.

A.4 From string constraints to Semënov arithmetic
Again, we treat TREln as a relational structure. Without loss of generality, we may assume
that atomic formulas of TREln are one of the following:

R(s) for some string variable s and a regular language R;
s = t for some string variables s and t;
len(s, x) or sn(s, x) for some string variable s and integer variable x; or
a · x ≥ b for a vector of integer variables x.

The size of a formula of TREln is defined in the standard way as the number of symbols
required to write it down, assuming binary encoding of numbers, and where the size of some
R is the size of the smallest DFA accepting R. Furthermore, in a quantifier-free formula φ

of TREln, we may without loss of generality assume that all atomic formulas occur positive,
except for atomic formulas s = t.
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We now describe the reduction to existential Semënov arithmetic. As explained, the idea
underlying our proof is that we map a string s to the number J1sK. Given a quantifier-free
formula φ of TREln, we define by structural induction on φ a function σ that maps φ to an
equi-satisfiable formula of generalised Semënov arithmetic:

Case φ ≡ R(s): σ(φ) := (0∗1R)(s);
Case φ ≡ s = t or φ ≡ ¬(s = t): σ(φ) := s = t or σ(φ) := ¬s = t, respectively;
Case φ ≡ sn(s, x): σ(φ) := ∃y. 2y ≤ s ∧ s < 2y+1 ∧ x = s − 2y;
Case φ ≡ len(s, x): σ(φ) := 2x ≤ s ∧ s < 2x+1;
Case φ ≡ a · x ≥ b: σ(φ) := a · x ≥ b; and
Case φ ≡ φ1 ∼ φ2, ∼ ∈ {∧, ∨}: σ(φ) := σ(φ1) ∼ σ(φ2).

▶ Lemma 19. Let φ be a quantifier-free formula of TREln and S be the set of string variables
occurring in S. Then φ is satisfiable if and only if σ(φ) ∧

∧
s∈S s > 0 is satisfiable.

Proof. Observe that the variables occurring in φ are the same variables as those occurring in
σ(φ). Let S be the set of string variables in φ and X be the set of integer-valued variables in
φ. Given an assignment IS : S → {0, 1}∗, we define ĨS := S → N such that ĨS(s) := J1IS(s)K.
Subsequently, denote by IX : X → N an assignment to the integer-valued variables. We show
by structural induction on φ that (IS , Ix) |= φ if and only if (ĨS , IX) |= σ(φ) ∧

∧
s∈S s > 0:

Case φ ≡ R(s): Let IS(s) = bn−1 · · · b0, we have IS(s) ∈ R if and only if 2n +
∑n−1

i=0 2ibi ∈
J0∗1RK, noting that 2n +

∑n−1
i=0 2ibi = J1bn−1 · · · b0K = ĨS(s).

Case φ ≡ sn(s, x): Let IS(s) = bn−1 · · · b0 and IX(x) = m. We have that m =
∑n−1

i=0 2ibi

if and only if m = ĨS(s) − 2n if and only if (ĨS , IX) |= σ(φ) ∧
∧

s∈S s > 0.
Case φ ≡ len(s, x): Let IS(s) = bn−1 · · · b0 and IX(x) = m. We have that m = n if and
only if 2m ≤ J1bn−1 · · · b0K < 2m+1 if and only if (ĨS , IX) |= σ(φ) ∧

∧
s∈S s > 0.

The remaining cases follow obviously. ◀
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1 Introduction

Given a homogeneous polynomial f of degree d over C, its Waring rank WR(f) is defined as
the smallest number r such that there exist homogeneous linear forms ℓ1, . . . , ℓr with

f =
r∑

i=1
ℓd

i .

Equivalently, WR(f) is the minimal top fanin of a homogeneous Σ ∧ Σ circuit computing
f . In the case of quadratic forms (polynomials of degree 2), this notion is equivalent to the
rank of the symmetric matrix associated with a quadratic form; hence Waring rank can be
regarded as a generalization of the rank of a symmetric matrix. Unlike the case of matrices,
when d ≥ 3, Waring rank is in general not lower semicontinuous 1, that is, a limit of a family
of polynomials with low Waring rank can have higher Waring rank. The simplest example is
given by the polynomial xd−1y, which has Waring rank d (this is a classical result [47]), but
can be presented as a limit

xd−1y = lim
ϵ→0

1
dϵ

[
(x + ϵy)d − xd

]
of a family of Waring rank 2 polynomials (note that we work over C, so this expression can
be rearranged into a sum of two powers by moving constants inside the parentheses). The
border Waring rank is a semicontinuous variation of Waring rank defined as follows: the
border Waring rank of f , denoted WR(f), is the smallest r such that f can be written as a
limit of a sequence of polynomials of Waring rank at most r. We have WR(xd−1y) = 2.

Waring rank was studied already in the eighteenth century [23, 50, 25] in the context of
invariant theory, with the aim to determine normal forms for homogeneous polynomials. We
mention the famous Sylvester Pentahedral Theorem, stating that a generic cubic form in four
variables can be written uniquely as a sum of five cubes. At the beginning of the twentieth
century, the early work on secant varieties in classical algebraic geometry [48, 51] implicitly
commenced the study of border Waring rank. The notion of border rank for tensors was
introduced in [11] to construct faster-than-Strassen matrix multiplication algorithms. In [10],
Bini proved that tensor border rank and tensor rank define the same matrix multiplication
exponent. Today this theory is deeply related to the study of Gorenstein algebras [35, 15],
the Hilbert scheme of points [38], and deformation theory [18, 39].

In the context of algebraic complexity theory, Waring rank defines a model of computation
known as the homogeneous diagonal depth 3 circuits or homogeneous Σ ∧ Σ circuits, see
e.g. [49]. This is a very weak computational model (determinants have provably exponential
Waring rank [33]). Nevertheless, it is important as one of the simplest nontrivial computational
models and has many unresolved open problems associated with it. The Waring rank of a
generic homogeneous polynomial of degree d ≥ 3 in n variables is ⌈ 1

n ·
(

n+d−1
d

)
⌉ = Ω( nd−1

d! )
with finite number of exceptional values of (n, d) [2], but the best lower bounds obtained
are of order 2n⌊d/2⌋ (from tensor rank lower bounds in [3]). For a large class of lower bound
methods, so called rank methods, there are barrier results showing that cannot give bounds
significantly larger than n⌊d/2⌋ [28, 31, 30]. Waring rank can be useful when the degree of
the polynomials considered is constant. For example, the results of [24] guarantee that the

1 A function f is lower semicontinuous at a if lim inf
x→a

f(x) ≥ f(a).



P. Dutta, F. Gesmundo, C. Ikenmeyer, G. Jindal, and V. Lysikov 30:3

matrix multiplication exponent is controlled by the Waring rank or border Waring rank
of the polynomial Tr(X3) with X ∈ Cn×n, which is a symmetrized version of the matrix
multiplication tensor.

The lack of semicontinuity is a common phenomenon in algebraic complexity not specific
to Waring rank. Most complexity measures defined in terms of discrete structures (such as
circuits or formulas) or in terms of decompositions (such as Waring rank or tensor rank)
are not lower semicontinuous. To any algebraic complexity measure one can define the
corresponding border complexity measure in the same way as border Waring rank arises
from Waring rank: the border complexity of f is the smallest number s such that f can
be approximated arbitrarily closely by polynomials of complexity at most s. Border tensor
rank appears in the study of the computational complexity of matrix multiplication [11, 10],
border complexity for algebraic circuits was first discussed in [45] and [20].

Replacing a complexity measure by its border measure in a complexity class, we obtain
the closure of this class. For example, VP is the class of all polynomial sequences with
polynomially bounded degree and border circuit size, and VF is defined analogously using
formula size. Formally, the closure C of a complexity class C consists of all polynomial
sequences (fn)n∈N such that there exists a bivariate sequence (gn,m)n,m∈N with the property
that (gn,m)n∈N lies in C for every fixed m, and fn = limm→∞ gn,m. The operation of going
to the closure is indeed a closure operator in the sense of topology, see [36].

The relationship between border and non-border complexity is far from straightforward.
In some contexts taking a limit can be a very strong operation, which sometimes turns
non-universal computational models into universal ones. For example, there are polynomials
which cannot be computed by width 2 algebraic branching programs [4], but the corresponding
border measure is related to border formula size [14], so every polynomial is a limit of width 2
ABPs. Kumar [42] gives an even easier example: every polynomial can be presented as a
limit of a sum of 2 products of affine linear forms. On the other hand, there are examples of
complexity measures which are lower semicontinuous, so that there is no difference between
border and non-border complexity measures. A simplest example is the number of monomials
in a polynomial (equivalently, top fanin of a ΣΠ circuit). Other examples are noncommutative
ABP width (implicit in [46]) and read-once ABP width [26].

Semicontinuous complexity measures and closed complexity classes are easier to work
with using geometric methods. Because of this, the geometric complexity theory program [45]
proposes to study conjectures VNP ̸⊆ VBP and VNP ̸⊆ VP instead of Valiant’s conjectures
VNP ̸= VBP and VNP ̸= VP. The VNP ̸⊆ VP conjecture was also proposed in [20]. These
border variants of Valiant’s conjecture are now usually referred to as the Mulmuley–Sohoni
conjectures. Mulmuley–Sohoni conjectures are stronger that Valiant’s conjectures, but it
is not clear how much stronger, as most questions about the relations between complexity
classes and their closures are wide open. It is unknown even whether or not VF ⊆ VNP.
Theorems of the form C ⊆ D for algebraic complexity classes C and D are called debordering
results. These kind of results can also be proven directly on the complexity measures, by
giving an upper bound on a non-border complexity in terms of border complexity. For
example, abpw(f) ≤ WR(f), where abpw(f) is the algebraic branching program width of f .
This is proven using semicontinuity of noncommutative ABP width, see [12, Thm 4.2] and
[29]. In terms of complexity classes, this means VWaring ⊆ VBP, where VWaring is the class
of p-families that have polynomially bounded Waring rank.

Forbes [52] conjectures that VWaring = VWaring. Since this puts VWaring in VF, a proof
of this conjecture will also improve the results of Dutta, Dwivedi and Saxena [26] from
Σ[r]ΠΣ ⊂ VBP to Σ[r]ΠΣ ⊂ VF. Ballico and Bernardi [7] propose an even stronger conjecture
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stating that WR(f) ≤ (WR(f) − 1) · deg f . This was proven by case analysis for small values
of border Waring rank: for WR(f) ≤ 3 in [43], for WR(f) = 4 in [6], and for WR(f) = 5 and
deg f ≥ 9 in [5].

Main result
We prove the following improved debordering theorem for border Waring rank.

▶ Theorem 1 (Fixed-parameter debordering). Let f be a homogeneous polynomial with
deg f = d and WR(f) = r. Then WR(f) ≤ 4r · d.

Note that the example of the polynomial xd−1y with WR(xd−1y) = 2 and WR(xd−1y) = d

shows that any debordering bound must necessarily depend on both border Waring rank
r and the degree d. We call our result a fixed-parameter debordering because the bound is
polynomial (in this case even linear) in d, but exponential in the complexity parameter r.
In the case of a fixed border Waring rank this gives a bound linear in the degree. This was
previously known only for WR(f) ≤ 5. Even for r = O(log d) we obtain an upper bound
polynomial in d.

To the best of our knowledge, this is the first fixed-parameter debordering result. Previous
methods applied to border Waring rank only allow upper bounds of the order dr or rd. To
get WR(f) ≤ O(dr), note that a polynomial with border Waring rank r can be transformed
into a polynomial in only r variables using a linear change of variables (see Lemma 4), and
then take the maximal possible Waring rank of an r-variate polynomial of degree d as an
upper bound. Alternatively, an upper bound WR(f) ≤ 2d−1rd can be obtained by using the
previously mentioned debordering into an ABP (abpw(f) ≤ WR(f)) and writing the ABP
as a sum of at most rd products, one for each path. Other known debordering techniques,
such as the interpolation technique using the bound on the degree of ϵ in the approximation
from the work of Lehmkuhl and Lickteig [44] (which is exponential in the degree of the
polynomial), or the DiDIL technique from [26] can be applied in the border Waring rank
setting, but do not improve over the simpler results discussed above.

Proof ideas
The main ideas for the proof come from apolarity theory and the study of 0-dimensional
schemes in projective space (we discuss these ideas in Appendix A of the extended version
of the paper [27]). We managed to simplify the proof so that it is elementary and does
not use the language of algebraic geometry and is based on partial derivative techniques
(see Section 2.3).

To prove the debordering, we transform a border Waring rank decomposition for f into a
generalized additive decomposition [34, 8, 9] of the form f =

∑m
k=1 ℓd−rk+1

k gk, where ℓk are
linear forms, and gk are homogeneous polynomials of degrees rk − 1. We then obtain an
upper bound on the Waring rank, by first decomposing each gk with respect to a basis
consisting of powers of linear forms, and then using the classical fact (see also [19]) that
WR(ℓa

1ℓb
2) ≤ max(a + 1, b + 1).

To construct a generalized additive decomposition, we divide the summands of a border
rank decomposition into several parts such that cancellations happen only between summands
belonging to the same part; see Lemma 10. The key insight is that if the degree of polynomials
involved is high enough, namely when deg f ≥ WR(f)−1, then all parts of the decomposition
are “local” in the sense that the lowest order term in each summand is a multiple of the same
linear form. Each local part gives one term of the form ℓd−r+1g, where r is the number of
rank one summands in the part and ℓ is the common lowest order linear form; see Lemma 7.
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For example, consider the family of polynomials fd = xd−1
0 y0 + xd−1

1 y1 + 2(x0 + x1)d−1y2,
adapted from [16]. If d > 3, then the border Waring rank of f is at most 6, as evidenced by
the decomposition

fd = lim
ϵ→0

1
dϵ

[
(x0 + ϵy0)d − xd

0 + (x1 + ϵy1)d − xd
1 + 2(x0 + x1 + ϵy2)d − 2(x0 + x1)d

]
, (1)

and a matching lower bound is obtained by considering the dimension of the space of second
order partial derivatives. The summands of the decomposition (1) can be divided into three
pairs. The lowest order term of the first pair is xd

0, the one of the second pair is xd
1 and the

one of the third pair is (x0 + x1)d. For each pair, the sum of the two powers individually
converges to a limit as ϵ → 0; these three limits are, respectively, xd−1

0 y0, xd−1
1 y1, and

2(x0 + x1)d−1y2, which are the summands of a generalized additive decomposition for fd.
When d = 3, the polynomial fd is an example of a “wild form” [16]. It has border Waring

rank 5 given for example by the decomposition

f3 = lim
ϵ→0

1
9ϵ

[
3(x0 + ϵy0)3 + 3(x1 + ϵy1)3+

6(x0 + x1 + ϵy2)3 − (x0 + 2x1)3 − (2x0 + x3)3] . (2)

Unlike the previous decomposition, this one cannot be divided into parts that have limits
individually, and is not local – all summands have different lowest order terms. This is only
possible if the degree is low.

The condition on the degree is related to algebro-geometric questions about regularity
of 0-dimensional schemes [35, Thm. 1.69], but for the schemes arising from border rank
decompositions, this is ultimately a consequence of the fact that r distinct linear forms have
linearly independent d-th powers when d ≥ r − 1.

2 Debordering border Waring rank

The goal of this section is to prove Theorem 1. Given a homogeneous degree d polynomial f ,
we provide upper bounds for WR(f) in terms of WR(f) and d.

2.1 Definitions
In this section we introduce some notation and give a formal definition of Waring rank
and border Waring rank. We work over the field C of complex numbers. The space of
homogeneous polynomials of degree d in variables x = (x1, . . . , xn) is denoted by C[x]d. We
write f ≃ g for f, g ∈ C(ϵ)[x] if limϵ→0 f = limϵ→0 g (in particular, both limits must exist).
Recall that the projective space PV is defined as the set of lines through the origin in V ,
that is, for each nonzero v ∈ V we have a corresponding line [v] ∈ PV , and [v] = [w] if and
only if v = αw for some α.

▶ Definition 2. A Waring rank decomposition of a homogeneous polynomial f ∈ C[x]d is a
decomposition of the form

f =
r∑

k=1
ℓd

k

for some linear forms ℓ1, . . . , ℓr ∈ C[x]1. The minimal number of summands in a Waring
rank decomposition is called the Waring rank of f and is denoted by WR(f).

It is known that every homogeneous polynomial over C has finite Waring rank [47].
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▶ Definition 3. A border Waring rank decomposition of a homogeneous polynomial f ∈ C[x]d
is an expression of the form

f = lim
ϵ→0

r∑
k=1

ℓd
k

where ℓ1, . . . , ℓr ∈ C(ϵ)[x]1, that is, ℓi are linear forms in x with coefficients rationally
dependent on ϵ. The border Waring rank WR(f) is the minimal number of summands in a
border Waring rank decomposition.

Equivalently, the border Waring rank of f ∈ C[x]d can be defined as the minimal number r

such that f lies in the closure of the set Wd,r = {g ∈ C[x]d | WR(g) ≤ r} of all polynomials
with Waring rank at most r. The set Wd,r is constructible, so its Zariski and Euclidean
closures coincide, see e.g. [41, Anh.I.7.2 Folgerung]. The equivalence to the definition given
above was established by Alder [1] (cited by [21, Ch.20]) for a similar notion of tensor rank,
the proof remains essentially the same for Waring rank of polynomials.

2.2 Orbit closure and essential variables
The number of essential variables of a homogeneous polynomial f is the minimum integer m

such that there is a linear change of coordinates after which f can be written as a polynomial
in m variables. Denote the number of essential variables of f by Ness(f). It is a classical
fact, which already appears in [50], that the number of essential variables of f equals the
dimension of the linear span of its first order partial derivatives, or equivalently the rank of
the first partial derivative map. In particular Ness(−) is a lower semicontinuous function.
We refer to [22] and [40, Lemma B.1] for modern proofs of this result.

An immediate consequence of the semicontinuity of the number of essential variables is
the following result.

▶ Lemma 4. For a homogeneous polynomial f ∈ C[x]d we have Ness(f) ≤ WR(f).

Proof. We first prove Ness(f) ≤ WR(f). Let p be the dimension of the linear space spanned
by the linear forms ℓk in the decomposition f =

∑r
k=1 ℓd

k. Without loss of generality the
linear forms ℓ1, . . . , ℓp are linearly independent, and ℓp+1, . . . , ℓr are linear combinations
of ℓ1, . . . , ℓp. After applying a change of variables such that yk = ℓk(x) for k = 1, . . . , p we
see that Ness(f) ≤ p ≤ r.

The inequality Ness(f) ≤ WR(f) now follows from the semicontinuity of Ness: if

f = lim
ϵ→0

r∑
k=1

ℓd
k ,

with ℓk ∈ C(ϵ)[x], then Ness(f) ≤ limϵ→0 Ness(
∑r

k=1 ℓd
k(ϵ)) ≤ r. ◀

2.3 Fixed-parameter debordering
The proof of Theorem 1 is based on generalized additive decompositions of polynomials,
in the sense of [34]. These decompositions were studied in algebraic geometry, usually in
connection to 0-dimensional schemes and the notion of cactus rank. We defer the discussion
of connections to algebraic geometry to the next section. Here we provide elementary proofs
of some statements on generalized additive decompositions based on partial derivatives
techniques, without using the language of 0-dimensional schemes. We bring from geometry a
key insight: a border rank decomposition can be separated into local parts if the degree of
the polynomial is large enough.
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To define formally what it means for a border rank decomposition to be local, note that
a rational family of linear forms ℓ ∈ C(ϵ)[x]1 always has a limit when viewed projectively.
Specifically, expanding ℓ(ϵ) as a Laurent series ℓ(ϵ) =

∑∞
i=q ϵiℓi with ℓq ̸= 0, we have

limϵ→0[ℓ(ϵ)] = limϵ→0[
∑∞

i=0 ϵiℓq+i] = [ℓq]. A border Waring rank decomposition is called
local if for all summands in the decomposition this limit is the same. More precisely, we give
the following definition.

▶ Definition 5. Let f ∈ C[x]d be a homogeneous polynomial. A border Waring rank
decomposition

f = lim
ϵ→0

r∑
k=1

ℓd
k ,

with ℓk ∈ C(ϵ)[x]1 is called a local border decomposition if there exists a linear form ℓ ∈ C[x]1
such that limϵ→0[ℓk(ϵ)] = [ℓ] for all k ∈ {1, . . . , r}. We call the point [ℓ] ∈ PC[x]1 the base
of the decomposition. A local decomposition is called standard if ℓ1 = ϵqγℓ for some q ∈ Z
and γ ∈ C.

▶ Lemma 6. If f has a local border decomposition, then it has a standard local border
decomposition with the same base and the same number of summands.

Proof. After applying a linear change of variables, we may assume that the base of the local
decomposition for f is [x1]. This means

f = lim
ϵ→0

r∑
k=1

ℓd
k

with ℓk = ϵqk · γkx1 +
∑∞

j=qk+1 ϵjℓk,j .
Write ℓ1 = ϵq1 (

∑n
i=1 αixi) where αi ∈ C(ϵ). Let x̂1 = γ1

α1
x1 −

∑n
i=2

αn

α1
xi. Note that

α1 ≃ γ1 and αi ≃ 0 for i > 1, hence x̂1 ≃ x1 and

f ≃ f(x̂1, . . . , xn) ≃ ℓ1(x̂1, x2, . . . , xn)d +
r∑

k=2
ℓk(x̂1, x2, . . . , xn)d = (ϵq1γ1x1)d +

r∑
k=2

ℓ̂d
k.

where ℓ̂k(x1, . . . , xn) = ℓk(x̂1, x2, . . . , xn). This defines a new border rank decomposition
of f . Moreover, notice that limϵ→0[ℓ̂k] = [x1] for every k, so the new decomposition is again
local with base [x1]. Since the first summand is ϵq1γ1x1, this is the desired standard local
border decomposition. ◀

▶ Lemma 7. Suppose f ∈ C[x]d has a local border decomposition with r summands based
at [ℓ]. If d ≥ r − 1, then f = ℓd−r+1g for some homogeneous polynomial g of degree r − 1.

Proof. After applying a linear change of variables we may assume ℓ = x1. We prove the
statement by induction on r and the difference d − (r − 1).

The cases r = 1 and d = r − 1 are trivial.
If d > r−1, then by the previous Lemma there exists a standard local border decomposition

f = lim
ϵ→0

r∑
k=1

ℓk(ϵ)d.

Write ℓk =
∑n

i=1 αkixi for some αki ∈ C(ϵ). Since the decomposition is standard, α1i = 0
for i > 1. For the derivatives of f we have the following border decompositions

∂f

∂x1
= lim

ϵ→0

r∑
k=1

d · αk1(ϵ)ℓk(ϵ)d−1,
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and

∂f

∂xi
= lim

ϵ→0

r∑
k=2

d · αki(ϵ)ℓk(ϵ)d−1.

for i ̸= 1. These decompositions involve the same linear forms ℓk with multiplicative
coefficients, so they are local with the same base [x1]. By inductive hypothesis ∂f

∂x1
= xd−r

1 g1

and ∂f
∂xi

= xd−r+1
1 gi for some homogeneous polynomials g1, . . . , gn of appropriate degrees.

To get an analogous expression for f , combine these expressions using Euler’s formula for
homogeneous polynomials as follows

f = 1
d

n∑
i=1

xi
∂f

∂xi
= 1

d

(
x1 · xd−r

1 g1 +
n∑

i=2
xix

d−r+1
1 gi

)
= 1

d
xd−r+1

1

(
g1 +

n∑
i=2

xigi

)
. ◀

We will now extend this result to non-local border Waring rank decompositions. As long as
the degree of the approximated polynomial is high enough, every border rank decomposition
can be divided into local parts and transformed into a sum of terms of the form ℓd−r+1g.

▶ Definition 8. A generalized additive decomposition of f is a decomposition of the form

f =
m∑

k=1
ℓd−rk+1

k gk ,

where ℓk are linear forms such that ℓi is not proportional to ℓj when i ≠ j, and gk are
homogeneous polynomials of degrees deg gk = rk − 1.

To show that there are no cancellations between different local parts, we need the following
lemma, which in the case of 2 variables goes back to Jordan [35, Lem. 1.35]. This lemma
can be seen as a generalization of a well-known fact that m pairwise non-proportional linear
forms ℓ1, . . . , ℓm have linearly independent powers ℓd

1, . . . , ℓd
m for d ≥ m − 1.

▶ Lemma 9. Let ℓ1, . . . , ℓm ∈ C[x]1 be linear forms such that ℓi is not proportional to ℓj when
i ̸= j. Let g1, . . . , gm be homogeneous polynomials of degrees r1 − 1, . . . , rm − 1 respectively.
If

m∑
k=1

ℓd−rk+1
k gk = 0 ,

and d ≥
∑m

k=1 ri − 1, then all gk are zero.

Proof. We first prove the statement for polynomials in 2 variables y1, y2 by induction on the
number of summands m; this part of the proof closely follows [32, Appx.III].

The case m = 1 with one summand is clear. Consider the case m > 2. We can assume
ℓ1 = y1 by applying a linear change of variables if required. Note two simple facts about
partial derivatives. First, for a homogeneous polynomial f ∈ C[y1, y2]d we have ∂r

2f = 0 if
and only if f = yd−r+1

1 g (here ∂2 := ∂
∂y2

). Second, differentiating r times a homogeneous
polynomial of the form ℓd−s+1g, we obtain a polynomial of the form ℓd−r−s+1h.

Suppose

yd−r1+1
1 g1 +

m∑
k=2

ℓd−rk+1
k gk = 0.
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Differentiating r1 times with respect to y2, we obtain
m∑

k=2
ℓd−r1−rk+1

k hk = 0,

where ℓd−r1−rk+1
k hk = ∂r1

2 (ℓd−rk+1
k gk). The degree condition d − r1 ≥

∑m
k=2 rk − 1 holds

for this new expression. Therefore, by induction hypothesis we have hk = 0 and thus
∂r1

2 (ℓd−rk+1
k gk) = 0. It follows that ℓd−rk+1

k gk = yd−r1+1
1 ĝk for some homogeneous poly-

nomial ĝk. This implies that yd−r1+1
1 divides gk, which is impossible since d − r1 + 1 ≥∑m

k=2 rk ≥ rk > deg gk.
Consider now the general case where the number of variables n ≥ 2 (the case n = 1 is

trivial). Suppose
∑m

k=1 ℓd−rk+1
k gk = 0. The set of linear maps A : (y1, y2) 7→ (x1, . . . , xn)

such that ℓi ◦ A and ℓj ◦ A are not proportional to each other is a nonempty Zariski open
set given by the condition rank(ℓi ◦ A, ℓj ◦ A) > 1. Hence for a nonempty Zariski open (and
therefore dense) set of linear maps A the linear forms ℓk ◦ A are pairwise non-proportional.
From the binary case above we have gk ◦ A = 0 if A lies in this open set. By continuity this
implies gk ◦ A = 0 for all A. Since every point lies in the image of some linear map A we
have gk = 0. ◀

▶ Lemma 10. Let f ∈ C[x]d be such that WR(f) = r. If d ≥ r − 1, then there exists a
partition r = r1 + · · · + rm such that f has a generalized additive decomposition

f =
m∑

k=1
ℓd−rk+1

k gk,

and moreover WR(ℓd−rk+1
k gk) ≤ rk.

Proof. Consider a border Waring rank decomposition

f = lim
ϵ→0

r∑
k=1

ℓd
k

Divide the summands between several local decompositions as follows. Define an equivalence
relation ∼ on the set of indices {1, 2, . . . , r} as i ∼ j ⇔ limϵ→0[ℓi] = limϵ→0[ℓj ] and let
I1, . . . , Im be the equivalence classes with respect to this relation. Further, let rk = |Ik| and
let [Lk] = limϵ→0[ℓi] for i ∈ Ik.

Consider the sum of all summands with indices in Ik. Let qk be the power of ϵ in the
lowest order term, that is,

∑
i∈Ik

ℓd
i = ϵqk fk +

∞∑
j=qk+1

ϵjfk,j ,

with fk ∈ C[x]d nonzero. This expression can be transformed into a local border decomposi-
tion

fk = lim
ϵ→0

∑
i∈Ik

(
ℓi(ϵd)

ϵqk

)d

.

based at [Lk]. By Lemma 7 we have fk = Ld−rk+1
k gk for some homogeneous polynomial gk

of degree rk − 1. The decomposition also gives WR(fk) ≤ rk.
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Note that qk ≤ 0 since otherwise the summands ℓi with i ∈ Ik can be removed from the
original border rank decomposition of f without changing the limit. Let q = min{q1, . . . , qm}.
Note that if q < 0, then, comparing the terms before ϵq in the left and right hand sides of
the equality

f + O(ϵ) =
m∑

k=1

∑
i∈Ik

ℓd
i

we get

0 =
∑

k : qk=q

fk =
∑

k : qk=q

Ld−rk+1
k gk.

From Lemma 9 we obtain gk = 0 and fk = 0, in contradiction with the definition of fk.
We conclude that q = 0 and

f =
m∑

k=1
fk =

m∑
k=1

Ld−rk+1
k gk,

obtaining the required generalized additive decomposition. ◀

We will now take a brief detour to define a function M(r) which we use to upper bound
the Waring rank of generalized additive decomposition.

▶ Definition 11. Let maxR(n, d) denote the maximum Waring rank of a degree d homogeneous
polynomial in n variables, that is maxR(n, d) = max{WR(f) | f ∈ C[x1, . . . , xn]d}. Define
the partition-maxrank function as

M(r) = max
r1+···+rm=r

m∑
k=1

maxR(rk, rk − 1).

Since every homogeneous polynomial has finite Waring rank, the space C[x1, . . . , xn]d is
spanned by powers of linear forms. This implies a trivial upper bound on the maximum
Waring rank: maxR(n, d) ≤ dimC[x1, . . . , xn]d =

(
n+d−1

d

)
. Improved upper bounds were

proven in [13, 37].

▶ Proposition 12. maxR(n, d1) ≤ maxR(n, d2) when d1 ≤ d2.

Proof. Every form f of degree d1 can be represented as a partial derivative of some form g

of degree d2. By differentiating a Waring rank decomposition of g we obtain a Waring rank
decomposition of f , thus WR(f) ≤ WR(g) ≤ maxR(n, d2). Since f is arbitrary, maxR(n, d1) ≤
maxR(n, d2). ◀

We are now ready to prove a debordering theorem for Waring rank.

▶ Theorem 13. Let f ∈ C[x]d be such that WR(f) = r. Then

WR(f) ≤ M(r) · d.

Proof. We consider two cases depending on relation of degree d and border Waring rank r.
Case d < r − 1. Since WR(f) = r, the number of essential variables of f is at most r.
Taking the maximum Waring rank as an upper bound, we obtain

WR(f) ≤ maxR(r, d) < maxR(r, r − 1) ≤ M(r) ≤ M(r) · d.
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Case d ≥ r − 1. By Lemma 10 f has a generalized additive decomposition

f =
m∑

k=1
ℓd−rk+1

k gk

with r1 + · · · + rm = r, deg gk = rk − 1 and WR(ℓd−rk+1
k gk) ≤ rk. Since WR(ℓd−rk+1

k gk) ≤ rk,
the number of essential variables Ness(gk) ≤ rk. If rk = 1, then

WR(ℓd−rk+1
k gk) = WR(ℓd

k) = 1 ≤ d.

If rk ≥ 2, then we upper bound WR(gk) by maxR(Ness(gk), deg gk) = maxR(rk, rk − 1).
Taking a Waring rank decomposition gk =

∑WR(gk)
i=1 Lrk−1

i and multiplying it by ℓd−rk+1
k , we

obtain a decomposition

ℓd−rk+1
k gk =

WR(gk)∑
i=1

ℓd−rk+1
k · Lrk−1

i .

It is known that WR(ya
1 yb

2) = max{a, b} + 1 (this is a classical fact known at least to
Oldenburger [47], see also [19])2. It follows that

WR(ℓd−rk+1
k Lrk−1

i ) ≤ WR(yd−rk+1
1 yrk−1

2 ) = max{d − rk + 2, rk} ≤ d.

Hence we have WR(ℓd−rk+1
k gk) ≤ d · WR(gk) ≤ d · maxR(rk − 1, rk).

Combining all parts of the decomposition together, we get

WR(f) ≤ d

m∑
k=1

maxR(r − k − 1, rk) ≤ M(r) · d. ◀

A more explicit upper bound is provided by the following immediate corollary.

▶ Theorem 14. Let f ∈ C[x1, . . . , xn]d and let WR(f) = r. Then

WR(f) ≤
(

2r − 2
r − 1

)
· d.

Proof. The space of homogeneous polynomials of degree r − 1 in r variables has dimension(2r−2
r−1

)
and is spanned by powers of linear forms. Therefore, maxR(r − 1, r) ≤

(2r−2
r−1

)
. Note

that if r = p + q with p, q ̸= 0, then the space C[x1, . . . , xr]r−1 contains a direct sum of
xq

1 · C[x1, . . . , xp]p−1 and xp+1
1 · C[xp+1, . . . , xr]q−1. Taking the dimensions of these spaces,

we obtain
(2r−2

r−1
)

≥
(2p−2

p−1
)

+
(2q−2

q−1
)
. It follows that M(r) ≤

(2r−2
r−1

)
. ◀

Using the Blekherman–Teitler bound on the maximum rank [13], we can get a slightly
better bound. The proof is essentially the same as for the previous theorem.

▶ Corollary 15. Let f ∈ C[x1, . . . , xn]d and let WR(f) = r. Then

WR(f) ≤ 2
⌈

1
r

(
2r − 2
r − 1

)⌉
· d.

2 it is easy to see that for a ≥ b the monomial ya
1 yb

2 is proportional to
∑a

k=0 ζk(ζky1 + y2)a+b where ζ is
a primitive root of unity of order a + 1.
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2.4 Scheme-theoretic proof
In this section we give a proof of Lemma 10 based on the theory of 0-dimensional schemes
and apolarity. This short section assumes familiarity with these topics, we review them in
more details in Appendix A of the extended version of the paper [27].

▶ Lemma 10. Let f ∈ C[x]d be such that WR(f) = r. If d ≥ r − 1, then there exists a
partition r = r1 + · · · + rm such that f has a generalized additive decomposition

f =
m∑

k=1
ℓd−rk+1

k gk,

and moreover WR(ℓd−rk+1
k gk) ≤ rk.

Alternative proof. Denote by V the space of linear forms C[x]1.
Since d ≥ r − 1, the border Waring rank of f is equal to its smoothable rank SR(f) [16],

that is, there exists a 0-dimensional scheme Z ⊂ PV of degree r which is smoothable (obtained
as a flat limit of the family of r-point subsets of PV ) and f is apolar to Z. Let I be the ideal
of Z and let I = I(1) ∩ · · · ∩ I(m) be the primary decomposition of this ideal. The primary
ideals I(j) correspond to irreducible components Zj of the scheme Z.

Since f is apolar to I, we have f ∈ I⊥
d = (I(1)

d )⊥ + · · · + (I(m)
d )⊥. In particular, there

exist fj ∈ (I(j)
d )⊥ such that f = f1 + · · · + fm. Let rj be the degree of Zj . By the definition

of degree, r = r1 + · · · + rm. If Zj is supported at the point [ℓj ] ∈ PV , then for the ideal I(j)

we have (ℓ⊥
j )rj ⊂ I(j) ⊂ ℓ⊥

j and (I(j)
d )⊥ ⊂ ℓ

d−rj+1
j · C[x]rj−1. Therefore the polynomials fj

have the form ℓ
d−rj+1
j gj for some gj of degree deg gj = rj − 1.

Additionally, all irreducible components of a smoothable scheme Z are smoothable [17,
Thm. 1.1], and since fj is apolar to Zj , we have WR(fj) ≤ SR(fj) ≤ rj . ◀

References
1 Alexander Alder. Grenzrang und Grenzkomplexität aus algebraischer und topologischer Sicht.

PhD thesis, Universität Zürich, 1984.
2 J. Alexander and A. Hirschowitz. Polynomial interpolation in several variables. J. Alg. Geom.,

4(2):201–222, 1995.
3 Boris Alexeev, Michael A. Forbes, and Jacob Tsimerman. Tensor rank: Some lower and upper

bounds. In CCC 2011, pages 283–291. IEEE Computer Society, 2011. doi:10.1109/CCC.2011.
28.

4 Eric Allender and Fengming Wang. On the power of algebraic branching programs of width
two. Comput. Complex., 25(1):217–253, 2016. doi:10.1007/s00037-015-0114-7.

5 Edoardo Ballico. On the ranks of homogeneous polynomials of degree at least 9 and border
rank 5. Note di Matematica, 38(2):55–92, 2019. doi:10.1285/i15900932v38n2p55.

6 Edoardo Ballico and Alessandra Bernardi. Stratification of the fourth secant variety of
Veronese varieties via the symmetric rank. Adv. Pure Appl. Math., 4(2):215–250, 2013.
doi:10.1515/apam-2013-0015.

7 Edoardo Ballico and Alessandra Bernardi. Curvilinear schemes and maximum rank of forms.
Le Matematiche, 72(1):137–144, 2017. doi:10.4418/2017.72.1.10.

8 Alessandra Bernardi, Jérôme Brachat, and Bernard Mourrain. A comparison of different
notions of ranks of symmetric tensors. Linear Algebra Appl., 460:205–230, 2014. doi:10.1016/
j.laa.2014.07.036.

9 Alessandra Bernardi, Alessandro Oneto, and Daniele Taufer. On schemes evinced by generalized
additive decompositions and their regularity, 2023. arXiv:2309.12961.

https://doi.org/10.1109/CCC.2011.28
https://doi.org/10.1109/CCC.2011.28
https://doi.org/10.1007/s00037-015-0114-7
https://doi.org/10.1285/i15900932v38n2p55
https://doi.org/10.1515/apam-2013-0015
https://doi.org/10.4418/2017.72.1.10
https://doi.org/10.1016/j.laa.2014.07.036
https://doi.org/10.1016/j.laa.2014.07.036
https://arxiv.org/abs/2309.12961


P. Dutta, F. Gesmundo, C. Ikenmeyer, G. Jindal, and V. Lysikov 30:13

10 Dario Bini. Relations between exact and approximate bilinear algorithms. Applications.
Calcolo, 17(1):87–97, 1980. doi:10.1007/BF02575865.

11 Dario Bini, Milvio Capovani, Francesco Romani, and Grazia Lotti. O(n2.7799) complexity
for n × n approximate matrix multiplication. Inf. Process. Lett., 8(5):234–235, 1979. doi:
10.1016/0020-0190(79)90113-3.

12 Markus Bläser, Julian Dörfler, and Christian Ikenmeyer. On the complexity of evaluating
highest weight vectors. In 36th Computational Complexity Conference (CCC 2021), volume
200 of LIPIcs, pages 29:1–29:36. Dagstuhl, 2021. doi:10.4230/LIPIcs.CCC.2021.29.

13 Grigoriy Blekherman and Zach Teitler. On maximum, typical and generic ranks. Math. Ann.,
362(3-4):1021–1031, 2015. doi:10.1007/s00208-014-1150-3.

14 Karl Bringmann, Christian Ikenmeyer, and Jeroen Zuiddam. On algebraic branching programs
of small width. J. ACM, 65(5):32:1–32:29, 2018. doi:10.1145/3209663.

15 Weronika Buczyńska and Jarosław Buczyński. Secant varieties to high degree Veronese
reembeddings, catalecticant matrices and smoothable Gorenstein schemes. J. Algebraic Geom.,
23(1):63–90, 2014. doi:10.1090/S1056-3911-2013-00595-0.

16 Weronika Buczyńska and Jarosław Buczyński. On differences between the border rank
and the smoothable rank of a polynomial. Glasg. Math. J., 57(2):401–413, 2015. doi:
10.1017/S0017089514000378.

17 Jarosł aw Buczyński and Joachim Jelisiejew. Finite schemes and secant varieties over arbitrary
characteristic. Differential Geom. Appl., 55:13–67, 2017. doi:10.1016/j.difgeo.2017.08.004.

18 Weronika Buczyńska and Jarosław Buczyński. Apolarity, border rank, and multigraded Hilbert
scheme. Duke Math. J., 170(16):3659–3702, 2021. doi:10.1215/00127094-2021-0048.

19 Weronika Buczyńska, Jarosław Buczyński, and Zach Teitler. Waring decompositions of
monomials. Journal of Algebra, 378:45–57, 2013. doi:10.1016/j.jalgebra.2012.12.011.

20 Peter Bürgisser. The complexity of factors of multivariate polynomials. Found. Comput. Math.,
4(4):369–396, 2004. doi:10.1007/s10208-002-0059-5.

21 Peter Bürgisser, Michael Clausen, and Mohammad Amin Shokrollahi. Algebraic Complexity
Theory, volume 315 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag,
1997. doi:10.1007/978-3-662-03338-8.

22 Enrico Carlini. Reducing the number of variables of a polynomial. In Algebraic geometry and
geometric modeling, pages 237–247. Springer, Berlin, 2006. doi:10.1007/978-3-540-33275-6_
15.

23 Arthur Cayley. On the theory of linear transformations. Cambridge Math. J., IV:193–209, 1845.
Reprinted in A. Cayley, The Collected Mathematical Papers I, 80–94, Cambridge University
Press, 1889. doi:10.1017/CBO9780511703676.014.

24 Luca Chiantini, Jonathan D. Hauenstein, Christian Ikenmeyer, Joseph M. Landsberg, and
Giorgio Ottaviani. Polynomials and the exponent of matrix multiplication. Bull. LMS,
50(3):369–389, 2018. doi:10.1112/blms.12147.

25 Alfred Clebsch. Zur Theorie der algebraischen Flächen. J. Reine Angew. Math., 58:93–108,
1861. doi:10.1515/crll.1861.58.93.

26 Pranjal Dutta, Prateek Dwivedi, and Nitin Saxena. Demystifying the border of depth-3
algebraic circuits. In FOCS 2021, pages 92–103. IEEE, 2021. doi:10.1109/FOCS52979.2021.
00018.

27 Pranjal Dutta, Fulvio Gesmundo, Christian Ikenmeyer, Gorav Jindal, and Vladimir Lysikov.
Fixed-parameter debordering of Waring rank, 2024. (Extended version of this paper). arXiv:
2401.07631.

28 Klim Efremenko, Ankit Garg, Rafael Mendes de Oliveira, and Avi Wigderson. Barriers
for rank methods in arithmetic complexity. In 9th Innovations in Theoretical Computer
Science Conference (ITCS 2018), volume 94 of LIPIcs, pages 1:1–1:19. Dagstuhl, 2018.
doi:10.4230/LIPIcs.ITCS.2018.1.

STACS 2024

https://doi.org/10.1007/BF02575865
https://doi.org/10.1016/0020-0190(79)90113-3
https://doi.org/10.1016/0020-0190(79)90113-3
https://doi.org/10.4230/LIPIcs.CCC.2021.29
https://doi.org/10.1007/s00208-014-1150-3
https://doi.org/10.1145/3209663
https://doi.org/10.1090/S1056-3911-2013-00595-0
https://doi.org/10.1017/S0017089514000378
https://doi.org/10.1017/S0017089514000378
https://doi.org/10.1016/j.difgeo.2017.08.004
https://doi.org/10.1215/00127094-2021-0048
https://doi.org/10.1016/j.jalgebra.2012.12.011
https://doi.org/10.1007/s10208-002-0059-5
https://doi.org/10.1007/978-3-662-03338-8
https://doi.org/10.1007/978-3-540-33275-6_15
https://doi.org/10.1007/978-3-540-33275-6_15
https://doi.org/10.1017/CBO9780511703676.014
https://doi.org/10.1112/blms.12147
https://doi.org/10.1515/crll.1861.58.93
https://doi.org/10.1109/FOCS52979.2021.00018
https://doi.org/10.1109/FOCS52979.2021.00018
https://arxiv.org/abs/2401.07631
https://arxiv.org/abs/2401.07631
https://doi.org/10.4230/LIPIcs.ITCS.2018.1


30:14 Fixed-Parameter Debordering of Waring Rank

29 Michael Forbes. Some concrete questions on the border complexity of polynomials. Presentation
given at the Workshop on Algebraic Complexity Theory (WACT 2016) in Tel Aviv, 2016.
URL: https://www.youtube.com/watch?v=1HMogQIHT6Q.

30 Maciej Gałązka. Vector bundles give equations of cactus varieties. Lin. Alg. Appl., 521:254–262,
2017. doi:10.1016/j.laa.2016.12.005.

31 Ankit Garg, Visu Makam, Rafael Mendes de Oliveira, and Avi Wigderson. More barriers for
rank methods, via a "numeric to symbolic" transfer. In FOCS 2019, pages 824–844. IEEE,
2019. doi:10.1109/FOCS.2019.00054.

32 John Hilton Grace and Alfred Young. The Algebra of Invariants. Cambridge Library Collection
— Mathematics. Cambridge University Press, 2010. doi:10.1017/CBO9780511708534.

33 Leonid Gurvits. Ryser (or polarization) formula for the permanent is essentially optimal: the
Waring rank approach. Technical Report LA-UR08-06583, Los Alamos National Laboratory,
2008.

34 Anthony Iarrobino. Inverse system of a symbolic power II. the Waring problem for forms.
Journal of Algebra, 174(3):1091–1110, 1995. doi:10.1006/jabr.1995.1169.

35 Anthony Iarrobino and Vassil Kanev. Power sums, Gorenstein algebras, and determinantal
loci, volume 1721 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1999. doi:
10.1007/BFb0093426.

36 Christian Ikenmeyer and Abhiroop Sanyal. A note on VNP-completeness and border complexity.
Inf. Process. Lett., 176:106243, 2022. doi:10.1016/j.ipl.2021.106243.

37 Joachim Jelisiejew. An upper bound for the Waring rank of a form. Arch. Math. (Basel),
102(4):329–336, 2014. doi:10.1007/s00013-014-0632-6.

38 Joachim Jelisiejew. Pathologies on the Hilbert scheme of points. Inventiones mathematicae,
220(2):581–610, 2020. doi:10.1007/s00222-019-00939-5.

39 Joachim Jelisiejew and Tomasz Mańdziuk. Limits of saturated ideals, 2022. arXiv:2210.13579.
40 Neeraj Kayal and Nitin Saxena. Polynomial identity testing for depth 3 circuits. comput.

complex., 16(2):115–138, 2007. doi:10.1007/s00037-007-0226-9.
41 Hanspeter Kraft. Geometrische Methoden in der Invariantentheorie. Springer, Berlin, 2 edition,

1985. doi:10.1007/978-3-663-10143-7.
42 Mrinal Kumar. On the power of border of depth-3 arithmetic circuits. ACM Trans. Comput.

Theory, 12(1):5:1–5:8, 2020. doi:10.1145/3371506.
43 Joseph M. Landsberg and Zach Teitler. On the ranks and border ranks of symmetric tensors.

Found. Comput. Math., 10(3):339–366, 2010. doi:10.1007/s10208-009-9055-3.
44 Thomas Lehmkuhl and Thomas Lickteig. On the order of approximation in approximative

triadic decompositions of tensors. Theor. Comput. Sci., 66(1):1–14, 1989. doi:10.1016/
0304-3975(89)90141-2.

45 Ketan Mulmuley and Milind A. Sohoni. Geometric complexity theory I: an approach to
the P vs. NP and related problems. SIAM J. Comput., 31(2):496–526, 2001. doi:10.1137/
S009753970038715X.

46 Noam Nisan. Lower bounds for non-commutative computation (extended abstract). In
STOC’91: Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, pages
410–418. ACM, 1991. doi:10.1145/103418.103462.

47 Rufus Oldenburger. Polynomials in several variables. Annals of Mathematics, 41(3):694–710,
1940. doi:10.2307/1968741.

48 Francesco Palatini. Sulle superficie algebriche i cui Sh (h + 1)-seganti non riempiono lo
spazio ambiente. Atti della R. Acc. delle Scienze di Torino, 41:634–640, 1906. URL: https:
//archive.org/details/attidellarealeac41real/page/634.

49 Nitin Saxena. Diagonal circuit identity testing and lower bounds. In Automata, Languages and
Programming, 35th International Colloquium, ICALP 2008, Part I, volume 5125 of Lecture
Notes in Computer Science, pages 60–71. Springer, 2008. doi:10.1007/978-3-540-70575-8_6.

https://www.youtube.com/watch?v=1HMogQIHT6Q
https://doi.org/10.1016/j.laa.2016.12.005
https://doi.org/10.1109/FOCS.2019.00054
https://doi.org/10.1017/CBO9780511708534
https://doi.org/10.1006/jabr.1995.1169
https://doi.org/10.1007/BFb0093426
https://doi.org/10.1007/BFb0093426
https://doi.org/10.1016/j.ipl.2021.106243
https://doi.org/10.1007/s00013-014-0632-6
https://doi.org/10.1007/s00222-019-00939-5
https://arxiv.org/abs/2210.13579
https://doi.org/10.1007/s00037-007-0226-9
https://doi.org/10.1007/978-3-663-10143-7
https://doi.org/10.1145/3371506
https://doi.org/10.1007/s10208-009-9055-3
https://doi.org/10.1016/0304-3975(89)90141-2
https://doi.org/10.1016/0304-3975(89)90141-2
https://doi.org/10.1137/S009753970038715X
https://doi.org/10.1137/S009753970038715X
https://doi.org/10.1145/103418.103462
https://doi.org/10.2307/1968741
https://archive.org/details/attidellarealeac41real/page/634
https://archive.org/details/attidellarealeac41real/page/634
https://doi.org/10.1007/978-3-540-70575-8_6


P. Dutta, F. Gesmundo, C. Ikenmeyer, G. Jindal, and V. Lysikov 30:15

50 James Joseph Sylvester. On the principles of the calculus of forms. J. Cambridge and Dublin
Math., 7:52–97, 1852. Reprinted in J. J. Sylvester, The Collected Mathematical Papers I,
284–327, Cambridge University Press, 1904.

51 Alessandro Terracini. Sulle Vk per cui la varietà degli Sh (h + 1)-seganti ha dimensione minore
dell’ordinario. Rend. Circ. Mat., 31:392–396, 1911. doi:10.1007/BF03018812.

52 WACT 2016. Some accessible open problems. URL: https://www.cs.tau.ac.il/~shpilka/
wact2016/concreteOpenProblems/openprobs.pdf.

STACS 2024

https://doi.org/10.1007/BF03018812
https://www.cs.tau.ac.il/~shpilka/wact2016/concreteOpenProblems/openprobs.pdf
https://www.cs.tau.ac.il/~shpilka/wact2016/concreteOpenProblems/openprobs.pdf




On the Power of Border Width-2 ABPs over Fields
of Characteristic 2
Pranjal Dutta # Ñ

National University of Singapore, Singapore

Christian Ikenmeyer # Ñ

University of Warwick, UK

Balagopal Komarath # Ñ

Indian Institute of Technology Gandhinagar, India

Harshil Mittal #

Indian Institute of Technology Gandhinagar, India

Saraswati Girish Nanoti #

Indian Institute of Technology Gandhinagar, India

Dhara Thakkar # Ñ

Indian Institute of Technology Gandhinagar, India

Abstract
The celebrated result by Ben-Or and Cleve [SICOMP92] showed that algebraic formulas are
polynomially equivalent to width-3 algebraic branching programs (ABP) for computing polynomials.
i.e., VF = VBP3. Further, there are simple polynomials, such as

∑8
i=1 xiyi, that cannot be computed

by width-2 ABPs [Allender and Wang, CC16]. Bringmann, Ikenmeyer and Zuiddam, [JACM18],
on the other hand, studied these questions in the setting of approximate (i.e., border complexity)
computation, and showed the universality of border width-2 ABPs, over fields of characteristic ̸= 2.
In particular, they showed that polynomials that can be approximated by formulas can also be
approximated (with only a polynomial blowup in size) by width-2 ABPs, i.e., VF = VBP2. The
power of border width-2 algebraic branching programs when the characteristic of the field is 2 was
left open.

In this paper, we show that width-2 ABPs can approximate every polynomial irrespective of the
field characteristic. We show that any polynomial f with ℓ monomials and with at most t odd-power
indeterminates per monomial can be approximated by O

(
ℓ · (deg(f) + 2t)

)
-size width-2 ABPs. Since

ℓ and t are finite, this proves universality of border width-2 ABPs. For univariate polynomials, we
improve this upper-bound from O(deg(f)2) to O(deg(f)).

Moreover, we show that, if a polynomial f can be approximated by small formulas, then the
polynomial fd, for some small power d, can be approximated by small width-2 ABPs. Therefore,
even over fields of characteristic two, border width-2 ABPs are a reasonably powerful computational
model. Our construction works over any field.
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1 Introduction

The fundamental aim in computational complexity theory is to separate computational
complexity classes – classes of problems that can be solved using a bounded amount of
computational resources (e.g., time, space). Despite a lot of research, separating classes has
remained elusive because the general computational model, Turing machines, are surprisingly
difficult to prove lower bounds against. Valiant [22] proposed a computational complexity
theory for families of multivariate polynomials, now called algebraic complexity, where the
computational models only use algebraic operations such as addition +, multiplication ×,
etc. The central question in algebraic complexity is to compare the computational power
of the permanent and determinant polynomials, for a symbolic matrix Xn = (xi,j)i,j∈[n],
defined as follows:

pern := pern(Xn) =
∑

σ∈Sn

n∏
i=1

xi,σ(i) ,

detn := detn(Xn) =
∑

σ∈Sn

sgn(σ)
n∏

i=1
xi,σ(i) .

The summations above are over all permutations on n elements. Efficient algorithms to
compute the determinant of a matrix whose entries are from a suitable ring (e.g. integers)
are known [3, 14]. However, efficient algorithms to compute the permanent would imply that
#P = FP, which is widely believed to be false.

A sequence (cn)n∈N of natural numbers is called polynomially bounded if there exists a
polynomial q with ∀n : cn ≤ q(n). A p-family is a sequence of polynomials whose degree and
number of variables are polynomially bounded. Usually, algebraic complexity theorists are
concerned with explicit p-families (e.g., (detn)n, (pern)n) because of its intimate connections
to Boolean complexity.

One can define the determinantal complexity of a multivariate polynomial f ∈ F[x] over a
field F, denoted dc(f), to be the smallest n such that f can be written as the determinant of
an n × n matrix with entries being affine linear forms (i.e. of the form a0 + a1x1 + · · · + anxn,
where ai ∈ F). The class VBP consists of all p-families (fn)n∈N for which the determinantal
complexity is polynomially bounded, see e.g. [13]. Interestingly, VBP can be captured by
algebraic branching programs (ABPs) which can be thought of as a product of w × w matrices
with affine linear entries, and w is called the width of the ABP.

The permanental complexity of a polynomial f , denoted pc(f), is the smallest n such that
f can be written as the permanent of an n × n matrix of affine linear forms. The class VNP
consists of all p-families (fn)n∈N for which the permanental complexity is polynomially
bounded.

It is known that VBP ⊆ VNP [22, 21]. One of the central questions in algebraic complexity
is Valiant’s conjecture of VNP ̸⊆ VBP, or equivalently proving dc(pern) = nω(1) [22]. This is
often known as the determinant vs permanent problem. The best known bounds for dc(pern),
over F = C is: n2/2 ≤ dc(pern) ≤ 2n − 1 [15, 10].

IMM-complexity. There are plausibly weaker classes than VBP, such as VF that tries to
capture the algebraic formula complexity of polynomial families. An algebraic formula is
a directed tree with a unique sink vertex. The source vertices are labelled by variables or
constants from F, and each internal node of the graph is labelled by either + or ×. Nodes
compute polynomials in the natural way by induction. The size of a formula is the number
of its nodes. Finally, the algebraic formula complexity of a polynomial f is the minimum
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size of a formula computing f . Ben-Or and Cleve [2] showed a surprising result that the
polynomial family constructed using an iterated product of 3 × 3 symbolic matrices (formally
it is called IMM3, see Definition 7) is computationally equivalent to algebraic formulas. And
further, Valiant showed that any polynomial f with algebraic formula complexity s, has
determinantal complexity at most 2s [22]. Therefore, separation questions like VF vs. VBP,
and VF vs. VNP can be framed as whether immc3(detn) = nω(1), and immc3(pern) = nω(1);
for a formal definition of IMM-complexity for 3 × 3 matrices (immc3), see Definition 9.

Universality vs. impossibility. It is noteworthy that all the above-mentioned complexity
measures (dc, pc, immc3) are finite for any polynomial f ∈ F[x]; in other words, the model of
computation defined by these complexity measures are “universal”. Given the phenomenon
of universality and the results of Ben-Or and Cleve and Valiant, it is natural to study the
computational power of iterated multiplication of 2 × 2 matrices. Astonishingly, Allender and
Wang [1] showed an impossibility result that the polynomial

∑8
i=1 xiyi cannot be computed

using IMM2. In other words, the IMM2-complexity (Definition 9) of this polynomial is infinite!
However, Bringmann, Ikenmeyer, and Zuiddam [4] showed that by allowing approximations,
the polynomial family IMM2 becomes universal! In fact, they proved a stronger statement
that the IMM2-approximation complexity, which we denote by immc2, is polynomially related
to approximate algebraic formula complexity. However, their proofs only work over fields F
when char(F) ̸= 2. They left open the following, which sets the fundamental basis for this
work.

▶ Question 1 ([4]). Determine the computational power of IMM2 with approximations over
fields of characteristic 2.

Border complexity & GCT. The study of border complexity measures, by allowing ap-
proximations in the algebraic model was first introduced in [17, 5]. Given f ∈ F[x] and
a suitable associated complexity measure Γ, the border-Γ complexity of f (denoted Γ(f))
is the smallest n such that f can be approximated arbitrarily closely by polynomials of
Γ-complexity at most n. Trivially, Γ(f) ≤ Γ(f), for any f . By this definition, one can talk
about the border-complexity measures such as immc, dc, pc etc. Replacing a complexity
measure by its border measure in a complexity class, we obtain the closure of this class,
such as VF, VBP, VNP, and so on. The operation of going to the closure is indeed a closure
operator in the sense of topology (See [11]). The original Geometric Complexity Theory
(GCT) papers [17, 18] propose to use representation-theoretic techniques to separate VNP
from VBP by studying the determinant orbit closure, but progress has been slow. Simpler
models of computation are desirable to study the easier VNP ̸⊆ VF conjecture, for example
immc3, or even the much simpler immc2. This was a main motivation for [4], but their result
does not work in characteristic 2. This naturally leads to the following question.

▶ Question 2. How is immc2 related to immc3 for fields of characteristic 2?

Division and powering. Strassen [20] showed that we can eliminate divisions in algebraic
circuits and formulas computing polynomials without loss of efficiency. The result relies on
the ability to compute small powers of polynomials efficiently. This naturally leads to the
following question.

▶ Question 3. Given border width-2 computations for polynomials f and g, can we also
compute f

g (given g divides f) and fr, for small r, efficiently?
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More generally, one can ask, given computations for f and g, what combinations of f

and g are possible in the model? A known approach to produce such results is to use Waring
decompositions (See [4, 12]). Given a homogeneous degree d polynomial f , the Waring rank
of f , denoted WR(f), is the smallest r such that there exist homogeneous linear polynomials
ℓ1, · · · ℓr with f =

∑r
i=1 ℓd

i . Border Waring rank, denoted WR(f), can be defined analogously
in the border setup. For example, a border Waring decomposition for xy would allow us
to compute the product fg using only addition, scaling by constants, and squaring. Over
fields of characteristic 2, the border Waring rank of xy is infinite and hence, this technique
becomes infeasible.

1.1 Our Contributions
Our main theorem is to answer Question 1 by showing the universality of immc2:

▶ Theorem 4 (Universality of immc2). immc2(f) is finite for every polynomial f , over all
fields.

This theorem over fields of characteristic other than two was proved by Bringmann, Ikenmeyer,
and Zuiddam [4]. In fact, they prove the stronger statement that any polynomial family with
small algebraic formulas approximating it can also be approximated with IMM2 with only a
polynomial blow-up in complexity. Unfortunately, our construction yields an exponential
complexity for even simple polynomial families, such as

∏n
i=1 xi +

∏n
i=1 yi +

∏n
i=1 zi (see

Theorem 19). However, the next theorem proves that for every polynomial with small
formulas approximating them, we can approximate a small power of the polynomial using
IMM2 over any field. This partially answers Question 2.

▶ Theorem 5 (Powering is powerful). There exists a constant k such that for any polynomial
f with a size-s formula approximating f , there is a d ≤ sk + k such that immc2(fd) ≤ sk + k.

The above theorem shows that the border width-2 ABPs are a reasonably powerful
computational model. Further, Theorem 4 and Theorem 5 can be seen as weak extensions
of [4], over any field, regardless of its characteristic and size.

A natural question is which interesting classes of polynomials can be efficiently approx-
imated using IMM2. In Theorem 19, we show that every sparse polynomial family (i.e.,
the number of monomials is poly(n)) where the monomials do not have a large number
of variables with odd degree can be efficiently approximated. A particularly interesting
subset of this class is the class of all univariate polynomials. Applying Theorem 19 to
univariate polynomials, we obtain a computation of any degree-d univariate polynomial using
O(d2) operations. But, Horner’s rule gives a formula for any degree-d univariate polynomial
that only uses O(d) operations. The following theorem is a refinement of Theorem 19 to
univariates where we show that every degree-d univariate can be approximated using O(d)
matrices. This construction is a consequence of our partial answers towards Question 3.

▶ Theorem 6. For any degree-d univariate polynomial f , we have immc2(f) ≤ 9d+4
2 .

We leave open the question whether immc2 is polynomially related to approximate
algebraic formula complexity over fields of characteristic 2.

1.2 Comparison with previous works
As mentioned before, [4] showed that any polynomial with small border algebraic formula
complexity have small immc2-complexity, when char(F) ̸= 2. Their proof was constructive, and
fundamentally (& inductively) used the following identity: x·y = 1

2 ·
(
(x + y)2 − x2 − y2). One



P. Dutta, C. Ikenmeyer, B. Komarath, H. Mittal, S. G. Nanoti, and D. Thakkar 31:5

could also use even a smaller representation: x · y =
( 1

2 · (x + y)
)2 −

( 1
2 · (x − y)

)2. However
both representations use the constant 1

2 , and one can show that one cannot come up with an
identity which does not use 1

2n , for some n ∈ N. In other words, WR(x · y) = WR(x · y) = ∞
over F with char(F) = 2. Therefore, their construction fails miserably over characteristic 2
fields.

On the other hand, Kumar [12] showed that for any f ∈ C[x], a constant multiple of f can
be approximated by

∏
i∈[m](1 + ℓi) − 1, where ℓi are linear polynomials in C(ϵ)[x]. Note that,

this implies that immc2(f) ≤ m. The representation depends on the Waring decomposition
of f , and further one can show that for the minimum m: WR(f) ≤ m ≤ deg(f) · WR(f) [8].
However, over F of char(F) = 2, for any d ≥ 2, there are d-degree polynomials (e.g., x1 · · · xd)
which has infinite border Waring rank, and hence the above universality proof fails.

In this work, we come up with a Waring-free proof to show the universality over char-
acteristic 2 fields, and therefore our proofs are very different (yet simple) from the known
constructive proofs.

1.3 Proof ideas

The key building block in the proof of universality of border width-2 ABPs over fields

characteristic ̸= 2 in [4] is a Q matrix. For a polynomial f , they define Q(f) =
(

f 1
1 0

)
.

Given Q(f) and Q(g), Q(f + g) can be computed as Q(f)Q(0)Q(g). So, to prove universality,
it suffices to show that Q(fg) can also be computed from Q(f) and Q(g). Bringmann,
Ikenmeyer and Zuiddam [4] showed that Q(f2) can be approximately computed using Q(f),
and then the identity fg = ( 1

2 (f + g))2 − ( 1
2 (f − g))2 can be used to compute the product

using squaring, addition, and scaling by constants. As discussed before, such an identity
does not exist over fields of characteristic two.

We overcome this block by not trying to compute the product of two arbitrary polynomials.
We observe that for universality, it is enough to be able to compute Q(fx) from Q(f) for
an arbitrary variable x. The advantage is that since x is a variable and not an arbitrary
polynomial, we can use any 2 × 2 matrix that contains only constants and the variable x in
the computation of Q(fx), whereas for computing Q(fg), both f and g are available to us
only as Q matrices (or in any other form that have been proved inductively). This is the key
idea in Lemma 15 (see Section 4).

The source of inefficiency of Lemma 15 is that Q(f) is used twice to compute Q(fx).
Therefore, even computing a simple polynomial such as xn using this lemma takes Ω(2n)
matrices. Compare this to the computation of Q(fg) in [4] where they use Q(f) and Q(g) at
most three times which is enough to stay within a polynomial factor of formula complexity.
In Lemma 17, we show that we can compute Q(fg2) by using Q(f) once and Q(g) twice
(see Section 4). This lemma enables efficient computation of powers of polynomials with
small formulas (Theorem 20), sparse polynomials where each monomial only contains a few
variables with odd power (Theorem 19), and univariate polynomials (Theorem 24). We also
use this lemma to compute powers of polynomials efficiently. That is, given a computation
of Q(f) using s matrices, compute Q(fr) using O(rs) matrices (see Section 7). We also
observe that the division Q( f

g2 ) from Q(f) and Q(g) can be performed by combining standard
division elimination techniques [20] with Lemma 17 (see Section 8).
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2 Preliminaries

We consider polynomial families f = (fn)n≥0 over an arbitrary field F. The nth polynomial in
the family fn is a polynomial in F[x1, . . . , xm] where m = poly(n). The following polynomial
family is particularly important in this paper.

▶ Definition 7. For any fixed, natural k ≥ 1, we define the polynomial family IMMk =
(IMMk,n) such that IMMk,n is the (1, 1)th entry of the product of n matrices of order k × k

where each entry of each matrix is a fresh variable, i.e., the (i, j)th entry of the mth matrix
is the variable x

(m)
i,j for all 1 ≤ i, j ≤ k and 1 ≤ m ≤ n.

▶ Definition 8. A weakest projection from a set of variables X to another set of variables
Y is a mapping X 7→ Y ∪ F. A weak projection is a mapping from X to affine linear forms
in at most one variable in F[Y ]. For polynomials f and g, we say f ≤wst g (f ≤w g), if there
is a weakest projection (resp., weak projection) that maps g to f .

The notion of a projection is used to compare the number of algebraic operations required
to compute polynomials. Note that if fn is computable using s operations and if gm ≤wst fn,
then gm is also computable using s operations. The weak variant ≤w weakens this slightly
since we can only conclude that gm can be computed using at most poly(s) operations.

▶ Definition 9. Let f = (fn) be a polynomial family. We define the f -complexity wrt ≤wst

(or ≤w) of a polynomial g as the smallest m such that g ≤wst fm (resp., ≤w). If there is no
such m, then the f -complexity of g is ∞. We define the f -complexity of a polynomial family
g = (gn) as the sequence s = (sn) where sn is the f -complexity of the polynomial gn.

We say that f computes a polynomial g wrt ≤wst (or, ≤w) if f -complexity of g wrt ≤wst

(resp., ≤w) is finite.

For f = (fn), we denote f -complexity wrt ≤wst (or, ≤w) using fcwst (resp., fcw). We omit
the projection from the notation if it is the weakest projection. For example, we denote
det-complexity, IMM3-complexity, and IMM2-complexity under weakest projections by dc,
immc3, and immc2 respectively.

▶ Definition 10. A polynomial family f = (fn)n≥0 is called universal wrt ≤wst (or ≤w) if
for any polynomial g, the f -complexity of g wrt ≤wst (resp., ≤w) is finite.

We can now define the approximation equivalent of ≤wst and ≤w.

▶ Definition 11. An approximate weakest projection is a map from X to Y ∪ F(ϵ). An
approximate weak projection is a map from X to affine linear forms in at most one variable
in F(ϵ)[Y ].

Given f, g ∈ F[X], we say f ≤wst g (f ≤w g) if there is an approximate weakest projection
(resp., approximate weak projection) that maps g to some polynomial that approximates f .

We can use these to define approximate f -complexity of polynomials.

▶ Definition 12. Let f = (fn) be a polynomial family. We define the approximate f -
complexity of a polynomial g as the smallest m such that g ≤wst fm (or g ≤w fm). If no such
m exists, we define the f -complexity of g as ∞. We define the f -complexity of a polynomial
family g = (gn) as the sequence s = (sn) where sn is the f -complexity of the polynomial gn.

We say that f approximately computes a polynomial g wrt ≤wst (or, ≤w) if the approximate
f -complexity of g wrt ≤wst (resp., ≤w) is finite.
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We denote approximate f -complexity wrt ≤wst (or, ≤w) fcwst (resp., fcw). As before, we
omit the projection if it is the weakest projection.

We now introduce some additional definitions that are applicable when f = IMM2. In
this case, we can naturally consider computation of 2 × 2 matrices of polynomials by f .

▶ Definition 13. Let A =
(

g1 g2
g3 g4

)
where g1, g2, g3, g4 are polynomials. We say that A is

computed wrt ≤wst (or, ≤w) by a sequence of m matrices if there is a sequence of m 2 × 2
matrices, where all 4m entries are variables or constants from F (resp., affine linear forms
in at most one variable), such that the product of those matrices is A.

The above definition can be naturally extended into the setting of approximate computa-
tion. Following [4], we use the notation O(ϵk) to denote an arbitrary polynomial in the set
ϵkF[ϵ, x1, . . . , xn].

▶ Definition 14. We say that A is approximately computed wrt ≤wst (or, ≤w) by a sequence
of m matrices if there is a sequence of m 2 × 2 matrices, where all 4m entries are variables
or constants from F(ϵ) (resp., affine linear forms over F(ϵ) in at most one variable), such

that the product of those matrices is
(

g1 + O(ϵ) g2 + O(ϵ)
g3 + O(ϵ) g4 + O(ϵ)

)
.

We omit the projection if it is the weakest projection. All results in this paper except
Theorem 26 hold wrt weakest projections.

3 Approximately computing the Allender-Wang polynomial over fields
of characteristic 2

Allender and Wang showed that immc2(AW) = ∞ where AW =
∑8

i=1 xiyi. Bringmann,
Ikenmeyer, and Zuiddam (See Example 3.8 in [4]) constructed an approximation to the AW
polynomial when char(F) ̸= 2 thereby showing that immc2(AW) is finite when char(F) ̸= 2.
Here, we show that it is finite when char(F) = 2 as well.

We restate the definition of Q-matrix computing a polynomial f from [4].

Q(f) =
(

f 1
1 0

)
Observe that Q(f + g) = Q(f)Q(0)Q(g). That is, if we can compute two polynomials as

Q-matrices, then we can also compute their sum as a Q-matrix. Now, let

F (x, y) :=
( 1

ϵ 0
0 1

)(
x 1
1 0

)(
ϵ 1
0 1

)( 1
ϵ y

−1 1

)(
x 1
1 0

)(
1 0
1 −ϵ

)
.

Note that F (x, y) computes
(

xy 1
1 + ϵy 0

)
.

Finally, the following sequence approximately computes AW:

(
1 0

)
F (x1, y1)

(
0 1
1 0

)
F (x2, y2) · · ·

(
0 1
1 0

)
F (x8, y8)

(
1
0

)
= AW + O(ϵ).

This shows that immc2(AW) ≤ 55. The above computation works over all fields, irrespect-
ive of the characteristic.
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4 Universality of IMM2 with approximations

The key idea in [4] that allows IMM2 to efficiently simulate formulas is a way to compute
Q(f2) from Q(f) (squaring). Then, the identify fg = ((f + g)2 − f2 − g2)/2 that is valid
only when char(F) ̸= 2 is used to compute Q(fg) from Q(f) and Q(g) using addition and
squaring. The following lemma allows one to multiply an arbitrary polynomial with any
indeterminate when char(F) = 2.

▶ Lemma 15. Let f be a polynomial. Suppose that there is a sequence, say σ, of N matrices
that approximately computes Q(f). Then, for any indeterminate x, there is a sequence of
2N + 4 matrices that approximately computes Q(fx).

Proof. Consider the following sequence, say σ′, of 2N + 4 matrices:( 1
ϵ 0
0 1

)
σ|ϵ→ϵ2

(
ϵ 1
0 1

)( 1
ϵ x

−1 1

)
σ|ϵ→ϵ2

(
1 0
1 −ϵ

)
where σ

∣∣
ϵ→ϵ2 denotes the sequence obtained from σ by replacing ϵ with ϵ2.

Note that σ′ computes(
1
ϵ

0
0 1

)(
f + O(ϵ2) 1 + O(ϵ2)
1 + O(ϵ2) O(ϵ2)

)(
ϵ 1
0 1

)(
1
ϵ

x

−1 1

)(
f + O(ϵ2) 1 + O(ϵ2)
1 + O(ϵ2) O(ϵ2)

)(
1 0
1 −ϵ

)
=
(

f
ϵ

+ O(ϵ) 1
ϵ

+ O(ϵ)
1 + O(ϵ2) O(ϵ2)

)(
0 ϵx + 1

−1 1

)(
f + 1 + O(ϵ2) −ϵ + O(ϵ3)

1 + O(ϵ2) O(ϵ3)

)
=
(

− 1
ϵ

+ O(ϵ) fx + f+1
ϵ

+ O(ϵ)
O(ϵ2) ϵx + 1 + O(ϵ2)

)(
f + 1 + O(ϵ2) −ϵ + O(ϵ3)

1 + O(ϵ2) O(ϵ3)

)
=
(

fx + O(ϵ) 1 + O(ϵ2)
1 + ϵx + O(ϵ2) O(ϵ3)

)
. ◀

We also provide a Macaulay program in Appendix A to verify the construction described in
the proof of Lemma 15. Although not as powerful as multiplying two arbitrary polynomials,
Lemma 15 is sufficient to prove universality. Let p be a polynomial with ℓ monomials. Note
that for any monomial, say m, of p, repeatedly applying Lemma 15 gives a sequence of
O
(
2deg(m)) matrices that approximately computes Q(m). Thus, Q(p) can be approximately

computed using a sequence of O
(
ℓ · 2deg(p)) matrices.

Although sufficient to show universality, this is inefficient. Even for simple polynomials
such as xn which can be computed using n − 1 operations, we require O(2n) matrices. We
can improve the efficiency by using the following lemma.

▶ Remark 16. For any degree-d monomial m, we have immc2(m) = d. We can write
m = y1 · · · yd where each yi is a variable. Then, we set the (1, 1) entry of the ith matrix to
yi. All other entries are 0. The product now computes m at entry (1, 1) and 0 elsewhere.
Since this construction does not compute Q(m), it is not possible to use this to compute, say∏n

i=1 xi +
∏n

i=1 yi +
∏n

i=1 zi using poly(n) operations.

▶ Lemma 17. Let f and g be polynomials. Suppose that there is a sequence, say σ, of
N matrices that approximately computes Q(f), and a sequence, say π, of M matrices that
approximately computes Q(g). Then, there is a sequence of N + 2M + 4 matrices that
approximately computes Q(fg2).
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Proof. Consider the following sequence, say σ′, of N + 2M + 4 matrices:(
− 1

ϵ 0
0 ϵ

)
π
∣∣
ϵ→ϵ3

(
ϵ 0
0 1

ϵ

)
σ
∣∣
ϵ→ϵ5

(
−ϵ 0
0 1

ϵ

)
π
∣∣
ϵ→ϵ3

( 1
ϵ 0
0 ϵ

)
where σ

∣∣
ϵ→ϵ5 denotes the sequence obtained from σ by replacing ϵ with ϵ5, and

. π
∣∣
ϵ→ϵ3 denotes the sequence obtained from π by replacing ϵ with ϵ3.

Note that σ′ computes(
− 1

ϵ 0
0 ϵ

)(
g + O(ϵ3) 1 + O(ϵ3)
1 + O(ϵ3) O(ϵ3)

)(
ϵ 0
0 1

ϵ

)(
f + O(ϵ5) 1 + O(ϵ5)
1 + O(ϵ5) O(ϵ5)

)(
−ϵ 0
0 1

ϵ

)
(

g + O(ϵ3) 1 + O(ϵ3)
1 + O(ϵ3) O(ϵ3)

)( 1
ϵ 0
0 ϵ

)
=
(

−g + O(ϵ3) − 1
ϵ2 + O(ϵ)

ϵ2 + O(ϵ5) O(ϵ3)

)(
f + O(ϵ5) 1 + O(ϵ5)
1 + O(ϵ5) O(ϵ5)

)(
−g + O(ϵ3) −ϵ2 + O(ϵ5)

1
ϵ2 + O(ϵ) O(ϵ3)

)
=
(

−fg − 1
ϵ2 + O(ϵ) −g + O(ϵ3)

ϵ2f + O(ϵ3) ϵ2 + O(ϵ5)

)(
−g + O(ϵ3) −ϵ2 + O(ϵ5)

1
ϵ2 + O(ϵ) O(ϵ3)

)
=
(

fg2 + O(ϵ) 1 + ϵ2fg + O(ϵ3)
1 − ϵ2fg + O(ϵ3) −ϵ4f + O(ϵ5)

)
.

This proves Lemma 17. ◀

We also provide a Macaulay program in Appendix A to verify the construction described
in the proof of Lemma 17. The key improvement here is that instead of using σ for Q(f)
two times as in Lemma 15, we can compute Q(fx2) using Q(f) only once. Crucially, this
allows certain monomials to be computed efficiently.

▶ Lemma 18. Consider a monomial, say m = c · xk1
1 · · · xkn

n . Let λ denote the number
of odd ki’s in k1, . . . , kn. Then, Q(m) can be approximately computed using a sequence of
(5 · 2λ − 4) + 3 ·

(
deg(m) − λ

)
matrices.

Proof. Without loss of generality, assume that k1, . . . , kλ are the λ odd ki’s. At a high level,
we start with Q(c), then repeatedly apply Lemma 15 to get Q(c · x1 · · · xλ), then repeatedly
apply Lemma 17 to get Q(c · xk1

1 · · · xkλ

λ ), and then repeatedly applying Lemma 17 to get
Q(c · xk1

1 · · · xkλ

λ x
kλ+1
λ+1 · · · xkn

n ). More precisely, our construction is as follows:

We begin with the sequence Q(c). Using Lemma 15
(
with indeterminate x1

)
, we get

a sequence of 2 · 1 + 4 = 6 matrices that approximately computes Q(c · x1). Next, using
Lemma 15

(
with indeterminate x2

)
, we get a sequence of 2 · 6 + 4 = 16 matrices that

approximately computes Q(c ·x1x2). Again, using Lemma 15
(
with indeterminate x3

)
, we get

a sequence of 2 ·16+4 = 36 matrices that approximately computes Q(c ·x1x2x3). We continue
this process until finally, using Lemma 15

(
with indeterminate xλ

)
, we get a sequence of

2 ·
(
5 · 2λ−1 − 4

)
+ 4 = 5 · 2λ − 4 matrices that approximately computes Q(c · x1x2x3 · · · xλ).

Now, using Lemma 17
(
with g = x1

)
k1−1

2 times, we get a sequence of (5 · 2λ − 4) + (2 +
4) ·
(

k1−1
2
)

matrices that approximately computes Q(c · xk1
1 x2 · · · xλ). Next, using Lemma 17(

with g = x2
)

k2−1
2 times, we get a sequence of (5 · 2λ − 4) + (2 + 4) ·

(
k1−1

2
)

+ (2 + 4) ·
(

k2−1
2
)

matrices that approximately computes Q(c · xk1
1 xk2

2 x3 · · · xλ). We continue this process until
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finally, using Lemma 17
(
with g = xλ

)
kλ−1

2 times, we get a sequence of (5 · 2λ − 4) + (2 + 4) ·(
k1−1

2
)

+ (2 + 4) ·
(

k2−1
2
)

+ . . . + (2 + 4) ·
(

kλ−1
2
)

= (5 · 2λ − 4) + 3 ·
(∑λ

i=1 ki − λ
)

matrices
that approximately computes Q(c · xk1

1 xk2
2 xk3

3 · · · xkλ

λ ).

Now, using Lemma 17
(
with g = xλ+1

) kλ+1
2 times, we get a sequence of (5 · 2λ − 4) + 3 ·(∑λ

i=1 ki −λ
)

+(2+4) ·
(kλ+1

2
)

matrices that approximately computes Q(c ·xk1
1 · · · xkλ

λ x
kλ+1
λ+1 ).

Next, using Lemma 17
(
with g = xλ+2

) kλ+2
2 times, we get a sequence of (5 · 2λ − 4) + 3 ·(∑λ

i=1 ki − λ
)

+ (2 + 4) ·
(kλ+1

2
)

+ (2 + 4) ·
(kλ+2

2
)

matrices that approximately computes
Q(c · xk1

1 · · · xkλ

λ x
kλ+1
λ+1 x

kλ+2
λ+2 ). We continue this process until finally, using Lemma 17

(
with

g = xn

)
kn

2 times, we get a sequence of (5 · 2λ − 4) + 3 ·
(∑λ

i=1 ki − λ
)

+ (2 + 4) ·
(kλ+1

2
)

+ (2 +
4) ·

(kλ+2
2
)

+ . . . + (2 + 4) ·
(

kn

2
)

= (5 · 2λ − 4) + 3 ·
(∑λ

i=1 ki − λ
)

+ 3 ·
∑n

i=λ+1 ki matrices
that approximately computes Q(c · xk1

1 · · · xkλ

λ x
kλ+1
λ+1 x

kλ+2
λ+2 · · · xkn

n ). That is, we get a sequence
of (5 · 2λ − 4) + 3 ·

(
deg(m) − λ

)
matrices that approximately computes Q(m).

This proves Lemma 18. ◀

Note that Lemma 18 allows us to compute xn using O(n) matrices.

▶ Theorem 19. Let p be a polynomial with ℓ monomials, each containing at most t odd-power
indeterminates. Then, Q(p) can be approximately computed using a sequence of at most
ℓ ·
(
5 · 2t + 3 · deg(p)

)
matrices.

Proof. Let m1, . . . , mℓ denote the ℓ monomials of p. For each 1 ≤ i ≤ ℓ, we use Lemma 18
to get a sequence, say σi, of at most (5 · 2t − 4) + 3 · deg(mi) matrices that approximately
computes Q(mi). Now, the following sequence approximately computes Q(p):

σ1 · Q(0) · σ2 · Q(0) · · · Q(0) · σℓ

Note that the number of matrices in this sequence is at most

(ℓ − 1) +
ℓ∑

i=1

(
(5 · 2t − 4) + 3 · deg(mi)

)
≤ ℓ ·

(
5 · 2t + 3 · deg(p)

)
This proves Theorem 19. ◀

5 Connections to Algebraic Formulas

In this section, we explore the relationship between the computational power of width-2
ABPs and algebraic formulas. Our main theorem in this section is:

▶ Theorem 20. There exists a constant k such that for any polynomial f with a size-s
formula approximating it, there is a d ≤ sk + k such that immc2(fd) ≤ sk + k.

Proof. If the field has characteristic ̸= 2, this can be done by using the methods in [4]. We
consider fields of characteristic two. It is sufficient to consider IMM3,n for an arbitrary n as
IMM3 is a VF-complete family. We can consider without loss of generality that n is a power
of two. These polynomials have polynomial-size algebraic formulas of depth O(log(n)) where
every path from root to leaf has the same number of product gates. We now construct a
width-two algebraic branching program inductively from the formula as follows. For every
polynomial p computed at a sub-formula with product depth d, we will compute Q(p2d). For
input gates, this is trivial. Suppose f and g are sub-formulas that have product depth d.
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For the formula f + g, notice that (f + g)2d

= f2d + g2d over fields of characteristic two.
We can compute Q(f2d + g2d) from Q(f2d) and Q(g2d). For the formula f · g, we compute
Q
(
(f2d)

2
(g2d)

2)
= Q((fg)2d+1

) using Lemma 17. Notice that since the product depth is
the same on every root to leaf path, these cases are exhaustive. Since each step can at
most double the size and depth is O(log(n)), the size of the resulting width-two algebraic
branching program is only poly(n). ◀

The following remarks discuss two important consequences of this theorem. First, it allows
us to extend the main result of [4] to more fields.

▶ Remark 21. Over characteristic 2, it is not clear whether one can compute f from fd, for
a polynomially-bounded d, which is a power of 2, using immc2. However, over large fields of
characteristic ̸= 2, one can follow the efficient root-finding procedure, for e.g., see [5, 6, 19],
to conclude a small border width-2 complexity of f .

Second, it allows us to reduce border PIT for formulas to border PIT for width-2 ABPs.

▶ Remark 22. The border PIT problem (for definition and further connections with lower
bounds, see [16, Section 2.6], [9], or [7, Section 7.1]) for a computational model is to check
whether or not the polynomial computed by the given computation is approximately 0.
Theorem 20 shows that border PIT for formulas reduces to border PIT for width-2 ABPs
over all fields. For fields of characteristic ̸= 2, this was already a consequence of the main
result in [4]. Theorem 20 extends this to all fields. Notice that the proof of this theorem
is constructive. That is, given a formula that approximately computes f , the proof of
Theorem 20 can be easily modified to produce a polynomial-time algorithm to output a
width-2 algebraic program approximating fd. Now, over any field, fd is approximately 0 if
and only if f is approximately 0.

We say that a model supports efficient computation of square roots if any computation of
f2 in the model implies the existence of a computation for f where the size is polynomially
related to the computation for f2. The following corollary establishes that if we can efficiently
compute square roots approximately using width-two algebraic branching programs, then
all polynomial families with constant-depth, polynomial-size circuits can be approximately
computed using polynomial-size width-two algebraic branching programs.

▶ Corollary 23. Suppose k is a universal constant such that given any width-two algebraic
branching program of size s approximately computing a polynomial f2, we can approximately
compute f using width-two algebraic branching programs of size at most sk + k. Then, any
polynomial family p that has constant depth algebraic circuits of size s can be approximately
computed using width-two algebraic branching programs of size poly(s).

Proof. Since p has polynomial-size algebraic circuits of constant depth, it also has polynomial-
size algebraic formulas of constant depth where all root to leaf paths have the same product
depth. We then apply Theorem 20 to obtain a width-two algebraic branching program that
computes f2d , where d is the product depth of the formula. Notice that the construction in
Lemma 17 can obtain a width-two algebraic branching program that approximately computes
(f1 · · · fk)2 in size 2

∑k
i=1 si + O(k) from those of size si for fi, where 1 ≤ i ≤ k, even when

k is unbounded. Finally, we apply the square root computation given by the hypothesis d

times to obtain a width-two algebraic branching program that approximately computes f in
size O(skd). ◀

STACS 2024
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6 Improved bound for univariate polynomials

For univariate polynomials, a quadratic (in degree) upper bound on immc2 over fields of
characteristic 2 follows from Theorem 19. However, we can do better. In fact, we can make
this asymptotically optimal by using a two-step Horner’s method.

▶ Theorem 24. Let p be a univariate polynomial in x. Then, Q(p) can be approximately

computed using a sequence of at most
9 · deg(p) + 4

2 matrices.

Proof. Let d := deg(p) if deg(p) is even, and d := deg(p) − 1 otherwise.
If deg(p) is even, p is of the following form:

adxd + ad−1xd−1 + . . . + a1x + a0.

Otherwise, p is of the following form:

ad+1xd+1 + adxd + ad−1xd−1 + . . . + a1x + a0.

Note that in both the cases, p can be expressed as follows:(
. . .
((

ax2 + ad−1x + ad−2)x2 + ad−3x + ad−4

)
x2 + . . . + a3x + a2

)
x2 + a1x + a0,

where a := ad if deg(p) is even, and a := ad+1x + ad otherwise.

At a high level, our construction exploits the above expression by starting with Q(a), then
obtaining Q(ax2) using Lemma 17, then obtaining Q

(
ax2 + ad−1x + ad−2) by appending a

few matrices, then obtaining Q
((

ax2 + ad−1x + ad−2
)
x2
)

using Lemma 17, and so on, until
we finally obtain Q(p). More precisely, we construct the desired sequence as follows:

First, we compute Q(a). When d is even, the matrix Q(ad) computes Q(a). When d is
odd, we could have taken Q(ad+1x)Q(0)Q(ad) as a sequence of matrices computing Q(a) if
we were in the weak setting. However, since we are in the weakest setting, we instead use

the length-2 sequence
(

ad+1 ad

0 1

)(
x 1

ad+1

1 0

)
to compute Q(a).

Next, using Lemma 17
(
with g = x

)
, we get a sequence of at most 2 + 2 + 4 = 8

matrices that approximately computes Q(ax2). Again, if we were in the weak setting, we
could have appended this sequence with Q(0)Q(ad−1x)Q(0)Q(ad−2) to get Q(ax2 + ad−1x +
ad−2). However, since we are in the weakest setting, we instead append this sequence with

Q(0)
(

ad−1 ad−2
0 1

)(
x 1

ad−1

1 0

)
when ad−1 ≠ 0, and Q(0)Q(ad−2) when ad−1 = 0. This

gives us a sequence of at most 8 + 3 = 11 matrices that computes Q(ax2 + ad−1x + ad−2).

Again, using Lemma 17
(
with g = x

)
, we get a sequence of at most 11 + 2 + 4 = 17

matrices that approximately computes Q
(
(ax2 + ad−1x + ad−2)x2). As before, we append

it with Q(0)
(

ad−3 ad−4
0 1

)(
x 1

ad−3

1 0

)
when ad−3 ̸= 0, and Q(0)Q(ad−4) when ad−3 = 0.

This gives us a sequence of at most 17 + 3 = 20 matrices that approximately computes
Q
(

(ax2 + ad−1x + ad−2)x2 + ad−3x + ad−4

)
.

We continue this process. Finally, we get a sequence of at most
9d + 4

2 ≤
9 · deg(p) + 4

2
matrices that approximately computes Q(p). This proves Theorem 24. ◀
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7 Powering

Efficiently computing fr from f , or powering, is an essential ingredient in many constructions,
such as division elimination.

▶ Lemma 25. Let p be a polynomial. Let r ≥ 1 be an integer. Suppose that there is a
sequence of M matrices that approximately computes Q(p). Then, there is a sequence of at
most rM + 2r + 1 matrices that approximately computes Q(pr).

Proof. At a high level, we repeatedly use Lemma 17 to get Q(p2), Q(p4), . . . , Q(pr) when r

is even, and Q(p3), Q(p5), . . . , Q(pr) when r is odd. More precisely, we construct the desired
sequence as follows:

Case 1: r is even. Using Lemma 17
(
with f = 1 and g = p

)
, we get a sequence of

1 + 2M + 4 = 2M + 5 matrices that approximately computes Q(p2). Next, using Lemma 17(
with f = p2 and g = p

)
, we get a sequence of (2M + 5) + 2M + 4 = 4M + 9 matrices that

approximately computes Q(p4). Again, using Lemma 17
(
with f = p4 and g = p

)
, we get a

sequence of (4M + 9) + 2M + 4 = 6M + 13 matrices that approximately computes Q(p6).
We continue this process until finally, using Lemma 17

(
with f = pr−2 and g = p

)
, we get

a sequence of
(
(r − 2)M + 2r − 3

)
+ 2M + 4 = rM + 2r + 1 matrices that approximately

computes Q(pr).

Case 2: r is odd. Using Lemma 17
(
with f = p and g = p

)
, we get a sequence of

M + 2M + 4 = 3M + 4 matrices that approximately computes Q(p3). Next, using Lemma 17(
with f = p3 and g = p

)
, we get a sequence of (3M + 4) + 2M + 4 = 5M + 8 matrices that

approximately computes Q(p5). Again, using Lemma 17
(
with f = p5 and g = p

)
, we get a

sequence of (5M + 8) + 2M + 4 = 7M + 12 matrices that approximately computes Q(p7).
We continue this process until finally, using Lemma 17

(
with f = pr−2 and g = p

)
, we get

a sequence of
(
(r − 2)M + 2r − 6

)
+ 2M + 4 = rM + 2r − 2 matrices that approximately

computes Q(pr). This proves Lemma 25. ◀

8 Division Elimination

We are now ready to prove a division elimination result. The usual division elimination
computes f/g from f and g given that g divides f . Since we can compute Q(fg2) efficiently
from Q(f) and Q(g). Efficient division elimination will imply that we can compute Q(fg) =
Q(fg2/g) as well. In the following theorem, we prove a weaker version of division elimination,
where we show how to compute f/g2 from f and g given g2 divides f . This is the only
construction in this paper that relies on the additional power of weak projections over weakest
projections.

▶ Theorem 26. Let f(x) and g(x) be n-variate polynomials over a sufficiently large field of
characteristic 2, where x = (x1, . . . , xn). Suppose that there are sequences, say σ and π, of N

and M matrices that approximately compute Q(f) and Q(g) wrt weak projections respectively.
Assume that g2 divides f . Then, there is a sequence, say η, of O

(
N4M(M + N)

)
matrices

that approximately computes Q
(

f
g2

)
wrt weak projections.

Proof. Define h(x) := f(x)
g(x)2 . Let k be the degree of h(x). If g(0) ̸= 1, then we find α such

that g(x + α) = 1 + g1(x).

STACS 2024
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Using the sequence π, we can get a new sequence of O(M) matrices that approximately
computes g1(x). We have

h(x+α) = f(x + α)
(g(x + α))2 = f(x + α)

(1 + (−1 + g(x + α)))2 = f(x + α)
(1 + g1(x))2 = f(x + α)

1 + g2
1(x) =

∑
i≥0

f ·(g2
1)i

For each 0 ≤ i ≤ k/2, we get a sequence, say ηi, of O
(
k(M +N)

)
matrices, that approximately

computes Q(f · g2i
1 ) using Lemma 17.

Define P(x) :=
∑k/2

i=0 f · (g2
1)i. The following sequence, say λ, of O

(
k2(M + N)

)
matrices,

computes Q(P) approximately:

η0 · Q(0) · η1 · Q(0) · · · Q(0) · ηk/2.

Let R(t) := P(tx1, ..., txn). Note that R(t) is of the form, R(t) = b0 + b1t + b2t2 + . . . + bℓt
ℓ,

where b0, b1, . . . , bℓ are polynomials in x1, . . . , xn over F. Let a0, . . . , aℓ ∈ F. Note that

A ·


b0
b1
...
bℓ

 =


R(a0)
R(a1)

...
R(aℓ)

 , where A :=


1 a0 a2

0 . . . aℓ
0

1 a1 a2
1 . . . aℓ

1
...

...
...

...
1 aℓ a2

ℓ . . . aℓ
ℓ


For every 0 ≤ i, j ≤ ℓ, let ci,j denote the entry at the ith row and the jth column of A−1.

Then, we have

b0 = c0,0 · R(a0) + c0,1 · R(a1) + . . . + c0,ℓ · R(aℓ)

b1 = c1,0 · R(a0) + c1,1 · R(a1) + . . . + c1,ℓ · R(aℓ)
...

bℓ = cℓ,0 · R(a0) + cℓ,1 · R(a1) + . . . + cℓ,ℓ · R(aℓ)

For every 0 ≤ i ≤ ℓ, we obtain a sequence, say λi, from λ, by replacing xr with ai · xr for
every 1 ≤ r ≤ n. Note that λi approximately computes Q(R(ai)) using O

(
k2(M + N)

)
matrices.

Now, for every 0 ≤ i ≤ k, the following sequence, say Γi, approximately computes Q(bi)
using O

(
k2ℓ(M + N)

)
matrices:[

ci,0 0
0 1

]
λ0

[
1 0
0 1

ci,0

]
Q(0)

[
ci,1 0
0 1

]
λ1

[
1 0
0 1

ci,1

]
Q(0) . . . Q(0)

[
ci,ℓ 0
0 1

]
λℓ

[
1 0
0 1

ci,ℓ

]
.

Also, we have

h(x + α) = hom0
(
P(x)

)
+ hom1

(
P(x)

)
+ . . . + homk

(
P(x)

)
= b0 + b1 + . . . + bk

Therefore, the following sequence of O
(
k3ℓ(M + N)

)
matrices approximately computes

Q(h(x + α)):

Γ0 · Q(0) · Γ1 · Q(0) . . . Q(0) · Γk

Finally, we replace x by x + α in the above sequence to get a sequence, say η, that
approximately computes Q(h(x)). Note that k ≤ deg(f) ≤ N and ℓ ≤ deg(f) + k · deg(g) ≤
O(MN). Thus, η has O

(
N4M(M + N)

)
matrices. ◀



P. Dutta, C. Ikenmeyer, B. Komarath, H. Mittal, S. G. Nanoti, and D. Thakkar 31:15

9 Conclusion

This work successfully establishes that width-2 ABPs can approximate any polynomial
regardless of the characteristic of the field, thus resolving a weaker version of the open
question from [4]. Here are some immediate questions which require rigorous investigation.
1. Let f ∈ F[x], of degree d, where char(F) = 2. Further, let immc(f2) = s. Can we say

that immc2(f) = poly(s, d)?
2. Can we prove a subexponential upper bound on immc2(f), for any exponential-sparse

polynomial f , of border formula-complexity poly(n), over fields of characteristics 2? Of
course, proving a polynomial upper bound would settle the open question of [4], proving
that VF = VBP2, over fields of characteristics 2 (and hence, over any field!).
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A Macaulay2 source code for main constructions

Listing 1 illustrates our construction of Q(fx) from Q(f). The code can be run using
Macaulay2. The variables O1 through O8 in these programs represent (arbitrary) polynomials
in the ring ZZ/2[eps,x1,...,xn] that appear as a result of the approximation.

Listing 1 Q(fx) from Q(f).
R=ZZ /2[ eps ];
S=frac R;
S[f,x,O1 ,O2 ,O3 ,O4];
M1= matrix {{1/ eps ,0} ,{0 ,1}};
M2= matrix {{f+eps ^2*O1 ,1+ eps ^2* O2 } ,{1+ eps ^2*O3 ,eps ^2* O4 }};
M3= matrix {{eps ,1} ,{0 ,1}};
M4= matrix {{1/ eps ,x} ,{ -1 ,1}};
M5= matrix {{1 ,0} ,{1 , - eps }};
print(M1*M2*M3*M4*M2*M5);

Listing 2 illustrates our construction of Q(fg2) from Q(f) and Q(g).

Listing 2 Q(fg2) from Q(f) and Q(g).
R=ZZ /2[ eps ];
S=frac R;
S[f,g,O1 ,O2 ,O3 ,O4 ,O5 ,O6 ,O7 ,O8];
M1= matrix {{ -1/eps ,0} ,{0 , eps }};
M2= matrix {{g+eps ^3*O5 ,1+ eps ^3* O6 } ,{1+ eps ^3*O7 ,eps ^3* O8 }};
M3= matrix {{eps ,0} ,{0 ,1/ eps }};
M4= matrix {{f+eps ^5*O1 ,1+ eps ^5* O2 } ,{1+ eps ^5*O3 ,eps ^5* O4 }};
M5= matrix {{-eps ,0} ,{0 ,1/ eps }};
M6= matrix {{1/ eps ,0} ,{0 , eps }};
print(M1*M2*M3*M4*M5*M2*M6);

http://eudml.org/doc/151394


O(1/ε) Is the Answer in Online Weighted
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Abstract
We study a fundamental online scheduling problem where jobs with processing times, weights, and
deadlines arrive online over time at their release dates. The task is to preemptively schedule these jobs
on a single or multiple (possibly unrelated) machines with the objective to maximize the weighted
throughput, the total weight of jobs that complete before their deadline. To overcome known lower
bounds for the competitive analysis, we assume that each job arrives with some slack ε > 0; that is,
the time window for processing job j on any machine i on which it can be executed has length at
least (1 + ε) times j’s processing time on machine i.

Our contribution is a best possible online algorithm for weighted throughput maximization
on unrelated machines: Our algorithm is O

(
1
ε

)
-competitive, which matches the lower bound for

unweighted throughput maximization on a single machine. Even for a single machine, it was not
known whether the problem with weighted jobs is “harder” than the problem with unweighted jobs.
Thus, we answer this question and close weighted throughput maximization on a single machine
with a best possible competitive ratio Θ

(
1
ε

)
.

While we focus on non-migratory schedules, on identical machines, our algorithm achieves the
same (up to constants) performance guarantee when compared to an optimal migratory schedule.
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1 Introduction

We consider an online scheduling problem with m parallel unrelated machines. Online over
time, job j arrives at its release date rj . Upon arrival of job j, its processing time, sometimes
also referred to as size, pij ∈ R>0 ∪ {∞} on machine i ∈ [m] := {1, . . . , m}, its weight wj ,
and its deadline dj are revealed to the online algorithm. The density of j on machine i is
given by ρij := wj

pij
. A machine i is eligible for job j if pij < ∞. If pij = pj holds for all i

and all j, we call the machines identical and omit the index.
The processing of a job is allowed to be interrupted, we say preempted, and resumed at

any later point in time, also on a different machine; that is, we allow migration. A job j

completes if
∑m

i=1
qij

pij
= 1, where j receives a total of qij time units on machine i. In a

feasible schedule, at any point in time, every machine can process at most one job, and every
job can be processed by at most one machine. The objective is to find a feasible schedule
that maximizes the weighted throughput, the total weight of jobs that meet their deadlines.

This model captures a resource allocation problem, e.g., encountered in public cloud
computing environments or large internal clusters, where the available hardware needs to be
allocated to (often) time-sensitive and mission-critical jobs [18]. Focusing on the objective
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of maximizing weighted throughput allows us to factor in deadlines of time-sensitive jobs,
account for the variety in the importance of jobs, and overall maximize total utility [8]. As
explained in [6], allowing preemption in multiprocessor computer systems is cost-wise quite
reasonable, while migration, which our algorithm will not use, can be quite expensive due to
additional communication requirements.

Due to the lack of information because of the online nature of the problem, there are
instances where an online algorithm cannot find the schedule with maximum throughput as
shown in Section 3 of [3] for single-machine instances. Thus, we employ standard competitive
analysis to measure the performance of an online algorithm, where we compare the weighted
throughput of an online algorithm to the weighted throughput of an optimal offline algorithm,
that has complete knowledge about the instance in advance and uses this information to
make scheduling decisions.

It has been known for 30 years that in this general setting no deterministic algorithm
can achieve a bounded competitive ratio on identical machines [4, 16]. In fact, even when
allowing randomization on a single machine, the competitive ratio for weighted throughput
maximization remains unbounded [7]. All of the aforementioned lower bounds heavily rely
on “tight” jobs, that is, on jobs that need to be processed immediately and continuously
upon release in order to finish before their deadlines.

To overcome these lower bounds, we make a standard slackness assumption that the
window for processing job j has some slack: we assume that dj − rj ≥ (1 + ε)pij holds
if machine i is eligible for j, i.e., if pij < ∞. We expect our algorithm to perform better
with larger slack parameter ε > 0. This trade-off between slack and competitive ratio has
successfully been studied before [1, 2, 8, 10–12, 18, 21]. The slackness assumption does not
pose a real obstacle for applications since deadlines are typically not tight [13] and slack can
even be introduced by lowering the operating level or increasing the speed [9, 20].

Recently, unweighted throughput maximization has been solved on a single machine with
a competitive ratio of O

( 1
ε

)
[8], on identical machines with a O(1)-competitive algorithm [19],

and on unrelated machines with a competitive ratio of O
( 1

ε

)
[10]. For weighted throughput

maximization it is known that O(1)-competitive algorithms are not possible, independent of
the machine environment, even when allowing randomization [16]. Even on a single machine,
there remained a gap between the performance bound O

( 1
ε2

)
of the algorithm by [18] and

the lower bound Ω
( 1

ε

)
carried over from the unweighted setting [8].

In this work, we close this gap and essentially the line of research concerned with online
weighted throughput maximization started in this form by [18]. We give an (up to constant
factors) best possible online algorithm for weighted throughput maximization on unrelated
machines with competitive ratio O

( 1
ε

)
. On identical machines, our non-migratory algorithm

remains O
( 1

ε

)
-competitive against the optimal schedule that is allowed to use migration. In

particular, we solve the problem on a single machine, matching the known lower bound for
unweighted throughput maximization [8].

Related work
Online throughput maximization gained a lot of interest during the last years [8, 10, 13,19],
but research has been active for decades [2–5].

For tight jobs with dj − rj = pj , there are non-constant lower bounds on the competitive
ratios of deterministic and randomized algorithms [4,7], which justify our slackness assumption.
Baruah et al. [4] give a lower bound of (1+√µ)2 on the competitive ratio of any deterministic
single-machine algorithm, where µ = maxj ρj

minj ρj
, while Koren and Shasha [17] give an algorithm

with matching competitive ratio. On identical machines, their algorithm achieves the
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best possible competitive ratio of Θ(ln µ) [16]. Canetti and Irani [7] consider randomized
algorithms and show a lower bound of Θ

( log ν
log log ν

)
, where ν = min

{ max pj

min pj
,

max wj

min wj

}
. They

also give an almost matching upper bound.
Since both parameters, µ and ν, can become arbitrarily large, research started to in-

vestigate instances satisfying a slackness assumption [18]. Most relevant to our work is the
O

( 1
ε2

)
-competitive algorithm by Lucier et al. [18] for weighted throughput maximization on

identical machines under the slackness assumption. Azar et al. [1] study the same problem
and give a truthful mechanism with a competitive ratio of 2 + Θ

(
1

3√1+ε−1 + 1
( 3√1+ε−1)3

)
.

The special case of maximizing machine utilization, where the weight of each job equals
its processing time, allows for O(1)-competitive algorithms, even in settings without slack.
On a single machine, the algorithm by Baruah et al. [4, 5] is 4-competitive, and on identical
machines, Koren and Shasha [16] claim an O(1)-competitive algorithm.

In the unweighted setting, Baruah et al. [3] show that non-trivial competitive ratios are
impossible in the presence of tight jobs. However, randomization allows for a competitive
ratio of O(1) [15]. If every job arrives with a slack of ε, the (deterministic) algorithm by
Chen et al. [8] achieves the provably best competitive ratio of Θ

( 1
ε

)
on a single machine.

On at least two machines, the algorithm by Moseley et al. [19] is O(1)-competitive, even
for instances without slack. Eberle et al. [10] design a Θ

( 1
ε

)
-competitive algorithm for

throughput maximization on unrelated machines when each job has ε-slack.

Our results
As our main result, we present an O

( 1
ε

)
-competitive algorithm for online weighted throughput

maximization.

▶ Theorem 1. For weighted throughput maximization on unrelated machines without migra-
tion, there is an O

( 1
ε

)
-competitive online algorithm.

This generalizes and improves the O
( 1

ε2

)
-competitive algorithm by [18]. It matches the

known lower bound of Ω
( 1

ε

)
on a single machine [8] and, thus, closes the gap that remained.

During the analysis, we focus on comparing the non-migratory schedule obtained by our
algorithm to an optimal, non-migratory schedule. On identical machines, it is known that
the throughput achievable without migration is within a constant multiplicative factor of
the throughput achievable using migration by Kalyanasundaram and Pruhs [14]. Thus, our
result also holds in the migratory setting.

▶ Theorem 2. For weighted throughput maximization on identical machines with migration,
there is an O

( 1
ε

)
-competitive online algorithm.

One threshold cannot beat Θ(1/ε2)
Previous results for throughput maximization use a threshold-based policy to decide about
the admission of newly released and the preemption of currently running jobs [1,8,10,18].
Crucially, these algorithms rely on a single density threshold γ ∈ Θ(ε) to determine if a
currently running job is preempted in favor of a newly released job with higher density.

The following two examples give an intuition why a single-threshold algorithm cannot
break the O

( 1
ε2

)
-barrier. Let ε < 1 and suppose that γ ∈ (0, 1] is the threshold which an

algorithm uses to discard currently running jobs in favor of newly released jobs with density
higher by a factor at least 1

γ . In both examples, δ ≪ 1 is a small constant, for which we will
eventually consider the limit δ → 0, and the jobs are tight, i.e., they satisfy rj +(1+ε)pj = dj .

STACS 2024
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▶ Example 3. There is a single machine and n + 1 tight jobs with the parameters r0 = 0,
p0 = w0 = ρ0 = 1 and rj = rj−1 + (1 − δ)pj−1, pj = (ε + δ)pj−1 and ρj = 1+δ

γ ρj

for j ∈ [n] := {1, . . . , n}.
By our choice of parameters, job j interrupts the execution of job j− 1 immediately upon

arrival. It is easy to calculate that dj ≥ dj−1 and Cj = dj−1 for j ∈ [n] if the processing of
job j is not interrupted. Combining these two observations implies that the algorithm can
only complete the last job on time if the constant δ is chosen sufficiently small. Hence, the
algorithm obtains a total weight of ρnpn =

(
(1+δ)(ε+δ)

γ

)n

→
(

ε
γ

)n

as δ → 0. Conversely, by
scheduling only job 1, one can obtain a total weight of 1, implying that the competitive ratio
is at least

(
γ
ε

)n. Hence, γ ≤ ε is necessary to achieve a bounded competitive ratio.

▶ Example 4. We have a single-machine instance with two tight jobs 1 and 2. The parameters
are p1 = w1 = 2, r1 = 0 and p2 = 1

ε , w2 = 1
εγ−δ , r2 = δ. Since both jobs are tight, no feasible

schedule can complete both jobs on time. Hence, it is optimal to schedule only the second
job upon release and obtain a total weight of 1

εγ−δ . However, the parameters are chosen such
that an algorithm with threshold γ admits the first job upon release and cannot discard it
in favor of the second job, implying a competitive ratio of Ω

( 1
εγ−δ

)
, which goes to Ω

( 1
γε

)
as δ → 0.

What becomes apparent in the examples is that by relying on a single threshold to guide
the admission decisions, an algorithm is both too careless (Example 3) and too conservative
(Example 4) in admitting jobs. In fact, such an algorithm does not distinguish the reasons
for a job having a relatively high density: it might be caused by a large weight or by a small
processing time.

We show that, by using two distinct thresholds, a simple greedy algorithm achieves a
competitive ratio of Θ

( 1
ε

)
, which is optimal up to constants even in the unweighted setting [8].

Our algorithm compares the sizes of a newly released job j⋆ and a currently running job j, in
order to decide whether to abandon the latter in favor of the former. In Example 3, we have
already established that if j is preempted in favor of j⋆ with pij⋆ ∈ O(ε)pij , then the density
of j⋆ should be greater by a factor Ω

( 1
ε

)
. Conversely, to avoid the issue present in Example 4,

if the new job j⋆ is larger than the currently running job j, then j should be interrupted in
favor of processing j⋆ if it has a similar density as j. For technical reasons, our algorithm
employs a third admission rule that smoothly interpolates between the threshold Θ(ε) for
jobs smaller by a factor O(ε) and a threshold Θ(1) for larger jobs.

In the following section, we formally describe our algorithm before analyzing its compet-
itive ratio in the two subsequent sections.

2 The two-threshold algorithm

In this section, we design the two-threshold algorithm. We assume without loss of generality
that ε ≤ 1 as otherwise we can simply run the algorithm with ε = 1 and obtain a constant
competitive ratio.

The two-threshold algorithm starts job j on machine i for the first time only before dj −(
1 + ε

2
)

pij . If machine i starts processing job j at time aj , we say j is admitted to machine i

at time aj . For each machine i, the algorithm maintains the set of jobs that are active at
time τ . A job j is active at time τ on machine i if it was admitted to i before time τ , is
not yet completed and can still complete before time aj +

(
1 + ε

2
)

pij , i.e., the remaining
processing time of j on i is at most aj +

(
1 + ε

2
)

pij − τ .
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On a high-level, our algorithm uses two independent subroutines: the scheduling routine
and the admission routine. The admission routine merely assigns jobs to machines. Among
the jobs assigned to a machine, the scheduling routine chooses which job to actually process.

Scheduling routine. At time τ and on each machine i, the algorithm simply processes the
job j which is active for i at τ and has the highest density ρij = wj

pij
among all such jobs.

Admission routine. There are two events that trigger the admission routine at time τ : the
release of a new job and the completion of a job. The admission routine loops over the
machines and decides whether the currently running job j should be preempted for a job
with higher density.

To this end, it considers the jobs that have been released, have not yet been admitted,
and whose deadline is sufficiently far in the future, i.e., dj⋆ − τ ≥

(
1 + ε

2
)

pij⋆ , in decreasing
order of machine-dependent density ρij⋆ . Let j⋆ be the job with highest density that has not
been considered for admission to machine i before. The algorithm compares j⋆’s processing
time with that of the job j that is currently processed by machine i.

If no such job exists, then j⋆ is admitted to machine i and starts executing immediately.
If such a job j exists and its processing time is at least 2

ε pij⋆ , then the first density-
threshold 8

ε is invoked: if ρij⋆ ≥ 8
ε ρij , then j⋆ is admitted to i at time aj⋆ = τ . If j

exists and ε
2 pij < pij⋆ ≤ pij , then we use a smooth transition between the two thresholds:

if wj⋆ ≥ 4wj , then j⋆ is admitted to i at time aj⋆ = τ . Otherwise, that is, j is currently
running on machine i and its processing time is smaller than pij⋆ , then the second density-
threshold 4 is invoked: if ρij⋆ ≥ 4ρij , then j⋆ is admitted to i at time aj⋆ = τ .

If job j⋆ interrupts the execution of job j, we say that j is the parent π(j⋆) of j⋆ and j⋆

is a child of j. Note that by construction, a newly admitted job has highest density on its
machine and starts processing immediately. We summarize our algorithm in Algorithm 1.

The following observation formalizes the “smooth transition” between the two density
thresholds.

▶ Observation 5. Consider jobs j and k with ε
2 pij < pik ≤ pij for some machine i.

If wk ≥ 4wj, then ρik = wk

pik
≥ 4wj

pij
= 4ρij. If wk < 4wj, then ρik <

4wj

ε/2pij
= 8

ε ρij. Further,
if pik > pij and ρik ≥ 4ρij, then wk = ρikpik ≥ 4wj.

Roadmap of the analysis
The analysis of the two-threshold algorithm naturally splits into two parts. In Section 3, we
show that the highest-density rule used for scheduling active jobs guarantees that the total
weight of jobs completed before their deadlines is at least half of the total weight of jobs
admitted by the admission routine. In Section 4, we compare the total weight of the jobs
admitted by the two-threshold algorithm to the weighted throughput of an optimal solution
before proving Theorem 1.

3 Weight of finished jobs vs. weight of admitted jobs

In this section, we show that the two-threshold algorithm obtains at least half of the total
weight of the jobs that were admitted. We prove the following theorem where J denotes
the set of jobs admitted by our algorithm and F ⊆ J the set of jobs completed before their
respective deadlines.
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Algorithm 1 Two-threshold algorithm.

Initialize: If ε > 1, then reset ε← 1.
Scheduling Routine: At all times τ and on all machines i, run the job with highest
density that is active for i.

Event: Release of a new job at time τ

Call Admission Routine
Event: Completion of a job at time τ

Call Admission Routine

Admission Routine:
for i = 1 to m do

J⋆ ← {j | rj ≤ τ, dj − τ ≥
(
1 + ε

2
)

pij , j not yet admitted} // eligible jobs
K ← {k : k active on machine i at time τ } // jobs currently active for i

for j⋆ ∈ J⋆ in order of decreasing ρij⋆ do // select highest-density job
if K = ∅ then

admit j⋆ to i and aj⋆ ← τ

π(j⋆)← ∅ // j⋆ does not have a parent
break for-loop

else
j ← arg max{ρik | k ∈ K} // currently running job
if pij⋆ ≤ ε

2 pij and ρij⋆ ≥ 8
ε ρij then

admit j⋆ to i and aj⋆ ← τ

π(j⋆)← j // parent of j⋆

break for-loop
else if ε

2 pij < pij⋆ ≤ pij and wj⋆ ≥ 4wj then
admit j⋆ to i and aj⋆ ← τ

π(j⋆)← j // parent of j⋆

break for-loop
else if pij⋆ > pij and ρij⋆ ≥ 4ρij then

admit j⋆ to i and aj⋆ ← τ

π(j⋆)← j // parent of j⋆

break for-loop

▶ Theorem 6. Let J and F be the set of jobs admitted and finished, respectively, by the
two-threshold algorithm. Then,∑

j∈F

wj ≥
1
2

∑
j∈J

wj .

For intuition, consider an instance that only consists of a job j and the set K of j’s
children. Suppose that j does not finish on time as otherwise the theorem trivially holds.
Recall that j was admitted at aj ≤ dj −

(
1 + ε

2
)

pij to machine i. (Jobs that are not
interrupted complete before aj +

(
1 + ε

2
)

pij ≤ dj .) This implies that the total processing
time of jobs interrupting j is at least ε

2 pij . If there is at least one job k with pik > ε
2 pij ,

Observation 5 and the admission rule for jobs with ε
2 pij < pik ≤ pij imply that wk ≥ 4wj

showing the statement. If all jobs k have processing time at most ε
2 pij , their densities are

bounded from below by 8
ε ρij , and their total weight is again at least 4wj .
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In the formal proof of Theorem 6, we assume the existence of an instance that violates
the statement and restrict to one that is minimal with respect to the total number of jobs.
The above intuition tells us that sub-instances consisting of a job and its children cannot
cause the violation. In fact, we show that we can carefully merge such sub-instances into one
job without changing the fact that the complete instance violates the theorem statement,
which contradicts the minimality of the original instance.

Proof of Theorem 6. Let U = J \ F be the set of jobs admitted by the two-threshold
algorithm that were discarded, i.e., that did not complete by time aj +

(
1 + ε

2
)

pij . In order
to show the theorem, it suffices to prove

∑
j∈F wj ≥

∑
j∈U wj .

For the sake of contradiction, we assume that there is an instance with
∑

j∈F wj <∑
j∈U wj . Among all such instances, we consider an instance with the smallest number of

jobs. In particular, this implies that there are no jobs in the instance that were not admitted
by the algorithm and there is only one machine in the instance. We show that there is
another instance with strictly fewer jobs that still satisfies the above inequality, contradicting
the choice of the instance.

Without loss of generality, for all jobs j, we can assume that rj = aj and dj = rj +(1+ε)pj

holds. Indeed, since the first assumption does not change the availability of a job j at time aj

or the density, the two-threshold algorithm still admits j at time aj . Further, as the
algorithm discards jobs when they cannot be completed by time aj +

(
1 + ε

2
)

pj < dj , the
second assumption does not change whether a job is completed on time by the algorithm.

Observe that a job that is not interrupted completes on time. Hence, the assump-
tion

∑
j∈F wj <

∑
j∈U wj implies that there are jobs whose processing is interrupted. Fix

a job j that is preempted but whose children’s processing is not interrupted. Let K be
the set of children of j, and let π = π(j) if it exists. Let C ′

j′ be the last point in time
that the two-threshold algorithm works on job j′, which is either the completion time
of j′ or the point when j′ was discarded because of jobs with higher densities. Denote
by C ′ := max{maxk∈K C ′

k, C ′
j}, the last point in time when j or one of its children were

processed. Observe that during [aj , C ′) only j and j’s children are processed.
Our goal is to create a new instance where j and its children are replaced by a new job j⋆.

Let F ′ and U ′ denote the finished and unfinished jobs, respectively, after the replacement.
We will show that the new instance satisfies the following properties:

(i) Job j⋆ is admitted at aj and completes at time C ′.
(ii)

∑
j′∈F ′ wj′ <

∑
j′∈U ′ wj′ .

(iii) There are strictly fewer jobs.
By assumption j has at least one child. Hence, property (iii) follows trivially from our
replacement. We do not make any changes to a job j′ /∈ K ∪ {j}. Thus, property (i) and the
assumptions on the instance imply that our changes will not influence whether such a job j′

is discarded or completed by the algorithm.
We set pj⋆ = p̄j +

∑
k∈K pk, where p̄j ≤ pj is the actual amount that the two-threshold

algorithm processed j in the original instance. For ensuring that j⋆ is available at aj , we
set rj⋆ = aj and dj⋆ = rj⋆ + (1 + ε)pj⋆ . This choice of parameters implies that, if j⋆ is
admitted at time rj⋆ , it will complete at time

rj⋆ + pj⋆ = aj + p̄j +
∑
k∈K

pk = C ′ < dj⋆
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since no other job is released during the interval [aj , C ′) in the new instance. Thus, in order
to show property (i), it suffices to show that j⋆ interrupts job π at rj⋆ . Recall that the
two-threshold algorithm compares pj⋆ with pπ in order to decide upon admission of j⋆. There
are three possibilities: pj⋆ ≤ ε

2 pπ, pj⋆ ∈
(

ε
2 pπ, pπ

]
, and pj⋆ > pπ. Depending on the interval,

different admission rules apply.
For defining the weight of job j⋆, we distinguish two cases based on job j.

Case I. If j completes on time, set wj⋆ = wj +
∑

k∈K wk ≥ wj . We observe that
∑

k∈K pk ≤
ε
2 pj as j completes on time. Further,

ρj⋆ =
wj +

∑
k∈K wk

pj +
∑

k∈K pk
≥

ρjpj + 8
ε ρj

∑
k∈K pk

pj +
∑

k∈K pk
≥ ρj .

Thus, if pj⋆ and pj belong to the same interval with respect to pπ, j⋆ is admitted upon
release and property (i) is satisfied. If they belong to different intervals, we note that(

1 + ε

2

)
pj ≥ pj⋆ = pj +

∑
k∈K

pk ≥ pj (1)

and distinguish two cases.
pj ≤ ε

2 pπ < pj⋆ : We note that (1) and ε ≤ 1 imply pj⋆ ≤ pπ. Thus,

wj⋆ = ρj⋆pj⋆ ≥ ρj
ε

2pπ ≥
8
ε

ρπ
ε

2pπ = 4wπ,

which guarantees property (i).
pj ≤ pπ < pj⋆ : We have pj⋆ = (1+ δ)pj ≤ (1+δ)pπ for some δ ∈

(
0, ε

2
]
. Further, wj⋆ ≥

wj + δ 8
ε wj ≥ 4(1 + δ)wπ. Thus, ρj⋆ = wj⋆

pj⋆
≥ 4(1+δ)wπ

(1+δ)pπ
≥ 4ρπ, and property (i) holds.

Hence, the total weight of the jobs completed by the two-threshold algorithm and the total
weight of the discarded jobs does not change in all cases, which implies property (ii).

Case II. If j does not complete on time, we set wj⋆ = 3
4

∑
k∈K wk. If some k⋆ ∈ K

satisfies pk⋆ > ε
2 pj , then

∑
k∈K wk ≥ wk⋆ ≥ 4wj by definition of the two-threshold algorithm.

Using that j does not finish on time, we know that
∑

k∈K pk > ε
2 pj . Thus, if the processing

times for all k ∈ K are bounded from above by ε
2 pj , then

∑
k∈K wk ≥ 8

ε ρj

∑
k∈K pk ≥ 4wj .

For property (i), we start by bounding wj⋆ and ρj⋆ . Using the observation above, wj⋆ =
3
4

∑
k∈K wk ≥ 3wj . By Observation 5, k ∈ K with pk ∈

(
ε
2 pj , pj

]
satisfy ρk ≥ 4ρj . Hence,∑

k∈K wk =
∑

k∈K ρkpk ≥ 4ρj

∑
k∈K pk. Using again that

∑
k∈K wk ≥ 3wj , we have

ρj⋆ = wj⋆

pj⋆

≥
1/2

∑
k∈K wk + wj

p̄j +
∑

k∈K pk
≥

2ρj

∑
k∈K pk + ρjpj∑

k∈K pk + p̄j
≥ ρj .

As before, if pj and pj⋆ are in the same interval with respect to pπ, these observations
guarantee that j⋆ interrupts π at aj , which implies property (i). If they belong to different
intervals, we distinguish five cases.

pj ≤ ε
2 pπ < pj⋆ ≤ pπ : We have wj⋆ = ρj⋆pj⋆ ≥ ρj

ε
2 pπ ≥ 8

ε ρπ
ε
2 pπ = 4wπ.

pj ≤ ε
2 pπ < pπ < pj⋆ : We have ρj⋆ ≥ ρj > 4ρπ.

ε
2 pπ < pj ≤ pπ < pj⋆ : We know that ρj⋆ ≥ ρj = wj

pj
≥ 4wπ

pπ
= 4ρπ.

pj⋆ ≤ ε
2 pπ < pj : We note that pj⋆ ≥

∑
k∈K pk > ε

2 pj , which implies pj ≤ pπ. We
have ρj⋆ = wj⋆

pj⋆
≥ 3wj

ε/2pπ
≥ 12wπ

ε/2pπ
= 24

ε ρπ.
ε
2 pπ < pj⋆ ≤ pπ < pj : We have wj⋆ ≥ 3wj = 3ρjpj > 3 · 4ρπpπ = 12wπ.
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Hence, in all cases, j⋆ satisfies the conditions of the two-threshold algorithm to interrupt
the processing of π at rj⋆ .

Recall that
∑

k∈K wk ≥ 4wj . After replacing K ∪ {j} with j⋆, it holds that∑
j′∈F ′

wj′ =
∑
j′∈F

wj′ − 1
4

∑
k∈K

wk <
∑
j′∈F

wj′ − wj <
∑
j′∈U

wj′ − wj =
∑

j′∈U ′

wj′ ,

which implies property (ii).
As argued above, this contradicts the choice of the instance, which concludes the proof. ◀

4 Weight of admitted jobs vs. weight of Opt

In this section, we show that the total weight of jobs finished by an optimal solution is up to a
factor O

( 1
ε

)
comparable to the total weight of jobs admitted by the two-threshold algorithm:

▶ Theorem 7. Let Opt and J be the set of jobs admitted by an optimal, non-migratory
solution and the two-threshold algorithm, respectively. Then,

∑
x∈Opt wx ≤ O

( 1
ε

) ∑
j∈J wj.

For proving this statement, it is sufficient to focus on X, the set of jobs scheduled by
Opt that the two-threshold algorithm did not admit since Opt ⊆ X ∪ J .

Fix a job x ∈ X that Opt schedules on machine i. The two-threshold algorithm
admits a job j during the interval [rj , dj −

(
1 + ε

2
)

pij) if it is sufficiently dense. Since x is
not admitted by our algorithm, the algorithm is processing jobs Jx on machine i during
the interval [rx, dx −

(
1 + ε

2
)

pix) with densities that are large and prevent interruption
by x. That is, for jobs j ∈ Jx with ε

2 pij ≥ pix it holds that ρij > ε
8 ρix, for jobs j ∈ Jx

with pix ∈
(

ε
2 pij , pij ] Observation 5 implies ρij > ε

8 ρix and for jobs pij < pix it holds
that ρij > 1

4 ρix. We say that the jobs Jx block the admission of x. We will charge the
weight wx to the weight of the jobs in Jx. Exploiting the two thresholds which the algorithm
uses to make admission decisions, we show that the algorithm “obtains” a weight from
partially finished jobs of at least Ω(ε)wx in the interval [rx, dx).

Proof idea. We give an intuition by considering a single-machine instance where the two-
threshold algorithm admits exactly one job j. Consider the jobs in X whose admission was
blocked by j: We know that the interval [rx, dx −

(
1 + ε

2
)

px) is completely covered by the
processing of job j, i.e., by the interval [aj , Cj).

Now consider a job x with px ≤ pj . Thus, the deadline of x is at most Cj +
(
1 + ε

2
)

px ≤
aj +

(
2 + ε

2 )pj . This implies that Opt can schedule such jobs only during
[
aj , aj +

(
2 + ε

2
)
pj

)
,

an interval of length
(
2 + ε

2
)
pj . The admission rule for the case px ≤ ε

2 pj and Observation 5
for px ∈

(
ε
2 pj , pj ] imply ρx < 8

ε ρj . Hence,∑
x∈X

px≤pj

wx =
∑
x∈X

px≤pj

ρxpx ≤
8
ε

ρj

∑
x∈X

px≤pj

px ≤
8
ε

ρj

(
2 + ε

2

)
pj =

(
16
ε

+ 4
)

wj .

For a job x with px > pj , the slacknes assumption guarantees that rx ≤ dx − (1 + ε)px.
Further, the interval

[
rx, dx −

(
1 + ε

2
)

px

)
is contained in [aj , Cj). This allows us to upper

bound the processing time px by 2
ε pj . Thus, Opt can schedule such jobs only during

[
aj , aj +(

1 + 2
ε

)
pj

)
. Using the admission rule of our algorithm in this case gives∑

x∈X
px>pj

wx =
∑
x∈X

px>pj

ρxpx < 4ρj

∑
x∈X

px>pj

px < 4ρj

(
1 + 2

ε

)
pj =

(
4 + 8

ε

)
wj .

Combining the above two calculations yields that
∑

x∈X wx ∈ O
( 1

ε wj

)
.
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Proof outline. In this particular instance, each job x ∈ X is blocked by a job with either
larger or smaller processing time. In general, this is not necessarily true. Hence, in order
to extend this idea to arbitrary instances, we partition the jobs in X according to whether
at least half of their availability interval

[
rx, dx −

(
1 + ε

2
)

px

)
is covered by jobs in J with

smaller or larger processing times. We then show that by losing an additional factor 3, we
can assume that only one type covers the availability interval of each job in X. This is done
in Lemma 10.

An additional technical challenge poses the fact that, even after we assume that a job
is blocked by either shorter or longer jobs, the densities of these jobs are still not uniform
enough to directly generalize the above idea to arbitrary instances. In Lemma 8, we show
that, at the loss of an additional factor 4, we can partition the jobs in X according to their
densities and bound the weight for each density level separately. We then upper bound Opt’s
available time for scheduling jobs of a certain density level in Lemmas 13 and 14 depending
on the size of the blocking jobs.

Proof of Theorem 7. Since Opt and the two-threshold algorithm are non-migratory, we
fix one particular machine i and only consider jobs that either Opt or the two-threshold
algorithm scheduled on machine i. For simplicity, we drop the index i for the remainder.

In order to partition jobs according to their densities, we geometrically partition the
range of potential job densities, (0, maxj ρj ], into intervals of the form (2ℓ−1, 2ℓ] and call
ℓ ∈ Z a density level. We say that a job j ∈ J has density level ℓ if 2ℓ−1 < ρj ≤ 2ℓ. (For jobs
x ∈ X we are interested in the density levels of the jobs that block them, which we define
later.)

For a job j ∈ J with density level ⌈log2 ρj⌉, we first argue that we can separately charge j

at the levels ℓ ≤ ⌈ρj⌉ at the loss of a constant factor, formalized in the next lemma. This
allows us to focus on one density level ℓ at a time.

▶ Lemma 8. Suppose there is a scheme that charges job j ∈ J a weight of at most 2ℓcpj at
level ℓ ≤ ⌈log2 ρj⌉ and no weight at level ℓ > ⌈log2 ρj⌉, where c > 0 is a constant. Then, the
total weight charged to j is at most 4cwj.

Proof. The total weight charged to j is upper bounded by

⌈log2 ρj⌉∑
−∞

2ℓcpj = c · pj

(
1 + 2⌈log2 ρj⌉+1 − 1

)
≤ 4cρjpj = 4cwj ,

as desired. ◀

Having this lemma at hand, we now restrict to one density level ℓ ∈ Z and define Jℓ :=
{j ∈ J : ρj ≥ 2ℓ}. Next, we remove the technical challenge that a job x ∈ X can be blocked
by jobs with smaller and larger processing times. To this end, we carefully modify the
intervals where jobs in Jℓ are scheduled such that the availability interval of a job x ∈ X

blocked by jobs in Jℓ is completely contained in the modified intervals. To this end, we fix a
level ℓ and let Sℓ denote the set of processing intervals of the jobs in Jℓ, that is, the intervals
during which jobs in Jℓ are processed.

The modification works as follows: We copy each interval in I ∈ Sℓ twice and call one
copy the early and the other the late copy. For each original interval I = [α, ω), we move the
early copy earlier such that it ends at α and we move the late copy later such that it begins
at ω. If a copy intersects with another original (even if only partially), by potentially splitting
the copy, we shift the part that intersects further into the indicated direction; that is, for the
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early copy, we move the part earlier and for the late copy, we move the part later. We treat
the time points where multiple copies overlap similarly. More precisely, if the interval [t, t′) is
currently contained in k different copies, we use a 1

k -fraction from every copy to cover [t, t′)
and send the remaining k−1

k -fraction into the directions indicated by their name.
We denote the resulting set of intervals (including the original ones) by Iℓ. Next, we

prove some structural properties about Iℓ and, for each job x ∈ X, relate its availability
interval

[
rx, dx −

(
1 + ε

2
)

px

)
to Iℓx

for some carefully chosen ℓx ∈ Z.

▶ Observation 9. Let S and T be two sets of intervals such that for each S ∈ S there is
a T ∈ T with S ⊆ T . Then, the result of the modification of T covers all time points covered
by the result of the modification of S.

▶ Lemma 10. For each job x ∈ X, let ℓ1x = 1
4 · 2⌊log2 ρx⌋ and ℓ2x = ε

8 · 2⌊log2 ρx⌋.
Then,

[
rx, dx −

(
1 + ε

2
)

px

)
⊆

⋃
I∈Iℓ1x

I or
[
rx, dx −

(
1 + ε

2
)

px

)
⊆

⋃
I∈Iℓ2x

I.

Proof. Fix a job x ∈ X and the two levels ℓ1x and ℓ2x from the lemma statement. By
assumption, x is blocked by jobs in J at all times in

[
rx, dx −

(
1 + ε

2
)

px

)
.

Assume that x is blocked for at least half of the time by jobs j with pj < px. By definition
of Algorithm 1, this implies that 4ρj > ρx holds for these jobs j. Hence, j ∈ Jℓ1x

. We will
show that in this case ℓ1x satisfies the lemma; for simplicity, set ℓ = ℓ1x.

Conversely, suppose that x is blocked for at least half of the time by jobs j with px ≤ pj .
Observation 5 for ε

2 pj < px ≤ pj and the admission threshold for ε
2 pj ≥ px guarantee ρx < 8

ε ρj .
Hence, j ∈ Jℓ2x holds if px ≤ pj and j blocks x. For simplicity, set ℓ = ℓ2x in this case.

Using Observation 9, it suffices to focus on the set S of intervals that actually cover
the interval

[
rx, dx −

(
1 + ε

2
)

px

)
and correspond to scheduling times of jobs that block x at

level ℓ. By truncating, we assume that the earliest interval in S starts not earlier than rx and
that the latest interval ends no later than dx −

(
1 + ε

2
)

px. We index the intervals in S by
starting point and let K = |S|. Denote by αk and ωk the start and end point, respectively,
of the kth interval.

By assumption, S covers at least half of
[
rx, dx −

(
1 + ε

2
)

px

)
. Thus,

ωK − α1 ≤ dx −
(

1 + ε

2

)
px − rx ≤ 2

K∑
k=1

(ωk − αk).

This implies that S and its copies cover the intervals [α1, α1 + 2
∑K

k=1(ωk − αk)) and [ωK −
2

∑K
k=1(ωk − αk), ωK) because S and the late copies would suffice to cover the former and S

and the early copies would suffice to cover the latter interval.
Hence, the lemma follows if we show that rx ≥ ωK−2

∑K
k=1(ωk−αk) and dx−

(
1 + ε

2
)

px ≤
α1 + 2

∑K
k=1(ωk − αk). To this end, we observe that

(α1 − rx) +
((

dx −
(

1 + ε

2

)
px

)
− ωK

)
=

((
dx −

(
1 + ε

2

)
px

)
− rx

)
− (ωK − α1)

≤ 2
K∑

k=1
(ωk − α1)− (ωK − α1),

where we used that α1 ≥ rx and ωK ≤ dx −
(
1 + ε

2
)

px by assumption on S. This implies
that both summands on the left hand side are bounded by the term on the right hand side.
Rearranging shows the above bounds on rx and dx −

(
1 + ε

2
)

px and proves the lemma. ◀

▶ Lemma 11. For each job j ∈ Jℓ, j’s processing intervals are contained in one contiguous
interval of

⋃
I∈Iℓ

I.

STACS 2024



32:12 O(1/ε) Is the Answer in Online Weighted Throughput Maximization

Proof. The statement holds trivially if j only has one processing interval as this interval
is in Iℓ. If j is preempted at some time τ and resumed at some later time τ ′, then the
two-threshold algorithm processes higher-density jobs in the interval [τ, τ ′). By definition,
these higher-density jobs are in Jℓ if j ∈ Jℓ. Hence, the processing intervals of j together
with these higher-density jobs form a contiguous interval in

⋃
I∈Iℓ

I. ◀

Consider subsets of jobs of Jℓ that are inclusion-wise maximal with respect to the
processing intervals of the corresponding jobs and their copies forming exactly one contiguous
interval in

⋃
I∈Iℓ

I. Let Jℓ,k for 1 ≤ k ≤ K and K ∈ N be those maximal subsets of Jℓ, i.e.,
for each k, the processing intervals of the jobs in Jℓ,k form a contiguous interval and adding
one more job to Jℓ,k would create at least one more interval. Lemma 11 and Lemma 10
imply the following corollary.

▶ Corollary 12. The above defined sets Jℓ,1, . . . , Jℓ,K partition Jℓ. If job x ∈ X is blocked at
level ℓ, then there exists exactly one index k ∈ {1, . . . , K} such that Jℓ,k blocks x.

We now partition X as follows: Let XL ⊆ X and XS ⊆ X be the jobs in Opt that are,
for at least half of their availability interval

[
rx, dx −

(
1 + ε

2
)

px

)
blocked by jobs with larger

and smaller processing times, respectively. Let X∗ℓ ⊂ X∗ for ∗ ∈ {L, S} be the jobs that are
blocked at level ℓ. The previously proven structural properties allow us to upper bound the
total time that Opt has available for processing jobs in XSℓ and XLℓ in the following two
lemmas.

▶ Lemma 13. For each level ℓ ∈ Z, the total time that Opt has available for processing jobs
in XLℓ is at most

(
4 + ε

2
) ∑

j∈Jℓ
pj.

Proof. By Corollary 12 it suffices to separately show the lemma for each maximal subset J ′.
Consider a job x that is blocked by a subset of J ′ for at least half of

[
rx, dx −

(
1 + ε

2
)

px

)
,

where the jobs in J ′ blocking x have a larger processing time than x. By the definition of the
two-threshold algorithm, this implies that there is a job j ∈ J ′ with px ≤ pj that is processed
during

[
rx, dx −

(
1 + ε

2
)

px

)
. By Lemma 10,

[
rx, dx −

(
1 + ε

2
)

px

)
⊆

⋃
I∈Iℓ

I and, therefore,[
rx, dx −

(
1 + ε

2
)

px

)
is contained in the interval I = [α, ω) associated with the jobs in J ′.

Combining these two observations implies that

[rx, dx) =
[
rx, dx −

(
1 + ε

2

)
px

)
∪

[
dx −

(
1 + ε

2

)
px, dx

)
⊆ I ∪

[
ω, ω +

(
1 + ε

2

) ∑
j∈J′

pj

)
.

Using that the length of I is at most 3
∑

j∈J′ pj concludes the proof. ◀

▶ Lemma 14. For each level ℓ ∈ Z, the total time that Opt has available for processing jobs
in XSℓ is at most

( 4
ε + 5

) ∑
j∈Jℓ

pj.

Proof. By Corollary 12 it suffices to separately show the lemma for each maximal subset J ′.
Let I = [α, ω) be the interval associated with J ′.

Consider a job x that is blocked by a subset of J ′ for at least half of
[
rx, dx −

(
1 + ε

2
)

px

)
,

where the jobs in J ′ blocking x have a smaller processing time than x. By definition
of the two-threshold algorithm, this implies that there is a job j ∈ J ′ that is processed
during

[
rx, dx −

(
1 + ε

2
)

px

)
.
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By our slackness assumption, it holds that dx − rx ≥ (1 + ε)px or equivalently, px ≤
2
ε

(
dx −

(
1 + ε

2
)

px − rx

)
. Since x is blocked for at least half of

[
rx, dx −

(
1 + ε

2
)

px

)
by jobs

in J ′, this implies px ≤ 4
ε

∑
j∈J′ pj . Thus,

[rx, dx) =
[
rx, dx −

(
1 + ε

2

)
px

)
∪

[
dx −

(
1 + ε

2

)
px, dx

)
⊆ I ∪

[
ω, ω +

(
4
ε

+ 2
) ∑

j∈J′

pj

)
.

Using again that the length of I is at most 3
∑

j∈J′ pj concludes the proof. ◀

Proof of Theorem 7. We now bound the weight of the sets XSℓ and XLℓ separately for
each ℓ ∈ Z.

By Lemma 14, the time available for processing jobs in XSℓ is bounded from above
by

( 4
ε + 5

) ∑
j∈Jℓ

pj . Being blocked at level ℓ by smaller jobs implies that ρx ≤ 4 ·2 ·2ℓ = 8 ·2ℓ.
Hence,∑

x∈XSℓ

wx =
∑

x∈XSℓ

ρxpx ≤ 8 · 2ℓ

(
4
ε

+ 5
) ∑

j∈Jℓ

pj .

Similarly, by Lemma 13, the time available for processing jobs in XLℓ is upper bounded
by

(
4 + ε

2
) ∑

j∈Jℓ
pj and being blocked at level ℓ by larger jobs implies ρx ≤ 8

ε · 2 · 2
ℓ, where

we used Observation 5 for a blocking job j with px ∈
(

ε
2 pj , pj

]
. Hence,∑

x∈XLℓ

wx =
∑

x∈XLℓ

ρxpx ≤
16
ε
· 2ℓ

(
4 + ε

2

) ∑
j∈Jℓ

pj .

Combining the last two equations with Lemma 8 gives∑
x∈X

wx ≤ 4
(

8 ·
(

4
ε

+ 5
)

+ 16
ε

(
4 + ε

2

)) ∑
j∈J

wj = 192
(

2
ε

+ 1
) ∑

j∈J

wj = O
(

1
ε

) ∑
j∈J

wj .

◀

Proof of main result
Proof of Theorem 1. Recall that Opt is the set of jobs scheduled in an optimal non-
migratory solution and that F is the set of jobs that the two-threshold algorithm completes
on time. Combining Theorems 6 and 7, we obtain∑

x∈Opt
wx ≤

∑
x∈X

wx +
∑
x∈J

wx ≤ O
(

1
ε

) ∑
j∈J

wj ≤ O
(

1
ε

) ∑
j∈F

wj , (2)

which concludes the proof of our main result. ◀

Proof of Theorem 2. On identical machines, it is known that the optimal throughput
achievable without migration is within a constant multiplicative factor of the throughput
achievable using migration by Kalyanasundaram and Pruhs [14]. More precisely, as before,
let Opt be the subset of jobs finished by an optimal (offline) non-migratory schedule, and let
Optmig be the subset of jobs finished by an optimal (offline) schedule that is allowed to use
migration. Then, Theorem 1.1 in [14] shows that 1

6
∑

j∈Optmig
wj ≤

∑
j∈Opt wj . Combining

this with (2), we immediately obtain∑
j∈Optmig

wj ≤ O(1)
∑

j∈Opt
wj ≤ O

(
1
ε

) ∑
j∈F

wj ,

which proves Theorem 2. ◀
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5 Conclusion

We have presented a provably best possible non-migratory algorithm for online weighted
throughput maximization on unrelated machines, that is O

( 1
ε

)
-competitive against an optimal

non-migratory schedule. Even for a single machine, only an O
( 1

ε2

)
-competitive algorithm

was previously known [18] while the lower bound was Ω
( 1

ε

)
[8]. Our result closes this gap on

a single machine.
In contrast to special cases such as maximizing throughput with unit weights [19] or

maximizing machine utilization (wj = pj) [16], it is known that O(1)-competitive algorithms
are not possible even on identical machines and even when using randomization [7]. It is
conceivable that o

( 1
ε

)
-competitive algorithms are possible for m ≥ 2 identical machines,

which we leave as an interesting open problem.
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Abstract
In the Exact Matching problem, we are given a graph whose edges are colored red or blue and
the task is to decide for a given integer k, if there is a perfect matching with exactly k red edges.
Since 1987 it is known that the Exact Matching Problem can be solved in randomized polynomial
time. Despite numerous efforts, it is still not known today whether a deterministic polynomial-time
algorithm exists as well. In this paper, we make substantial progress by solving the problem for a
multitude of different classes of dense graphs. We solve the Exact Matching problem in deterministic
polynomial time for complete r-partite graphs, for unit interval graphs, for bipartite unit interval
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one can take is to look for one specific problem, where the research community knows a
randomized, but no deterministic algorithm, and try to find a deterministic algorithm for
this specific problem. Every single of these results can be seen as further evidence towards
P = BPP. One famous example of such a “derandomization” is the deterministic algorithm
for primality testing by Agrawal, Kayal and Saxena [1] from 2002.

Quite interestingly, we only know of a handful of problems where a randomized but no
deterministic polynomial-time algorithm is known. This paper is concerned with one of these
examples, the Exact Matching problem (Em). Given an integer k and a simple graph G

together with a coloring of its edges in red or blue, Em is the problem of deciding whether
G has a perfect matching with exactly k red edges. Em was introduced by Papadimitriou
and Yannakakis [36] back in 1982. Not too long after its introduction, in 1987, Mulmuley et
al. [33] showed that Em can be solved in randomized polynomial-time. Despite the original
problem being from 1982, and in spite of multiple applications of Em in different areas (see
next paragraph), it is still not known today, if a deterministic polynomial-time algorithm
exists.

Another interesting aspect of Em is its connection to polynomial identity testing (Pit).
Pit is another one of the rare problems in BPP for which we still do not know any deterministic
polynomial-time algorithm. Given a multivariate polynomial described by an algebraic circuit,
Pit is the problem of deciding whether the polynomial is identically equal to zero or not.
Using the well-known Schwartz-Zippel Lemma (named after Schwartz [37] and Zippel [44]
who discovered it in the eighties), it is clear that Pit belongs to CoRP. Therefore, under the
conjecture CoRP = P, there should be a deterministic polynomial-time algorithm for Pit.
However, Kabanets and Impagliazzo [26] provided strong evidence that derandomizing Pit
might be notoriously hard, since it would imply proving circuit lower bounds. The known
randomized algorithm for Em uses Pit as a subroutine on a slightly modified Tutte matrix of
the given graph. Alternatively, one can substitute the use of Pit with the famous Isolation
Lemma due to Mulmuley et al. [33]. Both approaches lead to randomized polynomial-time
algorithms for Em and show that Em is contained in the class RP.

History of Exact Matching

We have already established that Em should belong to P if we believe the conjecture
P = RP = BPP. However, the best deterministic algorithm to date takes exponential
time. This is especially astonishing knowing that Em was introduced by Papadimitriou and
Yannakakis [36] back in 1982. A few years later, in 1987, Mulmuley et al. [33] showed that Em
can be solved in randomized polynomial-time in their famous paper that also introduced the
Isolation Lemma. In fact, their algorithm additionally allows for a high degree of parallelism
i.e. they proved that Em belongs to RNC (and hence also to RP and BPP). RNC is defined as
the class of decision problems allowing an algorithm running in polylogarithmic time using
polynomially many parallel processors, while having additional access to randomness (we
refer the interested reader to [6, Chapter 12] for a formal definition). This means that if we
allow for randomness, Em can be solved efficiently even in parallel, while the best known
deterministic algorithm requires exponential time.

In the same year 1987, Karzanov [27] gave a precise characterization of the solution
landscape of Em in complete and complete bipartite graphs. His characterization also implies
deterministic polynomial-time algorithms for Em restricted to those graph classes. Several
articles later appeared [19,23,42], simplifying and restructuring those results.

Em is known to admit efficient deterministic algorithms on some other restricted graph
classes as well: With standard dynamic programming techniques, Em can be solved in
polynomial-time on graphs of bounded tree-width [11,40]. Moreover, derandomization results
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exist for K3,3-minor free graphs [41, 43] and graphs of bounded genus [18]. These works
make use of so-called Pfaffian orientations. Besides solving Em on restricted graph classes,
some prior work has also focused on solving Em approximately. Yuster [43] proved that in a
YES-instance, we can always find an almost exact matching in deterministic polynomial-time
(an almost exact matching is a matching with exactly k red edges that fails to cover only
two vertices).

This completes a summary of the history of the Em problem until two years ago. With
so little progress, one might wonder if the community has lost interest in, or forgot about
the problem. However, over the last decade alone, we have seen the problem appear in
the literature from several areas. This includes budgeted, color bounded, or constrained
matching [5,28,31,32,38], multicriteria optimization [21], matroid intersection for represented
matroids [7], binary linear equation systems [4], recoverable robust assignment [17], or
planarizing gadgets for perfect matchings [22]. In many of these papers, a full derandomization
of Em would also derandomize some or all of the results of the paper. Em also appeared as
an interesting open problem in the seminal work on the parallel computation complexity of
the matching problem [39], which might be partly responsible for the increase in attention
that the problem has received recently.

Recent progress

As mentioned above, until recently, Em was only solved for a handful of graph classes. This
is even more extreme in the case of dense graphs where it was only solved on complete and
complete bipartite graphs. In 2022, El Maalouly and Steiner [12] finally made progress on
this side by showing that Em can be solved on graphs of bounded independence number and
bipartite graphs of bounded bipartite independence number. Here, the independence number
of a graph G is defined as the largest number α such that G contains an independent set of
size α. The bipartite independence number of a bipartite graph G equipped with a bipartition
of its vertices is defined as the largest number β such that G contains a balanced independent
set of size 2β, i.e., an independent set using exactly β vertices from both color classes. This
generalizes previous results for complete and complete bipartite graphs, which correspond
to the special cases α = 1 and β = 0. The authors also conjectured that counting perfect
matchings is #P-hard for this class of graphs. This conjecture was later proven in [14] already
for α = 2 or β = 3. This makes them the first classes of graphs where Em can be solved,
even though counting perfect matchings is #P-hard. This work was later extended to an
FPT-algorithm on bipartite graphs parameterized by the bipartite independence number [12].

There has also been a recent interest in approximation algorithms for Em. Such approxi-
mation algorithms have been developed for the closely related budgeted matching problem,
where sophisticated methods were used to achieve a PTAS [5] and, more recently, an efficient
PTAS [8]. These methods however do not guarantee to return a perfect matching (but note
that a deterministic FPTAS for budgeted matching would imply a deterministic polynomial-
time algorithm for Em [5]). In [9,11] it is argued that relaxing the perfect matching constraint
takes away most of the difficulty of the problem. In contrast, the aim of the recent work
has been to keep the perfect matching constraint and relax the requirement on the number
of red edges. The first such result was given in [12], where it was shown that in a bipartite
graph we can always find a perfect matching with at least 0.5k and at most 1.5k red edges in
deterministic polynomial-time. This represents a two-sided approximation for the problem.
Shortly after, [9] studied the surprisingly much more difficult problem of getting a one-sided
approximation and presented a 3-approximation in that setting (i.e. an algorithm that
outputs a perfect matching with at least k/3 and at most k red edges), relying on a newly
defined concept of graph rigidity.
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33:4 On the Exact Matching Problem in Dense Graphs

Another relaxation of the problem is to consider only modular constraints on the number
of red edges, e.g., requiring the output perfect matching to have an odd number of red edges.
In the case of bipartite graphs, the problem can be solved using the more general result
of [3] on network matrices. This does not work for general graphs, for which the problem
was solved in [13] with a different approach relying on a deep result by Lovász [30] on the
linear hull of perfect matchings. The problem remains open for other congruency constraints,
e.g., requiring the output to have (r mod p) red edges for some integers r and p. The latter
problem has been used by [34] as a building block in an algorithm for a special class of integer
programs having a constraint matrix with bounded subdeterminants. This means that a
deterministic algorithm for this special case of Em would also derandomize the algorithm
of [34].

In [11], the Top-k Perfect Matching problem is introduced, where the input is a weighted
graph and the goal is to find a PM that maximizes the weight of the k heaviest edges in the
matching. In combination with the result from [15], the problem is shown to be polynomially
equivalent to Em when the input weights are polynomially bounded. Several approximation
and FPT algorithms were also developed.

Another recent line of work follows a polyhedral approach to understand the differences
between finding a perfect matching and Em [25]. In particular, the authors show exponential
extension complexity for the bipartite exact matching polytope. This stands in contrast with
the bipartite perfect matching polytope whose vertices are all integral [10].

Finally, [40] studies some generalizations of Em to matching problems with vertex color
constraints and shows an interesting connection to quantum computing.

Our contribution

In this paper, we study Em on dense graph classes. We are able to solve Em in deterministic
polynomial time on many different classes of dense graphs, which before could only be handled
by a randomized algorithm. In order to achieve this result, we use two key techniques: First,
a local search algorithm, second, a generalization of Karzanov’s [27] theorem. With the
first technique, the local search algorithm, we obtain the following results: (For a formal
definition of all the graph classes listed, as well as a motivation for why we consider exactly
these classes, we refer the reader to Section 2.1.)

There is a deterministic nO(1) time algorithm for Em on complete r-partite graphs for
all r ≥ 1. The constant in the exponent is independent of r. This is an extension of the
special cases r = n and r = 2, which correspond to the cases of complete and complete
bipartite graphs [27] already known in 1987.
There is a deterministic nO(1) time algorithm for Em on graphs of bounded neighborhood
diversity d = O(1). The neighborhood diversity is a parameter popular in the area of
parameterized complexity [29].
There is a deterministic nO(1) time algorithm for Em on graphs G which have no complete
bipartite t-hole (i.e. Kt,t ̸⊆ G) with t = O(1).
There is a deterministic nO(log12(n)p−12) time algorithm for Em on the random graph
G(n, p). By this, we mean the following: We say an algorithm is correct for a graph G, if
for all possible red-blue edge colorings of G and all possible k, the algorithm correctly
solves Em on that input. We show that there is a deterministic algorithm A, which always
halts in nO(log12(n)p−12) steps, and if G is sampled from the distribution G(n, p), then
with high probability A is correct for G. As a special case, we obtain a quasi-polynomial
algorithm for G(n, 1/2). We are the first authors to consider Em from the perspective of
random graphs.
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As a special case, our main theorem contains a re-proof of the two main results of [12],
showing that there is a deterministic nO(1) algorithm for Em on graphs of bounded
independence number/ bip. graphs of bounded bip. independence number. Our result is
therefore a large generalization of this earlier result and puts it into the bigger context of
local search.

We also identify a certain graph property, which we call the path-shortening property.
Graphs which are very dense and structured are candidates to examine for this property.
Our main theorem is that for every graph with the path-shortening property, a local search
approach can be used to correctly solve the Exact Matching Problem. In fact, all the examples
above follow from our main theorem. We remark that our local search algorithm is very
simple, only the proof of its correctness is quite involved. The main idea of the observation
is that in graphs with the path-shortening property, strong locality statements about the set
of all perfect matchings can be made. Details are presented in Section 3.

While the local search approach allows us to tackle several new graph classes, we still
notice that it fails even on some very dense and structured graph classes. In particular, we are
interested in graph classes which are related to the problem of counting perfect matchings (for
example, Okamoto et al. [35] list chordal, interval, unit interval, bipartite chordal, bipartite
interval, and chain graphs among others). We highlight one example, the case of so-called
chain graphs, where our local search fails.

This failure inspires us to seek other methods to understand the Em problem on dense
graphs and leads us to consider our second key technique. We call this technique Karzanov’s
property, as it is a generalization of the result by Karzanov [27]. We show that several graph
classes have Karzanov’s property, including classes where our local search algorithm fails.
We introduce a related property, which we call the chord property. We introduce a novel
binary-search like procedure, which gives us both an efficient algorithm for Em on these
graph classes, as well as a characterization of their solution landscape.

Finally, we are also able to identify some graph classes, where Karzanov’s property almost
holds. We call this the weak Karzanov’s property. For those graph classes, we are not able to
solve Em deterministically, but we are at least able to show that one can always find a PM
with either k or k− 1 red edges. Hence we can come very close to solving the problem. These
graph classes are therefore obvious candidates to attack next in the effort of derandomizing
Em. In summary, we obtain the following.

There is a deterministic nO(1) time algorithm for Em on chain graphs, unit interval graphs,
bipartite unit interval graphs and complete r-partite graphs for all r ≥ 1. The solution
landscape for these graph classes can also be characterized by the perfect matchings of
maximum and minimum number of red edges with a given parity.
There is a deterministic nO(1) time algorithm on interval graphs, bipartite interval graphs,
strongly chordal graphs and bipartite chordal graphs, that outputs a perfect matching
with either k − 1 or k red edges or deduces that the answer of the given Em-instance is
“No”.

Organization of the paper

In the following we start with some preliminaries in Section 2. Then in Section 3 we introduce
our local search algorithm, the main ideas behind its correctness and its limitations. In
Section 4 we introduce Karzanov’s property, as well as Karzanov’s weak property and discuss
the main ideas behind their utility and limitations.
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In the appendix of the full version of this paper, you can find the detailed proofs missing
from Section 3, proofs that the local search algorithm works for several graph classes, the
detailed proofs missing from Section 4, and proofs that several graph classes satisfy Karzanov’s
property while some others only satisfy Karzanov’s weak property.

2 Preliminaries and Problem Definition

All graphs in this paper are undirected and simple. For a graph G = (V, E), we denote by
V (G) := V its vertex set and by E(G) := E its edge set. We usually use the letters n, m to
denote n := |V | and m := |E|. In this paper, paths and cycles are always simple (i.e. no
vertex is repeated). In order to simplify the notation, we identify paths and cycles with their
edge sets. Any reference to their vertices will be made explicit. The neighborhood N(v) of a
vertex v is the set of all vertices adjacent to v. A colored graph in this paper is a graph where
every edge has exactly one of two colors, i.e. a tuple (G, c) with c : E(G)→ {red, blue}. For
a subset F ⊆ E of edges, we denote by R(F ) := {e ∈ F | e is red} its set of red edges and
by r(F ) := |R(F )| its number of red edges. Analogously, we define B(F ) and b(F ) for blue
edges. A matching of G is a set M ⊆ E of edges, which touches every vertex at most once. A
perfect matching (abbreviated PM) is a matching M which touches every vertex exactly once.
An edge e is called matching, if e ∈M and non-matching otherwise. The Exact Matching
Problem is formally defined as follows.

Problem Em
Input: Colored graph (G, c), integer k ≥ 0.
Question: Is there a perfect matching M in G such that r(M) = k?

The symmetric difference A△B of two sets A and B is A ∪B \ (A ∩B). Let M be a PM.
An M -alternating cycle, or simply an alternating cycle (if M is clear from context), is a cycle
which alternates between edges in M and edges not in M . An alternating path is defined
analogously. If M1, M2 are PMs, it is well known that D := M1 △M2 is a vertex-disjoint
union of alternating cycles. Since △ behaves like addition mod 2, we also have M2 = M1△D

and M1 = M2 △D. In this paper, we try to follow the convention that the letter C denotes
a single cycle and the letter D denotes a vertex-disjoint union of one or more cycles.

2.1 Definition of Graph Classes
Throughout the paper, we show how to solve Em on various classes of dense graphs. In this
subsection, we properly define all graph classes used.

The motivation to consider exactly those classes comes from different sources. Some of
the classes considered are direct generalizations of classes, where it was previously known
that Em can be solved. Other classes are generally well-known. For the remaining classes,
we regard them as interesting, because they appear in the context of counting the number of
perfect matchings. (For example, in their paper about counting perfect matchings, Okamoto
et al. [35] list chordal, interval, unit interval, bipartite chordal, bipartite interval, and chain
graphs among others.) The reason for this is, that if it is #P-hard to count the number of
perfect matchings, then the Pfaffian derandomization method used in [18,41,43] is unlikely
to work (compare [15] for details). We also pay special attention to bipartite graphs, since
we expect Em to be easier to tackle if the graph is bipartite.

A graph is complete r-partite, if the vertex set can be partititioned into r parts V1, . . . , Vr

such that inside each part there are no edges, and between two different parts, there are all the
possible edges. The case r = n corresponds to the complete graph, while r = 2 corresponds
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to the complete bipartite graph. A generalization of complete r-partite graphs, if r = O(1),
are graphs of bounded neighborhood diversity, a parameter coming from parameterized
complexity [29]. A graph has neighborhood diversity d, if V (G) can be partitioned into d

parts V1 . . . , Vd, such that between every two parts Vi, Vj with i ̸= j, there are either no
edges, or all the possible edges, and every part itself induces either a complete or an empty
graph.

The Erdős-Rényi random graph G(n, p) is the random graph on n vertices, where every
edge appears with probability p independently [16]. It is very well-studied and has a rich
history.

The remaining definitions in this subsection are motivated by [35]. Furthermore, many
of these graph classes are extensively studied in algorithmic graph theory [20]. A graph
G = (V, E) is an interval graph if there exists a mapping I : V → {[a, b] ⊆ R | a ≤ b} such
that {u, v} ∈ E ⇐⇒ I(u) ∩ I(v) ̸= ∅ holds for all distinct u, v ∈ V . If additionally I(v) is a
unit interval for all vertices v, then G is called a unit interval graph.

We may consider bipartite versions of interval graphs the following way: A bipartite
graph G = (X ∪̇ Y, E) is a bipartite interval graph if there exists a mapping I : X ∪̇ Y →
{[a, b] ⊆ R | a ≤ b} such that {x, y} ∈ E ⇐⇒ I(x) ∩ I(y) ̸= ∅ holds for all x ∈ X, y ∈ Y . If
additionally I(v) is a unit interval for all vertices v, then G is called a bipartite unit interval
graph. Note that by this definition, if two vertices x, y ∈ X are in the same color class of the
bipartition, there is no edge between x and y even if the intervals I(x) and I(y) intersect.

Interval graphs are strongly chordal. A graph G is called strongly chordal if every cycle
of length at least 4 admits a chord and every even cycle of length at least 6 admits an odd
chord (i.e. a chord that splits the cycle into two odd length paths).

Bipartite interval graphs are bipartite chordal. A bipartite graph G is bipartite chordal if
and only if every cycle of (necessarily even) length at least 6 admits a chord.

Finally, we consider a special case of bipartite interval graphs, so-called chain graphs. A
bipartite graph G = (X ∪̇ Y, E) is a chain graph if and only if its vertices can be relabeled
as x1, . . . , x|X| ∈ X and y1, . . . , y|Y | ∈ Y such that N(xi) ⊆ N(xi+1) and N(yj) ⊆ N(yj+1)
hold for all 1 ≤ i < |X| and 1 ≤ j < |Y |.

3 Local Search

As of course is well known, the central idea behind a local search algorithm is to only examine
solutions close to the current solution at every step. Hence we require a notion of distance.
For our purpose, this notion is as follows.

▶ Definition 1. Let (G, c) be a colored graph and M1, M2 ⊆ E(G) be two PMs. The distance
between M1, M2 is

dist(M1, M2) := min{r(M1 △M2), b(M1 △M2).}

For an integer s ≥ 0, the s-neighborhood of a PM M is

N s(M) := {M ′ ⊆ E(G) |M ′ is a PM, dist(M, M ′) ≤ s}.

Note that dist(M1, M2) = min{|R(M1)△R(M2)|, |B(M1)△B(M2)|}. In other words, two
PMs have small distance if and only if their two sets of red edges are almost the same, or
their two sets of blue edges are almost the same. For example, if two PMs have the same set
of red edges, i.e. R(M1) = R(M2), then dist(M1, M2) = 0, even if their set of blue edges is
completely different.
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33:8 On the Exact Matching Problem in Dense Graphs

Observe that as a consequence of this definition, for a fixed PM M even the 0-neighborhood
N 0(M) may have exponential size in n. This is a problem for us: how can we perform local
search, if the size of the neighborhood is exponential? Fortunately, there is a fix: We do not
need to know the complete neighborhood of M , all we need to know is which values of r(M ′)
are possible to achieve in the neighborhood, i.e. the set of all k′ such that there exists a PM
M ′ in the neighborhood with r(M ′) = k′. The following lemma states that this information
can be computed efficiently. The idea is to guess either the set R(M ′) or the set B(M ′) and
see if the guess can be completed to a PM using only edges of the opposite color.

▶ Lemma 2. Assume we are given a PM M in a colored graph, and an integer s ≥ 0.
There is an algorithm which runs in O(ms+3) time and computes the set {k′ ∈ N | ∃M ′ ∈
N s(M), r(M ′) = k′} and for each k′ in this set outputs at least one representative M ′′ with
r(M ′′) = k′.

Proof. Let (G, c) be the colored graph with G = (V, E), and let ER := R(E) be the set of
all red edges and EB := B(E) be the set of all blue edges. The algorithm works as follows:
1. Enumerate all (not necessarily perfect) matchings X ⊆ ER with |X △R(M)| ≤ s. For

each such X, use a classical maximum matching algorithm on the blue edges to check
whether there exists Y ⊆ EB such that X ∪̇Y =: M ′′ is a PM. If the answer is affirmative,
we add the number k′ := |X| = r(M ′′) to the output set (together with its representative
M ′′).

2. After that, we repeat the same procedure with the colors switched: Enumerate all
matchings X ⊆ EB with |X △B(M)| ≤ s. For each such X, check whether there exists
Y ⊆ ER such that X ∪̇ Y is a PM. If yes, we add the number k′ := n/2 − |X| to the
output set (together with its representative M ′′).

The enumeration of sets X can be done in O(ms) time. Note that this algorithm is sound,
in the sense that every PM M ′′ generated by it is indeed contained in N s(M). On the
other hand, the algorithm is also complete: If M ′ ∈ N s(M), then either R(M ′) or B(M ′)
appears in the enumeration. This means that not necessarily M ′, but at least some M ′′ with
r(M ′) = r(M ′′) is found by the algorithm. The total runtime of the algorithm is Θ(msfM ),
where fM denotes the time it takes to solve the perfect matching problem deterministically.
For simplification, we let fM = O(mn2) = O(m3) [10]. ◀

Algorithm 1 A simple local search algorithm, Local(s).

Input: Colored graph (G, c), integer k ≥ 0, local search parameter s ≥ 0
Result: Either a PM M with r(M) = k, or the info that local search was

unsuccessful.
Mmin ←PM in G with minimum number of red edges among all PMs ;
M ←Mmin;
while r(M) ̸= k do

Try to find M ′ ∈ N s(M) s.t. r(M) < r(M ′) ≤ k using Lemma 2;
if successful then

M ←M ′;
else

return “local search failed.”;

return M ;
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With Lemma 2 in mind, we introduce Algorithm 1 as the most natural local search
algorithm. It starts with a PM with the minimum number of red edges and iteratively tries
to increase r(M). Note that the PM Mmin in the first line of the algorithm can be computed
in polynomial time (one can run a classical maximum weight perfect matching algorithm,
where red edges receive weight -1, and blue edges receive weight 0). Algorithm 1 can return
false negatives, in the sense that given a yes-instance of Em it is possible for the algorithm to
get stuck in a local optimum and return “false”. Algorithm 1 can not return false positives.
If we increase the search parameter s, we expect Algorithm 1 to be correct more often on
average, but we also expect a longer runtime. We denote Algorithm 1 with parameter s by
the name Local(s). Since every successful iteration increases r(M), the running time of
Local(s) is bounded by O(ms+4). It is desirable to understand when Local(s) correctly
solves Em. This is partially answered in the next subsection.

3.1 A Sufficient Condition for Local Search
We present a sufficient condition for Local(s) to correctly solve Em. Although the algorithm
Local(s) is quite simple, the proof that our condition suffices for correctness of the algorithm
is involved. The main idea is the observation that in certain dense and highly structured
graphs, it is possible to prove strong locality properties for the set of all perfect matchings.
In particular, we consider graphs which have the following technical property:

▶ Definition 3. Let t ≥ 2 be an integer. A graph G has the so-called path-shortening property
Pshort(t), if for all PMs M ⊆ G, and for all M-alternating paths P the following holds:
If F ⊆ P ∩M is a subset of matching edges of size |F | = t and F = {{a1, b1}, . . . , {at, bt}},
where the vertices a1, b1, a2, b2, . . . , at, bt appear in this order along the path, then the graph G

contains an edge {ai, bj} for some indices 1 ≤ i < j ≤ t or both the edges {ai1 , ai3}, {bi2 , bi4}
for some indices 1 ≤ i1 < i2 < i3 < i4 ≤ n.

a1 b1 a2 b2 a3 b3 a4 b4

Figure 1 An example of the property Pshort(4) on a path of length 11. Matching edges are
bold. Both possibilities of path shortening are highlighted.

An illustration of this property is provided in Figure 1. Note that the property is monotone
in t, i.e. Pshort(t) implies Pshort(t′) for all t′ > t. Our main result is the insight that the
property Pshort is sufficient for local search to be correct.

▶ Theorem 4. If a graph G has property Pshort(t), then the deterministic algorithm
Local(O(t12)) solves Em on graph G in time nO(t12) (for all possible edge colorings c :
E(G)→ {red, blue} and all target values k ∈ N).

In particular, if t = O(1), then the algorithm above is polynomial-time. Such a theorem
is only useful of course, if we can show that many different graphs have this mysterious
property Pshort. Indeed, we can show (proofs can be found in the appendix of the full
version of this paper):
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Complete r-partite graphs have the property Pshort(3) for all integers r ≥ 1.
Graphs of bounded neighborhood diversity d have the property Pshort(d + 1).
Graphs of bounded independence number α have the property Pshort(2 Ram(α + 1)),
where Ram(x) ≤ 4x is the diagonal Ramsey number.
Graphs of bounded bipartite independence number β have property Pshort(2β + 2).
If a graph G has no complete bipartite t-hole (i.e. the complement G does not contain
Kt,t as subgraph), then G has the property Pshort(2t).
The random graph G(n, p) has property Pshort(2 log(n)/p) with high probability.

The proof of Theorem 4 is quite technical and requires many steps. The complete proof
is given in the full version of this paper. The main insight is the observation that in graphs
with property Pshort, the set of all perfect matchings must obey strong locality guarantees.
For the proof of this locality statement, we introduce the new idea of local modifiers. Each
local modifier has a weight associated to it, and the goal becomes to combine the weights in
such a way, that they cancel out to be 0. The proof uses ideas and tools from Combinatorics,
like an argument similar to the Erdős-Szekeres theorem, and a helpful lemma from number
theory about 0-sum subsequences.

3.2 Limitation of Local Search
A natural question is whether the approach we presented in this section extends to more
graph classes, in particular to all dense graph classes. Here we show that our local search
approach fails even for some very dense and very structured classes of graphs. We consider
the case of chain graphs.

Recall the definition of a chain graph from Section 2.1. Note that chain graphs can
be sparse (e.g. an empty graph is a chain graph), but when required to contain a perfect
matching, the graph has to be dense. This can be seen by considering the vertex of highest
label on one side and observing that it must be connected to all vertices on the other side.
By recursively applying this observation, we can see that the number of edges in the graph
must be at least n2/8.

The following is an example of a chain graph that does not satisfy the property Pshort(t)
even for t = n. Let G = (X ∪̇ Y, E) be the chain graph defined by |X| = |Y | = n,
N(xi) := {yn−i+1, . . . , yn} for all 1 ≤ i ≤ |X| (see Figure 2). Observe that it is a valid chain
graph and that M := {{xi, yn−i+1}, for 1 ≤ i ≤ |X|} is a perfect matching. Also observe
that there is no edge of the form {xi, yj} for 1 ≤ i ≤ n− j ≤ n as required for the property
Pshort(t) (since the graph is bipartite, no edges of the form {xi, xj} or {yi, yj} exist either).

ynx1 yn−1x2 y1xnyn−2x3 yn−3x4

ynx1

yn−1x2

yn−2x3

yn−3x4

y1xn

Figure 2 An example of a chain graph G and a perfect matching M in G (left figure), where
there exists an M -alternating path with n edges from M (right figure). Edges in M are bold. The
property Pshort(n) is violated on this path.
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4 Extending Karzanov’s Characterization

In this section, we extend the characterization of exact matchings given by Karzanov [27] for
complete and complete bipartite graphs to chain graphs, unit interval graphs, and complete
r-partite graphs. Moreover, we exploit this to give deterministic polynomial-time algorithms
for Em on those graph classes. This complements the results of Section 3, as chain graphs
and unit interval graphs are not captured by the local search approach. On the other hand,
complete r-partite graphs actually fit both frameworks. Note that we only provide a coarse
outline here and defer many of the proofs and details to the appendix of the full version of
this paper.

Given a colored graph (G, c), we denote by kmin(G) the smallest integer k such that there
is a PM M in G with r(M) = k, and by kmax(G) the largest integer k such that there is a
PM M in G with r(M) = k. Assuming that G admits at least one PM, both kmin(G) and
kmax(G) exist.

Karzanov [27] proved that unless a given colored complete or balanced complete bipartite
graph (G, c) has a very specific structure, there must be a PM M in G with r(M) = k for
all kmin(G) ≤ k ≤ kmax(G). Moreover, he also characterized the special cases where this is
violated. In particular, even in those special cases the following property still holds. (We use
the symbol ≡2 to denote equivalence modulo 2).

▶ Definition 5 (Karzanov’s Property). A colored graph (G, c) satisfies Karzanov’s property if
for any two PMs M and M ′ with r(M) ≡2 r(M ′) and any integer k with r(M) ≤ k ≤ r(M ′)
and k ≡2 r(M) ≡2 r(M ′), G admits a PM M ′′ with r(M ′′) = k.

In other words, if a graph has Karzanov’s property, then if we go in steps of two we always
find all possible values of red edges between two given PMs of the same parity. We extend
this line of work by proving that all colored chain graphs, unit interval graphs, and complete
r-partite graphs satisfy Karzanov’s Property too. This allows us to decide Em on these
graph classes by using an algorithm for Bounded Correct-Parity Perfect Matching (Bcpm)
introduced by [13].

Problem Bcpm
Input: Colored graph (G, c), integer k ≥ 0.
Question: Is there a PM M in G with r(M) ≤ k and r(M) ≡2 k?

We claim that if a graph has Karzanov’s property, then Em reduces to Bcpm. Indeed,
let A be an algorithm for Bcpm. Given a colored graph (G, c) and an integer k, we can
call A with input (G, c) and k to check whether there exists a PM M with r(M) ≤ k and
r(M) ≡2 k. Next, assume we compute the inverse coloring c with c(e) = red if c(e) = blue,
and c(e) = blue if c(e) = red for all e ∈ E. By calling A with input (G, c) and k′ = n

2 − k,
we can check the existence of a PM M with r(M) ≥ k and r(M) ≡2 k in (G, c). If we know
that Karzanov’s property holds in (G, c), these two pieces of information are sufficient to
decide Em. (Note that instead of using the algorithm for Bcpm twice, we can first use an
algorithm for the simpler problem Cpm which is defined similarly to Bcpm but without the
bound on the number of red edges. Depending on the number of red edges in the output
matching we then set the Bcpm input appropriately. Cpm has been shown to be solvable in
deterministic polynomial time on general graphs [13].)

▶ Observation 6. Em reduces to Bcpm in colored graphs that satisfy Karzanov’s property.
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Recall that our goal is to give deterministic polynomial-time algorithms for Em in unit
interval graphs, chain graphs, and complete r-partite graphs. Observation 6 provides a
possible strategy to achieve this. In particular, we will now proceed to give a condition on
graphs that implies Karzanov’s property. As it turns out, the same condition is also sufficient
to give deterministic polynomial-time algorithms for Bcpm.

4.1 A Sufficient Condition for Karzanov’s Property
We will now present a sufficient condition for Karzanov’s property. As it turns out, the
condition is also sufficient to give deterministic polynomial-time algorithms for Bcpm. Our
condition is based on the existence of certain chord structures in all even-length cycles of a
given graph. To state it, we first need to introduce some terminology for chords.

▶ Definition 7 (Odd Chord, Even Chord, Split of a Chord). Let C be a cycle in a graph
G = (V, E). An edge e ∈ E is a chord of C if and only if both endpoints of e are on C but
e /∈ C. Let now e = {u, v} be a chord of C and consider the paths P1, P2 obtained by splitting
C at u and v i.e. C = P1 ∪̇ P2. We call e an odd chord of C if and only if either P1 or P2
has odd length. Otherwise, e is called an even chord of C. The split of e is the minimum of
the lengths of P1 and P2.

Note that the above definition technically allows C to have even or odd length, but in general
we will only be interested in chords of even-length cycles here.

▶ Definition 8 (Adjacent Chords). Let C be a cycle in a graph G with chords e = {x, y} ∈ E

and f = {u, v} ∈ E whose endpoints appear on C in the order u, v, x, y. Then e and f are
said to be adjacent chords of C if additionally, we have {v, x} ∈ C and {u, y} ∈ C.

y u a

b

vx

Figure 3 An example of a 10-cycle with three chords. The chords {x, y} and {u, v} are adjacent
and they are both odd chords. Conversely, {a, b} is an even chord with split 2. The split of {x, y} is
3 and the split of {u, v} is 5.

An example of these definitions is found in Figure 3. Given these definitions, we are now
ready to state our sufficient condition. Note that the condition is only about the graph
structure, i.e. the coloring is irrelevant here.

▶ Definition 9 (Chord Property). A simple graph G = (V, E) satisfies the chord property if
1. every even cycle C of length at least 6 either has an odd chord or all possible even chords,

and
2. every even cycle C of length at least 8 either has two adjacent odd chords or all possible

even chords with split at least 4.

As it turns out (see appendix of the full version of this paper), chain graphs, unit interval
graphs, and complete r-partite graphs all satisfy the chord property. In fact, the even chords
are only needed in complete r-partite graphs. In other words, chain graphs and unit interval
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graphs satisfy the chord property without making use of the parts about even chords. By
our next lemma, this means that all three graph classes satisfy Karzanov’s property for every
possible coloring.

▶ Lemma 10 (Chord Property is Sufficient). Let G be an arbitrary graph satisfying the chord
property and let c be an arbitrary coloring of G. Then the colored graph (G, c) satisfies
Karzanov’s property.

Proof. Deferred to the appendix of the full version of this paper. ◀

Note that the reverse is not true, i.e. given a colored graph (G, c) with Karzanov’s property,
it is not necessarily the case that G has the chord property.

In order to solve Em on graphs satisfying the chord property, it remains to give a
deterministic polynomial-time algorithm for Bcpm on those graphs.

▶ Lemma 11 (Bcpm on Graphs with the Chord Property). There is a deterministic polynomial-
time algorithm that decides Bcpm correctly for all inputs where the graph satisfies the chord
property.

Proof. Deferred to the appendix of the full version of this paper. ◀

Finally, we can combine Observation 6 with Lemma 10 and Lemma 11 to get the main result
of this section.

▶ Theorem 12. There is a deterministic polynomial-time algorithm that decides Em on all
colored graphs (G, c) where G satisfies the chord property.

Proof. The colored graph (G, c) satisfies Karzanov’s property by Lemma 10. By Observa-
tion 6, this reduces deciding Em for (G, c) to deciding Bcpm. Moreover, the graph G remains
unaltered in this reduction. Hence, this can be achieved in deterministic polynomial-time
with the algorithm from Lemma 11. ◀

We prove in the appendix of the full version of this paper that unit interval graphs, chain
graphs, and complete r-partite graphs satisfy the chord property. We conclude that Em
restricted to those graph classes can be decided in deterministic polynomial-time.

4.2 Limitation of Karzanov’s Property
A natural question is whether the approach we presented in this section extends to more
graph classes. In particular, interval graphs and bipartite interval graphs would be suitable
candidates as they are superclasses of unit interval graphs and chain graphs, respectively.

Unfortunately, it turns out that Karzanov’s Property is violated on both graph classes.
Concrete counterexamples are given in Figures 4 and 5.

While our approach fails to generalize to these graph classes, there still seems to be some
hope. Consider the following property of colored graphs, which we coined Karzanov’s weak
property.

▶ Definition 13 (Karzanov’s Weak Property). A colored graph (G, c) satisfies Karzanov’s
weak property if for any two PMs M and M ′ and integer k with r(M) ≤ k ≤ r(M ′), there is
a PM M ′′ with r(M ′′) ∈ {k, k + 1}.
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v

I(v)

Figure 4 On the left we have a colored interval graph on eight vertices which does not satisfy
Karzanov’s property. In particular, there are PMs with 0, 1, 3, and 4 red edges but there is no PM
with exactly 2 red edges. The interval representation of the graph is given on the right. Interval I(v)
corresponds to vertex v from the left. Note that the vertical position of the intervals is irrelevant,
only the relative horizontal position of the intervals matters.

Figure 5 By deleting the even chords from the graph in Figure 4, we obtain a bipartite interval
graph. It admits the same PMs as the interval graph in Figure 4. Hence, this colored graph also
violates Karzanov’s property.

The main difference to Karzanov’s property is that we are missing the constraint on the
parity of the number of red edges. Consider e.g. a graph with exactly two PMs with 0
and 3 red edges, respectively. Such a graph would satisfy Karzanov’s property but violate
Karzanov’s weak property. In particular, Karzanov’s property does not imply Karzanov’s
weak property. Still, compared to Karzanov’s property, Karzanov’s weak property gives us
less structure to work with and typically holds on larger graph classes. Unfortunately, we
have not yet been able to solve Em using Karzanov’s weak property.

As it turns out, all colored bipartite chordal and strongly chordal graphs satisfy Karzanov’s
weak property.

▶ Lemma 14. All colored bipartite chordal and strongly chordal graphs satisfy Karzanov’s
weak property.

Proof. Deferred to the appendix of the full version of this paper. ◀

In particular, the same observation holds in all colored interval and bipartite interval
graphs as they are subclasses of strongly chordal and bipartite chordal graphs, respectively.

5 Conclusion

In this paper we made substantial progress towards solving the notoriously difficult Exact
Matching problem, in particular in the regime of dense graphs. We provide general frameworks
that not only encompass all previously known results for these types of graphs, but also
include a multitude of graph classes for which the problem is now solved. We remark that it
is inherent to our techniques that they will fail on sparse graphs: It seems very unlikely that
a local search on a sparse graph is successful (since changing one edge of a PM in a sparse
graph often times requires changing many more edges). It is also unlikely that a sparse graph
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has Karzanov’s property: On sparse graphs, we do not expect the solution landscape to be
dense. Still, we hope that our approach sheds further light onto these questions. One could
imagine, for example, to split a graph into a dense and a sparse part, and apply different
techniques to different parts.

In this paper, we also provided some open questions that are reasonable to attack next,
since they seem to be in reach of current methods. In particular, is it possible to have a
deterministic poly-time algorithm for G(n, 1/2)? Can one find a deterministic poly-time
algorithm for those graph classes where the weak Karzanov property holds? (Interval graphs,
bipartite interval graphs, strongly chordal graphs, bipartite chordal graphs.) Note that for
graphs with the weak Karzanov property, we can always find a PM with either k − 1 or k

red edges, but the final decision if k can be achieved still seems difficult.
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Abstract
A linearly ordered (LO) k-colouring of a hypergraph is a colouring of its vertices with colours 1, . . . , k

such that each edge contains a unique maximal colour. Deciding whether an input hypergraph
admits LO k-colouring with a fixed number of colours is NP-complete (and in the special case of
graphs, LO colouring coincides with the usual graph colouring).

Here, we investigate the complexity of approximating the “linearly ordered chromatic number”
of a hypergraph. We prove that the following promise problem is NP-complete: Given a 3-uniform
hypergraph, distinguish between the case that it is LO 3-colourable, and the case that it is not even
LO 4-colourable. We prove this result by a combination of algebraic, topological, and combinatorial
methods, building on and extending a topological approach for studying approximate graph colouring
introduced by Krokhin, Opršal, Wrochna, and Živný (2023).
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1 Introduction

Deciding whether a given finite graph is 3-colourable (or, more generally, k-colourable, for
a fixed k ≥ 3) was one of the first problems shown to be NP-complete by Karp [17]. Since
then, the complexity of approximating the chromatic number of a graph has been studied
extensively. The best-known polynomial-time algorithm approximates the chromatic number
of an n-vertex graph within a factor of O(n (log log n)2

(log n)3 ) (Halldórsson [16]); conversely, it is
known that the chromatic number cannot be approximated in polynomial time within a
factor of n1−ε, for any fixed ε > 0, unless P = NP (Zuckerman [31]). However, this hardness
result only applies to graphs whose chromatic number grows with the number of vertices,
and the case of graphs with bounded chromatic number is much less well understood.

Given an input graph G that is promised to be 3-colourable, what is the complexity of
finding a colouring of G with some larger number k > 3 of colours? Khanna, Linial, and
Safra [19] showed that this problem is NP-hard for k = 4, and it is generally believed that
the problem is NP-hard for any constant k. However, surprisingly little is known, and the
only improvement and best result to date, hardness for k = 5, was obtained only relatively
recently by Bulín, Krokhin, and Opršal [9]. On the other hand, the best polynomial-time
algorithm, due to Kawarabayashi and Thorup [18], uses a number of colours (slightly less
less than n1/5) that depends on the number n of vertices of the input graph.

More generally, it is a long-standing conjecture that finding a k-colouring of a c-colourable
graph is NP-hard for all constants k ≥ c ≥ 3, but the complexity of this approximate graph
colouring problem remains wide open. The results from [9] generalise to give hardness for
k = 2c − 1 and all c ≥ 3. For c ≥ 6, this was improved by Wrochna and Živný [29], who
showed that it is hard to colour c-colourable graphs with k =

(
c

⌊c/2⌋
)

colours. We remark that
conditional hardness (assuming different variants of Khot’s Unique Games Conjecture) for
approximate graph coloring for all k ≥ c ≥ 3 was obtained by Dinur, Mossel, and Regev [12],
Guruswami and Sandeep [15], and Braverman, Khot, Lifshitz, and Mulzer [6].

Given the slow progress on approximate graph colouring, we believe there is substantial
value in developing and extending the available methods for studying this problem and
related questions, and we hope that the present paper contributes to this effort. As our main
result (Theorem 1.1 below), we establish NP-hardness of a relevant hypergraph colouring
problem that falls into a general scope of promise constraint satisfaction problems; in the
process, we considerably extend a topological approach and toolkit for studying approximate
colouring that was introduced by Krokhin, Opršal, Wrochna, and Živný [21, 29, 23].

Graph colouring is a special case of the constraint satisfaction problem (CSP), which has
several different, but equivalent formulations. For us, the most relevant formulation is in
terms of homomorphisms between relational structures. The starting point is the observation
that finding a k-colouring of a graph G is the same as finding a graph homomorphism (an
edge-preserving map) G → Kk where Kk is the complete graph with k vertices. The general
formulation of the constraint satisfaction problem is then as follows (see Section 2.1 below for
more details): Fix a relational structure A (e.g., a graph, or a uniform hypergraph), which
parametrises the problem. CSP(A) is then the problem of deciding whether a given structure
X allows a homomorphism X → A. One of the celebrated results in the complexity theory
of CSPs is the Dichotomy Theorem of Bulatov [8] and Zhuk [30], which asserts that for every
finite relational structure A, CSP(A) is either NP-complete, or solvable in polynomial time.

The framework of CSPs can be extended to promise constraint satisfaction problems
(PCSPs), which include approximate graph colouring. PCSPs were first introduced by
Austrin, Guruswami, and Håstad [1], and the general theory of these problems was further
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developed by Brakensiek and Guruswami [5], and by Barto, Bulín, Krokhin, and Opršal [3].
Formally, a PCSP is parametrised by two relational structures A and B such that there exists
a homomorphism A → B. Given an input structure X, the goal is then to distinguish between
the case that there is a homomorphism X → A, and the case that there does not even exist a
homomorphism X → B (these cases are distinct but not necessarily complementary, and no
output is required in case neither holds); we denote this decision problem by PCSP(A, B). For
example, PCSP(K3, Kk) is the problem of distinguishing, given an input graph G, between
the case that G is 3-colourable and the case that G is not k-colourable. This is the decision
version of the approximate graph colouring problem whose search version we introduced
above. We remark that the decision problem reduces to the search version, hence hardness
of the former implies hardness of the latter.

PCSPs encapsulate a wide variety of problems, including versions of hypergraph colouring
studied by Dinur, Regev, and Smyth [13] and Brakensiek and Guruswami [4]. A variant of
hypergraph colouring that is closely connected to approximate graph colouring and generalises
(monotone1)1-in-3SAT is linearly ordered (LO) hypergraph colouring. A linearly ordered
k-colouring of a hypergraph H is an assignment of the colours [k] = {1, . . . , k} to the
vertices of H such that, for every hyperedge, the maximal colour assigned to elements of
that hyperedge occurs exactly once. Note that for graphs, linearly ordered colouring is the
same as graph colouring. Moreover, LO 2-colouring of 3-uniform hypergraphs corresponds to
(monotone) 1-in-3SAT (by viewing the edges of the hypergraph as clauses). In the present
paper, we focus on 3-uniform hypergraphs; whether such a graph has an LO k-colouring can
be expressed as CSP(LOk) for a specific relational structure LOk with one ternary relation
(see Section 2.1); in particular, 1-in-3SAT corresponds to CSP(LO2).

The promise version of LO hypergraph colouring was introduced by Barto, Battistelli,
and Berg [2], who studied the promise 1-in-3SAT problem. More precisely, let B be a fixed
ternary structure such that there is a homomorphism LO2 → B. Then PCSP(LO2, B) is
the following decision problem: Given an instance X of 1-in-3SAT, distinguish between
the case that X is satisfiable, and the case that there is no homomorphism X → B. For
structures B with three elements, Barto et al. [2] obtained an almost complete dichotomy;
the only remaining unresolved case is B = LO3, i.e., the complexity of PCSP(LO2, LO3).
They conjectured that this problem is NP-hard, and more generally that PCSP(LOc, LOk) is
NP-hard for all k ≥ c ≥ 2 [2, Conjecture 27]. Subsequently, the following conjecture emerged
and circulated as folklore (first formally stated by Nakajima and Živný [27]): PCSP(LO2, B)
is either solved by the affine integer programming relaxation, or NP-hard (see Ciardo, Kozik,
Krokhin, Nakajima, and Živný [10] for recent progress in this direction).

Promise LO hypergraph colouring was further studied by Nakajima and Živný [26],
who found close connections between promise LO hypergraph colouring and approximate
graph colouring. In particular, they provide a polynomial time algorithm for LO-colouring
2-colourable 3-uniform hypergraphs with a superconstant number of colours, by adapting
methods used for similar algorithms for approximate graph colouring, e.g., [18]. In the other
direction, NP-hardness of PCSP(LOk, LOc) for 4 ≤ k ≤ c follows relatively easily from
NP-hardness of the approximate graph colouring PCSP(Kk−1, Kc−1), as was observed by
Nakajima and Živný and by Austrin (personal communications).2

1 In the present paper, we will only consider the monotone version of 1-in-3SAT, i.e., the case where
clauses contain no negated variable, and we will often omit the adjective “monotone” in what follows.

2 To see why, observe that (LOk, LOc) promise primitive-positive defines (Kk−1, Kc−1); in particular,
we can define x ≠ y by ∃z · R(z, z, x) ∧ R(z, z, y) ∧ R(x, y, z). We then see that if R is interpreted in
LOk, then the required z exists if and only if x ̸= y, as required.
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Our main result is the following, which cannot be obtained using these arguments.

▶ Theorem 1.1. PCSP(LO3, LO4) is NP-complete.

Apart from the intrinsic interest of LO hypergraph colouring, we believe that the main
contribution of this paper is on a technical level, by extending the topological approach
of [23] and bringing to bear more advanced methods from algebraic topology, in particular
equivariant obstruction theory. To our knowledge, this paper is the first that uses these
methods in the PCSP context; we view this as a “proof of concept” and believe these tools
will be useful to make further progress on approximate graph colouring and related problems.

The proof of Theorem 1.1 has two main parts. For a natural number n, let (LO3)n be the
n-fold power of the relational structure LO3 (see Section 2.2). In the first part of the proof,
we use topological methods to show (Lemma 3.2 below) that with every homomorphism
f : (LO3)n → LO4, we can associate an affine map χ(f) : Zn

3 → Z3 (i.e., a map of the
form (x1, . . . , xn) 7→

∑n
i=1 αixi, for some αi ∈ Z3 and

∑n
i=1 αi ≡ 1 (mod 3)); moreover, the

assignment f 7→ χ(f) preserves natural minor relations that arise from maps π : [n] → [m],
i.e., χ is a minion homomorphism (see Section 2.2 for the precise definitions).

In the second part of the proof, we show by combinatorial arguments that the maps
χ(f) : Zn

3 → Z3 form a very restricted subclass of affine maps: They are projections Zn
3 → Z3,

(x1, . . . , xn) 7→ xi (Corollary 3.4). Theorem 1.1 then follows from a hardness criterion
(Theorem 2.6) obtained as part of a general algebraic theory of PCSPs [3].

In a nutshell, topology enters in the first part of the proof as follows. First, with every
homomorphism f : (LO3)n → LO4 we associate a continuous map f∗ : T n → P 2, where T n

is the n-dimensional torus (the n-fold power of the circle S1) and P 2 is a suitable target
space that will be described in more detail later; moreover, the cyclic group Z3 naturally
acts on both T n and P 2, and the map f∗ preserves these symmetries (it is equivariant).
This first step uses homomorphism complexes (a well-known construction in topological
combinatorics that goes back to the work of Lovász [24], see Section 2.3). Second, we show
that equivariant continuous maps T n → P 2, when considered up to a natural equivalence
relation of symmetry-preserving continuous deformation (equivariant homotopy), are in
bijection with affine maps Zn

3 → Z3. This second step uses equivariant obstruction theory.3
We remark that, with some additional work, our method could be extended to prove

NP-hardness of PCSP(LOk, LO2k−2) (but as remarked above, this already follows from
known hardness results for approximate graph colouring).

2 Preliminaries

We use the notation [n] for the n-element set {1, . . . , n}, and identify tuples a ∈ An with
functions a : [n] → A, and we use the notation ai for the ith entry of a tuple. We denote by
1X the identity function on a set X.

2.1 Promise CSPs
We start by recalling some fundamental notions from the theory of promise constraint
satisfaction problems, following the presentation of [3] and [22].

3 By contrast, the topological argument in [23] required understanding maps from T n to the circle S1

that preserve natural Z2-symmetries on both spaces, again up to equivariant homotopy; such maps can
be classified by more elementary arguments using the fundamental group because S1 is 1-dimensional.
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A relational structure is a tuple A = (A; RA
1 , . . . , RA

k ), where A is a set, and RA
i ⊆ Aar(Ri)

is a relation of arity ar(Ri). The signature of A is the tuple (ar(R1), . . . , ar(Rk)). For two
relational structures A = (A; RA

1 , . . . , RA
k ) and B = (B; RB

1 , . . . , RB
k ) with the same signature,

a homomorphism from A to B, denoted h : A → B, is a function h : A → B that preserves
all relations, i.e., such that h(a) ∈ RB

i for each i ∈ {1, . . . , k} and a ∈ RA
i where h(a) denotes

the componentwise application of h on the elements of a. To express the existence of such a
homomorphism, we will also use the notation A → B. The set of all homomorphisms from
A to B is denoted by hom(A, B).

Our focus is on structures with a single ternary relation R, i.e., pairs (A; RA) with
RA ⊆ A3. Moreover, most structures in this paper have a symmetric relation, i.e., the
relation RA is invariant under permuting coordinates. Such structures can be also viewed as
3-uniform hypergraphs, keeping in mind that edges of the form (a, a, b) are allowed.

▶ Definition 2.1 (Promise CSP). Fix two relational structures such that A → B. The
promise CSP with template A, B, denoted by PCSP(A, B), is a computational problem that
has two versions:

In the search version of the problem, we are given a relational structure X with the same
signature as A and B, we are promised that X → A, and we are tasked with finding a
homomorphism h : X → B.
In the decision version of the problem, we are given a relational structure X, and we
must answer Yes if X → A, and No if X ̸→ B. (These cases are mutually exclusive since
A → B and homomorphisms compose.)

The decision version reduces to the search version; thus for proving the hardness of both
versions of problems, it is sufficient to prove the hardness of the decision version of the
problem, and in order to prove tractability of both versions, it is enough to provide an
efficient algorithm for the search version.

To complete this section, we define the relational structure LOk, k ∈ N, that appears
in our main result. The domain of LOk is {1, . . . , k}, and LOk has one ternary relation,
containing precisely those triples (a, b, c) which contain a unique maximum. In other words,
(a, b, c) ∈ RLOk if and only if a = b < c, a = c < b, b = c < a, or all three elements a, b, c are
distinct. For example, (1, 1, 2) or (1, 2, 3) are triples of the relation of LO3, but not (2, 2, 1).

2.2 Polymorphisms and a hardness condition
Our proof of Theorem 1.1 uses a hardness criterion (Theorem 2.6 below) obtained as part of
a general algebraic theory of PCSPs developed in [3], which we will briefly review.

▶ Definition 2.2. Given a structure A, we define its n-fold power to be the structure An

with the domain An and

RAn

i = {(a1, . . . , aar(Ri)) | (a1(i), . . . , aar(Ri)(i)) ∈ RA for all i ∈ [n]}

for each i.
An n-ary polymorphism from a structure A to a structure B is a homomorphism from

An to B. We denote the set of all polymorphisms from A to B by pol(A, B), and the set of
all n-ary polymorphisms by pol(n)(A, B).4

4 Untraditionally, we use lowercase notation for polymorphisms to highlight that we are not considering
any topology on them contrary to the homomorphism complexes introduced below.
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Concretely, in the special case of structures with a ternary relation, a polymorphism is
a mapping f : An → B such that, for all triples (u1, v1, w1), . . . , (un, vn, wn) ∈ RA, we have

(f(u1, . . . , un), f(v1, . . . , vn), f(w1, . . . , wn)) ∈ RB.

Polymorphisms are enough to describe the complexity of a PCSP up to certain log-space
reductions. Loosely speaking, the more complex the polymorphisms are, the easier the
problem is. We will use a hardness criterion that essentially states that the problem is hard if
the polymorphisms have no interesting structure. To define what do we mean by interesting
structure, we have to define the notions of minor, minion and minion homomorphism.

▶ Definition 2.3. Fix two sets A and B, and let f : An → B, π : [n] → [m] be functions.
The π-minor of f is the function g : Am → B defined by g(x) = f(x ◦ π), i.e., such that

g(x1, . . . , xm) = f(xπ(1), . . . , xπ(n))

for all x1, . . . , xm ∈ A. We denote the π-minor of f by fπ.

Abstracting from the fact that the polymorphism of any template are closed under taking
minors leads to the following notion of (abstract) minions:5

▶ Definition 2.4. An (abstract) minion M is a collection of sets M (n), where n > 0 is an
integer, and mappings πM : M (n) → M (m) where π : [n] → [m] such that πM ◦σM = (π◦σ)M

for each π and σ, and (1[n])M = 1M (n) .6

The polymorphisms of a template A, B form a minion M defined by M (n) = pol(n)(A, B),
and πM (f) = fπ. With a slight abuse of notation, we will use the symbol pol(A, B) for this
minion. Conversely, if M is an abstract minion, we will call πM (f) the π-minor of f , and
write fπ instead of πM (f).

An important example is the minion of projections denoted by P. Abstractly, it can be
defined by P(n) = [n] and πP = π. Equivalently, and perhaps more concretely, P can also
be described as follows: Given a finite set A with at least two elements and integers i ≤ n,
the i-th n-ary projection on A is the function pi : An → A defined by pi(x1, . . . , xn) = xi.
The set of coordinate projections is closed under minors as described above and forms a
minion isomorphic to P. In particular, P is also isomorphic to the polymorphism minion
pol(LO2, LO2).

▶ Definition 2.5. A minion homomorphism from a minion M to a minion N is a collection
of mappings ξn : M (n) → N (n) that preserve taking minors, i.e., such that for each π : [n] →
[m], ξm ◦ πM = πN ◦ ξn. We denote such a homomorphism simply by ξ : M → N , and
write ξ(f) instead of ξn(f) when the index is clear from the context.7

Using the minion P, we can now formulate the following hardness criterion (which follows
from [3, Theorem 3.1 and Example 2.17] and can also be derived from [3, Corollary 5.2]; see
also Section 5.1 of that paper for more details).

▶ Theorem 2.6 ([3, corollary of Theorem 3.1]). For every promise template A, B such that
there is a minion homomorphism ξ : pol(A, B) → P, PCSP(A, B) is NP-complete.

5 Abstract minions as defined here are a generalization of so-called function minions defined in [3]; the
relation between a function minion and an abstract minion is analogous to the distinction between a
permutation group and a group.

6 In the language of category theory, a minion is defined as a functor from the category of finite sets
to the category of sets, which satisfies a non-triviality condition: M (X) = ∅ if and only X = ∅. The
definition given abuses the fact that the sets [n] form a skeleton of the category of finite sets.

7 A minion homomorphism is a natural transformation between the two functors.
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2.3 Homomorphism complexes
We will need a number of notions from topological combinatorics, which we will review briefly
now. We refer the reader to [25] for a detailed and accessible introduction (see also [23], in
particular for further background on homomorphism complexes).

A (finite, abstract) simplicial complex K is finite system of sets that is downward closed
under inclusion, i.e., F ⊆ G ∈ K implies F ∈ K. The (finite) set V =

⋃
K is called the set of

vertices of K, and the sets in K are called simplices or faces of the simplicial complex. A
simplicial map f : K → L between simplicial complexes is a map between the vertex sets that
preserves simplices, i.e., f(F ) ∈ L for all F ∈ K.

An important way of constructing simplicial complexes is the following: Let P be
a partially ordered set (poset). A chain in P is a subset {p0, . . . , pk} ⊆ P such that
p0 < p2 < · · · < pk. The set of all chains in P is a simplicial complex, called the order
complex of P . Note that an order-preserving map between posets naturally induces a
simplicial map between the corresponding order complexes.

With every simplicial complex K, one can associate a topological space |K|, called the
underlying space or geometric realization of K, as follows: Identify the vertex set of K with a set
of points in general position in a sufficiently high-dimensional Euclidean space (here, general
position means that the points in F ∪ G are affinely independent for all F, G ∈ K). Then, in
particular, the convex hull conv(F ) is a geometric simplex for every F ∈ K, and the geometric
realization can be defined as the union |K| =

⋃
F ∈K conv(F ) of these geometric simplices (see,

e.g., [25, Lemma 1.6.2]). We also say that the simplicial complex K is a triangulation of the
space |K|. Every simplicial map f : K → L between abstract simplicial complexes induces
a continuous map |f | : |K| → |L| between their geometric realizations. In what follows, we
will often blur the distinction between a simplicial complex and its geometric realization
(especially when considering properties that do not depend on a particular triangulation).

Following [25, Section 5.9], we define homomorphism complexes as order complexes of
the poset of multihomomorphisms from one structure to another.8

▶ Definition 2.7. Suppose A, B are relational structures. A multihomomorphism from A
to B is a function f : A → 2B \ {∅} such that, for each relational symbol R and all tuples
(u1, . . . , uk) ∈ RA, we have that

f(u1) × · · · × f(uk) ⊆ RB.

We denote the set of all such multihomomorphisms by mhom(A, B).

Multihomomorphisms are partially ordered by component-wise comparison, i.e., f ≤ g if
f(u) ⊆ g(u) for all u ∈ A. They can also be composed in a natural way, i.e., if f ∈ hom(A, B)
and g ∈ mhom(B, C), then (g ◦ f)(a) =

⋃
b∈f(a) g(b) is a multihomomorphism from A to C.

▶ Definition 2.8. Let A and B be two structures of the same signature. The homomorphism
complex Hom(A, B) is the order complex of the poset of multihomomorphisms from A to B,
i.e., the vertices of this simplicial complex are multihomomorphisms from A to B, and faces
correspond to chains f1 < f2 < · · · < fk of such multihomomorphisms.

8 There are several alternative definitions of homomorphism complexes that lead to topologically equivalent
spaces; e.g., the definition given here is the barycentric subdivision of the version of the homomorphism
complex defined in [23, Definition 3.3].
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By the discussion above, every homomorphism f : A → B induces a simplicial map
f∗ : Hom(C, A) → Hom(C, B) between homomorphism complexes, and hence a continuous
map between the corresponding spaces (defined on vertices by mapping a multihomomorphism
m to the composition f ◦ m, and then extended linearly).

In the case of graphs, the homomorphism complex Hom(K2, G) is commonly used9 to
study graph colourings, including in [23]. In the present paper, we work instead with the
homomorphism complex Hom(R3, A) where R3 is the structure with 3 elements and all
rainbow tuples, i.e., tuples (a, b, c) such that a, b, and c are pairwise distinct; this structure is
a hypergraph analogue of the graph K2.

Note that a homomorphism h : R3 → A can be identified with a triple (h(1), h(2), h(3)) ∈
RA; conversely, every triple (a, b, c) ∈ RA also corresponds to a homomorphism as long
as RA is symmetric. Similarly, a multihomomorphism m can be identified with a triple
(m(1), m(2), m(3)) of subsets of A such that m(1) × m(2) × m(3) ⊆ RA.

2.4 Group actions

Throughout this paper, we will work with actions of the cyclic group Z3 on various objects
(relational structures, simplicial complexes, topological spaces, groups, etc.) by structure-
preserving maps (homomorphisms, simplicial maps, continuous maps, etc.). Thinking of
Z3 as the multiplicative group with three elements 1, ω, ω2 (with the understanding that
ωi · ωj = ωi+j (mod 3) and ω0 = 1), such an action is described by describing the action of
the generator ω. Thus, specifying the action of Z3 on a structure A amounts to specifying
a homomorphism ω : A → A such that ω3 = 1A (hence, ω is necessarily an isomorphism;
note that we are abusing notation here, writing ω both for the generator of the group and
the isomorphism by which it acts). Analogously, an action of Z3 on a simplicial complex
(or a topological space) is described by specifying a simplicial isomorphism (respectively, a
homeomorphism) ω of order 3 from the complex (or space) to itself. We will mostly work
with actions that are free, which in our special case of Z3-actions simply means that ω has
no fixed points.

In particular, consider the action of Z3 that acts on R3 by cyclically permuting elements.
This action induces an action on multihomomorphisms h : R3 → A by pre-composition, and
this action extends naturally to an action of Z3 on Hom(R3, A).10

It is not hard to show that the action on Hom(R3, A) is free as long as A has no constant
tuples: If a multihomomorphism m is a fixed point of a non-trivial element of Z3, then
m(1) = m(2) = m(3), and since m(1) ̸= ∅ and m(1) × m(2) × m(3) ⊆ RA then RA contains
a constant tuple (a, a, a) for any a ∈ m(1). Consequently, we may observe that the action
does not fix any face of the complex.

For every homomorphism f : A → B, the induced simplicial map f∗ : Hom(R3, A) →
Hom(R3, B) (defined on vertices by mapping multihomomorphism m to the composition
f ◦ m) is equivariant; as remarked above, we will often identify f∗ with the corresponding
continuous map between the underlying spaces.

9 Some papers use a different complex, the so-called box complex, that leads to a homotopically equivalent
(see below) space.

10 This is analogous to the action of Z2 on graph homomorphism complexes Hom(K2, G) used, for example,
in [23].
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2.5 Homotopy
Two continuous maps f, g : X → Y between topological spaces are called homotopic, denoted
f ∼ g, if there is a continuous map h : X × [0, 1] → Y such that h(x, 0) = f(x) and
h(x, 1) = g(x); the map h is called a homotopy from f to g. Note that a homotopy can also
be through of as a family of maps h(·, t) : X → Y that varies continuously with t ∈ [0, 1]. In
what follows, X and Y will often be given as simplicial complexes, but we emphasize that
we will generally not assume that the maps (or homotopies) between them are simplicial
maps. Two spaces X and Y are said to be homotopy equivalent if there are continuous maps
f : X → Y and g : Y → X such that fg ∼ 1Y and gf ∼ 1X .

These notions naturally generalize to the setting of spaces with group actions. If Z3 acts
on two spaces X and Y then a continuous map f : X → Y is (Z3-)equivariant if f preserves
the action, i.e., f ◦ ω = ω ◦ f . Two equivariant maps f, g : X → Y are said to be equivariantly
homotopic, denoted by f ∼Z3 g, if there exists an equivariant homotopy between them, i.e., a
homotopy h : X × [0, 1] → Y from f to g such that all maps h(·, t) : X → Y are equivariant.
We denote by [X, Y ]Z3 the set of all equivariant homotopy classes of (equivariant) maps from
X to Y , i.e.,

[X, Y ]Z3 = {[f ] | f : X → Y is equivariant}

where [f ] denotes the set of all equivariant maps g such that f ∼Z3 g.

3 Overview of the proof

We give a brief overview of the proof and the core techniques used. The result is proved
by a combination of topological, combinatorial, and algebraic methods. In particular, the
hardness is provided by analysing the polymorphisms of the template together with a hardness
criterion from [3], see Theorem 2.6. In short, our goal is to provide a minion homomorphism
from the polymorphism minion pol(LO3, LO4) to the minion of projections P (which is
incidentally isomorphic to the polymorphism minion of 3SAT). The core of our contribution
is in providing deep-enough understanding of polymorphisms of our template so that the
minion homomorphism follows. The proof has two parts: topological and combinatorial.

3.1 Topology
The first part builds on the topological method introduced by Krokhin, Opršal, Wrochna,
and Živný [21, 29, 23]. The core idea is that, similarly to approximate graph colouring, there
are unreasonably many polymorphisms between the linear-ordering hypergraphs, but most
of them are very similar. This means that each polymorphism contains a lot of noise but
relatively little information. We use topology to remove this noise, and uncover a signal.
This is done by considering the polymorphisms “up to homotopy” – essentially claiming that
the homotopy class of a polymorphism carries the information and everything else is noise.

In order to formalise this idea, we consider for each hypergraph A the topological space
Hom(R3, A). Consequently, we get that each the homomorphism f : A → B induces a
continuous map f∗ : Hom(R3, A) → Hom(R3, B). Consequently, we identify two homo-
morphisms f, g if f∗ and g∗ are homotopic to each other. The same is then extended to
polymorphisms, although this requires to overcome a few subtle technical issues. The key
observation for this extension is that the power of a homomorphism complex is homotopically
equivalent to a homomorphism complex of the corresponding power (see, e.g., [20]).
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This general idea requires a refinement to avoid trivial collapses, i.e., we have to avoid
the case when f∗ is homotopic to a constant map which is always a continuous map between
topological spaces. In our case, this is avoided by keeping track of the action of Z3 on
the spaces Hom(R3, A) and Hom(R3, B) described in the preliminaries. Consequently, we
consider maps only up to Z3-equivariant homotopy (note that the map f∗ induced by a
homomorphism is always equivariant). Further in this exposition, we will silently assume
that the action is always present, and all notions are equivariant – the formal proof below is
presented with the action in mind.

At this point we sketched how to construct a map that assigns to a polymorphism
f : An → B, an equivariant continuous map f∗ : Hom(R3, An) → Hom(R3, B). This map
does not necessarily preserve minors, nevertheless, it preserves minors up to homotopy, i.e.,
for each π : [n] → [m], we have that (fπ)∗ and (f∗)π are equivariantly homotopic (this is since
Hom(R3, A)n and Hom(R3, An) are only homotopically equivalent and not homeomorphic).
This allows us to define a minion homomorphism between the polymorphism minion pol(A, B)
and the minion of “homotopy classes of continuous maps” from powers of Hom(R3, A) to
Hom(R3, B).

▶ Definition 3.1. Let X and Y be two topological spaces with an action of G. The minion
of homotopy classes of equivariant polymorphisms from X to Y is the minion hpol(X, Y )
defined by

hpol(n)(X, Y ) = [Xn, Y ]G

and [f ]π = [fπ].

Note that minors are well-defined in this minion since if f and g are equivariantly
homotopic, then so are fπ and gπ for all maps π. Hence, we have a minion homomorphism

ζ : pol(A, B) → hpol(Hom(R3, A), Hom(R3, B)).

This part of the proof follows [23], namely this minion homomorphism can be constructed by
following the proof of [23, Lemma 3.22] while substituting R3 for K2, and Z3 for Z2. We
give a general categorical proof in the full version of this paper [14, Appendix C].

In order to describe the minion hpol(Hom(R3, A), Hom(R3, B)), we need to classify all
homotopy classes of maps between the corresponding topological spaces. The problem of
classifying maps between two spaces up to homotopy is well-studied in algebraic topology,
although it can be immensely difficult, e.g., maps between spheres of dimensions m and n

(i.e., [Sn, Sm]) has been classified for many pairs m, n, but the classification for infinitely
many remaining cases is still open, and it is considered to be a central open problem in
algebraic topology. We take advantage of the topological methods developed to solve these
problems. Moreover, we may simplify the matters considerably by replacing the spaces
Hom(R3, LO3) and Hom(R3, LO4) with spaces that allow equivariant maps to and from,
resp., these spaces, and are better behaved from the topological perspective. This is due to
the fact that if there are equivariant maps X ′ → X and Y → Y ′, then there is a minion
homomorphism

η : hpol(X, Y ) → hpol(X ′, Y ′).

This minion homomorphism is defined in the same way as a minion homomorphism from
pol(A, B) to pol(A′, B′) if A′, B′ is a homomorphic relaxation of A, B, i.e., if A′ → A and
B → B′ [3, Lemma 4.8(1)]. To substantiate our choice of X ′ and Y ′, let us start with
describing some topological properties of the spaces Hom(R3, LO3) and Hom(R3, LO4).
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(b) S1 in Hom(R3, LO3).
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(c) Hom(R3, LO4).

Figure 1 Some representations of spaces Hom(R3, LO3) and Hom(R3, LO4) up to Z3 homotopy
equivalence.

It may be observed that the space Hom(R3, LO3) is homotopically equivalent to the
simplicial complex depicted in Fig. 1a where the Z3 acts on each row cyclically. We choose
X ′ so that X ′ → Hom(R3, LO3), and its powers are topologically simple but non-trivial.
A natural choice is S1 which can be obtained from the simplicial complex by removing all
horizontal edges. The action of Z3 on the circle can be then equivalently described as a
rotation by 2π/3. Consequently, the powers of this space are n-dimensional tori T n with
component-wise (diagonal) action of Z3; by definition T n is the n-th power of S1.

The space Hom(R3, LO4) is a bit more complicated, in particular it is not homotop-
ically equivalent to a 1-dimensional space. Up to equivalence, it is the order complex of
the partial order depicted in Fig. 1c where Z3 acts on rows cyclically.11 It may be ob-
served that Hom(R3, LO4) is simply connected, i.e., that π1(Hom(R3, LO4)) = 0, and that
π2(Hom(R3, LO4)) is a non-trivial group. Moreover, the action of Z3 on Hom(R3, LO4)
induces a non-trivial action of Z3 on π2(Hom(R3, LO4)). The precise group and action is
described in the full version of this article [14, Appendix A], nevertheless it is irrelevant
for us at this point. The space that we use to replace Hom(R3, LO4), and denote by P 2,
shares these two properties with Hom(R3, LO4), and moreover πn(P 2) = 0 for all n > 2.
Spaces which have only one non-trivial homotopy group (and are sufficiently “nice”) are
called Eilenberg-MacLane spaces, and denoted by K(G, n) where πn(K(G, n)) = G is the
only non-trivial homotopy group. These spaces are well-defined up to homotopy equivalence.
They are also closely connected with cohomology: One of the core statements of obstruction
theory provides a bijection [X, K(G, n)] ≃ Hn(X; G) for each Abelian group G and n ≥ 1.
Consequently, it is much easier to classify maps into an Eilenberg-MacLane space up to
homotopy. The space P 2 is in fact an Eilenberg-MacLane space K(G, 2) where G is a suitable
group with a free action of Z3, it is chosen in such a way that it allows an equivariant
homomorphism Hom(R3, LO4) → P 2 while allowing for much easier classification of maps
into it.

Next, we prove that the minion hpol(S1, P 2) is isomorphic to the minion Z3 of affine maps
modulo 3, i.e., maps Zn

3 → Z3 of the form (x1, . . . , xn) 7→
∑n

i=1 αixi where α1, . . . , αn ∈ Z3
are fixed constants such that

∑n
i=1 αi = 1 (mod 3). We construct this minion homomorphism

by classifying equivariant continuous maps from T n with the diagonal action of Z3 to P 2.
Since we are interested in equivariant maps and equivariant homotopy, we use a version of
equivariant cohomology, called Bredon cohomology, introduced in [7]. For our purpose, this
equivariant cohomology is defined analogously to regular cohomology except the coefficients

11 In the proof we will not need such a precise description of the space, and we will only provide an
equivariant map Hom(R3, LO4) → L4 where L4 is the space represented by the poset in Fig. 1c.
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have a Z3-action, and this action together with the action of Z3 on the space is taken into
account in all computations. The space P 2 has the property that for every Z3-space X

such that there is an equivariant map X → P 2, there is a bijection [X, P 2]Z3 ≃ H2
Z3

(X; G)
where G is the group with a Z3 action described above. Again, this is a consequence of the
equivariant obstruction theory. We then compute that

H2
Z3

(T n; G) ≃ Zn−1
3 ,

and hence observe that there are 3n−1 elements in hpol(n)(S1, P 2). This means that
hpol(S1, P 2) and Z3 have the same number of elements of each arity. To obtain the
required minion isomorphism, we provide a minion homomorphism

Z3 → [S1, P 2]Z3 ,

and show that it is injective. More precisely, this homomorphism is given by assigning to
each affine map f : Zn

3 → Z3 (or a tuple of its coefficients), a continuous map µ(f) : T n → P 2,
and showing that if f ≠ g then µ(f) and µ(g) are not equivariantly homotopic, and that
µ(fπ) and µ(f)π are equivariantly homotopic for all π. Since both minions have the same
number of elements of each arity (and this number is finite), µ is bijective, and hence a
minion isomorphism. All these computations are presented in detail in the full version of
this paper [14, Appendix B].

The above isomorphism together with the composition of ζ, η, and ξ provides the following
lemma.

▶ Lemma 3.2. There is a minion homomorphism χ : pol(LO3, LO4) → Z3 where Z3
denotes the minion of affine maps over Z3.

This minion homomorphism is not enough to prove NP-hardness. Although we could
conclude from it, for example, that PCSP(LO3, LO4) is not solved by any level of Sherali-
Adams hierarchy (this is a direct consequence of [11, Theorems 3.3 and 5.2]). To provide
hardness, we need to further analyse the image of χ which is done using combinatorial
arguments.

3.2 Combinatorics
In the second part, which is a combinatorial argument presented in Section 4, we show that
the image of χ avoids all the affine maps except of projections. This is done by analysing
binary polymorphisms from LO3 to LO4.

We use the notion of reconfiguration of homomorphisms to achieve this. Loosely speaking,
a homomorphism f is reconfigurable to a homomorphism g if there is a path of homomorphism
starting with f and ending with g such that neighbouring homomorphisms differ in at most
one value. (For graphs and hypergraphs without tuples with repeated entries this can be taken
as a definition, but with repeated entries there are two sensible notions of reconfigurations
that do not necessary align.) The connection between reconfigurability and topology was
described by Wrochna [28], and we use these ideas to connect reconfigurability with our
minion homomorphism ξ.

We show that any binary polymorphism f : LO2
3 → LO4 is reconfigurable to an essentially

unary polymorphism, i.e., that there is an increasing function h : LO3 → LO4 such that f

is reconfigurable to the map (x, y) 7→ h(x) or to the map (x, y) 7→ h(y). Further, we show
that if f and g are reconfigurable to each other, then χ(f) = χ(g). Together with the above,
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this means the image of χ2 : hpol(2)(S1, P 2) → Z
(2)

3 omits an element. More precisely, we
have the following lemma where P3 denotes the minion of projections on a three element set
(which is a subminion of Z3).

▶ Lemma 3.3. For each binary polymorphism f ∈ pol(2)(LO3, LO4), χ(f) ∈ P
(2)
3 .

This lemma is then enough to show that the image of χ omits all affine maps except
projections.

▶ Corollary 3.4. χ is a minion homomorphism pol(LO3, LO4) → P3.

Proof. We show that if a subminion M ⊆ Z3 contains any non-projection then it contains
the map g : (x, y) 7→ 2x + 2y. Let f ∈ M (n) depends on at least 2 coordinates, and let
f(x1, . . . , xn) = α1x1 + · · · + αnxn. First assume that αi = 2 for some i. Then the binary
minor given by π : [n] → [2] defined by π(i) = 1 and π(j) = 2 if j ̸= i is g since its first
coordinate is 2 and the second is 1 − 2 = 2 (mod 3). Otherwise, we have that αi ∈ {0, 1}
for all i. In particular, there are i ̸= j such that αi = αk = 1 since f depends on at least 2
coordinates. Consequently, the minor defined by π′ : [n] → [2] where π′(i) = π′(j) = 1 and
π′(k) = 2 for k /∈ {i, j} is again g by a similar argument.

Finally, the image of ξ is a subminion of Z3, and since it omits g and every subminion of
Z3 contains P3, it is equal to P3 which yields the desired. ◀

As mentioned before, the above corollary combined with Theorem 2.6 provides the main
result of this paper, the NP-completeness of PCSP(LO3, LO4) (Theorem 1.1).

4 Combinatorics of reconfigurations

The goal of this section is a careful combinatorial analysis of the binary polymorphisms. In
particular, we will describe how the minion homomorphism ξ : pol(LO3, LO4) → P acts on
binary polymorphisms. This is the key to the argument that the image of ξ is the projection
minion and the whole of pol(Z3).

We say that two polymorphisms f, g ∈ pol(n)(LO3, LO4) are reconfigurable one to the
other if a path between f and g exists within the homomorphism complex Hom(LOn

3 , LO4).
(Note that every polymorphism is a homomorphism LOn

3 → LO4, and hence a vertex of the
homomorphism complex.)

We will use the following combinatorial criterion that ensures that two polymorphisms
are reconfigurable to each other. The proof is subtly dependent on some properties of the
structure LO4.

▶ Lemma 4.1. Let A be a symmetric relational structure. If f, g : A → LO4 are two
homomorphisms such that f and g differ in exactly one value, i.e., there is d ∈ A such that
for all a ∈ A \ {d} we have f(a) = g(a), then f and g are reconfigurable.

Proof. We first claim that under the above assumption, the multifunction m : A → 2[4] given
by m(a) = {f(a), g(a)} is a multihomomorphism. Assume that (a, b, c) ∈ RA. Observe that
for any x ∈ A \ {d} we have f(x) = g(x) and hence m(x) = {f(x)} = {g(x)}. We now have
cases depending on how many times d appears in {a, b, c}.
d does not appear. In this case m(a) × m(b) × m(c) = {(f(a), f(b), f(c))} ⊆ RLO4 .
d appears once. Suppose d = a, d ≠ b, d ̸= c; then m(a) × m(b) × m(c) = {f(a), g(a)} ×

{f(b)} × {f(c)} = {(f(a), f(b), f(c)), (g(a), g(b), g(c))} ⊆ RLO4 , as f(b) = g(b), f(c) =
g(c).
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d appears twice. Suppose d = a = b, d ̸= c; then as (f(a), f(b), f(c)) = (f(d), f(d), f(c)) ∈
RLO4 and likewise (g(d), g(d), g(c)) ∈ RLO4 , we have f(d) < f(c) and g(d) < g(c) = f(c).
Consequently, m(a) × m(b) × m(c) = {f(d), g(d)}2 × {f(c)} ⊆ RLO4 , since every tuple
has a unique maximum, namely f(c).

d appears thrice. This case (i.e., d = a = b = c) is impossible, as A → LO4, and thus A
has no constant tuples.

Thus m is a multihomomorphism in all cases.
We can now define a path p : [0, 1] → Hom(LO3, LO4) by p(0) = f , p(1/2) = m, p(1) = g,

and extending linearly. ◀

We note, without a proof, if f and g are reconfigurable, then there is a sequence
f = f0, . . . , fk = g such that fi and fi+1 differ in exactly one point. A polymorphism
f ∈ pol(2)(LO3, LO4) has, as its domain, the set [3]2, and thus it can naturally be represented
as a matrix:

f(1, 1) f(1, 2) f(1, 3)
f(2, 1) f(2, 2) f(2, 3)
f(3, 1) f(3, 2) f(3, 3)

.

When we speak of “rows” or “columns” of f this is what is meant.
We show the following lemma from which we will be able to derive that each binary

polymorphism is reconfigurable to an essentially unary one. (Recall that a function f : An →
B is essentially unary if it depends on at most one input coordinate.) The lemma is an
analogue of the Trash Colour Lemma for polymorphisms from Kd to K2d−2.

▶ Lemma 4.2. For each f ∈ pol(2)(LO3, LO4) there exists an increasing function h ∈
pol(1)(LO3, LO4), a coordinate i ∈ {1, 2}, and a colour t ∈ [4] (called trash colour) such that

f(x1, x2) ∈ {h(xi), t}

for all x1, x2 ∈ [3].

Proof. Throughout we will implicitly use the fact that if a < b and c < d then f(a, c) < f(b, d),
as ((a, c), (a, c), (b, d)) ∈ RLO2

3 .
First, we claim that every colour c ∈ [4] appears inside only one row or only one column of

f , i.e., that either there is a ∈ [3] such that f(x, y) = c implies x = a, or there is b ∈ [3] such
that f(x, y) = c implies y = b. For contradiction, assume that this is not the case, i.e., there
are x, y and x′, y′ ∈ [3] such that f(x, y) = f(x′, y′) = c, x ≠ x′, and y ̸= y′. The claim is
proved by case analysis as follows. First, observe that either x < x′ and y > y′, or x > x′

and y < y′, since otherwise (x, y) and (x′, y′) are comparable, and hence f(x, y) ̸= f(x′, y′).
Since the two cases are symmetric, we may assume without loss of generality that x < x′

and y > y′. Furthermore, since ((x, y), (x′, y′), (x, y′)) ∈ RLO2
3 , and f(x, y) = f(x′, y′) = c,

we have f(x, y′) > c. Similarly, as x′ > x, y > y′ we have that f(x′, y) > f(x, y′) > c. This
means that c ∈ {1, 2}. We consider each case separately.

Case c = 1. We claim that x = y′ = 1 since if x > 1, then f(1, y′) < f(x, y) =
1, and similarly if y′ > 1. This implies that f(1, 1) > 1 since ((1, 1), (x, x′), (y, y′)) =
((1, 1), (1, y), (x′, 1)) ∈ RLO2

3 and f(x, y) = f(x′, y′) = 1. As 1 < f(1, 1) < f(2, 2) < f(3, 3) ≤
4, we have that f(1, 1) = 2, f(2, 2) = 3, and f(3, 3) = 4. We now have three cases.
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y = 3. We argue that f(1, 2) has no possible value. First, the value 1 is not possible
since ((1, 2), (x, y), (x′, y′)) = ((1, 2), (1, 3), (x′, 1)) ∈ RLO2

3 , f(x, y) = 1, and f(x′, y′) = 1.
f(1, 2) = 2 is not possible since ((1, 2), (1, 1), (x′, y′)) = ((1, 1), (1, 2), (x′, 1)) ∈ RLO2

3 ,
and f(x′, y′) = 1, f(1, 1) = 2. f(1, 2) = 3 is not possible since ((1, 2), (2, 2), (x, y)) =
((1, 2), (2, 2), (1, 3)) ∈ RLO2

3 , and f(x, y) = 1, f(2, 2) = 3. Finally, f(1, 2) < f(3, 3) = 4,
so f(1, 2) ̸= 4.

x′ = 3. Here the contradiction follows analogously to the previous case.
x′ = y = 2. We consider the pair of values f(1, 3) and f(3, 1). First, we have f(1, 3) >

f(1, 2) = f(x, y) = 1 and f(3, 1) > f(2, 1) = f(x′, y′) = 1. As ((1, 3), (1, 1), (x′, y′)) =
((1, 3), (1, 1), (2, 1)) ∈ RLO2

3 and f(1, 1) = 2, f(x′, y′) = 2 we have that f(1, 3) ̸= 2;
symmetrically f(3, 1) ̸= 2. We also have f(1, 3) ̸= 3 since ((1, 3), (x, y), (2, 2)) =
((1, 3), (1, 2), (2, 2)) ∈ RLO2

3 and f(1, 2) = 1, f(2, 2) = 3; symmetrically f(3, 1) ̸= 2.
Thus f(1, 3) = f(3, 1) = 4. However, then (f(1, 2), f(1, 3), f(3, 1)) = (1, 4, 4) ̸∈ RLO4 ,
which is not possible, as ((1, 2), (1, 3), (3, 1)) ∈ RLO2

3 , which yields our contradiction.

Case c = 2. As f(x′, y) > f(x, y′) > c = 2, we have that f(x, y′) = 3 and f(x′, y) = 4.
Since f(x, y′) = 3 then either x > 1 or y′ > 1, otherwise f(3, 3) > f(2, 2) > f(1, 1) = 3 yields
a contradiction. By symmetry it is enough to discuss the case y′ = 2 and y = 3. Finally, we
have f(x, 1) < f(x′, 2) = 2, hence f(x, 1) = 1 which is in contradiction with

(1, 2, 2) = (f(x, 1), f(x′, 2), f(x, 3)) ∈ RLO4 .

Thus we get a contradiction in all cases, and hence each colour appears in only one row or
only one column.

We say that a colour c ∈ [4] is of column type if f(x, y) = c implies x = ac for some fixed
ac ∈ [3], and is of row type if f(x, y) = c implies y = bc for some bc ∈ [3]. Note that a colour
can be both row and column type, in which case we may choose either. We claim that there
are at least three colours that share a type – otherwise there are two colours of row type
and two colours of column type which would leave an element of LO2

3 uncoloured. A similar
observation also yields that there has to be three colours of the same type that cover all rows
or all columns, i.e., such that the constants ac or bc (depending on the type) are pairwise
distinct. Let us assume they are of the column type; the other case is symmetric. Further,
we may assume that the forth colour is of the row type, since if two colours share a column,
then one of the colours appears only once, and can be therefore considered to be of row type.

We define h(a) to be the colour c of column type with ac = a, then we have f(x, y) ∈
{h(x), t} where t is the colour of the row type. Finally, we argue that h is increasing. This is
since there are y < y′ with y ̸= bt and y′ ̸= bt, and consequently

h(1) = f(1, y) < f(2, y′) = h(2) = f(2, y) < f(3, y′) = h(3).

This concludes the proof of the lemma. ◀

▶ Lemma 4.3. Every binary polymorphism f ∈ pol(2)(LO3, LO4) is reconfigurable to an
essentially unary polymorphism.

Proof. The proof relies on Lemma 4.2. We prove our result by induction on the number of
appearances of the trash colour. The result is clear if the trash colour never appears; so assume
it appears at least once. Thus suppose without loss of generality that f(x, y) ∈ {h(x), t} for
some increasing h ∈ pol(1)(LO3, LO4), and that in particular f(x0, y0) = t. Furthermore,
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suppose that among all such pairs, (x0, y0) is the one that maximises x0. We claim that
f ′(x, y), which is equal to f(x, y) everywhere except that f ′(x0, y0) = h(x0) is also a
polymorphism, which gives us our inductive step.

Consider any ((x, y), (x′, y′), (x′′, y′′)) ∈ RLO2
3 ; if (x0, y0) ̸∈ {(x, y), (x′, y′), (x′′, y′′)}, then

(f ′(x, y), f ′(x′, y′), f ′(x′′, y′′)) = (f(x, y), f(x′, y′), f(x′′, y′′)) ∈ RLO4 , so assume without loss
of generality that (x′′, y′′) = (x0, y0). We now have two cases, depending on where the unique
maximum of (f(x, y), f(x′, y′), f(x0, y0)) ∈ RLO4 falls.

f(x, y) is the unique maximum. In this case, f(x, y) > f(x0, y0) = t and f(x, y) >

f(x′, y′). We must show that f ′(x0, y0) = h(x0) ̸= f(x, y). Since we know that f(x, y) ̸= t

and thus f(x, y) = h(x), and furthermore that h is increasing, this is the same as showing
that x ̸= x0. Suppose for contradiction that x = x0; thus x′ > x. If f(x′, y) = h(x′) >

h(x), then f(x, y) would not be the unique maximum, so f(x′, y) = t. This contradicts
the choice of (x0, y0), as x′ > x0.

f(x′, y′) is the unique maximum. This case is identical to the previous case.
f(x0, y0) is the unique maximum. It follows that f(x, y) < t and f(x′, y′) < t, hence
f(x, y) = h(x) and f(x′, y′) = h(x′). Thus since (x, x′, x0) ∈ RLO3 and h is increasing, it
follows that (f ′(x, y), f ′(x′, y′), f ′(x0, y0)) = (h(x), h(x′), h(x0)) ∈ RLO4 .

Thus we see that this f ′ is indeed a polymorphism, and contains one fewer trash colour.
Thus our conclusion follows. ◀

In Figure 2, we can see the reconfiguration graph of pol(2)(LO3, LO4). This shows how
one can reconfigure all polymorphisms to essentially unary ones. In the diagram, we show a
polymorphism in its matrix representation.

It can be also observed that unary polymorphisms that depend on the same coordinate are
reconfigurable to each other. Moreover, since every connected component of Hom(LO2

3, LO4)
contains a homomorphism, and hence a unary one, we can derive from these observation that
Hom(LO2

3, LO4) has at most two connected components. In the full version [14, Appendix B],
we also prove that it has at least two components using topological methods.

Finally, we conclude with the statement that we actually use in the proof, which follows
from well-known properties of homomorphism complexes.

▶ Lemma 4.4. Let A, B, and C be three structures, G a group acting on A, and assume
that f, g ∈ hom(B, C) are reconfigurable. Then the induced maps f∗, g∗ : Hom(A, B) →
Hom(A, C) are G-homotopic.

Proof. First, observe that the composition of multihomomorphisms as a map mhom(A, B) →
mhom(B, C) → mhom(A, C) is monotone. This means that the composition extends linearly
to a continuous map

c : Hom(B, C) × Hom(A, B) → Hom(A, C)

(see also [20, Section 18.4.3]). Since the composition is associative, we obtain that the map c

is equivariant (under an action of any automorphism of A on the second coordinate).
Finally, we have that f∗(x) = c(f, x) by the definition of f∗, and analogously, g∗(x) =

c(g, x). Consequently, if h : [0, 1] → Hom(B, C) is an arc connecting f and g, i.e., such that
h(0) = f and h(1) = g, then the map H : [0, 1] × Hom(A, B) → Hom(A, C) defined by

H(t, x) = c(h(t), x)

is a homotopy between f∗ and g∗. This H is also equivariant since c is equivariant. ◀
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The following corollary then follows directly from the above and Lemma 4.3.

▶ Corollary 4.5. For every binary polymorphism f ∈ pol(2)(LO3, LO4), the induced map
f∗ : Hom(R3, LO3)2 → Hom(R3, LO4) is equivariantly homotopic either to the map (x, y) 7→
i∗(x), or to the map (x, y) 7→ i∗(y) where i : LO3 → LO4 is the inclusion.
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A Graph of reconfigurations of binary polymorphisms
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Figure 2 Graph of reconfigurations of pol(2)(LO3, LO4).
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Abstract
A k-attractor is a combinatorial object unifying dictionary-based compression. It allows to compare
the repetitiveness measures of different dictionary compressors such as Lempel-Ziv 77, the Burrows-
Wheeler transform, straight line programs and macro schemes. For a string T ∈ Σn, the k-attractor
is defined as a set of positions Γ ⊆ [1, n], such that every distinct substring of length at most k is
covered by at least one of the selected positions. Thus, if a substring occurs multiple times in T , one
position suffices to cover it. A 1-attractor is easily computed in linear time, while Kempa and Prezza
[STOC 2018] have shown that for k ≥ 3, it is NP-complete to compute the smallest k-attractor by a
reduction from k-set cover.

The main result of this paper answers the open question for the complexity of the 2-attractor
problem, showing that the problem remains NP-complete. Kempa and Prezza’s proof for k ≥ 3 also
reduces the 2-attractor problem to the 2-set cover problem, which is equivalent to edge cover, but
that does not fully capture the complexity of the 2-attractor problem. For this reason, we extend
edge cover by a color function on the edges, yielding the colorful edge cover problem. Any edge
cover must then satisfy the additional constraint that each color is represented. This extension
raises the complexity such that colorful edge cover becomes NP-complete while also more precisely
modeling the 2-attractor problem. We obtain a reduction showing k-attractor to be NP-complete
and APX-hard for any k ≥ 2.
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1 Introduction

Compressing text without losing information is usually achieved by exploiting structural
properties of the text. For example, dictionary-based compression works by removing
redundancy resulting from repeatedly occurring substrings. Thus, any measurement capturing
the repetitiveness of strings is directly related to the performance of dictionary compression
techniques.

In fact, Kempa and Prezza show in [16] that the solutions of famous compression
algorithms, like Lempel-Ziv 77, the Burrows-Wheeler transform or straight-line programs,
are approximations of a certain measurement for repetitiveness, the so called string attractor,
which was introduced in [23]. These results are extended by Kempa and Saha [17] to include
the LZ-End compression algorithm proposed by Kreft and Navarro [19], and Kempa and
Kociumaka [14] apply string attractors to resolve the Burrows-Wheeler transform conjecture.

Further, Kempa and Prezza [16] build a universal data structure based on string attractors
supporting random-access on any dictionary compression scheme. In [22], Navarro and Prezza
improve data access when a string attractor is known, showing that the compression-based
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string attractors suffice to support fast indexed queries, that is, searching for all occurrences
of a given pattern in a text. Thus, string attractors are not only the basis of dictionary
compression, they also allow for a universal indexing data structure that works on top of every
dictionary compression scheme. Christiansen et al. continue this work in [8] by constructing
an efficient indexing algorithm that is based on the underlying string attractor, but does
not need to explicitly compute it, achieving optimal time results for locating and counting
indices.

For a string of length n, an attractor is a set of positions Γ ⊆ [1, n] covering all distinct
substrings, that is, every distinct substring has an occurrence crossing at least one of the
selected positions. If only distinct substrings up to a certain length k need to be covered, we
speak of the k-attractor. As an example, for the string

T = abbcabccac,

position 2 covers the substrings b, ab and bb, and the set of markings Γ = {2, 7, 9} forms a
2-attractor for T . It is not a valid 3-attractor and therefore not an attractor because the
substrings bca and cab are not covered. Adding either 4 or 5 to Γ results in an attractor,
and there is no smaller attractor for T .

In [16] Kempa and Prezza also show that computing the smallest k-attractor is NP-
complete for any k ≥ 3, by giving a reduction from k-set cover, and extend this proof to
non-constant k, especially for k = n. On the other hand, the problem is trivially solvable in
polynomial time for k = 1 by a greedy algorithm. The complexity for k = 2 was raised as an
open problem.

Variants of the problem have been introduced, such as the sharp k-attractor in [15], which
only considers distinct substrings of length exactly k, and the circular attractor in [20], which
also requires to cover circular substrings. Interestingly, the sharp k-attractor problem can
also be reduced from and to k-set cover and is therefore NP-complete for k ≥ 3. However,
the sharp 2-attractor problem reduces to 2-set cover, which is equivalent to edge cover and
therefore solvable in polynomial time. Notably, the sharp variant does not exhibit the same
gap as the k-attractor problem.

Mantaci et. al [20] take a combinatorial approach and study the attractor sizes of infinite
families of words, such as Sturmian words, Thue-Morse words and de Bruijn words. This
lead to Schaeffer and Shallit [25] raising the definition of the string attractor problem to
infinite words by considering automatic sequences and computing attractors of every finite
prefix. Further work on attractors of infinite words, especially those generated by morphisms,
has been done by Restivo, Romana, and Sciortino [24], Gheeraert, Romana, Stipulanti [12],
and Dvořáková [11].

Akagi, Funakoshi, Inenaga [1] analyze the sensitivity of an attractor, i.e., how much can
editing a single position change the result. Bannai et. al [3] formulate the attractor and
other dictionary compressors as instances of the maximum satisfiability problem and present
computational studies showing that an attractor can be computed in reasonable time with
this approach.

A more recent development in the field of data compression is the relative substring
complexity measure δ [18], which counts the number of different substrings of length l and
scales it by l. It is efficient to compute and also smaller than the size of the optimal string
attractor by up to a logarithmic factor, but allows to use the results on string attractors
with that overhead.
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Our result is obtained by a technique in which we make a problem colorful by adding
colors to its edges (or vertices) and requiring all colors to appear in a solution. This idea or
similar versions of it are spread out throughout the literature and thus also known by other
names such as labeled, rainbow, tropical, or color-spanning. It is mostly used in relation to
paths in the graph [4, 10, 2] and matching problems [21, 7, 9, 5].

Our Contributions

The main result of this paper answers the open question for the complexity of the 2-attractor
problem, showing that the problem remains NP-complete and thus closing the last remaining
gap in the complexity analysis of the k-attractor problem.

We introduce a more general version of the k-attractor, where the input is a set of strings
and each distinct substring only needs to be covered by an attractor position in at least one
of the input strings. We call this a k-set attractor and show that it can be simulated by a
single k-attractor, showing the equivalence of the two problems. The ability to construct
multiple strings as input makes the proof of the main result more convenient.

Kempa and Prezza [16] give reductions for k-attractor from k-set cover and to k(k + 1)/2-
set cover, placing 2-attractor between 2-set cover and 3-set cover. A k-set cover reduction is
also used in [15] to show that sharp 2-attractor is solvable in polynomial time. Essentially,
both the k-attractor and the less restrictive sharp k-attractor problem are reduced from k-set
cover, indicating that some of the complexity of the k-attractor is lost in the process. For
this reason, we further investigate the relation between 2-attractor and 2-set cover problem,
which is equivalent to the edge cover problem.

Thus, we extend the edge cover problem with a color function on the edges, yielding the
colorful edge cover problem. Any edge cover must then satisfy the additional constraint
that each color is represented. The complexity of edge cover combined with the additional
complexity from the colorfulness condition raises the complexity of colorful edge cover to
NP-complete, although the problems each on their own are solvable in polynomial time. The
hardness is shown by a reduction from a variable-bounded SAT variant. The colors are used
to model a truth assignment of the variables and the edge cover condition verifies that this
assignment is satisfying. The colorful edge cover problem captures the constraints of the
2-attractor problem more tightly. We later use this result to extend the structure of the
reduction to the k-attractor problem. With the reduction we not only show the NP-hardness
of the 2-attractor problem, we also obtain an APX-hardness result.

Our paper is organized as follows, we introduce in Section 2 the set of strings attractor
problem and discuss its relation to the already introduced variations, showing that it is as
hard as the classical k-string attractor problem. In Section 3 we define the colorful edge
cover problem and show that it is NP-complete. The main result, the NP-completeness of
the 2-attractor problem, is presented in Section 4. Afterwards, in Section 5, we discuss the
implicit APX-hardness that results from our reduction.

2 Attractors of Strings, Circular Strings, and Sets of Strings

We start with the definition of the k-attractor and explain already introduced variations
before we define the k-set attractor. Afterwards, we discuss how to solve the corresponding
problems in polynomial time, if there exists an algorithm that solves one of the problems in
polynomial time. Thus, we show that the problems are equivalent in their complexity.

STACS 2024
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▶ Definition 1 (k-attractor [16]). A set Γ ⊆ [1, n] is a k-attractor of a string T ∈ Σn if every
substring T [i . . . j] such that i ≤ j < i + k has an occurrence T [i′ . . . j′] with j′′ ∈ [i′ . . . j′] for
some j′′ ∈ Γ.

A solution Γ is called a string attractor or simply attractor if k = n. The corresponding
optimization and decision problems are the minimum-k-attractor problem and the k-attractor
problem.

For the circular k-string attractor problem, the input string is circular, resulting in
additional substrings starting at the last letters of the input string and continuing at the
beginning. Thus, there are more substrings that need to be covered compared to the k-string
attractor problem. However, these additional substrings can make the solution smaller.

It is convenient for the proof of Theorem 9 to allow k-attractors over multiple strings.
This does not change the problem much, in fact k-set attractors can be easily simulated
by unique delimiter symbols. We formally define a set attractor over m strings of possibly
different lengths n1, . . . nm as a set of tuples, with the first entry of the tuple denoting the
string and the second entry denoting the position.

▶ Definition 2 (k-set attractor). A set Γ ⊆
⋃m

x=1
⋃nx

y=1{(x, y)} is a k-set attractor of a set of
m strings T = {T1, . . . Tm} with Tx ∈ Σnx if every substring Tx[i . . . j] such that i ≤ j < i + k

has an occurrence Tx′ [i′ . . . j′] with j′′ ∈ [i′ . . . j′] for some (x′, j′′) ∈ Γ.

A string is a circular string cut once, applying more cuts gives a set of strings. Therefore,
if we can describe the behavior of attractors under cuts, we can show those three to be the
same. The equivalence of circular k-attractors and k-attractors is already shown in [20].
We extend the idea of adding a delimiter, which must be part of any solution, to remove
the impact of circularity and thereby acting as a cut, i.e., substrings that stretch over the
delimiter are already covered. The remaining substrings are then the same as the substrings
of two separate strings.

▶ Lemma 3. An algorithm solving the k-attractor problem can solve the k-set-attractor
problem with linear overhead in the input size, and vice versa.

Proof. Given a set of strings T = {T1, . . . , Tm} over an alphabet Σ, create m−1 new symbols
#1, . . . #m−1 ̸∈ Σ and use them to stitch the strings together as T = T1#1T2#2 . . . #m−1Tm.
Then, T has a k-attractor of size p + m − 1 if and only if T has a k-set attractor of size
p, because any attractor for T has to mark each position of the unique delimiter symbols.
The remaining markings induce a k-set attractor for T, and a k-set attractor combined with
those markings yields a k-attractor for T .

For the other direction, given a string T just use the singleton {T} as input for k-set
attractor problem. ◀

Table 1 shows the combined results of [20] and our proof. Given an input string T , T ∗ or
T and solution size p for the k-attractor, circular k-attractor or k-set attractor problem and
a function solving one of the problems, potentially a different one, the corresponding entry
describes how to modify the input to decide the problem corresponding to the input with
the given function. Transforming a circular string into a set of strings or vice versa is done
using strings as an intermediate step. A variant of the problem on a set of circular strings is
also equivalent by transforming each circular string into a string with the given operations,
obtaining a set of strings which can be further transformed as desired.
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Table 1 Equivalence of different attractor problems.

input ⟨T, p⟩ ⟨T ∗, p⟩ ⟨T, p⟩

string ⟨T, p⟩ ⟨T ∗T ∗T ∗, p⟩ ⟨T1#1T2 . . . #m−1Tm, p + m − 1⟩

circular ⟨T #, p + 1⟩ ⟨T ∗, p⟩ ⟨T1#1T2 . . . #m−1Tm#m, p + m⟩

set ⟨{T }, p⟩ ⟨{T ∗T ∗T ∗}, p⟩ ⟨T, p⟩

3 The Colorful Edge Cover Problem

The key idea behind colorfulness is to extend a problem in P, i.e. edge cover, by a color
function on the set of solution elements to raise the complexity to NP-complete. Any solution
to the initial problem must then satisfy the additional condition that each color is represented.
The colors can be used to model guessing a certificate for an NP-complete problem, and the
structure of the initial problem is used to verify that certificate.

We define an edge coloring on a set of colors C as a surjective function col : E → C.
It is required that col is surjective to avoid trivially unsolvable instances. Note that this
is different from the edge coloring problem where the colors are subject to the constraint
that no two edges of the same color are adjacent. The set of edges E is allowed to contain
self-loops, i.e., an edge of the form {v, v}. Normally, self-loops are not of interest for the edge
cover problem, because they only cover one vertex, making every other adjacent edge more
desirable. However, the additional colorfulness constraint can make the self-loops necessary
as part of an optimal solution.

▶ Definition 4 (Colorful Edge Cover). For an undirected edge-colored graph G = (V, E, col),
with col : E → C, a subset E′ ⊆ E is called a colorful edge cover of G, if for each vertex
v ∈ V there is an edge {v, w} ∈ E′, and for each color c ∈ C there is an edge e ∈ E′ with
col(e) = c.

By minimum colorful edge cover, we denote the optimization problem of finding a
smallest colorful edge cover. The set {⟨G, p⟩ : G has a colorful edge cover of size p} defines
the corresponding decision problem, the colorful edge cover problem. Before we show its
hardness, we prove that any algorithm that solves the minimum colorful edge cover problem
on simple graphs, also solves the problem on graphs with self-loops. We achieve this by
constructing a gadget of constant size replacing all self-loops.

▶ Lemma 5. An algorithm solving the colorful edge cover problem on simple graphs also
solves the colorful edge cover problem on graphs with self-loops.

Proof. Self-loops can be simulated by a gadget consisting of two new vertices and a new
color. Introduce a new color b and two new vertices x, y that are connected by an edge of
color b. For any vertex v with a self-loop of color a, instead connect v and x with color a.
Any valid solution contains the unique edge of color b such that x and y are always covered.
Choosing the edge {v, x} then only covers v and color a, which is the same behaviour as for
the self-loop. The resulting graph does not contain self-loops and has a colorful edge cover
on C + 1 colors of size p + 1 if and only if the original graph has a colorful edge cover on C
colors of size p. ◀

In the following, we introduce a special, balanced version of the satisfiability problem
that enables us to show the NP-hardness of the colorful edge cover problem.
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ci1 ci1,j1 li1,j1 li2,j2
ci2,j2 ci2

0 0 a 0 0

ci3 ci3,j3 li3,j3 li4,j4
ci4,j4 ci4

0 0 a 0 0

Figure 1 Gadgets for a variable xa in the colorful edge cover reduction.

▶ Definition 6 ((3, B2)-SAT). A Boolean formula ϕ =
∧m

i=1 ci =
∧m

i=1
∨L(ci)

j=1 li,j over the
variables Xn = {x1, . . . , xn} is a (3, B2)-SAT instance if each clause consists of exactly three
literals and each literal occurs exactly two times, thus each variable occurs exactly four times.
We denote the satisfiability problem for (3, B2)-SAT instances by (3, B2)-SAT.

By a result from Berman, Karpinski and Scott [6], (3, B2)-SAT is NP-complete.

▶ Theorem 7. The colorful edge cover problem is NP-complete.

Proof. The problem is in NP, as a subset E′ ⊆ E forming a colorful edge cover can be
encoded and verified in polynomial space and time. We show its hardness by a reduction
from (3, B2)-SAT.

Given a (3, B2)-SAT formula ϕ, for each clause ci =
∨3

j=1 lj , construct a clause vertex
ci, and for each j ∈ [1, 3] construct an intermediate vertex ci,j connected to ci, and a literal
vertex li,j connected to ci,j . All those edges are assigned the color 0. Further, for each
variable xa, connect the two vertices li1,j1 , li2,j2 corresponding to its positive literal with an
edge of color a, and the two vertices li3,j3 , li4,j4 corresponding to its negative literals with
another edge of color a. Figure 1 shows the subgraph for a variable xa. Note that the clause
vertices of the form ci have two more neighbors ci,j′ , ci,j′′ not depicted here as they also
belong to the gadgets of their other literals. The dashed lines form a solution representing a
false assignment to the variable xa, whereas the solid lines represent setting the variable to
true. We claim that the constructed graph has a colorful edge cover of size n + |ϕ| = 5n if
and only if ϕ is satisfiable.

Assume a colorful edge cover of size n + |ϕ| = 5n exists. These costs are always a lower
bound for the colorful edge cover, as there has to be one chosen edge for each color other
than 0, and one edge for each intermediate vertex ci,j , as they are pairwise non-adjacent and
all their incident edges have color 0.

Another way to see this is to consider the vertices unique to each variable xa, which are
four pairs of the form ci,j , li,j . Because only the edges {li1,j1 , li2,j2} and {li3,j3 , li4,j4} have
the color a, it is not possible to cover all the intermediate vertices ci,j and the color with less
than five edges. The dashed and solid lines in Figure 1 each refer to one way to cover all
unique elements with five edges, while also covering either ci1 and ci2 or ci3 and ci4 . Without
loss of generality, we assume that the edges adjacent to the included edge of color a are not
included, so our solution follows this form. Then, a clause vertex ci is only covered by an
edge {ci, ci,j} if the edge {ci,j , li,j} is not included. In turn, this means that the edge of
color a incident to li,j is included, indicating that variable Xa is assigned a truth value that
satisfies ci.
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Given a satisfying assignment of Xn for ϕ, construct a colorful edge cover for G

as follows. For each variable xa, consider the two gadgets ci1ci1,j1 li1,j1 li2,j2ci2,j2ci2 and
ci3ci3,j3 li3,j3 li4,j4ci4,j4ci4 . If xa is positive, choose the edges

{ci1 , ci1,j1}, {li1,j1 , li2,j2}, {ci2,j2 , ci2}, {ci3,j3 , li3,j3}, {li4,j4ci4,j4}.

Note that {li1,j1 , li2,j2} has color a. If xa is negative, choose the edges

{ci1,j1 , li1,j1}, {li2,j2 , ci2,j2}, {ci3 , ci3,j3}, {li3,j3 , li4,j4}, {ci4,j4ci4}.

Note that {li3,j3 , li4,j4} has color a. In both cases, we infer a cost of 5n. It is clear for all
vertices except the clause vertices ci that they are covered. Because ϕ is satisfied by the given
assignment, any clause ci is satisfied by some literal lj , so by our choice the edge {ci, ci,j}
is included, covering ci. Further, the color 0 is covered 4n times, and each other color is
covered exactly once. ◀

4 NP-Completeness of the 2-Attractor Problem

We now give a formal definition of a graph interpretation of strings and their substrings of
length 2 which we call the 2-substring graph. Each position in a string corresponds to an
edge in this graph. This interpretation was used to show that computing sharp 2-attractors
can be done in time O(n

√
n) [15] by solving the edge cover problem on this graph. However,

we additionally use symbols to label the edges, yielding instances of the colorful edge cover
problem instead.

▶ Definition 8. Given a set of strings T = {T1, . . . Tm} with Ti ∈ Σni , we define the
2-substring graph of T by G(T) = (V, E = E1 ∪ E2 ∪ E3, σ) with V = {xy ∈ Σ2 |
xy is a substring of any Ti ∈ T},

E1 ={(xy, yz) ∈
(
Σ2)2 | xyz is a substring of any Ti ∈ T}

E2 ={(xy, xy) ∈
(
Σ2)2 | xy is the prefix of any Ti ∈ T}

E3 ={(yz, yz) ∈
(
Σ2)2 | yz is the suffix of any Ti ∈ T}

and σ : E → Σ is a labeling function on the edges defined by

σ(e) =


y, if e = (xy, yz) ∈ E1,

x, if e = (xy, xy) ∈ E2,

z, if e = (yz, yz) ∈ E3.

Figure 2 shows the 2-substring graph of a set of strings {abbbcd, bca, dec}, where the solid
lines are from E1, the dashed lines are the prefix self-loops from E2 and the dotted lines
are the suffix self-loops from E3. Note that the 2-substring graph does not capture words
of length 1, as they do not have a substring of length 2 and therefore no associated vertex.
However, these are not relevant to our problem. In a preprocessing step, we can remove
the word of length 1 if its symbol also occurs in a longer string, or we have to add it to the
solution if this is the only occurrence of the symbol.

The 2-attractor problem as a special case of the k-attractor problem is in NP [16]. To
show NP-hardness, we essentially consider the reduction for colorful edge cover and find
an assignment of symbols to the edges such that the resulting graph is a 2-substring graph
representing a set of strings. The key idea is that this 2-substring graph with the edge labels
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ab bb bc cd ca de ec

a

b

b

b c

db

c

a

e

d c

Figure 2 The 2-substring graph for {abbbcd, bca, dec}.

interpreted as a set of colors has a colorful edge cover of a fixed size p if and only if the
underlying set of strings has a k-attractor of size p. Towards this step, we assign a 2-substring
to each vertex created in the proof of Theorem 7 and exchange colors with symbols. It
is vital that each vertex has a unique label so that each vertex uniquely corresponds to a
2-substring. For that reason, we need to introduce more symbols and pay attention that they
are all covered. The 2-substring graph representation of the constructed gadgets is shown in
Figure 3. Comparing this to Figure 1 shows the similarities in the proofs.

Note that we do not give a reduction from the colorful edge cover problem to the 2-
attractor problem, but use the structure of the colorful edge cover to give a reduction directly
from (3, B2)-SAT to the 2-attractor problem on sets. Combined with Lemma 3, this shows
the NP-completeness of the 2-attractor problem.

▶ Theorem 9. The 2-attractor problem is NP-complete.

Proof. We again start with a (3, B2)-SAT formula ϕ. We create a set of strings based on an
alphabet Σ = C ∪ L ∪ L ∪ X = {C1, . . . , Cm} ∪ {L1, L2, L3} ∪ {L1, L2, L3} ∪ {X1, . . . , Xn}.
Note that the symbols for the literals L, L only indicate the position of the literal in its
clause and whether it is negated, but not the clause itself.

We now construct a set of strings T. For every variable Xa that appears positively
in clauses ci1 and ci2 at literals li1,j1 and li2,j2 respectively with i1 ≤ i2 (and j1 < j2
if i1 = i2), we add a string Ci1Ci1Lj1XaLj2Ci2Ci2 . For every variable Xa that appears
negatively in clauses ci3 and ci4 at literals li3,j3 and li4,j4 respectively with i3 ≤ i4 (and
j3 < j4 if i3 = i4), we add a string Ci3Ci3Lj3XaLj4Ci4Ci4 . We also add six auxiliary strings
L1L1, L1L1, L2L2, L2L2, L3L3, L3L3 to make sure all symbols Lj and Lj are covered.

This construction is shown in Figure 3 as subgraphs of the 2-substring graph. Note that
the clause vertices of the form CiCi have two more adjacent edges that are not shown here,
and the auxiliary strings are not shown. The dashed lines form a solution representing a
false assignment to the variable xa, whereas the solid lines represent setting the variable
to true. Note that there is always an optimal solution that does not use the self-loops at
vertices of the form CiCi which are represented by dotted lines.

The set of 2-substrings that need to be covered consists of CiCi, CiL1,CiL2 and CiL3 for
each clause Ci, as well as Lj1Xa, XaLj2 , Lj3Xa, XaLj4 for each variable Xa. Note that each
of these 2-substrings except for CiCi appears only once in T, so they need to be covered at
that occurrence. The auxiliary strings each add one unique 2-substring LjLj or LjLj for
j ∈ {1, 2, 3} that also need to be covered in the respective string. Of course, all 1-substrings,
i.e. Σ, also need to be covered.

We claim that T has a 2-set attractor of size n + |ϕ| + 6 = 5n + 6 if and only if ϕ is
satisfiable. The proof follows the same arguments as the proof of Theorem 7 as the 2-substring
graph G(T) has a colorful edge cover if and only if T has a 2-set attractor.
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Assume that a 2-set attractor of size 5n+6 for T exists. We first show that the n symbols
X corresponding to the variables, which all appear twice, are covered exactly once each. The
substrings LjLj and LjLj for j ∈ {1, 2, 3} are unique to the six auxiliary strings, so they
always induce a cost of six and ensure that all Li,Li are covered independent of the remaining
strings. It is also necessary to expend 4n markings to cover the substrings of the form CiLj ,
LjCi, CiLj and LjCi, as each of these are pairwise non-overlapping with each other. The
remaining n markings are then needed to cover all n symbols X, so each is covered once.

We can therefore deduce a truth assignment by considering where each symbol Xa

corresponding to a variable is covered. We show that this assignment satisfies ϕ. Consider
any substring CiCi. Without loss of generality it is covered at the position adjacent to some
Lj or Lj , not at the position corresponding to the start or the end of a string. Therefore,
the substrings and markings are of the form CiCiLj , LjCiCi or CiCiLj , LjCiCi. This also
covers the substrings of the form CiLj , LjCi, CiLj and LjCi. By our counting argument,
each of these substrings is covered only once, so Lj respectively Lj is not marked. To then
cover LjXa, XaLj or LjXa, Xa must be marked, which means the variable xa is assigned a
truth value such that it satisfies ci. This holds for all ci, so ϕ is satisfied.

Assume ϕ is satisfiable by some truth assignment of the variables X. If xa is set to true,
mark its two strings by

Ci1Ci1Lj1XaLj2Ci2Ci2 , Ci3Ci3Lj3XaLj4Ci4Ci4

otherwise mark

Ci1Ci1Lj1XaLj2Ci2Ci2 , Ci3Ci3Lj3XaLj4Ci4Ci4 .

Both ways of marking the strings cover all eight substrings unique to xa. The solid edges
in Figure 3 show the included positions in the 2-substring graph for a positively assigned
variable, and the dashed lines refer to a negative assignment. Each substring CiCi is covered
in the substring corresponding to the variable satisfying it. Further, each symbol of Σ is
also covered. Each Ci is covered just as CiCi is covered, each Lj is covered due to the six
auxiliary strings, and Xa is covered by definition of our chosen markings.

In total, given a formula with m clauses and n variables, we compute for a set of 2n + 6
strings whether it has a 2-set attractor of size 5n + 6. Each string has a size of 7 except for
the auxiliary strings of size 2, and all strings in total have length 14n + 12. The reduction
can be computed naively in time O(n2). By Lemma 3, the set of strings can be condensed
into a single string of linear size in polynomial time. ◀

This reduction can be used for all k ≥ 2 and for the general attractor problem, as there
is a delimiter symbol or unique substring at least every 3 symbols. Any valid k-attractor
then needs to put a marking every 3 symbols, such that any possibly uncovered substring
has length at most 2. This enforces that there is a 2-attractor of any fixed size p if and only
if there is a k-attractor of size p for any k ≥ 3.

5 APX-Hardness

Our reduction to prove Theorem 9 also suffices to show the APX-hardness of the k-attractor
problem for k ≥ 2, which was shown for k ≥ 3 by Kempa and Prezza [16]. The same paper
also shows containment in APX for constant k. We also slightly improve the explicit lower
bound to which k-attractor cannot be approximated. To this end, we analyse the behavior
of the reduction’s output string for unsatisfiable formulas.
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Ci1Ci1 Ci1Lj1 Lj1Xa XaLj2 Lj2Ci2 Ci2Ci2

Ci1 Lj1 Xa Lj2 Ci2

Ci3Ci3 Ci3Lj3 Lj3Xa XaLj4 Lj4Ci4 Ci4Ci4

Ci3 Lj3 Xa Lj4 Ci4

Ci1 Ci2

Ci3 Ci4

Figure 3 Gadgets for a variable xa in the 2-attractor reduction in the 2-substring graph.

▶ Lemma 10. For a MAX-(3, B2)-SAT formula ϕ with m clauses and an optimal assignment
satisfying m−u clauses, u ≥ 0, the optimal attractor for T (ϕ) has size between 21

4 m+11+⌈u/2⌉
and 21

4 m + 11 + u.

Proof. A MAX-(3, B2)-SAT formula ϕ with m clauses contains n = (3/4)m variables, thus
the resulting set of strings is of size 2m + 6 including auxiliary strings, inducing 2m + 5
delimiter symbols to combine those strings into a single string T . Each variable induces
a cost of at least 5 to cover its unique substrings, also each auxiliary string and delimiter
induces a cost of 1. In total, we obtain a lower bound of 5n + 6 + 2n + 5 = 21

4 m + 11 that can
be matched if and only if ϕ is satisfiable with the markings given in the proof of Theorem 9.

If ϕ is not satisfiable, this marking still yields the most efficient way to cover the unique
substrings. Then, all substrings are covered except for CiCi (and Ci, which will always
be covered implicitly) for clauses ci that are not covered by the assignment. This gives u

many 2-substrings that are not covered, which can be covered one by one using u additional
positions, yielding the upper bound.

Consider a variable xa such that in the optimal assignment two of the four clauses
it appears in are not satisfied. Then, without loss of generality xa is set to true and
appears negatively in clauses ci1 , ci2 which are not satisfied. The corresponding string is
then Ci1Ci1Lj1XaLj2Ci2Ci2 but remarking it to Ci1Ci1Lj1XaLj2Ci2Ci2 covers both Ci1Ci1

and Ci2Ci2 with just one additional position. If this can be done for all clauses, only u/2
additional markings are needed. Each variable still has to induce a cost of at least 5 and
now induces a cost of at most 6, so this is optimal, otherwise the assignment we started with
was not optimal. ◀

In [6], Berman, Karpinski and Scott show the APX-hardness of MAX-(3, B2)-SAT by
a reduction from the MAX-E3-Lin-2 problem on linear equations, which was studied by
Håstad [13]. We extend the given reduction to the k-attractor problem.

▶ Theorem 11. For every k ≥ 2 and 0 < ε < 1, it is NP-hard to approximate the k-attractor
problem to within an approximation ratio smaller than (10669 − ε)/10668.

Proof. Berman, Karpinski and Scott [6] show that it is NP-hard to distinguish MAX-(3, B2)-
SAT instances with 1016n clauses of which at least (1016 − ϵ)n are satisfiable, and instances
with 1016n clauses of which at most (1015 + ϵ)n are satisfiable.
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Let ϕ be a (3, B2)-SAT formula with 1016n clauses, and T (ϕ) the string resulting from
applying the reduction in Theorem 9 to this formula. The formula ϕ has 1016n · 3/4 = 762n

variables and thus T (ϕ) consists of 2 · 762n + 6 substrings with 2 · 762n + 5 delimiter symbols
between them. If ϕ is satisfiable, T (ϕ) has an optimal k-attractor of size (5 · 762n + 6) + (2 ·
762n + 5) = 5334n + 11 by Lemma 10. Further, if we can satisfy at least (1016 − ϵ)n clauses
in ϕ, we need at most

(5334 + ϵ)n + 11 = (10668 + 2ϵ)n/2 + 11

many positions to find a 2-attractor for T (ϕ). Otherwise, we can satisfy at most (1015 + ϵ)n
clauses and thus need at least 5334n+ 1−ϵ

2 n+11 = (10669−ϵ)n/2+11 > (10669−2ϵ)n/2+11
many positions to find a 2-attractor for T (ϕ).

If we could approximate k-attractor better than (10669 − ε)/10668, we could plug in ϕ

and see if we get a result within

10669 − ε

10668

(
(10668 + 2ϵ)

2 n + 11
)

=
(

10669
2 + 10669ϵ

10668 − ε

2 − 2εϵ

10668

)
n + 10669 · 11

10668

and accept if and only if this is true. For large enough n and ε, it holds that(
10669

2 + 10669ϵ

10668 − ε

2 − 2εϵ

10668

)
n + 10669 · 11

10668 <
10669 − 2ϵ

2 n + 11

⇐⇒ 21337ϵ

10668 − 2εϵ

10668 + 11
10668n

<
ε

2

and thus we are able to distinguish whether (1016 − ϵ)n clauses or (1015 + ϵ)n clauses in ϕ

are satisfiable, which is NP-hard. Note that ε can converge to 0 as ϵ converges to 0, thus the
proof works for all ε > 0. ◀

A similar construction can be used to show that the colorful edge cover problem is APX-
hard and cannot be approximated by a factor smaller than (7621 − ε)/7620 for 0 < ε < 1.

6 Conclusion

In this paper, we have answered the open problem of the complexity of the 2-attractor problem
and discussed the implicit APX-hardness that results from our reduction. Additionally, we
introduced a more general variation of the k-attractor problem, the k-set attractor problem,
to make our reduction more convenient. Moreover, motivated by the previous reductions
between the k-set cover problem and the k-attractor problem, we introduced the colorful
edge cover problem. Although it is not contained in the reduction chain for the main result,
it shows where the sharp 2-attractor problem and the 2-attractor problem differ in their
complexity.

In general, adding colorfulness to a problem solvable in polynomial time, like matching,
network flow or spanning tree can help to find a different perspective on problems of
unresolved complexity that are close to the mentioned problems, but not properly modeled
by their unmodified variants. In the best case, it helps to understand where the borderline of
complexity is and which combination of constraints make a problem hard. Colorful problems
may also be of interest in the context of parameterized complexity or approximability.
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Abstract
We study the problem of deciding whether a given language is directed. A language L is directed
if every pair of words in L have a common (scattered) superword in L. Deciding directedness is a
fundamental problem in connection with ideal decompositions of downward closed sets. Another
motivation is that deciding whether two directed context-free languages have the same downward
closures can be decided in polynomial time, whereas for general context-free languages, this problem
is known to be coNEXP-complete.

We show that the directedness problem for regular languages, given as NFAs, belongs to AC1,
and thus polynomial time. Moreover, it is NL-complete for fixed alphabet sizes. Furthermore, we
show that for context-free languages, the directedness problem is PSPACE-complete.
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1 Introduction

We study the problem of deciding whether a given language is directed. A language L is called
(upward) directed if for every u, v ∈ L, there exists a w ∈ L with u ≼ w and v ≼ w. Here, ≼
denotes the (non-contiguous) subword relation: We have u ≼ v if there are decompositions
u = u1 · · · un and v = v0u1v1 · · · unvn for some u1, . . . , un ∈ Σ∗ and v0, v1, . . . , vn ∈ Σ∗.

Downward closures and ideals. The downward closure of a language L ⊆ Σ∗ is the set
L↓ = {u ∈ Σ∗ | ∃v ∈ L : u ≼ v}. Over the last ca. 15 years, downward closures have been
used in several approaches to verifying concurrent systems. This has two reasons: First,
L↓ is a regular language for every set L ⊆ Σ∗ [32] and an NFA can often be computed
effectively [6, 21,23,30,31,47,49,50]. Second, many verification tasks are downward closure
invariant w.r.t. subsystems: This means, a (potentially infinite-state) subsystem (e.g. a
recursive program represented by a context-free language) can be replaced with another with
the same downward closure, without affecting the verified property. This has been applied
to parameterized systems with non-atomic reads and writes [46], concurrent programs with
dynamic thread creation [5, 11,13], asynchronous programs [10,41], and thread pools [14].
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In addition to finite automata, there is a second representation of downward closed
languages: Every non-empty downward closed set can be written as a finite union of ideals.
An ideal (in the terminology of well-quasi orderings) is a non-empty downward closed set that
is directed. Moreover, ideals have a simple representation themselves: They are precisely the
products of languages of the forms {a, ε} and ∆∗, where a is a letter and ∆ is an alphabet.
Clearly, a language L is directed if and only if L↓ is itself an ideal.

Ideal decompositions of downward closed sets have recently been the center of significant
attention: They have been instrumental in computing downward closures [9, 28, 49] and
deciding separability by piecewise testable languages [29,51]. Over other orderings, ideals play
a crucial role in forward analysis of well-structured transition systems (WSTS) [16,25,26],
infinitely branching WSTS [18], well-behaved transition systems [17] for clarifying reachability
problems in vector addition systems [36–38], and for deciding regular separability [24].

Given the importance of ideals, it is a fundamental problem to decide whether a given
language is directed, in other words, whether the ideal decomposition of its downward closure
consists of a single ideal. It is a basic task for computing ideal decompositions, but also an
algorithmic lens on the structure of ideals.

Efficient comparison. Aside from being a fundamental property, checking directedness is
also useful for deciding equivalence. It is well-known that equivalence is PSPACE-complete for
NFAs and undecidable for context-free languages. However, in some situations, it suffices to
decide downward closure equivalence: Due to the aforementioned downward closure invariance
in concurrent programs, if L1, L2 ⊆ Σ∗ describe the behaviors of sequential programs inside
of a concurrent program, and we have L1↓ = L2↓, then L1 can be replaced with L2
without affecting safety, boundedness, and termination properties in concurrent [11] and
asynchronous programs [41]. Downward closure equivalence is known to be coNP-complete
for NFAs [8, Thm. 12&13] and coNEXP-complete for context-free languages [50]. This is
better than PSPACE and undecidable, but our results imply that if L1 and L2 are directed,
then deciding L1↓ = L2↓ is in polynomial time, both for NFAs and for context-free languages!
Thus, directedness drastically reduces the complexity of downward closure equivalence.

Constraint satisfaction problems. Directedness has recently also been studied in the context
of constraint satisfaction problems (CSPs) for infinite structures. If we view finite words in
the usual way as finite relational structures (as in first-order logic), then a set of words is
directed if and only if it has the joint embedding property (JEP). More generally, a class
C of finite structures has the JEP if for any two structures in C, there is a third in which
they both embed. The JEP is important for CSPs because if C is definable by a universal
first-order formula and has the JEP, then it is the age of some (potentially infinite) structure,
which then has a constraint satisfaction problem in NP [19, p. 1].

Motivated by this, it was recently shown that the JEP is undecidable for universal
formulas by Braunfeld [20] (and even for universal Horn formulas by Bodirsky, Rydval, and
Schrottenloher [19]). In the special case of finite words, the JEP (and thus directedness) was
shown to be decidable in polynomial time by Atminas and Lozin [7] for regular languages of
the form {w ∈ Σ∗ | w1, . . . , wn ̸≼ w} for given w1, . . . , wn ∈ Σ∗. However, to our knowledge,
for general regular languages (or even context-free languages), the complexity is not known.

Contribution. Our first main result is that for NFAs, directedness is decidable in AC1, a
circuit complexity class within polynomial time, defined by Boolean circuits of polynomial
size, logarithmic depth, and unbounded fan-in. If we fix the alphabet size, directedness
becomes NL-complete. Our second main result is that for context-free languages, directedness
is PSPACE-complete, and hardness already holds for input alphabets of size two.
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The proof techniques for the main results also yield algorithms for downward closure
equivalence. Given L1 and L2, we show that deciding L1↓ = L2↓ is in AC1 if L1 and L2 are
directed and given by NFAs. As above, we obtain NL-completeness for fixed alphabets. If L1
and L2 are context-free languages, then deciding L1↓ = L2↓ becomes P-complete.

Finally, we mention that counting the number of ideals in the ideal decomposition of L↓
is #P-complete if L is given as an NFA. Here, hardness follows from #P-hardness of counting
words in NFAs of a given length, and #P-membership is a consequence of our methods.

Key ingredients. The upper bounds as well as the lower bounds in our results rely on new
techniques. With only slight extensions of existing techniques, one would obtain an NP upper
bound for regular languages and an NEXP upper bound for context-free languages. This is
because given a regular or context-free language, one can construct an acyclic graph where
every path corresponds to an ideal of its downward closure. If the input is an NFA, this
graph is polynomial-sized, and for CFGs, it is exponential-sized. One could then guess a
path and verify that the entire language is included in this candidate ideal.

To obtain our upper bounds, we introduce a weighting technique, where each ideal
is assigned a weight in the natural numbers. The weighting function has the property
that if there is an ideal that contains the entire language, it must be one with maximal
weight. Using either (i) matrix powering over the semiring (N ∪ {−∞}, max, +, −∞, 0) for
NFAs or (ii) dynamic programming for context-free grammars, this allows us to compute in
NL/AC1/polynomial time a unique candidate ideal (which is compressed in the context-free
case), which is then verified in NL resp. in PSPACE.

For the PSPACE lower bound for context-free languages, we first observe that directedness
is equivalent to deciding whether L ⊆ I, where L is a context-free language, and I is an
SLP-compressed ideal. The problem is thus a slight generalization of the compressed subword
problem, where we are given two SLP-compressed words u and v and are asked whether
u ≼ v. This problem is known to be in PSPACE and PP-hard [39, Theorem 13], but its exact
complexity is a long-standing open problem [40].

To exploit the increased generality of our problem, we proceed as follows. Our key insight
is that for a given SLP-compressed word w ∈ Σ∗, one can construct an SLP-compressed
infinite complement ideal Iw, meaning that Iw ∩ Σ|w| = Σ|w| \ {w}. To this end, we apply a
construction from definability of languages in the subword ordering [12, Lemma 3.1]. We use
the complement ideal for PSPACE-hardness follows. We reduce from the PSPACE-complete
problem of deciding, given two equal-length SLP-compressed words v, w ∈ {a, b}∗, whether
their convolution v ⊗ w belongs to a fixed regular language [40, p. 269]. We reduce this to the
problem of deciding w ∈ L, where w is SLP-compressed and L is a context-free of words of
length |w|. Then L ⊆ Iw if and only if w /∈ L, hence L ∪ Iw is directed if and only if w /∈ L.

2 Main results

Our first main result is that for a given NFA, one can decide directedness of its language in
polynomial time, and even in AC1 ⊆ NC.

▶ Theorem 2.1. Given an NFA, one can decide in AC1 whether its language is directed.

Recall that AC1 is the class of all languages that are accepted by a family of unbounded
fan-in Boolean circuits of polynomial size and logarithmic depth, see [48] for more details. In
particular, the directedness problem for regular languages can be efficiently parallelized.

The same techniques show that fixing the input alphabet leads to NL-completeness:

STACS 2024
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▶ Theorem 2.2. For every fixed k, given an NFA over k letters, it is NL-complete to decide
whether its language is directed.

As mentioned before, slight extensions of known techniques would yield an NP upper bound
for directedness of regular languages: Given an NFA A, it is not difficult construct an acyclic
graph whose paths correspond to ideals for which L(A) = I1 ∪ · · · ∪ In. One can then guess
such a path with ideal Ii and verify L(A) ⊆ Ii in NL. Clearly, L(A) is directed iff such an Ii

exists. The key challenge is to compute in AC1 a single ideal Ii for which we check L(A) ⊆ Ii.
Note that Theorems 2.1 and 2.2 also apply to one-counter languages. Given a one-counter

language L, one can compute in logspace an NFA A with L(A) = L↓ [6, Theorem 7]1. Then
L(A) is directed iff L is directed, and we can just decide directedness for A.

Our second main result is that for context-free languages (given, e.g. by a grammar),
directedness is PSPACE-complete:

▶ Theorem 2.3. Given a context-free grammar, it is PSPACE-complete to decide whether its
language is directed. Moreover, PSPACE-hardness holds already for binary input alphabets.

Our methods also provide more efficient algorithms for downward closure equivalence in
the case of directed input languages. The downward closure equivalence (DCE) problem is to
decide, for given languages L1 and L2, whether L1↓ = L2↓. While DCE is coNP-complete for
general regular languages given as NFAs [8, Thm. 12&13], we show that for directed input
languages, the complexity drops to AC1, and NL for fixed alphabets.

▶ Theorem 2.4. For directed languages given as NFAs, DCE belongs to AC1, for fixed
alphabets even to NL.

For context-free languages, DCE is known to be coNEXP-complete [50]. For directed
input languages, our methods yield a drastic drop in complexity down to polynomial time:

▶ Theorem 2.5. For directed context-free languages, DCE is P-complete.

Since our directedness algorithms decide whether the unique decomposition of L↓ into
maximal ideals consists of a single ideal, it is natural to ask about the complexity of counting
all ideals of this decomposition. It follows easily using methods developed here that this
problem is in #P. Moreover, the well-known #P-hardness of #NFA (i.e. counting words of a
given length in an NFA) [4] provides a #P lower bound.

▶ Theorem 2.6. Given an NFA A, it is #P-complete to count the number of ideals in the
decomposition of L(A)↓ into maximal ideals.

The proof is given in [27, App. E] #P is the class of functions f computable by some
non-deterministic polynomial-time Turing machine (TM), in the sense that for a given input
x, the computed value f(x) is the number of accepting runs. #P-complete problems are very
hard, as evidenced by Toda’s well-known result that P#P (i.e. polynomial-time algorithms
with access to #P oracles) includes the entire polynomial time hierarchy [45]. This represents
an interesting contrast between the complexity of directedness and counting all ideals.

1 Theorem 7 in [6] only states a polynomial time computation, but it is clear that it can be performed in
(deterministic) logspace.
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3 Preliminaries

Ideals. We will use the notation [m1, m2] := {i ∈ Z | m1 ≤ i ≤ m2}. Consider the context-
free languages K1 = {wcw | w ∈ {ab}∗} and K2 = {wcw | w ∈ {a}∗ ∪ {b}∗}. Note that K1
is directed, whereas K2 is not: The words aca and bcb in K2 have no common superword in
K2. However, K1 ∪ K2 is directed. Let Σ be a finite alphabet. A set D ⊆ Σ∗ is downward
closed if D↓ = D. A subset I ⊆ Σ∗ is an ideal if it is non-empty, downward closed, and
(upward) directed. Thus clearly, a non-empty L ⊆ Σ∗ is directed if and only if L↓ is an ideal
(note that taking the downward closure does not affect directedness). It is known that every
ideal can be written as products of so called atoms: We identify two types of atoms over Σ:
Single atoms: a ? where a ∈ Σ,
Alphabet atoms: ∆ ∗ where ∅ ̸= ∆ ⊆ Σ.
Formally, each atom α is a formal symbol that describes an ideal Idl(α). For a single atom
a ? , we define it as Idl(a ? ) = {a, ε}, whereas for an alphabet atom ∆ ∗ , Idl(∆ ∗ ) = ∆∗.
By atoms(Σ), we denote the set of atoms over Σ. Note that |atoms(Σ)| = 2|Σ| − 1 + |Σ|.

An ideal representation is a finite (possibly empty) sequence r = α1 · · · αn of atoms αi.
Its language is the concatenation Idl(α1 · · · αn) = Idl(α1) · · · Idl(αn) where the empty
concatenation is interpreted as {ε}. It is a classical fact that every downward closed set can
be decomposed into a finite union of ideals. For example, observe that K1↓ = (K1 ∪ K2)↓ =
{a, b}∗{c, ε}{a, b}∗ = Idl({a, b} ∗

c ? {a, b} ∗ ) and K2↓ = {a}∗{c, ε}{a}∗ ∪ {b}∗{c, ε}{b}∗ =
Idl({a} ∗

c ? {a} ∗ ) ∪ Idl({b} ∗
c ? {b} ∗ ). This decomposition result was first shown by

Jullien [34] and the equivalent fact that every downward closed set can be expressed as a simple
regular expression was shown independently by Abdulla, Bouajjani, and Jonsson [1] (see [33]
for a general treatment). If R is a set of ideal representations, we set Idl(R) :=

⋃
r∈R Idl(r).

Reduced ideal representations. Note that one ideal can have multiple different representa-
tions. For instance, the representations a ∗ · a ? · b ? · b ∗ · a ? and a ∗ · b ∗ · a ? represent
the same ideal, namely all words that start with a (possibly empty) sequence of a’s, followed
by a (possibly empty) sequence of b’s, and possibly end with an a. This is because in the
first representation, all the words a ? and b ? generate are produced by their neighboring
alphabet atoms. Two representations are called equivalent if they represent the same ideal.

To achieve unique ideal representations, one can use reduced representations, which we
define next. Two atoms α and β are absorptive if Idl(αβ) = Idl(α) or Idl(αβ) = Idl(β).
In the first case we say α absorbs β and in the second case, β absorbs α. Note that two
single atoms are always non-absorptive since Idl(a ? · b ? ) ⊋ Idl(a ? ). An atom α is said to
contain an atom β if Idl(α) ⊇ Idl(β). α is said to strictly contain β if also Idl(α) ̸= Idl(β).
An ideal representation α1 · · · αn is said to be reduced if for all i ∈ [1, n − 1], αi and αi+1 are
non-absorptive. The following is obvious (and well-known [2, Lemma 5.4]), because we can
just repeatedly merge neighboring absorptive atom pairs:

▶ Lemma 3.1. For every ideal representation α1 · · · αn, there exists a reduced ideal repres-
entation β1 · · · βm such that Idl(α1 · · · αn) = Idl(β1 · · · βm) and m ≤ n.

Representing downward closed sets. We will use two classical facts about ideals. First,
every downward closed set D ⊆ Σ∗ can be written as a finite union of ideals. Moreover,
ideals are “prime” in the sense that if an ideal is included in a union D1 ∪ D2 of downward
closed sets, it is already included in one of them:

STACS 2024
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▶ Lemma 3.2 ([26,28,35]). For every downward closed set D ⊆ Σ∗, there exist n ∈ N and
ideals I1, . . . , In ⊆ Σ∗ with D = I1 ∪ · · · ∪ In. Moreover, if I is an ideal with I ⊆ D1 ∪ D2
for downward closed D1, D2 ⊆ Σ∗, then I ⊆ D1 or I ⊆ D2.

The representation D = I1 ∪ · · · ∪ In is also called an ideal decomposition of D. Observe that
the second statement implies that this decomposition is unique (up to the order of ideals) if
we require the ideals I1, . . . , In to be pairwise incomparable. This is sometimes called the
unique decomposition into maximal ideals.

Non-deterministic finite automata. We start by formally introducing NFAs. A non-
deterministic finite automaton (NFA) is a tuple A = (Q, Σ, δ, q0, F ) where Q is a finite set
of states, q0 ∈ Q is the unique initial state, F ⊆ Q is the set of final states, Σ is a finite
alphabet and δ ⊆ Q × (Σ ∪ {ε}) × Q is the set of transitions. A transition (p, a, q) ∈ δ is
usually displayed as p

a−→ q, and we write p0
w−→ pn if there exists a sequence of transitions

p0
a1−→ p1

a2−→ . . .
an−−→ pn such that w = a1 . . . an. The language accepted by an NFA A is the

set of all words w ∈ Σ∗ such that q0
w−→ q for some q ∈ F , and is denoted by L(A).

4 Solution on Regular Languages

In this section, we prove Theorem 2.1 and Theorem 2.2. Let us quickly observe the NL
lower bound of the directedness problem: We reduce from the emptiness problem for NFAs.
Given an NFA A, we may assume that there is exactly one final state that is different
from the initial state, and that all edges are labeled with a. We construct an NFA A′ with
L(A′) = L(A) ∪ {b}. Then clearly, L(A) ̸= ∅ if and only if L(A) contains some word in {a}+.
The latter is true if and only if L(A′) is not directed.

Thus, the interesting part of Theorems 2.1 and 2.2 are the upper bounds. To explain
the main steps, we need some terminology. We say that a function f : {0, 1}∗ → {0, 1}∗ is
computable in NL if there exists a non-deterministic logspace TM with a write-only output
tape such that (i) on every input word x ∈ {0, 1}∗ there exists an accepting computation,
and (ii) every accepting computation on x produces the same output f(x) on the output
tape. We say that f is computable in AC1 if the language {x01i | the i-th bit of f(x) is 1}
belongs to AC1. The main difficulty in proving Theorem 2.1 is the following:

▶ Lemma 4.1. Given a non-empty NFA A, one can compute in AC1 an ideal I such that
(i) I ⊆ L(A)↓ and (ii) L(A) is directed if and only if L(A)↓ ⊆ I. Moreover, for every fixed
alphabet size, this computation can be carried out in NL.

Since the inclusion L(A)↓ ⊆ I for a given NFA A and ideal I can be decided in NL [50],
Lemma 4.1 immediately implies the upper bounds: Just compute I and check L(A)↓ ⊆ I.

Let us briefly outline the proof of Lemma 4.1. Given an NFA A for a regular language L,
we first construct an NFA Ridl accepting representations ideals in an ideal decomposition of
L↓. This is then transformed into an NFA Rred that accepts reduced ideal representations.
Reducedness of the ideal representations enables us to efficiently compute a maximal ideal
in L(Rred), by solving a maximum weight path problem. This step can be carried out in
AC1 for arbitrary alphabets and in NL for fixed alphabets. Figure 1 depicts the mentioned
transitionary automata and serves as a running example throughout the section.

4.1 Computing the ideal automaton Ridl

Our first step towards Lemma 4.1 is to transform the input NFA into one that is partially
ordered. Here, an NFA is partially ordered if the state set Q is equipped with a partial order
(Q, ≤) such that for every transition from p to q, we have p ≤ q. In particular, the automaton
does not contain any cycles except for self-loops. The following is a standard fact:



M. Ganardi, I. Sağlam, and G. Zetzsche 36:7

▶ Lemma 4.2. Given any NFA A, one can compute in NL a partially ordered NFA R such
that L(R) = L(A)↓.

Essentially, one collapses each strongly connected component (SCC) C of A into a new
state qC of R and adds a self-loop to qC for each letter that appears in C. Here, we require
non-determinism in our logspace computation, because we need to determine whether a given
letter appears in a strongly connected component. See [27, App. B] for details.

Next, we want to construct an NFA Ridl over a finite alphabet of atoms of Σ, that will
accept (as its words) the ideal representations given by the accepted paths of R.

▶ Lemma 4.3. Given any partially ordered NFA R on the finite alphabet Σ, one can compute
in NL an acyclic NFA Ridl over some polynomial-sized alphabet Γ ⊆ atoms(Σ) such that
Idl(L(Ridl)) = L(R)↓.

Since the only cycles R contains are self loops, we can write L(R) as the finite union,

L(R) =
⋃

i∈[1,r]

a1,i∆∗
1,ia2,i∆∗

2,i · · · aki,i∆∗
ki,i with an,i ∈ Σ∪{ε} and ∆n,i ⊆ Σ for n ∈ [1, ki]

Since L(R) is downward closed, it is equivalent to the following ideal decomposition of L(A)↓:

L(R) =
⋃

i∈[1,r]

{ε, a1,i}∆∗
1,i{ε, a2,i}∆∗

2,i · · · {ε, aki,i}∆∗
ki,i (1)

Proof sketch. To construct Ridl from R, for each state q in R, we add two copies q and q′

to Ridl. We keep the initial state the same, and make the final states of Ridl the copies of
final states of R. Each state q with self-loops is turned into a transition reading an alphabet

atom q
∆ ∗

−−→ q′ where ∆ contains all letters read on self-loops on q. Furthermore, each

transition p
a−→ q in R where p ̸= q is turned into a transition reading a single atom p′ a ?

−−→ q.
It is easily verified L(Ridl) is the ideal decomposition of L(R) given in equation (1). ◀

4.2 Weighting functions for ideals

Lemma 4.3 tells us that for our given NFA A, we can construct an NFA Ridl over atoms(Σ)
that is acyclic and whose paths correspond to the ideals of L(A)↓. Observe that L(A) is
directed iff there exists a path π in Ridl such that L(A) is included in the ideal of π: Clearly,
if there is such a path, then L(A)↓ must equal this ideal and is thus directed. Conversely, if
L(A) is directed and L(A)↓ = I1 ∪ · · · ∪ In, where I1, . . . , In are the ideals of the paths in
Ridl, then directedness implies that L(A)↓ is an ideal. By Lemma 3.2, we must have that
L(A)↓ coincides with some Ii for i ∈ [1, n], which lies on some path π. Therefore, to show
Lemma 4.1, it remains to pick a path π such that if there is a greatest ideal among the paths
in Ridl, then it must lie on π. This is the main challenge in our decision procedures.

Our key insight is that this can be accomplished by a weighting function. Roughly speaking,
we construct a function µ from the set of ideal representations to N such that µ is strictly
monotone, meaning (i) if Idl(α1 · · · αn) ⊆ Idl(β1 · · · βm), then µ(α1 · · · αn) ≤ µ(β1 · · · βm)
and (ii) if in addition Idl(α1 · · · αn) ̸= Idl(β1 · · · βm), then µ(α1 · · · αn) < µ(β1 · · · βm).
Moreover, the function will be additive, meaning µ(α1 · · · αn) = µ(α1) + · · · + µ(αn). Given
such a function, we can find the aforementioned path π by picking one with maximal weight.
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The weight function. Strictly speaking, an additive strictly monotone function as above
is impossible: It would imply n ≤ µ(a ? · · · a ? ) < µ({a} ∗ ) for every n (here, the product
a ? · · · a ? has n factors). Therefore, we will only satisfy strict monotonicity on ideal repres-
entations of some maximal length k. Given k ∈ N, the (k-)weight of an ideal representation
α1 · · · αn is defined as µk(α1 · · · αn) =

∑n
i=1 µk(αi) where for each atom α:

µk(α) =
{

1, if α is a single atom
(k + 1)|∆|, if α = ∆ ∗ for some ∆ ⊆ Σ where ∆ ̸= ∅.

(2)

The function µk is clearly additive. However, it is not strictly monotone: For instance, the
products a ∗ · a ∗ and a ∗ · b ∗ receive the same weight, but the former represents a strict
subset of the latter. In the remainder of this subsection, we will show that µk is strictly
monotone on reduced ideal representations.

Exponential weights are needed. Before we continue with our algorithm for directedness,
let us quickly remark that µk cannot be chosen much smaller. If the alphabet Σ is not fixed,
then µk can have exponential values, because |∆| appears in the exponent. In fact, dealing
with exponentially large numbers is the reason our upper bound in the general NFA case is
AC1 rather than NL. This raises the question of whether there is a weighting function that
is strictly monotone on reduced ideal representations of length k with polynomial values.
This is not the case. To see this, consider the exponential-length chain Cℓ of ideals over the
alphabet Σ = {a0, a1, . . . , aℓ} constructed as follows. For i ∈ [1, ℓ], let Σi = {a0, . . . , ai}. Set
C0 := (a0

? ). For each i ∈ [1, ℓ], assuming Ci−1 = (I1, . . . , It), define Ci as

Ci := (I1, . . . , It, (Σi−1) ∗ · ai
? · I1, . . . , (Σi−1) ∗ · ai

? · It).

Clearly, the number of ideals in each chain Cℓ is exponential in ℓ. Moreover, the maximal
length k of ideals in Cℓ is polynomial in ℓ. Since for each i, ai does not appear in Ci−1,
we know that (a) the ideal representations in Cℓ are reduced and (b) the chain Cℓ is strict.
Therefore, any weight function that is strictly monotone on ideal representations of length k

maps each ideal in Cℓ to a distinct value, requiring exponentially high values.

Strict monotonicity. We now prove our strict monotonicity property for µk:

▶ Proposition 4.4. Let α1 · · · αn and β1 · · · βm be reduced ideal representations of ideals I

and J , respectively, with m, n ≤ k. If I ⊆ J then µk(α1 · · · αn) ≤ µk(β1 · · · βm). Moreover,
if I ⊊ J , then µk(α1 · · · αn) < µk(β1 · · · βm).

To prove Proposition 4.4, we use Lemma 4.5, which roughly states that inclusion of ideals
behaves similarly to the subword ordering: Inclusion is witnessed by some embedding map.

▶ Lemma 4.5. Let α1 · · · αn and β1 · · · βm be representations of ideals I and J on Σ,
respectively. If I ⊆ J , then there exists a function f : [1, n] → [1, m] such that
1. f(i) ≤ f(i + 1) for all i ∈ [1, n − 1],
2. αi is contained in βf(i) for all i ∈ [1, n],
3. if βj is a single atom, then |f−1(j)| ≤ 1

Proof sketch. For each atom α, we generate a unique word wα. If α = a ? , then wα = a. If
α = ∆ ∗ , then we fix an order on Σ and for each ∆ ⊆ Σ let w∆ be a word that contains each
letter in ∆ once, in the increasing order and set wα = wm+1

∆ . We define f so that it sends
each i to the j for which β1 · · · βj is the shortest prefix for which wα1 · · · wαi ∈ Idl(β1 · · · βj).
Then f satisfies the premises of Item 1-3. Details can be found in [27, App. B]. ◀
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Proof of Proposition 4.4. For the given ideal representations α1 · · · αn and β1 · · · βm, let
f : [1, n] → [1, m] be the embedding function introduced in Lemma 4.5.

▷ Claim. For all j ∈ [1, m], µk(βj) ≥
∑

i∈f−1(j) µk(αi)

Proof of claim. If βj is a single atom, then by Item 3, there exists at most one αi embedded
in βj and by Item 2, βj contains αi; thus αi = βj is a single atom. In this case, µk(βj) =
µk(αi) = 1. Otherwise, βj = ∆ ∗ . By Item 1, the elements of f−1(j) have to be consecutive
numbers, i.e. f−1(j) = [i1, i2]. Then f embeds αi1 , . . . , αi2 in βj . Since α1 · · · αn is reduced,
each pair αi, αi+1 is non-absorptive. Since they are all contained in βj , either |f−1(j)| = 1,
or for all i ∈ [i1, i2], |αi| < |βj | where |αi| = 0 if αi is a single atom; otherwise it is the size
of the alphabet of αi. In the case |f−1(j)| = 1, since the only atom in f−1(j) is contained in
βj , the claim trivially holds. In the latter case, the inequality (3)∑

i∈f−1(j)

µk(αi) ≤ n · (k + 1)|∆|−1
< (k + 1)|∆| = µk(βj) (3)

follows from the fact that f can embed at most n many atoms into βj and that n ≤ k. ◁

µk(β1 · · · βm) ≥ µk(α1 · · · αn) follows from the claim due to the weight of an ideal
representation being defined additively. This concludes the first part of the proof.

Assume I ⊊ J . Then there exists an αi strictly contained in βf(i), or f is not surjective.
In the latter case, equation (4) follows from our previous argument.

µk(α1 · · · αn) < µk(β1 · · · βm) (4)

In the former case, βf(i) is an alphabet atom, otherwise it cannot strictly contain αi. If αi is
a single atom, (4) follows from µk(αi) = 1. If it is an alphabet atom, (4) follows from (3). ◀

4.3 Reducing ideals
We will apply the weighting function with k being an upper bound on the path length in Ridl

(e.g. the number of states). We have seen that the weighting function is strictly monotone
on reduced ideal representations. Therefore, if all paths in Ridl had reduced ideals, we could
prove Lemma 4.1 by picking the path with the largest weight. This is because, if I1, . . . , In

are the ideals on paths of Ridl and Im has maximal µk among them, then Proposition 4.4
implies that L(A) is directed if and only if L(A) ⊆ Im: Here, the “if” is trivial. Conversely,
if L(A) is directed, then L(A)↓ = I1 ∪ · · · ∪ In is an ideal and hence I1 ∪ · · · ∪ In = Ii for
some i by Lemma 3.2. But then we must have Ii = Im, because Im ⊆ Ii by the choice of Ii,
and if Ii were a strict superset of Im, µk(Im) would not be maximal. Thus, L(A) ⊆ Im.

Thus, our next task is to transform Ridl so as to make all ideal representations reduced:

▶ Lemma 4.6. Given any partially ordered NFA R on the finite alphabet Σ, one can compute
in NL an acyclic NFA Rred over some polynomial-sized alphabet Γ ⊆ atoms(Σ) such that
Idl(L(Rred)) = L(R)↓ and the ideal representations Rred accepts are reduced.

Reducing an individual ideal representation is easy: repeatedly merge consecutive atoms, as
briefly sketched in Lemma 3.1. Reducing all ideal representations accepted by an NFA at the

same time is not obvious: For example, we cannot just merge two transitions p
{a} ∗

−−−→ q
a ?

−−→ r,
since each of them might be needed for other paths. We achieve this using transducers.
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Transducers. A transducer is a tuple T = ⟨Q, Γi, Γo, t0, F, E⟩ where Q is a finite set of states,
Γi and Γo are finite (input and output) alphabets, t0 ∈ Q is the initial state, F ⊆ Q is the set
of final states and E ⊆ Q×(Γi∪{ε})×(Γo∪{ε})×Q is the transition relation. Each transition,
reads a letter (or ε) from the input alphabet, writes a letter (or ε) from the output alphabet
and moves to a new state. A sequence r = (q1, a1, b1, q2)(q2, a2, b2, q3) · · · (qm, am, bm, qm+1)
is called a run of T if each (qi, ai, bi, qi+1) is in E for i ∈ [1, m] with t0 = q1 and qm+1 ∈ F .
For such a run, let the projection of the transitions to the input (similarly, output) alphabet
be denoted by inp(r) (similarly, out(r)). That is, for the r defined above inp(r) is the subword
of a1a2 . . . am and out(r) is the subword of b1b2 . . . bm. Then, the set of (inp(r), out(r)) over
runs r of T is called the language of T , is denoted by L(T ), and defines a rational relation
on Γi × Γo. For a set Y ⊆ (Γi)∗, T (Y ) denotes the set of words T outputs upon a run from
Y , i.e. T (Y ) = {b | a ∈ Y and (a, b) ∈ L(T )}.

Composition of two transducers is again a transducer [15,44].

Left- and right-reduced representations. We will later define two transducers TL and TR
the composition of which will take an ideal representation α1 · · · αn produced by Ridl and
return an equivalent reduced ideal representation β1 · · · βm with m ≤ n. In particular, TL will
turn α1 · · · αn into an equivalent ideal representation that is left-reduced, and TR will turn it
into an equivalent ideal representation that is right-reduced. Left- and right-reducedness are
defined as follows. An ideal representation α1 · · · αn is called left-reduced if for all i ∈ [1, n−1],
αi does not absorb αi+1. Similarly, it is called right-reduced if αi+1 does not absorb αi.
Clearly, if a representation is both left- and right-reduced, then it is reduced.

Building the transducers. Intuitively, the transducer TL scans an ideal representation
and after reading its first alphabet atom ∆ ∗ , it outputs ∆ ∗ , but then skips (i.e. reads
without producing output) all atoms that are absorbed by ∆ ∗ . Formally, we have TL =
⟨QL, Γi

L, Γo
L, t0

L, FL, EL⟩. QL contains a state corresponding to each alphabet atom in
Γ ⊆ atoms(Σ) (as given in Lemma 4.3), with a new initial state t0

L and a state t1 for all of
the single atoms. We set Γi

L = Γo
L = Γ. Let Φ be a mapping from Γ to QL, which sends

each alphabet atom to its corresponding state, and each single atom to t1. FL = QL \ {t0
L}

and EL is defined as follows;
For all α ∈ Γ, (t0

L, α, α, Φ(α)) and (t1, α, α, Φ(α)) are in EL,
For each t ∈ QL \ {t0

L, t1} and each atom α ∈ Γ, if t (as an alphabet atom) does not
absorb α (as an atom), then (t, α, α, Φ(α)) is in EL.
For each t ∈ QL \ {t0

L, t1} and each atom α ∈ Γ, if t absorbs α, then (t, α, ε, t) is in EL.

It is easy to see that for an ideal representation α1 · · · αn, TL(α1 · · · αn) is left-reduced
and represents the same ideal. Clearly the size of QL, as well as the sizes of the alphabets is
polynomial. Furthermore, for a word w and all (inp(w), out(w)), | out(w)| ≤ | inp(w)|.

Reversing the edges and flipping the initial and final states of TL we obtain the reverse
transducer TR. It can be inductively shown that for any ideal representation α1 · · · αn,
TR(α1 · · · αn) is right-reduced. To show Lemma 4.6, we will apply the composition TL ◦TR to
L(Ridl). Here, we need to show that applying TL after TR does not spoil right-reducedness:

▶ Lemma 4.7. If α1 · · · αn is right-reduced, then TL(α1 · · · αn) is also right-reduced.

Proof. Since α1 · · · αn is right-reduced, for i ∈ [1, n], αi+1 does not absorb αi. By construc-
tion, TL(α1 · · · αn) is a subword of α1 · · · αn, say αi1 · · · αik

. We show that for all j ∈ [1, k],
αij+1 does not absorb αij . Let ij = k and ij+1 = k′. If k′ = k +1, then the claim follows from
the right-reducedness of α1 . . . αn. Otherwise, αk absorbs all atoms between itself and αk′ .
In particular it absorbs αk′−1. Since αk′ does not absorb αk′−1, it cannot absorb αk. ◀
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Thus, by applying TL ◦ TR to L(Ridl), we obtain an NFA that reads ideal representations
of the same set of ideals (i.e. L(A)↓) and every ideal representation is reduced. The resulting
NFA Rred can be computed in NL. For details of the construction, see [27, Corollary B.5].

4.4 Deciding directedness
We now present our algorithms to decide directedness for a given NFA. We first complete
the proof of Lemma 4.1. For this, in light of Lemma 4.6 and Proposition 4.4, it remains to
compute a path of Rred of maximal weight.

Computing the maximal weight. It is well known that the maximum weight path problem
can be reduced to matrix multiplication over the max-plus semiring [3, Lemma 5.11]. This
yields AC1 (resp. NL) algorithms for binary (unary) encoded weights [22]. For completeness
sake we provide a proof of this fact. Let Rred = (Qred, Γ, δred, q0

red, F red) be the NFA from
Lemma 4.6. We may assume Rred has a unique final state qf

red, is acyclic except for an ε

self-loop in qf
red, and between each pair of states, there is at most one edge. The goal is to

compute, for each state q, the maximal weight of any path starting in q.
Let m = |Qred|. Since Rred is acyclic apart from the self-loop on qf

red, any ideal
representation accepted by Rred has length ≤ m. Observe that due to the ε-loop on qf

red,
every ideal α1 · · · αn ∈ L(Rred) is read on some path of length exactly m. We want to find
an accepted path with the maximum summation of m-weights of each transition (recall
that µm(ε) = 0). To do so, we fix an order {q1, . . . , qm} on the states of Qred such that
q1 := q0

red and qm := qf
red and construct a m × m-matrix M, the elements of which takes

values from the max-plus semiring (N ∪ {−∞}, +, max, 0, −∞). For each i, j ∈ [1, m], we
set M(i, j) to (i) µm(x), if there is an edge (qi, x, qj) ∈ δred with x ∈ atoms(Σ) ∪ {ε}, (ii)
−∞, otherwise. We can now apply the standard fact from weighted automata that for every
n ≥ 0, in the matrix power Mn, the entry (i, j) is the maximum weight of all paths of length
exactly n from qi to qj [3]. Therefore, the largest weight among all paths from qs to qm is
the entry (s, m) in the matrix power Mm. A single matrix product can be computed in
AC0 since binary addition and the maximum of multiple numbers can be computed in AC0.
Moreover, for n given in unary, a matrix power Mn can be computed in AC1 by repeated
squaring: One writes n =

∑ℓ
i=0 bi2i with b0, . . . , bℓ ∈ {0, 1} and computes M′

0 = Mbℓ ,
M′

i = (M′
i−1)2 · Mbℓ−i , yielding Mn = M′

ℓ. Thus, by applying the (constant depth) AC0

circuit for matrix multiplication ℓ ∈ O(log n) times, we obtain a circuit of logarithmic depth.
In particular, we can compute Mm, and hence the maximal path weights Mm(s, m), in AC1.

In case the alphabet is fixed, we compute the maximal weights in NL. Observe that in
this case, all weights µm(α) for atoms α ∈ atoms(Σ) have µm(α) ≤ (m + 1)|Σ|, which is
polynomial as |Σ| is constant. In particular, all the maximal path weights from qs to qm, are
bounded by m · (m + 1)|Σ| and can be stored in logarithmic space. Thus we can proceed
as follows. Given s ∈ [1, m], for every ℓ = m · (m + 1)|Σ|, . . . , 0, we decide in NL whether
there exists a path of weight ℓ from qs to qm. If so, then ℓ is the maximal weight. Since
NL = coNL, we can also determine the non-existence of such a path and continue with ℓ − 1.

Computing a maximal-weight ideal representation. We have now computed, for each
s, the maximal weight Ms of any path from qs to the final state qm. For Lemma 4.1, we
now need to compute in NL a path from q1 to qm of maximal weight. Here, it is important
that this computation only depends on the input (even though our NL computation is
non-deterministic). Starting from q1, we successively compute the next transition in our
path. If qi is the current state, then we compute the next state qj as follows. We compute
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Figure 1 Initial automaton A on alphabet {a, b, c, d, e, f} and the corresponding R, Ridl and
Rred are depicted. The initial states of the automata are marked with a half arrow sign and the
final states are encircled. Since Rred has 10 states all ideal representations in L(Rred) contain
≤ 10 atoms. Therefore, m is set to 10 and we calculate the maximal 10-weight ideal, which is
I = Idl({a, b} ∗ · c ? · {d, e} ∗ · {a, c, f} ∗ ) with the 10-weight 113 + 2 · 112 + 1. L(A) ↓̸⊆ I witnessed
by cb ∈ L(A) ↓ \I; proving that L(A) is not directed.

M as the maximal Mℓ, where qℓ ranges over all states reachable in one step from qi. Then,
we pick the smallest j with Mj = M . This way, we successively output a path of maximal
weight, such that the path only depends on the input. This completes Lemma 4.1.

Deciding directedness. The upper bounds in Theorems 2.1 and 2.2 follow by applying
Lemma 4.1 to obtain an ideal α1 · · · αn, either in AC1 if Σ is part of the input, or in NL for
fixed Σ. Finally, checking whether L(A)↓ ⊆ Idl(α1 · · · αn) can be done in NL [50].

5 Solution on Context-free Languages

We now prove Theorem 2.3. As in Section 4, the upper bound uses the weighting function to
compute a candidate ideal in L(G)↓. However, the ideal representation may be exponentially
long and will thus be compressed by a straight-line program. For the lower bound, the key
idea is to employ a construction from [12] to compute a compressed ideal that contains all
words of some length N (given in binary), except a particular word specified as an SLP.

5.1 Deciding directedness of context-free languages
We begin with the PSPACE upper bound, which requires some terminology. A context-free
grammar (CFG) is a tuple G = ⟨N, Σ, P, S⟩ where N is the finite set of nonterminals, Σ
is the finite set of terminals, or the finite alphabet, S ∈ N is the start nonterminal and
P ⊆ N × (N ∪ Σ)∗ is the finite set of productions. We use the arrow notation to denote
productions. A → w denotes (A, w) ∈ P . We write w →∗ w′ for some w, w′ ∈ (N ∪ Σ)∗ to
express that w′ can be produced by w through a finite sequence of productions.

For w ∈ (N ∪ Σ)∗, we denote by L(w) = {w′ ∈ Σ∗ | w →∗ w′} all sequences of terminals
w can produce and call it the language of w. We define the language of a grammar to be
the language of its start nonterminal. That is, L(G) := L(S). WLOG we assume that all
nonterminals are reachable from S. A CFG is said to be in Chomsky Normal Form (CNF), if
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all its productions are of the form A → BC, A → a or S → ε, where A, B, C, S ∈ N , a ∈ Σ
and B, C ̸= S. It is well known that one can bring a given grammar into CNF in polynomial
time. A CFG G is called acyclic, if non of its nonterminals produce itself.

A straight line program (SLP) is a CFG that produces a single word. Formally, an SLP
is a CFG G = ⟨N, Σ, P, S⟩ where (i) for each A ∈ N , there is exactly one production A → w

in P , (ii) G is acyclic. We denote the unique word a1 · · · an an SLP A produces by val(A). If
the letters of A belong to atoms(Σ), val(A) is an ideal representation over Σ. Thus A is a
compressed ideal representation for I = Idl(val(A)), or shortly compressed ideal I.

Our algorithm is analogous to the one for NFAs. First, an analogue of Lemma 4.1:

▶ Lemma 5.1. There is a polynomial time algorithm that given a non-empty CFG G,
computes a compressed ideal I ⊆ L(G)↓ such that L(G)↓ is directed if and only if L(G)↓ ⊆ I.

And given Lemma 5.1, it remains to decide whether L(G) ⊆ I:

▶ Lemma 5.2. Given any CFG G and a compressed ideal I, one can decide in PSPACE
whether L(G) ⊆ I.

A grammar of ideals. The remainder of this subsection is devoted to Lemmas 5.1 and 5.2.
Analogously to Lemma 4.3, we first transform G into an acyclic grammar Gidl that produces
ideal representations of an ideal decomposition of L(G)↓.

▶ Lemma 5.3. Given any CFG G in CNF over Σ, one can compute in polynomial time an
acyclic CFG Gidl over a polynomial-sized alphabet Γ ⊆ atoms(Σ) with Idl(L(Gidl)) = L(G)↓.

The procedure is similar to Courcelle’s construction [23] (see [27, App. C] for details).

Reducing ideals. The next step is analogous to Lemma 4.6: We want to transform Gidl

so as to only produce reduced ideal representations. Luckily, we can directly apply the
transducers TL and TR constructed for Lemma 4.6: Since for a given CFL K and a transducer
T , one can compute in polynomial time a grammar for T (K) [44], we obtain the following:

▶ Lemma 5.4. Given any CFG G in CNF over alphabet Σ, one can compute in polynomial
time an acyclic CFG Gred in CNF over some polynomial-sized alphabet Γ ⊆ atoms(Σ) such
that (i) Idl(L(Gred)) = L(G)↓ and (ii) all ideal representations in L(Gred) are reduced.

Similar to Lemma 4.6, we apply TL ◦ TR to L(Gidl) (see [27, Lem. C.1]) and convert to CNF.

Calculating the maximum weight ideal. Similar to Section 4, the next step is to compute
for each nonterminal A of Gred the maximal weight of any ideal representation produced by
A. Let Gred = ⟨Nred, Γ, P red, Sred⟩ denote the grammar from Lemma 5.4. With the same
argument as in Section 4, an ideal of maximal weight will be as desired in Lemma 5.1. We
use the weighting function µm, where m = 3 · 22|Nred| is an upper bound on the length of
words in Gred. A notable difference to Section 4 is that here m is exponential.

For each nonterminal A of Gred, we denote by µm(A) the maximal possible weight of any
ideal representation generated by A. To calculate µm(A) for each A, we employ a simple
dynamic programming approach. We maintain a table T that contains for each nonterminal A

a number T (A) ∈ N, which is the maximal weight of a derivable ideal representation observed
so far. We initialize T (A) = −∞ for every A. Then, we set T (A) to the maximal value of
µm(a), where a ranges over all a ∈ atoms(Σ) for which A → a is a production. Finally, we
perform the following update step. For each nonterminal A, if there is a production A → BC
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such that currently T (A) is smaller than T (B)+T (C), then we update T (A) := T (B)+T (C).
It can be shown by induction that after i update steps, T (A) contains the correct value µm(A)
for each nonterminal A that has a depth ≤ i derivation tree that attains µm(A). When we
apply the update step |Nred| times, we arrive at T (A) = µm(A) for every nonterminal A.

Computing the candidate ideal. Given the numbers µm(A), it is easy to prove Lemma 5.1.
For each nonterminal A, there must exist a “max-weight” production A → BC, resp. A → a,
such that µm(A) = µm(B) + µm(C), resp. µm(A) = µm(a). We build a new grammar S
by selecting for each nonterminal A of Gred this max-weight production. Then S contains
at most one production for each nonterminal and is thus an SLP. Moreover, it clearly
generates an ideal representation val(S) of maximal weight. We only need to argue that
L(G) is directed iff L(G) ⊆ Idl(val(S)). As before, the “if” direction is obvious, because
L(G) ⊆ Idl(val(S)) implies that L(G) is an ideal. Conversely, suppose L(G) is directed and
let L(G)↓ = I1 ∪ · · · ∪ In be the ideal decomposition given by L(Gred) with Idl(val(S)) = Ii.
Since L(G) is directed, L(G)↓ is an ideal and thus I1 ∪ · · · ∪ In = Ij for some j by Lemma 3.2.
In particular, we have Ii ⊆ Ij . Moreover, if the inclusion were strict, Ii would not have
maximal weight. Hence, Ii = Ij and thus L(G) ⊆ Ii = Idl(val(S)) as required.

Deciding directedness. With Lemma 5.1 in hand, it remains to prove Lemma 5.2. Suppose
we are given a grammar G and an SLP S for I = Idl(val(S)), and we want to check
L(G) ⊆ val(S). Since this is equivalent to L(G)↓ ⊆ val(S), we first construct Gred given
in Lemma 5.4. Recall that L(Gred) generates representations of ideals of L(G)↓. The
algorithm guesses an ideal representation in L(Gred) whose ideal does not embed in I.

We guess an ideal representation generated by Gred, atom by atom, via its leftmost
derivation. This word can be exponentially long, but we only store one (polynomial-length)
path in the derivation tree, leading to the terminal atom that we are currently guessing
(see [27, App.D] for an example). While guessing the representation, we simultaneously
maintain a (binary encoded) pointer into val(S). Suppose α1 · · · αj−1 is guessed so far. While
αj is being guessed, the pointer holds the length of the shortest prefix of val(S), α1 · · · αj−1
embeds in. Let val(S)[i] denote the ith index of val(S). If there is an atom val(S)[i′] with
i′ ≥ i (if val(S)[i] is an alphabet atom) or i′ > i (if val(S)[i] is a single atom) that αj embeds
in, we update the pointer to the smallest such i′. If there is no such atom, the guessed ideal
does not embed in I. On the other hand, if j − 1 is the last atom guessed, then the guessed
ideal embeds in I. Details are in [27]. This establishes Lemma 5.2 and thus Theorem 2.3.

5.2 PSPACE Lower Bound
Let us now come to the lower bound in Theorem 2.3. It remains to show:

▶ Lemma 5.5. Given a CFG G over {0, 1}, directedness of L(G) is PSPACE-hard.

To this end, we reduce from compressed membership in automatic relations. Given
two words u = a1 · · · an, v = b1 · · · bn ∈ {0, 1}∗, their convolution is defined as u ⊗ v =
(a1, b1) · · · (an, bn) ∈ ({0, 1} × {0, 1})∗. The following was shown in [39, Corollary 8]:

▶ Lemma 5.6. There exists a regular language R ⊆ ({0, 1} × {0, 1})∗ such that for given
two SLPs A and B with | val(A)| = | val(B)|, deciding val(A) ⊗ val(B) ∈ R is PSPACE-hard.

From Lemma 5.6, we deduce the following:

▶ Lemma 5.7. Given an SLP B and a CFG G such that all words in L(G) have length
exactly | val(B)|, both over the alphabet Σ = {0, 1}, deciding val(B) ∈ L(G) is PSPACE-hard.
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Proof. We reduce from the PSPACE-complete problem in Lemma 5.6. Let R be the regular
language from Lemma 5.6, and let A and B be SLPs with n = | val(A)| = | val(B)|. Observe
that val(A) ⊗ val(B) ∈ R if and only if val(B) belongs to the language K = {w ∈ {0, 1}n |
val(A) ⊗ w ∈ R}. We can construct a context-free grammar G for K in polynomial-time by
viewing an automaton for R as a transducer and applying it to the SLP A. ◀

Now in order to reduce the compressed membership problem val(B) ∈ L(G) in Lemma 5.7
to an inclusion L(G) ⊆ I, the key trick is to construct an ideal I that acts like a complement
of {val(B)}. We expect that this will be of independent interest.

▶ Lemma 5.8. Given an SLP B over Σ, one can construct in polynomial time an SLP I over
atoms(Σ) so that Idl(val(B)) is infinite and Idl(val(I)) ∩ Σ| val(B)| = Σ| val(B)| \ {val(B)}.

The proof uses a construction from [12]. The authors of the latter were interested in defining
languages in the existential fragment of first-order logic over the structure the set Σ∗, ordered
by ≼. In one step [12, Lemma 3.1], given a word u ∈ Σ∗, they construct a word w̄ ∈ Σ∗

such that {w̄}↓ ∩ Σ|w| = Σ|w| \ {w}. To this end, they write w = a1 · · · an and define
ui to be a word that contains every letter from Σ, except for ai. Then, they argue that
w̄ = u1a1 · · · un−1an−1un is as desired. Here, we cannot use w̄ directly, because we want I

to be infinite. However, we can use a similar construction.

Proof of Lemma 5.8. Suppose val(B) = b1 · · · bn and define I = Idl(w) with

w = (Σ \ {b1}) ∗ · b1
? · (Σ \ {b2}) ∗ · b2

? · · · (Σ \ {bn−1}) ∗ · bn−1
? · (Σ \ {bn}) ∗

.

We first show I ∩ Σn = Σn \ {val(B)}. Clearly, b1 · · · bn ̸∈ I: Let ji be length of the
shortest prefix of w whose ideal contains b1 · · · bi. Clearly j1 = 2, since the first atom
(Σ \ {b1}) ∗ does not embed b1. Inductively we get j2 = 4, . . . , jn−1 = 2n − 2, which
leaves only the last atom (Σ \ {bn}) ∗ to embed bn, but this is not possible. We now
prove Σn \ {b1 · · · bn} ⊆ I. Let c1 · · · cn ≠ b1 · · · bn and choose d minimally with cd ≠ bd.
Let hi to be the length of the of shortest prefix of w whose ideal contains c1 · · · ci. Then
hd−1 = jd−1 = 2d−2. Since cd differs from bd, it embeds in the (2d−1)-th atom (Σ \ {bd}) ∗ ,
i.e. hd = 2d − 1. The remaining (n − d)-length suffix cd+1 · · · cn embeds in the 2(n − i) length
suffix (Σ \ {bd}) ∗ · bd

? · · · (Σ \ {bn−1}) ∗ · bn−1
? : Indeed, since (Σ \ {bk}) ∗ · bk

? embeds
every letter, the aforementioned suffix even embeds every word from Σn−d.

It remains to be shown that we can compute an SLP for w. Note that w is almost a homo-
morphic image of val(B). Given SLP B, we obtain an SLP I′ for w by replacing each production
A → b with A → (Σ \ {b}) ∗

b ? . Then, val(I′) = (Σ \ {b1}) ∗ · b1
? · · · (Σ \ {bn}) ∗ · bn

? . To
get w exactly, we construct I so that val(I) is val(I′) without its last letter. It is easy to see
that this can be done in polynomial time (it follows, e.g. from [43, Theorem 7.1]). ◀

We are now ready to prove Lemma 5.5. Given a grammar G and an SLP B as in Lemma 5.7,
we use Lemma 5.8 to construct an SLP I with Idl(I)∩Σ| val(I)| = Σ| val(I)| \{val(B)}. Observe
that now val(B) /∈ L(G) if and only if L(G) ⊆ Idl(I). Moreover, observe that L(G) is finite
and Idl(I) is infinite. Therefore, the following lemma implies that val(B) /∈ L(G) if and only
if the context-free language L(G) ∪ Idl(val(I)) is directed, yielding PSPACE-hardness.

▶ Lemma 5.9. For finite L ⊆ Σ∗ and an infinite ideal I, we have L ⊆ I iff L ∪ I is directed.

STACS 2024
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Proof. Clearly, if L ⊆ I, then L ∪ I = I is an ideal and thus directed. Conversely, suppose
L ∪ I is directed. Consider an ideal decomposition L↓ = I1 ∪ . . . ∪ In. Here, all Ii are finite
since L is finite. Since L ∪ I is directed, the downward closure (L ∪ I)↓ must coincide with
one of the ideals in the ideal decomposition (L ∪ I)↓ = I1 ∪ . . . ∪ In ∪ I. Since I is the only
infinite ideal, this is only possible with (L ∪ I)↓ = I. In particular, L ⊆ I. ◀

6 Downward closure comparison

Regular languages. We now show how to obtain Theorem 2.4 as a byproduct of our results.
For the upper bounds, we use Lemma 4.1 to compute, in AC1 resp. NL, a candidate ideal Ii

for each input language Li. Since L1 and L2 are directed, we must have Li↓ = Ii and we
can decide in deterministic logspace whether I1 = I2 [50]. This yields an NL upper bound
for fixed alphabets and an AC1 upper bound for arbitrary alphabets.

For the NL lower bound, we reduce from emptiness of NFAs: Given an NFA A, we may
assume that all transitions are labeled with the empty word ε. We take an NFA A′ that just
accepts {ε}. Then L(A) ̸= ∅ if and only if L(A′)↓ = L(A)↓, proving NL-hardness.

Context-free languages. We now show Theorem 2.5. We first use Lemma 5.1 to compute
an SLP Ai for a candidate ideal for each Li. By directedness, Li↓ = Idl(val(Ai)). To decide
Idl(val(A1)) = Idl(val(A2)), we use the fact that two reduced ideal representations yield
the same ideal if and only if they are syntactically identical [33, Theorem 6.1.12]. To check
val(A1) = val(A2) we may apply the well-known result of Plandowski [42] that equality of
SLPs can be decided in polynomial time (see also [40]).

For the P lower bound, we reduce from emptiness of CFL: Given a CFG G, we may
assume that the only word G can produce is the empty word (otherwise, just replace all
occurrences of terminal letters with the empty word). We also take a grammar G′ with
L(G′) = {ε}. Then clearly, L(G) ̸= ∅ if and only if L(G)↓ = L(G′)↓, yielding P-hardness.

7 Conclusion

We have initiated the investigation of the directedness problem and determined the exact
complexity for context-free languages and for NFAs over fixed alphabets. Over variable
alphabets, we show an AC1 upper bound for NFAs. Despite serious efforts, we leave the exact
complexity open. Note that the complexity of directedness is the same for DFAs and NFAs
[27, App.F]. Also, the complexity of the maximum weight path problem is not known [22].

The developed techniques could be of independent interest. The idea to analyze ideals by
their weights might apply to other procedures for reachability involving ideals [16–18,25, 26,
36–38]. Furthermore, our PSPACE lower bound can be viewed as progress towards resolving
the complexity of the compressed subword problem: Our lower bound applies in particular to
deciding L ⊆ I for context-free L and a compressed ideal I. Compressed subword, on the
other hand, is equivalent to deciding I ⊆ J for compressed ideals I, J . As mentioned before,
it is a long-standing open problem to close the gap between the PP lower bound and the
PSPACE upper bound [39] (see [40] for a survey) for compressed subword.

The surprisingly low complexity of downward closure equivalence (DCE) for directed CFL
calls for an investigation of further applications of directed CFL. As previously stated, safety
properties of concurrent programs only depend on the downward closure of the participating
threads [5, 11,41]. It is conceivable that deciding safety [5, 13] or other notoriously difficult
problems such as refinement [10] are more tractable for directed threads as well.
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Abstract
In the Online Simple Knapsack problem, an algorithm has to pack a knapsack of unit size as full
as possible with items that arrive sequentially. The algorithm has no prior knowledge of the length
or nature of the instance. Its performance is then measured against the best possible packing of all
items of the same instance, over all possible instances.

In the classical model for online computation, it is well known that there exists no constant
bound for the ratio between the size of an optimal packing and the size of an online algorithm’s
packing. A recent variation of the classical online model is that of predictions. In this model, an
algorithm is given knowledge about the instance in advance, which is in reality distorted by some
factor δ that is commonly unknown to the algorithm. The algorithm only learns about the actual
nature of the elements of an input once they are revealed and an irrevocable and immediate decision
has to be made. In this work, we study a slight variation of this model in which the error term, and
thus the range of sizes that an announced item may actually lay in, is given to the algorithm in
advance. It thus knows the range of sizes from which the actual size of each item is selected from.

We find that the analysis of the Online Simple Knapsack problem under this model is
surprisingly involved. For values of 0 < δ ≤ 1

7 , we prove a tight competitive ratio of 2. From there on,
we are able to prove that there are at least three alternating functions that describe the competitive
ratio. We provide partially tight bounds for the whole range of 0 < δ < 1, showing in particular
that the function of the competitive ratio depending on δ is not continuous.
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1 Introduction

The Online (Simple) Knapsack problem has received a lot of attention since it has been
found to be non-competitive in the classical model for online computation by Marchetti-
Spaccamela and Versellis [27].

In this model, an online algorithm receives a finite sequence of requests, one item after
another. It has no knowledge of the nature of future items or the length of the sequence, and
is tasked to either pack a given item into a knapsack of unit size or to reject it. Every decision
is irrevocable. The objective of the algorithm is to maximize the sum of sizes of packed
items in the knapsack, without this sum exceeding the knapsack size of 1. Its performance is
measured against the best possible packing of the same sequence of items. The worst ratio
between this optimal packing and the packing of an algorithm over all possible sequences is
then called the competitive ratio of the algorithm, as first defined by Sleator and Tarjan [29].
For a more thorough introduction to competitive analysis, we refer to the books by Borodin
and El-Yaniv [13] and by Komm [24].
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The classical counterexample to show that even the Online Simple Knapsack problem
is not competitive, is arguably pathological: An adversary chooses between two instances
with an identical prefix of an arbitrarily small first item of size ε > 0. The first instance only
contains this small first item, while a second instance contains an item of size 1 as the second
item. Depending on whether a given algorithm deterministically discards or packs this first
item, the first or the second instance is given to the algorithm, resulting in an unbounded
competitive ratio.

Thus, many variations of the problem itself or indeed the classical online model itself
have been studied, each aiming to disallow these pathological instances. We will only give an
incomplete list of all studied variants. The variations of the problem itself include allowing
an online algorithm to pack a slightly larger knapsack than the offline counterpart, called
resource augmentation by Iwama and Zhang [22] and allowing an algorithm to intermediately
store items in a buffer of a certain size, as introduced by Han et al. [18]. Thielen, Tiedemann
and Westphal [31] studied a model in which the capacity of the knapsack increases step-wise
over a given number of discrete time periods. Iwama and Taketomi [21] introduced a variation
in which packed items could be removed (also called preempted) from the knapsack, not to
be packed again. Building on this result, Han and Makino [19] additionally allowed for a
limited number of cuts, i.e. splitting of items into two sub-items. Zhou, Chakrabarty and
Lukose [33] analyzed the online knapsack problem under the assumption that the size of
each item is much smaller than the knapsack capacity and the ratio between the value and
the weight of an item is bounded within a given range [L, U ]. Further variations include
allowing for randomization and allowing for an oracle to communicate information about the
instance via so-called advice bits. These variations were studied by Böckenhauer et al. [12].
The recently introduced model by Böckenhauer et al. [11] of reservation costs allows to pay
a fee for a presented item in order to delay a decision on it for an arbitrary amount of time.

When acting in an online setting, the assumption that the future is completely unknown
is often unrealistic. When buying boxes for moving to a different house, one usually has a
pretty good idea of what one owns and can then buy a number of boxes on this estimate.
When planning to drive a group of friends home, one can already pre-plan a route with the
rough knowledge on where these persons actually live.

A common theme is thus that the knowledge of the world and the future is actually
not unknown, on the contrary: it is often known but the details are uncertain. If we want
to model this kind of behavior, we could thus assume that an instance is already given in
advance: all elements are revealed beforehand. When the elements arrive, i.e. we have to
actually pack the moving boxes or ask our friends where they live, we learn the actual nature
of the element. For the sake of a simple model, let us assume that the actual number of
elements is correctly given. We also assume that our estimates do not deviate beyond a
certain bound, i.e., that the maximum uncertainty is bounded and this bound is known in
advance.

2 Problem Definitions and Notation

We will abuse notation by using xi for both the label of an item and for the size (or gain) of
the same item.

▶ Definition 1 (The Online Simple Knapsack with Bounded Predictions Problem).
Given a constant δ ∈ [0, 1], called distortion. Given a set of items I = (x1, . . . , xn) as a
request sequence of items that arrive sequentially. Let P = (x−

1 , . . . , x−
n ) be a sequence of

items called the prediction such that xi ∈ [x−
i , min(x+

i , 1)], where x+
i := 1+δ

1−δ x−
i . Let K be an
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initially empty set called the knapsack. An algorithm is given P and δ before the first item
of I is revealed. At each step i ∈ {1, . . . , n}, the item xi of the request sequence is given. An
algorithm then has one of the following options:

Pack If
∑

xk∈K xk + xi ≤ 1, set K := K ∪ xi .
Reject Do nothing.

The Online Simple Knapsack with Bounded Predictions problem (Oskp) is then
for an algorithm ALG to maximize the sum of items in K, i.e.

∑
xk∈K xk.

We will write P[i,n] to denote the infix of P from index i to n, including both endpoints.
When referring to an item x−, we will sometimes speak of the minimum (possible) size of an
item, as well as speaking of the maximum (possible) size of an item when referring to an
item x+. For every instance I with predictions P , we define b− := max P as the announced
largest item of the instance. This is of course not necessarily the item of largest actual size.
If b− is not unique, we refer to the first of such items regarding the ordering of the prediction
sequence.

Note that restricting the maximum actual size of items to 1 is necessary to ensure
competitiveness, as otherwise the classical counterexample by Marchetti-Spaccamela and
Vercellis [27] can be reconstructed by letting P = (ε, 1) for some ε > 0 and setting the second
item to a value larger than one if an algorithm rejects the first item.

Strictly speaking, any competitive ratio given in this work is a function of a fixed value δ.
To simplify notation, we will write c for c(δ), as it is always either clear from the context or
not of relevance which concrete δ the competitive ratio refers to.

3 Related Work and Our Contributions

It is important to note the difference between this model and the one of machine learned
advice, which has recently been called untrusted predictions or just predictions. The latter
has been introduced by Lykouris and Vassilvitskii [26] and works as follows. An algorithm
is given a prediction on the input, just as is in our model. However, no bound is given on
the error, which is rather treated as a variable and algorithms are designed with the aim
of them meeting three characteristics. The aim in algorithm design in this model is that
they output an optimal solution when the given prediction is correct (consistency), that
they perform as well as a regular online algorithm on the problem when the predictions
become arbitrarily bad (robustness) and that they degrade with increasing unreliability of
the prediction (smoothness).

The very important difference between this model and ours, the first one, is that the
algorithm is given knowledge about the maximum error that it can expect, namely δ, as part
of its input. Classically, this error term is unknown and an algorithm is to perform as well
as possible. We believe this model to be equally reasonable as that without bounds on the
predictions, as it is not unnatural for a person to be sure that their prediction will not be
arbitrarily far off from the truth.

The classical prediction model has seen a big influx of results in the past few years, with
the model being applied to several different online problems, such as scheduling [25, 14, 7],
metric algorithms [2, 3], matching problems [16, 23], spanning tree problems [17, 10] and
many more. Our modified model is, however, not our original modification. Azar et al. [5]
recently discussed scheduling problems based on this model, where they developed algorithms
that can learn about the maximum distortion and make decisions based upon this value. In a

STACS 2024



37:4 Online Simple Knapsack with Bounded Predictions

more recent work, they extended their analysis to the scheduling on multiple machines [6], in
which they also analyzed the case in which an algorithm is oblivious to the actual distortion
of the instance.

In order to avoid confusion, as Azar et al. still speak of problems with predictions in
their works, we name this specific model bounded predictions in the context of this work. We
believe that using this slightly modified version of the original prediction model can yield an
even more fine-grained way of worst-case analysis, when one can assume that an oracle can
only be wrong up to a known, bounded degree.

While we assume that an adversary is able to control both the predicted instance and
the actual distortion of the items, there is a related model of smoothed analysis, in which an
adversary can fix an instance, which is then subject to some random (commonly Gaussian)
distortion, or noise. This model of an adversary not having complete control over its prepared
instance was first made popular when showing that the simplex algorithm runs in expected
polynomial time when its input is subjected to such random noise [30]. Since then, there
was a large influx of results in this area for a wide range of problems, such as multi-level
feedback algorithms [8], analyzing the k-means method [4] for clustering, and especially
the 0/1 knapsack problem [9]. The model of smoothed analysis thus gives evidence that
the worst-case running time or worst-case approximation ratios often seem to suffer from
very specific and limited adversarial inputs which break down if even only a very slight
perturbation of the instance is given. This model of an announced instance being perturbed
has been studied in slight variations already. The robust knapsack problem by Monaci,
Pferschy and Serafini [28] is very similar in that it also allow for an uncertain input with
a multiplicative factor, but the authors look at offline algorithms that see the complete
permuted instance at once and are compared to the performance of a non-perturbed instance.
Im et al. [20] recently looked at the general knapsack problem, which they study under a
model predicting the frequency of items of each size. Angelopoulos, Kamali and Shadkami [1]
look at the online bin packing problem with predictions on the frequency of item sizes in the
instance. Boyar, Favrholdt and Larsen [15] very recently studied the online simple knapsack
problem with predictions, but working with predictions on the average size of the items
an optimal solution would pack. Xu and Zhang [32] recently studied the simple knapsack
problem in a learning-augmented setting, where they design algorithms that are able to learn
and use the error of prediction.

We study the behavior of the Oskp problem with a distortion of 0 < δ < 1. The difference
between the predicted size and the actual size of an item is determined by a relative error.

While we are not able to give tight bounds on the competitive ratio for all values of δ

between 0 and 1, we are able to carve out the following, partial picture, which is visualized
in Figure 1, with the bounds that we prove also given in Table 1. For reasons of readability,
we will refrain from stating these terms found in the table in the following text. They will of
course be stated in their respective theorems later.

Up to δ ≤ 1
7 , we give a tight bound of 2 on the competitive ratio. From there on, three

bounds on the competitive ratio repeat periodically, given a fixed k ∈ N: Between values
of δ between k2+k−1

k2+3k+3 and δk (as defined in Table 1), we are able to prove a tight bound of√
(2 + k) 1+δ

1−δ . From δk to −1 − k +
√

4k + k2, we are able to prove a non-matching lower
and upper bound. For the penultimate segment of −1 − k +

√
4k + k2 ≤ δ ≤ 1

k+2 , we give a
matching upper and lower bound. The final segment, which connects to the first segment for
the next higher value of k, we are again only able to prove a non-matching pair of bounds.
Noticeably, the function of the competitive ratio depending on δ is not continuous between
segments two and three.
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Table 1 Competitive ratios of the Oskp problem, given a fixed k ∈ N and distortion δ.

Distortion Competitive ratio

0 < δ ≤ 1
7 2

k2+k−1
k2+3k+3 < δ ≤ δk

√
(2 + k) 1+δ

1−δ

δk ≤ δ < −1−k+
√

4k+k2 ≥
√

(2 + k) 1+δ
1−δ

|≤ (1+δ)(
√

−1+δ2+
√

−17−16δ+δ2−16k)

4
√

−1+δ2

−1−k+
√

4k+k2 ≤ δ ≤ k
k+2

(1+δ)(
√

−1+δ2+
√

−17−16δ+δ2−16k)

4
√

−1+δ2

k
k+2 < δ < k2+k−1

k2+3k+3 ≥ 1+k
2 −

√
(−1+δ)(−5−k(2+k)+δ(−1+k)(3+k))

−2+2δ
|≤ 1+δ+

√
5+2δ−3δ2

2−2δ

where δk := 12k+8

32
2
3 (3

√
3
√

4k3+11k2+28k+44−9k−34)
1
3

+ 1
3 2

2
3 (3

√
3

√
4k3 + 11k2 + 28k + 44 − 9k − 34)

1
3 + 5/3
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Figure 1 Competitive ratio of the Oskp problem, depending on the distortion δ. The gray areas
signify a gap between the best known lower and upper bounds.

To the best of our knowledge, our work is the first one systematically analyzing a knapsack
problem in the setting of predictions, where the distortion (or error) is linked to the size of
the presented items. We show that the additional knowledge of a bound on the distortion
can significantly help an online algorithm to choose an appropriate strategy, as e.g. the
algorithms used for the repeating segments two and three differ in their nature. Thus, a
much more fine-grained analysis is possible. Noticeably, even for an uncertain prediction
where the actual value of an item may deviate by a factor of three from its prediction, one
can guarantee a competitive ratio of less than four. Yet, even for arbitrarily small distortions,
no competitive ratio better than two can be achieved.

The remainder of this work is structured as follows: We analyze the model of relative
errors by first proving a number of helpful structural lemmata in Section 4, followed by
upper bound proofs in Section 5 and lower bounds in Section 6. We conclude with a short
discussion of open problems and possible future work in Section 7.
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4 Structural Observations

When trying to design algorithms that are supposed to achieve some given competitive
ratio c ≥ 1, there are many instances for which a solution can be found more or less trivially.
Since these solutions have to be handled explicitly by almost every of our algorithms, we
handle them such that we can refer to them in our algorithm designs without risking
redundancy. We first start with four very simple cases, that nevertheless need to be explicitly
handled by our algorithms.

The first lemma deals with instances of very small total size.

▶ Lemma 2. Any instance I of the Oskp problem with predictions P , such that
∑

x−∈P x− ≤
1−δ
1+δ , can be solved optimally by packing all items greedily.

Proof. Since x+ ≤ 1+δ
1−δ x−, it holds that

∑
x∈I x ≤

∑
x−∈P

1+δ
1−δ x− = 1+δ

1−δ

∑
x−∈P x− ≤

1+δ
1−δ

1−δ
1+δ = 1. Thus, all items of the instance are guaranteed to fit into the knapsack. ◀

The second lemma explicitly deals with instances that contain a subset of items that is
both guaranteed to fit together and of sufficient size.

▶ Lemma 3. Any instance I of the Oskp problem with predictions P such that there is some
S ⊆ P such that

∑
x−∈S x− ∈ [ 1

c , 1−δ
1+δ ] can be solved with a competitive ratio of at most c by

packing exactly S.

Proof. By definition, the items of S are both guaranteed to fit together in the knapsack and
guaranteed to be of total size at least 1

c . ◀

The third lemma ensures that we will only need to deal with instances in which no single
item yields the wanted competitive ratio.

▶ Lemma 4. Any instance I of the Oskp problem with predictions P such that x− ∈ P with
x− ≥ 1

c can be solved with a competitive ratio of at most c by packing exactly x.

The fourth lemma is slightly more interesting. While the previous statement upper
bounded the size of the announced largest item b− by 1

c , we are also able to lower bound the
size of this item as follows.

▶ Lemma 5. Any instance I of the Oskp problem with predictions P such that b− ≤
(1 − 1

c )/ 1+δ
1−δ admits a c-competitive, greedy algorithm.

Proof. Since b− is by definition the announced largest item of the instance, we know that the
size of the largest actual item is upper bounded by 1+δ

1−δ b−. Thus, the largest item that a greedy
algorithm can not fit into its knapsack is of size at most 1+δ

1−δ b− ≤ 1+δ
1−δ (1 − 1

c )/ 1+δ
1−δ = 1 − 1

c .
If such an item does not fit, then the knapsack is already packed to size at least 1

c . ◀

Thus, we can assume that b− ∈ [(1 − 1
c )/ 1+δ

1−δ , 1
c ], which allows us to partition the

predicted items into two categories, which we will call small and large. We call an item
small if its announced size together with b− does not guarantee a packing of sufficient size,
assuming they are presented as small as possible. Formally, an item x− ∈ P is small iff
x− + b− < 1

c ⇔ x− < 1
c − b−. On the other hand, we call an item large if, together with

b−, it may be the case that the two items do not fit together in the knapsack (or if the
sum of their announced sizes already exceeds 1.) Formally, an item x− ∈ P is large iff
1+δ
1−δ x− + 1+δ

1−δ b− > 1 ⇔ x− > 1−δ
1+δ − b−.
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Note that the existence of any item that falls in neither category already implies a trivial
solution of size at least 1

c by Lemma 3, with the exception of b− itself. However, we can see
that b− exceeds the minimum size of a large item, as

b− >
1 − δ

1 + δ
− b− ⇔ 2(1 − 1

c
)/1 + δ

1 − δ
>

1 − δ

1 + δ

holds true for all δ iff c ≥ 2 – even when substituting b− by its minimum possible value –
which will be the case for all bounds that we prove in this paper. Thus, the size of b− is
always large enough to call it a large item as well.

This partition has some very useful implications, with the very central one being that an
algorithm can essentially ignore small items of the instance. To show this, we first prove
that the total sum of small items in P is limited or the instance has a trivial solution.

▶ Lemma 6. Let I be an instance of the Oskp problem with predictions P and S := {x− ∈
P | x− < 1

c − b−} for c ≥ δ2+3
2−2δ . If P does not admit a solution due to Lemmata 2, 3, 4 or 5

and if
∑

x−∈S x− ≥ 1
c − b− holds, then there exists an algorithm that is c-competitive.

Proof. The algorithm works as follows: It first selects an arbitrary subset of small items
S ⊆ P such that

∑
x−∈S x− ∈ [ 1

c − b−, 2( 1
c − b−)]. Such a subset always exists and can be

found greedily since each individual small item is announced smaller than 1
c − b−.

The algorithm packs b− when it is revealed and small items from S greedily, but stopping
to pack further small items as soon as their total size is at least 1

c − b−. Together with b−,
the gain is obviously at least 1

c , so the only thing left to show is that such a subset is always
guaranteed to fit in the knapsack and does not exceed its capacity.

In the worst case, the algorithm packs a small item of size 1
c − b− − ε1 and is then

presented an item of size 1+δ
1−δ ( 1

c − b− − ε2) for some ε1, ε2 > 0. Afterwards, b− is presented
of maximum possible size 1+δ

1−δ b−. Yet even in this case, all items fit into the knapsack, as

1
c

− b− − ε1 + 1 + δ

1 − δ
(1
c

− b− − ε2) + 1 + δ

1 − δ
b−

<
1
c

− b− + 1 + δ

1 − δ
(1
c

− b−) + 1 + δ

1 − δ
b−

= 1
c

− b− 1 + δ

1 − δ

1
c

= (1 + 1 + δ

1 − δ
)1
c

− b−

< (1 + 1 + δ

1 − δ
)1
c

− (1 − 1
c

)/1 + δ

1 − δ

Solving (1 + 1+δ
1−δ ) 1

c − (1 − 1
c )/ 1+δ

1−δ ≤ 1 for c yields that these items fit if c ≥ δ2+3
2−2δ , which

is lower than every upper bound proven in this work, for all δ. ◀

Thus, we can assume that the sum of all announced small items is smaller than 1
c − b−, or

else a trivial solution exists. This in turn lets us show a nice relation between small and
large items, which is that the larger the sum of small items is, the smaller any large item
may be announced or there is again a trivial solution.

▶ Lemma 7. Let I be an instance of the Oskp problem with predictions P and S := {x− ∈
P | x− < 1

c − b−} with c ≥ 1. If P does not admit a solution due to Lemmata 2, 3, 4 5 or 6
and b− ≥ 1

c −
∑

x−∈S x−, then there exists an algorithm that is c-competitive.
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Proof. The algorithm packs b− together with the items from S. Since
∑

x−∈S x− < 1
c −b− due

to Lemma 6, the total size is at least b− +
∑

x−∈S x− ≥ 1
c −

∑
x−∈S x− +

∑
x−∈S x− = 1

c . ◀

This lemma has the pleasant consequence that we will not have to worry about small items
in most of our algorithm design beyond checking whether they are part of a trivial solution.
Since in the upcoming analysis, we often bound the packed items of our algorithm against
the largest item of the instance, it makes no difference to us whether there are no small items
in the instance and thus a very large b−, or if b− is made smaller for the sake of additional
small items in the instance.

The next lemma allows us to lower bound the announced size of large items depending
on the size of b−.

▶ Lemma 8. Let I be an instance of the Oskp problem with predictions P and x− ∈ P be a
large item such that x− ̸= b−. If x + 1+δ

1−δ b− ≤ 1, packing x together with b guarantees a gain
of 1

c with c ≥ 1.

Proof. A large item has actual size at least 1−δ
1+δ − b−, thus x + 1+δ

1−δ b− > 1−δ
1+δ − b− + b− =

1−δ
1+δ > 1

c . ◀

This means that whenever an algorithm is guaranteed to be able to pack any large item
together with b−, its gain is sufficient.

Using these observations, we define with Algorithm 1 a small subroutine that will be
called by our other algorithms in order to rule out trivial solutions to an instance.

Algorithm 1 Subroutine filter_trivial.

1: if
∑

x−∈P x+ ≤ 1 then ▷ Lemma 2
2: Pack b. END
3: if b− ≥ 1

c then ▷ Lemma 4
4: Pack b. END
5: if b− ≤ 1

c / 1+δ
1−δ then ▷ Lemma 5

6: Greedily pack items. END
7: if ∃S ∈ 2P :

∑
x−∈S x− ∈ [ 1

c , 1−δ
1+δ ] then ▷ Lemma 3

8: Pack all items of S. END
9: T := {x− ∈ P | x− < 1

c − b−}
10: if

∑
x−∈T x− ≥ 1

c − b− then ▷ Lemma 6
11: Pack a subset R ∈ T with

∑
x−∈R x− ∈ [ 1

c − b−, 2( 1
c − b−)] and b. END

12: if b− ≥ 1
c −

∑
x−∈T x− then ▷ Lemma 7

13: Pack all items of T and b. END

5 Upper Bounds

The analysis of upper bound algorithms remains complicated, even with the filters of Section 4.
While we are quite confident that the lower bounds of Section 6 should not be improvable,
finding matching upper bounds is an aim that we can only fulfill for parts of the whole range
of values for δ.

We start with a simple 2-competitive algorithm for all values of δ up to 1
7 .

▶ Theorem 9. Given a fixed δ with 0 < δ ≤ 1
7 . Algorithm 2 solves the Oskp problem with a

competitive ratio of at most c = 2.
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Algorithm 2 2-competitive Algorithm for 0 < δ ≤ 1
7 .

1: filter-trivial()
2: Reveal items up to and including the first large item x1.
3: if x1 ≤ 1 − 1+δ

1−δ b− and x1 ̸= b then
4: Pack x1 with b. END
5: else
6: Greedily pack large items, including x1.

Proof. If the algorithm ends after the call of filter_trivial, the algorithm is at most 2-
competitive. Assuming the condition in line 3 is met, the algorithm is at least 2-competitive
by Lemma 8. Thus, we only have to prove that the algorithm is not worse than 2-competitive
if it ends in line 6.

Let us first assume that x1 ̸= b. Then x1 is packed and x1 > 1 − 1+δ
1−δ b−. If any other

large item xi can be packed by the algorithm, the knapsack will be filled up to at least 1
2 ,

since

x1 + xi > 1 − 1 + δ

1 − δ
b− + 1 − δ

1 + δ
− b− > 1 − 1 + δ

1 − δ

1
2 + 1 − δ

1 + δ
− 1

2 ≥ 1
2 ,

where the last inequality holds for δ ≤ 3 − 2
√

2 ∼ 0.171.
If no second large item fits into the algorithm’s knapsack, an optimal solution cannot

contain more than one large item either. This item of the optimal solution is bounded by
1+δ
1−δ b− < 1+δ

1−δ
1
2 . The remaining items of an optimal solution then consist of all small items

that the algorithm has ignored. We can bound the total announced size of these small items,
by 1

2 − b−, using Lemma 6 and in consequence their actual size by 1+δ
1−δ ( 1

2 − b−). Putting
it all together, in the worst case Algorithm 2 packs exactly one large item of size slightly
larger than 1 − 1+δ

1−δ b−. The optimal solution packs one large item of size slightly smaller
than 1+δ

1−δ
1
2 and the maximum sum of small items. This results in a competitive ratio of

1+δ
1−δ b− + 1+δ

1−δ ( 1
2 − b−)

1 − 1+δ
1−δ b−

=
1+δ
1−δ

1
2

1 − 1+δ
1−δ b−

<
1+δ
1−δ

1
c

1 − 1+δ
1−δ

1
c

≤ 2 ,

for δ ≤ 1
7 .

The only case left to handle is that x1 = b. If b ≥ 1 − 1+δ
1−δ b−, we can use the same

argumentation as before. If however b < 1 − 1+δ
1−δ b−, then, since b is by definition the

announced largest item, all large items are announced smaller or equal than 1 − 1+δ
1−δ b−

and thus of actual size at most 1+δ
1−δ (1 − 1+δ

1−δ b−) < 1+δ
1−δ (1 − 1+δ

1−δ
1
2 / 1+δ

1−δ ) = 1+δ
1−δ

1
2 . As each

large item is of size at least 1−δ
1+δ − b−, packing a second large item is still sufficient, since

2( 1−δ
1+δ − b−) > 2 1−δ

1+δ − 1 ≥ 1/2 for δ ≤ 1
7 . Since no large item can exceed an actual size of

1+δ
1−δ b− and since x1 < 1 − 1+δ

1−δ b−, we are guaranteed that a second large item fits into the
knapsack of the algorithm. The only case left is that there is no second large item. Then the
algorithm and the optimal solution both pack the same large item x1 = b, while the optimal
solution can still add the maximum number of small items. The resulting competitive ratio
is then b−+ 1+δ

1−δ ( 1
2 −b−)

b− < 2 for all δ in the given range. ◀

The second repeating upper bound matches the lower bound of Theorem 14 for al-
most the complete range of δ. For brevity, let δk := 12k+8

32
2
3 (3

√
3

√
4k3+11k2+28k+44−9k−34)

1
3

+
1
3 2 2

3 (3
√

3
√

4k3 + 11k2 + 28k + 44 − 9k − 34) 1
3 + 5/3.
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Algorithm 3
√

(2 + k) 1+δ
1−δ

-competitive Algorithm for a k ∈ N and δ < δk.

1: filter_trivial()
2: Reveal items up to and including the first large item x1.
3: if x1 ≥ 1

k+2 or x1 = b then
4: Greedily pack large items, including x1. END
5: if x1 ≤ 1 − 1+δ

1−δ b− then
6: Pack x1 with b. END
7: Let B := {x− ∈ P | x− > 1−δ

1+δ − b−}
8: if ∃x−

j ∈ B : x−
j ≤ (1 − x1)/ 1+δ

1−δ then
9: Pack x1 and xj . END

10: for Reveal next xi ∈ P[i,n−1] do
11: if ∃S ⊆ P[i,n−1] : x1 +

∑
x−∈S x− ≥ 1

ck
∧ x1 +

∑
x−∈S x+ ≤ 1 then

12: Pack x1 and S. END
13: Pack xn.

▶ Theorem 10. Given a fixed k ∈ N and a fixed δ with δ < δk. Algorithm 3 solves the Oskp
problem with a competitive ratio of at most ck =

√
(2 + k) 1+δ

1−δ .

Proof. If the algorithm ends after the call of filter_trivial, the algorithm is at most ck-
competitive. The algorithm first reveals and discards small items and reveals the first large
item x1. If x1 ≥ 1

k+2 , the algorithm packs x1 and from there on greedily any large item that
still fits into the knapsack. If any second large item fits into the knapsack of the algorithm,
its gain is at least 1

k+2 + 1−δ
1+δ − b− > 1

ck
. Thus, an optimal solution consists of at most one

large item of maximum size or a sum of large and small items adding up to at most the same
size, due to Lemma 7. The competitive ratio is then 1+δ

1−δ
1

ck
/ 1

k+2 = ck.
Assuming x1 = b, we know from Lemma 8 that any large item that is guaranteed to

fit with b yields a ratio of at most ck. Again, the algorithm packs x1 and large items
greedily. If any second large item fits into the knapsack of the algorithm, its gain is at least
b + (1 − b)/ 1+δ

1−δ > 1
ck

for the complete range of δ. Thus, an optimal solution consists of at
most one large item of maximum size. The competitive ratio is then at worst 1+δ

1−δ b/b < ck

for the complete range of α.
Finally, if x1 ≤ 1 − 1+δ

1−δ b−, the algorithm packs x1 together with b and has sufficient gain
by Lemma 8.

Thus, we assume that 1 − 1+δ
1−δ b− < x1 < 1

k+2 . The algorithm next checks whether any
other large item is of announced size such that it is both guaranteed to fit together with
x1 and guaranteed to fit into the knapsack together with x1, i.e. if any x−

j ∈ B exists with
x−

j ∈ [ 1
ck

− x1, 1−x1
1+δ
1−δ

]. Note that 1
ck

− x1 < 1−δ
1+δ − b−, i.e. there exists no large item on the

lower end of this bound if δ < δk. Thus, each large item apart from x1 is of actual size larger
than (1 − x1)/ 1+δ

1−δ .
If all of these bounds hold and thus do not admit a solution, the algorithm discards x1

and continues to reveal large items. It only packs anything before the last large item if either
the revealed item itself is of size 1

ck
or if it admits a packing that is guaranteed to fit and of

size at least 1
ck

. If neither is the case, the algorithm packs the last large item of size larger
than (1 − x1)/ 1+δ

1−δ .
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In the worst case, the optimal solution then consists of k + 1 large items of size slightly
smaller than 1

ck
each. The competitive ratio is then bounded by

k + 1√
(2 + k) 1+δ

1−δ

/
1 − 1

k+2
1+δ
1−δ

=
√

(2 + k)1 + δ

1 − δ
.

Note that the first item is too large to be packed on top of the k + 1 items as

k + 1√
(2 + k) 1+d

1−d

+ (1 − 1 + d

1 − d

1√
(2 + k) 1+d

1−d

) > 1

for δ < k
k+2 . ◀

The next segment’s proof is the most involved one. It tightly matches the lower bound of
Theorem 15 for −1 − k +

√
4k + k2 ≤ δ ≤ k

k+2 , for any k ∈ N.

Algorithm 4 (1+δ)(
√

−1+δ2+
√

−17−16δ+δ2−16k)

4
√

−1+δ2
-competitive Algorithm for a k ∈ N and δ ≤ k

k+2 .

1: filter_trivial()
2: Reveal items up to and including the first large item x1.
3: Let ℓk := 8

9+8δ−δ2−
√

−1+δ2
√

−17−16δ+δ2−16k+8k
4: if x1 ≥ ℓk or x1 = b then
5: Greedily pack large items, including x1. END
6: if x1 ≤ 1 − 1+δ

1−δ b− then
7: Pack x1 with b. END
8: Let B := {x− ∈ P | x− > 1−δ

1+δ − b−}
9: if ∃x−

j , x−
l ∈ B : x1 + x+

j + x+
l ≤ 1 then

10: Pack x1, xj and xl. END
11: else if ∃x−

L ∈ B : x1 + x−
L ≥ 1

ck
∧ x1 + x+

L ≤ 1 then
12: Pack x1 and xL. END
13: for Reveal next xi ∈ P[i,n−1] do
14: if ∃S ⊆ P[i,n−1] : x1 +

∑
x−∈S x− ≥ 1

ck
∧ x1 +

∑
x−∈S x+ ≤ 1 then

15: Pack x1 and S. END
16: Pack xn.

▶ Theorem 11. Given a fixed k ∈ N and a fixed δ with δ ≤ k/(k + 2). Algorithm 4 solves
the Oskp problem with a competitive ratio of at most ck = (1+δ)(

√
−1+δ2+

√
−17−16δ+δ2−16k)

4
√

−1+δ2 .

Proof. If the algorithm ends after the call of filter_trivial, the algorithm is at most ck-
competitive. Let ℓk = 8

9+8δ−δ2−
√

−1+δ2
√

−17−16δ+δ2−16k+8k
, which is the solution to the

equation 1+δ
1−δ

1
ck

/ℓk = ck.
The algorithm first reveals and discards small items and reveals the first large item x1. If

x1 ≥ ℓk, the algorithm packs x1 and from there on greedily any large item that still fits into
the knapsack. If any second large item fits into the knapsack of the algorithm, its gain is at
least ℓk + 1−δ

1+δ − b− > 1
ck

. Thus, an optimal solution consists of at most one large item of
maximum size. The competitive ratio is then 1+δ

1−δ
1

ck
/ℓk = ck.

Assuming x1 = b, we know from Lemma 8 that any large item that is guaranteed to
fit with b yields a ratio of at most ck. Again, the algorithm packs x1 and large items
greedily. If any second large item fits into the knapsack of the algorithm, its gain is at least
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b + (1 − b)/ 1+δ
1−δ > 1

ck
for the complete range of δ. Thus, an optimal solution consists of at

most one large item of maximum size. The competitive ratio is then at worst 1+δ
1−δ b/b < ck

for the complete range of α.
Finally, if x1 ≤ 1 − 1+δ

1−δ b−, the algorithm packs x1 together with b and has sufficient gain
by Lemma 8.

Thus, we assume that 1 − 1+δ
1−δ b− < x1 < ℓk. If another two large items are guaranteed to

fit together with x1, the gain of the algorithm is again sufficient: 1 − 1+δ
1−δ b− + 2( 1−δ

1+δ − b−) >

1− 1+δ
1−δ

1
ck

+2( 1−δ
1+δ − 1

ck
) > 1

ck
. Thus, we may assume that there is at most one other large item

xj that is guaranteed to fit into the knapsack together with x1. Its announced size is then in
between 1−δ

1+δ − b− and 1
ck

− x1 < 1
ck

− (1 − 1+δ
1−δ b−) < 1

ck
− (1 − 1+δ

1−δ
1

ck
) = (1 + 1+δ

1−δ ) 1
ck

− 1.
Obviously, it has to hold that x1 + xj < 1

ck
, otherwise the two items together are sufficient.

Since the remaining large items xL ∈ I must not be announced with a size that guarantees
that they fit into the knapsack together with x1 and guarantee a packing of at least 1

ck
, they

have to be of announced size x−
L > 1−x1

1+δ
1−δ

. Since x1 < ℓk < 1
k+2 , we can lower bound the size

of these large items by x−
L > (1 − x1)/ 1+δ

1−δ > (1 − 1
k+2 )/ 1+δ

1−δ ≥ 1
k+2 , for all δ ≤ 1

k+2 . Since
1

k+2 + 1−δ
1+δ − b− > 1

ck
, the item xj that was guaranteed to fit together with x1 must not be

guaranteed to fit together with any other large item as well. This lower bounds its size by
x−

j > (1 − 1
ck

)/( 1+δ
1−δ ) > x1/ 1+δ

1−δ .
If all of these bounds hold and thus do not admit a solution, the algorithm discards x1

and continues to reveal large items. It only packs anything before the last large item if either
the revealed item itself is of size 1

ck
or if it admits a packing that is guaranteed to fit and of

size at least 1
ck

. If neither is the case, the algorithm packs the last large item of size larger
than (1 − x1)/ 1+δ

1−δ .
Recall that x−

L > (1 − x1)/ 1+δ
1−δ , which means that (k + 1)x−

L + x1 > 1 for δ ≤ 1
k+2 . Since

also x1 + xj > 1
ck

> x−
L , the largest packing of a knapsack consists of k items xL or size

slightly smaller than 1
ck

, together with both items x1 and xj . The competitive ratio is then
bounded by

(x1 + xj + k
1
ck

)/1 − x1
1+δ
1−δ

.

We are now interested in maximizing this ratio by choosing appropriate values for x1 and xj .
The gain of the algorithm is minimized if the value of x1 is maximized. Since x−

j > x1/ 1+δ
1−δ

and x1 + xj < 1
ck

both have to hold, the ratio is maximized to a value of ck when choosing
x1 = 2

√
−1+δ2

√
−1+δ2+

√
−17−16δ+δ2−16k

and thus xj = 1+δ
1−δ x1. ◀

For the remainder of unmatched lower bounds, we re-use Algorithm 2 that was used to
prove the upper bound of 2 for 0 < δ ≤ 1

7 . The only difference is the competitive ratio that
is aimed for, which is 1+δ+

√
5+2δ−3δ2

2−2δ for 1
7 ≤ δ. The proof is almost identical to that of

Theorem 9.

▶ Theorem 12. Given a fixed k ∈ N and a fixed δ with 1
7 ≤ δ. Algorithm 2 solves the Oskp

problem with a competitive ratio of at most c = 1+δ+
√

5+2δ−3δ2

2−2δ .

Proof in Appendix. ◀
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6 Lower Bounds

We are able to provide lower bounds for all values of δ. We can observe that different bounds
dominate one another in an alternating fashion, which is a consequence of the scaling factor
1+δ
1−δ crossing certain thresholds.

Intuitively, the lower bounds – after the initial one of 2 – each work once sufficient
distance between the lowest possible size and the largest possible size of an announced item
crosses certain thresholds. They are then valid for higher values of δ as well, but are quickly
dominated by yet other lower bounds, that again use certain thresholds between the range
of possible sizes of an item. These bounds turn out to be rather tricky to find but easy to
verify with the assistance of computer algebra systems. We found them by fixing concrete
values of δ and carefully building a decision tree regarding an announced instance of variable
values. We were then able to generalize them to surrounding values of δ using computer
algebra systems.

We start with a simple lower bound of 2 for all values of 0 < δ < 1. This lower bound
works quite similar to the bound by Marchetti-Spaccamela and Vercellis [27] used to show
non-competitiveness. The main difference is that the predictions have to be almost correct
for very small δ, thus presenting two items that have a large size difference allow an algorithm
to gravitate towards the larger one.

▶ Theorem 13. Given a fixed δ with 0 < δ < 1. There exists no algorithm solving the Oskp
problem with a competitive ratio better than 2.

Proof. Let ε > 0 such that ε < δ
4 . The algorithm is given the following prediction:

P = (1
2 + ε,

1
2 − ε,

1
2)

We do a full case distinction on the possible behaviors of an algorithm. The first item is
revealed to be of size x1 = 1

2 + ε.

Case 1: An algorithm packs x1 with x1 = 1
2 + ε. The next two items are presented of

size x2 = x3 = 1
2 , fitting together with one another but not with x1. The competitive ratio

is then 1
1
2 +ε

= 2 1
1+2ε .

Case 2: An algorithm rejects x1 with x1 = 1
2 + ε. The second item is then presented

to be of size x2 = 1
2 − ε, with the last item presented of size x3 = 1

2 + 2ε, independent of
the algorithm’s decision on the item x2. The optimal solution consists of the first two items,
while the biggest packing an algorithm can achieve is 1

2 + 2ε. The competitive ratio is then
1

1
2 +2ε

= 2 1
1+4ε . ◀

The next bound connects seamlessly to the previous bound of 2. As with all following
bounds, the following theorem describes a set of bounds that only become valid once a certain
value of δ is reached.

▶ Theorem 14. For every k ∈ N and k2+k−1
k2+3k+3 ≤ δ, there exists no algorithm solving the

Oskp problem with a competitive ratio better than ck =
√

(2 + k) 1+δ
1−δ -competitive.

Proof. Let ε > 0. The algorithm is given the following prediction:

P = ( 1
2 + k

,
1
ck

, . . . ,
1
ck

,︸ ︷︷ ︸
k+1 many

1 − 1
2+k

1+δ
1−δ

)
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We do a full case distinction on the possible behaviors of an algorithm. The first item is
presented as 1

2+k + ε.

Case 1: An algorithm packs 1
2+k

+ ε. The next items are all presented of maximum
possible size. Since 1+δ

1−δ
1
c k

+ 1
2+k + ε > 1 for each choice of k and all δ ≥ k2+k−1

k2+3k+3 , this means
that no two items fit together into the knapsack. The biggest item of an optimal packing is
then 1

ck

1+δ
1−δ . The competitive ratio is then 1+δ

1−δ
1

ck
/( 1

2+k + ε) ε→0= ck.

Case 2: An algorithm rejects 1
2+k

+ ε. The next item is presented of size 1
ck

.

Case 2.1: An algorithm packs 1
ck

. The next items are each presented of size 1 − 1
2+k − ε <

1+δ
1−δ

1
ck

, allowing an optimal packing to reach a size of 1. Since 1
ck

> 1
2+k for all values of δ in

the given range for the given k, the algorithm cannot pack either of these items, resulting in
the target competitive ratio.

Case 2.2: An algorithm rejects 1
ck

. The next items, up to and including the penultimate
one, are presented to be of size 1

ck
as well. If an algorithm packs one of these items, Case 2.1

applies. We thus assume that all these items are rejected. The last item is then presented to
be of size 1− 1

2+k
1+δ
1−δ

.
If the algorithm does not pack this item, it is not competitive. An optimal solution can pack

all k + 1 items of size 1
ci

if δ ≥ k2+k−1
k2+3k+3 . The competitive ratio is then k+1

ck
/

1− 1
2+k

1+δ
1−δ

= ck. ◀

We continue with a lower bound superseding the previous ones for (relative) higher values
of δ.

▶ Theorem 15. For every k ∈ N and −1−k+
√

4k + k2 ≤ δ, there exists no algorithm solving
the Oskp problem with a competitive ratio better than ck = (1+δ)(

√
−1+δ2+

√
−17−16δ+δ2−16k)

4
√

−1+δ2 .

Proof. Let ik = 2
√

−1+δ2
√

−1+δ2+
√

−17−16δ+δ2−16k
, which is the solution to the equation ik + ik

1+δ
1−δ

=
1
c k

and ε > 0. The algorithm is given the following prediction:

P = (ik,
ik

1+δ
1−δ

+ ε,
1 − ik

1+δ
1−δ

+ ε, . . . ,
1 − ik

1+δ
1−δ

+ ε︸ ︷︷ ︸
i many

)

Note that 1−ik
1+δ
1−δ

≤ 1
ck

only if δ ≥ −1 − k +
√

4k + k2.
We do a full case distinction on the possible behaviors of an algorithm. The first item is

presented as ik.

Case 1: An algorithm packs ik. The next item is revealed as ik/ 1+δ
1−δ + ε.

Case 1.1: An algorithm packs ik/ 1+δ
1−δ

+ ε. The next item is revealed as 1 − ik, thus fitting
together with the first item, but not into the knapsack of the algorithm. All subsequent items
are presented as 1 − ik as well. The optimal packing is thus of size 1, while the algorithm
only achieves a gain of ik + ik/ 1+δ

1−δ + ε = 1
ck

+ ε.
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Case 1.2: An algorithm rejects ik/ 1+δ
1−δ

+ ε. All subsequent items are each revealed to be
of size 1 − ik + ε, thus not fitting into the knapsack of the algorithm. An optimal strategy
packs the items ik/ 1+δ

1−δ + ε and 1 − ik + ε, while the algorithm only has the first item of size
ik in its knapsack, resulting in a ratio of ( ik

1+δ
1−δ

+ 1 − ik + 2ε)/(ik) > ck.

Case 2: An algorithm rejects ik. The second item is revealed of size ik + ε.

Case 2.1: An algorithm packs ik + ε. The remaining items are each revealed to be of size
1 − ik, thus not fitting into the knapsack of the algorithm. An optimal packing is the first
item together with one of the last items, adding up to a gain of 1. The algorithm can only
pack ik + ε, resulting in a ratio of 1

ik
≥ ci.

Case 2.2: An algorithm rejects ik + ε. The next item is revealed of size 1
ck

.

Case 2.2.1: An algorithm packs 1
ck

. The remaining items are revealed of size 1 − ik, not
fitting into the knapsack of the algorithm but fully filling an optimal knapsack together with
the first item, resulting exactly in a ratio of ck.

Case 2.2.2: An algorithm rejects 1
ck

. Up to and including the penultimate item, the next
items are also revealed as 1

ck
. If an algorithm packs any of them, the rest of the instance

behaves as in Case 2.2.1.
Assuming this is not the case, the last item is presented as (1 − ik)/( 1+δ

1−δ ) + ε, which is the
only item the algorithm can pack. An optimal algorithm packs all items except the last one.
These items are of sum at most one if δ ≥ −1 − k +

√
4k + k2. The resulting competitive

ratio is

2ik + ε + (k − 1) 1
ck

1−ik
1+δ
1−δ

+ ε
,

which converges to ck for ε going to 0. ◀

Just like with the two previous bounds, the last lower bound dominates the other two for
yet (relative) higher values of δ.

▶ Theorem 16. For every k ∈ N>1 and k−1
k+1 < δ < k

k+2 , there exists no al-
gorithm solving the Oskp problem with a competitive ratio better than ck = 1+k

2 −√
(−1+δ)(−5−k(2+k)+δ(−1+k)(3+k))

−2+2δ .

Proof. Let ik = 2(δ−1)
3δ−

√
−(δ−1)(−4δ(k−1)+k2+2k+5)+δk−k−3

be the solution to the equation

ck = 1
ik

− 1 and let jk = i2
k

1−(k+2)ik
. The algorithm is given the following prediction:

P = (ik + ε, jk︸︷︷︸
i many

)

We do a full case distinction on the possible behaviors of an algorithm. The first item is
presented as ik.
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Case 1: An algorithm packs ik + ε. Each of the next items are presented of maximum
possible size 1+δ

1−δ jk = 1 − ik, which is the counterpart to the first item, except for the
additional ε. Since 1 − ik > 1

2 , no two items fit into the knapsack in this case. The optimal
solution thus packs an item of size 1 − ik. The competitive ratio is then 1−ik

ik+ε

ε→0= ck.

Case 2: An algorithm rejects ik + ε. The next items is presented to be of size jk.

Case 2.1: An algorithm packs jk. If an algorithm packs such an item before the last item,
each subsequent item is presented to be of almost maximum size 1+δ

1−δ jk − ε. For δ < k
k+2 it

holds that jk + 1+δ
1−δ jk − ε > 1. Thus, the algorithm only packs an item of size jk, while the

optimal solution is 1, as such an item of almost maximum size perfectly fits together with
the first item of the instance. The competitive ratio is then 1

jk
> ck, as jk < 1

ck
for δ > 1

3 .

Case 2.2: An algorithm rejects jk. Up to and including the penultimate item, the next
items are also revealed as jk. If an algorithm packs any of them, the rest of the instance
behaves as in Case 2.1.

Assuming this is not the case, the last item is presented as jk, which is the only item the
algorithm can pack. An optimal algorithm packs all items except the last one. These items
are of sum at most 1 if δ > 1

3 . The competitive ratio is then ik+ε+kjk

jk

ε→0= ck. ◀

7 Open Problems

The Oskp problem turns out to be very involved problem. While we were able to give
tight bounds on the competitive ratio for some values of δ, the analysis is not complete.
We are quite confident that the lower bounds that we determined should reflect the actual
competitive ratio in the remaining open segments, but finding a proof to do so is beyond our
capability.

A logical next step would be to look at the general Online Knapsack problem in the
setting of predictions. However, one would first have to determine which part of the input is
predicted: The size, the weight or the density of the items. The model of predictions offers to
be applied to – and already has been applied to – further problems beyond knapsack problems.
To our knowledge, more discretized problems, such as graph problems like the Minimum
Vertex Cover problem have not been studied in the setting of predictions. Finding an
appropriate, unifying model on what to predict in such problems would be interesting.
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A Additional Proofs

Proof of Theorem 12. If the algorithm ends after the call of filter_trivial, the algorithm
is at most c-competitive. Assuming the condition in line 3 is met, the algorithm is at least
c-competitive by Lemma 8. Thus, we only have to prove that the algorithm is not worse
than c-competitive if it ends in line 6.

Let us first assume that x1 ̸= b. Then x1 is packed and x1 > 1 − 1+δ
1−δ b−. If any other

large item xi can be packed by the algorithm, the knapsack will be filled up to at least 1
2 ,

since

x1 + xi > 1 − 1 + δ

1 − δ
b− + 1 − δ

1 + δ
b− > 1 − 1 + δ

1 − δ

1
c

+ 1 − δ

1 + δ

1
c

≥ 1
c

,

where the last inequality holds for all values of δ between 0 and 1.
If no second large item fits into the algorithm’s knapsack, an optimal solution cannot

contain more than one large item either. This item of the optimal solution is bounded by
1−δ
1+δ b− < 1−δ

1+δ
1
c . The remaining items of an optimal solution then consist of all small items

that the algorithm has ignored. We can bound the total announced size of these small items,
by 1

c − b−, using Lemma 6 and in consequence their actual size by 1+δ
1−δ ( 1

c − b−). Putting
it all together, in the worst case Algorithm 2 packs exactly one large item of size slightly
larger than 1 − 1+δ

1−δ b−. The optimal solution packs one large item of size slightly smaller
than 1−δ

1+δ
1
c and the maximum sum of small items. This results in a competitive ratio of

1+δ
1−δ b− + 1+δ

1−δ ( 1
c − b−)

1 − 1+δ
1−δ b−

=
1+δ
1−δ

1
c

1 − 1+δ
1−δ b−

<
1+δ
1−δ

1
c

1 − 1+δ
1−δ

1
c

= c ,

for δ ≤ 1
7 .

The only case left to handle is that x1 = b. If b ≥ 1 − 1+δ
1−δ b−, we can use the same

argumentation as before. If however b < 1 − 1+δ
1−δ b−, then, since b is by definition the

announced largest item, all large items are announced smaller than 1 − 1+δ
1−δ b− and thus of

actual size at most 1+δ
1−δ (1 − 1+δ

1−δ b−) < 1+δ
1−δ (1 − 1+δ

1−δ
1
c / 1+δ

1−δ ) = 1+δ
1−δ

1
c . Since no large item can

exceed an actual size of 1+δ
1−δ b− and since x1 < 1 − 1+δ

1−δ b−, we are guaranteed that a second
large item fits into the knapsack of the algorithm. In the worst case, an optimal solution
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packs b and an item of size 1+δ
1−δ b−, while the algorithm only packs b and a large item of

minimal size. The competitive ratio is then

(1 + δ

1 − δ
b− + b−)/(b− + 1 − δ

1 + δ
− b−) < c ,

where the last inequality holds for all values of δ between 0 and 1.
The only case left is that there is no second large item. Then the algorithm and the

optimal solution both pack the same large item x1 = b, while the optimal solution can
still add the maximum number of small items. The resulting competitive ratio is then
b−+ 1+δ

1−δ ( 1
c −b−)

b− < c for all δ between 0 and 1. ◀
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and how to effectively decide this question. Our contribution is to introduce a particular subclass of
one-turn VPLs, called intermediate VPLs, for which the raised question is entirely unclear: to the
best of our knowledge our research community is unaware of containment or non-containment in AC0

for any language in our newly introduced class. Our main result states that there is an algorithm
that, given a visibly pushdown automaton, correctly outputs exactly one of the following: that its
language L is in AC0, some m ≥ 2 such that MODm (the words over {0, 1} having a number of 1’s
divisible by m) is constant-depth reducible to L (implying that L is not in AC0), or a finite disjoint
union of intermediate VPLs that L is constant-depth equivalent to. In the latter of the three cases
one can moreover effectively compute k, l ∈ N>0 with k ̸= l such that the concrete intermediate
VPL L(S → ε | ack−1Sb1 | acl−1Sb2) is constant-depth reducible to the language L. Due to their
particular nature we conjecture that either all intermediate VPLs are in AC0 or all are not. As a
corollary of our main result we obtain that in case the input language is a visibly counter language
our algorithm can effectively determine if it is in AC0 – hence our main result generalizes a result by
Krebs et al. stating that it is decidable if a given visibly counter language is in AC0 (when restricted
to well-matched words).
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1 Introduction

This paper studies the circuit complexity of formal word languages. It is well-known that
the regular word languages are characterized as the languages recognizable by finite monoids.
When restricting the finite monoids to be aperiodic Schützenberger proved that one obtains
precisely the star-free regular languages [22]. In terms of logic, these correspond to the
languages definable in first-order logic FO[<] by a result of McNaughton and Papert [23].
The more general class of regular languages expressible in FO[arb], i.e. first-order logic with
arbitrary numerical predicates, coincides with the regular languages in AC0 [13, 16]. These
can be characterized algebraically as the regular languages whose syntactic morphism is
quasi-aperiodic [5]. The latter algebraic characterization also shows that it is decidable if a
regular language is in AC0.
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38:2 The AC0-Complexity of Visibly Pushdown Languages

Generalizing regular languages, input-driven languages were introduced by Mehlhorn [21].
They are described by pushdown automata whose input alphabet is partitioned into letters
that are either of type call, internal, or return. Rediscovered by Alur and Madhusudan
in 2004 [2] under the name of visibly pushdown languages (VPLs), it was shown that
they enjoy many of the desirable effective closure properties of the regular languages. For
instance, the visibly pushdown languages form an effective Boolean algebra. Algebraically,
VPLs were characterized by Alur et al. [1] by congruences on well-matched words of finite
index. Extending upon these, Czarnetzki et al. introduced so-called Ext-algebras [9]; these
involve pairs of monoids (R,O) where O is a submonoid of RR. Being tailored towards
recognizing word languages, Ext-algebras are closely connected to forest algebras, introduced
by Bojańczyk and Walukiewicz [7]: in [9] it is shown that a language of well-matched words
is visibly pushdown if, and only if, its syntactic Ext-algebra is finite. While context-free
languages are generally in LOGCFL = SAC1, the visibly pushdown languages, as the regular
languages, are known to be in NC1 [10]. By a famous result of Barrington [4], there already
exist regular languages that are NC1-hard.

Related work. Visibly pushdown languages (VPLs) were introduced [2] via deterministic
visibly pushdown automata (DVPA for short). Inspired by forest algebras [7] the paper [9]
introduces Ext-algebras. Unfortunately, the definition of Ext-algebra morphisms in [9] is
incorrect in that it provably does not lead to freeness.

The regular languages that are in AC0 were effectively characterized by Barrington et al. [5].
By an automata-theoretic approach, Krebs et al. [19] effectively characterized the visibly
counter languages that are in AC0. These are particular VPLs that are essentially accepted
by visibly pushdown automata that use only one stack symbol. In his PhD thesis [20] Ludwig
already considers the question of which VPLs are in AC0. Yet, his conjectural characterization
contains several serious flaws – a detailled discussion of these shortcomings can be found in
Section 8 in [12].

Our contribution. We reintroduce Ext-algebras, fix the notion of Ext-algebra morphisms
and define the languages they recognize. We also reintroduce the syntactic Ext-algebra of
languages of well-matched words. We rigorously prove classical results like freeness and
minimality of syntactic Ext-algebras with respect to recognition. We prove that a language of
well-matched words is a VPL if, and only if, it is recognizable by a finite Ext-algebra. While
these results essentially revisit the constructions of [9], we use Ext-algebras as a technical
tool for studying the complexity of visibly pushdown languages.

Fix a visibly pushdown alphabet Σ, i.e. Σ is partitioned into Σcall (call letters), Σint
(internal letters), and Σret (return letters). Denoting ∆(u) as the difference between the
number of occurrences of call and return letters in u ∈ Σ∗, a word w ∈ Σ∗ is well-matched if
∆(w) = 0 and ∆(u) ≥ 0 for all prefixes u of w. A context is a pair (u, v) such that uv is
well-matched – contexts have a natural composition operation: (u, v) ◦ (u′, v′) = (uu′, v′v).

A set of contexts R is length-synchronous if |u|/|v| = |u′|/|v′| for all (u, v), (u′, v′) ∈ R
with ∆(u),∆(u′) > 0 and weakly length-synchronous if u = u′ implies |v| = |v′| and v = v′

implies |u| = |u′| for all (u, v), (u′, v′) ∈ R with ∆(u),∆(u′) > 0. Any language L of well-
matched words induces a congruence ≡L on contexts: (u, v) ≡L (u′, v′) if xuwvy ∈ L ⇔
xu′wv′y ∈ L for all contexts (x, y) and all well-matched words w. We introduce the notion
of quasi-counterfreeness: a language is quasi-counterfree if for all contexts σ ∈ Σk × Σl for
arbitrary k and l at least one of the following holds: (1) there exists some n ∈ N such that
σn ≡L σ

n+1 or (2) no context in Σk × Σl is ≡L-equivalent to σ ◦ σ. Finally, we introduce
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our central class of intermediate VPLs: a VPL is intermediate if it is quasi-counterfree and
generated by a context-free grammar containing the production S →G ε, where S is the
start nonterminal and whose other productions are of the form T →G uT ′v where uv is
well-matched, u ∈ (Σ∗

intΣcallΣ∗
int)+ and v ∈ (Σ∗

intΣretΣ∗
int)+, such that the set of contexts

{(u, v) | S ⇒∗
G uSv} is weakly length-synchronous but not length-synchronous. Note that

intermediate VPLs are particular one-turn visibly pushdown languages, that is, visibly
pushdown languages that are subsets of (Σ \ Σret)∗(Σ \ Σcall)∗. As an example, for all k, l ≥ 1
with k ̸= l, a concrete intermediate VPL, denoted by Lk,l, is the one that is generated by the
context-free grammar S → ε | ack−1Sb1 | acl−1Sb2: here a is a call letter, c is an internal
letter and b1 and b2 are return letters.

As far as we know the techniques known to our community do not directly suffice to show
whether at all there is some intermediate VPL that is provably in AC0 or provably not in AC0

– analogous remarks apply to ACC0. Our main result states that there is an algorithm that,
given a DVPA A correctly outputs exactly one of the following: L(A) ∈ AC0, some m ≥ 2
such that MODm is constant-depth reducible to L (thus witnessing that L(A) ̸∈ AC0), or a
non-empty disjoint finite union of intermediate VPLs that L(A) is constant-depth equivalent
to. In the latter of the three cases one can moreover effectively compute k, l ∈ N>0 with k ̸= l

such that the above-mentioned Lk,l is constant-depth reducible to L(A). We conjecture that
either all intermediate VPLs are in AC0 or all are not: note that together with our main result
this conjecture implies the existence of an algorithm that can effectively determine if a given
visibly pushdown language is in AC0. As a corollary of our main result we obtain that in
case the input language is a visibly counter language our algorithm can effectively determine
if it is in AC0, hence our main result generalizes a result by Krebs et al. stating that it
is decidable if a given visibly counter lanugage is in AC0 (when restricted to well-matched
words).

For our main result we extensively study Ext-algebras, the syntactic morphisms of VPLs,
and make use of Green’s relations.

Organization. Our paper is organized as follows. We introduce notation and give an
overview of our main result in Section 2. In Section 3 we first recall general algebraic concepts
and then revisit Ext-algebras and their correspondence to visibly pushdown languages.
Section 4 introduces central notions like length-synchronicity and weak length-synchronicity
for Ext-algebra morphisms and visibly pushdown languages. The proof of our main result is
content of Section 5. We conclude in Section 6. Full proofs can be found in [12].

2 Preliminaries

By N we denote the non-negative integers and by N>0 the positive integers. For all a ∈ Γ
and all w ∈ Γ∗ we write |w|a to denote the number of occurrences of a in w. We define
the languages EQUALITY = {w ∈ {0, 1}∗ : |w|0 = |w|1} and MODm = {w ∈ {0, 1}∗ :
m divides |w|1} for each m ≥ 2. A visibly pushdown alphabet is a finite alphabet Σ =
Σcall ∪ Σint ∪ Σret, where the alphabets Σcall,Σint, and Σret are pairwise disjoint. The set
of well-matched words over a visibly pushdown alphabet Σ, denoted by Σ△, is the smallest
set satisfying the following: ε ∈ Σ△ and c ∈ Σ△ for all c ∈ Σint, awb ∈ Σ△ for all w ∈ Σ△,
a ∈ Σcall and b ∈ Σret, and uv ∈ Σ△ for all u, v ∈ Σ△ \ {ε}. A well-matched word w ∈ Σ△ is
one-turn if w ∈ (Σ \ Σret)∗(Σ \ Σcall)∗. A language L ⊆ Σ△ is one-turn if it contains only
one-turn words. Let Σ be a visibly pushdown alphabet. We define ∆: Σ∗ → Z to be the
height monoid morphism such that ∆(w) = |w|Σcall − |w|Σret for all w ∈ Σ∗.
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A context is a pair (u, v) ∈ Σ∗ × Σ∗ such that uv ∈ Σ△. The composition of two contexts
(u, v), (x, y) ∈ Con(Σ) is defined as (u, v) ◦ (x, y) = (ux, yv). For σ ∈ Con(Σ) by σk we denote
the k-fold composition σ ◦ · · · ◦ σ. For any context (u, v) ∈ Con(Σ) and well-matched word
w ∈ Σ△ we define (u, v)w = uwv. An equivalence relation ≡ on Con(Σ) is a congruence
if for all χ, χ′, σ, τ ∈ Con(Σ) we have that σ ≡ τ implies χ ◦ σ ◦ χ′ ≡ χ ◦ τ ◦ χ′. Given a
congruence ≡ over Con(Σ) we denote by [σ]≡ the equivalence class of σ. Given a language of
well-matched words L ⊆ Σ△ we write σ ≡L τ if for all χ ∈ Con(Σ) and all w ∈ Σ△ we have
(χ ◦ σ)w ∈ L if, and only if, (χ ◦ τ)w ∈ L. Clearly, ≡L is a congruence.

A context-free grammar is a tuple G = (V,Σ, P, S), where V is a finite set of nonterminals,
Σ is a non-empty finite alphabet, P ⊆ V × (V ∪ Σ)∗ is a finite set of productions, and S ∈ V

is the start nonterminal. We write T →G y whenever (T, y) ∈ P . The binary relation ⇒G

over (V ∪ Σ)∗ is defined as u ⇒G v if there exists a production T →G y and x, z ∈ (V ∪ Σ)∗

such that u = xTz and v = xyz. By L(G) = {w ∈ Σ∗ | S ⇒∗
G w} we denote the language of

G where ⇒∗
G is the reflexive transitive closure of ⇒G.

In the following we introduce deterministic visibly pushdown automata, remarking that
nondeterministic visibly pushdown automata are determinizable [2]. A deterministic visibly
pushdown automaton (DVPA) is a tuple A = (Q,Σ,Γ, δ, q0, F,⊥), where Q is a finite set
of states, Σ is a visibly pushdown alphabet, the input alphabet, Γ is a finite alphabet, the
stack alphabet, q0 ∈ Q is the initial state, F ⊆ Q is the set of final states, ⊥ ∈ Γ is the
bottom-of-stack symbol, and δ : Q × Σ × Γ → Q ×

(
{ε} ∪ Γ ∪ (Γ \ {⊥})Γ

)
is the transition

function such that for all q ∈ Q, a ∈ Σ, α ∈ Γ: if a ∈ Σcall, then δ(q, a, α) ∈ Q× (Γ \{⊥})α, if
a ∈ Σret, then δ(q, a, α) ∈ Q× {ε}, and if a ∈ Σint, then δ(q, a, α) ∈ Q× {α}. We define the
extended transition function δ̂ : Q× Σ∗ × Γ∗ → Q× Γ∗ inductively as δ̂(q, ε, β) = (q, β) for all
q ∈ Q and β ∈ Γ∗, δ̂(q, w, ε) = (q, ε) for all q ∈ Q and w ∈ Σ+, and δ̂(q, aw, αβ) = δ̂(p, w, γβ),
where δ(q, a, α) = (p, γ) for all q ∈ Q, a ∈ Σ, w ∈ Σ∗, α ∈ Γ and β ∈ Γ∗. The language
accepted by A is the language L(A) = {w ∈ Σ∗ | δ̂(q0, w,⊥) ∈ F × {⊥}}. We call such a
language a visibly pushdown language (VPL). We remark that visibly pushdown languages
are always subsets of Σ△.

We refer to [14] for further details on formal language theory.

2.1 Complexity and logic
We assume familiarity with standard circuit complexity, we refer to [24, 18] for an introduction
to the topic. Recall the following Boolean functions: the AND-function, the OR-function,
the majority function (that outputs 1 if the majority of its inputs are 1s), and the modm
function (that outputs 1 if the number of its inputs that are 1s is divisible by m) for all
m ≥ 2.

A circuit family (Cn)n∈N decides a binary language L ⊆ {0, 1}∗ if Cn is a circuit with
n inputs such that L ∩ {0, 1}n = {x1 . . . xn ∈ {0, 1}n | Cn(x1, . . . , xn) = 1} for all n ∈ N.
In this paper, we will consider circuits deciding languages over arbitrary finite alphabets:
to do this, we just consider implicitly that any language over an arbitrary finite alphabet
comes with a fixed binary encoding that encodes each letter as a block of bits of fixed size.
By ≤cd we mean constant-depth truth table reducibility (or just constant-depth reducibility)
as introduced in [8]. Formally for two languages K ⊆ Γ∗ and L ⊆ Σ∗ for finite alphabets
Σ,Γ, we write K ≤cd L in case there is a polynomial p, a constant d ∈ N, and circuit family
(Cn)n∈N deciding L such that each circuit Cn satisfies the following: it is of depth at most
d and size at most p(n) and its non-input gates are either AND-labeled, OR-labeled, or
so-called oracle gates, labeled by L, that are gates deciding L ∩ Σm, where m ≤ p(n), such
that there is no path from the output of an oracle gate to an input of another oracle gate.
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We write K =cd L if K ≤cd L and L ≤cd K; we also say that K and L are constant-depth
equivalent. We say a language L is hard for a complexity class C (or just C-hard) if L′ ≤cd L

for all L′ ∈ C. We say L is C-complete if L is C-hard and L ∈ C. The following complexity
classes are relevant in this paper: AC0 is the class of all languages decided by circuit families
with NOT gates, AND, OR gates of unbounded fan-in, constant depth and polynomial size;
ACC0 is the class of all languages decided by circuit families with NOT gates, AND, OR and
modular gates (for some fixed m) of unbounded fan-in, constant depth and polynomial size;
TC0 is the class of all languages decided by circuit families with NOT gates, AND, OR and
majority gates of unbounded fan-in, constant depth and polynomial size; NC1 is the class of
all languages decided by circuit families with NOT gates, AND, OR gates of bounded fan-in,
logarithmic depth and polynomial size.

We also consider the framework of first order logic over finite words. (See [17, 23] for
a proper introduction to the topic.) A numerical predicate of arity r ∈ N>0 is a symbol
of arity r associated to a subset of N>0

r. Given a class C of numerical predicates and a
finite alphabet Σ, we call FOΣ[C]-formula a first order formula over finite words using the
alphabet Σ and numerical predicates from the class C. On occasions, we might also consider
FOΣ,↭[C]-formulas that in comparison to the previous ones can use an additional binary
predicate ↭ and are interpreted on structures (w,M) with w ∈ Σ∗ and M ⊆ [1, |w|]2, where
everything is interpreted as for FOΣ[C]-formulas on w excepted for ↭ that is interpreted by
M . Given a class C of numerical predicates, by FO[C] we denote the class of all languages
over any finite alphabet Σ defined by a FOΣ[C]-sentence. A classical result at the interplay of
circuit complexity and logic is that AC0 = FO[arb], where arb denotes the class of all numerical
predicates (see [23, Theorem IX.2.1] or [17, Corollary 5.32]). The other numerical predicates
that we will encounter in this paper are <, + and MODm for all m ∈ N>0, where MODm
tests if m divides the number of 1’s (gathered together in the set MOD = {MODm | m > 0}).

2.2 Main result
The notion of length-synchronicity and weak length-synchronicity will be a central notion in
our main result. In the following Σ always denotes a visibly pushdown alphabet.

▶ Definition 1 ((Weak) Length-Synchronicity). Let R ⊆ Con(Σ) be a set of contexts. We say R
is length-synchronous if |u| / |v| = |u′| / |v′| for all (u, v), (u′, v′) ∈ R with ∆(u),∆(u′) > 0;
we say R is weakly length-synchronous if u = u′ implies |v| = |v′| and v = v′ implies
|u| = |u′| for all (u, v), (u′, v′) ∈ R with ∆(u),∆(u′) > 0.

Note that a set of contexts R is weakly length-synchronous if R is length-synchronous.
Indeed, if, say (u, v), (u, v′) ∈ R, where |v| ̸= |v′| and ∆(u) > 0, then |u| , |v| , |v′| > 0 and so
the quotients |u|

|v| and |u|
|v′| are distinct, thus violating length-synchronicity of R.

▶ Definition 2 (Quasi-Counterfree). A VPL L ⊆ Σ△ is quasi-counterfree if for all σ =
(u, v) ∈ Con(Σ) at least one of the following holds: (1) there exists some n ∈ N such that
σn ≡L σ

n+1 or (2) for all τ ∈ Σ|u| × Σ|v| ∩ Con(Σ) we have τ ̸≡L σ ◦ σ.

We will later show that quasi-counterfreeness of a VPL L ⊆ Σ△ is equivalent to the condition
that there is no k, l ∈ N such that there is a subset of Con(Σ) ∩ Σk × Σl that forms a
non-trivial group when considering the associated equivalence classes with respect to ≡L.

▶ Example 3. Consider the visibly pushdown alphabet Σ, where Σcall = {a}, Σint = {c}
and Σret = {b1, b2}. For all k, l ∈ N>0 satisfying k ̸= l, consider the language Lk,l generated
by the context-free grammar S → ack−1Sb1 | acl−1Sb2 | ε . We have that the set of contexts
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{(u, v) ∈ Con(Σ) | S ⇒∗
G uSv} is weakly length-synchronous since both the relation and its

reverse is a partial function – however, it is not length-synchronous. It is also not hard to
see that Lk,l is quasi-counterfree. Indeed, given (u, v) ∈ Con(Σ), if u contains the letter b1
or b2, or v contains the letter a or the letter c along with the letter b1 or b2, we have that
(χ ◦ (u, v))w /∈ Lk,l for all χ ∈ Con(Σ) and all w ∈ Σ△, so (u, v)2 ≡Lk,l (u, v)3. If u and
v happen to contain the letter c and only this letter, we can argue similarly. In the cases
remaining, u contains only letters from {a, c} and v letters from {b1, b2}.

We say a context-free grammar G = (V,Σ, P, S) is vertically visibly pushdown if the
underlying alphabet Σ is a visibly pushdown alphabet, S →G ε, and all other productions
of G are of the form T →G uT ′v, where uv ∈ Σ△ is one-turn such that u ∈ (Σ∗

intΣcallΣ∗
int)+

and v ∈ (Σ∗
intΣretΣ∗

int)+. Note that each grammar generating Lk,l in Example 3 is vertically
visibly pushdown. Note that languages generated by vertically visibly pushdown grammars
are obviously one-turn VPLs.

▶ Definition 4 (Intermediate VPL). A VPL L is intermediate if it is quasi-counterfree and
L = L(G) for some vertically visibly pushdown grammar G for which R(G) = {(u, v) ∈
Con(Σ) | S ⇒∗

G uSv} is weakly length-synchronous but not length-synchronous.

We remark that every intermediate languages is in TC0. Thus the languages Lk,l from
Example 3 are all intermediate VPLs. Loosely speaking, they are the simplest intermediate
VPLs. We have the following conjecture.

▶ Conjecture 5. There is no intermediate VPL that is in ACC0 or TC0-hard.

In fact, the authors are not even aware of any intermediate VPL that is provably not in AC0.
An indication for the inadequacy of known techniques to prove it is that the robustness [18] of
intermediate VPLs can be proven to be constant. Further techniques, based for instance on
the switching lemma [15] or on the polynomial method [6] also do not seem to be applicable.

Our main result is the following theorem.

▶ Theorem 6. There is an algorithm that, given a DVPA A, correctly outputs either
L(A) ∈ AC0,
m ≥ 2 such that MODm ≤cd L(A) (hence implying L(A) ̸∈ AC0),
vertically visibly pushdown grammars G1, . . . , Gm each generating intermediate VPLs
such that L =cd

⊎m
i=1 L(Gi). In this case one can moreover effectively compute k, l ∈ N

with k ̸= l such that Lk,l ≤cd L(A).

Theorem 6 and the following conjecture imply the existence of an algorithm that decides
if a given visibly pushdown language is in AC0.

▶ Conjecture 7. Either all intermediate VPLs are in AC0 or all are not.

We refer the reader to [3] for the definition of visibly counter automata. Visibly counter
automata (m-VCA) are essentially restricted visibly pushdown automata manipulating a
counter which can moreover explicitly test if the current counter has a value in [0,m− 1]
or at least m. The following corollary of Theorem 6 implies the main result of [19] when
restricted to well-matched words.

▶ Corollary 8. There is an algorithm that, given an m-VCA A, correctly outputs either that
L(A) is in AC0 or some m ≥ 2 such that MODm ≤cd L(A) (hence implying L(A) ̸∈ AC0).



S. Göller and N. Grosshans 38:7

3 Ext-Algebras

This section builds on [9], but identifies an inaccuracy in the definition of Ext-algebra
morphisms to establish freeness.

Let (M, ·, 1M ) be a monoid. For each m ∈ M , we shall respectively denote by leftm and
rightm the left-multiplication map x 7→ m · x and the right-multiplication map x 7→ x ·m.

An Ext-algebra (R,O, ·, ◦) consists of a monoid (R, ·, 1R) and a monoid (O, ◦, 1O) that is
a submonoid of (RR, ◦) containing the maps leftr and rightr for each r ∈ R. An Ext-algebra
morphism from Ext-algebra (R,O) to Ext-algebra (S, P ) is a pair (φ,ψ) of monoid morphisms
φ : R → S and ψ : O → P such that: for all e ∈ O and r ∈ R we have ψ(e)(φ(r)) = φ(e(r))
and for all r ∈ R we have ψ(leftr) = leftφ(r) and ψ(rightr) = rightφ(r). When it is clear
from the context, we shall write morphism to mean Ext-algebra morphism. We remark
that in the above definition, φ is totally determined by ψ, because for each r ∈ R, we have
φ(r) = φ(leftr(1R)) = ψ(leftr)(φ(1R)) = ψ(leftr)(1S).

For the rest of this section, let us fix some visibly pushdown alphabet Σ. For all
(u, v) ∈ Con(Σ), consider the function extu,v : Σ△ → Σ∗ such that extu,v(x) = uxv for all
x ∈ Σ△. It is not hard to prove that extu,v is a function from Σ△ to Σ△. Consider now the
set O(Σ△) of all functions extu,v for (u, v) ∈ Con(Σ): it is a subset of (Σ△)Σ△ closed under
composition. Thus, (O(Σ△), ◦) is a submonoid of ((Σ△)Σ△

, ◦). As for all w ∈ Σ△ we have
leftw = extw,ε and rightw = extε,w, the set O(Σ△) contains leftw and rightw for all w ∈ Σ△.
Thus, (Σ△,O(Σ△), ·, ◦) is an Ext-algebra.

The following important proposition establishes freeness of (Σ△,O(Σ△)).

▶ Proposition 9. Let (R,O) be an Ext-algebra and consider two functions φ : Σint → R

and ψ : {exta,b | a ∈ Σcall, b ∈ Σret} → O. Then there exists a unique Ext-algebra morphism
(φ, ψ) from (Σ△,O(Σ△)) to (R,O) satisfying φ(c) = φ(c) for each c ∈ Σint and ψ(exta,b) =
ψ(exta,b) for each a ∈ Σcall, b ∈ Σret.

We remark that the requirement that for all r ∈ R we have ψ(leftr) = leftφ(r) and
ψ(rightr) = rightφ(r) does not appear in the definition of Ext-algebra morphisms given in [9].
But this is actually problematic, because then Proposition 9 would not hold in general. A
counter-example is given in [12].

A language L ⊆ Σ△ is recognized by an Ext-algebra (R,O) whenever there exists a
morphism (φ,ψ) : (Σ△,O(Σ△)) → (R,O) such that L = φ−1(F ) for some F ⊆ R. The
syntactic Ext-algebra congruence of a language L ⊆ Σ△ is the congruence ∼L on Σ△ defined
by u ∼L v for u, v ∈ Σ△ whenever xuy ∈ L ⇔ xvy ∈ L for all (x, y) ∈ Con(Σ). By [x]∼L we
denote the congruence class of x ∈ Σ△.

▶ Example 10. Consider the language L = L1,2 = L(S → aSb1 | acSb2 | ε) from Example 3
over the visibly pushdown alphabet Γ, where Γint = {c}, Γcall = {a} and Γret = {b1, b2}.
Set RL = {[acb1]∼L , [ε]∼L , [c]∼L , [cab1]∼L , [ab1]∼L}, and, given for all (u, v) ∈ Con(Σ) the
function fu,v ∈ (RL)RL satisfying fu,v([x]∼L ]) = [uxv]∼L for all x ∈ Σ△, set

OL = {facb1,ε, fε,ε, fc,ε, fε,c, fab1,ε, fε,ab1 , fcab1,ε, fa,b2 , fca,b2 , fca,ab1b2 , fca,b1 , fa,ab1b2 , fa,b1 } .

For instance, note that [ab1]∼L = [acb2]∼L , that [acb1]∼L is the zero of RL and that
facb1,ε is the zero of OL. Then (RL, OL) is an Ext-algebra recognizing L thanks to the
morphism (φL, ψL) : (Γ△,O(Γ△)) → (RL, OL) satisfying φL(c) = [c]∼L , ψL(exta,b1) =
fa,b1 and ψL(exta,b2) = fa,b2 . Note that L = φ−1

L ({[ε]∼L , [ab1]∼L}). Finally, note
that for instance ψL(extca,ab1b2) = fca,ab1b2 ̸= fa,ab1b2 = ψL(exta,ab1b2) since we have
ψL(exta,b2) ◦ ψL(extca,ab1b2)([c]∼L) = [acacab1b2b2]∼L = [ab1]∼L whereas ψL(exta,b2) ◦
ψL(exta,ab1b2)([c]∼L) = [aacab1b2b2]∼L = [acb1]L.
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The following lemma is proven in several steps. For this, classical notions like sub-Ext-
algebra, division and quotients are introduced.

▶ Lemma 11. Let L ⊆ Σ△. The pair (RL, OL) = (Σ△,O(Σ△))/∼L, where RL = Σ△/∼L

and where OL = {e′ ∈ (RL)RL | ∃ extu,v ∈ O(Σ△)∀x ∈ Σ△ : e′([x]∼L) = [extu,v(x)]∼L} is an
Ext-algebra. Moreover the pair (φL, ψL) of functions φL : Σ△ → RL and ψL : O(Σ△) → OL
satisfying φL(x) = [x]∼L for all x ∈ Σ△ and ψ(extu,v)([x]∼L) = [extu,v(x)]∼L for all
extu,v ∈ O(Σ△) and x ∈ Σ△ is an Ext-algebra morphism. We have L = φ−1

L (φL(L)).

We call (RL, OL) the syntactic Ext-algebra of L along with its unique associated morphism
(φL, ψL) : (Σ△,O(Σ△)) → (RL, OL), the syntactic Ext-algebra morphism of L. (An example
of each of these is already given in Example 10.)

We say that an Ext-algebra (R,O) is finite whenever R is finite (which is the case if
and only if O is finite). The following theorem establishes the equivalence between visibly
pushdown languages and languages recognizable by finite Ext-algebras. Its proof provides
effective translations from DVPAs to Ext-algebras and vice versa.

▶ Theorem 12. A language L ⊆ Σ△ is a VPL if, and only if, it is recognized by a finite
Ext-algebra.

4 (Weak) length-synchronicity, nesting depth, and quasi-aperiodicity

For the rest of this section let us fix a visibly pushdown alphabet Σ, a finite Ext-algebra
(R,O) and consider a morphism (φ,ψ) : (Σ△,O(Σ△)) → (R,O).

In this section we introduce the notions of weak length-synchronicity and length-
synchronicity for Ext-algebra morphisms and visibly pushdown languages. Before we do
that, let us give some motivation how TC0-hardness can be proven if the syntactic morphism
maps certain extu,v, extu′,v with |u| ̸= |u′| to particular idempotents. For these we require
the following notion of reachability.

For F ⊆ R we say that an element r ∈ R is F -reaching if e(r) ∈ F for some e ∈ O. We
say e ∈ O is F -reaching if e(r) is F -reaching for some r ∈ R. Fix any VPL L, its syntactic
Ext-algebra (RL, OL) along with its syntactic morphism (φL, ψL). Assume there exists some
idempotent e ∈ OL that is φL(L)-reaching.

We claim that if ψL(extu,v) = ψL(extu′,v) = e and ∆(u),∆(u′) > 0 for some
extu,v, extu′,v ∈ O(Σ△) with |u| ̸= |u′|, then L is TC0-hard. We remark that we must
have ∆(u) = ∆(u′). Exploiting the fact that |u| ̸= |u′| we give a constant-depth reduction
from the TC0-complete language EQUALITY to L. As ψL(extu,v) is φ(L)-reaching, we
can fix some x, y, z ∈ Σ∗ such that xuyvz ∈ L. Given a word w ∈ {0, 1}∗ of length 2n
(binary words of odd length can directly be rejected) we map it to xh(w)yvn·(|u|+|u′|)z, where
h : {0, 1}∗ → Σ∗ is the length-multiplying morphism (i.e. ∃l ∈ N : h(0), h(1) ∈ Σl) satisfiying
h(0) = u|u′| and h(1) = u′|u|. We have w ∈ EQUALITY if, and only if, |w|0 = |w|1 = n

if, and only if, ∆(h(w)) = n · (|u| + |u′|) · ∆(u) = −n · (|u| + |u′|) · ∆(v) if, and only if,
h(w)vn·(|u|+|u′|) ∈ Σ△. Hence, since ψL(extus,vs) = ψL(ext(u′)t,vt) = e for all s, t ≥ 1
it follows that w ∈ EQUALITY if, and only, if xh(w)yvn·(|u|+|u′|)z ∈ Σ△ if, and only if,
xh(w)yvn·(|u|+|u′|)z ∈ L.

Dually, one can show that L is TC0-hard in case ψL(extu,v) = ψL(extu,v′) = e and
∆(u) > 0 for some extu,v, extu,v′ ∈ O(Σ△) with |v| ̸= |v′|.

The following definition of weak length-synchronicity captures the situation when such
idempotents do not exist – it adapts the notion of weak length-synchronicity of sets of
contexts, given in Definition 1, to morphisms and VPLs, respectively.
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The morphism (φ,ψ) : (Σ△,O(Σ△)) → (R,O) is F -weakly-length-synchronous (where
F ⊆ R) if for all F -reaching idempotents e ∈ O the set of contexts Re := {(u, v) ∈
Con(Σ) | ψ(extu,v) = e} is weakly length-synchronous. We call a VPL L ⊆ Σ△ weakly
length-synchronous if its syntactic morphism (φL, ψL) is φL(L)-weakly-length-synchronous.

Instead of considering those pairs (u, v) such that extu,v is being mapped to an F -reaching
idempotent, the following characterization of weak length-synchronicity consider pairs (u, v)
such that extu,v is being mapped to an element that behaves neutrally with respect to right
multiplication with an F -reaching element that is not necessarily idempotent.

▶ Proposition 13. For all F ⊆ R we have that (φ,ψ) is F -weakly-length-synchronous if, and
only if, for all F -reaching e ∈ O the set of contexts Ue := {(u, v) ∈ Con(Σ) | e◦ψ(extu,v) = e}
is weakly length-synchrononous.

One can prove that each extu,v has a unique stair factorization extu,v =
extx1,y1 ◦ exta1,b1 ◦ · · · ◦ extxh−1,yh−1 ◦ extah−1,bh−1 ◦ extxh,yh satisfying h ≥ 1, xi, yi ∈ Σ△

for all i ∈ [1, h], ai ∈ Σcall, and bi ∈ Σret for all i ∈ [1, h− 1]. We refer to the xi and yi as
hills of the stair factorization. From the following proposition it follows that weak length-
synchronicity of a VPL L implies that for all φL(L)-reaching e ∈ OL and all (u, v) ∈ Ue, the
stair factorization of extu,v has small hills of constant size.

▶ Proposition 14. There is a constant n ∈ N such that for all F ⊆ R, all F -reaching e ∈ O,
and all (u, v) ∈ Ue, if (φ,ψ) is F -weakly-length-synchronous, then the stair factorization
extu,v = extx1,y1 ◦ exta1,b1 ◦ · · · ◦ extxh−1,yh−1 ◦ extah−1,bh−1 ◦ extxh,yh satisfies |xi|, |yi| ≤ n

for all i ∈ [1, h].

As above, the following definition adapts the notion of length-synchronicity of sets of
contexts, given in Definition 1, to Ext-algebra morphisms and VPLs, respectively.

The morphism (φ,ψ) : (Σ△,O(Σ△)) → (R,O) is F -length-synchronous (where F ⊆ R) if
for all F -reaching idempotents e ∈ O the set of contexts Re = {(u, v) ∈ Con(Σ) | ψ(extu,v) =
e} is length-synchronous. We call a VPL L ⊆ Σ△ length-synchronous if its syntactic morphism
(φL, ψL) is φL(L)-length-synchronous.

Consider our running example L1,2 = L(S → aSb1 | acSb2 | ε). Recall that the monoid
OL1,2 of the syntactic Ext-algebra (RL1,2 , OL1,2) and syntactic morphism (φL1,2 , ψL1,2) of
L1,2, given in Example 10, has the idempotents fε,ε, facb1,ε and fa,b1 . Also recall that
φL1,2(L1,2) = {[ε]∼L1,2

, [ab1]∼L1,2
}. Since ψ−1

L1,2
(fε,ε) = {extε,ε} and facb1,ε is a zero we have

that OL1,2 ’s only idempotent that is {[ε]∼L1,2
, [ab1]∼L1,2

}-reaching and whose pre-image under
ψL1,2 contains at least one extu,v with ∆(u) > 0 is the idempotent fa,b1 . However, both exta,b1

and extac,b2 , where ∆(a) = ∆(ac) = 1 > 0, are sent to the idempotent fa,b1 = fa,b2 ◦ fc,ε.
Since |a|/|b1| = 1 ̸= 2 = |ac|/|b2|, we have that L1,2 is not length-synchronous. On the
other hand, note that if any extu,v and extu′,v (resp. extu,v and extu,v′) are sent to fa,b1

then u = u′ and thus |u| = |u′| (resp. v = v′ and thus |v| = |v′|). Hence, L1,2 is weakly
length-synchronous.

The two following propositions characterize length-synchronicity of Ext-algebra morphisms
and of the set of contexts Ue, which will be of particular importance when approximating the
matching relation of a length-synchronous VPL in terms of FO[+]. This will be an important
ingredient to proving that VPLs that both are length-synchronous and have a quasi-aperiodic
syntactic morphism (a notion to be defined below) are in FO[+] and thus in AC0.

▶ Proposition 15. For all F ⊆ R we have that (φ,ψ) is F -length-synchronous if, and only
if, for all F -reaching e ∈ O the set of contexts Ue = {(u, v) ∈ Con(Σ) | e ◦ ψ(extu,v) = e} is
length-synchronous.
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▶ Proposition 16. Let F ⊆ R and assume (φ,ψ) is F -weakly-length-synchronous. Then for
all F -reaching e ∈ O the following two statements are equivalent.
1. Ue = {(u, v) ∈ Con(Σ) | e ◦ ψ(extu,v) = e} is length-synchronous.
2. There exist α ∈ Q>0, β ∈ N, γ ∈ N>0 such that for all (u, v) ∈ Ue with ∆(u) > 0 we have:

(a) |u|
|v| = α, (b) for all u′, v′ ∈ Σ+ with u′ prefix of u and v′ suffix of v such that |u′|

|v′| = α,
we have that −∆(v′) −β ≤ ∆(u′) ≤ −∆(v′) +β, (c) for all factors u′ ∈ Σ∗ of u such that
|u′| = γ, we have ∆(u′) ≥ 1, and (d) for all factors v′ ∈ Σ∗ of v such that |v′| = γ, we
have ∆(v′) ≤ −1.

The nesting depth of visibly pushdown languages. Another central notion is the nesting
depth of well-matched words, which is the Horton-Strahler number [11] of the underlying
trees. The nesting depth of well-matched words is inductively defined as follows: nd(ε) = 0;
nd(c) = 0 for all c ∈ Σint; nd(uv) = max{nd(u), nd(v)} for all u ∈ ΣcallΣ△Σret ∪ Σint and
v ∈ Σ△ \{ε}; nd(awb) = nd(w)+1 if w = uv for some u, v ∈ Σ△ with nd(w) = nd(u) = nd(v)
and nd(w) otherwise, for all a ∈ Σcall, b ∈ Σret and w ∈ Σ△.

An important property of weakly length-synchronous VPLs is that their words have
bounded nesting depth. Assume any weakly length-synchronous VPL L ⊆ Σ△. Let n be the
constant of Proposition 14. One can prove that if there exists w ∈ L with nd(w) > d = n+ 1,
then there exists a factorization w = uv = extu,v(ε) such that for stair factorization extu,v =
extx1,y1 ◦ exta1,b1 ◦ · · · ◦ extxh−1,yh−1 ◦ extah−1,bh−1 ◦ extxh,yh we must have max{|xi|, |yi| : i ∈
[1, h]} > n, clearly contradicting Proposition 14. We obtain the following proposition.

▶ Proposition 17. For each weakly length-synchronous VPL L ⊆ Σ△ there exists a constant
d ∈ N such that L ⊆ {w ∈ Σ△ | nd(w) ≤ d}.

Quasi-aperiodicity. Towards characterizing the circuit complexity of visibly pushdown
languages the notion of quasi-aperiodicity has already been defined for visibly pushdown
languages in [20]. Let (φ,ψ) : (Σ△,O(Σ△)) → (R,O) for a visibly pushdown alphabet Σ and
a finite Ext-algebra (R,O). We define O(Σ△)k,l = {extu,v ∈ O(Σ△) : |u| = k, |v| = l} for all
k, l ∈ N. We say (φ,ψ) is quasi-aperiodic if all semigroups contained in the set ψ(O(Σ△)k,l)
are aperiodic for all k, l ∈ N.

5 Proof of the main theorem

The following proposition implies that the syntactic Ext-algebra and the syntactic morphism
of a given visibly pushdown language L is computable and that it is decidable if L is
quasi-aperiodic, length-synchronous, and weakly length-synchronous, respectively.

▶ Proposition 18. The following computability and decidability results hold:
1. Given a DVPA A, one can effectively compute the syntactic Ext-algebra of L = L(A), its

syntactic morphism (φL, ψL) and φL(L).
2. Given a morphism (φ,ψ) : (Σ△,O(Σ△)) → (R,O) for a visibly pushdown alphabet Σ

and a finite Ext-algebra (R,O), all of the following are decidable for (φ,ψ): (a) Quasi-
aperiodicity: in case (φ,ψ) is not quasi-aperiodic, one can effectively compute k, l ∈ N such
that ψ(O(Σ△)k,l) is not aperiodic; (b) F -length-synchronicity for a given F ⊆ R: in case
(φ,ψ) is not F -length-synchronous, one can effectively compute a quadruple (k, l, k′, l′) ∈
N4
>0 such that there exist uv, u′v′ ∈ Σ△ and some F -reaching idempotent e ∈ O such that

ψ(extu,v) = ψ(extu′,v′) = e, ∆(u) > 0, ∆(u′) > 0, k = |u|, l = |v|, k′ = |u′|, l′ = |v′|, and
k
l ̸= k′

l′ ; (c) F -weakly-length-synchronicity for a given F ⊆ R.
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Proof outline for Theorem 6. Towards proving our main result (Theorem 6), given a DVPA
A, where L = L(A) is a VPL over a visibly pushdown alphabet Σ, we apply Proposition 18
and compute its syntactic Ext-algebra (RL, OL) along with its syntactic morphism (φL, ψL)
and the subset φL(L). Then the following effective case distinction implies Theorem 6.
1. If L is not weakly length-synchronous, then L is TC0-hard and hence not in AC0 (Propos-

ition 19 in Section 5.1). We output some m > 1 since MODm ≤cd EQUALITY ≤cd L.
2. If L is not quasi-aperiodic, then one can compute some m ≥ 2 such that MODm ≤cd L

(Proposition 20 in Section 5.1).
3. If L is length-synchronous and (φL, ψL) is quasi-aperiodic, then L ∈ AC0 (Theorem 22 in

Section 5.2).
4. If L that is weakly length-synchronous, not length-synchronous, and its syntactic morphism

(φL, ψL) is quasi-aperiodic, one can compute vertically visibly pushdown grammars
G1, . . . , Gm generating intermediate VPLs such that L =cd

⊎m
i=1 L(Gi) (Theorem 29 in

Section 5.3). Already if L is weakly length-synchronous but not length-synchronous,
one can compute k, l ∈ N>0 with k ̸= l such that Lk,l ≤cd L (Proposition 30 in
Section 5.3). ◀

5.1 Lower bounds
The following lower bound has already been given in Section 4.

▶ Proposition 19. If L is not weakly length-synchronous, then L is TC0-hard.

The following proposition has essentially already been shown in [20, Proposition 135],
yet with some inaccuracies (we refer to Section 8 in [12]) that we fix. The idea is again a
standard reduction from the word problem of non-trivial cyclic subgroups of ψL(O(Σ)k,l), in
case the latter set contains a non-trivial group.

▶ Proposition 20. If L is not quasi-aperiodic, then one can compute some m ≥ 2 such that
MODm ≤cd L.

As final lower bound result we prove a stronger lower bound, namely when the syntactic
morphism not only is not quasi-aperiodic but the syntactic Ext-algebra is not solvable. We
say the Ext-algebra (R,O) is solvable if all subsets of R or O that are groups (under the
multiplication of R, resp. of O) are solvable. It is worth mentioning that one can prove that
if (φ,ψ) : (Σ△,O(Σ△)) → (R,O) is quasi-aperiodic, then (R,O) is solvable.

Our proof that L is NC1-hard (and thus TC0-hard) when (RL, OL) is not solvable can
essentially be reduced to the case for words [4], by showing that already ψL(O(Σ△)k,l)
contains such a non-solvable group for some fixed k, l ≥ 0.

▶ Proposition 21. If (RL, OL) is not solvable, then L is NC1-hard and thus not in AC0.

5.2 In AC0: Length-synchronous and quasi-aperiodic
In this section we concern ourselves with the following result.

▶ Theorem 22. If L is length-synchronous and (φL, ψL) is quasi-aperiodic, then L is in
FO[+] and thus in AC0.

For the rest of this section let us fix a VPL L, its syntactic Ext-algebra (RL, OL), and its
syntactic morphism (φL, ψL) : (Σ△,O(Σ△)) → (RL, OL). We first introduce suitably padded
word languages mimicking the evaluation problem of the monoid RL and the monoid OL,
respectively.
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For all k ∈ N, we define O(Σ△)k,∗ = {extu,v ∈ O(Σ△) : |u| = k} and O(Σ△)∗,k =
{extu,v ∈ O(Σ△) : |v| = k}. We also define O(Σ△)↑ = {extu,v ∈ O(Σ△) | ∆(u) > 0}
and finally for all k ∈ N, we define O(Σ△)k,∗↑ = O(Σ△)k,∗ ∩ O(Σ△)↑ and O(Σ△)∗,k

↑ =
O(Σ△)∗,k ∩ O(Σ△)↑. Consider the alphabets ΓφL = φL(Σ△ \ {ε}) ∪ {$} and ΓψL =
ψL

(
O(Σ△)↑

)
∪ {$} for a letter $ /∈ RL ∪ OL. We also define VφL = {$ks | k ∈ N, s ∈

φL(Σk+1)}∗ and VψL =
{

$kf
∣∣ k ∈ N, f ∈ ψL

(
O(Σ△)k+1,∗

↑
)}∗. The following lemma holds

irrespective of whether the syntactic morphism (φL, ψL) of L is quasi-aperiodic or not.

▶ Lemma 23. VφL , VψL are regular languages whose syntactic morphisms are quasi-aperiodic.

Define the φL-evaluation morphism evalφL : Γ∗
φL → RL by evalφL(s) = s for all s ∈

φL(Σ△ \{ε}) and evalφL($) = 1R. Similarly, let the morphism evalψL : Γ∗
ψL

→ OL be defined
as evalψL(f) = f for all f ∈ ψL

(
O(Σ△)↑

)
and evalψL($) = 1OL . Finally, for all r ∈ RL, we

set EφL,r = VφL ∩ eval−1
φL(r) and for all e ∈ OL, EψL,e = VψL ∩ eval−1

ψL
(e).

The following proposition states that the respective evaluation languages EφL,r and EψL,e
are all quasi-aperiodic if the syntactic morphism (φL, ψL) of L is and L is additionally
length-synchronous.

▶ Proposition 24. Let L be a VPL for which (φL, ψL) is quasi-aperiodic. Then EφL,r is a
regular language whose syntactic morphism is quasi-aperiodic for all r ∈ RL. If L is length-
synchronous, then EψL,e is a regular language whose syntactic morphism is quasi-aperiodic
for all e ∈ OL.

The following remark states that the length-synchronicity condition in the second point of
Proposition 24 is important. In fact it shows that weak length-synchronicity is not sufficient.
▶ Remark 25. For the second point of Proposition 24 it is generally not sufficient to assume
that L is weakly length-synchronous. Indeed, the VPL K generated by the grammar with
rules S → aSb1 | acTb2 | ε and T → aTb1 | acSb2 using S as start symbol is not length-
synchronous (but weakly length-synchronous) and has a quasi-aperiodic syntactic morphism.
However, for the syntactic Ext-algebra (RK , OK) and the syntactic morphism (φK , ψK) of
K, one can prove that that there exists e ∈ OK such that EψK ,e is a regular language whose
syntactic morphism is not quasi-aperiodic. Details can be found in [12].

Approximate matchings generalize the classical matching relation on well-matched words
with respect to our VPL L in the sense that they are subsets of the matching relation but
must equal the matching relation on all those words that are in L. Approximate matchings
in the context of visibly pushdown languages were introduced by Ludwig [20].

For any word w ∈ Σ∗, we say that two positions i, j ∈ [1, |w|] in w are matched whenever
i < j, wi ∈ Σcall, wj ∈ Σret and wi+1 · · ·wj−1 ∈ Σ△; we also say that i is matched to j in
w. Given a word w ∈ Σ△, we denote by M△ (w) its matching relation (or matching), that
is the relation {(i, j) ∈ [1, |w|]2 | i is matched to j in w}. An approximate matching relative
to L ⊆ Σ△ is a function M : Σ∗ → N>0

2 such that M(w) = M△ (w) for all w ∈ L and
M(w) ⊆ M△ (w) for all w ∈ Σ∗ \ L.

The next lemma is an important tool for defining an approximate matching relation.

▶ Lemma 26. Assume that (φL, ψL) is weakly length-synchronous. Let e ∈ OL be φL(L)-
reaching and let Ue = {(u, v) ∈ Con(Σ) | e ◦ ψL(extu,v) = e} be length-synchronous. Then
there exists an FOΣ[+]-formula πe(x, x′, y′, y) such that for all w ∈ Σ+ and i, i′, j′, j ∈
[1, |w|], i ≤ i′ < j′ ≤ j the following holds:

if w |= πe(i, i′, j′, j), then wi · · ·wi′wj′ · · ·wj ∈ Σ△ and
if wi · · ·wi′wj′ · · ·wj ∈ Σ△ and (wi . . . wi′ , wj′ . . . wj) ∈ Re, then w |= πe(i, i′, j′, j).
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The proof of Lemma 26 takes several steps. The formula πe expresses the characterization
of length-synchronicity given by Proposition 16 via an FOΣ[+]-formula. To realize these
we make use of aperiodicity of the following languages Lp,q. For each p ∈ N let Γp =
{a−p, . . . , a−1, a0, a1, . . . , ap} and let ∆p : Γ∗

p → Z be the morphism satisfying ∆p(ah) = h for
all ah ∈ Γp. Let Lp,q = {w ∈ Γ∗

p | ∆p(w) = 0∧∀i ∈ [1, |w|],−q ≤ ∆p(w1 · · ·wi) ≤ q}. One can
prove that this language is recognized by a finite aperiodic monoid. This implies, by a theorem
by McNaughton and Papert (see [23, Theorem VI.1.1]), that there exists an FOΓn+d [<]-
sentence defining Lp,q. These ingredients are central for expressing the characterization of
length-synchronicity given by Proposition 16 via an FOΣ[+]-formula.

With the help of the predicates πe provided by Lemma 26 one can build an FOΣ[+]-
definable approximate matching relative to any length-synchronous visibly pushdown language.
The proof is by induction on the nesting depth.

▶ Proposition 27. If L ⊆ Σ△ is length-synchronous, then there exists an FOΣ[+]-formula
η(x, y) such that M : Σ∗ → N>0

2 defined by M(w) = {(i, j) ∈ [1, |w|]2 | w |= η(i, j)} for all
w ∈ Σ∗ is an approximate matching relative to L.

The following proposition states that a VPL L is definable by some FOΣ,↭[+] sentence
in case L has bounded nesting depth, the evaluation languages EφL,r and EψL,e are all
quasi-aperiodic, and any approximate matching is present as built-in predicate.

▶ Proposition 28. Assume a VPL L has bounded nesting depth and EφL,r and EψL,e are
regular languages whose syntactic morphisms are quasi-aperiodic for all r ∈ RL and for all
e ∈ OL. Then there exists an FOΣ,↭[+]-sentence η such that for all approximate matchings
M relative to L, we have w ∈ L if, and only if, (w,M(w)) |= η for all w ∈ Σ∗.

Proof (Sketch). By hypothesis, there exists dL ∈ N bounding the nesting depth of the words
in L. By hypothesis also, for each r ∈ RL, the language EφL,r is regular and its syntactic
morphism is quasi-aperiodic. This implies, by [23, Theorem VI.4.1], that for each r ∈ RL,
there exists an FOΓφL [<,MOD]-sentence νφL,r defining EφL,r. Finally, by hypothesis, for
each e ∈ OL, the language EψL,e is regular and its syntactic morphism is quasi-aperiodic.
Analogously, for each e ∈ OL, there exists an FOΓψL [<,MOD]-sentence νψL,e defining EψL,e.

To build the FOΣ,↭[+]-sentence η, we build FOΣ,↭[+]-formulas η↑
d,r(x, y) and ηd,r(x, y)

for all d ∈ [0, dL] and all r ∈ RL. They will have the following properties for all w ∈ Σ△

and all i, j ∈ [1, |w|], where M△ is the full matching relation: (1) if i is matched to j in
w, then (w,M△ (w)) |= η↑

d,r(i, j) if, and only if, nd(wi · · ·wj) ≤ d and φL(wi · · ·wj) = r

and (2) if wi · · ·wj ∈ Σ△, then (w,M△ (w)) |= ηd,r(i, j) if, and only if, nd(wi · · ·wj) ≤ d

and φL(wi · · ·wj) = r. It is not difficult to construct a formula Nd(x, y) (that also accesses
the full matching relation) such that for all w ∈ Σ∗ and all infixes wi . . . wj ∈ Σ△ we
have w |= Nd(i, j) if, and only if, nd(wi . . . wj) ≤ d. Let the formula E be ∀x(x ̸= x) if
ε ∈ L and ⊥ = ∃x(x ≠ x) otherwise. Observe that w |= ∀x(x ≠ x) if, and only if, w = ε.
Letting ↭ being interpreted over any approximate matching relation, the formula η is
then defined as the conjunction of ∀z∃t

(
(Σcall(z) → z ↭ t) ∧ (Σret(z) → t ↭ z)

)
and

E ∨ ∃x∃y
(
¬∃x′(x′ < x) ∧ ¬∃y′(y < y′) ∧

∨
r∈φL(L) ηdL,r(x, y)

)
.

Let us give some intuition on how to build η↑
d,r(x, y) and ηd,r(x, y) for all d ∈ N and

r ∈ RL. The construction is by induction on d. Let r ∈ RL. We define η↑
0,r(x, y) = ⊥. We

define η0,r as η0,r(x, y) = ¬N1(x, y) ∧ τ0(νφL,r), where the translation τ0 is defined as follows:
τ0(z < z′) = z < z′, τ0(s(z)) =

∨
c∈φ−1

L
(s)∩Σint

c(z) for all s ∈ φL(Σ△ \ {ε}), τ0(MODm(z)) =
∃t(z−x+1 = t·m) for all m ∈ N>0, τ0($(z)) = ⊥, τ0(ρ1(z1)∧ρ2(z2)) = τ0(ρ1(z1))∧τ0(ρ1(z2)),
τ0(¬ρ(z)) = ¬τ0(ρ(z)), and τ0(∃zρ(z, z)) = ∃z

(
x ≤ z ≤ y ∧ τ0(ρ(z, z))

)
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Now let d > 0. Define the formula A(x, y, z) = ∃x′∃y′(x ≤ x′ ≤ z < y′ ≤ y ∧ x′ ↭ y′)
that expresses that for all w ∈ Σ△ and i, j, k ∈ [1, |w|] satisfying wi · · ·wj ∈ Σ△, we have
(w,M△ (w)) |= A(i, j, k) if, and only if, i ≤ k < j and ∆(wi · · ·wk) > 0. Let us first define
ηd,r when assuming that we have already defined η↑

d,r. Note that in case nd(u) ≤ d, then
one can factorize u as u = u1 · · ·um such that ui ∈ Σ+

int ∪ ΣcallΣ△Σret and nd(ui) ≤ d for all
i ∈ [1,m]. Using this observation we define ηd,r(x, y) = ¬Nd+1(x, y) ∧ τ1(νφL,r), where the
translation τ1 agrees with the above translation τ0 (where, as expected, occurrences of τ0
are replaced by τ1) except for the following kinds of subformulas: τ1($(z)) = A(x, y, z) and
τ1(s(z)) = ¬A(x, y, z) ∧

(∨
c∈φ−1

L
(s)∩Σint

c(z) ∨ ∃t
(
x ≤ t ≤ y ∧ t↭ z ∧ η↑

d,s(t, z)
))

.
Similarly, in the definition of η↑

d,r we make use of our sentences νψL,e for the evaluation
languages EψL,e for all e ∈ OL. For these however we make use of an auxiliary formula U
such that for all w ∈ Σ△ and i, i′, k ∈ [1, |w|] we have (w,M△ (w)) |= U(i, i′, k) if, and only
if, i ≤ k ≤ i′ and k is matched with some position larger than i′, thus expressing that for
some positions j, j′ the position k is an “upward stair position” in the stair factorization of
extui···ui′ ,uj′ ···uj = extx1,y1 ◦ · · · extah−1,bh−1 ◦ extxh,yh : more precisely k is one of the positions
{i+ |x1a1| − 1, i+ |x1a1x2a2| − 1, . . . , i+ |x1a1 . . . xh−1ah−1| − 1}. These positions k will be
precisely the ones where the predicate $ does not hold in a suitable translation of νψL,e. ◀

Proof of Theorem 22. Proposition 24 implies that EφL,r and EψL,e are regular languages
whose respective syntactic morphisms are quasi-aperiodic for all r ∈ RL and all e ∈ OL,
respectively. Thus, the first two conditions of Proposition 28 are satisfied. Moreover,
Proposition 27 provides a first-order definable approximate matching relation relative to L,
being a predicate assumed by Proposition 28. Finally, Proposition 28 implies Theorem 22. ◀

5.3 The intermediate case
The following theorem effectively characterizes the remaining case, namely those VPLs that
are weakly length-synchronous but not length-synchronous and whose syntactic morphism
is quasi-aperiodic: such VPLs are shown to be constant-depth equivalent to a non-empty
disjoint union of intermediate languages.

▶ Theorem 29. If a VPL L is weakly length-synchronous, not length-synchronous, and its
syntactic morphism (φL, ψL) is quasi-aperiodic, one can compute vertically visibly pushdown
grammars G1, . . . , Gm generating intermediate VPLs such that L =cd

⊎m
i=1 L(Gi).

Let L ⊆ Σ△ be a weakly length-synchronous VPL that is not length-synchronous, and
whose syntactic morphism (φL, ψL) is quasi-aperiodic. By Proposition 18 one can compute
its syntactic Ext-algebra (RL, OL), (φL, ψL) and φL(L) from (a given DVPA for) L. For
all φL(L)-reaching e ∈ OL and some fresh internal letter # ̸∈ Σ let Me = {u#v | ∆(u) >
0, (u, v) ∈ Ue}, which can be shown to be a computable VPL.

The set Z = {e ∈ OL | e is φL(L)-reaching and Ue is not length-synchronous} can be
proven to be computable. Observe that as L is not length-synchronous by assumption, we
have Z ̸= ∅ (Proposition 15). Next make use of Lemma 14 stating that the hills in the stair
factorization of any extu,v ∈ ψ−1

L (e) are constantly bounded for all φL(L)-reaching e ∈ OL.
This gives rise to computable intermediate languages Ne such that Ne =cd Me for all e ∈ Z.
Letting Lf = {u#v | ψ(extu,v) = f} for all f ∈ OL, it is standard to show Lf ≤cd L for all
φL(L)-reaching f ∈ OL. Finally, one proves Me ≤cd

⊎
f ∈ OL is φL(L)-reaching Lf for all e ∈ Z

and L ≤cd
⊎
e∈Z Me thus establishing L =cd

⊎
e∈Z Ne. The proof of L ≤cd

⊎
e∈Z Me is the

technically most demanding and is an adaption of the proof of Proposition 28: alas, one
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cannot assume presence of the evaluation FOΓψL [<,MOD]-sentence νψL,e for each e ∈ OL
since EψL,e can possibly have a non-quasi-aperiodic syntactic morphism by Remark 25. Yet,
one can realize evaluation via access to the oracle

⊎
e∈Z Me.

The following proposition implies the computability of k, l ∈ N>0 such that Lk,l ≤cd L

already when a VPL L is weakly length-synchronous but not length-synchronous.

▶ Proposition 30. If a VPL L is weakly length-synchronous but not length-synchronous, one
can compute k, l ∈ N>0 with k ̸= l such that Lk,l ≤cd L .

Proof. Let L ⊆ Σ△ be a weakly length-synchronous VPL that is not length-synchronous.
According to Point 2 (b) of Proposition 18 one can compute a quadruple (k0, l0, k

′
0, l

′
0) ∈ N4

>0
for which there exist extu,v, extu′,v′ ∈ O(Σ△) such that |u| = k0, |v| = l0, |u′| = k′

0,
|v′| = l′0, ψL(extu,v) = ψL(extu′,v′) is a φL(L)-reaching idempotent, ∆(u),∆(u′) > 0, and
k0
l0

= |u|
|v| ̸= |u′|

|v′| = k′
0
l′0

. We can compute such extu,v and extu′,v′ by just doing an exhaustive
search. This enables us to assume without loss of generality that ∆(u) = ∆(u′): indeed, in case
∆(u) ̸= ∆(u′), we can consider extu1,v1 = extu∆(u′),v∆(u′) and extu2,v2 = ext(u′)∆(u),(v′)∆(u) .

Let us now define Green’s relations on OL. Let us consider two elements x, y of OL. We
write x ≤J y whenever there are elements e, f of OL such that x = e ◦ y ◦ f . We write x J y

if x ≤J y and y ≤J x. We write x <J y if x ≤J y and x ̸J y. We write x ≤R y whenever
there is an element e of OL such that x = y ◦ e. We write x R y if x ≤R y and y ≤R x. We
write x ≤L y whenever there is an element e of OL such that x = e ◦ y. We write x L y if
x ≤L y and y ≤L x. We write x H y if x R y and x L y.

Observe that because ∆(u) = ∆(u′), we have that uv′ ∈ Σ△ and u′v ∈ Σ△, so
that we can consider the elements extuuu,vv′v = extu,v ◦ extu,v′ ◦ extu,v and extuu′u,vvv =
extu,v ◦ extu′,v ◦ extu,v in O(Σ△). These elements satisfy ψL(extuuu,vv′v) ≤J ψL(extu,v)
and ψL(extuu′u,vvv) ≤J ψL(extu,v). We claim that we actually have ψL(extuuu,vv′v) <J

ψL(extu,v) and ψL(extuu′u,vvv) <J ψL(extu,v). Indeed, assume we had ψL(extuu′u,vvv) J

ψL(extu,v). Set x = ψL(extu,v) and y = ψL(extu′,v). Since it would hold that x ◦ y ◦ x ≤R x

and x◦y◦x J x, we would have x◦y◦x R x and dually, since it would hold that x◦y◦x ≤L x

and x ◦ y ◦ x J x, we would have x ◦ y ◦ x L x. Therefore, we would have x ◦ y ◦ x H x.
As x is an idempotent, its H-class is a group, hence for ω ∈ N>0 the idempotent power of
OL, we would have (x ◦ y ◦ x)ω = xω = x (as the only idempotent element in a group is
the identity). This would finally entail that ψL(ext(uu′u)ω,(vvv)ω ) = ψL(ext(uuu)ω,(vvv)ω ) is a
φL(L)-reaching idempotent and ∆((uu′u)ω) = ∆((uuu)ω) > 0 but |(uu′u)ω| ̸= |(uuu)ω|, a
contradiction to the fact that (φL, ψL) is φL(L)-weakly-length-synchronous. Symmetrically,
we can prove that if we had ψL(extuuu,vv′v) J ψL(extu,v), this would contradict the fact that
(φL, ψL) is φL(L)-weakly-length-synchronous.

Here we only treat the case when |v| = |v′| and refer to [12] for the full proof of the
other cases. We prove that there exist k, l ∈ N>0, k ̸= l such that Lk,l ≤cd LψL(extu,v), so
that since LψL(extu,v) ≤cd L (as already mentioned in Section 5.3 this is standard) and by
transitivity of ≤cd we have Lk,l ≤cd L. In that case, we necessarily have |u| ̸= |u′|. Then,
we can exploit the fact that matching u3 with vv′v or uu′u with v3 makes us fall down to a
smaller J-class to reduce L3|u|,2|u|+|u′| to LψL(extu,v). The constant-depth reduction works
as follows on input w ∈ Σ∗: (i) check if w = xy with x ∈ (ac3|u|−1 + ac2|u|+|u′|−1)∗ and
y ∈ (b1 + b2)∗, reject otherwise; (ii) build x′ by sending ac3|u|−1 to u3, ac2|u|+|u′|−1 to uu′u

and y′ by sending b1 to v3 and b2 to vv′v; (iii) accept whenever x′#y′ ∈ LψL(extu,v). This
forms a valid reduction. Indeed, take a word w = xy with x ∈ (ac3|u|−1 + ac2|u|+|u′|−1)n for
n ∈ N and y ∈ (b1 + b2)m for m ∈ N and consider x′#y′ produced by the reduction with
x′ ∈ (u3 + uu′u)n and y′ ∈ (v3 + vv′v)m. If w ∈ L3|u|,2|u|+|u′|, then it easily follows that
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x′#y′ ∈ LψL(extu,v). Otherwise, if w /∈ L3|u|,2|u|+|u′|, then either n ̸= m and thus x′y′ is not
well-matched because ∆(x′) = n · 3 · ∆(u) and ∆(y′) = m · 3 · ∆(v), or n = m and thus x′y′ is
well-matched, so extx′,y′ = extz′

1,t
′
1

◦ · · ·◦extz′
n,t

′
n

with z′
1, . . . , z

′
n ∈ {u3, uu′u} and t′1, . . . , t′n ∈

{v3, vv′v} such that there exists i ∈ [1, n] satisfying extz′
i
,t′
i

∈ {extu3,vv′v, extuu′u,v3}, thereby
implying ψL(extx′,y′) ≤J ψL(extz′

i
,t′
i
) <J ψL(extu,v). Hence, our algorithm outputs the pair

(k, l) = (3k0, 2k0 + k′
0). ◀

6 Conclusion

In this paper we have studied the question of which visibly pushdown languages lie in the
complexity class AC0. We have introduced the notions of length-synchronicity, weak length-
synchronicity and quasi-counterfreeness. We have introduced intermediate VPLs: these are
quasi-counterfree VPLs generated by context-free grammars G involving the production
S →G ε for the start nonterminal S and whose further productions are all of the form
T →G uT ′v, where uv is well-matched, u ∈ (Σ∗

intΣcallΣ∗
int)+, v ∈ (Σ∗

intΣretΣ∗
int)+, and the

set of contexts {(u, v) ∈ Con(Σ) | S ⇒∗
G uSv} is weakly length-synchronous but not length-

synchronous. To the best of our knowledge it is unclear whether at all there is an intermediate
VPL that is provably in AC0 (even in ACC0) or provably not in AC0. We conjecture that none
of the intermediate VPLs are in ACC0 nor TC0-hard. Our main result states that there is an
algorithm that, given a visibly pushdown language L, outputs if L surely lies in AC0, surely
does not lie in AC0 (by providing some m > 1 such that MODm is constant-depth reducible
to L), or outputs a disjoint finite union of intermediate VPLs that L is constant-depth
equivalant to. In the latter of the three cases one can moreover compute distinct k, l ∈ N>0
such that already Lk,l = L(S → ε | ack−1Sb1 | acl−1Sb2) is constant-depth reducible to L.
We conjecture that due to the particular nature of intermediate VPLs, either all of them are
in AC0 or all are not: this conjecture together with our main result indeed implies that there
is an algorithm that decides if a given visibly pushdown language is in AC0. As main tools
we carefully revisited Ext-algebras, introduced by Czarnetzki et al. [9], being closely related
to forest algebras, introduced by Bojańczyk and Walukiewicz [7]. For the reductions from
Lk,l we made use of Green’s relations.

Natural questions arise. Is there any concrete intermediate VPL that is provably in
ACC0, provably not in AC0, or hard for TC0? Another exciting question is whether one can
effectively compute those visibly pushdown languages that lie in the complexity class TC0. Is
there is a TC0/NC1 complexity dichotomy? For these questions new techniques seem to be
necessary. In this context it is already interesting to mention there is an NC1-complete visibly
pushdown language whose syntactic Ext-algebra is aperiodic. Another exciting question is
to give an algebraic characterization of the visibly counter languages.

References
1 Rajeev Alur, Viraj Kumar, P. Madhusudan, and Mahesh Viswanathan. Congruences for visibly

pushdown languages. In Luís Caires, Giuseppe F. Italiano, Luís Monteiro, Catuscia Palamidessi,
and Moti Yung, editors, Automata, Languages and Programming, 32nd International Col-
loquium, ICALP 2005, Lisbon, Portugal, July 11-15, 2005, Proceedings, volume 3580 of Lecture
Notes in Computer Science, pages 1102–1114. Springer, 2005. doi:10.1007/11523468_89.

2 Rajeev Alur and P. Madhusudan. Visibly pushdown languages. In László Babai, editor,
Proceedings of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA,
June 13-16, 2004, pages 202–211. ACM, 2004. doi:10.1145/1007352.1007390.

https://doi.org/10.1007/11523468_89
https://doi.org/10.1145/1007352.1007390


S. Göller and N. Grosshans 38:17

3 Vince Bárány, Christof Löding, and Olivier Serre. Regularity problems for visibly pushdown
languages. In Bruno Durand and Wolfgang Thomas, editors, STACS 2006, 23rd Annual
Symposium on Theoretical Aspects of Computer Science, Marseille, France, February 23-25,
2006, Proceedings, volume 3884 of Lecture Notes in Computer Science, pages 420–431. Springer,
2006. doi:10.1007/11672142_34.

4 David A. Mix Barrington. Bounded-Width Polynomial-Size Branching Programs Recognize
Exactly Those Languages in NC1. J. Comput. Syst. Sci., 38(1):150–164, 1989. doi:10.1016/
0022-0000(89)90037-8.

5 David A. Mix Barrington, Kevin J. Compton, Howard Straubing, and Denis Thérien. Regular
languages in nc1. J. Comput. Syst. Sci., 44(3):478–499, 1992. doi:10.1016/0022-0000(92)
90014-A.

6 Richard Beigel. The polynomial method in circuit complexity. In Proceedings of the Eigth
Annual Structure in Complexity Theory Conference, San Diego, CA, USA, May 18-21, 1993,
pages 82–95. IEEE Computer Society, 1993. doi:10.1109/SCT.1993.336538.

7 Mikolaj Bojanczyk and Igor Walukiewicz. Forest algebras. In Jörg Flum, Erich Grädel, and
Thomas Wilke, editors, Logic and Automata: History and Perspectives [in Honor of Wolfgang
Thomas], volume 2 of Texts in Logic and Games, pages 107–132. Amsterdam University Press,
2008.

8 Ashok K. Chandra, Larry J. Stockmeyer, and Uzi Vishkin. Constant depth reducibility. SIAM
J. Comput., 13(2):423–439, 1984. doi:10.1137/0213028.

9 Silke Czarnetzki, Andreas Krebs, and Klaus-Jörn Lange. Visibly pushdown languages and free
profinite algebras. CoRR, abs/1810.12731, 2018. arXiv:1810.12731.

10 Patrick W. Dymond. Input-driven languages are in log n depth. Inf. Process. Lett., 26(5):247–
250, 1988. doi:10.1016/0020-0190(88)90148-2.

11 Javier Esparza, Michael Luttenberger, and Maximilian Schlund. A brief history of strahler
numbers. In Adrian-Horia Dediu, Carlos Martín-Vide, José Luis Sierra-Rodríguez, and Bianca
Truthe, editors, Language and Automata Theory and Applications - 8th International Confer-
ence, LATA 2014, Madrid, Spain, March 10-14, 2014. Proceedings, volume 8370 of Lecture
Notes in Computer Science, pages 1–13. Springer, 2014. doi:10.1007/978-3-319-04921-2_1.

12 Stefan Göller and Nathan Grosshans. The ac0-complexity of visibly pushdown languages.
CoRR, abs/2302.13116, 2023. doi:10.48550/ARXIV.2302.13116.

13 Yuri Gurevich and Harry R. Lewis. A logic for constant-depth circuits. Inf. Control., 61(1):65–
74, 1984. doi:10.1016/S0019-9958(84)80062-5.

14 Michael A. Harrison. Introduction to Formal Language Theory. Addison-Wesley, 1978.
15 Johan Håstad. Almost optimal lower bounds for small depth circuits. In Juris Hartmanis,

editor, Proceedings of the 18th Annual ACM Symposium on Theory of Computing, May 28-30,
1986, Berkeley, California, USA, pages 6–20. ACM, 1986. doi:10.1145/12130.12132.

16 Neil Immerman. Languages that capture complexity classes. SIAM J. Comput., 16(4):760–778,
1987. doi:10.1137/0216051.

17 Neil Immerman. Descriptive complexity. Graduate texts in computer science. Springer, 1999.
doi:10.1007/978-1-4612-0539-5.

18 Stasys Jukna. Boolean Function Complexity - Advances and Frontiers, volume 27 of Algorithms
and combinatorics. Springer, 2012. doi:10.1007/978-3-642-24508-4.

19 Andreas Krebs, Klaus-Jörn Lange, and Michael Ludwig. Visibly counter languages and
constant depth circuits. In Ernst W. Mayr and Nicolas Ollinger, editors, 32nd International
Symposium on Theoretical Aspects of Computer Science, STACS 2015, March 4-7, 2015,
Garching, Germany, volume 30 of LIPIcs, pages 594–607. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2015. doi:10.4230/LIPIcs.STACS.2015.594.

20 Michael Ludwig. Tree-Structured Problems and Parallel Computation. PhD thesis, Univer-
sity of Tübingen, Germany, 2019. URL: https://publikationen.uni-tuebingen.de/xmlui/
handle/10900/85960/.

STACS 2024

https://doi.org/10.1007/11672142_34
https://doi.org/10.1016/0022-0000(89)90037-8
https://doi.org/10.1016/0022-0000(89)90037-8
https://doi.org/10.1016/0022-0000(92)90014-A
https://doi.org/10.1016/0022-0000(92)90014-A
https://doi.org/10.1109/SCT.1993.336538
https://doi.org/10.1137/0213028
https://arxiv.org/abs/1810.12731
https://doi.org/10.1016/0020-0190(88)90148-2
https://doi.org/10.1007/978-3-319-04921-2_1
https://doi.org/10.48550/ARXIV.2302.13116
https://doi.org/10.1016/S0019-9958(84)80062-5
https://doi.org/10.1145/12130.12132
https://doi.org/10.1137/0216051
https://doi.org/10.1007/978-1-4612-0539-5
https://doi.org/10.1007/978-3-642-24508-4
https://doi.org/10.4230/LIPIcs.STACS.2015.594
https://publikationen.uni-tuebingen.de/xmlui/handle/10900/85960/
https://publikationen.uni-tuebingen.de/xmlui/handle/10900/85960/


38:18 The AC0-Complexity of Visibly Pushdown Languages

21 Kurt Mehlhorn. Pebbling Moutain Ranges and its Application of DCFL-Recognition.
In J. W. de Bakker and Jan van Leeuwen, editors, Automata, Languages and Program-
ming, 7th Colloquium, Noordweijkerhout, The Netherlands, July 14-18, 1980, Proceed-
ings, volume 85 of Lecture Notes in Computer Science, pages 422–435. Springer, 1980.
doi:10.1007/3-540-10003-2_89.

22 Marcel Paul Schützenberger. On finite monoids having only trivial subgroups. Inf. Control.,
8(2):190–194, 1965. doi:10.1016/S0019-9958(65)90108-7.

23 Howard Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser
Boston, 1994. doi:10.1007/978-1-4612-0289-9.

24 Heribert Vollmer. Introduction to Circuit Complexity - A Uniform Approach. Texts in Theoret-
ical Computer Science. An EATCS Series. Springer, 1999. doi:10.1007/978-3-662-03927-4.

https://doi.org/10.1007/3-540-10003-2_89
https://doi.org/10.1016/S0019-9958(65)90108-7
https://doi.org/10.1007/978-1-4612-0289-9
https://doi.org/10.1007/978-3-662-03927-4


Quantum and Classical Communication Complexity
of Permutation-Invariant Functions
Ziyi Guan #

EPFL, Lausanne, Switzerland

Yunqi Huang #

University of Technology Sydney, Australia

Penghui Yao #

State Key Laboratory for Novel Software Technology, Nanjing University, China
Hefei National Laboratory, China

Zekun Ye #

State Key Laboratory for Novel Software Technology, Nanjing University, China

Abstract
This paper gives a nearly tight characterization of the quantum communication complexity of the
permutation-invariant Boolean functions. With such a characterization, we show that the quantum
and randomized communication complexity of the permutation-invariant Boolean functions are
quadratically equivalent (up to a logarithmic factor). Our results extend a recent line of research
regarding query complexity [2, 16, 11] to communication complexity, showing symmetry prevents
exponential quantum speedups.

Furthermore, we show the Log-rank Conjecture holds for any non-trivial total permutation-
invariant Boolean function. Moreover, we establish a relationship between the quantum/classical
communication complexity and the approximate rank of permutation-invariant Boolean functions.
This implies the correctness of the Log-approximate-rank Conjecture for permutation-invariant
Boolean functions in both randomized and quantum settings (up to a logarithmic factor).

2012 ACM Subject Classification Theory of computation → Models of computation

Keywords and phrases Communication complexity, Permutation-invariant functions, Log-rank
Conjecture, Quantum advantages

Digital Object Identifier 10.4230/LIPIcs.STACS.2024.39

Related Version Full Version: https://arxiv.org/pdf/2401.00454.pdf [26]

Funding Ziyi Guan: partially supported by the Ethereum Foundation.
Penghui Yao: supported by National Natural Science Foundation of China (Grant No. 62332009,
12347104, 61972191) and Innovation Program for Quantum Science and Technology (Grant No.
2021ZD0302901).
Zekun Ye: supported by National Natural Science Foundation of China (Grant No. 62332009,
12347104, 61972191) and Innovation Program for Quantum Science and Technology (Grant No.
2021ZD0302901).

1 Introduction

Exploring quantum advantages is a key problem in the realm of quantum computing.
Numerous work focuses on analyzing and characterizing quantum advantages, such as
[6, 14, 24, 20, 29, 44]. It has been known that quantum computing demonstrates a potential
exponential speedup to solve certain problems than classical computers, such as Simon’s
problem [40] and integer factoring problem [39]. However, for some problems, the quantum
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speedups can be at most polynomial, including the unstructured search problems [25] and
collision finding problems [4]. In light of the aforementioned phenomenon, Aaronson [1]
proposed such a problem: How much structure is needed for huge quantum speedups?

Regarding the above problem, there exist two major directions to explore the structure
needed for quantum speedups in the query model, which is a complexity model commonly used
to describe quantum advantages. On the one hand, Aaronson and Ambainis [2] conjectured
the acceptance probability of a quantum query algorithm to compute a Boolean function can
be approximated by a classical deterministic algorithm with only a polynomial increase in
the number of queries, which is still one of most important conjecture in the field of Boolean
analysis. On the other hand, Watrous conjectured that the quantum and randomized query
complexities are also polynomially equivalent for any permutation-invariant function [2].
Along this direction, Aaronson and Ambainis [2] initiated the study on the quantum speedup
of permutation-invariant functions with respect to query complexity. They demonstrated that
a function invariant under full symmetry does not exhibit exponential quantum speedups,
even if the function is partial, thereby resolving the Watrous conjecture. (Interested readers
may refer to [2] for a more detailed introduction.) Furthermore, Chailloux [16] expanded
upon their work by providing a tighter bound and removing a technical dependence of
output symmetry. Recently, Ben-David, Childs, Gilyén, Kretschmer, Podder and Wang [11]
further proved that hypergraph symmetries in the adjacency matrix model allow at most a
polynomial separation between randomized and quantum query complexities. All the above
results demonstrated that symmetries break exponential quantum speedups in the query
model.

While the study of problem structure in the roles of quantum speedups has obtained
considerable attention in the query model, it is a natural question to consider whether we
can derive similar results in other computation models. The communication complexity
model comes to attention as it is also extensively used to demonstrate quantum advantages.
Furthermore, while the exponential gap between quantum and classical communication
models has been shown in many works [35, 7, 21, 22, 33], there are also some problems in
communication models that demonstrate at most polynomial quantum speedups, such as set
disjointness problem [36] and (gap) Hamming distance problem [28, 38, 43, 18]. Therefore, it
is a meaningful question to consider how much structure is needed for significant quantum
speedups in the communication complexity model. More specifically, while symmetry breaks
quantum exponential advantages in the query model, does there exist a similar conclusion
in the communication complexity model? In this paper, we investigate a variant of the
Watrous conjecture concerning the quantum and randomized communication complexities of
permutation-invariant functions as follows. Briefly, a permutation-invariant Boolean function
is a function that is invariant under permutations of its inputs (see Definition 8 for a formal
definition).

▶ Conjecture 1 (Communication complexity version of the Watrous Conjecture.). For any
permutation-invariant function f : [m]n × [m]n → {−1, 1, ∗}, R(f) ≤ Q∗(f)O(1), where R(f)
and Q∗(f) are the randomized and quantum communication complexities of f , respectively.

Furthermore, we study the Log-rank Conjecture proposed by Lovasz and Saks [31],
a long-standing open problem in communication complexity. Despite its slow progress
on total functions [12, 32, 30], the conjecture has been shown for several subclasses of
total permutation-invariant Boolean functions [15] and XOR-symmetric functions [45]. Lee
and Shraibman further proposed the Log-approximate-rank Conjecture, stating that the
randomized communication and the logarithm of the approximate rank of the input matrix
are polynomially equivalent. Surprisingly, this conjecture was later proven false [19], even for
its quantum counterpart [5, 41].
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In this paper, we investigate both conjectures for permutation-invariant functions.

▶ Conjecture 2 (Log-rank Conjecture for permutation-invariant functions.). For any total
permutation-invariant function f : {0, 1}n × {0, 1}n → {−1, 1}, D(f) ≤ (log rank(f))O(1),
where rank(f) is the rank of the input matrix of f .

▶ Conjecture 3 (Log-Approximate-Rank Conjecture for permutation-invariant functions.). For
any (total or partial) permutation-invariant function f : {0, 1}n × {0, 1}n → {−1, 1, ∗},

R(f) ≤
(

log r̃ank(f)
)O(1)

, where r̃ank(f) is the approximate rank of the input matrix of f

(see Definition 11 for a formal definition).

▶ Conjecture 4 (Quantum Log-Approximate-Rank Conjecture for permutation-invariant func-
tions.). For any (total or partial) permutation-invariant function f : {0, 1}n × {0, 1}n →

{−1, 1, ∗}, Q(f) ≤
(

log r̃ank(f)
)O(1)

.

1.1 Our Contribution
To study the communication complexity version of the Watrous conjecture, we start with
permutation-invariant Boolean functions, which are essential to analyze general permutation-
invariant functions. We show that for any permutation-invariant Boolean function, its
classical communication complexity has at most a quasi-quadratic blowup comparing to its
quantum communication complexity (Theorem 5). Thus, we cannot hope for exponential
quantum speedups of permutation-invariant Boolean functions. Additionally, Theorem 5
gives a nearly tight bound on the quantum communication complexity. Furthermore, we
show that every non-trivial permutation-invariant Boolean function satisfies the Log-rank
Conjecture in Theorem 6. To resolve the (quantum) Log-Approximate-Rank Conjecture, we
investigate the relationship between the quantum/classical communication complexities and
the approximate rank of any permutation-invariant Boolean function in Theorem 7.

Consider a Boolean function f . Let D(f), R(f), Q(f) and Q∗(f) be the deterministic
communication complexity, randomized communication complexity, quantum communication
complexity without prior entanglement, and quantum communication complexity of f ,
respectively. Let rank (f) and r̃ank (f) be the rank and approximate rank of f . We summarize
our results below1.

▶ Theorem 5. For any permutation-invariant function f : {0, 1}n × {0, 1}n → {−1, 1, ∗} in
Definition 8, the followings hold:

Ω (m (f)) ≤ R(f) ≤ Õ
(

m (f)2
)

≤ Õ
(
Q∗(f)2) and

Ω (m (f)) ≤ Q∗(f) ≤ Q(f) ≤ Õ (m (f)) ,

where m(f) is a measure defined in Definition 12. Hence, R(f) ≤ Õ(Q∗(f)2) for any
permutation-invariant function f .

The complexity measure m(·) is inspired by the work [23], where Gahzi et al. introduced
a complexity measure to capture R(f). It is worth noting that their complexity measure is
equivalent up to a fourth power of R(f), while our complexity measure m(·) is quadratically
related to R(f) and almost tightly characterizes the quantum communication complexity.

1 In Theorems 5 and 7, Õ (M (f)) = O
(
M(f) log2 n log log n

)
for any complexity measure M .
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▶ Theorem 6. For any non-trivial total permutation-invariant function f : {0, 1}n×{0, 1}n →
{−1, 1} in Definition 8, we have

D(f) = O
(
log2 rank (f)

)
.

▶ Theorem 7. For any permutation-invariant function f : {0, 1}n × {0, 1}n → {−1, 1, ∗} in
Definition 8, we have

R(f) = Õ
(

log2 r̃ank (f)
)

and Q(f) = Õ
(

log r̃ank (f)
)

.

1.2 Proof Techniques
In this section, we give a high-level technical overview of our main results.

1.2.1 Lower Bound
We outline our approaches to obtain the lower bound on the quantum communication
complexity, rank and approximate rank of permutation-invariant functions below:
1. Quantum communication complexity and approximate rank: In Theorem 5, to

prove Q∗(f) = Ω(m(f)) for any permutation-invariant function f , we use the following
two-step reduction (see Lemma 15 and Theorem 13): First, we reduce the lower bound of
the quantum communication complexity of the Exact Set-Inclusion Problem (ESetInc,
Definition 10) to Paturis’s approximate degree of symmetric functions [34] by the pattern
matrix method [37], a well-known method for lower bound analysis in quantum commu-
nication complexity. Second, we reduce the lower bound of any permutation-invariant
function to the lower bound of ESetInc. In Theorem 7, we use a similar method to prove
the lower bound of approximate rank: log r̃ank (f) = Ω(m(f)).

2. Rank: In Theorem 6, we reduce the lower bound of the rank of total permutation-invariant
functions to the lower bound of the rank of some representative function instances, such
as the set disjointness problem and the equality problem (see Lemma 24).

1.2.2 Upper Bound
We use the following methods to show the upper bounds on the communication complexity
of permutation-invariant functions in the randomized, quantum, and deterministic models.
1. Randomized and quantum models: In Theorem 5, to prove R(f) ≤ Õ

(
m (f)2

)
for

any permutation-invariant function f , we first propose a randomized protocol to solve
the Set-Inclusion problem (SetInc, Definition 10) using a well-suited sampling method
according to the parameters of SetInc (see Lemma 20). Afterward, we use this protocol
as a subroutine to solve any permutation-invariant function based on binary search (see
Theorem 14). Furthermore, to prove Q(f) ≤ Õ (m (f)), we use the quantum amplitude
amplification technique [13, 27] to speed up the above randomized protocol to solve SetInc
(see Lemma 21).

2. Deterministic model: In Theorem 6, to give an upper bound of deterministic commu-
nication complexity of total permutation-invariant functions, we propose a deterministic
protocol as follows (see Lemma 25): Alice and Bob first share their Hamming weight of
inputs, and decide who sends the input to the other party according to the definition of
function and the Hamming weight of inputs. The party that has all the information of
inputs will output the answer. Combining Lemmas 24 (described in Section 1.2.1) and
25, Theorem 6 can be proved.



Z. Guan, Y. Huang, P. Yao, and Z. Ye 39:5

1.3 Related Work

The need for structure in quantum speedups has been studied in the query model extensively.
Beals, Buhrman, Cleve, Mosca and de Wolf [8] demonstrated that there exists at most a
polynomial quantum speedup for total Boolean functions in the query model. Moreover,
Aaronson and Ambainis [2] established that even partial symmetric functions do not allow
super-polynomial quantum speedups. Chailloux [16] further improved this result to a
broader class of symmetric functions. Ben-David, Childs, Gilyén, Kretschmer, Podder and
Wang [11] later analyzed the quantum advantage for functions that are symmetric under
different group actions systematically. Ben-David [10] established a quantum and classical
polynomial equivalence for a certain set of functions satisfying a specific symmetric promise.
Aaronson and Ben-David [3] proved that if domain D satisfies D = poly(n), there are at
most polynomial quantum speedups for computing an n-bit partial Boolean function.

In terms of communication complexity, there are a few results that imply the polynomial
equivalence between quantum and classical communication complexity for several instances of
permutation-invariant functions. Examples include AND-symmetric functions [36], Hamming
distance problem [28, 17], XOR-symmetric functions [45]. While the above results character-
ized quantum advantage for a certain class of permutation-invariant Boolean functions, our
work provides a systemic analysis of all permutation-invariant Boolean functions.

The study of the Log-rank Conjecture and the Log-Approximate-Rank Conjecture has a
rich history. Here, we only survey the results about the Log-rank Conjecture and the Log-
Approximate-Rank Conjecture about permutation-invariant Boolean functions. Buhuman
and de Wolf [15] verified the correctness of the Log-rank Conjecture for AND-symmetric
functions. Combining the results of Razborov [36], Sherstov [37] and Suruga [42], it is implied
that the Log-Approximate-Rank Conjecture holds for AND-symmetric functions both in
the randomized and quantum settings. Moreover, the result of Zhang and Shi [45] implies
the Log-rank Conjecture and the (quantum) Log-Approximate-Rank Conjecture hold for
XOR-symmetric functions.

In previous work, Ghazi, Kamath and Sudan [23] introduced a complexity measure, which
is polynomially equivalent to the randomized communication complexity of permutation-
invariant functions defined in Definition 8. This paper is inspired by their work.

1.4 Organization

The remaining part of the paper is organized as follows. In Section 2, we state some
notations and definitions used in this paper. In Section 3, we study the quantum and
classical communication complexities of permutation-invariant functions. In Section 4, we
show the Log-rank Conjecture holds for non-trivial total permutation-invariant functions. In
Section 5, we study the Log-approximate Conjecture of permutation-invariant functions both
in quantum and classical setting. Finally, a conclusion is made in Section 6. The appendices
contain a section on extended preliminaries and omitted proofs.

2 Preliminaries

We introduce the notations and definitions used in this paper.
A multiset is a set with possibly repeating elements. We use {[·]} to denote multiset

and {·} to denote standard set. Let S be a multiset, S \ {a} removes one occurrence of a

from S if there is any.
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2.1 Boolean Functions
A partial function is a function defined only on a subset of its domain X . Formally, given
a partial Boolean function f : X → {−1, 1, ∗}, f(x) is undefined for x ∈ X if f(x) = ∗. A
total function is a function that is defined on the entire domain. We say f : X → {−1, 1, ∗}
is a subfunction of g : X → {−1, 1, ∗} if f(x) = g(x) or f(x) = ∗ for any x ∈ X .

A Boolean predicate is a partial function that has domain X = {0, 1, ..., n} for any
n ∈ N.

An incomplete Boolean matrix is a matrix with entries in {−1, 1, ∗}, where undefined
entries are filled with ∗.

A submatrix is a matrix that is obtained by extracting certain rows and/or columns
from a given matrix.

A half-integer is a number of the form n + 1/2, where n ∈ Z.
We introduce some Boolean operators as follows. For every n ∈ N and x, y ∈ {0, 1}n:
x := {x0, ..., xn−1} = {1 − x0, ..., 1 − xn−1};
x ∧ y := {x0 ∧ y0, ..., xn−1 ∧ yn−1}; and
x ⊕ y := {x0 ⊕ y0, ..., xn−1 ⊕ yn−1}.

2.2 Communication Complexity Model
In the two-party communication model, Alice is given input x, and Bob is given input
y. Then they aim to compute f(x, y) for some function f : {0, 1}n × {0, 1}n → {−1, 1, ∗}
by communication protocols. The deterministic communication complexity D(f) is
defined as the cost of the deterministic protocol with the smallest communication cost, which
computes f correctly on any input. The randomized communication complexity Rϵ(f)
is defined as the cost of the randomized protocol with the smallest communication cost, which
has access to public randomness and computes f correctly on any input with probability
at least 1 − ϵ. Similarly, the quantum communication complexity Q(f) is defined
as the cost of the quantum protocol with the smallest cost, which is not allowed to share
prior entanglement, has access to public randomness and computes f correctly on any input
with probability at least 1 − ϵ. If the quantum protocol is allowed with prior entanglement
initially, then the corresponding quantum communication complexity is denoted Q∗(f). If a
protocol succeeds with probability at least 1 − ϵ on any input for some constant ϵ < 1/2, we
say the protocol is with bounded error. If ϵ = 1/3, we abbreviate Rϵ(f), Qϵ(f), Q∗

ϵ (f) as
R(f), Q(f), Q∗(f).

2.3 Permutation-Invariant Functions
In the two-party communication model, the function value of a permutation-invariant function
is invariant if we perform the same permutation to the inputs of Alice and Bob. Specifically,
the formal definition is as follows.

▶ Definition 8 (Permutation-invariant functions [23]). A (total or partial) function f :
{0, 1}n × {0, 1}n → {−1, 1, ∗} is permutation-invariant if for all x, y ∈ {0, 1}n, and every
bijection π : {0, ..., n − 1} → {0, ..., n − 1}, f(xπ, yπ) = f(x, y), where xπ satisfies that
xπ

(i) = xπ(i) for any i ∈ {0, ..., n − 1}.

Note that any permutation-invariant function f in Definition 8 depends only on |x|, |y| and
|x∧y|. Here |·| is the Hamming weight for the binary string, i.e., the number of 1’s in the string.
Thus, for any a, b ∈ [n], there exists a function fa,b : {max {0, a + b − n} , ..., min {a, b}} →
{−1, 1} such that

fa,b(|x ∧ y|) = f(x, y), (1)
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for any x, y ∈ {0, 1}n satisfying |x| = a, |y| = b. If there exist a, b ∈ [n] such that fa,b is not
a constant function, we say f is non-trivial.

The following definition of jumps partitions the domain of fa,b into different intervals
according to the transition of function values.

▶ Definition 9 (Jump in fa,b [23]). (c, g) is a jump in fa,b if
1. fa,b(c − g) ̸= fa,b(c + g);
2. fa,b(c − g), fa,b(c + g) ∈ {−1, 1};
3. fa,b(r) is undefined for c − g < r < c + g.

Moreover, we define J (fa,b) to be the set of all jumps in fa,b:

J (fa,b) :=

(c, g) :
fa,b(c − g), fa,b(c + g) ∈ {0, 1}

fa,b(c − g) ̸= fa,b(c + g)
∀i ∈ (c − g, c + g), fa,b(i) = ∗

 .

The following definition gives an important instance of permutation-invariant functions.

▶ Definition 10 (Set-Inclusion Problem). We define the Set-Inclusion Problem SetIncn
a,b,c,g as

the following partial function:

SetIncn
a,b,c,g(x, y) :=


−1 if |x| = a, |y| = b and |x ∧ y| ≤ c − g,

1 if |x| = a, |y| = b and |x ∧ y| ≥ c + g,

∗ otherwise.

Additionally, we define the Exact Set-Inclusion Problem ESetIncn
a,b,c,g as follows.

ESetIncn
a,b,c,g(x, y) :=


−1 if |x| = a, |y| = b and |x ∧ y| = c − g,

1 if |x| = a, |y| = b and |x ∧ y| = c + g,

∗ otherwise.

2.4 Rank and Approximate Rank

If F is a real matrix, let rank(F ) be the rank of F . Then we define the approximate rank
for any incomplete matrix as follows.

▶ Definition 11 (Approximate rank). For an incomplete matrix F ∈ {−1, 1, ∗}m×n and
0 ≤ ϵ < 1, we say a real matrix A approximates F with error ϵ if:
(1) |Ai,j − Fi,j | ≤ ϵ for any i ∈ [m], j ∈ [n] such that Fi,j ̸= ∗;
(2) |Ai,j | ≤ 1 for all i ∈ [m], j ∈ [n].
Let Fϵ be the set of all the real matrices that approximate F with error ϵ. The approximate
rank of F with error ϵ, denoted by r̃ankϵ(F ), is the least rank among all real matrices in Fϵ.
If ϵ = 2/3, we abbreviate r̃ankϵ(F ) as r̃ank(F ).

Let f be a Boolean function, rank(f) := rank (Mf ) and r̃ank(f) := r̃ank (Mf ), where Mf is
the input matrix of f .
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3 Polynomial Equivalence on Communication Complexity of
Permutation-Invariant Functions

To show the polynomial equivalence between quantum and classical communication com-
plexity of permutation-invariant functions as stated in Theorem 5, we prove the following
two theorems (proved in Sections 3.1 and 3.2, respectively) for the quantum and random-
ized communication complexities of permutation-invariant functions using the measure in
Definition 12.

▶ Definition 12 (Measure m(f)). Fix n ∈ Z. Let f : {0, 1}n × {0, 1}n → {0, 1, ∗} be a
permutation-invariant function. We define the measure m(f) of f as follows:

m(f) := max
a,b∈[n]

(c,g)∈J (fa,b)
n1:=min{[a−c,c,b−c,n−a−b+c]}

n2:=min({[a−c,c,b−c,n−a−b+c]}\{n1})

√
n1n2

g
.

Note that this definition is motivated by Lemma 15.

The measure m(·) is inspired by the complexity measure introduced in [23], which was used
to capture the randomized communication complexity of permutation-invariant functions.

▶ Theorem 13 (Lower Bound). Fix n ∈ Z. Let f : {0, 1}n × {0, 1}n → {0, 1, ∗} be a
permutation-invariant function. We have

Q∗(f) = Ω(m(f)) .

▶ Theorem 14 (Upper Bound). Fix n ∈ N. Given a permutation-invariant function f :
{0, 1}n × {0, 1}n → {0, 1, ∗} and the corresponding measure m(f) defined in Definition 12,
we have

R(f) = O
(
m(f)2 log2 n log log n

)
, and

Q(f) = O
(
m(f) log2 n log log n

)
.

3.1 Quantum Communication Complexity Lower Bound
In this section, our goal is to obtain a lower bound on the quantum communication complexity
for permutation-invariant functions (Theorem 13). Towards this end, we show that every
permutation-invariant function f can be reduced to ESetInc (defined in Definition 10) and
exhibit a lower bound for ESetInc (Lemma 15). Additionally, Lemma 15 implies if |x| =
a, |y| = b, then the cost to distinguish |x ∧ y| = c − g from |x ∧ y| = c + g is related to the
smallest and the second smallest number in [a − c, c, b − c, n − a − b + c].

▶ Lemma 15. Fix n, a, b ∈ Z. Consider c and g such that c + g, c − g ∈ Z. Let n1 :=
min{[a − c, c, b − c, n − a − b + c]} and n2 := min ({[a − c, c, b − c, n − a − b + c]} \ {n1}). We
have

Q∗ (ESetIncn
a,b,c,g

)
= Ω

(√
n1n2

g

)
.

Proof of Theorem 13. By the definitions of fa,b and jump of fa,b, any quantum protocol
computing f can also compute ESetIncn

a,b,c,g for any a, b and any jump (c, g) ∈ J (fa,b).
Therefore, given a jump (c, g) for fa,b, the cost of computing ESetIncn

a,b,c,g lower bounds the
cost of computing f . By Lemma 15, we have Q∗(f) ≥

√
n1n2
g for any jump (c, g) in fa,b,

where n1, n2 are the smallest and the second smallest number in {[a−c, c, b−c, n−a−b+c]}.
We conclude that Q∗(f) = Ω (m(f)) as desired. ◀
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Now we remain to show Lemma 15. We note that the following two lemmas imply
Lemma 15 directly, where Lemma 16 reduces the instance such that the parameter only relies
on n1, n2, g and Lemma 17 gives the final lower bound.

▶ Lemma 16. Fix n, a, b ∈ Z. Consider c and g such that c + g, c − g ∈ Z. Let n1 :=
min{[a − c, c, b − c, n − a − b + c]} and n2 := min ({[a − c, c, b − c, n − a − b + c]} \ {n1}). We
have

Q∗ (ESetIncn
a,b,c,g

)
≥ Q∗ (ESetIncn1+3n2

n1+n2,n1+n2,n1,g

)
.

▶ Lemma 17. For n1, n2 ∈ N such that n1 ≤ n2, we have

Q∗ (ESetIncn1+3n2
n1+n2,n1+n2,n1,g

)
= Ω

(√
n1n2

g

)
.

We use the following two results on ESetInc to show Lemmas 16 and 17 (See full version [26]
for the detailed proofs). Specifically, Lemma 18 is a variant of Lemma 4.1 in [18] and shows
some reduction methods to the instances of the Exact Set-Inclusion Problem. Lemma 19 is a
generalization of Theorem 5 in [9] proved by pattern matrix method and shows the lower
bound of a special instance of the Exact Set-Inclusion Problem.

▶ Lemma 18. Fix n, a, b ∈ Z. Consider c and g such that c + g, c − g ∈ Z. The following
relations hold.
1. Q∗ (ESetIncn

a,b,c,g

)
≤ Q∗

(
ESetIncn+ℓ

a+ℓ1+ℓ3,b+ℓ2+ℓ3,c+ℓ3,g

)
for integers ℓ1, ℓ2, ℓ3 ≥ 0 such

that ℓ1 + ℓ2 + ℓ3 ≤ ℓ;
2. Q∗ (ESetIncn

a,b,c,g

)
= Q∗ (ESetIncn

a,n−b,a−c,g

)
= Q∗ (ESetIncn

n−a,b,b−c,g

)
;

3. Q∗ (ESetIncn
a,b,c,g

)
≤ Q∗

(
ESetInckn

ka,kb,kc,kg

)
, where k ≥ 1 is an integer.

▶ Lemma 19. For every k ∈ Z, if l is a half-integer and l ≤ k/2, then Q∗
(

ESetInc4k
2k,k,l,1/2

)
=

Ω
(√

kl
)

.

Proof of Lemma 16. Using the second item of Lemma 18, we assume n1 = c without loss
of generality. Furthermore, we assume n2 = a − c. Let n3 := b − c, n4 := n − a − b + c. Then
n3, n4 ≥ n2 ≥ n1 and n = n1 + n2 + n3 + n4. By Lemma 18, we have

Q∗ (ESetIncn1+3n2
n1+n2,n1+n2,n1,g

)
= Q∗ (ESetIncn1+n2+n2+n2

n1+n2,n1+n2,n1,g

)
≤ Q∗ (ESetIncn1+n2+n3+n4

n1+n2,n1+n3,n1,g

)
= Q∗ (ESetIncn

a,b,c,g

)
.

If n2 = b − c or n − a − b + c, the argument is similar. ◀

Proof of Lemma 17. Let m1 =
⌊

n1
2g + 1

2

⌋
− 1

2 , i.e., m1 is the largest half-integer no more

than n1
2g . Similarly, let m2 =

⌊
n2
2g + 1

2

⌋
− 1

2 . By Lemma 18, we have

Q∗ (ESetIncn1+3n2
n1+n2,n1+n2,n1,g

)
≥ Q∗

(
ESetIncm1+3m2

m1+m2,m1+m2,m1,1/2

)
.

Then we discuss the following three cases:
Case 1: m1 = m2 = 1/2. We have

Q∗
(

ESetIncm1+3m2
m1+m2,m1+m2,m1,1/2

)
= Ω (1) = Ω (

√
m1m2) .

STACS 2024



39:10 Communication Complexity of Permutation-Invariant Functions

Case 2: m2 ≥ 3/2 and m1 = 1/2. Let m′
2 :=

⌊
m1+m2

2
⌋

, l1 := m1 + m2 − 2m′
2, l2 :=

m1 + m2 − m′
2, l := m1 + 3m2 − 4m′

2. Then,

l − (l1 + l2) = m2 − m1 − m′
2 ≥ m2 + m1

2 − m′
2 ≥ 0.

By Lemmas 18 and 19, we have

Q∗
(

ESetIncm1+3m2
m1+m2,m1+m2,m1,1/2

)
= Q∗

(
ESetInc4m′

2+l

2m′
2+l1,m′

2+l2,m1,1/2

)
≥ Q∗

(
ESetInc4m′

2
2m′

2,m′
2,m1,1/2

)
= Ω

(√
m1m′

2

)
= Ω (

√
m1m2) .

Case 3: m1 ≥ 3/2. Let m :=
⌊

m1
6 + m2

2
⌋

, k :=
⌊

m1
3 + 1

2
⌋

− 1
2 , l3 := m1 − k, l1 :=

(m1 + m2 − 2m)− l3, l2 := (m1 + m2 − m)− l3, l := m1 +3m2 −4m. Since k is the largest
half-integer smaller than m1

3 , we have k ≤ 1
2 ·
⌊ 2m1

3
⌋
. Since m1 ≤ m2, we have

k ≤ 1
2 ·
⌊

2m1

3

⌋
≤ 1

2 ·
⌊m1

6 + m2

2

⌋
≤ m

2 , (2)

and

l − (l1 + l2 + l3) = m2 − k − m ≥ m2 − m1

3 −
(m1

6 + m2

2

)
≥ 0 . (3)

Then we have

Q∗
(

ESetIncm1+3m2
m1+m2,m1+m2,m1,1/2

)
= Q∗

(
ESetInc4m+l

2m+l1+l3,m+l2+l3,k+l3,1/2

)
≥ Q∗

(
ESetInc4m

2m,m,k,1/2

)
(by Lemma 18 and Equation (3))

= Ω
(√

mk
)

(by Lemma 19 and Equation (2))

= Ω (
√

m1m2) .

We conclude that

Q∗ (ESetIncn1+3n2
n1+n2,n1+n2,n1,g

)
≥ Q∗

(
ESetIncm1+3m2

m1+m2,m1+m2,m1,1/2

)
= Ω

(√
n1n2

g

)
. ◀

3.2 Randomized and Quantum Communication Complexity Upper
Bound

We show upper bounds on the randomized and quantum communication complexities for
permutation invariant functions (Theorem 14). Similar to Section 3.1, we do so by giving
upper bounds for a specific problem, SetInc (see Definition 10), and reducing permutation-
invariant functions to SetInc.

The following two lemmas capture the randomized and quantum communication com-
plexity for SetInc, respectively.
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▶ Lemma 20 (Classical Upper Bound). Fix n, a, b ∈ Z. Consider c, g such that
c + g, c − g ∈ Z. Let n1 := min{[a − c, c, b − c, n − a − b + c]} and n2 :=
min ({[a − c, c, b − c, n − a − b + c]} \ {n1}). For any input x, y ∈ {0, 1}n of SetIncn

a,b,c,g,
there exists a randomized communication protocol that computes SetIncn

a,b,c,g(x, y) using
O
(

n1n2
g2 log n log log n

)
bits of communication with success probability at least 1 − 1/(6 log n).

▶ Lemma 21 (Quantum Upper Bound). Fix n, a, b ∈ Z. Consider c, g such that
c + g, c − g ∈ Z. Let n1 := min{[a − c, c, b − c, n − a − b + c]} and n2 :=
min ({[a − c, c, b − c, n − a − b + c]} \ {n1}). For any input x, y ∈ {0, 1}n of SetIncn

a,b,c,g,
there exists a quantum communication protocol without prior entanglement that computes
SetIncn

a,b,c,g(x, y) using O
(√

n1n2
g log n log log n

)
qubits of communication with success prob-

ability at least 1 − 1/(6 log n).

We note that Lemma 21 is a quantum speedup version of Lemma 20 by quantum amplitude
amplification. The proof of Lemma 20 is given at the end of this section, and the proof of
Lemma 21 can be seen in the full version [26].

Now we explain how to derive Theorem 14 from the lemmas above.

Proof of Theorem 14. We first present a randomized protocol to compute f based on binary
search:
1. Alice and Bob exchange a := |x|, b := |y|.
2. Alice and Bob both derive fa,b such that fa,b(|x ∧ y|) = f(x, y).
3. Let J (fa,b) = {(ci, gi)}i∈[k] for some k ≤ n be the set of jumps of fa,b as in Definition 9.
4. Alice and Bob use binary search to determine i ∈ {0, 1, ..., k} such that |x ∧ y| ∈ Ii, where

Ii is defined in Equation (4).

We first discuss the communication complexity of the above protocol. The first step
takes O(log n) bits of communication. The fourth step costs O

(
m(f)2 log2 n log log n

)
bits

of communication: For each i ∈ [k], Alice and Bob can determine whether |x ∧ y| ≤ ci − gi or
|x∧y| ≥ ci +gi by O(m(f)2 log n log log n) with a success probability of at least 1−1/ (6 log n)
by Lemma 20. Since binary search takes at most ⌈log (k + 1)⌉ = O (log n) rounds, the total
communication cost is O

(
m(f)2 log2 n log log n

)
.

Now we argue for the correctness of the protocol. Notice that the set of jumps J (fa,b)
invokes k + 1 intervals:

{I0 := [0, c1 − g1], I1 := [c1 + g1, c2 − g2], . . . , Ik−1 := [ck−1 + gk−1, ck − gk], Ik := [ck + gk, n]} .

(4)

In particular, the followings hold:
For every j ∈ [0, k] and z1, z2 ∈ Ij such that fa,b(z1) ̸= ∗ and fa,b(z2) ̸= ∗, we have
fa,b(z1) = fa,b(z2).
If z /∈ Ij for any j ∈ [0, k], then fa,b(z) = ∗.

Therefore, Alice and Bob start from i = ⌊(k + 1)/2⌋ to determine whether |x ∧ y| ≤ ci − gi or
|x ∧ y| ≥ ci + gi with success probability of at least 1 − 1/ (6 log n). Depending on the result,
they repeat the same process similar to binary search to find the interval that |x ∧ y| falls
in. After at most ⌈log (k + 1)⌉ = O (log n) repetitions, there is only one remaining interval
and they can easily determine fa,b(|x ∧ y|). For n ≥ 2, the failure probability of the above
protocol is at most

1 −
(

1 − 1
6 log n

)⌈log(k+1)⌉

≤ ⌈log (k + 1)⌉
6 log n

≤ ⌈log (n + 1)⌉
3 log n2 ≤ 1

3 .
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For the quantum case, Alice and Bob use the same protocol above, but we invoke
Lemma 21 to analyze the communication complexity. ◀

Proof of Lemma 20. We rely on the following two claims to prove the lemma.

▶ Fact 22 ([2, Lemma 30]). Fix 0 < ϵ < β < 1 such that β + ϵ ≤ 1. For a set S, suppose
there is a subset S′ of S such that |S′|

|S| ≤ β − ϵ or |S′|
|S| ≥ β + ϵ. Suppose we can sample from

S uniformly and ask whether the sample is in S′. Then we can decide whether |S′|
|S| ≤ β − ϵ

or |S′|
|S| ≥ β + ϵ by O(β/ϵ2) samples, with success probability at least 2/3.

▶ Fact 23. Suppose x, y ∈ {0, 1}n are the inputs of Alice and Bob such that |x| ̸= |y|. Alice
and Bob can sample an element from S := {i : xi ̸= yi} uniformly using O(log n) bits of
communication.

We refer interesting readers to the full version [26] for the proof of Fact 23. Now we
prove the lemma by casing on the values of n1 and n2.

Case 1: n1 = c and n2 = a − c. According to Definition 10, we have either |x∧y|
|x| ≤ c−g

a or
|x∧y|

|x| ≥ c+g
a . Alice and Bob estimate |x∧y|

|x| as follows: Alice chooses an index i such that
xi = 1 uniformly at random. Then Alice sends i to Bob, and Bob checks whether yi = 1.
By Fact 22, setting β := c

a , ϵ := g
a , Alice and Bob can decide whether |x∧y|

|x| ≤ c−g
a or

|x∧y|
|x| ≥ c+g

a with bounded error using O
(

ac
g2

)
= O

(
n1n2

g2

)
samples. Since |x| = a, using

O
(

n1n2
g2 log log n

)
samples, they can decide whether |x ∧ y| ≤ c − g or |x ∧ y| ≥ c + g with

success probability at least 1 − 1/(6 log n) by error reduction. Thus, the communication
complexity is O

(
n1n2

g2 log n log log n
)

.
Case 2: n1 = a − c and n2 = c, or n1 = a − c and n2 = c, or n1 = c and n2 = b − c. A
similar argument as in Case 1 applies.
Case 3: n1 = c and n2 = n − a − b + c. Since n1 ≤ n2, we have a + b ≤ n. Then we
consider the following two cases:

1. Case 3.1: a + b < n. Let m := n1 + n2, p := |x∧y|
|x⊕y| . Since

|x ⊕ y| = |x ∧ y| + |x ∧ y|
= |x ∧ y| + (n − (a + b − |x ∧ y|))
= n − (a + b) + 2|x ∧ y|

,

we have

p = |x ∧ y|
n − (a + b) + 2|x ∧ y|

= 1
n−(a+b)

|x∧y| + 2
.

Notice that p is an increasing function with respect to |x∧y|. As a result, if |x∧y| ≤ c−g,
then p ≤ c−g

m−2g ; if |x ∧ y| ≥ c + g, then p ≥ c+g
m+2g . Let

β := 1
2

(
c + g

m + 2g
+ c − g

m − 2g

)
= cm − 2g2

m2 − 4g2 and ϵ := 1
2

(
c + g

m + 2g
− c − g

m − 2g

)
= gm

m2 − 4g2 .

Since c − g ≥ 0, we have β ≤ c+g
m+2g ≤ 2c

m and

ϵ = 1
2

(
c + g

m + 2g
− c

m

)
+ 1

2

(
c

m
− c − g

m − 2g

)
= 1

2

(
g(m − 2c)
m(m + 2g) + g(m − 2c)

m(m − 2g)

)
= O

( g

m

)
.
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For any x ∈ {0, 1}n, we let Sx := {i : xi = 1}. By Fact 23, Alice and Bob can
sample i from Sx⊕y uniformly using O(log n) bits communication. Since i ∈ Sx⊕y,
if xi = yi = 1, then i ∈ Sx∧y; if xi = yi = 0, then i /∈ Sx∧y. By Fact 22, using
O
(

β
ϵ2

)
= O

(
mc
g2

)
= O

(
n1n2

g2

)
samples, Alice and Bob can decide whether p ≤ β − ϵ

or p ≥ β + ϵ with bounded error. Equivalently, Alice and Bob can distinguish
|x ∧ y| ≤ c − g from |x ∧ y| ≥ c + g with bounded error. By error reduction, using
O
(

n1n2
g2 log log n

)
samples, they can decide whether |x ∧ y| ≥ c − g or |x ∧ y| ≤ c + g

with success probability at least 1 − 1/(6 log n). Thus, the communication complexity
is O

(
n1n2

g2 log n log log n
)

.

2. Case 3.2: a + b = n. Alice and Bob generate new inputs x′ = x0 and y′ = y0 (pad a
zero after the original input). We know

SetIncn
a,b,c,g(x, y) = SetIncn+1

a,b,c,g(x′, y′) .

Since a + b < n + 1, Alice and Bob perform the protocol in Case 3.1 in the new inputs,
and the complexity analysis is similar to Case 3.1.

Case 4: n1 = n − a − b + c and n2 = c, or n1 = a − c and n2 = b − c, or n1 = b − c and
n2 = a − c. A similar argument as in Case 3 works. ◀

4 Log-Rank Conjecture for Permutation-Invariant Functions

Theorem 6 states the Log-rank Conjecture for permutation-invariants functions. We argue
for the lower bound (Lemma 24) and the upper bound (Lemma 25) separately.

▶ Lemma 24. Fix n ∈ N. Let f : {0, 1}n × {0, 1}n → {−1, 1} be a non-trivial total
permutation-invariant function. For every a, b ∈ [n] such that fa,b is not a constant function,
we have

log rank(f) = Ω (max {log n, min {a, b, n − a, n − b}}) ,

where fa,b is defined as Equation (1).

▶ Lemma 25. Fix n ∈ N. Let f : {0, 1}n × {0, 1}n → {−1, 1} be a non-trivial total
permutation-invariant function.

D(f) = O

(
max

a,b∈[n]:fa,b is not constant
min {a, b, n − a, n − b} · log n

)
,

where fa,b is defined as Equation (1).

We prove Lemma 24 below, and the proof of Lemma 25 can be found in the full version [26].

Proof of Lemma 24. We rely on the following two claims to prove the lemma. Two claims
show the lower bound on the rank of some special functions respectively.

▶ Fact 26 ([15], merging Corollary 6 with Lemma 4). Fix n ∈ N. Let f : {0, 1}n × {0, 1}n →
{−1, 1} be defined as f(x, y) := D(|x ∧ y|) for some predicate D : {0, 1, ..., n} → {−1, 1}. If
t is the smallest integer such that D(t) ̸= D(t − 1), then log rank(f) = Ω

(
log
(∑n

i=t

(
n
i

)))
.
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▶ Fact 27. Fix n ∈ N. Let X , Y := {x ∈ {0, 1}n : |x| = k}, where k ≤ n/2. Let DISJk
n :

X × Y → {−1, 1} and EQk
n : X × Y → {−1, 1} be defined as

DISJk
n(x, y) :=

{
−1 if |x ∧ y| = 0
1 if |x ∧ y| ̸= 0

and EQk
n(x, y) :=

{
−1 if x = y

1 if x ̸= y
.

Then rank
(

DISJk
n

)
≥
(

n
k

)
− 1 and rank

(
EQk

n

)
≥
(

n
k

)
− 1.

We refer interesting readers to the full version [26] for the proof of Fact 27. Now we prove
the lemma by casing on the values of a and b.

We can assume a ≤ b ≤ n/2 without loss of generality because the cases where a > n/2
or b > n/2 can be obtained by flipping each bit of Alice or Bob’s input. Thus, it suffices to
prove log rank(f) = Ω (max {log n, a}).

We prove the following two claims that directly lead to our result:
1. If a ≤ b ≤ n/2 and a = o (log n), then log rank(f) = Ω (log n).
2. If a ≤ b ≤ n/2 and a = Ω (log n), then log rank(f) = Ω (a).

We first prove Item 1. Suppose a ≤ b ≤ n/2 and a = o (log n). Since fa,b is not a constant
function, there exists c ∈ [0, a) such that fa,b(c) ̸= fa,b(c + 1). Without loss of generality,
we assume fa,b(c) = −1. Let n′ := n − (a + b − c − 2). Since b ≤ n/2 and c ≤ a = o(log n),
n′ = n − (a + b − c − 2) = Ω (n). Let X and Y be the set

{
x ∈ {0, 1}n′ : |x| = 1

}
. For any

x ∈ X , y ∈ Y,

DISJ1
n′(x, y) = fa,b(|x ∧ y| + c) = f(x′, y′) ,

where

x′ := x 1 · · · 1︸ ︷︷ ︸
c

1 · · · 1︸ ︷︷ ︸
a−c−1

0 · · · 0︸ ︷︷ ︸
b−c−1

and y′ := y 1 · · · 1︸ ︷︷ ︸
c

0 · · · 0︸ ︷︷ ︸
a−c−1

1 · · · 1︸ ︷︷ ︸
b−c−1

.

Thus, DISJ1
n′ is a submatrix of f . By Fact 27, we have

log rank(f) ≥ log rank(DISJ1
n′) ≥ log (n′ − 1) = Ω (log n) .

Now we prove Item 2. Suppose a, b ≤ n/2 and min {a, b} = Ω (log n), we consider the
following three cases:

Case 1: There exists c ∈ [4a/7, 3a/5) such that fa,b(c) ̸= fa,b(c + 1). Let k = ⌊a/2⌋ and
k′ = ⌈a/2⌉. Let g : {0, 1}k × {0, 1}k → {−1, 1} be such that g(x, y) = fa,b(|x′ ∧ y′|) for
every x, y ∈ {0, 1}k, where

x′ := xx 0 · · · 0︸ ︷︷ ︸
k

1 · · · 1︸ ︷︷ ︸
k′

0 · · · 0︸ ︷︷ ︸
b−a

0 · · · 0︸ ︷︷ ︸
n−b−2k

and y′ := y 0 · · · 0︸ ︷︷ ︸
k

y 1 · · · 1︸ ︷︷ ︸
k′

1 · · · 1︸ ︷︷ ︸
b−a

0 · · · 0︸ ︷︷ ︸
n−b−2k

.

Observe that x′, y′ ∈ {0, 1}n and |x′| = a, |y′| = b. Moreover, g(x, y) = D(|x ∧ y|) for
predicate D : {0, 1, ..., k} → {−1, 1} such that D(z) = fa,b(z + k′) for every z ∈ [0, k].
Thus, we have D(c − k′) ̸= D(c − k′ + 1). By Fact 26, we have

log rank(g) = Ω
(

log
(

k∑
i=c−k′+1

(
k

i

)))
.

Since c−k′ + 1 < 3a/5−⌈a/2⌉+ 1 ≤ a/10 ≤ k/2, we conclude log rank(g) = Ω(k) = Ω(a).
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Case 2: There exists c ∈ [0, 4a/7) such that fa,b(c) ̸= fa,b(c + 1) and fa,b is a constant
function in the range [c, 3a/5). Without loss of generality, we assume fa,b(c) = −1. Let
l := ⌊3a/5⌋, l′ := ⌈2a/5⌋, m := n − (c + b − a + 2l′). Since a ≤ b ≤ n/2 and c < 4a/7, we
have

m = n − (c + b − a + 2l′) ≥ 2a − 2l′ − c = 2l − c ≥ 2(l − c) .

Let X and Y be the set {x ∈ {0, 1}m : |x| = l − c}. For every x ∈ X , y ∈ Y, we have

DISJl−c
m (x, y) = fa,b(|x′ ∧ y′|) = f(x′, y′) ,

where

x′ := x 1 · · · 1︸ ︷︷ ︸
c

0 · · · 0︸ ︷︷ ︸
b−a

0 · · · 0︸ ︷︷ ︸
l′

1 · · · 1︸ ︷︷ ︸
l′

and y′ := y 1 · · · 1︸ ︷︷ ︸
c

1 · · · 1︸ ︷︷ ︸
b−a

1 · · · 1︸ ︷︷ ︸
l′

0 · · · 0︸ ︷︷ ︸
l′

.

Thus, DISJl−c
m is a submatrix of f . By Fact 27, we have

log rank (f) ≥ log rank(DISJl−c
m ) = Ω

(
log
(

m

l − c

))
= Ω (l − c) = Ω (a) .

Case 3: There exists c ∈ [3a/5, a) such that fa,b(c) ̸= fa,b(c + 1) and fa,b is a constant
function in the range [0, c). Without loss of generality, we assume fa,b(c) = −1. Since a ≤
b ≤ n

2 , we have n−b+c ≥ a+c ≥ 2c. Let X and Y be the set
{

x ∈ {0, 1}n−b+c : |x| = c
}

.
For every x ∈ X , y ∈ Y, we have

EQc
n−b+c(x, y) = fa,b(|x′ ∧ y′|) = f(x′, y′),

where

x′ := x 0 · · · 0︸ ︷︷ ︸
b−a

0 · · · 0︸ ︷︷ ︸
a−c

and y′ := y 1 · · · 1︸ ︷︷ ︸
b−a

0 · · · 0︸ ︷︷ ︸
a−c

.

Thus, EQc
n−b+c is a submatrix of f . By Fact 27, we have

log rank (f) ≥ log rank(EQc
n−b+c) = Ω

(
log
(

n − b + c

c

))
= Ω (c) = Ω (a) . ◀

5 Log-Approximate-Rank Conjecture for Permutation-Invariant
Functions

We discuss Theorem 7. In particular, we use the following two lemmas (proved in the full
version [26]) to prove Theorem 7. Additionally, we note that Lemmas 28 and 29 are variants
of Lemmas 18 and 19.

▶ Lemma 28. Let n, a, b, c, g ∈ Z+. The following relations hold:
1. r̃ank

(
ESetIncn

a,b,c,g

)
≤ r̃ank

(
ESetIncn+ℓ

a+ℓ1+ℓ3,b+ℓ2+ℓ3,c+ℓ3,g

)
for ℓ1, ℓ2, ℓ3 ≥ 0 such that

ℓ1 + ℓ2 + ℓ3 ≤ ℓ;
2. r̃ank

(
ESetIncn

a,b,c,g

)
= r̃ank

(
ESetIncn

a,n−b,a−c,g

)
= r̃ank

(
ESetIncn

n−a,b,b−c,g

)
; and

3. r̃ank
(
ESetIncn

a,b,c,g

)
≤ r̃ank

(
ESetInckn

ka,kb,kc,kg

)
for k ≥ 1.

▶ Lemma 29. Fix k ∈ Z. Let l be a half-integer such that l ≤ k/2. We have

log
(

r̃ank
(

ESetInc4k
2k,k,l,1/2

))
= Ω

(√
kl
)

.
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Proof sketch of Theorem 7. We use a similar argument as in the proof of Lemma 15.
Namely, for every a, b ∈ [n] and jump (c, g) ∈ J (fa,b), let n1 := min{[a−c, c, b−c, n−a−b+c]}
and n2 := min ({[a − c, c, b − c, n − a − b + c]} \ {n1}). We have

log r̃ank
(
ESetIncn

a,b,c,g

)
= Ω

(√
n1n2

g

)
.

Since ESetIncn
a,b,c,g is a subfunction of f , we have

log r̃ank (f) = Ω

 max
a,b∈[n]

(c,g)∈J (fa,b)

√
n1n2

g

 = Ω (m(f)) .

Combining Theorem 14 and the above equation, we have Theorem 7 as desired. ◀

6 Conclusion

This paper proves that the randomized communication complexity of permutation-invariant
Boolean functions is at most quadratic of the quantum communication complexity (up to
a logarithmic factor). Our results suggest that symmetries prevent exponential quantum
speedups in communication complexity, extending the analogous research on query complexity.
Furthermore, we prove that the Log-rank Conjecture and Log-approximate-rank Conjecture
hold for non-trivial permutation-invariant Boolean functions (up to a logarithmic factor).
There are some interesting problems to explore in the future.

Permutation invariance over higher alphabets. In this paper, the permutation-invariant
function is a binary function. The interesting question is to generalize our results to
larger alphabets, i.e., to permutation-invariant functions of the form f : Xn × Y n → R

where X, Y and R are not necessarily binary sets.
Generalized permutation invariance. It is possible to generalize our results for a larger
class of symmetric functions. One candidate might be a class of functions that have
graph-symmetric properties. Suppose GA, GB are two sets of n-vertices graphs, and
Gn is a group that acts on the edges of an n-vertices graph and permutes them in a
way that corresponds to relabeling the vertices of the underlying graph. A function
f : GA ×GB → {0, 1} is graph-symmetric if f(x, y) = f(x◦π, y ◦π), where x ∈ GA, y ∈ GB ,
and π ∈ Gn.
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Abstract
We describe a new algorithm for vertex cover with runtime O∗(1.25284k), where k is the size

of the desired solution and O∗ hides polynomial factors in the input size. This improves over the
previous runtime of O∗(1.2738k) due to Chen, Kanj, & Xia (2010) standing for more than a decade.
The key to our algorithm is to use a measure which simultaneously tracks k as well as the optimal
value λ of the vertex cover LP relaxation. This allows us to make use of prior algorithms for
Maximum Independent Set in bounded-degree graphs and Above-Guarantee Vertex Cover.

The main step in the algorithm is to branch on high-degree vertices, while ensuring that both k

and µ = k − λ are decreased at each step. There can be local obstructions in the graph that prevent
µ from decreasing in this process; we develop a number of novel branching steps to handle these
situations.
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1 Introduction

For an undirected graph G = (V, E), a subset S ⊆ V is called a vertex cover if every edge
has at least one endpoint in S. It is closely related to an independent set, since if S is an
inclusion-wise minimal vertex cover then V − S is an inclusion-wise maximal independent
set, and vice-versa. Finding the size of the smallest vertex cover is a classic NP-complete
problem [6]. In particular, G has a vertex cover of size at most k if and only if it has an
independent set of size at least n − k.

There is natural LP formulation for vertex cover which we denote by LPVC(G):

minimize
∑

v∈V θ(v)
subject to θ(u) + θ(v) ≥ 1 for all edges e = (u, v) ∈ E

θ(v) ∈ [0, 1] for all vertices v ∈ V

The optimal solution to LPVC(G), denoted λ(G) or just λ if G is clear from context, is a
lower bound on the size of a minimum vertex cover of G. We also define µ(G) = k − λ(G),
i.e. the gap between solution size and LP lower bound. This linear program has remarkable
properties which have been exploited for a variety of algorithms [12, 13, 9]. For instance,
an optimum basic solution is half-integral and can be found efficiently by a network flow
computation.

Fixed-parameter tractable (FPT) and exact algorithms explore a landscape of parameters
to understand the complexity of different problems [14, 4, 3, 2, 5]. Vertex Cover was one
of the first studied FPT problems with respect to the parameter k, the optimal solution
size. Building on a long line of research, this culminated in an algorithm with O∗(1.2738k)
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runtime [1]. (Throughout, we write O∗(T ) as shorthand for T · poly(n).) This record has
been standing for more than a decade. Assuming the Exponential Time Hypothesis, no
algorithm with runtime O∗(2o(k)) is possible [2].

1.1 Outline of our results
The main result of this paper is an improved algorithm for vertex cover parameterized by k.

▶ Theorem 1. There is an algorithm for VertexCover with runtime O∗(1.25284k).
Moreover, depending on the maximum vertex degree of the graph G, better bounds can
be shown:

If maxdeg(G) ≤ 3, we get runtime O∗(1.14416k).
If maxdeg(G) ≤ 4, we get runtime O∗(1.21131k).
If maxdeg(G) ≤ 5, we get runtime O∗(1.24394k).
If maxdeg(G) ≤ 6, we get runtime O∗(1.25214k).
All of these algorithms use polynomial space and are deterministic.

The FPT algorithms for vertex cover, including our new algorithm, are built out of
recursively branching on high-degree vertices or other structures, while tracking some
“measure” of the graph. Our main new idea is to use a measure which is a piecewise-linear
function of k and µ. To illustrate, consider branching on whether some degree-r vertex u is
in the cover: we recurse on the subproblem G1 = G − u where k is reduced by one and on
the subproblem G0 = G − u − N(u) where k is reduced by r. We must also show that µ is
significantly reduced in the two subproblems.

Suppose that, wishfully speaking, 1⃗
2 remains the optimal solution to LPVC(G0) and

LPVC(G1). This is what should happen in a “generic” graph. Then λ(G0) = |V (G0)|/2 =
(n − r − 1)/2 and λ(G1) = |V (G1)|/2 = (n − 1)/2. Since k0 = k − r and k1 = k − 1, this
implies that µ is indeed significantly decreased:

µ(G0) = µ(G) − (r − 1)/2, µ(G1) = µ(G) − 1/2

But suppose, on the other hand, that 1⃗
2 is not the optimal solution to LPVC(G0) or

LPVC(G1). For a concrete example, suppose the neighborhood of x in G is a subset of
that of u, so G0 has an isolated vertex x and an optimal solution θ∗ to LPVC(G0) would
set θ∗(x) = 0. In this situation, we develop an alternate branching rule for G: rather than
branching on u itself, we branch on the two subproblems where (i) both u, x are in the cover
and (ii) x is not in the cover. See Figure 1 for an illustration.

u x

Figure 1 In the subgraph G − N [u], the vertex x becomes isolated.

We emphasize that this is just one example of our branching analysis. We need to handle
more general situations where 1⃗

2 is not the optimal solution to LPVC(G0) or LPVC(G1),
which can require more complex branching rules. We emphasize that these branching rules are
more powerful than simply using conventional branching rules along with the preprocessing
rules; the latter may not be able to ensure a good reduction in µ.
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In Section 6, we use these ideas for a relatively simple algorithm with runtime O∗(1.2575k),
along with algorithms for bounded-degree graphs. This is already much better than [1].

In the full paper, we discuss how to improve the runtime by branching on a targeted
vertex to create additional simplifications in the graph. Carrying out this secondary goal
is much more complex. This would give the results stated in Theorem 1. Due to space
limitations, we omit this analysis from the present version of the paper.

1.2 Related algorithms
Many different kinds of algorithms have been developed for the Vertex Cover problem. We
cannot summarize this fully here; we describe some of the most relevant works for our own
paper.

As we have mentioned, there is a long line of research into FPT algorithms parametrized
by the solution size k. Currently, the fastest such algorithm has O∗(1.2738k) runtime [1].
In addition, [15] describes algorithms in graphs of maximum degree 3 and 4 with runtime
respectively O∗(1.1558k) and O∗(1.2403k) respectively.

An important variant is Above-Guarantee Vertex Cover (AGVC), where the
parameter is the difference between k and various lower bounds on vertex cover size [10, 11,
9, 7, 8]. Of these, the parameter µ(G) = k − λ(G) plays a particularly important role in this
paper. We quote the following main result:

▶ Theorem 2 ([9]). Vertex cover can be solved in time O∗(2.3146µ).

Another natural choice is to measure runtime in terms of the graph size n. In this setting,
the problem is more commonly referred to as Maximum Independent Set (MaxIS). Xiao
and Nagamochi have developed a number of algorithms in this vein. These algorithms, and
in particular their performance on bounded-degree graphs, will also play a crucial role in
our analysis. We refer to the algorithm targeted for graphs of maximum degree ∆ by the
MaxIS-∆ algorithm.

▶ Theorem 3. MaxIS-3 can be solved with runtime O∗(1.083506n) by [17].1
MaxIS-4 can be solved with runtime O∗(1.137595n) by [16].
MaxIS-5 can be solved with runtime O∗(1.17366n) by [18].2
MaxIS-6 can be solved with runtime O∗(1.18922n) by [19].
MaxIS-7 can be solved with runtime O∗(1.19698n) by [19].
MaxIS in graphs of arbitrary degree can be solved with runtime O∗(1.19951n) by [19].

1.3 Notation
We consider throughout a simple, undirected, unweighted graph G = (V, E), and we write
n = |V |. We write an ordered pair ⟨G, k⟩ for a graph G where we need to decide if there is a
vertex cover of size at most k, and we say it is feasible if such a vertex cover exists. We say
C is a good cover if it is a vertex cover of size at most k.

For a subset S of V , the subgraphs of G induced by S and V \ S are denoted by G[S]
and G − S, respectively. We write u ∼ v if (u, v) ∈ E and u ≁ v otherwise. For vertex sets
X, Y , we write X ∼ Y if there exists x ∈ X, y ∈ Y with x ∼ y.

1 This runtime is not claimed directly in [17], see [16] instead.
2 This runtime is not claimed directly in [18], see [19].

STACS 2024



40:4 A Faster Algorithm for Vertex Cover Parameterized by Solution Size

For a vertex u, the neighborhood NG(u) is the set {u ∈ V (G) : u ∼ v} and the closed
neighborhood NG[u] is the set NG(u) ∪ {u}. Extending this notation, for a vertex set
S ⊆ V (G), we write NG(S) =

(⋃
v∈S NG(v)

)
\S and NG[S] = NG(S)∪S =

⋃
v∈S NG[v]. For

readability, we sometimes write N(x, y) or N [x, y] as shorthand for N({x, y}) or N [{x, y}].
The degree of vertex v, denoted by degG(v), is the size of NG(v). We call a vertex of

degree i an i-vertex ; for a vertex v, we refer to a neighbor u which has degree j as a j-neighbor
of v. An isolated vertex is a 0-vertex. We say a vertex is subquartic if it has degree in
{1, 2, 3, 4} and subcubic if it has degree in {1, 2, 3}, and subquadratic if it has degree in {1, 2}.
(We do not count isolated vertices).

We write maxdeg(G) and mindeg(G) for the minimum and maximum vertex degrees in
G, respectively. The graph is r-regular if maxdeg(G) = mindeg(G) = r. We write Vi for the
set of degree-i vertices and ni = |Vi|.

We say that a pair of vertices u, v share neighbor y if y ∈ N(u) ∩ N(v). We denote by
codeg(u, v) = |N(u) ∩ N(v)| the number of vertices shared by u, v.

An ℓ-cycle denotes a set of ℓ vertices x1, . . . , xℓ with a path x1, x2, . . . , xℓ, x1.

2 Preliminaries

We review some basic facts about branching and preprocessing rules for vertex cover. Much
of this material is standard, see e.g. [9]. We include proofs in Appendix A for completeness.

Our algorithm will heavily use the LP and its properties. This LP is closely related to
properties of independent sets. For brevity, we refer to these as indsets, i.e. sets X ⊆ V

where no two vertices in X are adjacent. For an indset I in G, we define the surplus by
surpG(I) = |NG(I)|−|I|. If G is clear from context, we write just surp(I) or N(I). We define
minsurp(G) to be the minimum value of surpG(I) over all non-empty indsets I in G, and a
min-set to be any non-empty indset I achieving this minimum, i.e. surpG(I) = minsurp(G).

Since this comes up in a number of places, we define minsurp−(G) = min{0, minsurp(G)}.

▶ Proposition 4. λ(G) = 1
2 (|V | + minsurp−(G)). Moreover, in a basic solution to LPVC(G),

the set I of vertices with value zero forms an indset (possibly empty) with surpG(I) =
minsurp−(G).

We define a critical-set to be a non-empty indset I with surpG(J) ≥ surpG(I) for all
non-empty subsets J ⊆ I. Clearly, any min-set or any singleton set is a critical-set.

▶ Lemma 5. For any critical-set I, there is a good cover C with either I ⊆ C or I ∩ C = ∅.
If surp(I) ≤ 0, there is a good cover C with I ∩ C = ∅.
If surp(I) = 1, there is a good cover C with either N [I] ∩ C = I or N [I] ∩ C = N(I).

▶ Proposition 6. For any non-empty indset I of G, there holds minsurp(G) ≤ minsurp−(G−
N [I]) + surpG(I). The equality minsurp(G) = minsurp−(G − N [I]) + surpG(I) holds if and
only if I is contained in a min-set of G.

▶ Proposition 7. The value minsurp(G) can be determined in polynomial time. Moreover,
for any indset X (possibly X = ∅), we can efficiently find a min-set of G containing X (if
any such exists).

2.1 Preprocessing and branching rules
Our algorithm uses three major preprocessing rules. For this, we need to define the following
graph structure: a funnel is a vertex u with a neighbor x such that G[N(u) \ {x}] forms
a clique. Here, we call x the out-neighbor of u. For example, if a degree-3 vertex u has a
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triangle with neighbors t1, t2, and one other vertex x, then u is a funnel with out-neighbor x;
since this comes up so often, we refer to this as a 3-triangle. A well-known result is that, for
a funnel u with out-neighbor x, there exists a good cover C with either u /∈ C or x /∈ C.

Preprocessing Rule 1 (P1): Given a critical-set I with surpG(I) ≤ 0, form graph G′

with k′ = k − |N(I)| by deleting N [I].

Preprocessing Rule 2 (P2): Given a critical-set I with surpG(I) = 1, form graph G′

with k′ = k − |I| by deleting N [I] and adding a new vertex y adjacent to N(N(I)).

Preprocessing Rule 3 (P3): Given a funnel u with out-neighbor x, form graph G′

with k′ = k − 1 − codeg(u, x) by removing vertices N [u] ∩ N [x] and adding edges between
all vertices in N(u) \ N [x] to all vertices in N(x) \ N [u].

See Figure 2 for an illustration of rule (P3) applied to a funnel.

u

x

Figure 2 A funnel (here, a 3-triangle) u before (left) and after (right) applying P3.

These rules can be applied to any eligible sets in any order. Note that if a vertex v has
degree zero or one, then applying (P1) to {v} removes v and its neighbor (if any). If a
vertex v has degree two, then applying (P2) to {v} removes v and contracts its neighbors
x, y into a new vertex v′. When no further preprocessing rules can be applied, we say the
graph G is simplified; the resulting graph has a number of nice properties, for instance, it
has minsurp(G) ≥ 2, and the solution 1⃗

2 is the unique optimal solution to LPVC(G), and
the minimum degree of any vertex is 3.

▶ Proposition 8. After applying any preprocessing rule, we have µ(G′) ≤ µ(G), and ⟨G, k⟩
is feasible if and only if ⟨G′, k′⟩ is feasible.

There is one situation where rule P3 is particularly powerful. Consider a 3-vertex u which
has neighbors x, y, z where x ∼ y and y ∼ z. We refer to this as a kite; see Figure 3.

u

x

y

z

u’

Figure 3 A kite u, x, y, z before (left) and after (right) applying P3.
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▶ Lemma 9. Suppose minsurp(G) ≥ 1. Then applying (P3) to a kite in G yields a graph G′

with k′ ≤ k − 2 and µ(G′) ≤ µ(G) − 1/2.

2.2 Runtime and branching framework

Our algorithm follows the measure-and-conquer approach. Given an input graph G, it runs
some preprocessing steps and then generates subproblems G1, . . . , Gt such that G is feasible
if and only if at least one Gi is feasible. It then runs recursively on each Gi. Such an
algorithm has runtime O∗(eϕ(G)) as long as the preprocessing steps have runtime O∗(eϕ(G))
and it satisfies

t∑
i=1

eϕ(Gi)−ϕ(G) ≤ 1. (1)

(Here and throughout e = 2.718... is the base of the natural logarithm.) We refer to ϕ as the
measure of the algorithm. For the most part, we will use measures of the form

ϕ(G) = aµ + bk for a, b ≥ 0; (2)

We say a subproblem G′ has drop (∆µ, ∆k) if k′ ≤ k − ∆k and µ′ ≤ µ − ∆µ. We say a
branching rule has branch sequence (or branch-seq for short) B = [(∆µ1, ∆k1), . . . , (∆µt, ∆kt)]
if generates subproblems G′

1, . . . , G′
t with the given drops. Given values of a, b, we define the

value of B to be

vala,b(B) =
t∑

i=1
e−a∆µi−b∆ki . (3)

We say branch-seq B′ dominates B if vala,b(B′) ≤ vala,b(B) for all a, b ≥ 0, and G has a
branch-seq B available if we can efficiently find a branching rule which has some branch-seq
B′ dominating B. In general, a “balanced” branch-seq dominates an “imbalanced” one;
formally, if ∆k1 ≤ ∆k2 and ∆µ1 ≤ ∆µ2, then branch-seq [(∆µ1, ∆k1), (∆µ2, ∆k2)] dominates
[(∆µ1 − f, ∆k1 − g), (∆µ1 + f, ∆k2 + g)] for any f, g ≥ 0.

We use the following important compositional property throughout: if we have a branching
rule B generating ℓ subproblems with drops (∆µi, ∆ki), and we then apply a branching rule
with branch-seq B′

i to each subproblem i = 1, . . . , ℓ, then, overall, we get

vala,b(B) =
ℓ∑

i=1
e−a∆µi−b∆ki vala,b(B′

i).

▶ Lemma 10. Suppose that G is a class of graphs closed under vertex deletion, and for which
there are vertex cover algorithms with runtimes O∗(eaµ+bk) and O(ecn) for a, b, c ≥ 0. Then
we can solve vertex cover in G with runtime O∗(edk) where d = 2c(a+b)

a+2c .

To illustrate Lemma 10, consider graphs of maximum degree 3. We can combine the
AGVC algorithm with runtime O∗(2.3146µ) (corresponding to a = log(2.3146), b = 0), and
the MaxIS-3 algorithm with runtime O∗(1.083506n) (corresponding to c = log(1.083506)),
to get an algorithm with runtime O∗(1.14416k); this already gives us one of the results in
Theorem 1.
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3 Preprocessing rules and reductions in k

We define S(G) to be the largest decrease in k obtainable from applying rules (P1) –
(P3) exhaustively via some efficiently-computable sequence of operations.3 As a point of
notation, we define R(X) = S(G − X) for a vertex set X. For vertices x1, . . . , xℓ and vertex
sets X1, . . . , Xr, we write R(x1, . . . , xℓ, X1, . . . , Xr) as shorthand for the more cumbersome
R({x1, . . . , xℓ} ∪ X1 ∪ · · · ∪ Xr) = S(G − {x1, . . . , xℓ} − (X1 ∪ · · · ∪ Xr)). Note that we may
have ℓ = 0 or r = 0, e.g. R(x1, . . . , xℓ) is shorthand for R({x1, . . . , xℓ}).

We record a few observations on simplifications of various structures.

▶ Observation 11. Suppose x, y are non-adjacent subquadratic vertices. Then S(G) ≥ 2 if
any of the following three conditions hold: (i) codeg(x, y) = 0 or (ii) deg(x) + deg(y) ≥ 3 or
(iii) minsurp(G) ≥ 0.

Proof. If deg(x) = deg(y) = 1 and codeg(x, y) = 0, then {x, y} is a min-set with
surp({x, y}) = 0, and applying P1 reduces k by two. Otherwise, if deg(x) ≥ 2, then
we can apply (P2) to x, and vertex y remains subquadratic, and we can follow up by applying
(P1) or (P2) again to y. Note that if minsurp(G) ≥ 0, then at least one of the conditions (i)
or (ii) must hold. ◀

▶ Proposition 12. If G has 2-vertices x1, . . . , xℓ which all have pairwise distance at least 3,
then S(G) ≥ ℓ.

Proof. We show it by induction on ℓ. The base case ℓ = 0 is vacuous. For the induction step,
we apply (P2) to xℓ, forming a graph G′ where the neighbors y, z get contracted into a single
new vertex t. By hypothesis, y, z are distinct from x1, . . . , xℓ. We claim that distG′(xi, xj) ≥ 3
and degG′(xi) ≥ 2 for any pair i < j < ℓ. For, clearly xi ̸∼ xj in G′. If xi, xj share a
neighbor in G′, it must be vertex t as no other vertices were modified. This is only possible if
{xi, xj} ∼ {y, z}; but this contradicts our hypothesis that codeg(xi, xℓ) = codeg(xj , xℓ) = 0.
Finally, suppose that degG′(xi) ≤ 1. This is only possible if the two neighbors of xi got
merged together, i.e. xi ∼ y and xi ∼ z. Again, this contradicts that codeg(xi, xℓ) = 0.

By induction hypothesis applied to G′, we have S(G′) ≥ ℓ − 1 and hence S(G) ≥ ℓ. ◀

▶ Lemma 13. If minsurp(G) ≥ 0 and indset I has surpG(I) ≤ 1, then S(G) ≥ |I|.

Proof. Let r = |I|. If surpG(I) = 0, or I is a critical-set, we can apply (P1) or (P2) to I. So
suppose that surpG(I) = 1 and surpG(X) = 0 for a non-empty subset X ⊊ I; among all such
subsets X, choose one of maximum size, and let s = |X|. We apply (P1) to X, reducing k

by s and obtaining a graph G′ = G − N [X]. Now consider the indset J = I \ X in G′, where
|J | = r − s. We have |NG′(J)| = |NG(I) \ NG(X)| = r + 1 − s and so surpG′(J) = 1.

We claim that J is a critical-set in G′. For, if some non-empty subset X ′ ⊆ J has
|NG′(X ′)| ≤ |X ′|, then indset I ′ = X ∪X ′ ⊆ I would have |NG(I ′)| ≤ |NG(X)|+|NG′(X ′)| ≤
|X| + |X ′| = |I ′|. Hence surpG(I ′) ≤ 0, contradicting maximality of X. So, we can apply
(P2) to J in G′, getting a further drop of r − s. Overall, we get a net drop of s + (r − s) = r

as desired. ◀

3 It is not clear how to calculate the absolute largest decrease in k via preprocessing rules, since applying
some rules may prevent opportunities for other rules. We assume that we have fixed some polynomial-
time computable sequences of potential preprocessing rules in order to reduce k as small as much as
possible. At various points in our algorithm, we will describe simplifications available for intermediate
graphs. We always assume that our preprocessing rules are chosen to find such simplifications.
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4 Branching rules

Most of our branching rules can be viewed in terms of guessing that a certain set of vertices
X1 is in the cover. In the graph G − X1, a set of vertices X0 may become isolated. We apply
rule (P1) to remove X0; the resulting subproblem ⟨G− (X0 ∪X1), k −|X1|⟩ is called principal,
and we define the excess to be |X0|. Note that the graph G′ = G − (X0 ∪ X1) may still
contain isolated vertices, or have additional simplifications available. We say ⟨G′, k − |X1|⟩
has drop (∆µ′, |X1|) directly, and the final subproblem G′′ = ⟨G′′, k′′⟩ has drop (∆µ′′, ∆k′′)
after simplification.

Since this plays a central role in our analysis, we define the shadow of a vertex set X, de-
noted shad(X), to be minsurp(G−X). For readability, we write shad(x1, . . . , xℓ, X1, . . . , Xr)
as shorthand for shad({x1, . . . , xℓ} ∪ X1 ∪ · · · ∪ Xr) = minsurp(G − {x1, . . . , xℓ} − (X1 ∪ · · · ∪
Xr)).

▶ Proposition 14. If minsurp(G) ≥ 2, then a principal subproblem ⟨G − X, k′⟩ with excess s

has ∆µ = 1
2 (∆k − s + minsurp−(G′)) = 1

2 (∆k − s + min{0, shad(X)}).

Proof. Here Proposition 4 gives λ(G) = n/2. Let G′ = G − X, where |X| = ∆k + s. Then
µ(G′) = k′ − λ(G′) = k′ − 1

2 (n′ + minsurp−(G′)), where n′ = n − X = 2λ(G) − (s + ∆k),
which simplifies to µ(G′) = µ(G) − 1

2 (∆k − s + minsurp−(G′)) as desired. ◀

▶ Observation 15. Suppose minsurp(G) ≥ 2. Then for any indset I, there holds shad(I) ≥
2 − |I| and shad(N [I]) ≥ 2 − surpG(I).

In particular, for a vertex u, there holds shad(u) ≥ 1 and shad(N [u]) ≥ 3 − deg(u).

Proof. If J is a min-set of G − I, then 2 ≤ surpG(J) ≤ surpG−I(J) + |I|. So surpG−I(J) ≥
2 − |I|. Similarly, if J is a min-set of G − N [I], then 2 ≤ surpG(I ∪ J) = surpG−N [I](J) +
surpG(I). ◀

By combining Observation 11 and Observation 15, we immediately get the following
simplification rule (which is used ubiquitously):

▶ Observation 16. If G is simplified and G − {u, v} has two non-adjacent subquadratic
vertices, then R(u, v) ≥ 2.

Our bread-and-butter branching rule is to choose some vertex u, and branch on whether
it is in the cover. We refer to this as splitting on u. This generates two principal subproblems
⟨G − u, k − 1⟩ and ⟨G − N [u], k − deg(u)⟩. More generally, in light of Lemma 5, we know
that for any critical-set I, there is either a good cover containing I or omitting I. We can
branch on subproblems ⟨G − I, k − |I|⟩ and ⟨G − N [I], k − N [I]⟩, and we refer to this as
splitting on I. Splitting on a vertex is a special case where I is a singleton.

Consider the effect of splitting on u. By Observation 15, the subproblem ⟨G − u, k − 1⟩
has drop (0.5, 1) and the subproblem ⟨G − N [u], k − deg(u)⟩ has drop (1, deg(u)). The latter
bound, however, is very loose and should be improved to get an optimized analysis. In light
of Proposition 14, it revolves around the value of shad(N [u]). If shad(N [u]) ≥ 0, then λ

drops by deg(u)+1
2 and so the subproblem has drop ( deg(u)−1

2 , deg(u)). This is the “generic”
situation for splitting on u.

When shad(N [u]) ≤ 0, we say that u is blocked. If x is a vertex in a min-set of G − N [u],
we say that x is a blocker of u. Necessarily, x ≁ u. This motivates the following powerful
branching rule:
(B) If x is a blocker of vertices u1, . . . , uℓ, then branch on subproblems ⟨G−{u1, . . . , uℓ, x}, k−

ℓ − 1⟩ and ⟨G − N [x], k − deg(x)⟩.
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▶ Proposition 17. Rule (B) is a valid branching rule.

Proof. The subproblem ⟨G − N [x], k − deg(x)⟩ is feasible if and only if G has a good cover
omitting x. The subproblem ⟨G − {u1, . . . , uℓ, x}, k − ℓ − 1⟩ is feasible if and only if G has a
good cover which includes all vertices u1, . . . , uℓ, x. We claim that, if G is feasible, at least
one of these cases holds. For, suppose a good cover of G omits vertex ui. Then G − N [ui]
has a cover of size at most k − deg(ui). By Lemma 5, this implies that G − N [ui] has such a
cover C ′ which omits any min-set I of G − N [ui], and in particular x /∈ C ′. Then G has a
good cover C ∪ N(ui) omitting x. ◀

In the vast majority of cases where we use (B), we have ℓ = 1, that is, x is a blocker of a
single vertex u. To provide intuition, keep in mind the picture that if G − N [u] has s isolated
vertices v1, . . . , vs, then {v1, . . . , vs} would be an indset in G − N [u] with zero neighbors and
surplus −s, in particular, shad(N [u]) ≤ −s. These vertices were hidden in the “shadow” of
N [u]. See Figure 4.

u v1

v2

Figure 4 Here, vertices v1, v2 are both blockers of u; in particular, we have shad(N [u]) ≤ −2.

Also, note that if shad(N [u]) = 0 exactly, then we could still split on u if desired and
get the ideal drop in µ. However, we can also apply rule (B) if desired, and this is usually
more profitable. Vertices with shad(N [u]) = 0 share many properties with vertices with
shad(N [u]) < 0 strictly. This is the reason for the somewhat unintuitive definition of blocked
vertex.

5 Analysis of blockers and splitting

We will develop a series of branching rules (typically using rule (B)) to handle blocked
vertices, along with a number of other related cases. The most significant consequence of
these rules is that we are able to get near-ideal branch sequences for high-degree vertices.
Specifically, we will show the following main result which is the heart of our branching
algorithm:

▶ Theorem 18. Suppose G is simplified, and let r = maxdeg(G). Depending on r, then
following branch-seqs are available:
If r ≥ 4: [(1, 3), (1, 5)] or [(0.5, 1), (1.5, 4)].
If r ≥ 5: [(1, 3), (1, 5)] or [(0.5, 1), (2, 5)].
If r ≥ 6: [(1, 3), (1, 5)], [(0.5, 2), (2, 5)], or [(0.5, 1), (2.5, r)].

The proof of Theorem 18 has many cases which will require us to build up slowly from
analysis of low-degree vertices. For Section 5 only, we always assume that the starting
graph GGG is simplified. We begin with a few elementary observations.

▶ Observation 19. Suppose u is blocked and let I be a min-set of G − N [u]. There is at
least one vertex x ∈ I with codeg(x, u) ≥ 1.
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Proof. If not, we would have surpG(I) = surpG−N [u](I) ≤ 0, contradicting that G is
simplified. ◀

▶ Proposition 20. Suppose vertex u has shad(N [u]) ≤ 4 − deg(u) and x is a blocker of u. If
we apply (B) to vertices u, x, then subproblem G′ = ⟨G − N [x], k − deg(x)⟩ has drop (1, 4).
Moreover, if deg(x) = 3 and x is contained in a non-singleton min-set of G − N [u], then G′

has drop (1, 5).

Proof. Since G is simplified, we have deg(x) ≥ 3 and minsurp(G) ≥ 2. If deg(x) = 4, then
G′ has drop (1, 4) directly. So, suppose deg(x) = 3 exactly. Consider any min-set I of
G − N [u] with x ∈ I. The indset J = I ∪ {u} \ {x} has surpG−N [x](J) ≤ surpG−N [u](I) +
(deg(u) − deg(x)) ≤ 1. On the other hand, shad(N [x]) ≥ minsurp(G) − deg(x) + 1 ≥ 0. So
Lemma 13 gives R(N [x]) ≥ |J | = |I|.

By Proposition 14 we see that G′ has drop (1, 3) directly. Since |I| ≥ 1 trivially, we have
R(N [x]) ≥ 1 and G′ has drop (1, 4) after simplification. If |I| ≥ 2, then R(N [x]) ≥ 2 and
likewise G′ has drop (1, 5) after simplification. ◀

5.1 Branching rules for indsets with surplus two
It will be very important to develop special branching rules for indsets with surplus two.
Since G is assumed to be simplified, note that any such set I will be a critical set, and we
can split on I to get subproblems ⟨G − I, k − |I|⟩ and ⟨G − N [I], k − |I| − 2⟩. However, this
branching rule is not powerful enough for us; we develop specialized branching rules for
smaller indsets (indsets with cardinality two or three).

▶ Proposition 21. Suppose G has an indset I with surpG(I) = 2, and let z ∈ N(I). If we
split on z, the subproblem ⟨G − z, k − 1⟩ has drop (0.5, 1 + |I|). If z has a blocker x /∈ I and
we apply (B) to z, x, the subproblem ⟨G − {z, x}, k − 2⟩ has drop (1, 2 + |I|).

Proof. Subproblem ⟨G−z, k−1⟩ has drop (0.5, 1) directly. We have surpG−z(I) = surpG(I)−
1 = 1, and shad(G−z) ≥ minsurp(G)−1 ≥ 1. So (P2) applied to I gives R(z) ≥ |I|. Likewise,
subproblem ⟨G − {z, x}, k − 2⟩ has drop (1, 2) directly, and shad(z, x) ≥ minsurp(G) − 2 ≥ 0
and surpG−{z,x}(I) ≤ surpG(I) − 1 ≤ 1. So Lemma 13 gives R(z, x) ≥ |I|. ◀

▶ Lemma 22. Suppose G has an indset I with surpG(I) = 2, |I| ≥ 3. Then G has available
branch-seq [(1, 4), (1, 5)] or [(0.5, 4), (2, 5)].

Proof. If |I| ≥ 4, then splitting on I gives branch-seq [(1, 4), (1, 6)]. So suppose |I| = 3. We
first claim that there is some vertex z with |N(z) ∩ I| = 2. For, consider the set of vertices
J = {z : |N(z) ∩ I| ≥ 2}. The vertices in I are independent and have degree at least three, so
there are at least 9 edges from I to N(I). Since |N(I)| = 5, by the pigeonhole principle we
must have |J | ≥ 2. If N(z) ̸⊆ I for all z ∈ J , then J would be an indset with surplus at most
one, contradicting that G is simplified. Hence there is z ∈ J with |N(z) ∩ I| = 2 exactly.

Let z be any such vertex, and let I = {x1, x2, y} where z ∼ x1, z ∼ x2, z ̸∼ y and
deg(x1) ≤ deg(x2). If deg(z) ≤ 4, then we split on I, generating subproblems ⟨G − I, k − 3⟩
and ⟨G − N [I], k − 5⟩ with drops (1, 3) and (1, 5) directly, where G − I has a subquadratic
vertex z so it has drop (1, 4) after simplification. If deg(z) ≥ 5 and shad(N [z]) ≥ 5 − deg(z),
then we split on z; by Proposition 21, subproblem ⟨G − z, k − 1⟩ has drop (0.5, 4), and
subproblem ⟨G − N [z], k − deg(z)⟩ has drop (2, 5) directly. If deg(z) ≥ 5 and z has a blocker
t ̸= y, then we apply (B) to z, t; by Proposition 20, subproblem ⟨G − N [t], k − deg(t)⟩ has
drop (1, 4) and by Proposition 21, subproblem ⟨G − {z, t}, k − 2⟩ has drop (1, 5).
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The only remaining possibility is if deg(z) ≥ 5 and y is the only blocker of z, i.e. deg(z) =
5, deg(y) = 3 and N(y) ⊆ N(z). Each vertex xi has deg(xi) + deg(y) − codeg(xi, y) ≤ |N(I)|,
i.e. codeg(xi, y) ≥ deg(xi) − 2. If deg(x1) = 3, this implies that x1, y share some neighbor u;
but in this case G has a 3-triangle x1, u, z, contradicting that G is simplified.

So we suppose deg(x2) ≥ deg(x1) ≥ 4 and then codeg(x1, y) ≥ 2 and codeg(x2, y) ≥ 2.
Equivalently, degG−N [x1](y) ≤ 1 and degG−N [x2](y) ≤ 1. So y is a blocker of all three vertices
x1, x2, z. We apply (B) giving subproblems ⟨G−N [y], k−deg(y)⟩ and ⟨G−{x1, x2, z, y}, k−4⟩,
with drops (1, 3) and (1, 4) directly. Furthermore, surpG−N [y]({x1, x2}) ≤ 2−|NG−N [y](I)| =
2 − 2 = 0 and neither x1 or x2 is isolated in G − N [y] (they retain neighbor z). So we can
apply (P1) to indset {x1, x2} in G − N [y], giving R(N [y]) ≥ 2. So G − N [y] has drop (1, 5)
after simplification. ◀

▶ Lemma 23. Suppose G has an indset I with surpG(I) = 2, |I| ≥ 2. Then G has available
branch-seq [(1, 4), (1, 4)] or [(0.5, 3), (2, 5)].

Proof. If |I| ≥ 3, then we apply Lemma 22. So let I = {x, y}, where deg(x) ≤ deg(y) and
let A = N(x, y). Note that |A| = deg(x) + deg(y) − 4 ≥ deg(x) − 1. The vertices in A cannot
form a clique, as then x would have a funnel. So consider vertices z1, z2 ∈ A with z1 ̸∼ z2.

If z1 and z2 are both subquartic, then we split on I; the subproblem ⟨G−N [I], k−|N [I]|−2
has drop (1, 4) directly. The subproblem G − I = G − {x, y} has non-adjacent subquadratic
vertices z1, z2, so by Observation 16, we have R(x, y) ≥ 2 and subproblem ⟨G − I, k − |I|⟩
has drop (1, 4) after simplification.

So suppose deg(z1) ≥ 5. If shad(N [z1]) ≥ 0, then split on z1; by Proposition 21, the
subproblem ⟨G − z1, k − 1⟩ has drop (0.5, 3), while the subproblem ⟨G − N [z1], k − deg(z1)⟩
has drop (2, 5) directly. Otherwise, suppose shad(N [z1]) ≤ −1 and t is a blocker of z1. Note
that t /∈ I since t ̸∼ z1 whereas z1 ∈ N(x)∩N(y). We then apply (B) to t, z1; the subproblem
⟨G − N [z1], k − deg(z1)⟩ has drop (1, 5) directly, and by Proposition 21, the subproblem
⟨G − {t, z}, k − 2⟩ has drop (1, 4). ◀

5.2 Branching rules for blocked vertices
We now turn to developing branching rules for blocked vertices of various types. We need to
work our way from low to high degree.

▶ Proposition 24. Suppose vertex u has shad(N [u]) ≤ 5 − deg(u) and u has a blocker x of
degree at least 4. Then G has available branch-seq [(1, 4), (1, 4)] or [(0.5, 2), (2, 5)].

Proof. If shad(N [x]) ≤ 3 − deg(x) and J is a min-set of G − N [x], then surpG(J ∪ {x}) ≤
(3 − deg(x)) + (deg(x) − 1) ≤ 2 and we can apply Lemma 23 to indset J ∪ {x}.

So suppose shad(N [x]) ≥ 4 − deg(x). In this case, we apply (B) to u, x. Subproblem
⟨G − {u, x}, k − 2⟩ has drop (1, 2) directly. If deg(x) ≥ 5, then subproblem ⟨G − N [x], k −
deg(x)⟩ has drop (1.5, 5) directly. If deg(x) = 4, then consider a min-set I of G − N [u]
with x ∈ I. We have surpG−N [x](I ∪ {u} \ {x}) ≤ surpG−N [u](I) + deg(u) − deg(x) ≤ 1. So
R(N [x]) ≥ 1 and G′ has drop (1.5, 5) after simplification. In either case, ⟨G−{u, x}, k−2⟩ and
⟨G − N [x], k − deg(x)⟩ give drops (1.2), (1.5, 5) respectively. This branch-seq [(1, 2), (1.5, 5)]
dominates [(0.5, 2), (2, 5)]. ◀

▶ Lemma 25. Suppose G has a vertex of degree at least 5 which has a 3-neighbor. Then G

has available branch-seq [(1, 3), (1, 5)] or [(0.5, 2), (2.5)].

Proof. Let u be a vertex of degree at least 5 and let z be a 3-neighbor of u. There are a
number of cases to consider.
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Case I: shad(N [u]) ≥ 5 − deg(u)shad(N [u]) ≥ 5 − deg(u)shad(N [u]) ≥ 5 − deg(u). Splitting on u gives subproblems G − u, G − N [u]
with drops (0.5, 1), (2, 5) directly; the former has drop (0.5, 2) after simplification due to its
2-neighbor z.

Case II: uuu has a blocker xxx with deg(x) ≥ 4deg(x) ≥ 4deg(x) ≥ 4. We suppose that shad(N [u]) ≤ 4 − deg(u)
since otherwise it would be covered in Case I. Then the result follows from Proposition 24,
noting that [(1, 4), (1, 4)] dominates [(1, 3), (1, 5)].

Case III: uuu has a blocker xxx with R(u, x) ≥ 2R(u, x) ≥ 2R(u, x) ≥ 2. We apply (B) to vertices u, x. Subproblem
⟨G − {u, x}, k − 2⟩ has drop (1, 4) after simplification, and by Proposition 20 subproblem
⟨G − N [x], k − deg(x)⟩ has drop (1, 4). We get branch-seq [(1, 4), (1, 4)], which dominates
[(1, 3), (1, 5)].

Case IV: G − N [u]G − N [u]G − N [u] has some non-singleton min-set III. Let x ∈ I. Necessarily deg(x) = 3,
else it would be covered in Case II. We apply (B) to u, x; subproblem ⟨G − {u, x}, k − 2⟩ has
drop (1, 3) after simplification due to subquadratic vertex z. By Proposition 20 subproblem
⟨G − N [x], k − deg(x)⟩ has drop (1, 5) after simplification.

Case V: No previous cases apply. Suppose that no vertices in the graph are covered by
any of the previous cases. Let U denote the non-empty set of vertices u with deg(u) ≥ 5 and
u having a 3-neighbor. We claim that every vertex u ∈ U has degree exactly 5. For, suppose
deg(u) ≥ 6, and since we are not in Case I we have shad(N [u]) ≤ 4 − deg(u) ≤ −2. Then
necessarily a min-set of G − N [u] would have size at least two, and it would be covered in
Case IV.

So every u ∈ U has degree exactly 5, and is blocked by a singleton 3-vertex x, i.e.
N(x) ⊆ N(u). Let us say in this case that x is linked to u; we denote by X the set of all such
3-vertices linked to any vertex in U . We claim that each x ∈ X has at least two neighbors of
degree at least 5, which must be in U due to their 3-neighbor x. For, suppose that x has
two subquartic neighbors z1, z2; necessarily z1 ̸∼ z2 since G is simplified and x has degree 3.
Then R(u, x) ≥ 2 by Observation 16, which would have been covered in Case III.

On the other hand, we claim that each vertex u ∈ U has at most one neighbor in X. For,
suppose u is linked to x and u has two 3-neighbors x1, x2 ∈ X, which must be non-adjacent
since G is simplified. Then Observation 16 gives R(u, x) ≥ 2 due to subquadratic vertices
x1, x2. This would have been covered in Case III.

Thus, we see that each vertex in X has at least two neighbors in U and each vertex in
U has at most one neighbor in X. Hence |U | ≥ 2|X|, and so by the pigeonhole principle,
there must be some vertex x ∈ X which is linked to two vertices u1, u2 ∈ U . We apply
(B) to u1, u2, x, getting subproblems ⟨G − {u1, u2, x}, k − 3⟩ and ⟨G − N [x], k − deg(x)⟩.
By Proposition 20, the latter subproblem has drop (1, 4). Furthermore, if z1, z2 are two
5-neighbors of x, then z1 ̸∼ z2 else x would have a 3-triangle. So G − {u1, u2, x} has
non-adjacent 2-vertices z1, z2, and subproblem ⟨G − {u1, u2, x}, k − 3⟩ has drop (1, 5) after
simplification. ◀

▶ Proposition 26. Suppose a vertex u has deg(u) ≥ 4 and shad(N [u]) ≤ 4 − deg(u). Then
G has available branch-seq [(1, 3), (1, 5)] or [(0.5, 2), (2, 5)].

Proof. Let I be a min-set of G − N [u]. By Observation 19, there is a vertex x ∈ I which
shares some neighbor t with u. If deg(x) ≥ 4, then we apply Proposition 24, noting that
[(1, 4), (1, 4)] dominates [(1, 3), (1, 5)]. If deg(x) = 3 and deg(t) ≥ 5, we apply Lemma 25 to
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t. If deg(x) = 3, deg(t) ≤ 4, |I| ≥ 2, we apply (B) to u, x; subproblem ⟨G − {u, x}, k − 2⟩
has drop (1, 3) after simplification (due to subquadratic vertex t) and by Proposition 20
subproblem ⟨G − N [x], k − deg(x)⟩ has drop (1, 5).

So finally take I = {x} where deg(x) = 3 and x shares two neighbors t1, t2 with u.
Necessarily t1 ̸∼ t2 since G has no 3-triangles. If either t1 or t2 has degree 5 or more,
we can apply Lemma 25. If they are both subquartic, then we apply (B) to u, x; by
Proposition 20, subproblem ⟨G − N [x], k − deg(x)⟩ has drop (1, 4) and by Observation 16
there holds R(u, x) ≥ 2 and subproblem ⟨G−{u, x}, k −2⟩ has drop (1, 4) after simplification.
Here, [(1, 4), (1, 4)] dominates [(1, 3), (1, 5)]. ◀

▶ Lemma 27. Suppose vertex u has deg(u) ≥ 5 and shad(N [u]) ≤ 5 − deg(u).
If deg(u) = 5, then G has available branch-seq [(1, 3), (1, 4)] or [(0.5, 2), (2, 5)].
If deg(u) ≥ 6, then G has available branch-seq [(1, 3), (1, 5)] or [(0.5, 2), (2, 5)].

Proof. Let I be a min-set of G − N [u] of smallest size. If any vertex in I has degree at least
4, the result follows from Proposition 24 (noting that [(1, 4), (1, 4)] dominates [(1, 3), (1, 5)].
So suppose that all vertices in I have degree 3. By Observation 19, we may select some
x ∈ I with codeg(x, u) ≥ 1. For this vertex x, define Z = N(x) ∩ N(u) and Y = NG−N [u](x),
where |Z| + |Y | = deg(x) = 3 and |Z| ≥ 1.

If any vertex z ∈ Z has degree at least 5, we apply Lemma 25 to z with its 3-neighbor
x. If any vertex z ∈ Z has degree 3, we apply Lemma 25 to u with its 3-neighbor z. If
codeg(x, x′) ≥ 2 for any vertex x′ ∈ I \ {x}, then we apply Lemma 23 to the surplus-two
indset {x, x′}. So we suppose that codeg(x, x′) ≤ 1 for all x′ ∈ I \ {x} and that all vertices
in Z have degree exactly four.

The vertices in Z must be independent, as otherwise G would have a 3-triangle with x. If
codeg(z, z′) ≥ 3 for any vertices z, z′ ∈ Z, then shad(N [z]) ≤ 0 (since G−N [z] has a 1-vertex
z′), and we can apply Proposition 26. So we suppose the vertices in Z share no neighbors
besides u and x. In this case, in the graph G − {u, x}, the vertices in Z become subquadratic
and share no common neighbors. By Proposition 12, we thus have R(u, x) ≥ |Z|.

We next claim that if |I| ≥ 2, then R(u, x) ≥ |Y |. For, every vertex y ∈ Y must have
a neighbor σ(y) ∈ I \ {x}, as otherwise we would have surpG−N [u](I ′) ≤ surpG−N [u](I) for
non-empty ind-set I ′ = I \ {x}, contradicting minimality of I. The vertices σ(y) : y ∈ Y

must be distinct, as a common vertex x′ = σ(y) = σ(y′) would have codeg(x, x′) ≥ 2 which
we have already ruled out. So, in the graph G − N [x], each vertex σ(y) ∈ I loses neighbor
y. By Observation 15, we have shad(N [x]) ≥ 3 − deg(x) = 0. So G − N [x] has |Y | ≤ 2
non-adjacent subquadratic vertices. Observation 16 implies that R(N [x]) ≥ |Y |.

At this point, our strategy is to apply (B) to u, x. If |I| = 1, then either deg(u) = 5, |Z| ≥ 2
or deg(u) ≥ 6, |Z| = 3. Subproblem ⟨G − N [x], k − deg(x)⟩ has drop (1, 3) directly and
subproblem ⟨G − {u, x}, k − 2⟩ has drop (1, 2 + |Z|) after simplification; that is, it has drop
(1, 4) if deg(u) = 5 and drop (1, 5) otherwise.

Otherwise, if |I| ≥ 2, then subproblem ⟨G − {u, x}, k − 2⟩ has drop (1, 2 + |Z|) after
simplification and subproblem ⟨G−N [x], k −deg(x)⟩ has drop (1, 3+ |Y |) after simplification.
Since |Z| + |Y | = 3 and |Z| ≥ 1, this always gives drops (1, 3), (1, 5) or (1, 4), (1, 4). ◀

We can finally prove Theorem 18 (restated for convenience).

▶ Theorem 18. Suppose G is simplified, and let r = maxdeg(G). Depending on r, then
following branch-seqs are available:
If r ≥ 4: [(1, 3), (1, 5)] or [(0.5, 1), (1.5, 4)].
If r ≥ 5: [(1, 3), (1, 5)] or [(0.5, 1), (2, 5)].
If r ≥ 6: [(1, 3), (1, 5)], [(0.5, 2), (2, 5)], or [(0.5, 1), (2.5, r)].
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Proof. Consider an r-vertex u. If r = 4 and shad(N [u]) ≥ 0, then split on u with branch-seq
[(0.5, 1), (1.5, 4)]. If r = 4 and shad(N [u]) ≤ −1, then use Proposition 26. If r = 5 and
shad(N [u]) ≥ 0, then split on u with branch-seq [(0.5, 1), (2, 5)]. If r = 5 and shad(N [u]) ≤
−1, then apply Proposition 26. If r ≥ 6 and shad(N [u]) ≥ 6 − r, then split on u, getting
branch-seq [(0.5, 1), (2.5, r)]. If r ≥ 6 and shad(N [u]) ≤ 5 − r, then apply Lemma 27. ◀

6 A simple branching algorithm

We now describe our first branching algorithm for vertex cover. As discussed earlier, the
measure is a piecewise-linear function of k and µ. It is more convenient to describe it in
terms of multiple self-contained “mini-algorithms,” with linear measure functions. As a
starting point, we can describe the first algorithm:

Algorithm 1 Function Branch4Simple(G, k).

1 Simplify G.
2 If maxdeg(G) ≤ 3, then run either the algorithm of Theorem 2 or the MaxIS-3

algorithm, whichever is cheaper, and return.
3 Otherwise, apply Theorem 18 to an arbitrary vertex of degree at least 4, and run

Branch4Simple on the two resulting subproblems.

To clarify, despite the name Branch4Simple, the graph is allowed to have vertices of
either higher or lower degrees. What we mean is that, depending on the current values of
k and µ, it is advantageous to branch on a vertex of degree 4 or higher. Our algorithm is
looking for such a vertex; if it is not present (i.e. the graph has maximum degree 3) then
an alternate algorithm should be used instead. Specifically, here we use either the AGVC
algorithm with runtime depending on µ or the MaxIS-3 algorithm with runtime depending
on n = 2(k − µ).

Henceforth we describe our branching algorithms more concisely. Whenever we apply a
branching rule, we assume that we recursively use the algorithm under consideration (here,
Branch4Simple) on the resulting subproblems and return. Likewise, when we list some other
algorithms for the problem, we assume they are dovetailed (effectively running the cheapest
of them).

▶ Proposition 28. Branch4Simple has measure aµ + bk for a = 0.71808, b = 0.019442.

Proof. Simplifying the graph in Line 1 can only reduce ϕ(G) = aµ + bk. If Theorem 18 is
used, it gives a branch-seq B with drops dominated by [(1, 3), (1, 5)] or [(0.5, 1), (1.5, 4)]. To
satisfy Eq. (3), we thus need:

vala,b(B) ≤ max{e−a−3b + e−a−5b, e−0.5a−b + e−1.5a−4b} ≤ 1 (4)

Otherwise, suppose G has maximum degree 3. Since it is simplified, it has n = 2λ =
2(k − µ), so the MaxIS-3 algorithm has runtime O∗(1.0835062(k−µ)). Then, it suffices to
show that

min{µ log(2.3146), 2(k − µ) log(1.083506)} ≤ aµ + bk. (5)

This can be verified mechanically. ◀

By Lemma 10, this combined with the MaxIS-4 algorithm (with a = 0.71808, b =
0.019442, c = log 1.137595) immediately gives runtime O∗(1.2152k) for degree-4 graphs.
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Although Proposition 28 is easy to check directly, the choices for the parameters a and b

may seem mysterious. The explanation is that the most constraining part of the algorithm is
dealing with the lower-degree graphs, i.e. solving the problem when the graph has maximum
degree 3. The inequality (5), which governs this case, should be completely tight: there
should be a “triple point” with respect to Branch4Simple, the MaxIS-3 algorithm, and the
algorithm of Theorem 2. That is, for chosen parameters a, b, we should have

µ log(2.3146) = 2(k − µ) log(1.083506) = aµ + bk

This allows us to determine b in terms of a. Then our goal is to minimize a whilst
respecting the branching constraints of Eq. (4). This same reasoning will be used for
parameters in all our algorithms. For example, we can define algorithms for branching on
degree 5 and degree 6 vertices.

Algorithm 2 Function Branch5Simple(G, k).

1 Simplify G

2 If maxdeg(G) ≤ 4, then run either the MaxIS-4 algorithm or Branch4Simple
3 Otherwise, apply Theorem 18 to an arbitrary vertex of degree at least 5.

Algorithm 3 Function Branch6Simple(G, k).

1 Simplify G

2 If maxdeg(G) ≤ 5, then run either the MaxIS-5 algorithm or Branch5Simple
3 Otherwise, apply Theorem 18 to an arbitrary vertex of degree at least 6.

Along similar lines, we immediately obtain the results:

▶ Proposition 29. Branch5Simple has measure aµ + bk for a = 0.44849, b = 0.085297.
Branch6Simple has measure aµ + bk for a = 0.20199, b = 0.160637.

Combined with the MaxIS-5 algorithm using Lemma 10, Branch5Simple immediately
gives an algorithm for degree-5 graphs with runtime O∗(1.2491k). The final algorithm is very
similar, but we only keep track of runtime in terms of k, not µ or n.

Algorithm 4 Function Branch7Simple(G, k).

1 If maxdeg(G) ≤ 6, then use Lemma 10 with algorithms of Branch6Simple and
MaxIS-6

2 Otherwise, split on an arbitrary vertex of degree at least 7.

▶ Theorem 30. Algorithm Branch7Simple(G, k) runs in time O∗(1.2575k).

Proof. If we split on a vertex of degree at least 7, then we generate subproblems with vertex
covers of size at most k − 1 and k − 7. These have cost 1.2575k−1 and 1.2575k−7 by induction.
Since 1.2575−1 + 1.2575−7 < 1, the overall cost is O∗(1.2575k). Otherwise the two algorithms
in question have measure aµ + bk and cn respectively; where a = 0.20199, b = 0.160637, c =
log(1.1893); by applying Lemma 10, we get a combined algorithm with cost O∗(1.2575k) as
desired. ◀
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A Proofs for basic results

Proof of Proposition 4. Consider any basic solution θ ∈ {0, 1
2 , 1}V to LPVC(G). Let I0 =

θ−1(0) and I1 = θ−1(1); note that I0 is an indset (possibly empty) and N(I0) ⊆ I1.
So

∑
v θ(v) = |I1| + 1

2 (n − |I0| − |I1|) ≥ (n + |N(I0)| − |I0|)/2 = (n + surp(I0))/2 ≥
(n + minsurp−(G))/2. On the other hand, if I0 is a min-set of G, then setting θ(v) = 1 for
v ∈ N(I0) and θ(v) = 0 for v ∈ I0 and θ(v) = 1/2 for all other vertices v gives a fractional
vertex cover with

∑
v θ(v) = (n + minsurp−(G))/2. ◀
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Proof of Lemma 5. Let I be a critical-set; we first claim there is a good cover C with I ⊆ C

or I ∩ C = ∅. For, suppose that I ∩ C = J where ∅ ̸= J ⊊ I. In this case, we must also
have N(I \ J) ⊆ C, so overall |C ∩ N [I]| ≥ |J | + |N(I \ J)| = |J | + |I \ J | + surp(I \ J);
since I \ J is a non-empty subset of I, we have surp(I \ J) ≥ surp(I), hence this is at least
|J | + |I \ J | + surp(I) = |I| + surp(I) ≥ N(I). Thus, replacing C ∩ N [I] by N(I) would give
a vertex cover C ′ with C ′ ∩ I = ∅ and |C ′| ≤ |C|.

Furthermore, if surp(I) ≤ 0, then consider a good cover C with I ⊆ C. Then replacing I

with N(I) would give another cover C ′ with |C ′| ≤ |C| + |N(I)| − |I| ≤ |C| and C ′ ∩ I = ∅.
Finally, suppose surp(I) = 1 and let J = N(I). If G has a good cover with I ∩ C = ∅,

then J ⊆ C as desired. Otherwise, suppose G has a good cover with I ⊆ C. Then,
C ′ = (C \ I) ∪ J would be another cover of size |C| − |I| + (|J | − |C ∩ J |); since |J | = |I| + 1,
this is |C| + 1 − |C ∩ J |. If C ∩ J ̸= ∅, this would be a good cover with I ∩ C = ∅. ◀

Proof of Proposition 6. Let J be an indset with surpG−N [I](J) = minsurp−(G − N [I]).
Then J ∪I is a non-empty indset of G with surplus surpG−N [I](J)+surpG(I) = minsurp−(G−
N [I]) + surpG(I); in particular, if minsurp−(G − N [I]) + surpG(I) = minsurp(G), then
I is a min-set of G. On ther other hand, if I is contained in a min-set J of G, then
surpG−N [I](J \I) = surpG(J)+|I|−|N(I)| = surpG(J)−surpG(I). So minsurp−(G−N [I]) ≤
minsurp(G) − surpG(I). ◀

Proof of Proposition 7. By applying Proposition 6 to indsets I = {x}, we get minsurp(G) =
minx∈V

(
minsurp−(G − N [x]) + deg(x) − 1

)
. We can use Proposition 4 to compute each

value minsurp−(G − N [x]) in polynomial time (by solving the LP). This gives an algorithm
to compute minsurp(G). Likewise, given any vertex-set X, we can use Proposition 6 to
determine if X is contained in a min-set of G and, if so, we can use Proposition 4 to find a
vertex set J attaining surpG−N [X](J) = minsurp−(G − N [X]); then J ∪ X is a min-set of G

containing X. ◀

Proof of Proposition 8. Let us first consider P1. If G′ has a good cover C ′, then C ′ ∪N(I) is
a cover for G of size k. Conversely, by Lemma 5, there is a good cover C of G with C ∩ I = ∅,
and then then C \N(I) is a cover of G′ of size k −|N(I)| = k′. Similarly, if G′ has a fractional
cover θ, then we can extend to G by setting θ(v) = 0 for v ∈ I and θ(v) = 1 for v ∈ N(I), with
total weight λ(G′)+(k−k′). So µ(G′) = k′−λ(G′) ≤ k′−(λ(G)−(k−k′)) = k−λ(G) = µ(G).

Next, for rule P2, let J = N(I). Since I is a critical-set with surplus one, it cannot
contain any isolated vertex. Given any good cover C of G with J ⊆ C, observe that
(C \ J) ∪ {y} is a cover of G′ of size k − |J | + 1 = k′. Likewise, given a good cover C

of G with J ∩ C = ∅, we have N(J) ⊆ C; in particular, I ⊆ C since I has no isolated
vertices, so C \ I is a cover of G′ of size k − |I| = k′. Conversely, consider a good cover
C ′ of G′; if y ∈ C ′, then (C ′ ∪ J) \ {y} is a cover of G, of size k′ + |J | − 1 = k. If y /∈ C ′,
then C ′ ∪ I is a cover of G, of size k′ + |I| = k. Similarly, if G has an optimal fractional
cover θ, it can be extended to G by setting θ(v) = θ(y) for v ∈ J , and θ(v) = 1 − θ(y) for
v ∈ I. This has weight λ(G′) + |I|(1 − θ(y)) + |J |θ(y) − θ(y) = λ(G′) + |I| ≥ λ(G). So
µ(G′) = k′ − λ(G′) ≤ (k − |I|) − (λ(G) − |I|) = µ(G).

Now for P3, let A = NG(u) ∩ NG(x) and Bx = NG(x) \ NG[u] and Bu = NG(u) \ NG[x].
To show the validity of the preprocessing rule, suppose ⟨G, k⟩ is feasible, and let C be a
good cover of G with either |C ∩ {u, x}| = 1; then C \ ({u, x} ∪ A) is a cover of G′ of size k′.
Conversely, suppose ⟨G′, k′⟩ is feasible with a good cover C ′. So |Bu \ C ′| ≤ 1. if Bu \ C ′ = ∅,
then C = C ′ ∪ A ∪ {x} is a cover of G. If |Bu \ C ′| = 1, then necessarily Bx ⊆ C ′ and
C = C ′ ∪ A ∪ {u} is a cover of G.
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Finally, we claim that (P3) satisfies µ(G′) ≤ µ(G); since k′ = k − 1 − |A|, it suffices
to show that λ(G) ≤ λ(G′) + 1 + |A|. For, take an optimal fractional cover θ for G′. To
extend it to a fractional cover for G, we set θ(v) = 1 for v ∈ A and there are a few
cases to determine the values for θ(u) and θ(v). If Bu = ∅, we set θ(u) = 0, θ(x) = 1.
Otherwise, if Bu ≠ ∅, let bu = minv∈Bu

θ′(v) and then set θ(u) = 1 − bu, θ(x) = bu;
since G′ has a biclique between Bu and Bx, this covers any edge between x and v ∈ Bx

with θ(x) + θ(v) = bu + θ(v) ≥ 1. Overall, θ is a fractional vertex cover of G of weight∑
v∈G′ θ(v) + θ(u) + θ(x) + |A| = λ(G′) + 1 + codeg(u, x). ◀

Proof of Lemma 9. Consider a kite u, x, y, z. We can view the application of (P3) to funnel
u as a two-part process. First, we remove the shared neighbor y ∈ N(u) ∩ N(x); then, we
merge vertices z, x into a new vertex u′. In the first step, we obtain a graph G′′ = G − y with
k′′ = k − 1 and n′′ = n − 1. So, by Proposition 4, we have λ(G′′) = λ(G) − 1/2 and hence
µ(G′′) ≤ µ(G) − 1/2 and k′′ = k − 1. By Proposition 8, the second step gives µ(G′) ≤ µ(G′′)
and k′ = k′′ − 1. ◀

Proof of Lemma 10. First, exhaustively apply rule (P1) to G; the resulting graph G′ has
n′ ≤ n and k′ ≤ k, and minsurp(G′) ≥ 0. In particular, µ(G′) = k′ − λ(G′) = k′ − n′/2.
Note that G′ ∈ G since (P1) just deletes vertices. Now dovetail the two algorithms for G′,
running both simultaneously and returning the output of whichever terminates first. This
has runtime O∗(min{ecn′

, ea(k′−n′/2)+bk′}). For fixed k′, this is maximized at n′ = 2k′(a+b)
a+2c ,

at which point it takes on value edk′ ≤ edk. ◀
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Loop Invariants. While variable updates of linear loops are restricted to linear assignments,
it is quite common that linear loops exhibit intricate polynomial properties in the form
of polynomial invariants. Non-linear polynomial invariant assertions might come in handy
for the verification of safety properties; by approximating the program’s behaviour more
accurately, they admit fewer false positives. That is, a program verifier using polynomial
loop invariants infers less frequently that a true assertion can be violated [7].

Loop Synthesis. Generating invariants, in particular polynomial invariants, is a notorious
task, shown to be undecidable for loops with arbitrary polynomial arithmetic [16]. Rather
than generating invariants for loops, in this paper we work in the reverse direction: generating
loops from invariants. Thus we ensure that the constructed loops exhibit intended invariant
properties and are thus correct by design. Loop synthesis therefore provides an alternative
approach for proving program correctness. If intermediate assertions of an involved program
are written in terms of polynomial equalities, automated loop synthesis can provide a code
fragment satisfying that assertion, while being correct by construction with respect to the
specification.

To overcome hardness of polynomial reasoning and solving arbitrary polynomial equations,
we restrict our attention to linear loops, and provide a decision procedure for computing
linear loops from (quadratic) polynomial invariants (Algorithm 1).

Linear loop synthesis showcases how a simple model (a linear loop) can express com-
plicated behaviours (quadratic invariants), as also witnessed in sampling algorithms of real
algebraic geometry [2, 11]. A non-trivial linear loop for a polynomial invariant allows to
sample infinitely many points from the algebraic variety defined by the polynomial. Moreover,
the computational cost to generate a new sample point only involves a matrix-vector multi-
plication. We give further comment on why we do not accept trivial loops in the synthesis
process in Remark 2.8.

Thus the result of a loop synthesis process for a polynomial equation (invariant) is an
infinite family of solutions defined by recurrence relations. This family is parameterised
by n, the number of loop iterations: nth terms of the synthesised recurrence sequences yield
a solution of the polynomial equation. Whether the solution set of an equation admits a
parameterisation of a certain kind is, in general, an open problem [34, 36].

Our Contributions. The main contributions of this work are as follows:
1. We present a procedure that, given a quadratic equation P (x1, . . . , xd) = 0 with an

arbitrary number of variables and rational coefficients, generates an affine loop such that
P = 0 is invariant under its execution; i.e., the equality holds after any number of loop
iterations. If such a loop does not exist, the procedure returns a negative answer.
The values of the loop variables are rational. Moreover, the state spaces of the loops
synthesised by this procedure are infinite and, notably, the same valuation of loop variables
is never reached twice. The correctness of this procedure is established in Theorem 5.4.

2. If the equation Q(x1, . . . , xd) = c under consideration is such that Q is a quadratic form,
we present a stronger result: a procedure (Algorithm 1) that generates a linear loop
with d variables satisfying the invariant equation.

Paper Outline. Section 2 introduces relevant preliminary material. We defer the discussion
of polynomial equation solving, a key element of loop synthesis, to Section 3. Then, in
Section 4, we provide a method to synthesise linear loops for invariants, where the invariants
restricted to be equations with quadratic forms. We extend these results in Section 5 and
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present a procedure that synthesises affine loops, and hence also linear loops, for invariants
that are arbitrary quadratic equations. We discuss aspects of our approach and propose
further directions in Section 6, in relation to known results.

An extended version of this paper, containing further details on our approach, is available
online [15]. In Appendix A of [15], we summarise the procedure for finding isotropic
solutions to quadratic forms (which we employ in our synthesis procedure). The abstract
arithmetic techniques contained therein are beyond the scope of this short paper and detail
the contributions of many sources [18, 9, 33, 32, 26, 6]. In Appendix B of [15], we summarise
the synthesis procedure underlying Theorem 5.4.

2 Preliminaries

2.1 Linear and quadratic forms
▶ Definition 2.1 (Quadratic form). A d-ary quadratic form over the field K is a homogeneous
polynomial of degree 2 with d variables:

Q(x1, . . . , xd) =
∑
i≤j

cijxixj ,

where cij ∈ K. It is convenient to associate a quadratic form Q with the symmetric matrix:

AQ :=


c11

1
2 c12 . . . 1

2 c1d
1
2 c12 c22 . . . 1

2 c2d

...
...

. . .
...

1
2 c1d

1
2 c2d . . . cdd

 .

We note that since AQ is symmetric, its eigenvalues are all real-valued. Further, Q(x) =
xTAQx for a vector x = (x1, . . . , xd) of variables.

We consider quadratic forms over the field Q of rational numbers by default. Therefore,
a quadratic form has a rational quadratic matrix associated with it.

A quadratic form Q is non-degenerate if its matrix AQ is not singular; that is, det AQ ≠ 0.
A quadratic form Q over Q represents the value a ∈ Q if there exists a vector x ∈ Qd such
that Q(x) = a. A quadratic form Q over Q is called isotropic if it represents 0 non-trivially;
i.e., there exists a non-zero vector x ∈ Qd with Q(x) = 0. The vector itself is then called
isotropic. If no isotropic vector exists, the form is anisotropic. A quadratic form Q is called
positive (resp. negative) definite if Q(x) > 0 (resp. Q(x) < 0) for all x ̸= 0. Note that
definite forms are necessarily anisotropic.

▶ Definition 2.2. Let Q1 and Q2 be d-ary quadratic forms. The forms Q1 and Q2 are
equivalent, denoted by Q1 ∼ Q2, if there exists σ ∈ GLd(Q) such that Q2(x) = Q1(σ · x).

From the preceding definition, there exists an (invertible) linear change of variables over
Q under which representations by Q2 are mapped to the representations by Q1. It is clear
that two equivalent quadratic forms represent the same values. In terms of matrices, we have
(σx)TAQ1σx = xTAQ2x, and hence AQ2 = σTAQ1σ.

▶ Definition 2.3 (Linear form). A linear form in d variables over the field Q is a homogeneous
polynomial L(x1, . . . , xd) =

∑d
i=1 bixi of degree 1, where b1, . . . , bd ∈ Q.

Note that each linear form admits a vector interpretation: L(x) = bTx, where b =
(b1, . . . , bd)T ∈ Qd is a non-zero vector of the linear form.

STACS 2024
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2.2 Loops and Loop Synthesis
Linear loops are a class of single-path loops whose update assignments are determined by a
homogeneous system of linear equations in the program variables.

▶ Definition 2.4 (Linear loop). A linear loop ⟨M, s⟩ is a loop program of the form

x← s; while ⋆ do x←Mx,

where x is a d-dimensional column vector of program variables, s is an initial d-dimensional
vector, and M is a d× d update matrix. For the procedures, which we introduce here, to be
effective, we assume that the entries of M and s are rational.

We employ the notation ⋆, instead of using true as loop guard, as our focus is on loop
synthesis rather than proving loop termination.

▶ Definition 2.5 (Affine loop). An affine loop ⟨M, s, t⟩ is a loop program of the form

x← s; while ⋆ do x←Mx + t,

where, in addition to the previous definition, t ∈ Qd is a translation vector.

▶ Remark 2.6 (Linear and Affine Loops). A standard observation permits the simulation
of affine loops by linear ones at a cost of one additional variable constantly set to 1. An
augmented matrix of an affine loop with d variables is a matrix M ′ ∈ Q(d+1)×(d+1) of the
form

M ′ :=
(

1 01,d

t M

)
.

It follows that a linear loop ⟨M ′, (1, s)T⟩ simulates the affine loop in its last d variables.
A linear (or affine) loop with variables x = (x1, . . . , xd) generates d sequences of numbers.

For each loop variable xj , let ⟨xj(n)⟩∞n=0 ⊆ Q denote the sequence whose nth term is
given by the value of xj after the nth loop iteration. Similarly, define the sequence of
vectors ⟨x(n)⟩n ⊆ Qd. For a given loop, we refer to its reachable set of states in Qd as the
loop’s orbit. A loop with variables x1, . . . , xd is non-trivial if the orbit

Ox := {(x1(n), . . . , xd(n)) : n ≥ 0} ⊆ Qd

is infinite. A polynomial invariant of a loop is a polynomial P ∈ Q[x] such that

P (x1(n), . . . , xd(n)) = 0

holds for all n ≥ 0.

▶ Problem 2.7 (Loop Synthesis). Given a polynomial invariant P ∈ Q[x1, . . . , xd], find a
non-trivial linear (affine) loop with vector sequence ⟨x(n)⟩n such that

P (x1(n), . . . , xd(n)) = 0

holds for any n ≥ 0.

We emphasise that, unless stated otherwise, the objective of the loop synthesis process
from Problem 2.7 is to find a loop with the same number of variables d as in the input
invariant. That is, ⟨x(n)⟩n = (⟨x1(n)⟩n, . . . , ⟨xd(n)⟩n)
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Note that P = 0 in Problem 2.7 does not need to be an inductive invariant for the
synthesised loop: We do not require the matrix M to preserve the equality for all vectors x.
There might still exist a vector s′ such that P (s′) = 0 but P (M · s′) ̸= 0. Observe that the
search space only expands when we allow non-inductive invariants, thus making our loop
synthesis procedures more general.

In summary, the search for an update matrix M (or the augmented matrix M ′ in the
affine loop version of Problem 2.7), is integrally linked to the search of s, a solution of the
polynomial P = 0.
▶ Remark 2.8 (Loop Synthesis and Polynomial Equation Solving). We note that Problem 2.7,
Loop Synthesis, relies on, but it is not equivalent to, solving polynomial equations. Indeed,
we focus on non-trivial loops in Problem 2.7. Allowing loops with finite orbits would mean
that a loop with an identity matrix update Id is accepted as a solution:

x← s; while ⋆ do x← Id · x.

Then, the loop synthesis problem would be equivalent to the problem of finding a rational
solution of a polynomial equation P = 0 (see Problem 3.1). The problem, as we define it
in Problem 2.7, neglects loops that satisfy a desired invariant but reach the same valuation of
variables twice. Due to this, the Problem 2.7 of loop synthesis is different from the Problem 3.1
of solving polynomial equations.

3 Solving Quadratic Equations

As showcased in Problem 2.7 and discussed in Remark 2.8, loop synthesis for a polynomial
invariant P = 0 is closely related to the problem of solving a polynomial equation P = 0.

▶ Problem 3.1 (Solving Polynomial Equations). Given a polynomial P ∈ Q[x1, . . . , xd], decide
whether there exists a rational solution (s1, . . . , sd) ∈ Qd to the equation P (x1, . . . , xd) = 0.

We emphasise that determining whether a given polynomial equation has a rational solution,
is a fundamental open problem in number theory [29], see also Section 6.1.

Clearly, this poses challenges to our investigations of loops satisfying arbitrary polynomial
invariants. In light of this, it is natural to restrict Problem 2.7 to loop invariants given by
quadratic equations. Given a single equation P (x) = 0 of degree 2, the challenge from now
on is to find a rational solution s and an update matrix M such that iterative application of
M to s of the equation does not violate the invariant: P (Mns) = 0 for all n ≥ 0.

In this section, we recall well-known methods for solving quadratic equations. In the
sequel, we will employ said methods in the novel setting of loop synthesis for quadratic
polynomial invariants (Sections 4 and 5).

▶ Problem 3.2 (Solving Quadratic Equations). Given a quadratic equation in d variables with
rational coefficients, decide whether it has rational solutions. If it does, generate one of the
solutions.

3.1 Solutions of Quadratic Equations in Two Variables
We first prove two lemmas that discuss the solutions of binary quadratic forms in preparation
for Section 4.

▶ Lemma 3.3. For all a, b ∈ Q\{0}, Pell’s equation x2+ b
a y2 = 1 has a rational solution (α, β)

with α ̸∈ {±1,± 1
2 , 0} and β ̸= 0.

STACS 2024
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Proof. So long as a ̸= −b, it is easy to see that
(

b−a
a+b , 2a

a+b

)
is a rational solution to Pell’s

equation. Recall that a ≠ 0, hence β ≠ 0 and α ̸= ±1. However, the generic solution might
have α = 0 or |α| = 1

2 . We thus explicitly pick alternative solutions for the cases when it
occurs: (i) x2 + y2 = 1 has another rational point, e.g., ( 3

5 , 4
5 ); (ii) x2 + 3y2 = 1 has a rational

point (− 11
13 , 4

13 ); (iii) x2 + 1
3 y2 = 1 has a rational point ( 1

7 , 12
7 ).

Finally, if a = −b, we can take a rational point ( 5
3 , 4

3 ) on the hyperbola x2 − y2 = 1. ◀

▶ Lemma 3.4. An equation ax2 + by2 = c with a, b ∈ Q \ 0 has either no rational solutions
different from (0, 0), or infinitely many rational solutions different from (0, 0).

Proof. Define R :=
(

α − b
a β

β α

)
where (α, β) ∈ Q2 \ 0 satisfies α2 + b

a β2 = 1 (is a solution to
Pell’s equation) for which α /∈ {±1,± 1

2 , 0} (as in Lemma 3.3). What follows can be viewed as
an application of the multiplication principle for the generalised Pell’s equation [1]. Observe
that if v = (x, y)T is a solution to ax2 + by2 = c, then so is Rv.

We now show how to generate infinitely many rational solutions to ax2 + by2 = c from
a single rational solution. Assume, towards a contradiction, that Rn+kv = Rnv holds for
some n ≥ 0, k ≥ 1. Therefore, there exists an integer k such that 1 is an eigenvalue of Rk.
Equivalently, there exists a root of unity ω which is an eigenvalue of R. We proceed under
this assumption.

By construction, the eigenvalues of R are ω and ω−1. Let φ be the argument of ω. Then
the real part of ω, cos(φ), is equal to α (and thus rational). Since ω is a root of unity, φ is a
rational multiple of 2π. By Niven’s theorem [27], the only rational values for cos(φ) are 0,
± 1

2 and ±1. We arrive at a contradiction, as α was carefully picked to avoid these values.
In summary, we have shown that R has no eigenvalues that are roots of unity, from which

we deduce the desired result. ◀

3.2 Solving Isotropic Quadratic Forms
We next present an approach to solving Problem 3.2 that uses the theory of representations
of quadratic forms. First, we prove a lemma concerning the representations of 0.

▶ Lemma 3.5. Let Q(x1, . . . , xn) = a1x2
1 + · · ·+ anx2

n be an isotropic quadratic form with
a1, . . . , an ̸= 0. There exists a representation (α1, . . . , αn) of 0; i.e., a1α2

1 + · · ·+ anα2
n = 0

such that α1, . . . , αn ̸= 0.

Proof. Let (β1, . . . , βn) ∈ Qn be a representation of 0 by Q. We further assume that
β1, . . . , βr ̸= 0 while βr+1 = · · · = βn = 0, and r < n. Moreover, let λ := arβ2

r + ar+1β2
r+1.

Consider the equation x2 + ar+1
ar

y2 = 1. From Lemma 3.3, it has a rational solution (α, β)
such that α, β ̸= 0. This implies arα2 + ar+1β2 = ar. The pair (βr, 0) is one solution to
arx2

r+ar+1x2
r+1 = λ. Following the steps in the proof of Lemma 3.4, we can construct a matrix

R for which R · (βr, 0)T = (αβr, ββr)T where (αβr, ββr) is a solution of arx2
r + ar+1x2

r+1 = λ

with both components being non-zero. Therefore, (β1, . . . , βr−1, αβr, ββr, βr+2, . . . , βn) is
an isotropic vector of Q with fewer zero entries. By repeating the process, we obtain an
isotropic vector (α1, . . . , αn) as desired. ◀

We emphasise that the process of eliminating zeros from the isotropic vector is effective. A
similar proof is given in [3, p.294, Theorem 8].

In this discussion, we focus on solving equations of the form Q(x1, . . . , xd) = c, where Q

is a quadratic form. As it will be shown later in Section 4, it is always possible to find an
equivalent diagonal quadratic form D ∼ Q. Therefore, we restrict our attention to equations
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of the form a1x2
1 + · · ·+ adx2

d = c. Assuming c ̸= 0, we start by homogenising the equation,
and so consider the solutions of

a1x2
1 + · · ·+ adx2

d − cx2
d+1 = 0. (1)

In other words, we are searching for a rational isotropic vector of a quadratic form.

▶ Proposition 3.6. An equation

a1x2
1 + · · ·+ adx2

d = c (2)

has a rational solution different from (0, . . . , 0) if and only if the quadratic form Q =
a1x2

1 + · · ·+ adx2
d − cx2

d+1 has an isotropic vector.

Proof. For c = 0, the statement is a recitation of a definition. We continue under the
assumption c ̸= 0. Recall from Lemma 3.5 that if the form Q is isotropic, then there is
an isotropic vector (α1, . . . , αd+1) with αi ̸= 0 for all i ∈ {1, . . . , d + 1}. Therefore, we can
find a non-zero solution (α1/αd+1, . . . , αd/αd+1) to Equation (2). Conversely, if (2) has a
non-trivial solution (β1, . . . , βd), it follows that (β1, . . . , βd, 1) is an isotropic vector for Q. ◀

3.3 Finding Isotropic Vectors
Proposition 3.6 implies that solving Problem 3.1, and hence also loop synthesis in Problem 2.7,
requires detecting whether a certain quadratic form is isotropic. Effective isotropy tests are
known for quadratic forms Q(x1, . . . , xd+1) as in Equation (1). A more difficult task is the
problem of finding an isotropic vector for such a form.

The abstract arithmetic techniques employed in finding an isotropic vector are beyond the
scope of this paper; however, we give a brief overview of the computational task and a number
of references to the literature in the extended version [15, Appendix A]. Our takeaways from
the theory, summarised there [18, 9, 33, 32, 26, 6], are the following functions:

isIsotropic: a function that, given an indefinite quadratic form over the rationals as an
input, determines whether the input is isotropic and duly returns the answers yes and
no (as appropriate).
findIsotropic: a function that accepts isotropic quadratic forms over the rationals as
inputs and returns an isotropic vector for each such form.
solve: a function that takes Equation (2) as an input and returns a non-zero solution if
the form a1x2

1 + · · ·+ adx2
d− cx2

d+1 is isotropic; otherwise solve returns “no solutions”.
The function solve calls both isIsotropic and findIsotropic, see [15] for details.

We note the solve subroutine in the sequel: the function linLoop defined in Algorithm 1,
calls on solve; and, in turn, the function linLoop is called by the procedure in Section 5.

4 Quadratic Forms: Linear Loops

The core of this section addresses equations, and hence loop invariants, that involve quadratic
forms. The equations (invariants) of this section do not have a linear part; they are quadratic
forms equated to constants; that is, equations of the form

Q(x1, . . . , xd) = c, (3)

where Q is an arbitrary d-ary quadratic form with rational coefficients, c is a rational number.
The main result of this section is the following theorem, which establishes a decision

procedure that can determine if a given quadratic invariant admits a linear loop and, if so,
constructs that loop.

STACS 2024
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▶ Theorem 4.1 (Linear Loops for Quadratic Forms). There exists a procedure that, given
an equation Q(x1, . . . , xd) = c of the form (3), decides whether a non-trivial linear loop
satisfying Q(x1, . . . , xd) = c exists and, if so, synthesises a loop.

We prove Theorem 4.1 in several steps. The first of them is to diagonalise the quadratic
form Q and thus reduce to Equation (3) without mixed terms on the left-hand side.

4.1 Rational Diagonalisation
A rational quadratic form can be diagonalised by an invertible change of variables with only
rational coefficients.

▶ Proposition 4.2. Let Q be a (possibly degenerate) d-ary quadratic form. There exists an
equivalent quadratic form D with a diagonal matrix AD ∈ Qd×d, i.e., Q ∼ D. Furthermore,
AD = σTAQσ holds with σ ∈ GLd(Q).

A diagonalisation algorithm is described in [23, Algorithm 12.1], see also “diagonalisation
using row/column operations” in [35, Chapter 7, 2.2]. The idea, as presented in [35], is to
perform row operations on the matrix Q. Different from the usual Gauss–Jordan elimination,
the analogous column operations are performed after each row operation. We emphasise that
the change-of-basis matrix σ is invertible as a product of elementary matrices.
▶ Remark 4.3 (Degeneracy). Let AD := diag(a1, . . . , ad) be the diagonal matrix of the
quadratic form D as in Proposition 4.2. The product a1 · · · ad is zero if and only if the initial
quadratic form Q is degenerate.

▶ Proposition 4.4. Let Q1 and Q2 be two equivalent d-ary quadratic forms. If there exists
a linear loop L = ⟨M, s⟩ with invariant Q2 = c for a constant c ∈ Q, then Q1 = c is an
invariant of the linear loop L′ = ⟨σMσ−1, σs⟩. Here, σ ∈ GLd(Q) is a change-of-basis matrix
such that Q2(x) = Q1(σ · x).

Proof. If (Mns)TAQ2(Mns) = c for all n ≥ 0, then(
(σMσ−1)nσs

)T
AQ1

(
(σMσ−1)nσs

)
= (σMns)T

AQ1 (Mns)
= sT(Mn)TσTAQ1σMns = sT(Mn)TAQ2Mns = (Mns)TAQ2Mns = c

for all n ≥ 0 as well. We emphasise that σ is a bijection from Qd to itself, so the reduction
described here preserves the infiniteness of loop orbits. ◀

We conclude from Propositions 4.2 and 4.4 that for a general quadratic form Q, a linear loop
with an invariant Q(x) = c exists if and only if a linear loop exists for an invariant D(x) = c,
where D is an equivalent diagonal form.

4.2 Diagonal Quadratic Forms
In this subsection we consider diagonal quadratic forms a1x2

1 + · · · + adx2
d = c, where

a1, . . . , ad, c ∈ Q as in Equation (2). If the equation is homogeneous; that is, c = 0, then
loop synthesis reduces to the problem of searching for a rational solution α = (α1, . . . , αd).
Indeed, a loop with a matrix λ · Id (scaling each variable by λ ∈ Q \ {−1, 0, 1}) and the initial
vector α is a non-trivial linear loop satisfying the invariant Q(x) = 0.

From Section 3, we know how to generate a solution (or prove there is no solution)
to Equation (2) in its general form, also with c ̸= 0. The bottleneck of loop synthesis in
Problem 2.7 is thus finding an update matrix M for the linear loop. En route to solving this
issue, we state the following corollary of Lemma 3.4.
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▶ Corollary 4.5. If an equation ax2 + by2 = c with a, b ∈ Q \ 0 has infinitely many rational
solutions different from (0, 0), then there exists a non-trivial linear loop with polynomial
invariant ax2 + by2 = c.

Proof. We use the construction in the proof of Lemma 3.4, which demonstrates that the
orbit of the linear loop ⟨R, v⟩ is infinite with polynomial invariant ax2 + by2 = c. ◀

Proof of Theorem 4.1. Due to Proposition 4.4, we can consider an equation of the form (2):

a1x2
1 + · · ·+ adx2

d = c.

We describe the loop synthesis procedure in this case. If d = 1, the equation only has finitely
many solutions, hence any loop for Equation (2) is trivial. Hereafter we assume that d ≥ 2.

In order to generate an initial vector of the loop for Equation (2), we exploit the results
of Section 3. Either Equation (2) has no rational solutions and hence no loop exists, or we
effectively construct a solution α = (α1, . . . , αd) ∈ Qd using procedure solve. Recall that
we can guarantee αi ̸= 0 for all i ∈ {1, . . . , d} due to Lemma 3.5.

Note that some of the coefficients ai, i ∈ {1, . . . , d}, may be zero if the original quadratic
form Q is degenerate. We have to consider the case when all coefficients but one are 0,
separately. That is, a1x2

1 + 0x2
2 + · · · + 0x2

d = c. For this form, a solution exists if and
only if c/a1 is a square of a rational number. Subsequently, if a solution α is found, set
M := diag(1, 2, . . . , 2) to be a diagonal update matrix. Since d ≥ 2, we guarantee that the
orbit of the linear loop ⟨M, α⟩ is infinite.

Without loss of generality, we now assume a1 ̸= 0 and a2 ̸= 0. Define γ := a1α2
1 + a2α2

2,
then the equation a1x2

1 + a2x2
2 = γ has a non-trivial solution (α1, α2).

From Corollary 4.5, there exists a matrix R ∈ Q2×2 that preserves the value of the
quadratic form a1x2

1 + a2x2
2. This matrix can be constructed as in the proof of Corollary 4.5

by considering the equation x2
1 + a2

a1
x2

2 = 1. Let M be the matrix given by the direct sum

R⊕ Id−2 =
(

R 0
0 Id−2

)
where In is an identity matrix of size n.

A desired loop is (M, α) as for each n ≥ 0, Mnα satisfies Equation (2). The loop is
non-trivial because its orbit, restricted to x1, x2, is infinite. ◀

The process of synthesising a loop for the quadratic invariant Q(x1, . . . , xn) = c is
summarised in Algorithm 1. The algorithm starts with a diagonalisation step, proceeds with
finding a loop for an equation of the form (2), and applies the inverse transformation to
obtain a linear loop for the initial invariant. Whenever Algorithm 1 returns a loop, this loop
is linear.

5 Arbitrary Quadratic Equations: Affine Loops

In this section, we leave the realm of quadratic forms and consider general quadratic invariants
that may have a linear part. Any quadratic equation can be written in terms of a quadratic
form Q, a linear form L, and a constant term c:

Q(x1, . . . , xd) + L(x1, . . . , xd) = c. (4)

On our way to a complete solution of Problem 2.7 for arbitrary quadratic equations, we
carefully analyse Equation (4). A standard technique (see e.g. [14, Proposition 1]) allows to
reduce Equation (4) with a non-degenerate quadratic form Q to Equation (3) considered
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Algorithm 1 Synthesise a linear loop satisfying a given quadratic form equation.

Input: quadratic form Q in d variables and c ∈ Q. Assert d ≥ 2.
1: function linLoop(Q, s)
2: ⟨M, s⟩ := undefined.
3: compute a rational diagonalisation for Q(x): a σ ∈ GLd(Q) such that Q′(σx) = Q(x)

with Q′ a diagonal quadratic form
4: rewrite the equation Q′ = c as a1x2

1 + · · · + adx2
d = c with a1, . . . , ar ̸= 0 and

ar+1 = · · · = ad = 0
5: let α := (α1, . . . , αr, 1, . . . , 1)T ∈ Qd, where (α1, . . . , αr) := solve(a1, . . . , ar, c)

▷ for solve see [15, Algorithm 2]
6: if r = 1 and α ̸= “no solutions” then
7: M := diag(1, 2, . . . , 2).
8: else if α = “no solutions” then
9: return “no loop”.

10: else
11: compute a solution (y1, y2) of x2

1 + a2
a1

x2
2 = 1. ▷ see Lemma 3.3

12: M := R⊕ Id−2, where R =
(

y1 − a2
a1

y2
y2 y1

)
.

13: end if
14: return ⟨σ−1Mσ, σ−1α⟩.
15: end function

in Section 4. We now give the details of this reduction and describe how to synthesise an
affine loop for an invariant (4) in the non-degenerate case. Subsequently, we close the gap
by discussing the case when Q is degenerate. Using Remark 2.6, our results on affine loop
synthesis imply then linear loop synthesis.

5.1 Non-Degenerate Quadratic Forms
For convenience, we rewrite the equation in the matrix-vector form: xTAQx + bTx− c = 0.
Here, AQ is the non-singular matrix of the quadratic form Q, and b is the vector of the linear
form. Let δ := det AQ ̸= 0 and C be the cofactor matrix of AQ, i.e., AQ ·C = C ·AQ = δ · Id.
We further define h := C · b and c̃ = 4δ2c + Q(h). It can be checked directly that

Q(2δ · x + h) = c̃⇔ Q(x) + L(x) = c. (5)

In words, every equation of the form Equation (4) can be reduced to an equation of the form
Q(y) = c̃ by an affine transformation f that maps each x ∈ Qd to 2δ · x + h ∈ Qd. As such,
this means that solutions of Equation (4) under the non-degeneracy assumption are in a
one-to-one correspondence with representations of c̃ for Q.

▶ Proposition 5.1. Let Q be a non-degenerate quadratic form and L a linear form, both in
d ≥ 2 variables. Define δ := det(AQ), h and c̃, as in the discussion above. The following are
equivalent:
1. There exists a linear loop ⟨M, s⟩ satisfying the invariant Q(x) = c̃.
2. There exists an affine loop

⟨M,
1
2δ

(s− h) ,
1
2δ

(M − Id) h⟩,

satisfying the invariant Q(x) + L(x) = c.
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Proof. Start with the first assumption. For all n ≥ 0, it holds Q(Mns) = c̃. Equivalently,

Q(f−1 (Mns)) + L(f−1 (Mns)) = c, or Q

(
1
2δ

(Mns− h)
)

+ L

(
1
2δ

(Mns− h)
)

= c

for all n ≥ 0.
On the other hand, let x(n) be the variable vector after the nth iteration of an affine

loop from the statement. We prove by induction that x(n) = 1
2δ (Mns− h). The base case

is true since the initial vector of the affine loop is 1
2δ (s− h) = 1

2δ (M0s− h). Now, assume
that x(k) = 1

2δ (Mks− h) for an arbitrary k ≥ 0. Then, by applying the loop update once,
we have

x(k + 1) = M ·
(

1
2δ

(Mks− h)
)

+ 1
2δ

(M − Id) h

= 1
2δ

(
Mk+1s−Mh + Mh− h

)
= 1

2δ

(
Mk+1s− h

)
,

and the inductive step has been shown. By the above work, we conclude that Q(x(n)) +
L(x(n)) = c holds for all n ≥ 0. ◀

▶ Example 5.2. Consider an invariant p(x, y) := x2 + y2−3x−y = 0. After an affine change
of coordinates f(x, y) = (2x− 3, 2y− 1), it becomes x2 + y2 = 10 (that corresponds to δ = 1,
h = (−3,−1)T, c̃ = 10). There exists a linear loop for this equation:

M =
( 3

5 − 4
5

4
5

3
5

)
and s =

(
1
−3

)
.

Next, compute the components of an affine loop. The update matrix is M , whilst the initial
and translation vectors are

1
2

[(
1
−3

)
−
(
−3
−1

)]
=
(

2
−1

)
and 1

2

[( 3
5 − 4

5
4
5

3
5

)
−
(

1 0
0 1

)](
−3
−1

)
=
(

1
−1

)
,

respectively. The resulting affine loop is non-trivial with invariant p(x, y) = 0 due to Propos-
ition 5.1:(

x

y

)
←
(

2
−1

)
; while ⋆ do

(
x

y

)
←
( 3

5 x− 4
5 y + 1

4
5 x + 3

5 y − 1

)
.

5.2 Degenerate Quadratic Forms
Let r < d be the rank of AQ. There exist k := d− r linearly independent vectors v1, . . . , vk ∈
Qd such that AQ ·vi = 0. Construct a matrix τ ∈ GLd(Q) such that v1, . . . , vk constitute its
first columns. It follows that every non-zero entry (M)ij of a matrix M := τTAQτ is located
in the bottom right corner, that is, i > k and j > k. We rewrite Q(τx) = Q̃(xk+1, . . . , xd)
and L(τx) = L̃(xk+1, . . . , xd) + λ1x1 + · · ·+ λkxk in Equation (4). Now we have:

Q̃(xk+1, . . . , xd) + L̃(xk+1, . . . , xd) = c− λ1x1 − · · · − λkxk, (6)

where Q̃ is a non-degenerate quadratic form of r variables.
In the rest of this subsection, we are concerned with finding an affine loop satisfying Equa-

tion (6). We emphasise that such a loop ⟨M, s, t⟩ exists if and only if ⟨τMτ−1, τs, τt⟩
satisfies Equation (4). The proof is due to τ inducing an automorphism of Qd, cf. Proposi-
tion 4.4.
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If λ1 = · · · = λk = 0, we have arrived at an instance of Equation (4) with a non-
degenerate quadratic form and fewer variables. Let δ be the determinant of Q̃(xk+1, . . . , xd)
and, as in the non-degenerate setting, define an affine transformation f on the subset of
variables {xk+1, . . . , xd}. The constant c̃ and the vector h ∈ Qr are defined similarly to their
non-degenerate setting counterparts.

After the change of coordinates that corresponds to f , we have

0x2
1 + · · ·+ 0x2

k + Q̃(xk+1, . . . , xd) = c̃. (7)

Recall (e.g. from the proof of Theorem 4.1) that once Equation (7) with k ≥ 1 has a
solution, there is a non-trivial linear loop satisfying the polynomial invariant defined by
the equation. Now, let ⟨M, s⟩ be a linear loop for Equation (7), where s = (s1, . . . , sd)T.
In fact, one can assume M := diag(2, . . . , 2, 1, . . . , 1) with k twos and r ones. Define
s′ := 1

2δ (s− ( 0
h )). It is not hard to see that a non-trivial linear loop ⟨M, s′⟩ satisfies

Q̃(xk+1, . . . , xd) + L̃(xk+1, . . . , xd) = c if and only if Q̃(xk+1, . . . , xd) = c̃ has a solu-
tion (sk+1, . . . , sd).

From now on, we assume that k ≥ 1 is the number of non-zero λi’s on the right-hand
side of Equation (6). We show next that the loop synthesis question has a positive answer.

▶ Proposition 5.3 (Affine Loops for Quadratic Forms). Given a quadratic equation of the
form (6), there exists a non-trivial affine loop in variables x1, . . . , xd for which said equation
is a polynomial invariant.

Proof. Since k ≥ 1 and λ1 ̸= 0, the right-hand side c−
∑k

i=1 λixi represents every rational
number. Set the values of xk+1, . . . , xd to some fixed values α = (α1, . . . , αd−k) such that
α ̸= 0 and solve the equation for x1, . . . , xk attaining a vector of values β = (β1, . . . , βk).
We have Q̃(α) + L̃(α) = A(β), where A(x1, . . . , xk) := c− λ1x1 − · · · − λkxk.

We introduce the following case distinction.
Case 1. k > 1;
Case 2. r > 1 and so Q̃ is a non-degenerate quadratic form of at least 2 variables;
Case 3. r = 1 and k = 1; that is, Equation (6) has the form ax2 + bx = c− dy, d ̸= 0.
In the rest of the proof, we show that for all these cases, a non-trivial affine loop satis-
fies Equation (6) and hence, the invariant of Equation (4). Moreover, in Cases 1 and 2 there
exist linear loops of this sort.

In Case 1, we focus on the vector β computed in the previous step. Without loss of
generality, (β1, β2) ̸= (0, 0). We construct a linear loop that preserves the values of all
variables but β1, β2. To this end, it suffices to notice that a linear transformation of Q2

defined by (x1, x2) 7→ (2x1,−λ1
λ2

x1 + x2) preserves the value of λ1x1 + λ2x2. The desired
linear loop has initial vector s = (β, α)T and an update matrix M =

( 2 0
− λ1

λ2
1

)
⊕ Id−2.

Let us turn to Case 2 and focus on vector α. Clearly, we can now assume k = 1. Without
loss of generality, we shall assume that β1 ̸= 0. Consider the equation

Q̃(x) + L̃(x) = A(β1)

over the variables x, with A(y) = c−λ1y. Using Equation (5), we argue that its solutions are
related to the representations of a certain number c̃ by Q̃. We compute δ, c̃, h for the non-
degenerate quadratic form Q̃, linear form L̃ and constant A(β1) such that Q̃(2δ · x + h) = c̃.
From Theorem 4.1 and, more specifically, its proof, observe that there exists a non-trivial
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linear loop satisfying Q̃( · ) = c̃. Indeed, there exists at least one solution of this equation,
namely f(α). Let ⟨M, s⟩ be a linear loop satisfying Q̃( · ) = c̃ with matrix M ∈ Qr×r.
Proposition 5.1 shows that an affine loop

A := ⟨M,
1
2δ

(s− h) ,
1
2δ

(M − Ir) h⟩,

satisfies the invariant Q̃(x) + L̃(x) = A(β1). The sequence ⟨x(n)⟩∞n=0 of A’s variable vectors
can be expressed in terms of an augmented matrix (see M ′ in Section 2) associated with the
affine transformation x 7→Mx + t, where t = 1

2δ (M − Ir) h and s′ = 1
2δ (s− h):(

1
x(n)

)
=
(

1 01,r

t M

)n( 1
s′

)
,

satisfies Q̃(x) + L̃(x) = A(β1) for all n ≥ 0. Then,(
y(n)
x(n)

)
=
(

1 01,r
1

β1
t M

)n(
β1
s′

)

satisfies Q̃(x(n)) + L̃(x(n)) = A(y(n)) as in Equation (6) for all n ≥ 0. We denote by
Mβ the d-dimensional square matrix in the preceding displayed equation. Observe that
⟨Mβ , (β1, s′)T⟩ is a linear loop satisfying the invariant of Equation (4).

Finally, we come to the special case, Case 3, that considers quadratic equations of the
form ax2 + bx = c − dy where d ̸= 0. It suffices to observe that an affine transformation
of Q2 defined by (x, y) 7→ (2x, 2 b

d x + 4y − 3 c
d ) preserves the equation ax2 + bx = c − dy.

We conclude that ax2 + bx = c− dy is a polynomial invariant of the affine loop with initial
vector (1, c−a−b

d )T, translation vector (0,−3 c
d )T, and update matrix

(
2 0

2 b
d 4

)
. ◀

5.3 The Procedure: Affine Loop Synthesis for Quadratic Invariants
▶ Theorem 5.4 (Affine Loops for Quadratic Equations). There exists an effective procedure
that, given a quadratic equation (i.e. invariant)

Q(x1, . . . , xd) + L(x1, . . . , xd) = c,

decides whether a non-trivial affine loop satisfying it exists and, if so, synthesises a loop.

The theorem is essentially proved in Propositions 5.1 and 5.3. If the quadratic form is
non-degenerate, Proposition 5.1 reduces the search for an affine loop to the search for a linear
loop satisfying Q(x1, . . . , xd) = c̃. The solution of this problem was given in Theorem 4.1.
If the quadratic form is degenerate, we consider Equation (6). If at least one of the λi’s is
non-zero, a loop exists, as shown by the ad hoc constructions of Proposition 5.3. In two
of the three cases there, the loop is not just affine, but linear. Otherwise, if all of the λi’s
are zero, we obtain a linear loop by essentially testing whether a solution to an equation
Q̃(x1, . . . , xd) = c̃ exists. Finally, in order to obtain an affine loop satisfying the original
equation, we apply transformation τ to the loop synthesised for Equation (6).

The synthesis procedure is summarised in the extended version, see [15, Appendix B].
By analysing the algorithm, one can argue that a negative output implies that Equation (4)
has no solutions. The problem of deciding whether a loop exists for a given invariant, as in
Problem 2.7 and opposed to the synthesis of numerical values, is thus solved as follows.
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▶ Corollary 5.5. Let Q be a quadratic form, L a linear form over variables x = (x1, . . . , xd).
1. A non-trivial affine loop satisfying the quadratic equation Q(x) + L(x) = c exists if and

only if the equation has a rational solution different from x = 0.
2. A non-trivial linear loop satisfying the equation Q(x) = c exists if and only if the equation

has a rational solution different from x = 0.

▶ Example 5.6. Let −11x2 + y2 − 3z2 + 2xy − 12xz + x + z = −1 be a quadratic invariant
in 3 variables. The quadratic form Q(x, y, z) = −11x2 + y2 − 3z2 + 2xy− 12xz is degenerate
with rank r = 2 and so we can compute τ =

(−1 0 0
1 3 0
2 0 3

)
such that τTAQτ = diag(0, 9,−27) is

the matrix of an equivalent form. We have Q(τx) = Q̃(y, z) = 9y2−27z2. For the linear part,
L(x, y, z) = x+z, the change of coordinates results in L(τx) = L̃(y, z)+x = 3z +x. Continue
with the equation of the form (6): 9y2−27z2 +3z = −1−x. Here, λ1 = 1, and so we set (y, z)
to (α1, α2) = ( 1

3 , 0) and find a solution for x: β1 = −2. Next, find an affine transformation f

associated with 9y2 − 27z2 + 3z = 1. We have δ = 243, h = (0, 27)T and c̃ = 216513. The
solutions of 9y2 − 27z2 + 3z = 1 are exactly the solutions of 9y2 − 27z2 = 216513 under the
action of f .

Using the linLoop procedure, we find a linear loop ⟨M, s⟩ for the invariant 9y2− 27z2 =
216513 with M = ( 2 3

1 2 ) and s = (−162, 27)T. Therefore, an affine loop

A := ⟨M,
1
2δ

(s− h) ,
1
2δ

(M − I2) h⟩;

that is, an affine loop with augmented matrix M ′ and initial vector s′ given by

M ′ =
(

1 01,r
1
2δ (M − I2) h M

)
=

 1 0 0
−1/6 2 3
−1/18 1 2

 and s′ = 1
2δ

(s− h) =
( 1

3
0

)
,

satisfies the invariant 9y2 − 27z2 + 3z = 1. Consequently, a linear loop with update matrix

Mβ :=

 1 0 0
1/12 2 3
1/36 1 2


and initial vector (−2, 1/3, 0)T satisfies the invariant 9y2 − 27z2 + 3z = −1− x. We conclude
by applying transformation τ : a linear loop with matrix

τMβτ−1 =

 1 0 0
27/4 2 3
35/12 1 2

 and initial vector τ

−2
1/3
0

 =

 2
−1
−4


satisfies the original invariant −11x2 + y2 − 3z2 + 2xy − 12xz + x + z = −1.

6 Conclusion

6.1 Related Work
Loop Synthesis. Work by Humenberger et al. on loop synthesis employs an approach based
on algebraic reasoning about linear recurrences and translating loop synthesis into an SMT
(Satisfiability Modulo Theory) solving task in non-linear arithmetic [17]. Their approach
is relatively complete in the sense that every loop with algebraic values is captured as one
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of the solutions to the system of constraints. At the same time, no method is known to
decide whether such a system has a rational solution. In contrast, our approach gives a
characterisation of quadratic invariants that have linear loops with rational values.

Another SMT-based algorithm for template-based synthesis of general polynomial pro-
grams is given in work by Goharshady et al. [13]. However, loops generated for an invariant
P = 0 using the latter approach necessarily have P = 0 as an inductive invariant and are not
guaranteed to have infinite orbits. Recent work by Kenison et al. addresses the loop synthesis
problem for multiple polynomial invariants, where each of the polynomials is a binomial of a
certain type [21]. In our work, we restrict not the number of monomials in an invariant, but
its degree, and thus achieve a complete solution for a single quadratic invariant.

Solving Polynomial Equations. As noted in Remark 2.8, one of the fundamental challenges
towards loop synthesis arises from the study of integer and rational solutions to polynomial
equations. A Diophantine equation F (x1, x2, . . . , xd) = 0 is a polynomial equation with
rational coefficients in at least two variables. A general decision procedure for the existence
of rational solutions to a Diophantine equation (Problem 3.1) is not known. Over the ring of
integers, this is Hilbert’s 10th Problem, proven undecidable by Matiyasevich in 1970 [25].
Furthermore, there does not exist an algorithm that for an arbitrary Diophantine equation,
decides whether it has infinitely many integer solutions [10].

In contrast to the algorithmic unsolvability of Hilbert’s 10th Problem and the open
status of Problem 3.1, algorithms exist that allow finding rational solutions for special
classes of equations. For instance, there exist procedures [14, 30, 24] completely solving
the specialisation of the problem to quadratic equations. Masser introduced an approach
based on the effective search bound for rational solutions [24]. A further improvement of
this approach for d ≥ 5 is provided in [5]. An alternative procedure to decide whether an
arbitrary quadratic equation has a rational solution is described in [14] (see Corollary, pg. 2
therein). Determining the existence of integer solutions to a system of quadratic equations is,
however, undecidable [4].

6.2 Discussion

We conclude by sketching some observations and pointing out the directions for future work.

Multiple loops. The approach of Algorithm 1 can be adapted to generate multiple linear
loops satisfying a given invariant. Different solutions of the quadratic equation can be found
in line 5 (Algorithm 1) and subsequently used as an initial vector. Moreover, in line 11, it is
possible to pick two variables (x1, x2) in different ways, thus obtaining different matrices M

in line 12. Each of the matrices synthesised so is an element of the orthogonal group Γ(Q′)1

of the quadratic form Q′. Therefore, all possible products of these matrices also preserve
the value of Q′ and can be used as updates. Other than the default matrix selected by the
algorithm, some of these matrices alter more than two variables non-trivially, intuitively
making the synthesised loop more specific to the polynomial invariant.

1 The orthogonal group Γ(Q) of a quadratic form Q is the group of all linear automorphisms M ∈ GLd(K)
such that Q(x) = Q(Mx) for all x ∈ Kd.
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Number of loop variables. Let P (x1, . . . , xd) = 0 be a quadratic invariant in d variables.
Note that Theorem 5.4 can be interpreted in terms of linear loops with variables x0, x1, . . . , xd.
Specifically, we can redefine the loop synthesis problem (Problem 2.7) by searching for linear
loops with s = d + 1 variables. To this end, update the procedure in Section 5 as follows: if
the output of the original algorithm is an affine loop ⟨M, s, t⟩, then output the linear loop〈(

1 01,d

t M

)
,

(
1
s

)〉
.

Due to Corollary 5.5, the updated procedure solves the problem of loop synthesis with one
additional variable. What follows is a reinterpretation of Theorem 5.4:

▶ Corollary 6.1. There exists an effective procedure for the following problem: given a
quadratic equation

Q(x1, . . . , xd) + L(x1, . . . , xd) = c,

decide whether there exists a non-trivial linear loop in d + 1 variables {x0, x1, . . . , xd} that
satisfies it. Furthermore, the procedure synthesises a loop, if one exists.

Increasing the number of variables in the loop template leads to the following question, also
raised in [17]:

▶ Question. Let P be an arbitrary polynomial in d variables. Does there exist an upper
bound N such that if a non-trivial linear loop satisfying P = 0 exists, then there exists a
non-trivial linear loop with at most N variables satisfying the same invariant?

Corollary 6.1 (together with Corollary 5.5) shows that, for quadratic polynomials, N is
at most d + 1. Moreover, we show in Section 4 that in the class of polynomial equations
Q(x)− c, where Q is a quadratic form, the bound N = d is tight. A full characterisation of
quadratic equations for which linear loops with d variables exist would also be of interest.

Sufficient conditions. The results of Sections 4 and 5 witness another class of polyno-
mial invariants for which non-trivial linear (or affine) loops always exist. Similar to the
setting of equations with pure difference binomials in [21], we can claim this for invari-
ants Q(x1, . . . , xd) = c with isotropic quadratic forms Q. In particular, for every equation
of the form a1x2

1 + · · · + adx2
d + c = 0 with d ≥ 4 and a1, . . . , ad, c not all possessing the

same sign, there exists a non-trivial linear loop with d variables. This fact is due to Meyer’s
Theorem on isotropy of indefinite forms [26] and Corollary 5.5(2).

Beyond quadratic. One future work direction concerns loop synthesis from invariants that
are polynomial equalities of higher degrees, and, in particular, algebraic forms. However, we
are limited by the hardness of Problem 3.1, as before. For Diophantine equations defined
with homogeneous polynomials of degree 3, the loop synthesis is related to the study of
rational points on elliptic curves, a central topic in computational number theory [31, 8].
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Abstract
The recent banking crisis has again emphasized the importance of understanding and mitigating
systemic risk in financial networks. In this paper, we study a market-driven approach to rescue
a bank in distress based on the idea of claims trading, a notion defined in Chapter 11 of the U.S.
Bankruptcy Code. We formalize the idea in the context of the seminal model of financial networks
by Eisenberg and Noe [5]. For two given banks v and w, we consider the operation that w takes
over some claims of v and in return gives liquidity to v (or creditors of v) to ultimately rescue v (or
mitigate contagion effects). We study the structural properties and computational complexity of
decision and optimization problems for several variants of claims trading.

When trading incoming edges of v (i.e., claims for which v is the creditor), we show that
there is no trade in which both banks v and w strictly improve their assets. We therefore consider
creditor-positive trades, in which v profits strictly and w remains indifferent. For a given set C of
incoming edges of v, we provide an efficient algorithm to compute payments by w that result in a
creditor-positive trade and maximal assets of v. When the set C must also be chosen, the problem
becomes weakly NP-hard. Our main result here is a bicriteria FPTAS to compute an approximate
trade, which allows for slightly increased payments by w. The approximate trade results in nearly
the optimal amount of assets of v in any exact trade. Our results extend to the case in which banks
use general monotone payment functions to settle their debt and the emerging clearing state can be
computed efficiently.

In contrast, for trading outgoing edges of v (i.e., claims for which v is the debtor), the goal is to
maximize the increase in assets for the creditors of v. Notably, for these results the characteristics
of the payment functions of the banks are essential. For payments ranking creditors one by one, we
show NP-hardness of approximation within a factor polynomial in the network size, in both problem
variants when the set of claims C is part of the input or not. Instead, for payments proportional to
the value of each debt, our results indicate more favorable conditions.
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1 Introduction

The global banking crisis of March 2023 caused turmoil in a market fearful of the repeat
of the Great Financial Crisis of 2007. These recent events serve as a stark reminder of the
paramount importance of the study of systemic risk in financial networks. In this growing
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body of work, the focus is mainly on the complexity of computing clearing states, known
to measure the exposure of the different banks in the network to insolvencies within, see,
e.g., [5, 10, 23], and strategic aspects of the banks’ behavior, cf. [1, 8, 11, 17]. However, to
calm the market and prevent contagion, regulators and central banks are more interested
in finding ways to rescue banks in distress, reassure investors that the system is stable and
avoid further bank runs. In fact, Silicon Valley Bank, Signature Bank and Credit Suisse –
the three banks at the heart of the crisis last March – were all acquired by other banks in
the network, and, by modifying the network, this has seemingly mitigated systemic risk.

A line of research in financial networks on interventions in the network is recently discussed
in [7,18], the main idea being that banks can swap debt contracts. In particular, the authors
of [7] study the extent to which a sequence of debt swaps can reduce the risk in the network,
in the sense that bank assets Pareto-improve. Notably, swaps can occur anywhere in the
network, even if the focus is strict improvement of the assets of a given bank.

In this work, we build on this idea and initiate research on the computation of a network-
based “rescue package” deal for a given bank with the objective of making it solvent. This
is exactly the problem that regulators faced in March 2023 for the aforementioned banks.
However, acquisitions do not seem to be the right operations in these instances since they
have two main drawbacks from a societal perspective (as also witnessed by the reactions to
recent deals). Firstly, the acquiring bank rarely has enough time or freedom to evaluate the
purchase and make a sensible business decision. Secondly, and consequently, it often requires
a security for bailout from the central bank, in the form of significant protection against
potential losses from risks associated with the transaction. For example, in the acquisition of
Credit Suisse, UBS had little choice in the matter, as reported by Bloomberg news [2], and
received a guarantee worth CHF 9 billion, as confirmed by the Swiss Federal Council [3].

We instead study a market-driven approach to rescue banks in distress based on the idea
of claims trading. Claims trading is defined in Chapter 11 of the U.S. Bankruptcy Code. We
formalize the idea and analyze the consequences of such trades in the context of financial
networks. When a company is in financial distress, its creditors can assert their rights to
repayment by submitting a claim. At this point, a creditor can either wait for the positions to
unwind and get (a part of) the claim once the bankruptcy is settled, or she can sell her credit
claim to a willing buyer for some immediate liquidity. The former approach is equivalent to
the mainstream work on systemic risk since the insolvency of a bank can directly cascade
through the network via lower payments to its creditors. We want to explore ways to find
interested buyers that purchase the claims of an insolvent bank v and give liquidity to the
network that ultimately rescues v. Ideally, the buyers should avoid any loss so that the cash
invested in buying the claim will return via increased payments within the network; this way
incentives of buyers are aligned, and systemic risk is reduced at no extra cost to the network.

We design efficient algorithms to compute claims trades or settle the inherent complexity
status of the problems. The importance of algorithms computing claim trades that resolve
complicated systemic issues in finance cannot be underestimated. In practice, deals are
concocted when markets are closed, and algorithms that efficiently compute solutions in
these pressurised situations become essential.

Related Work. Much of the work on systemic risk in financial networks, including ours,
builds upon [5]. In this seminal work, the authors propose a model and prove existence and
properties of clearing states. Moreover, they also provide a polynomial-time algorithm for
their computation. The model in [5] has been extended along many dimensions by follow-up
work; for example, the authors of [20] add default costs whereas financial derivatives are
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considered in [22]. Computation of clearing states for the latter model is studied in [9,10,23]
for different notions of approximation and payment schemes adopted. The solution space of
clearing states for financial networks with derivatives is studied in [19].

The study of strategic behavior in financial networks was initiated in [1], where banks are
assumed to strategize in the way they allocate money to their creditors. A similar approach
is used in [8, 11]. A different model, featuring derivatives, and banks strategically donating
money or cancelling debts is studied in [17]. The idea of cancelling debts is further explored
in [12]. The authors of [12,16] consider computational complexity of computing optimal or
approximate bailout policies from the central bank external to the network. In contrast,
in our work all transfers of assets are intrinsic to the network, and the bank providing the
assets must not be harmed. In [13], the authors study computational complexity of strategic
changes to the underlying network via debt transfers.

Debt swapping is introduced in [18] – the authors focus more on the existence and
properties of swaps with and without shocks to the system. As discussed above, the authors
of [7] share goals that are somewhat similar to ours but use a different operation to update
the network. A related line of work considers portfolio compression, an accounting operation
by means of which all the cycles in the network are deleted. The effects on systemic risk of
portfolio compression are studied in [21, 24]. However, it is important to note that portfolio
compression can lead to a worse outcome for banks that are not contained in the cycle [21]
and consequently it is not clear why banks should accept to modify their balance sheets in
this way, as argued empirically in [15].

To the best of our knowledge, ours is the first work to study claims trading in the analysis
of financial networks. Claims trading in bankruptcy has been studied by law scholars, who
for example argue that its effects in that context are variegated and nuanced in general [14]
but do not concern the governance of the bankruptcy process [6].

Contribution. We focus on the elementary setting with one given bank v to save (e.g.,
Credit Suisse) and one bank w that may rescue it (e.g., UBS). We consider the following
problem: Are there claims of v that can be sold to w so that v becomes solvent (i.e., after
the claims trade, v can fully pay all its liabilities)? This problem gives rise to a suite of
algorithmic questions, depending on the remit of the algorithmic decision, such as: How
many claims are we allowed to trade? Which claims of v should we trade? What are the
payments that must be transferred from w to v to make the trade worthwhile for w? Our
treatment is steered by the following structural insight: We prove that it is impossible for
both v and w to strictly profit from the claims trade. Accordingly, we restrict our attention
to creditor-positive trades that strictly improve v without harming w.

For our first set of algorithmic results in Section 3, we fix one claim with creditor v to
be traded with w. Does this represent a feasible (i.e., creditor-positive) trade? This can be
decided by simply computing clearing states that determine the payment towards each debt in
the network. The problem becomes interesting if we also determine the haircut rate α ∈ [0, 1]
of the trade – in order to provide liquidity, w may be willing to pay an α-fraction of the
claim’s liability to v. Depending on the payment functions used by banks to distribute money
to their debts, we design different polynomial-time algorithms that determine feasibility
of the trade and also α∗ (if any), the value of α maximizing the assets of v (or a close
approximation of α∗ if the payment functions are too granular vis-a-vis the input size). Let
us highlight that these results also apply to the case in which v is the debtor of the claim to
trade; in fact, we prove that every creditor-positive trade Pareto-improves the clearing state –
each bank in the network is (weakly) better off after the trade. By maximizing the assets of
the creditor of the traded claim we, thus, also maximize assets of the debtor.

STACS 2024
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We consider trading multiple claims with creditor v in Section 4. For a fixed set of claims
our results from Section 3 extend rather directly. The picture becomes less benign when
we also have to choose the subset of claims to be traded. Indeed, in Section 4.2 we show
that it is weakly NP-hard to decide if there is a subset of claims along with suitable haircut
rates to obtain a creditor-positive claims trade that makes v solvent. In our most technical
contribution, we show that there exists a bicriteria FPTAS for deciding this problem. If an
exact trade exists that yields total assets of A∗ for v, we find an approximate trade with
assets at least A∗ − δ for exponentially small δ, which allows haircut rates of at most 1 + ε.
The FPTAS applies to all financial networks with general monotone payment functions for
which a clearing state can be computed efficiently. On a technical level, we fix a desired value
A for the total assets of v. Using a subroutine we determine if there is an approximate trade
that yields this asset level for v. En route, we discover an intricate monotonicity property
– if there is an exact trade that yields assets A∗ for v, then for every A ≤ A∗ there is an
approximate trade with assets A for v. Notably, monotonicity can break above A∗. Still, we
can apply binary search to find an approximate trade with assets at least A∗ − δ.

Finally, for trading multiple claims with debtor u in Section 5 – rather than trying to
save u – our goal is improve conditions for the creditors of u to minimize the contagion
effects by u’s bankruptcy. Interestingly, the results here depend significantly on the choice of
the payment functions. For payments based on a ranking of the creditors, we show that the
problem becomes NP-hard to approximate within a factor polynomial in the network size. In
contrast, for payments proportional to the value of each debt, we can solve the problem for a
given set of claims, but it becomes strongly NP-hard when having to choose the set of claims.

All missing proofs are deferred to the full version of this paper.

2 Model and Preliminaries

A financial network F = (G, ℓ, ax, f) is expressed as a directed multigraph1 G = (V, E, de, cr)
without self loops. We denote n = |V |. Every node v ∈ V in the graph represents a financial
institution or bank. Every edge e ∈ E represents a debt contract or claim involving two banks.
For each edge e ∈ E, de(e) specifies the debtor (i.e., the source) and cr(e) the creditor (i.e.,
target). Edge e ∈ E has a weight ℓe ∈ N>0. In other words, in the context of debt contract e,
bank de(e) owes cr(e) an amount of ℓe. We denote the set of outgoing and incoming edges of
a bank v by E+(v) = {e ∈ E | v = de(e)} and E−(v) = {e ∈ E | v = cr(e)}. Since we allow
multi-edges, several debt contracts with possibly different liabilities could exist between the
same pair of banks. The total liabilities Lv of v are the sum of weights of all outgoing edges
of v, i.e.,

∑
e∈E+(v) ℓe = Lv. Furthermore, every bank v holds external assets ax

v ∈ N. They
can be interpreted as an amount of money the bank receives from outside the network.

Let bv ∈ [ax
v , ax

v +
∑

e∈E−(v) ℓe] be the total funds of bank v. Bank v distributes her total
funds according to a given payment function fv = (fe)e∈E+(v), where fe : R → [0, ℓe]. For
every outgoing edge, the function fe(bv) defines the amount of money v pays towards e. We
follow previous literature and assume the following conditions for every payment function:
(1) Every function fe(bv) is non-decreasing and bounded by 0 ≤ fe(bv) ≤ ℓe.
(2) Every bank pays all funds until all liabilities are settled:

∑
e∈E+(v) fv(bv) = min{bv, Lv}.

(3) The sum of payments of a bank is limited by the total funds:
∑

e∈E+(v) fv(bv) ≤ bv.
Here (2) implies (3), and we mention (3) explicitly for clarity. For a monotone function fv, v

weakly increases the payment on every outgoing edge when receiving additional funds.

1 Claims trades in simple graphs can result in graphs with multi-edges. This can sometimes be avoided by
analyzing the trades in equivalent simple graphs with suitable auxiliary banks. Since all our arguments
can also be applied in the context of multigraphs, we discuss the more general model.
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Clearing States. Let p = (pe)e∈E be the arising payments in the network when every bank
v distributes the funds according to her payment functions fv. The incoming payments
of v are given by

∑
e∈E−(v) pe. The total assets av are defined as the external assets plus

the incoming payments, i.e., av = ax
v +

∑
e∈E−(v) pe. Observe that the above conditions

(1), (2) and (3) are fixed-point constraints. A vector of total assets a = (av)v∈V is called
feasible if it satisfies all fixed-point constraints. More formally, for every feasible a it holds
that av = ax

v +
∑

e∈E−(v) fe(ade(e)). The payments p corresponding to a feasible vector a
are called a clearing state. For fixed payment functions, multiple clearing states may exist.
We assume throughout that every payment function fv is monotone, i.e., fe(x) ≥ fe(y) for
all x ≥ y ≥ 0 and every e ∈ E+(v). This implies that all clearing states form a complete
lattice [1, 4]. Thus, the point-wise minimal and maximal clearing states are unique. We
follow previous literature and assume that the maximal clearing state arises in the network.

Payment Functions. In the seminal work of Eisenberg and Noe [5] and the majority of
subsequent works, all banks are assumed to allocate their assets using proportional payment
functions. The recovery rate rv = min{av/Lv, 1} is the fraction of total liabilities v can pay
off, and the payments on edge e ∈ E+(v) are defined proportionally by fe(av) = rv · ℓe.
Hence, if rv = 1, then v will fully settle all liabilities. Otherwise, v is in default, rv < 1,
and the liabilities are settled partially in proportion to their weight. These payments are
often used when all debt contracts fall due at the same date. If, on the other hand, different
debt contracts are assigned different priorities or maturity dates, payments are more suitably
expressed by edge-ranking payment functions. Then, the debt contracts in E+(v) are ordered
by a permutation πv. First, v makes payments towards the highest ranked edge πv(1) until
the edge is saturated or v has no remaining assets. Once πv(1) is fully paid off, v pays off the
second highest ranked edge πv(2) until the edge is saturated or v has no remaining assets.
The process continues and ends when either all liabilities are settled or v exhausted all assets.

Both proportional and edge-ranking payments are monotone. For proportional payments,
the clearing state can be computed in polynomial time [5]; for edge-ranking payments in
strongly polynomial time [1].

In this paper, we obtain some results explicitly for networks with proportional and edge-
ranking payment functions. Most of our results, however, generalize to arbitrary monotone
payment functions when there is an efficient clearing oracle, i.e., there exists an algorithm
that receives a network F as input and outputs the clearing state p in polynomial time.

Claims Trades. When a bank u is in default and unable to settle all debt, this introduces
risk into the network. In particular, the creditors of u do not receive their full liabilities.
This could lead to further defaults of the creditor banks. In order to reduce the risk of
spreading default, the creditors of u can sell claims they make towards u. More in detail,
consider banks u, v and w with edge e with de(e) = u and cr(e) = v, ℓe ≥ 0. Suppose u is in
default. If v and w perform a claims trade, w becomes the new creditor of bank u with the
same liability. Consequently, any payment from u towards the claim will be received by w.
In return for the traded claim, v receives a return ρ from w, i.e., an immediate payment of
ρ = α · ℓe, for some α ∈ [0, 1]. We call α the haircut rate. To separate the return from the
payments in the clearing state, we model the return by a transfer of external assets from w to
v. Note that w can invest at most her external assets as a return, so every trade must satisfy
αℓe ≤ ax

w. After a trade the external assets of v and w might no longer be integer values.
We proceed to define three variants of claims trades. We are given a financial network

with distinct banks u, v, w ∈ V , an edge e ∈ E with (de(e), cr(e)) = (u, v) and haircut rate
α ∈ [0, 1]. For a (single) claims trade of e to w we perform the following adjustments to

STACS 2024



42:6 Algorithms for Claims Trading

v

u

y w

0

1

21

1
v

u

y w

2

1

0
1

2

2

2

Figure 1 The network from Example 1 before the trade is depicted left, and right after the trade.
All liabilities equal 2. Edges are labeled with positive payments (if any) in the clearing state.

the network: (1) change the creditor of e to cr′(e) = w, (2) change external assets of v to
ax

v + α · ℓe and (3) change external assets of w to ax
w − α · ℓe ≥ 0. We denote the resulting

post-trade network by F ′ = (G′, ℓ, a′x, f), and the resulting clearing state in F ′ by p′. For a
given trade of e to w, we call v the creditor and w the buyer. Observe that the total assets
of v after the trade are given by a′

v = ax
v + α · ℓe +

∑
e′∈E′−(v) p′

e′ . Similarly, the total assets
of w after the trade are a′

w = ax
w − α · ℓe +

∑
e′∈E′−(w) p′

e′ .
The claims trade operation can be directly extended to a trade of multiple edges. As

outlined in the introduction, we are interested in the effects when a single bank (in default)
trades claims with another bank w (such as a central bank). We study the differences when
trading incoming or outgoing edges. Observe that both generalize single claims trades.

For a multi-trade of incoming edges, there are distinct banks v, w in a network F , a set
C of k distinct incoming edges e1, . . . , ek ∈ E−(v), and haircut rates α1, . . . , αk, such that
de(ei) ̸= w, for all i. After the trade, a new network F ′ emerges: We change cr′(ei) = w, for all
i = 1, . . . , k, adjust external assets for v to ax

v +
∑k

i=1 αiℓei , and for w to ax
w −

∑k
i=1 αiℓei ≥ 0.

For a multi-trade of outgoing edges, there are distinct banks u, w in a network F , a set C

of k distinct outgoing edges e1, . . . , ek ∈ E+(v) with cr(ei) = vi, and haircut rates α1, . . . , αk,
such that cr(ei) ̸= w, for all i. After the trade, a new network F ′ emerges: We change
cr′(ei) = w, for all i = 1 . . . , k, adjust external assets for each vi to ax

vi
+ αiℓei

, and for w to
ax

w −
∑k

i=1 αiℓei
≥ 0.

We proceed with a small example of trading a single claim.

▶ Example 1. Consider the example network depicted in Figure 1 (left) on a simple directed
graph. The liability of every edge is 2. The only banks with non-zero external assets are u

and w, where ax
u = 1 and ax

w = 2. ax
v = 0 is also explicitly displayed for convenience. Banks

u, w and y each have at most one outgoing edge. They pay all their assets (if any) to the
unique outgoing edge until it is saturated. This implies payments of 1 on edge (u, v). v is the
only bank with a non-trivial payment function – suppose it uses an edge-ranking function
with priority πv(1) = (v, w) and πv(2) = (v, y). Then, v pays the incoming assets of 1 to w,
and there are no payments on the cycle of v and y. To see this, assume p(y,v) = x > 0. By
the edge-ranking function, from these additional assets v allocates a portion of min(x, 1) to
(v, w) and the rest to (v, y). Hence, the total assets of y are max(x − 1, 0) while the outgoing
payments are x, which contradicts the feasibility constraint (3). Overall, in the clearing state,
the total assets are au = av = 1, aw = 3 and ay = 0.

Suppose we perform the trade of edge e = (u, v) to w with α = 1, see Fig. 1 (right) for
the resulting network. w buys edge e and pays the full liability ℓe to v. The external assets
of v increase to 2 and allow v to settle all debt. The total assets become 1 for u, 2 for y, 3
for w and 4 for v. The total assets of u and w are unaffected by the trade, the total assets of
v and y strictly increase. Overall, the clearing state is point-wise non-decreasing.

A similar observation can be made when v uses proportional payments. Before the trade,
v pays 1 to y and w. After the trade, both edges can be paid fully. ⌟
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Properties of Claims Trades. In Example 1, v strictly benefits from the trade while w is
indifferent. Interestingly, it is impossible for both creditor and buyer to strictly profit from a
single trade. This property holds true for the more general class of multi-trades of incoming
edges, and it applies in any network F with monotone payment functions.

The proof builds on a connection with debt swaps studied in [7,18]. A debt swap exchanges
the creditors of two edges with the same liabilities. We show that a claims trade and the
resulting payments can be represented by a debt swap in an auxiliary network.

▶ Definition 2 (Debt Swap). Consider a financial network F with four distinct nodes
u1, u2, v1, v2 ∈ V and edges e1, e2 ∈ E, where u1 = de(e1), v1 = cr(e1) and u2 = de(e2), v2 =
cr(e2). Suppose the liabilities are ℓe1 = ℓe2 . A debt swap σ of e1 and e2 creates a new
network Fσ with Gσ = (V, E, de, crσ) where crσ(e1) = v2, crσ(e2) = v1 and crσ(e) = cr(e)
for all e ∈ E \ {e1, e2}.

▶ Proposition 3. For every financial network with monotone payment functions, there exists
no multi-trade of incoming edges such that both creditor v and buyer w strictly improve their
total assets.

Proof. For a given network F , consider a multi-trade of incoming edges and construct a
new network F̂ by adding an auxiliary bank v̂ to F without external assets. v̂ serves as an
“accumulator” for the payments along the edges ei. We change the targets of the edges in C to
cr(ei) = v̂. We add an edge ê with de(ê) = v̂ and cr(ê) = v and liability ℓê =

∑k
i=1 ℓei . Every

payment that gets paid to v via ei in F now first goes to v̂, and then gets forwarded from v̂ to
v, since ê has sufficiently high liability. Consider the clearing state p̂ in the resulting network
F̂ . Obviously, for the new edge p̂ê =

∑k
i=1 p̂ei

. As such, every (non-auxiliary) bank from F
receives the same external assets and eventually the same incoming and outgoing payments
in F̂ . Consequently, both F and F̂ give rise to the same clearing state, i.e., pe = p̂e, for all
e ∈ E, and the same assets for every (non-auxiliary) bank.

The new network F̂ allows to conveniently route all payments along edges in C to w by
trading the single accumulator edge ê to w. Thus, the multi-trade of incoming edges C in F
is equivalent to trading the single claim ê to w in F̂ , for a suitably chosen haircut rate α̂

such that α̂ ·
∑k

i=1 ℓei
=

∑k
i=1 αi · ℓei

.
Now let us further adjust F̂ to F̃ by introducing an auxiliary bank w̃. Intuitively, we

“outsource” parts of external assets from w to w̃. Formally, external assets of w are reduced
to ax

w −
∑k

i=1 αi · ℓei
≥ 0, external assets of w̃ are

∑k
i=1 αi · ℓei

. We add an edge ẽ with
de(ẽ) = w̃ and cr(ẽ) = w as well as liabilities ℓẽ = ℓê =

∑k
i=1 ℓei . The clearing state p̃ in the

resulting network F̃ is p̃ẽ =
∑k

i=1 αiℓei
, since ẽ is the only outgoing edge of w̃ and ℓẽ ≥ ax

w̃.
Hence, w and (consequently) every non-auxiliary bank from F receives the same total assets
in p̃. Indeed, F , F̂ and F̃ yield equivalent clearing states with pe = p̂e = p̃e, for all e ∈ E.

In F̃ we can implement the return payments from w to v by re-routing the “outsource”
edge e′ to v instead of w. Thus, the claim trade of ê in F̂ can be expressed by a swap of
creditors of ê and ẽ in F̃ . Now since ℓẽ = ℓê, this swap of creditors represents a debt swap.
Thus, the multi-trade in F is equivalent to single trade in F̂ and a debt swap in F̃ . No
debt swap can strictly improve both creditor banks [7, Corollary 6]. Thus, no multi-trade of
incoming edges can strictly improve both creditor and buyer. ◀

The above proof implies a structural equivalence. Using the network F̂ , we reduced a
multi-trade of incoming edges to a single claim trade.

▶ Corollary 4. For every multi-trade of incoming edges in a network F , there is an adjusted
network F̂ such that the result of the multi-trade in F is the result of a single trade in F̂ .
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Our motivation is to analyze claims trades to improve the situation of a creditor in default
by trading claims with a buyer. Since it is impossible to strictly improve the conditions of
both banks, we focus on strictly improving the creditor and weakly improving the buyer.
Note that the trade performed in Example 1 satisfies this property.

▶ Definition 5 (Creditor-positive trade). A multi-edge trade of incoming edges of bank v to
bank w is called creditor-positive if a′

v > av and a′
w ≥ aw.

For the proof of Proposition 3, we express the multi-trade by a debt swap in an auxiliary
network. For a creditor-positive trade, the associated debt swap satisfies the same property,
i.e., it is a so-called semi-positive debt swap. In any network F with monotone payment
functions, a semi-positive debt swap Pareto-improves the clearing state and, hence, the total
assets of every bank [7]. This directly implies the next corollary.

▶ Corollary 6. In every financial network with monotone payments, every creditor-positive
trade Pareto-improves the clearing state.

A creditor-positive trade reduces the impact of a defaulting debtor on the creditor. No bank
in the entire network suffers. Hence, these trades contribute to the stabilization of the entire
financial network. We focus on creditor-positive trades for the remainder of the paper.

3 Trading a Single Claim

In this section, we study a given single creditor-positive trade and optimize the effects on the
assets in the network. For exposition, we mostly focus on financial networks with proportional
or edge-ranking payments.

The choice of α affects the external assets of v and, thus, payments throughout the
network. If a given trade is creditor-positive for some α ∈ [0, 1], we say that α is creditor-
positive. Can we efficiently decide the existence of a creditor-positive α? What is the optimal
α to maximize the improvement a′

v − av of v? Clearly, a trade with optimal α maximizes the
total assets a′

v. Since a′
w = aw in every creditor-positive trade, maximizing a′

v also maximizes
the payments of v, the incoming payments of v’s creditors, and, inductively, the payments
and assets of every edge and bank in the network. A creditor-positive α that maximizes a′

v

also simultaneously maximizes (1) the Pareto-improvement of payments for each edge in the
network, and (2) the return ρ by w. This holds for all networks with monotone payment
functions.

To answer the above questions, we modify F into a return network F ret defined as follows.
We switch edge e to cr(e) = w and add a return edge er with de(er) = w and cr(er) = v. The
payment on this edge models the return from w to v, so the liability is ℓer = min{ℓe, ax

w}.
Since we consider creditor-positive trades, we modify the payment function of w as follows.
For all e′ ∈ E+(w) \ {er}, we set f ret

e′ (x) = fe′(x) for all x ≤ aw and f ret
e′ (x) = fe′(aw) for

all x ≥ aw. For er we set f ret
er

(x) = 0 for all x ≤ aw and f ret
er

(x) = x − aw for all x ≥ aw.
Similarly, we modify the liabilities to ℓe′ = fe′(aw). Intuitively, in F ret w maintains its
payments up to a total outgoing assets of aw. It forwards any assets exceeding aw as return
via er to v.

▶ Lemma 7. Consider the clearing state pret in Fret.
(a) Suppose there is an optimal creditor-positive α with return ρ = αℓe. Then Fret has

ax
w > pe. In pret we obtain assets of aret

w ∈ (aw, aw + ℓer
] and aret

v > av, and pret
er

= ρ.
(b) If ax

w > pe and pret yields assets of aret
w ∈ (aw, aw + ℓer ] and aret

v > av, then payment per

represents a return of an optimal creditor-positive trade.



M. Hoefer, C. Ventre, and L. Wilhelmi 42:9

Proof. We first show (a). Suppose there is an optimal creditor-positive α. It results in a
return ρ = αℓe ≤ min{ℓe, ax

w} = ℓer
, assets of aw for w, and a′

v > av for v. When we assign
payments p̂e = p′

e for all e′ ∈ E and set the payment on er to p̂er
= ρ, we obtain a vector of

payments p̂ in F ret that satisfies all fixed-point conditions.
We first show that this implies ax

w > pe, the payment on e in p before the trade. Consider
the assets of w. We have âv = a′

v > av. Recall p′ ≥ p by Corollary 6, so

âv = ax
v + ρ +

∑
e′∈E−(v)\{e}

p̂e′ = ax
v + ρ +

∑
e′∈E−(v)\{e}

p′
e′

≥ ax
v + ρ +

∑
e′∈E−(v)\{e}

pe′ = av + ρ − pe

Hence ax
w ≥ ρ > pe, as desired.

For the other conditions, consider the clearing state pret in F ret. Due to maximality of
the clearing state, pret ≥ p̂. Thus, aret

w > aw, aret > av and pret
er

≥ ρ. We show that, indeed,
p̂ = pret, and that the condition aw + ℓer

≥ âw is satisfied.
Case 1: The clearing state satisfies aw + ℓer

≥ aret
w . Then we prove below that pret is

equivalent to a creditor-positive trade with payments that Pareto-dominate p̂ and,
consequently, higher assets for v with âv ≥ aret

v . As such, pret represents a better
creditor-positive trade, a contradiction to p̂ stemming from an optimal one.

Case 2: The clearing state satisfies aw + ℓer
< aret

w . Then aret
v > av, and w is solvent in F ret.

Indeed, w could transfer even more assets to the edges of E+(w) \ {er}. This implies
that with return ℓer

, there is a clearing state in F ′ that can strictly improve both v and
w. This is a contradiction to Corollary 3.

To prove (b), suppose pret fulfills the conditions. Then, clearly, the payment pret
er

represents
a feasible return. The payments pret

e′ on the other edges e′ ∈ E \ {er} fulfill the fixed-point
conditions in F ′. Now for contradiction assume that p′

e′ > pret
e′ for some e′. Then e′ ̸= er,

since we assume pret
er

is the return used to construct F ′. Hence, any strict increase in p′

could be manifested in pret as well, which contradicts the maximality of pret in F ret. ◀

▶ Corollary 8. Consider a given single claims trade of e to w.
(a) A return of ax

w ≥ ρ > pe is necessary to make the trade creditor-positive. For ρ = pe, we
obtain p′ = p.

(b) Consider all creditor-positive α. A value α with return ρ = αℓe maximizes the assets of
v if and only if it maximizes the payment on every single edge in F ′, the assets of every
single bank, as well as the value of ρ and α.

▶ Proposition 9. For a given financial network with edge-ranking payments and a single
claims trade, there is an efficient algorithm to compute an optimal creditor-positive α∗ ∈ [0, 1]
or decide that none exists.

Proof. We construct network F ret as described above. Observe that the adjusted payment
function f ret

w is again an edge-ranking function – it first fills edges according to fw until
assets aw are paid. Thus, at most one edge e′ ∈ E+(w) is paid partially. For this edge, the
liabilities are reduced to fe′(aw). For all other edges, the liabilities either remain untouched
or are decreased to 0. Then the additional assets are directed to er. Thus, f ret

w can be
represented by the same ranking as fw up to (and including) edge e′, and then using er as
the next (and last) edge in the order. Hence, we can compute F ret in strongly polynomial
time. By checking the conditions of Lemma 7, we can verify in polynomial time whether or
not a creditor-positive trade exists and obtain the optimal return as the payment on er. ◀
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▶ Proposition 10. For a given financial network with proportional payments and a single
claims trade, there is an efficient algorithm to compute an optimal creditor-positive α∗ ∈ [0, 1]
or decide that none exists.

Finally, our main result in this section shows that for general monotone payments with
efficient clearing oracle, we can obtain an approximately optimal solution via binary search.

▶ Theorem 11. Consider a given financial network with monotone payment functions and
efficient clearing oracle. For a given single claims trade, there exists an additive FPTAS for
approximating the optimal improvement of v from any creditor-positive α.

Our algorithm uses binary search. Towards this end, we first show, for a given target
value A ≥ av, how to verify the existence of a trade that achieves at least a value A for the
total assets of v. For intuition, we use a split network F sp obtained from F ′ after the trade
as follows: We replace v and w by source and sink banks vin, vout, and win, wout. vin has
the incoming edges of v, win the ones of w (including e). The outgoing edges of v (w) are
attached to vout (wout). We set the external assets of vout and wout to A and aw, and these
banks use the payment functions of v and w, respectively. As such, the clearing state psp in
F sp can be computed using the clearing oracle.

Consider the incoming payments of psp at vin and win. These payments shall exactly
recover the expenses at vout and wout – modulo external assets and the return payment from
w to v. We define the budget difference by

dsp
w =

ax
w +

∑
e′∈E−(win)

psp
e′

 − aw and dsp
v = A −

ax
v +

∑
e′∈E−(vin)

psp
e′

 .

dsp
w is the surplus money earned by win that shall be invested into the return, dsp

v is the
excess money spent by vout that must be recovered through the return.

▶ Lemma 12. For a given single claims trade and a given target value A > av, there is a
creditor-positive trade with a value at least A for v if and only if dsp

v = dsp
w > 0.

Proof. We first show that if dsp
v = dsp

w > 0, then there exists a creditor-positive trade with
asset at least A for v. Suppose we consider psp in the network F ′ using return ρ = dsp

v = dsp
w .

This exactly equilibrates the budgets of v and w – v receives dsp
v , the money needed to obtain

total assets of A. Also, w spends exactly dsp
w , the money needed to obtain total assets of aw.

Hence, psp satisfies all fixed-point conditions in F ′. As such, p′ ≥ psp coordinate-wise due
to maximality of the clearing state. This implies that using return ρ, the clearing state p′

yields a′
v ≥ A > av and a′

w ≥ aw. A creditor-positive trade with return ρ exists.
Now for the other direction, consider an optimal creditor-positive trade, which yields the

highest asset level A∗ and consider any A ∈ (av, A∗]. We show that in this case dsp
v = dsp

w > 0
holds in the clearing state psp of F sp with external assets A for vout.

Consider the optimal trade, its return ρ∗ > 0 and the emerging payments p∗ in F ′ after
this trade. Now in the corresponding split network F∗,sp with external assets of A∗ for vout,
the payments p∗ yield d∗

v = d∗
w = ρ∗, by definition of p∗. The previous paragraph and

maximality of A∗ then imply that p∗ must also be the clearing state p∗,sp = p∗ of F∗,sp.
Now suppose in F∗,sp we reduce the external assets of vout by ε = A∗ − A > 0. Then

F sp evolves. Since we reduce the assets of a single source vout by ε, we obtain p∗,sp ≥ psp.
Moreover, by non-expansivity [7, Lemma 33], the total incoming assets of all sinks must
reduce by at most ε. For the sinks vin and win we set

εv = a∗,sp
vin

− asp
vin

=
∑

e′∈E−(vin)

p∗
e′ − psp

e′ εw = a∗,sp
win

− asp
win

=
∑

e′∈E−(win)

p∗
e′ − psp

e′
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and, thus, dsp
v = d∗

v − (ε − εv) and dsp
w = d∗

w − εw. Non-expansivity implies εv + εw ≤ ε.
First, we observe that εv + εw < ε is impossible. Then εw < ε − εv, so dsp

w > dsp
v , i.e., w

has more excess money in psp than required by v. Consider a return of ρ = dsp
v and psp as

payment vector in the resulting network F ′. Then all banks are feasible w.r.t. the fixed-point
conditions, except for w which has strictly more income than outgoing assets. Hence, the
clearing state satisfies p′ ≥ psp, a′

v ≥ A > av, and a′
w > aw, a contradiction to Proposition 3.

Second, suppose that εv + εw = ε, then dsp
v = dsp

w . Then the clearing state psp exactly
fulfills the fixed-point conditions for all banks in F ′ and yields assets A > av for v and aw for
w with ρ = dsp

v . Note that ρ > 0, since otherwise we contradict the maximality of the initial
clearing state p. Therefore, the existence of a creditor-positive trade with assets A∗ > A for
v implies that dsp

v = dsp
w > 0 for psp in F sp emerging from A. ◀

We are now ready to prove Theorem 11.

Proof of Theorem 11. Our algorithm works by testing different target values A for the
total assets of v. For a given target value A, we then use Lemma 12 to verify existence
of a return ρ achieving at least assets A for v. The maximum achievable assets for v are
Mv =

∑
e′∈E−(v)\e ℓe′ + ax

v + min{ax
w, ℓe}. We determine the maximal achievable A using

binary search on the interval (av, Mv].
More formally, we choose δ > 0 and apply binary search over the set {av + δ, av +

2δ, . . . , Mv}. Verifying the condition in Lemma 12 can be done in polynomial time via a call
to the clearing oracle in F sp. If the algorithm discovers that the condition does not hold for
all tested values, then no creditor-positive trade with asset level at least av + δ for v exists.
Otherwise, let Â be largest discovered value for which the test is positive. Then, any value
of at least Â + ε cannot be achieved for any return ρ. Hence, the optimal achievable total
assets of v in any creditor-positive trade are bounded by A∗ ∈ [Â, Â + δ], and the additive
approximation follows Â − av ≥ (A∗ − av) − δ.

For the running time, we require at most ⌈log2(1 + (Mv − av)/δ)⌉ oracle calls, which is
polynomial in the input size and 1/δ. ◀

Since the number of possible (single) claims trades in a network is limited by |E| · |V |, we
can use the algorithm above to compute every creditor-positive trade with an (approximately)
optimized haircut rate for a given network in polynomial time.

4 Multi-Trades of Incoming Edges

4.1 Fixed Set of Claims
In this section, we are interested in multi-trades of incoming edges of a creditor bank v to a
buyer bank w. This arises naturally, for example, when a high fraction of v’s debtors are in
default or v is “too big to fail”. Then bankruptcy of v would cause significant damage to the
entire network.

We are given a financial network F with two distinct banks v and w, and a set C

of k incoming edges of v. Suppose the haircut rates αi can be chosen individually for
each ei ∈ C as part of the trade. We call a vector α = (α1, . . . , αk) of haircut rates
creditor-positive if the resulting multi-trade is creditor-positive. Our goal is to select creditor-
positive αi ∈ [0, 1], for every i ∈ [k], in order to maximize the improvement of v, i.e.,
a′

v − av =
∑k

i=1 αi · ℓei
+

∑
e′∈E′−(v) p′

e′ −
∑

e′∈E−(v) pe′ . Observe that we can restrict our
attention to vectors with uniform αi = α′ for all i ∈ [k] and some α′ ∈ [0, 1] – given any α,
choose α′ with α′

i = α′ such that α′ ·
∑k

i=1 ℓei
=

∑k
i=1 α′

i · ℓei
. This results in α′ ∈ [0, 1], the

same return, and the same assets of v as for α.
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Our result is a reduction to single trades.

▶ Proposition 13. Consider a financial network with monotone payment functions and
efficient clearing oracle. For a given multi-trade of incoming edges, there is an additive
FPTAS for approximating the optimal improvement of v from any creditor-positive α.

Proof. Consider a financial network F with banks v and w and edges C, where |C| = k. By
Corollary 4, the multi-trade in F can be modeled by a single claims trade with edge ê in
adjusted network F̂ . Invoke the FPTAS to compute a haircut rate α for the single claim in
F̂ . This results in assets of α ·

∑k
i=1 ℓei

+
∑

e∈E′−(v) p′
e for v in F̂ . Clearly, the same value

is obtained with the multi-trade when all haircut rates are set to α, i.e., αi = α ∀i ∈ [k].
Clearly, this choice of haircut rates also yields an (approximately) optimal solution for the
multi-trade. ◀

Combining the insight with Propositions 10 and 9, we obtain the following corollary.

▶ Corollary 14. Consider a financial network with proportional or edge-ranking payments.
For a given multi-trade of incoming edges, there are efficient algorithms to compute an
optimal creditor-positive α∗ or decide that none exists.

4.2 Choosing Subsets of Claims
For a fixed pair of creditor v and buyer w, the incoming edges of v yield an exponential
number of different edge sets C that might be used for a multi-trade. Thus, a creditor-positive
multi-trade cannot be derived trivially by checking feasibility for all sets C. For improving
the assets of v by a multi-trade with buyer w, the selection of claims to be traded is critical.
How can we compute a (near-)optimal set of incoming edges C ⊆ (E−(v) \ E+(w)) for a
creditor-positive multi-trade with w such that we maximize the improvement of v?

The challenge is to find a set of claims C with creditor v and appropriate individual
haircut rates αi, for ei ∈ C. The resulting multi-trade shall be creditor-positive and yield the
maximal improvement for v (over all creditor-positive multi-trades of incoming edges of v).

We show that this problem is NP-hard, for every set of monotone payment functions.
Formally, we show it is NP-hard to decide whether creditor v can be saved by a creditor-
positive multi-trade of incoming edges, i.e., whether total assets of Lv can be achieved. We
call this problem IncomingSave-VR (for variable haircut rates).

In the class of networks we construct for the reduction, every bank has at most one
outgoing edge. Hence, all payments will be independent of the payment function that is used.
Moreover, once a set of claims C is chosen, finding optimal haircut rates for the multi-trade
of C to w is trivial in this class of networks. Hardness arises from the choice of C.

▶ Theorem 15. IncomingSave-VR is weakly NP-hard.

4.2.1 Approximate Claims Trades
Contrasting NP-hardness, we show that the problem to compute a multi-trade improving v

by a given amount can be solved efficiently when slightly relaxing the liability condition.

▶ Definition 16 (ε-Approximate Multi-Trade). A multi-trade C with creditor v, buyer w,
return ρ > 0 and haircut rates αi ∈ [0, 1 + ε], for all ei ∈ C, is called ε-approximate if
ρ ≤ (1 + ε) ·

∑
ei∈C ℓei

.
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Consider a creditor-positive ε-approximate trade. Such a trade (1) strictly increases the assets
of v and exactly maintains the ones of w, (2) is affordable by w, i.e., ρ =

∑
ei∈C αiℓei

≤ ax
w,

and (3) satisfies exact fixed-point conditions in the emerging clearing state. It is approximate
only in the liability condition of the trade.

We construct a bicriteria FPTAS to compute a creditor-positive multi-trade of incoming
edges. Suppose ε, δ > 0 such that 1/ε is polynomial and 1/δ is exponential in the representa-
tion size of F . Our FPTAS guarantees that the computed trade is ε-approximate and yields
assets of at least A∗ − δ for v, where A∗ are the assets of v resulting from an optimal exact
creditor-positive trade. The FPTAS uses a connection to the Knapsack problem.

We proceed in several steps: First, we consider computing an (exact) trade that achieves a
target asset value A for the creditor. For this problem, we derive Knapsack-style constraints
capturing a set of three necessary and sufficient conditions of a valid creditor-positive trade.
We then adapt the dynamic program for Knapsack to construct an FPTAS to compute an
ε-approximate multi-trade with assets value at least A for v in polynomial time. Finally, we
show how to use binary search to find a trade with asset level at least A∗ − δ.

Necessary and Sufficient Conditions. As a first step, we consider exact trades that achieve
assets of at least A for v. Suppose there is such a trade with a set C of traded edges, and let
k = |C|. Consider F ′ after trade C has occurred with a suitably chosen return. Since C is
fixed, by Corollary 4 we can express the outcome of the trade using a single claims trade.
Now apply the split network F sp and Lemma 12. Hence, using

dsp
v = A −

ax
v +

∑
e′∈(E−(v)\C)

p′
e′

 and dsp
w =

ax
w +

∑
e′∈(E−(w)∪C)

p′
e′

 − aw ,

a creditor-positive trade with set C and asset value at least A exists if and only if dsp
v = dsp

w > 0.
This implies that

(A − ax
v) + (aw − ax

w) =
∑

e∈E−(v)∪E−(w)

p′
e (1)

must hold. This condition is independent of the set C of traded edges. As such (1) is a
necessary condition that any creditor-positive trade with asset level at least A for v can exist.

With return ρ = dsp
v for the given set C, we satisfy the fixed-point conditions in F ′. By

Lemma 12 the optimal trade using the given set C only yields a larger return, i.e., ρ ≥ dsp
v > 0.

Moreover, the liabilities of the traded edges must be high enough to allow the return ρ, i.e.,∑
ei∈C ℓei

≥ ρ. Using P ′ =
∑

e∈E−(v) p′
e this necessary condition is expressed by∑

e∈C

ℓe ≥ dsp
v = A − ax

v − P ′ +
∑
e∈C

p′
e ⇐⇒

∑
e∈C

(ℓe − p′
e) ≥ A − ax

v − P ′ . (2)

w must be able to pay the required return. Since the return is solely funded by external
assets, we obtain the necessary condition

ax
w ≥ ρ = dsp

v ⇐⇒
∑
e∈C

p′
e ≤ ax

w − A + ax
v + P ′ . (3)

While each condition (1)-(3) is necessary, it is easy to see that in combination they are
sufficient. Indeed, if they hold, then there is a creditor-positive trade of set C with return
ρ ≥ dsp

v = dsp
w > 0 that respects the exact liabilities of traded edges, is affordable by w, and

achieves asset level at least A for v. We summarize the argument in the following lemma:
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▶ Lemma 17. For a given set C of incoming edges of v, the following are equivalent:
1. There is a multi-trade of C to w that achieves an asset level at least A for v.
2. Equation (1) holds, and the set C satisfies (2) and (3).

Knapsack-Style FPTAS. While condition (1) can be checked directly after computing the
clearing state p′, determining the existence of a set C that satisfies conditions (2) and (3)
can be cast as a Knapsack decision problem: For each edge e ∈ E−(v) the payments p′

e are
the non-negative weight of e, and the residual ℓe − p′

e is the non-negative value of e. Decide
the existence of a subset of edges with total value lower bounded by (2) and total weight
upper bounded by (3).

We next adapt the standard FPTAS for Knapsack to compute an approximate multi-
trade. We round up the residual ℓe − p′

e of every edge to the next multiple of a parameter s.
This can be interpreted as increasing the liabilities ℓe by a small amount. We then determine
if (2) and (3) allow a feasible solution by using the standard dynamic program for Knapsack
in polynomial time. We term this procedure the Level-FPTAS.

▶ Lemma 18 (Level-FPTAS). For a given number A, suppose there exists a creditor-positive
multi-trade of incoming edges that yields assets at least A for v. Then, for every ε > 0, there
is an algorithm to compute an ε-approximate creditor-positive trade with assets at least A for
v in time polynomial in the size of F and 1/ε.

Proof. First, check feasibility of condition (1) since otherwise the desired trade does not
exist. Then, consider all incoming edges e ∈ E−(v) of v and define m = |E−(v)|. We denote
by re = ℓe − p′

e the residual of e. Let rmax be the maximal residual capacity with respect
to p′ of any edge that satisfies the weight constraint, i.e., rmax = max{re | e ∈ E−(v), p′

e ≤
ax

w − A + ax
v + P ′}. Round the residual capacities up using a scaling factor s = ε·rmax

m . Then
determine the optimal solution C∗ for the rounded values r̃e = s · ⌈(re)/s⌉ via the standard
dynamic program for Knapsack. The running time is bounded by O(m3/ε).

Using a return of ρ = A −
(

ax
v +

∑
e∈E−(v)\C∗ p′

e

)
the trade of C∗ yields a clearing state

in F ′ with assets at least A for v. By definition, C∗ satisfies (3), and since the instance
satisfies (1), ρ ≤ ax

w is also guaranteed.
Regarding the liabilities, note that∑
e∈C∗

r̃e ≤
∑

e∈C∗

re + s ≤ εrmax +
∑

e∈C∗

re ≤ (1 + ε)
∑

e∈C∗

re ≤
∑

e∈C∗

ℓe(1 + ε) − p′
e .

There exists an exact trade C with assets at least A for v, so the trade with C satisfies (2)
and (3). As such,∑

e∈C∗

r̃e ≥
∑
e∈C

r̃e ≥
∑
e∈C

re ≥ A − ax
v − P ′ ,

so the optimal solution C∗ satisfies (2) using the rounded residuals. Hence,

ρ = A −

ax
v +

∑
e∈E−(v)\C∗

p′
e

 = A − ax
v − P ′ +

∑
e∈C∗

p′
e ≤

∑
e∈C∗

r̃e + p′
e

≤ (1 + ε)
∑

e∈C∗

ℓe ,

so the return generated by C∗ violates the liability condition by at most a factor of 1 + ε. ◀
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The lemma gives rise to an efficient algorithm computing an ε-approximate multi-trade
with assets at least A, whenever an exact trade with assets at least A exists. Similar to
Theorem 11, we use this test to construct a bicriteria FPTAS.

Bicriteria-FPTAS. As our main result for multi-trades of incoming edges, we obtain a
bicriteria FPTAS. Suppose assets A∗ for v are achievable by an exact creditor-positive
multi-trade of incoming edges. We will compute an ε-approximate one resulting in assets at
least A∗ − δ for v, for any ε, δ > 0. We say such a trade is δ-optimal.

▶ Theorem 19. Consider a financial network with monotone payment functions and efficient
clearing oracle, creditor v and buyer w. If there exists a creditor-positive multi-trade of
incoming edges, then an ε-approximate δ-optimal trade can be computed in time polynomial
in the size of F , 1/ε and log 1/δ, for every ε, δ > 0,

Proof. We use the binary search idea put forward in Theorem 11. We choose δ > 0 and
apply binary search over the set {av + δ, av + 2δ, . . . , Mv} of potential asset values for v.
Recall that Mv is an upper bound for maximal achievable assets of v. For multi-trades, Mv

is upper bounded by ax
v + ax

w +
∑

e∈E−(v) ℓe. The goal is to find an asset value that is as
large as possible.

Running the Level-FPTAS with any value from the interval A′ ∈ (av, A∗], we are
guaranteed to receive an approximate multi-trade with asset level at least A′ for v in
polynomial time. As such, the binary search will never terminate with a value of A′ ≤ A∗ − δ.
The search terminates in at most ⌈log2(1 + (Mv − av)/δ)⌉ steps. ◀

When called with an asset level A′ > A∗, the Level-FPTAS might or might not return a
corresponding multi-trade – rounding up the residuals can introduce non-monotone behavior.
As such, using binary search our algorithm does not necessarily return an optimal asset value
of v for any creditor-positive ε-approximate multi-trade. However, since the Level-FPTAS
never fails to return a multi-trade for any asset level A′ ≤ A∗, we are guaranteed that assets
of more than A∗ − δ for v are achieved.

Ranking Payments. For edge-ranking payments, the set of meaningful values to be tested
for A∗ in the binary search can be restricted to a grid of at most exponential precision in the
input size. This allows to compute an ε-approximate multi-trade with assets at least A∗, i.e.,
such a trade is δ-optimal with δ = 0.

▶ Corollary 20. Consider a financial network with edge-ranking functions, creditor v and buyer
w. If there exists a creditor-positive multi-trade of incoming edges, then an ε-approximate
0-optimal trade can be computed in time polynomial in the size of F and 1/ε.

Proof. Consider an optimal exact multi-trade C with return ρ that achieves optimal assets
of A∗ for v. Recall that all liabilities and external assets are integers, and so is Mv. If A∗

is integral, then we can run the binary search with δ = 1 and obtain an approximate trade
with assets of (more than A∗ − 1 and, thus) at least A∗ for v.

To show that A∗ is integral, consider an optimal creditor-positive trade C achieving assets
A∗. We resort to the equivalent representation as a single claims trade (Corollary 4). For
this single trade, consider the return network F ret. An optimal return ρ for a trade of edge
set C evolves as the payment pret

er
on er in the clearing state pret. Recall that the payment

function of w in the return network is also an edge-ranking function (c.f. Proposition 9). For
edge-ranking payments, if all liabilities and external assets are integers, then the clearing
state has integral payments [1]. The assets of every bank in pret (and A∗) are integral. ◀
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5 Multi-Trades of Outgoing Edges

In this section, we study multi-trades of outgoing edges of a bankrupt bank u. We strive
to improve the assets of u’s creditors directly (and not indirectly via u through trades of
incoming edges). It might not be feasible to save a particular bank u, e.g., when its debt is
too high in relation to the claims. In such cases, we attempt to minimize the contagion of
bankruptcy from u to her creditors by conducting multi-trades of outgoing edges of u. We
execute multi-trades that maximize the total profit of all creditors, not just those involved in
the trade. No creditor nor buyer w should be harmed by the trade.

▶ Definition 21 (Pareto-positive trade). Let v1, v2, . . . , vl be u’s creditors. A multi-trade of
outgoing edges of u to w is called Pareto-positive, if a′

vi
> avi

for at least one creditor vi,
a′

vi
≥ avi

for all creditors and a′
w ≥ aw.

Suppose we are given a financial network with banks u, w and a set C of k outgoing
edges of u. Denote the creditors of edges C by VC = {vi | ei ∈ C, cr(ei) = vi}. A collection
of haircut rates α = (α1, α2, . . . , αk) is called Pareto-positive if C together with α forms
a Pareto-positive multi-trade. The objective is to derive the optimal values of α which
maximize the sum of profit of creditors v1, v2, . . . , vl, i.e., max

∑l
i=1 a′

vi
− avi

.
Consider the problem where set C is not given as part of the input but is chosen as part

of the solution. The goal is to select a subset of u’s outgoing edges C ⊆ E+(v) together with
a vector of haircut rates α = (α1, α2, . . . , α|C|) such that the multi-trade is Pareto-positive
and maximizes the improvement of u’s creditors, i.e.,

∑l
i=1 a′

vi
− avi

.
In the previous section, we obtained a bicriteria FPTAS for this problem when we trade

incoming edges of an insolvent bank. Interestingly, the results hold for all monotone payment
functions for which there is an efficient clearing oracle (e.g., edge-ranking or proportional
payments). Our results here show a strong contrast – depending on the payment functions
trading outgoing edges can be much harder. For edge-ranking functions (and variable haircut
rates), we denote the problem by OutgoingER-VR.

▶ Theorem 22. OutgoingER-VR is strongly NP-hard. For any constant ε > 0 there exists
no efficient n1/2−ε-approximation algorithm for OutgoingER-VR unless P = NP.

Now suppose the set of traded edges C is given as part of the input. Interestingly, the
hardness for edge-ranking payments continues to apply when C is fixed a priori.

▶ Corollary 23. Consider a financial network with banks u, w, a set of outgoing edges C of u

and edge-ranking payment rules. It is strongly NP-hard to determine Pareto-positive haircut
rates that maximize the sum of profits of u’s creditors. For any constant ε > 0, there exists
no efficient n1/2−ε-approximation algorithm unless NP = P.

Finally, we briefly observe that these problems for outgoing edges depend crucially on
the set of payment functions. For proportional payments (and variable α), the problem for a
given set C can be solved efficiently (even if the set C of edges involves different debtors).
When the set C of outgoing edges is chosen as part of the solution, we refer to the problem
as OutgoingPROP-VR and obtain NP-hardness. The approximability status of these
problems for different payment functions is an interesting direction for future work.

▶ Proposition 24. For a given financial network with proportional payments and a set C of k

edges, there exists an efficient algorithm that computes an optimal Pareto-positive α∗ ∈ [0, 1]k
or decides that none exists.

▶ Theorem 25. OutgoingPROP-VR is strongly NP-hard.
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Abstract
A consensus tree is a phylogenetic tree that summarizes the evolutionary relationships inferred
from a collection of phylogenetic trees with the same set of leaf labels. Among the many types of
consensus trees that have been proposed in the last 50 years, the frequency difference consensus
tree is one of the more finely resolved types that retains a large amount of information. This paper
presents a new deterministic algorithm for constructing the frequency difference consensus tree.
Given k phylogenetic trees with identical sets of n leaf labels, it runs in O(kn log n) time, improving
the best previously known solution.
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1 Introduction

In phylogenetic analysis, variations in datasets, algorithms, and models of evolution typically
yield different phylogenetic trees. Hence, researchers often need to analyze a collection of
phylogenetic trees with the same set of leaf labels but different branching structures, and
to this end, they use consensus trees. A consensus tree is a single phylogenetic tree that
represents a collection of phylogenetic trees, aiming to highlight the commonly agreed-upon
parts of the evolutionary history. Consensus trees have applications across various fields of
science, including biology, evolutionary studies, epidemiology, and ecology. Many alternative
consensus trees, each with its strengths and limitations, have been proposed; see, e.g., [7].

The frequency difference consensus tree (FDCT) [16] has garnered interest among re-
searchers in recent years [15, 17, 20]. Given k phylogenetic trees with identical sets of n leaf
labels, the FDCT is a phylogenetic tree consisting of each cluster that occurs more frequently
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in the input trees than any single cluster incompatible with it. In this context, a cluster
refers to any nonempty subset of the leaf label set and is said to occur in a phylogenetic
tree iff it corresponds to the set of all leaf labels descending from a single node of the tree.
Furthermore, two clusters are deemed incompatible if they cannot simultaneously occur in
the same phylogenetic tree. The advantage of the FDCT compared to some other popular
types of consensus trees, such as the strict consensus tree [30] and the majority rule consensus
tree [25], is that it captures more of the shared branching information and has more clusters.

It is evident that Ω(kn) serves as a lower bound for the running time of any algorithm
aiming to build the FDCT, given that it corresponds to the input size. Unlike certain other
types of consensus trees such as the strict consensus tree and the majority rule consensus tree,
there has been no algorithm proposed to construct the FDCT that can achieve a running
time matching this lower bound. Before this paper, the O(kn log2 n)-time algorithm by
Gawrychowski et al. [15] was the asymptotically fastest algorithm for constructing the FDCT.
In this paper, we present an O(kn log n)-time algorithm for constructing the FDCT, thus
reducing the gap between the upper and lower bounds for the running time of the fastest
algorithm to solve this problem.

The overarching structure of our new algorithm follows the framework proposed by Jansson
et al. [20] for computing the FDCT. By improving the methods for solving two subproblems
in [20], our algorithm achieves a running time of O(kn log n). First, our algorithm incorporates
a novel divide-and-conquer solution that runs in O(kn log n) time for the weighting step,
where the number of phylogenetic trees in which each cluster occurs is calculated. We remark
that algorithms for computing other types of consensus trees such as the greedy consensus
tree [7, 13] involve the same weighting step [15, 21, 32] and may derive advantages from
our improved method. Second, the running time of the procedure Filter_Clusters is
improved to O(n log n) by solving instances of the Max-Manhattan Skyline Problem [9]
to identify the clusters that should be removed at each recursive stage of the algorithm (refer
to Sections 3 and 5 for the detailed explanation).

1.1 Definitions and Notation
A phylogenetic tree is a rooted tree that represents the evolutionary relationships among
different organisms. Every internal node of a phylogenetic tree has at least two unordered
children and every leaf has a distinct label. The term trees will be employed as a shorthand
for phylogenetic trees in the remainder of this paper. Let T be some tree. The set of nodes
of T is denoted by V (T ). Let Λ(T ) be the set of leaf labels of T . Non-empty subsets of
Λ(T ) are called clusters. Clusters with cardinality 1 or |Λ(T )| are trivial clusters. For any
node u ∈ V (T ), T [u] is the subtree of T rooted at u and Λ(T [u]) is the set of leaf labels of
T [u], called the cluster associated with u. The cluster collection of T , denoted by C(T ), is
the set

⋃
u∈V (T ) {Λ(T [u])}. Any cluster C ⊆ Λ(T ) occurs in T iff C ∈ C(T ). For any nodes

u, v ∈ V (T ), we denote the lowest common ancestor of u and v in T by lcaT (u, v). Further,
for any non-empty set of nodes U ⊆ V (T ), we refer to the lowest common ancestor of all
these nodes in T by lcaT (U).

Any two clusters C1, C2 ⊆ Λ(T ) are said to be compatible, written as C1 ⌣ C2, iff
C1 ⊆ C2, C2 ⊆ C1, or C1 ∩ C2 = ∅. If C1 and C2 satisfy none of the preceding properties,
then they are incompatible, denoted as C1 ̸⌣ C2. Similarly, given trees T1 and T2 with
identical leaf label sets, and nodes u ∈ V (T1) and v ∈ V (T2), we say u is compatible with v,
denoted as u ⌣ v, if the clusters associated with u and v are compatible. We now extend
the notion of compatibility to trees. A cluster C ⊆ Λ(T ) is compatible with T (denoted
as C ⌣ T ) iff for every C ′ ∈ C(T ), we have C ⌣ C ′. Further, two trees T1 and T2 with
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identical leaf label sets are compatible (denoted as T1 ⌣ T2) iff for every C ∈ C(T1), C ⌣ T2,
i.e. iff every cluster in T1 is compatible with T2. This also means that every cluster in T2 is
compatible with T1.

The frequency difference consensus tree (FDCT) is defined as follows. Let S be a set of k

trees with identical sets of n leaf labels, i.e. S = {T1, T2, . . . , Tk} and Λ(T1) = Λ(T2) = . . . =
Λ(Tk) = L (where |L| = n). For any cluster C ⊆ L, let the weight of C, denoted as w(C), be
|{T : T ∈ S and C ∈ C(T )}|, i.e., the number of trees in S in which C occurs. For any tree
T ∈ S and any node u ∈ V (T ), we define the weight of node u as w(u) = w(Λ(T [u])). Then,
the FDCT of S is the tree TF D, where C(TF D) = {C : C ⊆ L and w(C) > max({w(C ′) :
C ′ ⊆ L and C ̸⌣ C ′})}. Thus, TF D contains every cluster that occurs more frequently than
any cluster incompatible with it (we refer to such clusters as frequency difference clusters). By
Proposition 3 in [31], this tree always exists and is unique for a given S. Figure 1 illustrates
the FDCT for a collection of four phylogenetic trees.

T1 :

2

2

a b

c

d e

T2 :

1

2

a b

d e

c

TFD :

a b c d e

T3 :

a
1

2

b c

d e

T4 :

2

a
2

b c

1

d e

Figure 1 Let S = {T1, T2, T3, T4}. TF D is the FDCT of S. In each Ti, the number beside each
non-root internal node u indicates the weight w(u). In this example, TF D does not contain the
clusters {a, b} and {b, c} with weight 2 because they are incompatible with each other. On the other
hand, TF D contains the cluster {d, e} with weight 1. Furthermore, TF D contains the cluster {a, b, c}
with weight 2, even though that cluster is incompatible with two input trees.

1.2 Previous Work

A variety of types of consensus trees have been developed over the last half-century, starting
with the Adams consensus tree [2] in 1972. Some of these consensus trees are summarized
in [7]. Here, we describe two well-studied types of consensus trees: the strict consensus
tree [30] and the majority-rule consensus tree [25]. The strict consensus tree keeps only
the clusters that occur in all input trees and is easily computed in optimal O(kn) running
time [10]. However, some potentially important clusters might be discarded from this
consensus tree, if one of the input trees does not contain them. The majority-rule consensus
tree is a generalization of the previous consensus tree and contains all clusters that occur
in more than half of the trees. The majority-rule consensus tree can also be computed in
optimal O(kn) time [21].
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The frequency difference consensus tree (FDCT) was introduced by Goloboff et al. [16]
as a more informative alternative that contains not only the clusters that occur in the
majority of trees but also the other frequency difference clusters. Dong et al. [11] provided a
comparison of the FDCT and a few other types of consensus trees. Barrett et al. [3] employed
the idea of using the frequency difference metric while analyzing angiosperm phylogeny. Steel
and Velasco [31] investigated a generalization of the FDCT to supertrees, i.e. consensus trees
built from input trees that do not necessarily have the same leaf label sets. They showed
that, unlike some other commonly used definitions, the FDCT easily generalizes to a viable
supertree definition. Moreover, the FDCT has been utilized in various other studies over the
years [14, 18, 19, 23, 24, 26, 27, 28, 29].

Several research works have focused on computing the FDCT of a set of k trees, each
labeled by the same set of n leaf labels. An implementation of the FDCT can be found in the
free software package TNT [17]; however, the algorithm employed by TNT and its complexity
remain undisclosed. Jansson et al. [20] gave a deterministic min{O(kn2), O(kn(k + log2 n))}-
time algorithm for constructing the FDCT. This algorithm was implemented in the open-
source FACT package [21] and experimentally shown [20] to be significantly faster than
TNT’s implementation. Subsequently, Gawrychowski et al. [15] developed a faster method for
the weighting step in [20], yielding an improved running time of O(kn log2 n) for constructing
the FDCT.

1.3 Organization of the Article
This paper is organized as follows. Section 2 contains some results from previous works
that are utilized later in this paper. Section 3 gives the framework of the O(kn log n)-time
algorithm for computing the FDCT. Sections 4 and 5 present algorithms for solving the
subproblems of the FDCT construction. Finally, Section 6 provides the concluding remarks.

2 Preliminaries

2.1 The delete Operation
The delete operation on a non-root internal node u in a tree T makes all children of u become
children of u’s parent and then removes u along with all edges connected to it. After applying
this operation on u, the cluster Λ(T [u]) is removed from the cluster collection of T . If c

denotes the number of u’s children, then the delete operation on u takes O(c) time.

2.2 The Lowest Common Ancestor
We restate the following lemma outlining the lowest common ancestor (lca) operation from [4]:

▶ Lemma 1. Given any tree T , the lca data structure can be constructed in O(n) time,
where n = |V (T )|. Then, for any nodes u, v ∈ V (T ), the query lcaT (u, v) can be answered in
constant time.

2.3 Restriction of Trees
For any tree T and any cluster C ⊆ Λ(T ), we define T |C (called T restricted to C) as the
tree T ′ with V (T ′) = {lcaT (u, v) : u, v ∈ C} such that lcaT (C ′) = lcaT ′(C ′) for all C ′ ⊆ C.
Intuitively, T ′ has the leaf label set C and consists of all nodes in T that are lca’s of the
leaves in C, and the ancestral relationships between the nodes in T ′ are the same as they
were in T . Figure 2 provides an example of restricting a tree to different clusters.
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T :

a b

c

d e f g

T |C1 :

a b e g

T |C2 :

d e

g

Figure 2 Illustration of restricting a tree to different clusters, where C1 = {a, b, e, g} and
C2 = {d, e, g}.

2.4 Expanded Restriction of Trees

Recall that every node in the tree T is associated with a weight. For any subset C ⊆ L,
when we compute the restricted tree T |C, some nodes in T are deleted. This leads to losing
information about the weights of the clusters associated with these nodes. To address this,
we extend the concept of restricted trees following the definition given in [20] and allow some
nodes to be marked as spoiled (see below for details). For any C ⊆ Λ(T ), we obtain the
weighted tree T ||C (called the expanded restriction of T to C) as follows:
1. Let T ′ = T |C.
2. For every node u in T ′, set the weight of u equal to its weight in T and mark u as spoiled

if Λ(T ′[u]) ̸= Λ(T [u]) or if u is a spoiled node in T .
3. For every edge (u, v) in T ′, let P be the path in T between u and v, excluding u and v.

If P contains at least one node, then create a new node z in T ′ (referred to as a path
node), replace the edge (u, v) with the two edges (u, z) and (z, v), assign the weight of z

to the highest weight among all nodes in P , and mark z as spoiled.
4. Let T ||C = T ′.

Intuitively, a node u in T |C that was not already spoiled in T becomes spoiled in T ||C
if at least one leaf label in Λ(T [u]) is not in C. It follows that if a node becomes spoiled
in T ||C, then all of its ancestors become spoiled. Furthermore, every path node is a spoiled
node (but not vice versa). The purpose of the path nodes in T ||C is to compactly represent
the weights of the clusters that were lost when building the restriction of T to C and that
may conflict with clusters that are subsets of C. Figure 3 shows an example of the expanded
restriction of trees.

T :

3

1

4

a b

c

d

2

e f

T ||C :

3

4

a

d

2

e

Figure 3 Illustration of the expanded restriction of a tree, where C = {a, d, e}. Internal nodes
are labeled with their weights. Nodes represented by triangles are path nodes.
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We extend the definition of compatibility to spoiled nodes. Suppose that C1, C2 ⊆ Λ(T )
and that u is a spoiled node in T ||C1. We have C2 ⌣ u iff C2 and Λ((T ||C1)[u]) are disjoint or
C2 ⊆ Λ((T ||C1)[u]). Observe that if Λ((T ||C1)[u]) ⊊ C2, then C2 ̸⌣ u, i.e., the set inclusion
relations in the definition of compatibility are asymmetric for spoiled nodes.

The expanded restrictions can be computed efficiently according to the following lemma:

▶ Lemma 2. Let T be a weighted phylogenetic tree with n leaves. After O(n log n) time
preprocessing, for any partition C1, C2, . . . , Cq of Λ(T ), the trees T ||Ci for all i ∈ {1, 2, . . . , q}
can be constructed in a total of O(n) time.

Proof. By Lemma 5.2 of [12], the trees T |Ci for all i ∈ {1, 2, . . . , q} can be constructed in a
total of O(n) time. By Theorem 2 of [22], after an O(n log n)-time preprocessing of T , the
maximum weight of all nodes along the path between any two nodes u and v in T can be
found in O(1) time. Furthermore, after an O(n)-time preprocessing of T , the second node on
the path from any node u in T to any other node v in T can be found in O(1) time (this can
be achieved by finding level ancestors [5, 6]). Hence, for every edge (u, v) in T |Ci (for any
i ∈ {1, 2, . . . , q}), we can compute the maximum weight of all nodes along the path between
u and v in T , excluding u and v, in O(1) time. Consequently, T ||Ci can be constructed in
O(|Ci|) time from T |Ci for any i ∈ {1, 2, . . . , q}, which completes the proof. ◀

2.5 Merging Trees
Given two trees T1 and T2 where Λ(T1) = Λ(T2) = L and T1 ⌣ T2, Merge_Trees(T1, T2)
returns a tree T such that Λ(T ) = L and C(T ) = C(T1)∪C(T2). Jansson et al. [21] showed that
Merge_Trees can be computed in O(|L|) time. Figure 4 gives an example for Merge_Trees.

T1 :

a b

c

d e

T2 :

a b c d e

T :

a b

c d e

Figure 4 Illustration of merging trees where T = Merge_Trees(T1, T2).

2.6 The Max-Manhattan Skyline Problem
Given a set S of O(n) subintervals of [1, n − 1] with positive integer heights of size O(n),
the Max-Manhattan Skyline Problem asks for a table f such that for t ∈ [1, n − 1],
f [t] = max{height([i, j]) : t ∈ [i, j], [i, j] ∈ S}. Crochemore et al. [9] gave an O(n)-time
algorithm for the Min-Manhattan Skyline Problem, defined in a similar way as the
Max-Manhattan Skyline Problem, except that it seeks the minimum height instead
of the maximum in the definition of the output table f . Their algorithm first sorts the
intervals according to their heights in non-decreasing order. Then, for each interval [i, j] in
this order, it sets the values of f [t] for all positions t ∈ [i, j] that have not yet been assigned
a value to height([i, j]). By modifying Crochemore et al.’s algorithm [9] to sort the intervals
in non-increasing order, we immediately have:

▶ Lemma 3. The Max-Manhattan Skyline Problem can be solved in O(n) time.
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2.7 Centroid Paths and Side Trees
A centroid path [8] of a tree T is a path of the form π = ⟨pα, pα−1, . . . , p1⟩, where pα is
any node in T , the node pi−1 for every i ∈ {2, . . . , α} is any child of pi with the maximum
number of leaf descendants (ties are broken arbitrarily), and p1 is a leaf. Suppose that π is
a centroid path of T . For any u ∈ V (T ) such that u does not belong to π but the parent
of u does, T [u] is called a side tree of π. From these definitions, we can derive the following
lemma:

▶ Lemma 4. Let T be a tree and τ a side tree of a centroid path that starts at the root of T .
Then |Λ(τ)| ≤ |Λ(T )|/2.

By computing a centroid path π starting at the root of T and recursively applying this
procedure to the side trees of π, we obtain a centroid path decomposition of T . It follows
from Lemma 4 that the number of recursion levels needed to complete such a decomposition
is O(log |Λ(T )|).

3 Algorithm Fast_Frequency_Difference

The pseudocode of our new algorithm, named Fast_Frequency_Difference, is shown in
Algorithm 1. Its overall structure follows the framework developed in [20] for constructing
the FDCT, which we review next.

Algorithm 1 The algorithm Fast_Frequency_Difference for constructing the FDCT, which
maintains the overall structure established by the algorithm Frequency_Difference in [20].

Algorithm Fast_Frequency_Difference

Input: A set S = {T1, T2, . . . , Tk} of trees with Λ(T1) = Λ(T2) = . . . = Λ(Tk) = L.
Output: The frequency difference consensus tree of S.

/* Preprocessing */
1 Fast_Compute_Weights(S)

/* Main algorithm */
2 T := T1

3 for j := 2 to k do
A := Fast_Filter_Clusters(T, Tj)
B := Fast_Filter_Clusters(Tj , T )
T := Merge_Trees(A, B)

endfor
4 for j := 1 to k do

T := Fast_Filter_Clusters(T, Tj)
5 return T

End Fast_Frequency_Difference

Suppose that the input is S = {T1, T2, . . . , Tk}. The basic idea of the algorithm in [20]
is to initially let T be a copy of T1 and then consider the other trees one by one while
updating the clusters of T accordingly. More precisely, when considering any such tree Tj ,
the algorithm deletes every cluster in T that is incompatible with a cluster in Tj of equal
or higher weight, and also inserts every cluster from Tj into T that could potentially be
a frequency cluster but is not already in T . This strategy produces a tree T whose set of
clusters is a superset of the set of the frequency difference clusters, so the algorithm applies
a final postprocessing step to delete all non-frequency difference clusters from T .
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To update T in each iteration, the procedure Merge_Trees, described in Section 2.5, and
a procedure called Filter_Clusters are used. The latter takes as input two trees TA and
TB with identical leaf label sets and outputs a copy of TA from which every cluster that is
incompatible with a cluster in TB of equal or higher weight has been deleted.

Our new algorithm Fast_Frequency_Difference improves the time complexity of the pre-
vious algorithm from [20] by replacing the preprocessing step for computing the weights of all
clusters occurring in S (Step 1) and the procedure Filter_Clusters (used in Steps 3 and 4) by
more efficient solutions, referred to as Fast_Compute_Weights and Fast_Filter_Clusters
below.

In Section 4, we will prove the following theorem concerning the correctness and time
complexity of the procedure Fast_Compute_Weights:

▶ Theorem 5. Given a set S = {T1, T2, . . . , Tk} of trees with identical sets of n leaf labels,
the procedure Fast_Compute_Weights(S) calculates the weights of all clusters occurring in S
in O(kn log n) time.

Moreover, Section 5 contains the proof for the following theorem regarding the correctness
and time complexity of the procedure Fast_Filter_Clusters:

▶ Theorem 6. Given two weighted trees TA and TB with identical sets of n leaf labels, the
procedure Fast_Filter_Clusters(TA, TB) filters out clusters as needed in O(n log n) time.

On the grounds of the two theorems stated above, we can prove the main theorem of this
paper:

▶ Theorem 7. Given a set S = {T1, T2, . . . , Tk} of trees with identical sets of n leaf labels,
the algorithm Fast_Frequency_Difference(S) constructs the FDCT of S in O(kn log n)
time.

Proof. Assuming that the improved procedures function as intended, the correctness of
Fast_Frequency_Difference follows from that of Frequency_Difference proved by [20].

Now, we analyze the time complexity of the algorithm. Step 1 makes a call to the
procedure Fast_Compute_Weights, which takes O(kn log n) time, according to Theorem 5.
Furthermore, Steps 3 and 4 make O(k) calls to the procedures Fast_Filter_Clusters and
Merge_Trees. By Theorem 6, each call to the procedure Fast_Filter_Clusters takes
O(n log n) time. Furthermore, the procedure Merge_Trees runs in O(n) time [21]. Hence,
Steps 3 and 4 take O(kn log n) time. Consequently, the running time of the algorithm is
O(kn log n). ◀

4 Procedure Fast_Compute_Weights

We break down the improved procedure Fast_Compute_Weights into two phases called
labeling and counting, similar to the strategy used in [15]. The procedure Fast_Label_Trees
is responsible for the labeling phase. This procedure assigns an integer label to each node
u in every tree in S, denoted by id(u), such that id(u) ∈ {1, . . . , 2kn} and that for any
other node u′ in any tree in S, id(u) = id(u′) iff the clusters associated with u and u′ are
the same. Next, during the counting phase, the labels are sorted using counting sort, the
count of each distinct label is determined, and the weight of each cluster is obtained from
the count of the label of its associated node. Algorithm 2 presents the pseudocode for the
procedure Fast_Compute_Weights.
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Algorithm 2 The procedure Fast_Compute_Weights.

Algorithm Fast_Compute_Weights

Input: A set S = {T1, T2, . . . , Tk} of trees with Λ(T1) = Λ(T2) = . . . = Λ(Tk) = L.

Output: Compute the weight of each cluster C occurring in S, i.e., the number of trees in S
in which C occurs.

/* Labeling phase */
1 Fast_Label_Trees(S)

/* Counting phase */
2 Sort the obtained labels using counting sort.
3 Determine the count of each distinct label.
4 Set the weight of each cluster to the count of the label of its associated node.

End Fast_Compute_Weights

The procedure Fast_Label_Trees uses a divide-and-conquer approach to carry out
the labeling phase. Let L′ and L′′ form a partition of L such that the difference be-
tween |L′| and |L′′| is at most one. Fast_Label_Trees({T1, . . . , Tk}) recursively calls
Fast_Label_Trees({T1|L′, . . . , Tk|L′}) and Fast_Label_Trees({T1|L′′, . . . , Tk|L′′}) to ob-
tain the labels for all nodes in Ti|L′ and Ti|L′′ for all i ∈ {1, 2, . . . , k}. Then, for each node
u in any tree Ti ∈ S, the pair (id(φL′

u ), id(φL′′

u )) is assigned to u, where φC
u for any C ⊆ L

denotes the node in Ti|C that corresponds to u (if such node does not exist in Ti|C, then
φC

u is set to Φ, a special node with id(Φ) = 0). Next, all pairs are sorted using radix sort,
and a positive integer rank is assigned to each unique pair. Finally, for each node u in any
tree Ti ∈ S, id(u) is set to the rank of the pair (id(φL′

u ), id(φL′′

u )). The pseudocode for the
procedure Fast_Label_Trees is given in Algorithm 3. Moreover, Figure 5 illustrates one
iteration of Fast_Label_Trees.

Algorithm 3 The procedure Fast_Label_Trees.

Algorithm Fast_Label_Trees

Input: A set S = {T1, T2, . . . , Tk} of trees with Λ(T1) = Λ(T2) = . . . = Λ(Tk) = L.

Output: Label each node u in a tree in S with id(u) ∈ {1, . . . , 2k|L|} such that two nodes in
different trees receive the same label iff the clusters associated with them are the
same.

1 if |L| = 1 then
/* Base case (each tree has only one node) */
For each node u in any tree in S, set id(u) = 1.
return

endif
2 Partition L into L′ and L′′, such that the difference between |L′| and |L′′| is at most one.
3 For all i ∈ [1 . . . k], let T ′

i = Ti|L′ and T ′′
i = Ti|L′′.

4 Fast_Label_Trees({T ′
1, T ′

2, . . . , T ′
k}).

5 Fast_Label_Trees({T ′′
1 , T ′′

2 , . . . , T ′′
k }).

6 For each node u in any tree Ti ∈ S, assign the pair (id(φL′
u ), id(φL′′

u )) to u.
7 Sort all the obtained pairs using radix sort, remove duplicates, and assign a rank to each

unique pair.
8 For each node u in any tree Ti ∈ S, set id(u) to the rank of the pair (id(φL′

u ), id(φL′′
u )).

End Fast_Label_Trees
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Figure 5 Illustration of one iteration of Fast_Label_Trees({T1, T2}), where L′ = {a, b, c, d} and
L′′ = {e, f, g}. Part (a) shows the trees T1 and T2, where the pair assigned to each node is presented
beside it (except for the leaves). Part (b) shows the recursively labeled trees T1|L′, T1|L′′, T2|L′,
and T2|L′′, where the labels are presented beside the nodes.

The following lemma proves the correctness of the procedure Fast_Label_Trees:

▶ Lemma 8. Given a set S = {T1, T2, . . . , Tk} of trees with identical sets of n leaf labels,
the following statements hold after running the procedure Fast_Label_Trees(S):
1. For any node u ∈ V (Ti) where Ti ∈ S, we have id(u) ∈ {1, . . . , 2k|L|}.
2. For any two nodes u ∈ V (Ti) and v ∈ V (Tj) where Ti, Tj ∈ S, we have id(u) = id(v) iff

Λ(Ti[u]) = Λ(Tj [v]).

Proof. We start by showing that the first statement holds. It can be easily seen that
|V (Ti)| < 2|L| for any Ti ∈ S. Thus, the total number of nodes in all trees is less than 2k|L|.
Consequently, the label of each node is in {1, . . . , 2k|L|}.

To prove the second statement, we use induction on |L|. The base case of |L| = 1 holds
because all nodes have the same cluster associated with them and receive the same label.
The induction hypothesis states that if |L| ≤ k for some k ≥ 1, then we have id(u) = id(v)
iff ΛTi(u) = ΛTj (v). Now, we want to prove the statement for |L| = k + 1.

If Λ(Ti[u]) = Λ(Tj [v]), we have Λ((Ti|L′)[φL′

u ]) = Λ((Tj |L′)[φL′

v ]) and Λ((Ti|L′′)[φL′′

u ]) =
Λ((Tj |L′′)[φL′′

v ]). Hence, considering that |L′| ≤ k and |L′′| ≤ k, we can apply the induction
hypothesis to state that id(φL′

u ) = id(φL′

v ) and id(φL′′

u ) = id(φL′′

v ). Consequently, we have
(id(φL′

u ), id(φL′′

u )) = (id(φL′

v ), id(φL′′

v )) and thereby, id(u) = id(v).
On the other hand, if id(u) = id(v), we have (id(φL′

u ), id(φL′′

u )) = (id(φL′

v ), id(φL′′

v )). As
a result, we have id(φL′

u ) = id(φL′

v ) and id(φL′′

u ) = id(φL′′

v ). Therefore, considering that
|L′| ≤ k and |L′′| ≤ k, we can use the induction hypothesis to deduce that Λ((Ti|L′)[φL′

u ]) =
Λ((Tj |L′)[φL′

v ]) and Λ((Ti|L′′)[φL′′

u ]) = Λ((Tj |L′′)[φL′′

v ]). Thus, we have Λ(Ti[u]) = Λ(Tj [v]).
◀

Next, we analyze the time complexity of the procedure Fast_Label_Trees:

▶ Lemma 9. Given a set S = {T1, T2, . . . , Tk} of trees with identical sets of n leaf labels,
the procedure Fast_Label_Trees(S) runs in O(kn log n) time.
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Proof. Let T (n) be the running time of Fast_Label_Trees(S). By Lemma 5.2 of [12], the
construction of T ′

i and T ′′
i takes O(n) time for each Ti ∈ S, and thereby, a total of O(kn)

time for all of the trees. Computing id(φL′

u ) and id(φL′′

u ) for each node u in some tree Ti ∈ S
can be done by a bottom up traversal of Ti, along with T ′

i and T ′′
i , in a total of O(kn) time.

The number of obtained pairs is O(kn). Furthermore, we can deduce from Lemma 8 that all
values in the pairs are in {0, 1, . . . , O(kn)}. Thus, sorting these pairs using radix sort and
assigning labels to the nodes take O(kn) time. Therefore, we have T (n) = 2T (n/2) + O(kn),
and consequently, T (n) = O(kn log n). ◀

Now, we can prove Theorem 5, regarding the correctness and time complexity of the
procedure Fast_Compute_Weights:

▶ Theorem 5. Given a set S = {T1, T2, . . . , Tk} of trees with identical sets of n leaf labels,
the procedure Fast_Compute_Weights(S) calculates the weights of all clusters occurring in S
in O(kn log n) time.

Proof. We start by proving that the procedure Fast_Compute_Weights works correctly.
The correctness of Step 1, making a call to the procedure Fast_Label_Trees, follows from
Lemma 8. In the following steps, the weight of each cluster is set to the count of the label of
its associated node, indicating the number of trees in S in which that cluster occurs.

Now, we analyze the time complexity. As shown in Lemma 9, assigning labels to each
node in Step 1 takes O(kn log n) time. Considering that there are O(kn) labels in total and
each label is in {1, . . . , 2kn}, Step 2 (counting sort) takes O(kn) time. Furthermore, it is
easy to see that Steps 3 and 4 take O(kn) time each. Therefore, the running time of the
procedure is O(kn log n). ◀

5 Procedure Fast_Filter_Clusters

On a high level, our new procedure Fast_Filter_Clusters, with an improved running time
of O(n log n), follows a similar approach as the O(n log2 n)-time procedure Filter_Clusters
in [20]. The objective is to build a tree T whose cluster collection is C(T ) = {Λ(TA[u]) :
u ∈ V (TA) and w(u) > w(x) for every x ∈ V (TB) with Λ(TA[u]) ̸⌣ Λ(TB [x])}, i.e., to delete
every cluster u in TA that conflicts with at least one cluster in TB with a weight greater than
or equal to that of u. To do this, both procedures apply the centroid path decomposition
technique to divide TA into a centroid path π = ⟨pα, pα−1, . . . , p1⟩, where pα is the root
of TA, and the set σ(π) of side trees of π. Since each cluster in TA is either located inside a
side tree of π or associated with a node belonging to π, the cluster collection C(TA) may be
expressed recursively as:

C(TA) =
⋃

τ∈σ(π)

C(τ) ∪
⋃

pi∈π

{Λ(TA[pi])}. (1)

Following this key observation, to check all clusters of TA in order to decide which ones
to delete, the procedures handle the side trees of π recursively and the clusters associated
with π directly.

The main difference between Filter_Clusters from [20] and Fast_Filter_Clusters
presented here is how they handle the clusters

⋃
pi∈π{Λ(TA[pi])}. The former uses a dynamic

data structure to keep track of the currently conflicting nodes from TB while traversing π

upwards and retrieving the heaviest conflicting cluster at each step, taking O(n log n) time
to process all the clusters associated with π. In addition, the time taken to set up the
recursive calls to the side trees is O(n). Since the total time spent on each recursion level is
O(n log n) and there are O(log n) recursion levels, the time complexity of Filter_Clusters is
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O(n log2 n). In contrast, Fast_Filter_Clusters detects conflicts between clusters associated
with π and clusters in TB by representing clusters as suitably defined integer intervals. It
then solves an instance of the Max-Manhattan Skyline Problem to identify the heaviest
conflicting clusters. We will show that this method requires O(n) time to handle all of the
clusters associated with π. Thus, each recursion level takes O(n) time, and the total running
time becomes O(n log n).

The pseudocode of Fast_Filter_Clusters is presented in Algorithm 4.

Algorithm 4 The procedure Fast_Filter_Clusters.

Algorithm Fast_Filter_Clusters

Input: Two weighted trees TA and TB with Λ(TA) = Λ(TB) = L such that every u ∈
V (TA) ∪ V (TB) has a positive integer weight w(u), and that some nodes in TB may
be spoiled.

Output: A tree T with Λ(T ) = L and C(T ) = {Λ(TA[u]) : u ∈ V (TA) and w(u) >

w(x) for every x ∈ V (TB) with Λ(TA[u]) ̸⌣ Λ(TB [x])}.

1 Compute a centroid path π = ⟨pα, pα−1, . . . , p1⟩ of TA, where pα is the root of TA and p1 is
a leaf, and compute the set σ(π) of side trees of π.

/* Handling the side trees */
2 for each side tree τ ∈ σ(π) do

Construct TB ||Λ(τ).
Temporarily change the node weights in τ and TB ||Λ(τ) by sorting them
in nondecreasing order and setting each node weight equal to its rank.
Let τ ′ := Fast_Filter_Clusters(τ, TB ||Λ(τ)).
Replace τ by τ ′ in TA and restore the node weights in τ ′.

endfor

/* Handling the centroid path */
3 for i = 1 to α do

Compute ni := |Λ(TA[pi])|.
4 Temporarily relabel the leaf labels in L by the positive integers {1, 2, . . . , nα} in a way that

makes π become a stratifying path in TA.

5 Compute and store, for every v ∈ V (TB), the values m(v) = min{Λ(TB [v])} and M(v) =
max{Λ(TB [v])}. For any v ∈ V (TB), if v is a spoiled node, then set M(v) = nα + 1.

6 Compute and store, for every v ∈ V (TB), the value filled(v) equivalent to the largest
integer x such that {1, 2, . . . , x} ⊆ Λ(TB [v]).

7 Create a set I of weighted intervals over {1, 2, . . . , nα + 1} as follows:
For each v ∈ V (TB), make an interval [vℓ, vr] with weight w(v), where
vℓ = 2 · max{filled(v) + 1, m(v)} and vr = 2 · M(v). Insert the weighted
interval into I.

8 Solve the Max-Manhattan Skyline Problem on I and let f be the solution.
9 for i = α downto 2 do

if w(pi) ≤ f [2 · ni + 1] then
Apply a delete operation on pi in TA.

endif
endfor

10 Restore the leaf labels of L to the values that they had before Step 4.

11 return TA

End Fast_Filter_Clusters
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Before describing the correctness of Fast_Filter_Clusters, we introduce a lemma that
can be used to speed up the detection of conflicting clusters. Let T be a phylogenetic tree
such that Λ(T ) is a set of positive integers {1, 2, . . . , n}. Moreover, let π = ⟨pα, pα−1, . . . , p1⟩
denote a path in T , where pα is the root of T and p1 is a leaf. For each i ∈ {1, 2, . . . , α},
define ni := |Λ(T [pi])|. Note that n1 = 1 and nα = n. The path π is called a stratifying path
if Λ(T [pi]) = {1, 2, . . . , ni} for every i ∈ {1, 2, . . . , α}. Furthermore, for any C ⊆ Λ(T ), define
filled(C) as the largest integer x such that {1, 2, . . . , x} ⊆ C. In the following lemma, we
determine whether a specified cluster C and the cluster associated with a specified node pi

on a stratifying path π are compatible:

▶ Lemma 10. Let T be a phylogenetic tree with Λ(T ) = {1, 2, . . . , n}. Also, let π =
⟨pα, pα−1, . . . , p1⟩ be a stratifying path in T . For any C ⊆ Λ(T ) and i ∈ {1, 2, . . . , α}, we
have C ̸⌣ Λ(T [pi]) iff max{filled(C) + 1, min(C)} < ni + 0.5 < max(C) holds, where
Λ(T [pi]) = {1, 2, . . . , ni}.

Proof. First suppose that C ̸⌣ Λ(T [pi]). This means that there exist x, y, z ∈ Λ(T ) such
that x, y ∈ C, z ̸∈ C, x, z ∈ Λ(T [pi]), and y ̸∈ Λ(T [pi]). Then:

x ∈ Λ(T [pi]) implies x ≤ ni. Since x ∈ C, we have min(C) < ni + 0.5.
y ̸∈ Λ(T [pi]) gives y > ni. Since y ∈ C is an integer, we deduce that ni + 0.5 < max(C).
z ∈ Λ(T [pi]) implies z ≤ ni. Furthermore, z ̸∈ C gives z ≥ filled(C) + 1. Combining the
two inequalities, we get filled(C) + 1 < ni + 0.5.

On the other hand, suppose that C ⌣ Λ(T [pi]). By the definition of cluster compatibility,
at least one of the following three cases holds:

C ⊆ Λ(T [pi]): Then x ≤ ni for all x ∈ C, i.e., max(C) ≤ ni. Thus, the inequality
ni + 0.5 < max(C) is false.
Λ(T [pi]) ⊆ C: Then filled(C) ≥ ni, and hence filled(C) + 1 < ni + 0.5 is false.
C ∩Λ(T [pi]) = ∅: Then x > ni for all x ∈ C, i.e., min(C) > ni. Thus, min(C) < ni +0.5
is false. ◀

Figure 6 provides an illustration of Lemma 10.

1
p

2
p

3
p

α
p

n n(        +1) . . .
α−1

1 2 . . . 8

9 . . . 15

Figure 6 Illustration of Lemma 10. Let T be the tree with a stratifying path ⟨pα, pα−1, . . . , p1⟩
shown above. Consider the node p2 and a cluster C = {5, 6, 8, 9}. Since min(C) = 5, max(C) = 9,
filled(C) = 0, and n2 = 8, Lemma 10 implies C ̸⌣ Λ(T [p2]). Next, consider p2 and C′ =
{1, 2, . . . , 12}. Since min(C′) = 1, max(C′) = 12, filled(C′) = 13, and n2 = 8, the inequality in
Lemma 10 does not hold. Thus, C′ ⌣ Λ(T [p2]).

Now, we prove the correctness of the procedure Fast_Filter_Clusters:
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▶ Lemma 11. Given two weighted trees TA and TB with identical sets of n leaf labels, the
procedure Fast_Filter_Clusters(TA, TB) works correctly.

Proof. In Step 1, the procedure computes a centroid path π = ⟨pα, pα−1, . . . , p1⟩, where pα

is the root of TA, and the set σ(π) of side trees of π. According to Equation (1), any cluster
C in TA that should be removed is in either π or one of its side trees. In the former case,
C will be removed in Steps 3–10, and in the latter case, C will be removed during some
recursive call in Step 2.

Step 2 handles the side trees in σ(π) by recursively calling the procedure for each τ ∈ σ(π)
and replacing τ in TA by the obtained tree τ ′. Before each recursive call, the procedure
normalizes the weights of the nodes in τ and TB ||Λ(τ) to make them positive integers of
size O(|Λ(τ)|). This is achieved by sorting the weights in non-decreasing order and then
setting the weight of each node equal to its rank in this order, where equally ranked nodes
get identical weights.

Steps 3–10 handle the centroid path π as follows. After doing a bottom-up traversal
of TA to compute ni := |Λ(TA[pi])| for all pi ∈ π, the leaf labels are modified to make π

a stratifying path in TA. As a consequence, for any node pi on the centroid path π, its
associated cluster Λ(TA[pi]) makes an integer interval of the form [1, ni]. According to
Lemma 10, Λ(TA[pi]) and any cluster C associated with a non-spoiled node in TB conflict
with each other iff max{filled(C) + 1, min(C)} < ni + 0.5 < max(C). Therefore, one
can determine whether Λ(TA[pi]) ̸⌣ C by constructing an interval whose left endpoint is
2 · max{filled(C) + 1, min(C)} and whose right endpoint is 2 · max(C), and then checking if
it contains the point 2 · ni + 1. Otherwise, if C is associated with a spoiled node in TB , the
condition for a conflict becomes max{filled(C)+1, min(C)} < ni+0.5, and the corresponding
interval’s right endpoint is set to 2 · (nα + 1). Steps 5–9 determine conflicts simultaneously
between all clusters associated with π and all clusters in TB by solving an instance of the
Max-Manhattan Skyline Problem. By the above, its solution f has the property that
f [2 · ni + 1] is the weight of the heaviest cluster in TB that conflicts with any cluster of
the form Λ(TA[pi]). If this number is greater than or equal to w(pi), then the procedure
deletes pi from TA. ◀

Next, we show that Fast_Filter_Clusters runs in O(n log n) time:

▶ Lemma 12. Given two weighted trees TA and TB with identical sets of n leaf labels, the
procedure Fast_Filter_Clusters(TA, TB) runs in O(n log n) time.

Proof. Step 1 can be completed in O(n) time [8]. Step 2 uses O(n) time to construct
the TB ||Λ(τ)-trees according to Lemma 2 and by applying radix sort to normalize the
node weights. Step 2 also makes a recursive call for each τ . Next, bottom-up traversals
of TA and TB are used to implement Steps 3–6, taking an additional O(n) time. Creating
the intervals that represent clusters in Step 7 takes O(n) time. Also, solving the Max-
Manhattan Skyline Problem in Step 8 takes O(n) time, according to Lemma 3. This is
because there are O(n) intervals and their weights are positive integers of size O(n). The
necessary delete operations on π are carried out in top-down order, which means that the
parent of any node in TA is changed at most once and thereby, Step 9 takes O(n) time in
total. Finally, Step 10 restores the original leaf labels in O(n) time.

The time complexity of Fast_Filter_Clusters(TA, TB) is thus g(n) +
∑

τ∈σ(π) h(τ),
where g(n) is the execution time, excluding any recursive calls, and h(τ) is the running time
of Fast_Filter_Clusters(τ, TB ||Λ(τ)) for any side tree τ of π. According to the discussion
above, g(n) = O(n). For any recursion level j, let σj denote the set of all side trees that
are computed for all the centroid paths on this level. The total time taken on the recursion
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level j +1 for the non-recursive parts is
∑

τ∈σj
g(|Λ(τ)|), and since the trees in σj are disjoint,∑

τ∈σj
g(|Λ(τ)|) = g(n) = O(n). By Lemma 4, every τ satisfies |Λ(τ)| ≤ n/2, and hence

there are O(log n) recursion levels. Therefore, the total running time is O(n log n). ◀

Combining Lemmas 11 and 12 provides the proof of Theorem 6:

▶ Theorem 6. Given two weighted trees TA and TB with identical sets of n leaf labels, the
procedure Fast_Filter_Clusters(TA, TB) filters out clusters as needed in O(n log n) time.

6 Concluding Remarks

In this paper, we introduced an O(kn log n)-time algorithm for computing the FDCT, leading
to an asymptotically faster approach compared to the best previously known algorithm
(Gawrychowski et al. [15]). The improved procedure Fast_Compute_Weights, presented
as part of our new algorithm, can also be employed in algorithms for building the greedy
consensus tree [15, 21, 32], replacing the slower versions of the procedure. Closing the gap
between the upper bound of O(kn log n) and the lower bound of Ω(kn) for the running time
of the fastest FDCT construction algorithm remains an important open problem.

We implemented our O(kn log n)-time algorithm for constructing the FDCT. The source
code can be found at https://github.com/tswddd2/FDCT_new. We achieved this imple-
mentation by adding approximately 2000 lines of C++ code to the source code of the
min{O(kn2), O(kn(k + log2 n))}-time algorithm [20] for the same problem, available at
https://github.com/Mesh89/FACT2 and also included in the FACT package [21], which
was previously the fastest implementation. To implement the new O(kn log n) algorithm, we
followed the descriptions in this article and used dynamic_bitset from the Boost libraries [1].
Preliminary experiments to evaluate the performance of our new algorithm indicate that it
is faster in practice than the O(kn2)-time and O(kn(k + log2 n))-time algorithms from [20].
The detailed results will be reported in the journal version of this paper.
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Abstract
In this paper, we present the first decremental fixed-parameter sensitivity oracles for a number
of basic covering and packing problems on graphs. In particular, we obtain the first decremental
sensitivity oracles for Vertex Planarization (delete k vertices to make the graph planar) and
Cycle Packing (pack k vertex-disjoint cycles in the given graph). That is, we give a sensitivity
oracle that preprocesses the given graph in time f(k, ℓ)nO(1) such that, when given a set of ℓ edge
deletions, the data structure decides in time f(k, ℓ) whether the updated graph is a positive instance
of the problem. These results are obtained as a corollary of our central result, which is the first
decremental sensitivity oracle for Topological Minor Deletion (cover all topological minors in
the input graph that belong to a specified set, using k vertices).

Though our methodology closely follows the literature, we are able to produce the first explicit
bounds on the preprocessing and query times for several problems. We also initiate the study of
fixed-parameter sensitivity oracles with so-called structural parameterizations and give sufficient
conditions for the existence of fixed-parameter sensitivity oracles where the parameter is just the
treewidth of the graph. In contrast, all existing literature on this topic and the aforementioned
results in this paper assume a bound on the solution size (a weaker parameter than treewidth for
many problems). As corollaries, we obtain decremental sensitivity oracles for well-studied problems
such as Vertex Cover and Dominating Set when only the treewidth of the input graph is
bounded. A feature of our methodology behind these results is that we are able to obtain query
times independent of treewidth.
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1 Introduction

The study of basic graph problems on dynamic inputs has been a central aspect of algorithmics
for several decades. A well-studied model in this line of research is the “fault tolerance
model”. In this model, one assumes that the network at hand is susceptible to a bounded
number of faulty network components (i.e., failing nodes or links) at any given time. The
goal is to efficiently preprocess the network and produce a sufficiently small data structure so
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that once the set of faulty nodes or links is given (or equivalently, the corresponding vertices
or edges in the graph are deleted), one can recover various properties of the network from the
stored data structure without recomputing these from scratch. The fault tolerance model has
been a hugely successful setting for various advances on fundamental data structures such
as spanners [39] and distance sensitivity oracles [21]. The “dimensions” of interest in such
data structures are: the time needed by the preprocessing algorithm, the space complexity of
the data structure, the time required to query the data structure in order to recover various
properties of the input graph minus the set of failed elements and in some cases, the time
required to update the data structure to reflect the failures.

The primary focus of research in the fault tolerance model has been on polynomial-time
solvable problems. However, in a recent paper, Bilò et al. [6] extended the fault tolerance
model to NP-complete graph problems by introducing a notion of decremental fixed-parameter
sensitivity oracles (FSO). For an edge (respectively, vertex) decremental sensitivity oracle for
a fixed-parameter tractable (FPT) problem Π, the input is an instance (G, k) of Π, where
G is an n-vertex input graph and k is the parameter and a number ℓ, and the goal is to
develop a preprocessing algorithm A that builds a data-structure (i.e., the oracle) that, when
queried on a set F of at most ℓ edges (respectively, vertices), decides whether (G− F, k) is a
positive instance of the problem, using a query algorithm Q. The goal here is to ensure that
the preprocessing time is f(k, ℓ)nO(1) and the query time is g(k, ℓ)no(1) for some functions
f and g. Unless otherwise specified, one allows both edge and vertex failures. Using this
framework, Bilò et al. [6] gave the first edge decremental FSO for several problems including
Long Path and Vertex Cover. Subsequently, Alman and Hirsch [3] extended the work
of Bilò et al. [6] to also account for edge additions, by introducing a fully dynamic notion of
sensitivity oracles. Moreover, Alman and Hirsch [3] define a notion of efficient sensitivity
oracles, where the preprocessing time is f(k)nO(1), and the query time is ℓO(1)g(k)no(1).
That is, the dependence on ℓ in both the preprocessing and query time is polynomial. By
developing a dynamic variant of the extensor coding method [12], they show that Long
Path has a fully dynamic efficient sensitivity oracle even on directed graphs.

These advances made by Bilò et al. [6] and Alman and Hirsch [3] for individual problems
pose some natural questions: Could we prove general statements that provide a unified
explanation of the existence of fixed-parameter sensitivity oracles (FSOs) for families of
problems? Could we obtain efficient FSOs for these problems and give explicit bounds on
the preprocessing and query times? These questions at the intersection of data structures
and parameterized algorithms are our main motivation.

In this paper, we make significant progress towards answering these questions by presenting
meta-theorems from which decremental FSOs for a number of basic covering and packing
problems on graphs can be derived.

1.1 Our contributions I: FSOs for vertex deletion problems
Many important NP-hard graph optimization problems can be phrased as a vertex deletion
problem to a graph class satisfying some property P . Here, the input is a graph G on
n vertices and the task is to find a minimum size vertex subset S such that the graph
G− S obtained from G by removing S and its incident edges has the property P . By the
well-known result of Lewis and Yannakakis [40] such problems are NP-complete for hereditary
properties. For this reason the study of these problems is an integral part of the areas of
approximation algorithms, exact-exponential algorithms and parameterized complexity, and
has been responsible for the development of many classic algorithmic techniques.
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Hence, the family of vertex deletion problems provide a natural candidate for us to develop
meta-theorems. This brings us to the Topological Minor Deletion (TM-Deletion)
problem which is a vertex deletion problem that directly generalizes numerous well-known
problems vertex deletion problems including Vertex Cover, Feedback Vertex Set
(delete at most k vertices to obtain a forest) and Vertex Planarization, to name a few.
In TM-Deletion, the input is an undirected graph G, a family F of undirected graphs
such that every graph in F has at most h(F) vertices, and an integer k. The parameter is
k + h(F) and the goal is to decide whether there exists S ⊆ V (G) of size at most k such
that G − S contains no graph from F as a topological minor. A graph H is a topological
minor of G if H can be obtained from G by deleting vertices or edges, and then contracting
edges as long as each such edge is incident to at least one vertex of degree precisely 2. The
expressive power of TM-Deletion naturally implies that an FSO for this problem would
enable us to obtain as a consequence, FSOs for a host of other problems.

▶ Theorem 1. Topological Minor Deletion has a decremental fixed-parameter sensit-
ivity oracle.

As a consequence of Theorem 1, we obtain decremental FSOs1 for many well-studied
parameterized problems, thus extending the scope of sensitivity oracles for NP-complete
graph problems significantly beyond the state of the art. We refer the reader to the appendix
for the definitions of problems not defined here and to Section 2 for the formal definition of
treewidth and (topological) minors.

▶ Corollary 2. The following problems have FSOs as a consequence of Theorem 1.
1. Feedback Vertex Set (FVS). Or more generally, η-Treewidth Modulator, i.e.,

decide whether we can delete at most k vertices from the input graph to obtain a graph
with treewidth at most η.

2. Vertex Planarization. Or more generally, Minor Deletion, i.e., for a set F of
graphs, decide whether we can delete at most k vertices from the input graph to obtain a
graph that excludes every graph in F as a minor.

3. Cycle Packing. Or more generally, Topological Minor Packing, i.e., for a set
F of graphs, decide whether the input graph contains k vertex disjoint topological-minor
models of graphs in F .

4. Long Path and Long Cycle. That is, decide whether there is a path (or a cycle,
respectively) of length at least k in the input graph.

A useful feature of our proof techniques is that it allows for easy (albeit rough) estimations
of the preprocessing and query times of most of the FSOs in the above statement. As a
result, without much additional effort, one can prove the following bounds on specific FSOs
in Corollary 2.

▶ Theorem 3. The following bounds can be obtained.2
1. Feedback Vertex Set has an FSO with preprocessing time tow(3,O((k+ ℓ)11))n4 and

query time tow(2,O((k + ℓ)11)).
2. Cycle Packing has an FSO with preprocessing time tow(3,O((k + ℓ)20))n4 and query

time tow(2,O((k + ℓ)20)).
3. Long Path and Long Cycle have FSOs with preprocessing time tow(2,O(k log(ℓ)))n4

and query time tow(2,O(k log(ℓ))).

1 Since we only deal with the decremental setting in this paper, we drop the explicit reference to this
term in the rest of the paper and simply say, FSO.

2 The notation tow(p, q) indicates a runtime that is exponential in q, where q is on top of a tower of
iterated exponentials of height p.
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Note that these are the first concrete bounds for Cycle Packing. However, the bounds
for Long Path implied by our meta-theorem are significantly worse than that of Bilò et
al. [6] and Alman and Hirsch [3], which is not surprising since we obtain these bounds by
instantiating a general-purpose theorem. For instance, the former get query time upper
bounded by O(ℓ(ℓ + k)) and the latter, ℓ22kkO(1). However, we prove the bounds in the
above theorem in order to illustrate how to use our methodology to obtain explicit bounds
for specific problems.

1.2 Our contributions II: A meta-theorem for efficient FSOs
Algorithmic meta-theorems are general algorithmic results applicable to a whole range of
problems. Many prominent algorithmic meta-theorems are about model checking; such
theorems state that for certain kinds of logic L, and all classes of structures C that have a
certain property, there is an algorithm that takes as input a formula ϕ ∈ L and a structure
S ∈ C and efficiently determines whether S |= ϕ. One of the most famous results in this
direction is the seminal theorem of Courcelle [16, 14, 15] for model checking of Monadic
Second Order Logic (MSO) on graphs of bounded treewidth (see also [1, 5, 11, 17, 22]).
Courcelle’s theorem (which also extends to a fragment called Counting Monadic Second Order
Logic or CMSO) is a crucial component of the parameterized complexity toolbox because
numerous well-studied graph problems can be expressed in this particular fragment of logic.
Classic examples of CMSO-definable graph properties are Hamiltonicity and 3-Colorability.
We refer the reader to Section 2.2 for a formal description of CMSO-definability. Consequently
a natural question arises – “Does an analogue of Courcelle’s theorem hold in the fault-tolerant
setting?” An affirmative answer is implied by existing results in the literature on query
testing MSO formulas on bounded-treewidth graphs (see, for instance, Theorem 6.1.3 in [37]).
These results build upon Courcelle’s approach of reducing model checking MSO sentences on
bounded-treewidth graphs to model checking MSO sentences on labelled trees. However, in
the quest for efficient FSO (recall that we want preprocessing and query time polynomial in
the number of failures), this approach does not yield a positive outcome since it involves a
reduction to MSO model checking on graphs, where the formula size now depends on the
number of failures and so, the query algorithm may take time exponential in the number of
failures.

In this paper, we prove the following meta-theorem giving a sufficient condition for the
existence of efficient FSOs with the additional property that the query times are actually
independent of input size n (although the definition allows for sublinear dependence on n).

▶ Theorem 4. Every CMSO-definable graph problem has an efficient non-uniform FSO with
query time independent of input size, when parameterized by the treewidth of the input graph
and size of the CMSO-sentence defining it.

A non-uniform FSO is simply an FSO where one is allowed to have, for every value of
the parameter k and number ℓ of permitted failures, a distinct preprocessing algorithm Ak,ℓ

and query algorithm Qk,ℓ.
Theorem 4 forms a crucial component of our proof of Theorem 1. Essentially, we use

Theorem 4 to handle “low-treewidth” instances of TM-Deletion. However, notice that
Theorem 4 only guarantees a non-uniform FSO whereas Theorem 1 has no such caveat.
Hence, a few remarks are in order here. Often, in the literature on non-uniform FPT
algorithms, it has been demonstrated that the non-uniformity can be omitted either through
self-reducibility arguments or by a case-by-case understanding of the combinatorics behind
each problem. We are able to provide such arguments regarding Theorem 4 that essentially
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suggest that as long as one could solve the CMSO-definable problem under consideration
using an explicit dynamic programming algorithm on bounded-treewidth graphs, i.e., the vast
majority of natural CMSO-definable problems in the literature, then one can actually infer
an FSO for the problem on bounded-treewidth graphs without the caveat of non-uniformity.
Moreover, this approach can lead to obtaining explicit running time bounds. This is also
why we avoid resorting to the aforementioned black-box results on query testing in the
literature to handle the low treewidth case. In this paper, we formally exemplify our strategy
of eliminating the non-uniformity resulting from the invocation of Theorem 4 for the special
case of TM-Deletion, which enables us to prove Theorem 1. Though we only deal with
TM-Deletion, our arguments can be easily seen to extend to other problems, which we use
to obtain explicit bounds for some of them. We believe that Theorem 4 will be a crucial
component of designing FSOs for more problems, especially in conjunction with techniques
such as irrelevant vertex removal [25].

In this context, it is important to mention the work of Courcelle and Vanicat [18]. They
prove a meta-theorem that implies an efficient FSO for all CMSO-definable problems when
parameterized by the treewidth of the input graph and size of the CMSO-sentence defining
it. We note that their query times have a logarithmic dependence on n. It is known in the
community (although not explicitly published to the best of our knowledge) that the log(n)
dependence can be removed with appropriate preprocessing. However, we believe that the
methodology behind Theorem 4 is useful as it enables us to easily obtain concrete bounds in
our applications, which does not appear to be straightforward from the result of [18].

1.3 Our contributions III: Edge FSOs parameterized only by treewidth

We demonstrate the further applicability of the proof technique behind Theorem 4 to obtain a
meta-theorem that gives sufficient conditions on a problem to have an edge FSO parameterized
by the treewidth alone. Notice that all our results and those in the literature up to this
point have the solution size as the parameter either explicitly or implicitly. In particular, in
Theorem 4 the parameter also includes the size of the MSO formula, which in turn often
depends on the solution size in the case of specific problems. Moreover, we highlight the fact
that the oracles in this section have query time with a polynomial dependence on ℓ (in fact,
only O(ℓ2)). Moreover, the query times are independent of the treewidth. However, they are
not efficient oracles as the preprocessing algorithm has exponential dependence on ℓ.

We give the following (non-exhaustive) exemplifications of our meta-thereom.

▶ Theorem 5. The following hold.
1. Vertex Cover admits an edge FSO parameterized by the treewidth k with preprocessing

time ℓO(2k) · nO(1), and query time O(ℓ2).
2. Dominating Set admits an edge FSO parameterized by the treewidth k with preprocessing

time ℓO(3k) · nO(1), and query time O(ℓ2).

Note that since the treewidth of a graph is at most the size of the minimum vertex
cover, the first statement directly implies an edge FSO for Vertex Cover parameterized
by solution size.

Here also, the work of Courcelle and Vanicat [18] is relevant as they prove an optimization
version of their meta-theorem. However, their query time depends on the treewidth whereas
we are able to obtain FSOs with query times independent of the treewidth.
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1.4 Related work
Alman and Hirsch [3] note that the work of van den Brand and Saranurak [46] (see full
version [47]) on distance sensitivity oracles in combination with standard color-coding
techniques also imply a fully dynamic sensitivity oracle for Long Path on directed graphs,
but with a worse dependence on k and ℓ. We note that though a no(1) multiplicative factor
in the query time is permitted in the definition of FSO, this is not exploited in their results
and similar to our results, the queries of both Alman and Hirsch [3] as well the alternate
oracle implied by Brand and Saranurak [46] run in time independent of the input size.

In other recent work, Pilipczuk et al. [44] gave a sensitivity oracle that answers s-t
connectivity in constant time if a constant number of vertex failures occur. Interestingly,
Pilipczuk et al. [44] show that the techniques they use to obtain their result can be used to
design a model checking algorithm for the recently introduced separator logic [10] which is
more expressive than First Order Logic but less expressive than MSO. This is a promising
sign that advances on sensitivity oracles can have a much broader impact beyond the specific
problem for which they are developed. We also note that the Arxiv version of [44] contains
the tools (MSO query testing on trees) required to prove Kazana’s result [37] on MSO query
testing on bounded-treewidth graphs.

In recent years, spurred by the first systematic exploration of the intersection of paramet-
erized and dynamic graph algorithms by Alman et al. [4], there has been a significant amount
of work combining techniques from these two areas. Of special interest in the context of our
paper is the work of Dvorak et al. [23] (improved upon by Chen et al. [13]) and Majewski et
al. [42], who gave fully dynamic data structures that are able to maintain CMSO properties.
That is, they obtain a data structure that is stronger than just a sensitivity oracle, but at
the cost of weaker parameters than the one we use (i.e., treewidth).

Finally, on the topic of intersecting parameterized complexity and fault-tolerant data
structures, Lochet et al. [41], in a work preceding the work of Bilò et al. [6], studied fault-
tolerant spanners in directed graphs by choosing parameters expressing certain types of
structure. Recently, Misra [43] initiated the study of computing fault-tolerant solutions (e.g.,
a solution that remains a feedback vertex set of the graph even if one vertex is removed from
the solution) for NP-hard problems, with follow up work by Blazej et al. [7].

2 Preliminaries

2.1 Graphs
Given a graph G, let V (G) and E(G) denote the vertex and edge set of G, respectively. We
only deal with simple graphs in this paper. When G is clear from the context, let n and
m denote |V (G)| and |E(G)|, respectively. For a graph G, paths(G) denotes the set of all
simple paths in G. For a set A ⊆ V (G), we denote by E(A) the set of those edges in G with
both endpoints in A.

Formally, the treewidth of a graph is defined as follows.

▶ Definition 6 (Tree decomposition). A tree decomposition of a graph G is a pair (T, β)
of a tree T and β : V (T ) → 2V (G), such that: (i)

⋃
t∈V (T ) β(t) = V (G), (ii) for any edge

e ∈ E(G), there exists a node t ∈ V (T ) such that both endpoints of e belong to β(t), and (iii)
for any vertex v ∈ V (G), the subgraph of T induced by the set Tv = {t ∈ V (T ) : v ∈ β(t)}
is a tree. We say a tree decomposition is nice if it additionally satisfies the conditions on
page 161 of [19]. The width of (T, β) is maxv∈V (T ){|β(v)|} − 1. The treewidth of G is the
minimum width of a tree decomposition of G.
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Let (T, β) be a tree decomposition of a graph G. We refer to the vertices of the tree T
as nodes. We always assume that T is a rooted tree and so, we have a natural parent-child
and ancestor-descendant relationship among nodes in T . The set β(t) is called the bag
at t. For two nodes u, t ∈ T , we say that u is a descendant of t, denoted u ⪯ t, if t lies
on the unique path connecting u to the root. Note that every node is its own descendant.
If u ⪯ t and u ̸= t, then we write u ≺ t. For a tree decomposition (T, β) we also have a
mapping γ : V (T ) → 2V (G) defined as γ(t) =

⋃
u⪯t β(u). For every t ∈ V (T ), we also define

β̂(t) = β(t) ∪E(β(t)) and γ̂(t) = γ(t) ∪E(γ(t)). Recall that for a vertex set S, E(S) denotes
the set of all edges with both endpoints in S. We call a tree decomposition nice if it satisfies
the conditions in section 7.2 of [20].

There is an algorithm that, given a graph G on n vertices and an integer w, runs in time
O(f(w)n3) and either correctly answers that G has treewidth more than w or outputs a tree
decomposition of G of optimal width [8].

We next recall the classic notions of minors and topological minors.

▶ Definition 7 (Minors). A graph H is a minor of G if there exists a function ϕ : V (H) →
2V (G) with the following properties: (i) for every h ∈ V (H), G[ϕ(h)] is a connected graph,
(ii) for all distinct h, h′ ∈ V (H), ϕ(h) ∩ ϕ(h′) = ∅, and (iii) for all {h, h′} ∈ E(H), there
exist u ∈ ϕ(h) and v ∈ ϕ(h′) such that {u, v} ∈ E(G). The function ϕ is called a minor
model of H in G.

▶ Definition 8 (Topological minors). Let G and H be two graphs. We say that H is a
topological minor of G if there exist injective functions ϕ : V (H) → V (G) and φ : E(H) →
paths(G) such that

for every e = {h, h′} ∈ E(H), the endpoints of φ(e) are ϕ(h) and ϕ(h′),
for every distinct e, e′ ∈ E(H), the paths φ(e) and φ(e′) are internally vertex-disjoint,
there does not exist a vertex v in the image of ϕ and an edge e ∈ E(H) such that v is an
internal vertex on φ(e).

We say that (ϕ, φ) is a topological-minor model of H in G.

Note that if H is a topological minor of G, then it is also a minor of G. However, the
converse does not hold.

Boundaried graphs. Roughly speaking, a boundaried graph is a graph where some vertices
are labeled. A formal definition is as follows.

▶ Definition 9 (Boundaried graph). A boundaried graph is a graph G with a set ∂(G) ⊆ V (G)
of distinguished vertices called boundary vertices, and an injective labeling λG : ∂(G) → N.
The set ∂(G) is the boundary of G, and the label set of G is Λ(G) = {λG(v) | v ∈ ∂(G)}.

Given a finite set I ⊆ N, GI denotes the class of all boundaried graphs whose label set is
I, and G⊆I =

⋃
I′⊆I GI′ . A boundaried graph in G⊆[t] is called a t-boundaried graph. Note

that if G is a boundaried graph and x ∈ V (G) is a vertex in the boundary, then G− x is a
boundaried graph that inherits its boundary and labeling from G in the natural way. That
is, we simply remove x and preserve the labeling of the remaining vertices.

2.2 Counting Monadic Second Order Logic
The syntax of Monadic Second Order Logic (MSO) of graphs includes the logical connectives
∨, ∧, ¬, ⇔, ⇒, variables for vertices, edges, sets of vertices and sets of edges, the quantifiers
∀ and ∃, which can be applied to these variables, and the binary relations: (i) u ∈ U , where
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u is a vertex variable and U is a vertex set variable; (ii) d ∈ D, where d is an edge variable
and D is an edge set variable; (iii) inc(d, u), where d is an edge variable, u is a vertex
variable, and the interpretation is that the edge d is incident to u; (iv) equality of variables
representing vertices, edges, vertex sets and edge sets.

An MSO sentence is an MSO formula without free variables. Counting Monadic Second
Order Logic (CMSO) extends MSO by including atomic sentences testing whether the
cardinality of a set is equal to q modulo r, where q and r are integers such that 0 ≤ q < r and
r ≥ 2. That is, CMSO is MSO with the following atomic sentence: cardq,r(S) = true if and
only if |S| ≡ q (mod r), where S is a set. We refer to [5, 16, 15] for a detailed introduction
to CMSO. We note that what we refer to as CMSO in this paper is sometimes called CMSO2
in the literature to indicate that quantifying over edge sets is permitted.

▶ Definition 10 (Property). A property is a function σ from the set of all graphs to
{true, false}. For a CMSO sentence ψ, the property σψ is defined as follows. Given a graph
G, σψ(G) equals true if and only if G |= ψ.

▶ Definition 11 (CMSO-definable property). A property σ is CMSO-definable if there exists
a CMSO sentence ψ such that σ = σψ. In this case, we say that ψ defines σ.

We next recall an implication of the classic Courcelle’s Theorem [16, 14, 15] proof (see
also [17]). This fact, which is a central component in the proof of Theorem 4, says that a
certain canonical equivalence relation over boundaried graphs has finite index. We first need
to identify precisely those pairs of graphs that could potentially be related by the canonical
equivalence and so, we define the compatibility equivalence relation ≡c on boundaried graphs
as follows. We write Gα ≡c Gβ and say that Gα is compatible with Gβ if Λ(Gα) = Λ(Gβ).
Now, we define the canonical equivalence relation ≡σ on boundaried graphs.

▶ Definition 12 (Canonical equivalence). Given a property σ of graphs, the canonical equival-
ence relation ≡σ on boundaried graphs is defined as follows. For two boundaried graphs Gα
and Gβ, we say that Gα ≡σ Gβ if (i) Gα ≡c Gβ, and (ii) for every boundaried graphs Gγ com-
patible with Gα (and thus also with Gβ), we have: σ(Gα ⊕Gγ) = true ⇔ σ(Gβ ⊕Gγ) = true.

Here, the gluing operator ⊕ identifies equally-labeled vertices of the two boundaried
graphs.

A property σ of graphs has finite state if ∀I ⊆ N, the set of equivalence classes of ≡σ

when restricted to G⊆I is finite. Given a CMSO sentence ψ, the canonical equivalence
relation associated with ψ is ≡σψ , and for simplicity, we denote this relation by ≡ψ.

We are now ready to state the required consequence of Courcelle’s Theorem (see, for
example, [16, 14, 15, 9]).

▶ Proposition 13. Every CMSO-definable property on graphs has finite state.

We use the RAM model (see Harel and Tarjan [29]) with addition and uniform cost
measure. Each word holds O(log n) bits and each basic operation on a word is assumed to
take constant time.

3 Technical overview

In this section, we give an overview of our techniques, omitting details where necessary due
to space constraints.
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Since we effectively use Theorem 4 in our proof of Theorem 1, we first describe our proof
of this result and how it implies a (uniform) FSO for TM-Deletion parameterized by the
treewidth of the input graph in addition to the standard parameterization comprising the
deletion set size k and the size of the largest graph in the family F that we want to exclude
as topological minors.

3.1 The FSO for CMSO-definable problems on bounded-treewidth
graphs

We first give an overview of our proof of Theorem 4. For every CMSO formula ψ, one can
define a canonical equivalence relation (see Definition 12) over the set of all boundaried
graphs. A boundaried graph is simply a graph where some vertices are called boundary
vertices and are assigned labels from a finite label set. A graph is t-boundaried if the label
set has size at most t. The Myhill-Nerode equivalence for ψ on boundaried graphs says that
if we take two t-boundaried graphs G1 and G2 then they are equivalent if and only if their
boundary labels are equal and moreover, for any t-boundaried graph whose boundary labels
are the same as those of G1 (and hence also of G2), if we glue the graphs G1 and H along the
boundaries by identifying equally labeled vertices and similarly, if we glue the graphs G2 and
H along the boundaries in this way, either both resulting graphs model ψ or neither one does.
It is known (e.g., from the proof of Courcelle’s theorem itself) that for every CMSO formula
ψ and every t, the number of equivalence classes induced by this relation over t-boundaried
graphs is a function of ψ and t alone (a property called finite state). This implies that there
is an r ∈ N that depends only on ψ and t (in our context, t will be 1 plus the treewidth of the
graph), such that both the number of equivalence classes and the length of the encoding of a
smallest boundaried graph in each equivalence class is upper bounded by r. If ψ and t are
fixed, then r is constant. Now, suppose that R is the set comprising a smallest boundaried
graph from each of the equivalence classes (having fixed ψ and t) and suppose we know R.

Our key insight is the following. Suppose we take a nice tree decomposition of the input
graph and pick a bag. Now, consider the boundaried graph obtained by taking the graph
induced by those vertices that appear in this bag or below it and making the vertices in the
bag the boundary. Then, we observe that (a) this boundaried graph is equivalent to one
of the graphs in R and (b) regardless of the element failures in this boundaried graph, the
resulting graph will still be equivalent to one of the graphs in R. The only catch here is that
before the query is given, one cannot know the representative of the “future” equivalence
class. Hence, our preprocessing strategy aims to keep track, for each boundaried subgraph of
the input graph obtained in the way we described above, all possible canonical equivalence
classes that this graph can fall into, upon the removal of the failed vertices or edges given by
the query in future. Our querying strategy, on the other hand, is a dynamic-programming
algorithm. Depending on the at-most-ℓ queried edges and vertices, we identify a set of O(ℓ)
boundaried graphs that we have preprocessed and by examining the possible different ways
in which the equivalence classes of only these specific boundaried graphs can be impacted by
the failures, we are able to produce a correct answer to the query. This gives us Theorem 4.
The non-uniformity comes from the assumption of knowing R.

To overcome the non-uniformity aspect while applying Theorem 4, one must avoid the
requirement of knowing R. Instead, it is sufficient if, for every bounded-treewidth boundaried
graph, we could efficiently compute an equivalent (under the Myhill-Nerode equivalence)
boundaried graph whose size is bounded by some computable function of ψ and treewidth.

This approach, which was first introduced in order to obtain constructive versions of
meta-algorithmic results on kernelization [26], has proved useful in several other instances in
the literature [24, 25]. We show that this approach is indeed applicable to TM-Deletion
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and in fact our arguments suggest that it is generally applicable as long as one has an explicit
dynamic programming algorithm on bounded-treewidth graphs. Hence, we are able to obtain
an FSO for TM-Deletion parameterized by the deletion set size k, the treewidth of the
input graph, and the size of the largest graph in the family F that we want to exclude as
topological minors.

The same idea is also used to obtain the bounds in Theorem 3. That is, we essentially
reuse the non-uniform oracles given by the proof of Theorem 4 (while avoiding the only source
of non-uniformity) to handle low-treewidth instances of these specific problems. We then use
a win-win argument to extend to FSOs with explicit bounds. In the win-win argument, we
use the fact that if the treewidth of the input graph is already high, we get a trivial oracle
that always answers either yes or no depending on the problem.

As an illustration, we describe the proof of the consequence for Cycle Packing in
Corollary 2. That is, Cycle Packing has an FSO parameterized by the solution size k.
Towards this, we first show that there is an FSO for this problem parameterized by k and
treewidth. Let us assume that the treewidth bound is the max of treewidth and k, and let
it be w. Then, we show that there is an FSO for this problem parameterized by w with
preprocessing time tow(3,O(w2)) · n4 and query time tow(2,O(w2)) + ℓO(1). This is done by
showing that the size of the set R and maximum size of a graph in R are computable and then
using Theorem 4. Intuitively, the bound on the size of the set R comes from the size of the
table at a bag when performing the standard dynamic programming over tree decompositions.
The same fact can be used to also obtain a bound on the size of the graphs in R. That is, if
the subgraph “rooted” at a bag is larger than some computable function of w, then one can
find a pair of ancestor-descendant bags that have the same dynamic programming tables,
implying that these two graphs are equivalent. Now, a standard replacement operation of
“cutting” the subgraph below the ancestor and “pasting” the subgraph below the descendant
gives a strictly smaller equivalent graph and this process can be repeated.

Now, consider a general graph G. If G has treewidth greater than s(k, ℓ) for some function
s (from grid-minor theorem), we can conclude that G has a sufficiently large grid, implying
sufficiently many vertex-disjoint cycles. One can argue that after removing at most ℓ vertices
or edges we will still have at least k vertex-disjoint cycles and hence we will have a positive
instance of Cycle Packing. So we simply output an oracle that always answers yes to
any query. If G has a smaller treewidth, then we can apply the above argument for low
treewidth graphs, giving us a preprocessing time of tow(3,O((k + ℓ)O(1))) and a query time
of tow(2,O((k + ℓ)O(1))).

3.2 The FSO for TOPOLOGICAL MINOR DELETION in general graphs
We now give an overview of the proof of Theorem 1 assuming that we have an FSO for TM-
Deletion parameterized by k, treewidth of the input graph and the size of the largest graph
in the family F that we want to exclude as topological minors. Recall that, here the input is
(G, k,F) and an integer ℓ, and we want our preprocessing algorithm to essentially encode the
answers to the input instances (G− F, k,F) of TM-Deletion for any F ⊆ V (G) ∪E(G) of
size at most ℓ such that these answers can be retrieved efficiently by the query algorithm.
Towards the preprocessing of (G, k,F) we use the results about “irrelevant vertices” for the
TM-Deletion problem by Fomin et al. [25]. As these irrelevant vertex results are for the
vertex deletion problem, as a first step we construct an “equivalent” instance (G′, k,F ′) for
the FSO, where all the edge failures in the original instance can be replaced with appropriate
vertex failures in the new instance. This allows to restrict ourselves to handling vertex
failures alone. More formally, for each H ∈ F , we define H ′ to be the graph obtained from
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H by adding three pendant (i.e., degree-1) vertices adjacent to each vertex v of H . Then, we
set F ′ = {H ′ : H ∈ F}. The graph G′ is constructed from G as follows. First we subdivide
each edge in G. For each e ∈ E(G), let ue be the subdivision vertex in G′ corresponding to
e. Then for each vertex v ∈ V (G) we add three pendant vertices adjacent to v. Then, each
edge e failing in G can be thought of as a vertex ue failing in G′. We prove that it is enough
to give a vertex FSO for the instance (G′, k,F ′). Then, the preprocessing algorithm A uses
the template of Fomin et al. [25] which in turn was built on the approach introduced by
Robertson and Seymour for Disjoint Paths [45]. Their approach has found applications in
many significant results in the area [28, 30, 34, 31, 33, 36, 35, 32, 27]. In the template of
Fomin et al. [25], we have three exhaustive cases.

Case 1. The treewidth of the input graph G is upper bounded by a function of k, ℓ, and F ′.
In this case we use our fault-tolerance oracle for TM-Deletion parameterized by k, F ′

and the treewidth which we have outlined in the previous subsection.
Case 2. The input graph G has a clique minor whose size is lower bounded by a computable

function of k, ℓ, and F ′. In this case Fomin et al. [25] gave an algorithm to find an
irrelevant vertex v with respect to “any” vertex deletion set of size k+ ℓ. That is, for any
vertex subset S ⊆ V (G′), the topological minors of size at most δ in G−S and G−S− v

are same. Here, we set δ to be the maximum size of a graph in F ′.
Case 3. Case 1 and 2 are not applicable. In this case the “weak structure theorem” [45]

implies that the graph G contains a “large flat wall”. Here, large means that its size is
lower bounded by a function of k, ℓ, and F ′. In this case as well Fomin et al. [25] gave an
algorithm to find an irrelevant vertex v with respect to “any” vertex deletion set of size
k + ℓ.

In our preprocessing algorithm, as long as Case 2 or Case 3 is applicable, we delete the
irrelevant vertices computed and finally we end up with a graph with bounded treewidth,
which places us in Case 1, which we have described how to handle.

Corollaries of Theorem 1

We now argue that the assertions made in Corollary 2 hold.

▶ Proposition 14 ([2, 38]). For every η ∈ N, there is a set Fη of graphs such that a graph
has treewidth at most η if and only if it excludes the graphs in Fη as a minor.

We also require the following simple fact.

▶ Proposition 15. For every family F of graphs, there is a set F ′ of graphs such that any
graph contains a minor model of a graph from F if and only if it contains a topological-minor
model of a graph from F ′.

We note that the families Fη in Proposition 14 and F ′ in Proposition 15 are constructive.
In combination with these two propositions, Theorem 1 implies the first two statements of
Corollary 2. That is, η-treewidth modulator is precisely TM-Deletion where the family
F ′ of forbidden topological minors is obtained by first using η as “input” to Proposition 14 to
obtain Fη, and then plugging in Fη as input to Proposition 15 to obtain the required family
F ′. Similarly, Minor Deletion where F is the family of graphs to exclude as minors can be
written as TM-Deletion, where the forbidden family of topological minors is obtained by
plugging F in to Proposition 15. We now proceed to the remaining statements of Corollary 2.

Let us now consider the dual problem to TM-Deletion, i.e., Topological Minor
Packing (TM-Packing), which is formally defined as follows.
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Input: An undirected graph G, a family of undirected graphs F such that every graph
in F has at most h∗ vertices, and an integer k.

Parameter: k + h∗.
Problem: Does there exist k vertex-disjoint topological-minor models of graphs in F?

Topological Minor Packing (TM-Packing)

▶ Theorem 16. TM-Packing has an FSO.

Proof. Let (G,F , k, ℓ) be the input of TM-Packing. Now we define a family F ′ as follows.

F ′ = {H | ∃H1, . . . ,Hk ∈ F : H is the disjoint union of H1, . . . ,Hk}

Then, notice that any subgraph of G contains k vertex-disjoint topological-minor models
from F if and only if the same subgraph of G contains a graph from F ′ as topological minor.
Moreover, |F ′| ≤ |F|k and the largest graph in F ′ has size at most k · h(F).

Now, we are ready to give an FSO (A,Q) for TM-Packing by using an FSO (A′,Q′)
for TM-Deletion (Theorem 1) as a subroutine.

The preprocessing algorithm A: Let the input to A be an instance (G,F , k) of
TM-Packing and ℓ ∈ N0.

Step 1: Construct the family F ′ defined above.

Step 2: Run the algorithm A′ on input (G,F ′, 0) and ℓ and return its output.

This completes the description of the preprocessing algorithm.

The query algorithm Q: Let the input be F ⊆ V (G) ∪ E(G).

Step 1: Use the query algorithm Q′ to decide whether (G− F,F ′, 0) is a yes-instance of
TM-Deletion.

Step 2: If Q′ answers YES, then Q answers NO. Else, Q answers YES.

This completes the description of the query algorithm.
Notice that the family F ′ can be computed in time bounded by a function of h(F) + k.

Moreover, since (A′,Q′) is an FSO for TM-Deletion, it follows that A′ is an FPT algorithm
parameterized by h(F ′)+k ≤ k ·(h(F)+1). Since these are the only two steps in A, it follows
that A is also an FPT algorithm parameterized by h(F) + k. Similarly, since Q′ runs in time
f ′(h(F) + k) for some computable function f ′, it follows that Q runs in time f(h(F ′) + k)
for some computable function f . Finally, the correctness of the pair (A,Q) follows from
the fact that for every F ⊆ V (G) ∪ E(G), the instance (G− F,F , k) of TM-Packing is a
yes-instance if and only if the instance (G− F,F ′, 0) of TM-Deletion is a no-instance. ◀

Finally, notice that Long Path and Long Cycle are both special cases of TM-packing.
Hence, the final statement of Corollary 2 can also be obtained as a consequence of Theorem 1.

3.3 Edge FSOs parameterized by treewidth alone
We employ the same high-level approach as that used for Theorem 4 (see Section 3.1).
However, instead of considering equivalence among boundaried graphs, we aim to identify
equivalent sets of failure edges for the boundaried graph obtained at each bag. This idea can
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be summarized as follows. First, assume that the problem satisfies certain properties that are
typically satisfied by problems for which there is an explicit dynamic programming algorithm
over a given tree decomposition. This includes well-known problems such as Vertex Cover
and Dominating Set. Further, suppose that when any set of ℓ edges are deleted below a
bag B and we were to re-run the dynamic programming algorithm on the graph induced by
the vertices in this bag and its descendants, then the dynamic programming table computed
at the bag B is only a “small” perturbation of the dynamic programming table that was
initially computed at this bag. In our context, “small” simply means that the entries in the
cells change (either increase or decrease) by at most ℓ. For instance, in the case of Vertex
Cover, deleting ℓ edges will not change any of the partial solutions by more than ℓ. Now,
since the size of the bag is bounded by the treewidth, this implies a bounded number of
equivalence classes for the set of all edge failures of size at most ℓ. This fact is then used to
keep a representative of each equivalence class and also a solution corresponding to them.
Finally, we show how the query algorithm can identify the equivalence class of the given
query efficiently.

Formally, we prove the result below. The terms in the theorem statement build upon the
notation of Garnero et al. [26] and are explained in the subsequent paragraphs.

▶ Theorem 17. Consider a subset problem Π. If Π has an encoder ξ that admits a gap
function g, a gap signature computation algorithm, an FPT exact algorithm, and Π is DP
effective, then Π admits an edge FSO parameterized by the treewidth.

Here, a parameterized graph problem Π is called a subset problem if there exists a language
LΠ associated with Π that comprises of pairs (G,S) where, for every graph G and S ⊆ V (G),
(G,S) ∈ LΠ if and only if S is a solution to Π on G.

The following definitions encapsulate the idea of the standard dynamic programming
algorithms on treewidth. The boundary of G will be a bag of the tree decomposition so the
vertices of the boundary will be the only way that some solution S can “interact” with the
rest of the graph. C(|Λ(G)|) represents the space of possible interactions and S is compatible
with some encoding R from this space if it does in fact interact as specified by R.

▶ Definition 18 (Encoder). Consider a subset problem Π. An encoder ξ of Π is a pair (C, LC),
where:
1. C : N0 → 2Σ∗ is a computable function, , with C(0) = ε. Here, Σ is some finite alphabet

depending on Π.
2. LC is a language that comprises of triples (G,S,R), where G is a boundaried graph,

S ⊆ V (G), and R ∈ C(|Λ(G)|). If (G,S,R) ∈ LC, then we say that S is compatible with
R under ξ.

3. For every 0-boundaried graph G and S ⊆ V (G), the triple (G,S, ε) ∈ LC if and only if
(G,S) ∈ LΠ.

For example, an encoder of Vertex Cover sets C(k) to the power set of [k] representing
subsets of the boundary and (G,S,R) ∈ LC iff S is a vertex cover of G and S ∩ ∂(G) ⊇ R.
That is S is compatible with R when S “agrees” with R on the boundary. Thus, the encoder
describes the space that the dynamic programming is over.

We now define the function that such a dynamic programming algorithm would calculate.

▶ Definition 19 (Family of nice functions associated to an encoder). Consider a subset problem
Π with an encoder ξ = (C, LC). For a boundaried graph G, we define a nice function
ηξG : C(|Λ(G)|) → N0 as follows: For every R ∈ C(|Λ(G)|),

ηξG(R) =
{

|V (G)| + 1 if {S : (G,S,R) ∈ LC} = ∅
min{|S| : (G,S,R) ∈ LC} otherwise.
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Note that since min{|S| : (G,S, ε) ∈ LC} = min{|S| : (G,S) ∈ LΠ}, this means that for
all p ∈ N, ηξG(ε) ≤ p iff (G, p) ∈ Π.

Continuing our Vertex Cover example, if ξ is the encoder described above, then ηξG(R)
is the size of the minimum vertex cover of G that contains every vertex from R. In the
standard dynamic programming algorithm for Vertex Cover parameterized by treewidth,
the table entry indexed by some x ∈ V (T ) and R ⊂ β(x) is exactly ηξ

G↓
x

(R).
We now wish to bound how much the answer can change due to edge failures. For

example, in Vertex Cover the size of the solution will never decrease by more than the
number of edge failures.

▶ Definition 20 (Gap function for encoder). Consider a subset problem Π with an encoder
ξ = (C, LC). We say that ξ admits a gap function g : N → N, if for every boundaried graph
G, for every F ⊆ E(G), and for every R ∈ C(|Λ(G)|), we have

|ηξG(R) − ηξG−F (R)| ≤ g(|F |).

From now onwards we will consider a subset problem Π and assume it has an encoder ξ that
admits a gap function g.

▶ Definition 21 (Gap signature). For all boundaried graphs G, and sets F ⊆ E(G), the
gap signature of F in G is the function σFG : C(|Λ(G)|) → {−g(|F |), . . . g(|F |)}, defined as
follows: for every R ∈ C(|Λ(G)|),

σFG(R) = ηξG(R) − ηξG−F (R).

Bounding the amount the answer changes allows us to keep track of exactly how much
the answer changes for each failure set with the gap signature. However, notice that the
number of possible gap signatures for any set F ⊆ E(G) is (2g(|F |) + 1)|C(|Λ(G)|)|, that is it
only depends on the size of boundary of G and the size of F . Being able to calculate the gap
signature will be a key part of our algorithm.

▶ Definition 22 (Gap signature computation algorithm). A gap signature computation al-
gorithm takes as an input (i) a graph G, (ii) a nice tree decomposition of G, (T, β) with
width k, (iii) a node x ∈ V (T ), and (iv) a set of edges, F ⊆ E(G↓

x,T ) of size ℓ, runs in time
fgs(k, ℓ)nO(1) and outputs σF

G↓
x,T

, where fgs is a computable function.

Since we are mostly interested in the gap signature of a given failure set we introduce the
following equivalence relation.

▶ Definition 23 (Equivalence relation ≡G). For all boundaried graphs G, and sets F1, F2 ⊆
E(G), we say that F1 ≡G F2 if and only if all of the following statements hold.
1. σF1

G = σF2
G . That is, for every R ∈ C(|Λ(G)|), σF1

G (R) = σF2
G (R).

2. F1 ∩
(
∂(G)

2
)

= F2 ∩
(
∂(G)

2
)
, that is, F1 and F2 coincide on the set of edges with both

endpoints in ∂(G).
3. |F1| = |F2|.

Since there are only a small number of possible gap signatures, there are also not many
equivalence classes. More precisely, if the sets F1 and F2 are of size at most ℓ then there
are at most O(ℓ|∂(G)|2) equivalence classes for each gap signature. We would like to exploit
this by pre-calculating solutions on one element from each equivalence class. To this end we
define a set consisting of exactly one element from each equivalence class.



L. Kanesh, F. Panolan, M. S. Ramanujan, and P. Strulo 44:15

In the following, for a set X and ℓ ∈ N, by Pℓ(X), we denote the set of all the subsets
of X of size at most ℓ. Given a nice tree decomposition (T, β), for all (u, v) ∈ E(G) let
Highest((u, v)) be the unique highest node t in T such that β(t) contains both u and v.
For each x ∈ V (T ), we define χ(x) = {e ∈ E(G) : x = Highest(e)} and χ↓(x) = ∪y≺xχ(y).
Note that χ(x) ⊆ E(G[β(x)]) and χ↓(x) ⊆ E(G↓

x). Also χ is a partition of E(G), that is
χ(x) ∩ χ(y) = ∅ for all x ̸= y and χ↓(root(T )) = ∪x∈V (T )χ(x) = E(G).

▶ Definition 24 (Type representative family). Consider a graph G, a nice tree decomposition
(T, β) of G, and ℓ ∈ N. For every node x ∈ V (T ), we define a type representative family
ℜ(x) ⊆ Pℓ(χ↓(x)) such that:
1. For every F1, F2 ∈ ℜ(x), if F1 ≡G↓

x
F2 then F1 = F2, and

2. For every F ∈ Pℓ(χ↓(x)), there exists F ′ ∈ ℜ(x) such that F ′ ≡G↓
x
F .

Note that since χ↓(root(T )) = E(G↓
root(T )) = E(G), ℜ(root(T )) contains a representative from

each equivalence class of failure sets. Also note that if F1 ⊆ χ(x) then, for all F2 ∈ Pℓ(χ↓(x)),
we have F1 ≡G↓

x
F2 if and only if F1 = F2 so Pℓ(χ(x)) ⊆ ℜ(x). Let

fR(k, ℓ) = ℓ · k2 · (2g(ℓ) + 1)|C(k)|

then the size of ℜ(x) is at most O(fR(k, ℓ)) where k is the width of (T, β). However there
are O(nℓ) possible failure sets that could be in ℜ(x) which is too many to calculate a
representative from each equivalence class by brute force. So we will split the failure set
into smaller subproblems and use the following property to calculate the representatives by
dynamic programming. Intuitively this says that, when doing dynamic programming on the
treewidth, the equivalence “carries through”, that is, if we have some representatives of the
equivalence classes of the failure set below y1 and y2 rather than the actual failure set, we
can use these to construct a representative of the whole failure set below x.

▶ Definition 25 (DP effective). We say that our subset problem Π is DP effective if, for
every graph G, and nice tree decomposition (T, β) of G, the following holds: For every
x, y1, y2 ∈ V (T ) such that x is a common ancestor of y1 and y2, and for every Fx ⊆ χ(x),
F1, F

∗
1 ⊆ χ↓(y1), and F2, F

∗
2 ⊆ χ↓(y2), it holds that if F ∗

1 ≡G↓
y1
F1 and F ∗

2 ≡G↓
y2
F2 , then

(Fx ∪ F1 ∪ F2) ≡G↓
x

(Fx ∪ F ∗
1 ∪ F ∗

2 ).

From now onwards we will work on a given graph G, and failure set size ℓ, and assume
we know a nice tree decomposition (T, β) of G of width at most k and size O(kn) = O(n2).
The following lemma shows that we can calculate a type representative family for each node
quickly. Recall that fR(k, ℓ) is a bound on the size of any such family and that fgs(k, ℓ) is
the superpolynomial component of the runtime of the gap signature computation algorithm.
The proof can be found in the appended full version.

▶ Lemma 26. If Π admits a gap signature computation algorithm and is DP effective, then
we can compute a type representative family ℜ(x) for all x ∈ V (T ) in time 2k2 · fR(k, ℓ)3 ·
fgs(k, ℓ) · nO(1).

We now have, at each node x ∈ V (T ), a small set of possible failure sets that together
cover every equivalence class. The only remaining obstacle is that we cannot calculate which
of these edge sets is equivalent to our actual failure set at query time since the gap signature
computation algorithm is too slow. To this end we define the following tables. Together with
DP effectiveness they will allow us to calculate a representative of the true failure set from
the bottom up.
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▶ Definition 27. Suppose ℜ(x) is a type representative family for all x ∈ V (T ). Let x,
y1, y2 ∈ V (T ) such that x is an ancestor of y1 and y2 and x ≠ y1. Then, for every set
Fx ⊆ χ(x), F1 ∈ ℜ(y1), and F2 ∈ ℜ(y2) we define the following.
1. H1[x, y1, Fx, F1] = Qx, where Fx ∪ F1 ≡G↓

x
Qx and Qx ∈ ℜ(x).

2. If y1 ̸= y2 and x is the lowest common ancestor of y1 and y2, then define
H2[x, y1, y2, Fx, F1, F2] = Qx, where Fx ∪ F1 ∪ F2 ≡G↓

x
Qx and Qx ∈ ℜ(x).

▶ Lemma 28. If Π admits a gap signature computation function and is DP effective, then the
tables H1 and H2 described in Definition 27 can be filled in time 2k2 ·fR(k, ℓ)3 ·fgs(k, ℓ) ·nO(1).
Moreover, H1 and H2 both have size at most 2k2 · fR(k, ℓ)2 · nO(1).

Finally we will need to use an exact algorithm for the problem on the original graph as a
black box. This is a very weak assumption since an FSO is itself an exact algorithm (simply
call it with F = ∅) so we expect an exact algorithm to be easier to obtain than an FSO.

▶ Definition 29. An FPT exact algorithm takes as input a graph G and a nice tree decom-
position of G, with width k, runs in time fopt(k)nO(1) and outputs ηξG(ε).

4 Concluding remarks

Parameterized sensitivity oracles provide a fertile middle ground of study between static
FPT algorithms (where many problems are well-understood) and dynamic FPT algorithms
(where many problems turn out to be hard) and deserve a thorough exploration. Along with
the work of Bilò et al. [6], Alman and Hirsch [3] and Pilipczuk et al. [44], this paper furthers
our understanding of the capabilities of state-of-the-art algorithm design techniques used in
parameterized complexity. Indeed, Alman and Hirsch [3] in their paper ask whether there
examples of techniques other than extensor coding, that are used to solve static versions
of parameterized problems and which can be used to design faster dynamic algorithms or
sensitivity oracles. Our three main results (Theorem 4, Theorem 1 and Theorem 17) provide
useful classification tools to study other problems in this framework and importantly, gives a
road map for obtaining explicit bounds. The possibility of obtaining similar classification
results in the fully dynamic setting is a natural direction for future work.
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Abstract
The circuit equivalence problem Ceqv(A) of a finite algebra A is the problem of deciding whether
two circuits over A compute the same function or not. This problem not only generalises the
equivalence problem for Boolean circuits, but is also of interest in universal algebra, as it models
the problem of checking identities in A. In this paper we prove that Ceqv(A) ∈ P, if A is a finite
2-nilpotent algebra from a congruence modular variety.
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1 Introduction

It is a common problem in mathematics to decide whether two formal expressions are
equivalent. Some well-known examples are the word problem for groups and semigroups,
checking whether a Boolean formula is a Tautology, or whether two polynomials over a given
ring define the same operation. In this paper we study a class of problems that generalize
the latter two examples.

In the polynomial equivalence problem PolEqv(A) the input consists of two polynomials
p and q of the same arity over a finite algebra A, and the task is to decide whether the
(universally quantified) identity p(x1, . . . , xn) ≈ q(x1, . . . , xn) holds in A. For every fixed
finite algebra PolEqv(A) is clearly in co-NP, since we can verify in polynomial time, whether
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the identity fails at a given tuple (a1, . . . , an) ∈ An. So the chief question is to distinguish,
for which algebras the problem is hard (i.e. co-NP-complete), tractable (in P), or possibly
of some intermediate complexity. There are numerous papers investigating this question
for algebras from concrete varieties, such as groups [8, 16, 10, 33, 20], rings [7, 19, 15], and
semigroups [27, 4].

However, not much is known in general. One of the major obstacles in studying
PolEqv(A) systematically for all finite algebras is that the complexity strongly depends on
the language of A. For example, the alternating group (A4, ·) has a polynomial equivalence
problem that is in P; but after adding the commutator [x, y] = x−1y−1xy to the signature
we obtain the problem PolEqv((A4, ·, [x, y])), which is co-NP-complete (see [18]). Roughly
speaking, this follows from the fact that some polynomials in the extended language are
exponentially inflated in length, when expressed by only the group operations.

To resolve this problem, in [25] it was proposed to encode an input equation by circuits
instead of polynomials. This approach prevents an artificial “inflation” of the input. As a
consequence, the complexity then only depends on the clone of polynomial operations of the
algebra, which allows for the use of universal algebraic methods. Formally we define the
circuit equivalence problem Ceqv(A) as follows:

Ceqv(A)
Input: Two circuits g1, g2 over A with input gates x1, . . . , xn

Question: Is g1(a1, . . . , an) = g2(a1, . . . , an) for all (a1, . . . , an) ∈ An?

In [25], Idziak et al. set the goal to classify the computational complexity of Ceqv(A)
for all algebras from congruence modular varieties. On one hand, such a classification
would subsume many of the previously known results (e.g. for groups [17], rings [19]
and lattices [31, 12]). On the other hand, congruence modular varieties offer a structural
advantage, since tools from tame congruence theory and commutator theory work particularly
well in them. As it turns out, the complexity of Ceqv in the congruence modular case is
strongly linked to commutator theoretical properties. By results contained in [25] and [23] it
is known that Ceqv for non-nilpotent algebras from congruence modular variety is co-NP-
complete. On the other hand, it was shown in [3] that Ceqv for supernilpotent algebras
from congruence modular varieties is in P.

Since in congruence modular varieties supernilpotence implies nilpotence (see e.g. [30]),
results mentioned above leave only a gap for nilpotent, but not supernilpotent algebras (Prob-
lem 2 in [25]). It was shown in [22], [28], that, under the assumption of the Exponential Time
Hypothesis, the complexity of Ceqv(A) has quasipolynomial lower bounds Ω(2c(log n)k−1),
if A is nilpotent and of supernilpotent rank k (where the supernilpotent rank, introduced
in [22], is one of the generalizations of group-theoretical Fitting length notion). On the
other hand, under the assumption of an open conjecture in circuit complexity theory, for
every nilpotent but not supernilpotent algebra there actually is an algorithm solving Ceqv
that has quasipolynomial running time [29]. These two conditional results indicate that
nilpotent algebras of supernilpotent rank greater than 2 have coNP-intermediate complexities.
Interestingly, this mirrors the situation for the polynomial equivalence problem PolEqv(G)
for solvable groups G = (G, ·, e,−1 ) of Fitting length k [33, 20].

As one can observe, many of recent results connected with complexity of PolEqv and
Ceqv are obtained under assumptions of some known hypotheses. For example, hardness
results from [22], [20], [28] and [33] are proved under the assumption of Exponential Time
Hypothesis (or its randomized version). On the other hand upper bounds for algorithms
complexity are often obtained under the assumption of some conjectures (e.g. Strong
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Exponential Size Hypothesis, Constant Degree Hypothesis), which assume lower bounds for
the size of circuits computing AND. Such results can be found e.g. in [22], [24], [20] and [29].
In contrast, this paper provides unconditional results.

Our paper is structured as follows: In Section 2, we introduce some standard notation
and definitions. Section 3 contains basic structural results about 2-nilpotent algebras. In
Section 4 we prove that all operations f : Un → L between a cyclic group (U, +) = Zpk

of prime power order and a coprime (L, +) are already generated by all unary functions
g : U → L (and the addition on U and L). It provides us with a useful normal form for all
the functions of type Un → L. In Section 5 we prove that we can check in polynomial time,
whether such a normal form induces a constant function. Results of Sections 4 and 5 might
be of independent interest in the study of linearly closed clonoids.

Section 6 then contains the proof that Ceqv(A) ∈ P for 2-nilpotent A from congruence
modular varieties. Our algorithm mixes the two prevalent approaches for checking equivalence,
as it first partially restricts the domain of a given circuit (as in [3]), while then doing a
syntactic manipulation on the resulting circuits (as in [21]). The latter part is based on the
algorithm from Section 5.

2 Preliminaries

In this paper, small bold letters always denote tuples. For instance, tuples of constants are
denoted a = (a1, . . . , an) ∈ An and tuples of variables are denoted x = (x1, . . . , xn). We
are going to use standard notation and definitions from universal algebra (see e.g. [6]). We
define algebra type (or algebra signature) to be a sequence of function symbols together with
a corresponding arity for each symbol. For a signature F , an algebra A over F is a pair
(A, F A), where A is a set (the universe of A) and F A = (fA)f∈F is a family of finitary
operations fA : Aar(f) → A. Each fA is called a basic operation of A. Sometimes we are
not going to distinguish between the basic operation fA and the corresponding function
symbol f , but this should never cause confusion. We say A is a finite algebra if it has a finite
universe A and finitely many basic operations. By ar(A) we denote the maximal arity of the
basic operations in A.

An operation that can be constructed by composing basic operations is called a term
operation of A. If also constants from A are allowed in its construction we call it a polynomial
operation of A. If for example A = (A, +, 0, −, ·) is a ring, its polynomial operations are
exactly the polynomial operations over the ring in the traditional sense. The clone of all
polynomial operations of A is denoted by Pol(A). We say that B and A are polynomially
equivalent iff there exists an algebra B′ isomorphic to B with Pol(A) = Pol(B′).

A properly formed string defining a polynomial operation is called a polynomial over A
(e.g. if A = (A, fA, gA) such that f is ternary and g is binary, the expression p(x, y, z) =
g(g(x, a), f(x, x, y)) for a ∈ A is a polynomial over A). It might seem that polynomials
are the most natural way of encoding polynomial operations, however circuits offer some
advantages. A circuit p(x1, . . . , xn) over A is a finite directed acyclic graph, such that

all the vertices of in-degree 0 (fan-in 0) are labeled by a variable xi (input gates), or a
constant from A (constant gates),
all other vertices (gates) are labeled by a basic operation f of A, and an enumeration of
the ar(f)-many incoming edges (thus fan-in must be ar(f)).

The vertices with no outgoing edge are called output-gates. In this paper we will only
consider circuits over A with one output gate; such circuits also naturally encode the
polynomial operations of A. Two circuits (or polynomials) p(x1, . . . , xn), q(x1, . . . , xn) over
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A are equivalent if they compute the same polynomial operation over A. For short, let us
then write p(x1, . . . , xn) ≈ q(x1, . . . , xn). Note that polynomials can be considered as those
circuits, whose underlying digraph is a tree. Thus PolEqv(A) reduces to Ceqv(A).

As pointed out in [25] circuits are well suited to discuss computational problems in
universal algebra, by the following folklore result:

▶ Lemma 2.1. Let A and B be two finite algebras with the same universe. If Pol(A) ⊆ Pol(B),
then every circuit c1 over A can be rewritten in logspace into an equivalent circuit c2 over B,
so that c1 and c2 compute the same function.

In particular, this implies that whenever Pol(A) ⊆ Pol(B), the problem Ceqv(A) reduces
to Ceqv(B) in polynomial time.

3 The structure of 2-nilpotent algebras

In this section we discuss 2-nilpotent algebras from congruence modular varieties and the
structure of their polynomial clones. In general, nilpotent algebras can be defined by having a
finite central series of congruences, where centrality is defined via the so-called term condition:

▶ Definition 3.1. Let A be an algebra. For congruences α, β, γ ∈ Con(A) we say that α

centralizes β modulo γ (and write C(α, β; γ)) if and only if for all polynomials p(x, y) ∈ Pol(A),
and all tuples a, b ∈ An, c, d ∈ Am, such that ai ∼α bi for i = 1, . . . , n and cj ∼β dj for
j = 1, . . . , m, the implication

p(a, c) ∼γ p(a, d)
⇒ p(b, c) ∼γ p(b, d)

holds.
An algebra A is called n-nilpotent if there is a central series of length n, i.e. a series of

congruences 0A = α0 ≤ α1 ≤ · · · ≤ αn = 1A, such that C(αi+1, 1A; αi) for i = 0, . . . , n − 1.
An algebra A is called Abelian, if it is 1-nilpotent, and is called nilpotent if it is n-nilpotent,
for some natural number n > 0.

We refer to [11] for further background on commutator theory. For our purposes we
however do not need this original definition of nilpotence, since in congruence modular
varieties we have equivalent characterizations by properties of the polynomial clone. For
Abelian algebras, a classical result of Herrmann states the following:

▶ Theorem 3.2 ([14]). Let A be an algebra from a congruence modular variety. Then A is
Abelian if and only if it is polynomially equivalent to a module.

Here R-modules are considered as algebras (A, +, 0, −, (r)r∈R), where every scalar r ∈ R

is identified with the unary operation r(x) = r · x. Abelian algebras from congruence
modular varieties are also called affine, since their polynomial operations are exactly the
affine operations of some module.

2-nilpotent algebras from congruence modular varieties can be characterized as a special
kind of wreath product (in the sense of [32]) of two affine algebras, which is defined as follows:

▶ Definition 3.3. Let U and L be two affine algebras of the same type F , and let F̂ = (f̂)f∈F

be a family of operations f̂ : Uk → L such that the arity k of f̂ is the arity of the corresponding
operation symbol f ∈ F . We then define L ⊗F̂ U as the algebra of type F with universe
L × U and basic operations

fL⊗F̂ U((l1, u1), . . . , (lk, uk)) = (fL(l1, . . . , lk) + f̂(u1, . . . , uk), fU(u1, . . . , uk)).

If F̂ is clear from the context, we also write L ⊗ U.
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By a result of Freese and McKenzie the following holds:

▶ Theorem 3.4 (Corollary 7.2. in [11]). An algebra A = (A, F A) from a congruence modular
variety is 2-nilpotent if and only if there are two affine algebras U, L of type F , and a set F̂

such that A ∼= L ⊗F̂ U.

In the following we are often going to identify 2-nilpotent A with such a wreath product,
and write A = L ⊗ U for short. We remark however, that this representation of A is in
general not unique. Given a wreath product representation, we can use it to construct its
polynomial expansion with some additional nice properties:

▶ Lemma 3.5. For every finite 2-nilpotent algebra A′ from a congruence modular variety
there exists a finite 2-nilpotent A = L ⊗F̂ U such that
1. Pol(A′) ⊆ Pol(A);
2. A contains Abelian group operations +, 0, −;
3. all other basic operations fA of A are either

“scalar multiplications” fA((l, u)) = (λ · l, 0) or fA((l, u)) = (0, ρ · u),
with respect to the modules equivalent to L and U,
or of “hat type” fA((l1, u1), . . . , (lk, uk)) = (f̂(u1, . . . , uk), 0).

Proof. By Theorem 3.4 we know that A′ is equal to a wreath product L′ ⊗F̂ ′ U′ such
that L′ and U′ are polynomially equivalent to two modules (L, +, 0, −, (λ)λ∈RL

) and
(U, +, 0, −, (ρ)ρ∈RU

).
We define A also to have the universe L × U . The group operations of A are defined by

(l1, u1) + (l2, u2) = (l1 + l2, u1 + u2), 0 = (0, 0) and −(l, u) = (−l, −u). We further define the
“scalar multiplications” on A by fA((l, u)) = (λ · l, 0) for all λ ∈ RL and fA((l, u)) = (0, ρ · u)
for all ρ ∈ RU . Finally, for every f̂ ∈ F̂ ′ we introduce a basic operation of “hat type”
(f̂(u1, . . . , uk), 0) in A.

Note that A is polynomially richer than A′, since every basic operation
fA′((l1, u1), . . . , (lk, uk)) = (c +

∑k
i=1 λili + f̂(u1, . . . , uk), d +

∑k
i=1 ρiui) of A′ is also a

polynomial operation of A. Moreover, A′ is finite, and 2-nilpotent by Theorem 3.4. ◀

For short, let us call the algebra A given by Lemma 3.5 a group coordinatization of A′.
A similar construction for arbitrary nilpotent algebras (from congruence modular varieties)
was discussed in [1, Theorem 4.2].

By Lemma 2.1 and Lemma 3.5 it is enough to prove that the circuit equivalence problem
of every 2-nilpotent group coordinatization is in P in order to prove it for all finite 2-nilpotent
algebras from congruence modular varieties. The main advantage of working in a group
coordinatization A = L ⊗ U is, that every circuits/polynomials can be rewritten easily, by
simplifying linear combinations over the modules U, L, and observing that the composition
of two or more operations of “hat type” is always trivial:

▶ Observation 3.6. Let A = L ⊗ U be a two nilpotent group coordinatisation. If, for
a circuit p(x1, . . . , xn) over A we identify every variable with xi = (li, ui), then p can be
rewritten in polynomial time to an expression

pA((l1, u1), . . . , (lk, uk)) =
(
pL(l1, . . . , lk) + p̂(u1, . . . , uk), pU(u1, . . . , uk)

)
,

where pL and pU are affine combinations over the modules L or U respectively, and
p̂(u1, . . . , un) is a sum of expressions of the form λf̂(

∑k
i=1 ρ1,iui + c1, . . . ,

∑k
i=1 ρ1,mui + cm),

such that f̂ ∈ F̂ , all ρi,j are scalars of U, ci ∈ U , and λ is a scalar of L.
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Note that the expressions p̂ in Observation 3.6 are formed by closing the basic operations
f̂ ∈ F̂ under affine combinations in U (from the inside) and L (from the outside). In the
language of [9] the induced functions p̂ : Un → L form the (L, U)-linearly closed clonoid,
which is generated by the operations F̂ (and their translations by constants).

Now clearly pA is constant, if and only if the operations given by pL, pU and p̂ are all
constant. Since this task is easy to decide for the affine combinations pL and pU, in this
paper we focus mainly on the analysis of the functions p̂ : Un → L.

In the special case that a finite nilpotent algebra A from a modular variety is additionally
of prime power size, it has several nice additional properties. In particular any such algebra
is supernilpotent, see e.g. [3, 30] for background. We are going to use the following result for
such prime power size algebras:

▶ Theorem 3.7 ([3, 1]). Assume that A is a nilpotent algebra from a congruence modular
variety that is finite and of prime power size. Then, there is a constant C ≤ ar(A)(|A| −
1)log2 |A|−1 such that, for every polynomial p(x1, . . . , xn) and any constant 0 ∈ A:

p(x) ≈ 0 ⇔ p(a) = 0 for all a ∈ An(C, 0),

where An(C, 0) := {(a1, . . . , an) ∈ An : |{i : ai ̸= 0}| ≤ C}.

Theorem 3.7 was used in [3] to prove that PolEqv A is in P for supernilpotent algebras.
This result implies also the existence of the polynomial time algorithm solving Ceqv(A).

4 A result on linearly closed clonoids

In this section we analyse functions p̂ : Un → L between Abelian groups (U, +) and (L, +) of
coprime orders. We show that, in some cases, the unary functions between U and L already
generate all such functions. In order to state our results, let us introduce the following
notation:

▶ Notation 4.1. Let p be a prime and k be a natural number. Then, for two tuples b =
(b1, . . . , bn), u = (u1, . . . , un) ∈ (Zpk )n we are going to use the notation b ⊙ u =

∑n
i=1 bi · ui

for the “inner product” of the two tuples in the ring Zpk .
For U = Zpk , let us call a tuple b ∈ Un non-degenerate, if one of its entries is a

multiplicative invertible element of U . Furthermore, let us call a non-degenerate tuple
normalized, if the first invertible element in b is equal to 1 and let us write (Un)∗ for the set
of all normalized tuples.

Note that, for a fixed tuple b ∈ Un the map u 7→ b ⊙ u is an affine operation and equal
to a polynomial of (U, +). In other words, the group (U, +) can be regarded as a module over
the ring (U, +, ·). This explains the slight abuse of notation in the following, in which we use
the inner product b ⊙ u, although talking about operations of the Abelian group (U, +).

▶ Theorem 4.2. Let (U, +) = Zpk for a prime power pk and let (L, +) be an Abelian group
of order coprime to |U |. Then, for every function f : Un → L there are unary functions
mb : U → L for all b ∈ (Un)∗ such that

f(u) =
∑

b∈(Un)∗

mb(b ⊙ u). (1)

Let us call (1) a normal form of f .
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Using the terminology from [9], Theorem 4.2 says that the set of all operations f : Un → L

is the ((U, +), (L, +))-linearly closed clonoid generated by all unary functions from U to L.
Before we prove Theorem 4.2, note that the existence of a normal form for f is equivalent to the
existence of a representation as sum f(u) =

∑
b∈Un mb(b⊙u), in which the coefficients range

over arbitrary b ∈ Un. This follows directly from the fact that every a ∈ Un can be uniquely
written as a = c · b, for b ∈ (Un)∗ and c ∈ U . Thus, if we define m′

b(u) =
∑

c∈U mcb(c · u),
for every b ∈ (Un)∗ we obtain a normal form f(u) =

∑
b∈(Un)∗ m′

b(b ⊙ u).

Proof of Theorem 4.2. We first show by induction on n = 2, 3, . . . that the existence of
normal forms for all binary functions f : U2 → L implies that also all n-ary function
f : Un → L have a normal form.

For n = 2 this is trivial. For an induction step n → n + 1, let f : Un+1 → L be an
n + 1-ary function. Then, for every a ∈ U , by induction hypothesis, there exist unary
functions ma,b : U → L such that f(u, a) =

∑
b∈Un mb,a(b ⊙ u). For every b ∈ Un, we

can then define the binary function sb(u, v) = mb,v(u). By our assumption, every sb has a
normal form. Thus also

f(u, un+1) =
∑

b∈Un

sb(b ⊙ u, un+1)

has a normal form, which can be computed by substituting every binary sb by its normal
form and simplifying the resulting sum. This finishes the proof of our claim.

By the above, it is enough to prove the lemma for arity n = 2. Without loss of generality we
can assume that (L, +) = Zm is also a cyclic group (otherwise we take a direct decomposition
(L, +) ∼=

∏k
i=1(Li, +) into cyclic groups. Then clearly f has a normal form, if all projections

πif have a normal form).
Note that it is further enough to prove that the function

w(u1, u2) := w(0,0)(u1, u2) =
{

1 if (u1, u2) = (0, 0)
0 else,

has a normal form. If this is the case, then all other binary functions f : U2 → L also have a
normal form by the equation f(u1, u2) =

∑
a1,a2∈U f(a1, a2) · w(u1 − a1, u2 − a2).

We prove that w has a normal form by induction on the exponent k of the prime power
pk. If k = 1, then note that

p · w(u1, u2) =
p−1∑
i=0

w0(u1 + iu2) −
p−1∑
j=1

w0(j + u2).

where

w0(u) =
{

1 if u = 0
0 else.

This was shown before in [2, Lemma 5.3], and can easily be verified by a case distinction.
Since L is coprime to U , p has a multiplicative inverse p−1 in L, and thus w(u1, u2) =
p−1(

∑p−1
i=0 w0(u1 + iu2) −

∑p−1
j=1 w0(j + u2)), which can be rewritten to a normal form.

For an induction step k − 1 → k, let us first define the auxiliary function

t(u1, u2) =
pk−1∑
i=0

w0(u1 + iu2) +
pk−1−1∑

i=0
w0(piu1 + u2).
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We claim that t(u1, u2) = pkw(u1, u2) + min( pk−1

|pu1| ,
pk−1

|pu2| ), where |u| denotes the order of the
group element u ∈ U . To prove this claim, note that for the two sums defining t we have:

pk−1∑
i=0

w0(u1 + iu2) =

{
pk

|u2| if |u2| ≥ |u1|
0 else,

and
pk−1−1∑

i=0

w0(piu1 + u2) =

{
pk−1

|pu1| if |pu1| ≥ |u2|
0 else.

Observe further that u ̸= 0 is equivalent to 1 < |u| = p · |pu|. Thus, if u1 ̸= 0, then
t(u1, u2) = pk−1

|pu2| for |u2| ≥ |u1| and t(u1, u2) = pk−1

|pu1| for |u2| < |u1|; in other words
t(u1, u2) = min( pk−1

|pu1| ,
pk−1

|pu2| ). If u1 = 0 and u2 ≠ 0, then t(u1, u2) = pk

|u2| = min(pk−1, pk−1

|pu2| ).
Finally if u1 = 0 and u2 = 0, then t(u1, u2) = pk + pk−1 = pk + min(pk−1, pk−1).

Thus we have verified that t(u1, u2) = pkw(u1, u2) + min( pk−1

|pu2| ,
pk−1

|pu1| ). If we define
r : (pU)2 → L as the function r(pu1, pu2) = min( pk−1

|pu2| ,
pk−1

|pu1| ), then, by the induction assump-
tion (and pU ∼= Zpk−1) r has a normal form. Since also t has (by definition) a normal form,
it follows that w(u1, u2) = p−k · (t(u1, u2) − r(pu1, pu2)) has a normal form. This finishes
the proof. ◀

As a direct consequence of Theorem 4.2 we obtain the following version of it for direct
products:

▶ Corollary 4.3. Let (U, +) = Zpk for a prime power pk, and (L, +) be an Abelian group of
coprime order. Then, for any set V and any function f : Un × V → L there are functions
mb : U × V → L for all b ∈ Un such that f(u, v) =

∑
b∈(Un)∗ mb(b ⊙ u, v).

Proof. For any fixed value a ∈ V , there is a normal form f(u, a) =
∑

b∈(Un)∗ mb,a(b ⊙ u)
by Theorem 4.2. Thus the functions mb(b ⊙ u, v) = mb,v(b ⊙ u) give us the above normal
form. ◀

This corollary is in particular of interest, if we consider the direct products of cyclic
groups Zpk . Let us then use the following notation:

▶ Notation 4.4. For a list of prime powers p = (pk1
1 , pk2

2 , . . . , pkm
m ), let us define the ring

Zp =
∏m

i=1(Z
p

ki
i

). Moreover, for a list of positive integers n = (n1, n2, . . . , nm), let us define

the n-th power Zp as (Zp)n =
∏m

i=1(Z
p

ki
i

)ni . For short, let us also write Zp for Z(1,1,...,1)
p

and Zn
p for (Zp)n. For every index i = 1, . . . , m, let u(i) denote the projection of u ∈ Zn

p to
(Z

p
ki
i

)ni .
For two tuples b, u ∈ Zn

p we define their “inner product”

b ⊙ u = (b(1) ⊙ u(1), b(2) ⊙ u(2), . . . , b(m) ⊙ u(m)) ∈ Zp.

Note that, for a fixed b ∈ Zn
p the map u 7→ b⊙u is a linear map from Zn

p to Zp. In particular,
for Z(n,n,...,n)

p ∼= (Zp)n it can be considered as an n-ary polynomials of the affine algebra
(Zp, +, π1, . . . , πm), where πi((u(1), . . . , u(n))) = (0, . . . , 0, u(i), 0, . . . , 0).

Let us call a tuple b ∈ Zn
p non-degenerate/normalized, if b(i) is non-degenerate/normalized

for every component i = 1, . . . , m, and let us write (Zn
p)∗ for the set of normalized tuples.

▶ Corollary 4.5. Let (U, +) = Zp for a list of prime powers p = (pk1
1 , pk2

2 , . . . , pkm
m ) and

let (L, +) be an Abelian group of order coprime to |U |. Then, for any n ∈ Nm and any
f : Un → L there are functions mb : U → L for all b ∈ (Un)∗ such that

f(u) =
∑

b∈(Un)∗

mb(b ⊙ u) =
∑

b∈(Un)∗

mb(b(1) ⊙ u(1), . . . , b(m) ⊙ u(m)).

We call this representation a normal form of f .
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Proof. This follows directly from iteratively applying Corollary 4.3 to all the components of
the direct product Zp =

∏m
i∈1 Zp

ki
i

. ◀

At last, we show that for coprime modules U and L, all functions in a finitely generated
(L, U)-clonoid can be rewritten into such a normal form in polynomial time. Note here,
that whenever some mb is equal to the constant 0 function, we can just skip it in the
representation of the normal form. In this way we can avoid summing over the entire (Un)∗

(which has exponential size).

▶ Lemma 4.6. Let U and L be two finite modules over coprime domains, let p be list of
prime powers p = (pk1

1 , pk2
2 , . . . , pkm

m ) such that (U, +) = Zp is the group reduct of U. Let F̂

be a finite set of operations from U to L. Then any n-ary function p̂ in the (L, U)-clonoid
generated by F̂ can be rewritten in polynomial time into a normal form

p̂(u) =
∑
b∈X

mb(b ⊙ u)

where n = (n, n, . . . , n) ∈ Nm and X ⊆ (Un)∗.

Proof. Recall that any p̂(u1, . . . , un) in an (L, U)-clonoid is a sum of expressions
λf̂(

∑k
i=1 ρ1,iui + c1, . . . ,

∑k
i=1 ρm,iui + cm), with f̂ ∈ F̂ . It is thus enough to prove, that

every such summand can be rewritten into a normal form.
The naive way to do this, would be to substitute every f̂ ∈ F̂ by its normal form,

and simplify the resulting sum. There is however a catch: The ring R of the module
U = (U, +, 0, −, (ρ)ρ∈R) is possibly different from (Zp, +, 0, −, ·, 1). This problem can be
resolved by computing normal forms for all functions

f̂(
∑
ρ∈R

ρu1,ρ,
∑
ρ∈R

ρu2,ρ, . . . ,
∑
ρ∈R

ρun,ρ), (2)

for f̂ ∈ F̂ and distinct variables ui,ρ for all indices i and coefficients ρ ∈ R.
To rewrite an expression λf̂(

∑k
i=1 ρ1,iui + c1, . . . ,

∑k
i=1 ρ1,mui + cm), we then collect in

every argument of f̂ all variables according to their coefficients from R, and then substitute
the normal form for the expression (2). ◀

5 A recursive principle

Let (U, +) = Zp and (L, +) be two finite Abelian groups of coprime order. By Corollary 4.5
we know that every function f : Un → L is equal to the sum of operations mb(b ⊙ u). In
this section we prove that we can check in polynomial time whether an f given by such a
normal form is constant. Our algorithm is based on the fact that a normal form is constant,
if and only if it can be partitioned in certain constant subsums, where the partition is formed
with respect to the following equivalence relation ∼:

▶ Definition 5.1. Let (U, +) = Zpk . Then, for two tuples a, b ∈ (Un)∗, let us write a ∼ b,
if a − b ∈ (pU)n.

Note that, if a ∼ b, then an entry ai is invertible (i.e. not a multiple of p) if and only if
bi is invertible.
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▶ Proposition 5.2. Let (U, +) = Zpk and let (L, +) be of order coprime to U . Let f : Un → L

be an operation given by the normal form

f(u) =
∑

b∈(Un)∗

mb(b ⊙ u).

Then f is constant if and only if for every a ∈ (Un)∗ the sum

fa(u) =
∑

b∈[a]∼

mb(b ⊙ u)

is constant.

Proof. If fa is constant for all a ∈ (Un)∗, then obviously f is also constant, since we can pick
the transversal a1, . . . , as of ∼ and the statement can be inferred from f(u) =

∑s
i=1 fai

(u).
For the other direction, we first assume that a = (1, 0, . . . , 0). Now in the case where

f(u) =
∑

b∈(Un)∗ mb(b ⊙ u) is constant, we are going to prove an even stronger statement,
namely that for every i = 0, . . . , k we have∑

b∈[a]∼

∑
c∈piU

mb(b ⊙ u + c) is constant. (3)

Note that the case i = k in (3) says, that the expression
∑

b∈[a]∼

∑
c∈piU mb(b ⊙ u) = fa(u)

represents a constant function.
We prove (3) by induction on i = 0, 1, . . . , k. For i = 0, the statement is true, since then

the inner sum
∑

c∈U mb(b ⊙ u + c) =
∑

c∈U mb(c) is constant for every b.
For an induction step i → i + 1, let us define C = pi+1U × (piU)n−1. Then, the sum∑
c∈C

f(u + c) =
∑

b∈(Un)∗

∑
c∈C

mb(b ⊙ (u + c)), (4)

is constant, since f is constant.
Note that for every g ∈ (Un)∗, which is not equivalent to a = (1, 0, . . . , 0), there is an

index j ̸= 1, such that gj is invertible. Therefore, if we restrict the sum (4) to only summands
from the equivalence class of such a g, we obtain∑

b∈[g]∼

∑
c∈C

mb(b ⊙ (u + c)) = |C|
pk−i

∑
b∈[g]∼

∑
cj∈piU

mb(b ⊙ u + cj),

which is constant by induction assumption.
This, together with (4) being constant implies that also∑
b∈[a]∼

∑
c∈C

mb(b ⊙ (u + c)) = |C|
pk−i−1

∑
b∈[a]∼

∑
c1∈pi+1U

mb(b ⊙ u + c1)

is constant. Since |C|
pk−i−1 is a power of p, it has an inverse in L. Thus also∑

b∈[a]∼

∑
c1∈pi+1U mb(b ⊙ u + c1) is constant. This finishes the proof of (3), and therefore

also the proof of the proposition in case a = (1, 0, . . . , 0).
Now, to make this proof work also for a ̸= (1, 0, . . . , 0), we need the following.

▷ Claim 1. For a prime p and a natural number k, let U = Zpk and let a ∈ (Un)∗. There
exist two linear maps T ′

a(u) and Ta(u) of type Un 7→ Un such that
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1. Ta maps (a1, . . . , an) → (1, 0, . . . , 0),
2. both T ′

a and Ta are linear bijections from Un → Un,
3. function Ta preserves the equivalence relation ∼,
4. d ⊙ T ′

a(u) = Ta(d) ⊙ u
Let j denote the first coordinate such that aj = 1 and let Sj = {1.., n} \ {1, j}. One can
check that the following definitions of

T ′
a(u) = (uj , u2, u3, . . . , uj−1, u1 − a1uj −

∑
i∈Sj

aiui, uj+1, . . . , un)

and

Ta(d) = (dj , d2 −dj ·a2, d3 −dj ·a3, . . . , dj−1 −dj ·aj−1, d1 −(dj) ·a1, dj+1 −dj ·aj+1, . . . , dn −dj ·an)

satisfy these four conditions (for j = 1 formulas should be interpreted as T ′
a(u) = (u1 −∑n

i=2 aiui, u2, . . . , un) and Ta(d) = (d1, d2 − d1 · a2, d3 − d1 · a3, . . . , dn − d1 · an)).
Hence, if we now define f ′(u) := f(T ′

a(u)) we can see that f ′ is a function with a normal
form defined by m′

b = m(Ta)−1(b). This shows, that the Proposition is true for the pair (f ,
[a]∼) iff it is true for the pair (f ′, [(1, 0, . . . , 0)]∼) . This finishes the proof, as we already
considered the case when a = (1, 0, . . . , 0). ◀

As we work not only with (U, +) = Zpk , but also with more general groups (U, +) = Zp,
we need to adjust our definitions accordingly.

▶ Definition 5.3. For a list of prime powers p = (pk1
1 , . . . , pkm

m ), let (U, +) = Zp and let
n ∈ Nm. For an i ∈ {1, . . . , m} let us say that two elements the a, b ∈ (Un)∗ are in
equivalence relation a ∼i b if and only if they satisfy a(i) ∼ b(i) in Z

p
ki
i

.

Here is a very important corollary which is a direct consequence of Proposition 5.2 applied
to the direct component Z

p
ki
i

of Zp.

▶ Corollary 5.4. For a list of prime powers p = (pk1
1 , . . . , pkm

m ), let (U, +) = Zp and (L, +)
be a finite Abelian group of coprime order. For n ∈ Nm let f : Un → L be an operation given
by a normal form

f(u) =
∑

b∈(Un)∗

mb(b ⊙ u).

Then for every i ∈ {1, . . . , m}: function f is constant if and only if for every a ∈ (Un)∗ we
have that

fi,a(u) =
∑

b∈[a]∼i

mb(b ⊙ u)

is constant.

Now, we are going to use Corollary 5.4 to check in polynomial time, if a function in a
normal form is constant.

▶ Lemma 5.5. For a fixed tuple of prime powers p = (pk1
1 , . . . , pkm

m ), let (U, +) = Zp, and
(L, +) be a finite Abelian group of coprime orders. Then, for n ∈ Nm and any function
f : Un → L that is given by a normal form

f(u) =
∑
b∈X

mb(b ⊙ u),

for some X ⊆ (Un)∗, we can decide in time O(|f |C) whether f is constant or not (with C

depending only on p).
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Proof. The algorithm, that we are going to present, is based on a recursion. In each recursive
call, both the total number of variables on all coordinates (i.e. n1 + n2 + . . . + nm), as well
as the sum of all exponents (i.e. k1 + . . . + km) are decreased by at least one.

Note that, in the case when for all i = 1, ..., m we have either ni = 0 or ki = 0, the
function f is constant. So first, we pick an appropriate coordinate i with ni ≠ 0 and ki ≠ 0.
Now we take a transversal a1, . . . , al of ∼i ∩(X × X). From Corollary 5.4 we know that the
function f is constant iff. all the fi,a’s are constant, for all a ∈ {a1, . . . , al}.

Now, we will slightly transform those fi,a’s by applying linear maps to their argu-
ments. We will use linear maps from Claim 1 applied to the i-th component of U , that
is: T ′

a(i)(u
(i)
1 , . . . , u

(i)
ni ), Ta(i)(d(i)

1 , . . . , d
(i)
ni ) in order to define linear maps on the entire U as

follows:

(T ′
a(u))(k) =

{
T ′

a(i)(u
(i)
1 , . . . , u

(i)
ni ) if k = i

(u(k)
1 , . . . , u

(k)
nk ) otherwise

as well as

(Ta(d))(k) =
{

Ta(i)(d(i)
1 , . . . , d

(i)
ni ) if k = i

(d(k)
1 , . . . , d

(k)
nk ) otherwise

Note, that those maps only act on the variables from i-th component of U and keep other
variables untouched. Since T ′

a(u) is just a permutation of Un, instead of checking that fi,a(u)
is constant we can check that f ′

i,a(u) = fi,a(T ′
a(u)) is constant. Moreover, we can see that

d ⊙ T ′
a(u) = Ta(d) ⊙ u (like in the Claim 1), so we can actually compute the normal form of

each such f ′
i,a, as it is given by the formula:

f ′
i,a(u) =

∑
b∈X′

m′
b(b ⊙ u),

where m′
b = m(Ta)−1(b) and X ′ = Ta([a]∼i

∩ X).
In order to check that such created f ′

i,a’s are constant we will substitute constants c ∈ Z
p

ki
i

for the variable u
(i)
1 in f ′

i,a and recursively check that such created f ′
i,a[u(i)

1 = c] are constant.
Additionally, we have to also make sure, that the returned constants are equal for all different
c ∈ Z

p
ki
i

. For this purpose, it is enough to assign to all variables the value 0 and check that

the set {f ′
i,a[u(i)

1 = c](0, . . . , 0) : c ∈ Z
p

ki
i

} has size one.
Before the recursive call, we made a substitution for the variable and thus reduced the

number of variables (on i-th coordinate) by one. But the effort taken to compute this f ′
i,a,

instead of applying substitutions directly to f , will now provide us with an additional benefit.
It turns out, that as a side effect of this substitution, we have also implicitly reduced the
size of the domain U . To see it, recall that Ta(a)(i) = (1, 0, . . . , 0) and Ta preserves the ∼i

relation (by Claim 1). It means that all the b ⊙ u that occur in the normal form of f ′
i,a on

the i-th coordinate have a very special form: b(i) ⊙ u(i) = u
(i)
1 + pi · (db ⊙ (u(i)

2 , . . . , u
(i)
ni )),

for some db ∈ (Z
p

ki
i

)ni−1. So now, when we substitute constant c for u
(i)
1 , the normal form

of f ′
i,a transforms into the expression:∑
b∈X′

m′
b(b(1) ⊙ u(1), . . . , c + pi · (db ⊙ (u(i)

2 , . . . , u(i)
ni

)), . . . , b(m) ⊙ u(m)),

Here, linear combinations of variables u
(i)
j are in fact computable in Z

p
ki−1
i

, since pi · Z
p

ki
i

≡
Z

p
ki−1
i

(where ≡ denotes an additive group isomorphism). So we can just reinterpret
the variables to the new domain, and normalize the obtained form, so that now we can
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recursively check if f ′
i,a[u(i)

1 = c] is constant, when treated as a function over the domain
U ′ = (Z

p
k1
1

) × . . . , ×(Z
p

ki−1
i

) × . . . × (Zpkm
m

). For completness, notice, that while going from

f to the normalized form of f ′
i,a[u(i)

1 = c], some variable other than u
(i)
1 can disappear. To

handle it, we can just decrease the number of variables appropriately before the recursive
call. The described procedure can be summarized as follows.

Algorithm 1 For a fixed Abelian (L, +), this algorithm takes as input a list of prime powers
p = (pk1

1 , . . . , pkm
m ) coprime to |L|, a list of arities n = (n1, . . . , nm), and checks whether a function

f : (Zp)n → L given by a normal form f(u) =
∑

b∈X
(b ⊙ u) is constant.

1: procedure IsConstant(p, n, f : (Zp)n → L)
2: if for all i = 1, . . . , m: ni = 0 or pki

i = 1 then return True
3: else
4: Let i be the minimal value such that ni, ki ̸= 0
5: Let a1, a2, . . . , as be a transversal of ∼i inside X × X

6: for all a ∈ {a1, . . . , as} do
7: for all c ∈ Z

p
ki
i

do

8: Compute a normal form of f ′
i,a[u(i)

1 = c]
9: Compute new domain p′ and new arities n′

10: if ¬ IsConstant(p′, n′, f ′
i,a[u(i)

1 = c]) then return False
11: if |{f ′

i,a[u(i)
1 = c](0, . . . , 0) : c ∈ Z

p
k1
i

}| ̸= 1 then return False

12: return True

Now we analyse the running time of the above algorithm. Procedure IsConstant(p, n,
f) first computes at most pki

i |f |-many functions f ′
i,a[u(i)

1 = c], whose normal forms have sizes
bounded by |f |. To obtain them we need to regroup the normal form of f into ∼i classes and
apply linear map T ′, which can be done with a naive quadratic algorithm. For the obtained
functions, it compares values f ′

i,a[u(i)
1 = c](0, . . . , 0), which takes linear time in |f |. Moreover,

all the normalizations can be done in a linear time. The recursion depth of IsConstant is
at most

∑m
i=1 ki, thus we obtain a running time of O(|f |2 · |f |(k1+···+km)).

A careful reader can see, that actually the sum of lengths of expressions that are computed
during the runtime of the above algorithm is bounded by a linear function in |f |. Using this
observation one can prove an even more accurate result, namely that the presented algorithm
is in fact quadratic in the worst case. ◀

6 Proof of the main theorem

We are now ready to prove the main theorem:

▶ Theorem 6.1. Let A be a finite 2-nilpotent algebra from a congruence modular variety.
Then we can decide in time O(nC) whether an n-ary circuit p(x1, . . . , xn) over A represents a
constant function, where C depends only on A. In particular, this implies that Ceqv(A) ∈ P.

Proof. By Lemma 2.1 and Lemma 3.5, we can without loss of generality assume that
A = L ⊗F̂ U is a group extension. If we identify every variable xi of the circuit p(x1, . . . , xn)
with a pair xi = (li, ui) of variables over L and U , then, by Observation 3.6, we can rewrite
it in polynomial time to an expression

pA((l1, u1), . . . , (lk, uk)) =
(
pL(l1, . . . , lk) + p̂(u1, . . . , uk), pU(u1, . . . , uk)

)
,

STACS 2024
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where pL(l1, . . . , lk) = c +
∑k

i=1 λili and pU(u1, . . . , uk) = d +
∑k

i=1 ρiui are affine com-
binations in the modules L and U respectively, and p̂(u1, . . . , un) is a sum of expressions
λf̂(

∑k
i=1 ρ1,iui + c1, . . . ,

∑k
i=1 ρ1,mui + cm), for f̂ ∈ F̂ .

Clearly pA is constant if and only if pL, pU and p̂ are constant. For the affine operations
pL, pU we can check this, by simply checking whether all coefficients λi and ρi are equal
to 0. Thus the problem reduces to checking, whether the expression p̂(u1, . . . , un) defines a
constant function.

Since L is a module, it has a direct decomposition L =
∏r

i=1 Li into factors of prime
power size. If πi denotes the projection of L to Li, then p̂ is constant if and only if πi ◦ p̂ is
constant for every i = 1, . . . , m. Thus, without loss of generality, we can assume that the
size of L is a power of some prime q. Also U can be directly decomposed into U = U1 × U2
such that |U1| is a power of q, and |U2| is coprime to q. Let us then identify every variable u

over U with its direct decomposition (u(1), u(2)) with respect to U1 × U2.
Now we want to check that p̂(u(1), u(2)) is constant. Note, that p̂(u(1), u(2)) is an

expression of (L, (U1 × U2))-clonoid. However, by fixing u(2) to some constant a(2) ∈ (U2)n

we create p̂(u(1), a(2)), which is an expression of (L, U1)-clonoid. This clonoid is generated
by all the functions f̂b(2)(u(1)) = f̂(u(1), b(2)) and is of prime power order. Hence, we can
associate this (L, U1)-clonoid with a 2-nilpotent algebra of prime power order (q is the prime
here). By Theorem 3.7 there is a set S of polynomial size O(nC) (and independent of a(2)),
such that p̂(u(1), a(2)) is constant iff it is constant on the set S. So now, going back to
(L, (U1 × U2))-clonoid, our expression p̂(u(1), u(2)) represents a constant function iff all
the p̂(a(1), u(2)) represent the same constant function c for all a(1) ∈ S. So, in order to
check that p̂(u(1), u(2)) is constant, it is enough to pick arbitrary tuple 0 ∈ U2, check that
{p(a(1), 0) : a(1) ∈ S} is one element set, and then check that each p̂(a(1), u(2)) is constant.

Since the set S is of polynomial size, this is a polynomial-time Turing reduction from the
problem over the (L, (U1 × U2))-clonoid to the problem over the (L, U2)-clonoid, where
this (L, U2)-clonoid is generated by all operations f̂b(1)(u(2)) = f̂(b(1), u(2)), for f̂ ∈ F̂ and
b(1) ∈ (U1)ar(f). Since |L| and |U2| are coprime, by Lemma 4.6 we know that p̂(a(1), u(2))
can be rewritten into a normal form

∑
b(2)∈X mb(2)(b(2) ⊙ u(2)) in polynomial time (where

X ⊆ ((U2)n)∗, with n = (ar(f), . . . , ar(f)). By Lemma 5.5 we can check in polynomial time,
whether this normal form represents a constant function. Thus we can check in polynomial
time whether p̂(u(1), u(2)) is constant.

In order to obtain an algorithm for Ceqv(A), note that any identity p ≈ q is equivalent
to p + (−q) ≈ 0 over A (recall that A is a group extension), so Ceqv(A) can be solved by
checking whether p + (−q) is constant and evaluates to 0 at some tuple. ◀

7 Conclusions and open problems

As it was mentioned in the introduction there is a characterization (under assumptions of
ETH and CDH) of algebras from a congruence modular variety for which Ceqv can be
solved in randomized polynomial time. Moreover, we are not far from obtaining a similar
characterization of algebras for which Ceqv can be solved in deterministic polynomial
time. The only case we have to consider to obtain such a characterization is algebras of
supernilpotent rank 2, i.e for every algebra A having supernilpotent congruence α such that
A/α is also supernilpotent. Note that in this paper we show a deterministic polynomial time
algorithm for every algebra A having an abelian congruence α such that A/α is also abelian.
The interesting question is if we can extend our recursive principle to all algebras with
supernilpotent rank 2. Note that there are many structural similarities between 2-nilpotent
algebras and algebras with supernilpotent rank 2.
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This leads us to the following question.

▶ Problem 1. Let A be a finite algebra from congruence modular variety with supernilpotent
rank 2.

Is there a deterministic polynomial time algorithm solving Ceqv A?

Note that the probabilistic algorithm solving Csat for nilpotent algebras of supernilpotent
rank 2 relies on Constant Degree Hypothesis (introduced in [5]), i.e. the conjecture that there
are no subexponential size ANDd ◦ MODm ◦ MODp-circuits computing ANDn function of
arbitrarly large arity, where d and m are some constant integers and p is a prime number.
Despite the fact that proving CDH will not automatically give us a deterministic polynomial
time algorithm solving Ceqv for algebras of supernilpotent rank 2, it is hard to believe that
such an algorithm can exist in case CDH fails. It leads us to a natural question.

▶ Problem 2. Does Constant Degree Hypothesis hold?

Although CDH is a quite a long-standing hypothesis, we strongly believe that it holds. It
is already proven in some restricted settings, for instance when the number of connections
between ANDd gates and MODm gates is restricted [13]. Recently, Kawałek and Weiss [26]
have shown that if there exist circuits witnessing that CDH fails they have to be non-
symmetric.

The natural next step after characterizing algebras from congruence modular varieties for
which Ceqv can be solved in polynomial time is to study the computational complexity of
Ceqv for algebras outside congruence modular variety. The most notable example of such
algebras are semigroups.

▶ Problem 3. For which semigroups can Ceqv be solved in (deterministic) polynomial time?
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Abstract
The subpower membership problem SMP(A) of a finite algebraic structure A asks whether a given
partial function from An to A can be interpolated by a term operation of A, or not. While this
problem can be EXPTIME-complete in general, Willard asked whether it is always solvable in
polynomial time if A is a Mal’tsev algebra. In particular, this includes many important structures
studied in abstract algebra, such as groups, quasigroups, rings, Boolean algebras. In this paper we
give an affirmative answer to Willard’s question for a big class of 2-nilpotent Mal’tsev algebras. We
furthermore develop tools that might be essential in answering the question for general nilpotent
Mal’tsev algebras in the future.
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1 Introduction

It is a recurring and well-studied problem in algebra to describe the closure of a given list of
elements under some algebraic operations (let us only mention the affine and linear closure of
a list of vectors, or the ideal generated by a list of polynomials). But also in a computational
context, this problem has a rich history, appearing in many areas of computer science. In its
formulation as subalgebra membership problem, the task is to decide whether a given finite
list of elements of an algebraic structure generates another element or not.

Depending on the algebraic structures studied, a variety of different problems emerges.
One of the most well-known examples is the subgroup membership problem, in which the
task is to decide, if for a given set of permutations α1, . . . , αn on a finite set X, another
permutation β belongs to the subgroup generated by α1, . . . , αn in SX . This problem can be
solved in polynomial-time by the famous Schreier-Sims algorithm [30], whose runtime was
analysed in [15] and [19]. The existence of such efficient algorithms is however not always
guaranteed: if the symmetric group SX is for instance replaced by the full transformation
semigroup on X, the corresponding membership problem is PSPACE-complete [22].

A common feature of many algorithms for the subalgebra membership problem is to
generate canonical generating sets of some sorts (such as computing the basis of a vector
space via Gaussian elimination, or computing a Gröbner basis via Buchberger’s algorithm
to solve the ideal membership problem [6]). But, in general, this is where the similarities
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end - depending on the algebraic structure, and the encoding of the input, the problem can
range over a wide range of complexities, and have applications in vastly different areas such
as cryptography [28, 29], computer algebra [6, 24], or proof complexity [22, 21].

In this paper, we study a version of the subalgebra membership problem that is called
the subpower membership problem. For a fixed, finite algebraic structure A (henceforth
also just called an algebra) its subpower membership problem SMP(A) is the problem of
deciding if a given tuple b ∈ Ak is in the subalgebra of Ak generated by some other input
tuples a1, . . . , an ∈ Ak (here n and k are not fixed, but part of the input). This is equivalent
to checking, whether the n-ary partial function that maps a1, . . . , an component-wise to b
can be interpolated by a term function of A. For example, if p is a prime, SMP(Zp) is the
problem of checking whether some vector b ∈ Zk

p is in the linear closure of a1, . . . , an ∈ Zk
p;

this can easily be solved by Gaussian elimination. More general, for any finite group G,
SMP(G) can be solved in polynomial time by a version of the Schreier-Sims algorithm [32].

Besides being a natural problem in algebra, the subpower membership problem found
some applications in some learning algorithms [7, 12, 17]. Moreover, an efficient algorithm for
SMP(A) implies that it is also feasible to represent the relations invariant by some generating
set of tuples. It was in particular remarked (see e.g. [9]), that a polynomial-time algorithm
for SMP(A) would allow to define infinitary constraint satisfaction problems, in which the
constraint relations are given by some generating tuples (with respect to A). This infinitary
version of CSPs has the benefit that most of the algebraic machinery to CSPs (see e.g. [3])
still applies.

Exhaustively generating the whole subalgebra generated by a1, . . . , an in Ak gives an
exponential time algorithm for SMP(A). And, in general, we cannot expect to do better:
In [23] Kozik constructed a finite algebra A for which SMP(A) is EXP-complete. Even
semigroups can have PSPACE-complete subpower membership problem [8].

However, for so called Mal’tsev algebras, better upper bounds are known. Mal’tsev
algebras are algebras defined by having a Mal’tsev term m, i.e. a term satisfying the identities
y = m(x, x, y) = m(y, x, x) for all x, y. Mal’tsev algebras lie at the intersection of many areas
of mathematics: they include algebraic structures of ubiquitous importance (groups, fields,
vector spaces), but also appear in logic (Boolean algebras, Heyting algebras), commutative
algebra (rings, modules, K-algebras), and non-associative mathematics (quasigroups, loops).
Mayr showed in [25] that the subpower membership problem of every Mal’tsev algebra is in
NP. His proof is based on the fact that every subalgebra R ≤ An has a small generating set,
which generates every element of R in a canonical way (a so-called compact representation).
Thus, to solve the subpower membership problem, one can “guess” a compact representation
of the subalgebra generated by a1, . . . , ak, and then check in polynomial time if it generates
b. If such a compact representation can be moreover found in deterministic polynomial time,
then SMP(A) is in P; this is, in fact, the dominant strategy to prove tractability.

So far, the existence of such polynomial time algorithms was verified for groups and
rings [32, 15], supernilpotent algebras [25], and algebras that generate residually finite
varieties [9]. On the other hand, no examples of NP-hard or intermediate complexity are
known. This leads to the question whether SMP(A) ∈ P for all finite Mal’tsev algebras
A [32]. On a broader scale, this question was also posed for algebras with few subpowers [17,
Question 8].

An elementary class of Mal’tsev algebras, for which the question still remains open, are
nilpotent algebras. In fact, they can also be seen as an important stepping stone in answering
[17, Question 8], as nilpotent Mal’tsev algebras coincide with nilpotent algebras with few
subpowers. Generalizing the concept of nilpotent groups, nilpotent algebras are defined by
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having a central series of congruences. While they have several nice structural properties,
in general nilpotent algebras do not satisfy the two finiteness conditions mentioned above
(supernilpotence, residual finiteness), thus they are a natural starting point when trying to
generalize known tractability results. But even for 2-nilpotent algebras not much is known:
all polynomial-time algorithms were only constructed by ad-hoc arguments for concrete
examples (such as Vaughan-Lee’s 12-element loop [26]).

The first contribution of this paper is to prove that all 2-nilpotent algebras of size p · q

for two primes p ≠ q have a tractable subpower membership problem. In fact, we prove
an even stronger result in Theorem 20: SMP(A) is in P, whenever A has a central series
0A < ρ < 1A such that |A/ρ| = p is a prime, and the blocks of ρ have size coprime to p.

While this is still a relatively restricted class of nilpotent algebras, our methods have
the potential to generalize to all 2-nilpotent Mal’tsev algebras and beyond. Thus, our
newly developed tools to analyze SMP can be regarded as the second main contribution.
More specifically, in Theorem 11 we show that whenever L ⊗ U is a wreath product (see
Section 3), such that U is supernilpotent, then SMP(L ⊗ U) reduces to SMP(L × U) (which
is polynomial-time solvable by [25]) and a version of the subpower membership problem for
a multi-sorted algebraic object called a clonoid from U to L. This reduction in particular
applies to all 2-nilpotent algebras; an analysis of clonoids between affine algebras then
leads to Theorem 20. If, in future research, we could get rid of the condition of U being
supernilpotent, this would provide a strong tool in studying general Mal’tsev algebras, as
every Mal’tsev algebra with non-trivial center can be decomposed into a wreath product.

Our paper is structured as follows: Section 2 contains preliminaries and some background
on universal algebra. In Section 3 we discuss how Mal’tsev algebras with non-trivial center
can be represented by a wreath product and we introduce the concept of difference clonoid
of such a representation. In Section 4 we discuss some situations, in which the subpower
membership problem of a wreath product can be reduced to the membership problem of the
corresponding difference clonoid. In particular, we prove Theorem 11. Section 5 contains an
analysis of clonoids between Zp and coprime Abelian groups, which then leads to the proof
of our main result, Theorem 20. In Section 6 we discuss some possible directions for future
research.

2 Preliminaries

In the following, we are going to discuss some necessary notions from universal algebra. For
more general background we refer to the textbooks [4, 11]. For background on commutator
theory we refer to [14] and [2]. For an introduction to Malt’sev algebras and compact
representations we refer to [5, Chapters 1.7-1.9].

In this paper, we are going to denote tuples by lower case bold letters, e.g. a ∈ Ak. In
order to avoid double indexing in some situations, we are going to use the notation a(i) to
denote the i-th entry of a, i.e. a = (a(1), a(2), . . . , a(k)). However, otherwise we are going
to follow standard notation as used e.g. in [4].

2.1 Basic notions for general algebras
An algebra A = (A; (fA

i )i∈I) is a first-order structure in a purely functional language (fi)i∈I

(where each symbol fi has an associated arity). We say A is finite if its domain A is finite. A
subalgebra B = (B; (fB

i )i∈I) of an algebra A = (A; (fA
i )i∈I) (denoted B ≤ A) is an algebra

obtained by restricting all basic operations fA
i to a subset B ⊆ A that is invariant under all

fA
i ’s. The subalgebra generated by a list of elements a1, . . . , an, denoted by SgA(a1, . . . , an)
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is the smallest subalgebra of A that contains a1, . . . , an. The product
∏

i∈I Ai of a family
of algebras (Ai)i∈I in the same language is defined as the algebra with domain

∏
i∈I Ai,

whose basic operations are defined coordinate-wise. The power An is the product of n-many
copies of A. Subalgebras of (finite) powers of A are sometimes also called subpowers of
A, which motivates the name “subpower membership problem”. So, formally the subpower
membership problem of A can be stated as follows:

SMP(A)
Input: b, a1, . . . , an ∈ Ak for some n, k ∈ N
Question: Is b ∈ SgAk (a1, . . . , an)?

Note that the subpowers of A are exactly the relations on A that are invariant under A.
A congruence α of A is an equivalence relation on A that is invariant under A. We write
Con(A) for the lattice of all congruence of A. We denote the minimal and maximal element
of this lattice by 0A = {(x, x) | x ∈ A} and 1A = {(x, y) | x, y ∈ A}. For every congruence
α ∈ Con(A), one can form a quotient algebra A/α in the natural way.

The term operations of an algebra A are all finitary operations that can be defined
by a composition of basic operations of A. Two standard ways to represent them is by
terms or circuits in the language of A. For a term or circuit t(x1, . . . , xn) in the language
of A, we write tA(x1, . . . , xn) for the induced term operation on A. Occasionally, if it is
clear from the context, we are not going to distinguish between a term/circuit and the
corresponding term operation. The term operations of an algebra A are closed under
composition and contain all projections, therefore they form an algebraic object called
a clone. For short, we denote this term clone of an algebra A by Clo(A). Note that
SgAk (a1, . . . , an) = {t(a1, . . . , an) | t ∈ Clo(A)}.

We call a ternary operation mA(x, y, z) ∈ Clo(A) a Mal’tsev term if it satisfies the
identities mA(y, x, x) = mA(x, x, y) = y for all x, y ∈ A, and call A a Mal’tsev algebra if it
has a Mal’tsev term. For instance, every group is a Mal’tsev algebra with Mal’tsev term
m(x, y, z) = xy−1z. Mal’tsev terms are a classic topic of study in universal algebra (see e.g.
[4, Chapter 7]), and are in particular known to characterize congruence permutable varieties.

2.2 Clonoids
We are also going to rely on a multi-sorted generalisation of clones, so-called clonoids that
were first introduced in [1] (in a slightly less general way). For a set of operations between
two sets C ⊆ {f : An → B | n ∈ N}, and k ∈ N let us write C(k) = {f : Ak → B | f ∈ C} for
the subset of k-ary functions. Then, for two algebras A = (A, (fi)i∈I), B = (B, (gj)j∈J ) (in
possibly different domains and languages), a set C ⊆ {f : An → B | n ∈ N} is called a clonoid
from A to B, or (A, B)-clonoid, if it is closed under composition with term operations of A
from the inside, and B from the outside, i.e.: ∀n, k ∈ N
(1) f ∈ C(n), t1, . . . , tn ∈ Clo(A)(k) ⇒ f ◦ (t1, . . . , tn) ∈ C(k)

(2) s ∈ Clo(B)(n), f1, . . . , fn ∈ C(k) ⇒ s ◦ (f1, . . . , fn) ∈ C(k).

2.3 Commutator theory
Commutator theory is the subfield of universal algebra that tries to generalise notions such
as central subgroups, nilpotence, or solvability from group theory to general algebras. The
most commonly used framework is based on so-called term-conditions, which we outline in
the following.
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Let A be an algebra. For congruences α, β, γ ∈ Con(A) we say that α centralizes β

modulo γ (and write C(α, β; γ)) if and only if for all p(x, y) ∈ Clo(A), and all tuples a, b ∈ An,
c, d ∈ Am, such that ai ∼α bi for i = 1, . . . , n and cj ∼β dj for j = 1, . . . , m, the implication

p(a, c) ∼γ p(a, d) ⇒ p(b, c) ∼γ p(b, d)

holds. A congruence α is called central if C(α, 1A; 0A) holds. The center is the biggest
central congruence. An algebra A is called n-nilpotent if there is a central series of length n,
i.e. a series of congruences 0A = α0 ≤ α1 ≤ · · · ≤ αn = 1A, such that C(αi+1, 1A; αi) for
i = 0, . . . , n − 1. An algebra A is called Abelian, if it is 1-nilpotent, i.e. C(1A, 1A; 0A) holds.

We are, however, not going to work directly with these definitions. There is a rich
structural theory in the special case of Mal’tsev algebras (and, more general, in congruence
modular varieties [14]) that gives us very useful characterizations of many commutator
theoretical properties.

By a result of Herrmann [16], a Mal’tsev algebra A is Abelian if and only if it is affine,
i.e. all of its term operations are affine combination

∑n
i=1 αixi + c over some module; in

particular the Mal’tsev term is then equal to x − y + z. More generally, we are going to use
a result of Freese and McKenzie [14] that states that a Mal’tsev algebra A with a central
congruence ρ can always be written as a wreath product L ⊗ U, such that L is affine and
U = A/ρ. We are going to discuss such wreath product representations in Section 3.

Lastly, we want to mention that the definition of the relation C naturally generalizes
to higher arities C(α1, . . . , αn, β; γ). This notion was first introduced by Bulatov; we refer
to [14] and [2] to more background on higher commutators. In particular, an algebra is
called k-supernilpotent if C(1A, . . . , 1A; 0A), where 1A appears k + 1 times. There are several
known characterizations of supernilpotent Mal’tsev algebras. We are mainly going to use the
following:

▶ Theorem 1 (Proposition 7.7. in [2]). Let A be a k-supernilpotent Mal’tsev algebra, 0 ∈ A

a constant and t, s two n-ary terms in the language of A.Then tA = sA if and only if they
are equal on all tuples from the set S = {a ∈ An | |{i : a(i) ̸= 0}| ≤ k}. (In fact, A is
k-supernilpotent iff that equivalence holds for all terms t, s).

2.4 Compact representations and SMP
For any subset R ⊆ An, we define its signature Sig(R) to be the set of all triples (i, a, b) ∈
{1, . . . , n} × A2, such that there are ta, tb ∈ R that agree on the first i − 1 coordinates, and
ta(i) = a and tb(i) = b; we then also say that ta, tb are witnesses for (i, a, b) ∈ Sig(R).

If A is a Mal’tsev algebra, and R ≤ An, then it is known that R is already generated by
every subset S ⊆ R with Sig(S) = Sig(R) [5, Theorem 1.8.2.]. In fact, R is then equal to the
closure of S under the Mal’tsev operation m alone, and a tuple a is in R if a can be written
as m(. . . m(a1, b2, a2), . . . , bn, an), for some ai, bi ∈ S. For given a ∈ R such elements
ai, bi ∈ S can be found polynomial time in |S|, by picking a1 such that a1(1) = a(1), and
ai, bi ∈ S are witnesses for a(i) and m(. . . m(a1, b2, a2), . . . , bi−1, ai−1))(i) at position i.

A compact representation of R ≤ An is a subset S ⊂ R with Sig(S) = Sig(R) and
|S| ≤ 2| Sig(R)| ≤ 2n|A|2. So, informally speaking, compact representations are small
generating sets of R with the same signature. It is not hard to see that compact representations
always exist. Generalizations of compact representations exist also for relations on different
domains (R ≤ A1 × · · · × An), and relations invariant under algebras with few subpowers,
we refer to [5, Chapter 2] for more background.
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By the above, SMP(A) reduces in polynomial time to the problem of finding a compact
representation of SgAk (a1, . . . , an) for some input tuples a1, . . . , an ∈ Ak. We are going
to denote this problem by CompRep(A). Conversely, it was shown in [9] that finding a
compact representations has a polynomial Turing reduction to SMP(A). Note further that,
to solve CompRep(A) it is already enough to find a subset S ⊆ R with Sig(S) = Sig(R) of
polynomial size, since such a set S can then be thinned out to a compact representation.

Let us call a set of pairs {(c, pc) | c ∈ S} an enumerated compact representation of
SgAk (a1, . . . , an), if S is a compact representation of SgAk (a1, . . . , an), and every pc is a
circuit in the language of A of polynomial size (in n and k), such that pc(a1, . . . , an) = c.
Enumerated compact representations were already (implicitly) used in several proofs. In [9,
Theorem 4.13.] it was shown that, for algebras with few subpowers, enumerated compact
representations always exist; this was used to prove that SMP(A) ∈ NP. Moreover, all of the
known polynomial time algorithms for CompRep(A), in fact, compute enumerated compact
representations. We are in particular going to need the following result that follows from [25]:

▶ Theorem 2 ([25]). Let A be a finite supernilpotent Mal’tsev algebra. Then, there is
a polynomial time algorithm that computes an enumerated compact representations of
SgAk (a1, . . . , an), for given a1, . . . , an ∈ Ak.

Theorem 2 can be seen as a generalization of Gaussian elimination from affine to super-
nilpotent algebras. We remark that Theorem 2, although not explicitly stated as such in [25],
follows directly from Algorithm 6 in [25], which computes so-called group representations
(T1, T2, . . . , Tk) of SgAk (a1, . . . , an) and the fact that for such a group representation, there is
a constant q such that T = (T1 +q ·T2 + · · ·+q ·Tk) has the same signature as SgAk (a1, . . . , an)
(see Lemma 3.1. in [25]). Thus, T together with its defining circuits forms an enumerated
compact representation of SgAk (a1, . . . , an).

We are furthermore going to use that there is an algorithm that allows us to fix some
values of a relation given by enumerated compact representation:

▶ Lemma 3. Let A be a Mal’tsev algebra. Then, there is a polynomial-time algorithm
Fix-values(R, a1, . . . , am) that, for a given compact representation R of R = SgAk (X),
and constants a1, . . . , am ∈ A, returns a compact representation R′ of {x ∈ R | x(1) =
a1, . . . , x(m) = am} (or ∅ if the relation is empty). If R is moreover enumerated then
Fix-values also computes polynomial size circuits defining the elements of R′ from X.

The existence of such a Fix-values algorithm for compact representation is a well-known
result ([7], see also [5, Algorithm 5]); the additional statement about enumerated compact
representation follows easily from bookkeeping the defining circuits. We prove Lemma 3 in
Appendix A.

3 Wreath products and difference clonoids

In this section, we discuss how to represent Mal’tsev algebras with non-trivial center by a
so-called wreath product L ⊗ U, and associate to it its difference clonoid, which gives us a
measure on how far it is from being the direct product L × U.

▶ Definition 4. Let U = (U, (fU)f∈F ) and L = (L, (fL)f∈F ) be two algebras in the same
language F , such that L is affine. Furthermore, let 0 ∈ L and T = (f̂)f∈F be a family
of operations f̂ : Un → L, for each f ∈ F of arity n. Then we define the wreath product
L ⊗T,0 U as the algebra (L × U, (fL⊗T U)f∈F ) with basic operations

fL⊗T,0U((l1, u1), . . . , (ln, un)) = (fL(l1, . . . , ln) + f̂(u1, . . . , un), fU(u1, . . . , un)),
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(where + is the addition on L with respect to neutral element 0). For simplicity, we are going
to write L ⊗ U, if T and 0 are clear from the context.

The name wreath product refers to the fact that this is a special case of VanderWerf’s
wreath products [31]. We remark that recently also alternative names for L ⊗ U were
suggested, such as central extension (by Mayr) and semidirect product (by Zhuk). By a
result of Freese and McKenzie we can represent Mal’tsev algebras with non-trivial centers as
wreath products:

▶ Theorem 5 (Proposition 7.1. in [14]). Let A be a Mal’tsev algebra with a central congruence
α, and let U = A/α. Then there is an affine algebra L, an element 0 ∈ L and a set of
operations T , such that A ∼= L ⊗T,0 U.

Note that, for a fixed quotient U = A/α, there is still some freedom in how to choose the
operations fL of L, and the operations f̂ : Un → L in T (by adding/subtracting constants).
To get rid of this problem, we are from now on always going to assume that L preserves 0, i.e.
fL(0, 0, . . . , 0) = 0 for all f ∈ F . It is then easy to observe that wreath products L ⊗T,0 U
behaves nicely with respect to the direct product L × U in the same language:

▶ Observation 6. Let A be a Mal’tsev algebra with wreath product representation A =
L ⊗T,0 U. Then tA = sA ⇒ tL×U = sL×U.

Proof. Note that, for every term t in the language of A:

tA((l1, u1), . . . , (ln, un)) = (tL(l1, . . . , ln) + t̂(u1, . . . , un), tU(u1, . . . , un)),

for some t̂ : Un → L (this can be shown by induction over the height of the term tree).
Clearly tA = sA implies tU = sU, and tL − sL = c, t̂ − ŝ = −c for some constant c ∈ L.
Since, by our assumptions, the operations of L preserve 0, we get tL = sL and t̂ = ŝ. Thus
tL×U = sL×U. ◀

In other terminology, the map tA 7→ tL×U is a surjective clone homomorphism from
Clo(A) to Clo(L × U), i.e. a map that preserves arities, projections and compositions. The
converse of Observation 6 does however not hold, since this map is usually not injective.
We define the difference clonoid Diff0(A) as the kernel of the clone homomorphisms in the
following sense:

▶ Definition 7. Let A = L ⊗T,0 U be a Mal’tsev algebra given as a wreath product.
(1) We define the equivalence relation ∼ on Clo(A) by

tA ∼ sA :⇔ tL×U = sL×U

(2) the difference clonoid Diff0(A) is defined as the set of all operation r̂ : Un → L, such
that there are tA ∼ sA ∈ Clo(A) with:

tA((l1, u1), . . . , (ln, un)) = (tL(l) + t̂(u), tU(u)) (1)
sA((l1, u1), . . . , (ln, un)) = (tL(l) + t̂(u) + r̂(u), tU(u)) (2)

▶ Notation 8. In the following, we will stick to the following convention: Function symbols
with a hat will always denote operations from some power of U to L. For operations
t, s : An → A, and r̂ : Un → L such as in (1) and (2) we are slightly going to abuse notation,
and write s = t + r̂ and r̂ = (s − t).

We next show that Diff0(A) is indeed a clonoid from U to L (extended by the constant 0).
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▶ Lemma 9. Let A = L ⊗0,T U be a Mal’tsev algebra given as wreath product. Then:
(1) For all t ∈ Clo(A), r̂ ∈ Diff0(A) also t + r̂ ∈ Clo(A),
(2) Diff0(A) is a (U, (L, 0))-clonoid.
Here (L, 0) denotes the extension of L by the basic operation 0.

Proof. To prove (1), let t ∈ Clo(A) and r̂ ∈ Diff0(A). By definition of the difference clonoid,
r̂ = s1 − s2 for two terms s1, s2 ∈ Clo(A), with s1 ∼ s2. In particular, sU

1 = sU
2 . For any

Mal’tsev term m ∈ Clo(A), necessarily m̂(u, u, v) = m̂(v, u, u) = 0 holds. This implies that

t + r̂ = m(t, s2, s1) ∈ Clo(A).

We next prove (2). So we only need to verify that Diff0(A) is closed under composition
with Clo(U) (from the inside), respectively Clo((L, 0)) (from the outside).

To see that Diff0(A) is closed under (L, 0), note that 0 ∈ Diff0(A), as t − t = 0, for
every term t ∈ Clo(A). Further Diff0(A) is closed under +; for this, let r̂1, r̂2 ∈ Diff0(A).
By (1), we know that t + r̂1 ∈ Clo(A), for some term t ∈ Clo(A). Again, by (1) also
(t + r̂1) + r̂2)) ∈ Clo(A), which shows that r̂1 + r̂2 ∈ Diff0(A). For all unary eL ∈ Clo(L),
and t ∼ s with r̂ = t − s, note that eAt − eAs = eL ◦ r̂ ∈ Diff0(A). Since L is affine, Clo(L, 0)
is generated by + and its unary terms, thus Diff0(A) is closed under (L, 0).

To see that Diff0(A) is closed under U from the inside, simply notice that t(x1, . . . , xn) ∼
s(x1, . . . , xn) implies t(f1(x), . . . , fn(x)) ∼ s(f1(x), . . . , fn(x)), for all terms f1, . . . , fn. If
r̂ = tA − sA, then r̂ ◦ (fU

1 , . . . , fU
n ) = t ◦ (fU

1 , . . . , fU
n ) − s ◦ (fU

1 , . . . , fU
n ) ∈ Diff0(A). ◀

We remark that the choice of the constant 0 ∈ L is not relevant in this construction:
since for every c ∈ L the map r̂ 7→ r̂ + c is an isomorphism between the (U, (L, 0))-clonoid
Diff0(A) and the (U, (L′, c))-clonoid Diffc(A) (where fL′(l) = fL(l − (c, c . . . , c)) + c).

Our goal in the next section is to reduce the subpower membership problem to a version of
the subpower membership problem for the difference clonoid in which we ask for membership
of a tuple l ∈ Lk in the subalgebra of L given by the image of u1, . . . , un ∈ Uk under the
clonoid. In fact, it will be more convenient for us to ask for a compact representation, that’s
why we define the following problem, for a clonoid C from U to L.

CompRep(C):
Input: A list of tuples u1, . . . , un ∈ Uk.
Output: A compact representation of C(u1, . . . , un) = {f(u1, . . . , un) | f ∈ C} ≤ Lk

In the case of the difference clonoid C = Diff0(A) the image algebra L is affine and
contains a constant 0. Thus then this problem is then equivalent to finding generating set of
C(u1, . . . , un) as a subgroup of (L, +, 0, −)k of polynomial size. By then running Gaussian
elimination (generalized to finite Abelian groups), or simply applying Theorem 2 one can
then compute a compact representation of C(u1, . . . , un).

4 The subpower membership problem of wreath products

In this section we discuss our main methodological results. We show that, in some cases
the subpower membership problem SMP(L ⊗ U) of a wreath product can be reduced to
CompRep(L × U) and CompRep(C). We first show how such a reduction can be achieved
relatively easily in the case where Clo(L ⊗ U) contains Clo(L × U) (i.e. the identity map is a
retraction of the clone homomorphism from Observation 6):
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▶ Theorem 10. Let A = L⊗T,0 U be a finite Mal’tsev algebra, and let C = Diff0(A). Further
assume that Clo(L × U) ⊆ Clo(A). Then CompRep(A) (and hence also SMP(A)) reduces in
polynomial time to CompRep(L × U) and CompRep(C).

Proof. Let a1, . . . , an ∈ Ak an instance of CompRep(A); our goal is to find a compact
representation of B = SgAk (a1, . . . , an). Let us write li and ui for the projection of ai to Lk

and Uk respectively. Let us further define B+ = Sg(L×U)k (a1, . . . , an). Then

B = {(tL(l1, . . . , ln) + t̂(u1, . . . , un), tU(u1, . . . , un) | t is F -term}, and
B+ = {(tL(l1, . . . , ln), tU(u1, . . . , un) | t is F -term}.

Since Clo(L × U) ⊆ Clo(A), we can pick a Mal’tsev term of A that is of the form
mA((l1, u1), (l2, u2), (l3, u3)) = (l1 − l2 + l3, mU(u1, u2, u3)). Moreover, by Lemma 9, every
term tA ∈ Clo(A) can be uniquely written as the sum of tL×U (which by assumption is also
in Clo(A)) and some t̂ ∈ C. Thus, every element of B is equal to the sum of an element of
B+ and an expression t̂(u1, . . . , un).

Let C+ be a compact representation of B+, and Ĉ a compact representation of
C(u1, . . . , un). Then, it follows that every tuple in B can be written as

m(. . . , m(c1, d2, c2), . . . dn, cn) + r̂1 − ŝ2 + r̂2 − . . . − ŝn + r̂n, (3)

for ci, di ∈ C+ and r̂i, ŝi ∈ Ĉ. (We are aware that tuples in C+ an Ĉ have different domains;
here we follow the same convention as in Notation 8). Moreover, in formula (3), any pair
ci, di (respectively r̂i, ŝi) witnesses a fork in the i-th coordinate. By our choice of m it is
easy to see that formula (3) can be rewritten to

m(. . . , m(c1 + r̂1, d2 + ŝ2, c2 + r̂2), . . . dn + ŝn, cn + r̂n),

Thus the elements ci + r̂i, di + ŝi witness forks of B in the i-th coordinate. If we define
D = {c + r̂ | c ∈ C, r̂ ∈ Ĉ}, then it follows that Sig(D) = Sig(B). Moreover D ⊂ B, and it is
of polynomial size in n and k, as |D| ≤ |C| · |Ĉ|. Thus D can be thinned out in polynomial
time to a compact representation of B, which finishes our proof. ◀

We remark that, by following the proof of Theorem 10, also finding enumerated compact
representations in A can be reduced to finding enumerated compact representations in L × U
and C (if C is given by some finite set of operations that generate it as a clonoid).

Unfortunately, the conditions of Theorem 10 are not met for general wreath-products, not
even if both U and L are affine (the dihedral group D4 can be shown to be a counterexample).
But, if U is supernilpotent, then we are able to prove the following reduction, independent
of the conditions of Theorem 10:

▶ Theorem 11. Let A = L ⊗ U be a finite Mal’tsev algebra, and let C = Diff0(A) for some
0 ∈ A. Further, assume that U is supernilpotent. Then SMP(A) reduces in polynomial time
to CompRep(C).

Proof. Let a1, . . . , an, b ∈ Ak an instance of SMP(A); our goal is to check whether b ∈ B =
SgAk (a1, . . . , an). Let us write li and ui for the projection of ai to Lk and Uk respectively,
and lb and ub for the projections of b to Lk and Uk. Let F be the signature of A and L × U,
and let B+ = Sg(L×U)k (a1, . . . , an). Then

B = {(tL(l1, . . . , ln) + t̂(u1, . . . , un), tU(u1, . . . , un) | t is F -term}, and
B+ = {(tL(l1, . . . , ln), tU(u1, . . . , un) | t is F -term}.
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Recall the definition of tA ∼ sA from Definition 7. If T is a ∼-transversal set of
{tA ∈ Clo(A) | tU(u1, . . . , un) = ub}, then clearly b ∈ B iff ∃t ∈ T and d ∈ C(u1, . . . , un),
with b = t(a1, . . . , an) + d. So, intuitively speaking, the goal of this proof is to first
compute such a transversal set, by computing an enumerated compact representation of
{(l, u) ∈ B+ | u = ub} and then use it together with a compact representation of C(u1, . . . , un)
to check membership of b in B.

In practice we need however to consider a relation of higher arity than B+, since term
operations of L × U are not uniquely determined by their value on a1, . . . , an. So let S be
the degree of supernilpotence of U (and hence also L × U). If we think about a1, . . . , an

as the columns of a matrix of dimension k × n, then let ã1, . . . , ãn ∈ Al be its extension by
rows that enumerate H = {(a1, . . . , an) ∈ An | |{i : ai ̸= 0}| ≤ S} (hence l ≤ k + |A|S

(
n
S

)
).

It follows from Theorem 2 that we can compute an enumerated compact representa-
tion C̃ of Sg(L×U)l(ã1, . . . , ãn) in polynomial time in n and l. So, every element in B̃ =
Sg(L×U)l(ã1, . . . , ãn) can be written as m(. . . m(c̃1, d̃2, c̃2) . . . d̃l, c̃l), for (c̃i, pc̃i), (d̃i, pd̃i

) ∈
C̃, where C̃ is of size at most 2l|A|2, and every element of c̃ ∈ C̃ is equal to pc̃(ã1, . . . , ãn) = c̃
for the given circuit pc̃ of polynomial size.

By Theorem 1, in an S-supernilpotent algebra, every term operation is already completely
determined by its values on the subset H. It follows, that every n-ary term operation of
L×U can be uniquely described by a circuit m(. . . m(pc̃1 , pd̃2

, pc̃2), . . . pd̃l
, pc̃l

) for c̃i, d̃i ∈ C̃.
By definition of ∼, it follows that also every n-ary term operation of A is ∼-equivalent to
the operation given by the circuit described by a circuit m(. . . m(pc̃1 , pd̃2

, pc̃2), . . . pd̃l
, pc̃l

)
for c̃i, d̃i ∈ C̃.

We are however only interested in terms t such that tU maps u1, . . . , un to the value
ub. By Lemma 3, we can also compute an enumerated compact representation C̃ ′ of
{(̃l, ũ) ∈ SgL×U(ã1, . . . , ãn) | ũ(i) = ub(i) for all i = 1, . . . , k} in polynomial time. Note
that this is possible, as {(̃l, ũ) ∈ SgL×U(ã1, . . . , ãn) | ũ(i) = ub(i) for all i = 1, . . . , k} is
closed under the Mal’tsev operation mL×U. Also, although we only prove Lemma 3 for
fixing variables to constants, we remark that it can straightforwardly be generalized to fixing
the value of the variables to domains L × {u} (alternatively, this can also be achieved by
regarding Sg(L×U)l(ã1, . . . , ãn) as a subalgebra of Ul × Ll, which however would require us
to work with relations on different domains).

If C̃ ′ = ∅, then we output “False”, as then ub /∈ SgUk (u1, . . . , un). Otherwise, let
C = {pA

c̃ (a1, . . . , an) | c̃ ∈ C̃ ′}. Also, let Ĉ be a compact representation of C(u1, . . . , un).
By our proof, every element of {(l, u) ∈ B | u = ub} is equal to the sum of an element
mA(. . . , mA(c1, d2, c2), . . . dn, cn) with ci, di ∈ C and an element of C(u1, . . . , un). Since
m is an affine Malt’sev operation when restricted to {(l, u) ∈ B | u = ub} this means that
b ∈ B iff lb is in the affine closure of all elements c + r̂ with c ∈ C and r̂ ∈ Ĉ. But this can
be checked in polynomial time (by generalized Gaussian elimination, or Theorem 2), which
finishes the proof. ◀

5 Clonoids between affine algebras

We continue our paper with an analysis of clonoids between affine algebras to prove our main
result, Theorem 20.

For a prime p, let us write Zp for the cyclic group of order p, i.e. Zp = ({0, 1, . . . , p −
1}, +, 0, −). Let us further define the idempotent reduct Zid

p = ({0, 1, . . . , p − 1}, x − y + z).
Using the unary terms ax = x + · · · + x (a-times), for a ∈ Zp, we can regard Zp as a vector
space over the p-element field. More general, using this notation, we will also consider finite
Abelian groups (L, +, 0, −) as modules over Z|L|.
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For short, we are going to denote constant 1-tuples by 1 = (1, 1, . . . , 1) ∈ Zn
p . For two

vectors a, x ∈ Zn
p , we further denote by a · x =

∑n
i=1 a(i) · x(i) the standard inner product.

Then Clo(Zp) = {x 7→ a · x | a ∈ Zn
p } and Clo(Zid

p ) = {x 7→ a · x | a ∈ Zn
p , a · 1 = 1}.

In this section, we are going to study clonoids between affine algebras U and L, such that
|U | = p for some prime p, and p ∤ |L|. Since every such affine algebra U has x − y + z as a
term operation, it makes sense to study the special case U = Zid

p . As we are in particular
interested in difference clonoids, we furthermore can assume that L contains a constant
operation 0 (see Lemma 9), and hence the operations of the Abelian group (L, +, 0, −).
We remark that our analysis is structurally similar to (but not covered by) Fioravanti’s
classification of (Zp,Zq)-clonoids [13].

5.1 (Zid
p , L)-clonoids satisfying p ∤ |L| and f(x, x, . . . , x) = 0

Throughout this subsection, let p be a prime, and L = (L, +, 0, −) an Abelian group with
p ∤ |L|, and C be a (Zid

p , L)-clonoid satisfying f(x, x, . . . , x) = 0 for all f ∈ C and x ∈ Zp. In
other words, for every n ∈ N, C maps all tuples from the diagonal ∆n = {(x, x . . . , x) ∈ Zn

p }
to 0. We are going to prove that C is generated by its binary elements, and therefore by any
set of generators B of C(2) ≤ LZ2

p . Moreover, from B, we are going to construct a canonical
generating set of the n-ary functions C(n) ≤ LZn

p . We are, in particular going to use the
following set of coefficient vectors for every n > 2:

Cn = {a ∈ Zn
p | ∃i > 1: a(1) = a(2) = . . . = a(i − 1) = 0, a(i) = 1}.

▶ Observation 12. Every 2-dimensional subspace V ≤ Zn
p containing the diagonal ∆n has a

unique parameterization by the map

ec(x, y) = x(1 − c) + yc = (x, c(2)x + (1 − c(2))y, . . . , c(n)x + (1 − c(n))y),

for some c ∈ Cn, i.e. it is equal to the range of a unique such map.

Proof. To see this, note that V contains 1, and can be therefore parameterized by ed(x, y),
for some d /∈ ∆n. So there is an index i with d(1) = . . . = d(i − 1) ̸= d(i). If d /∈ Cn, then
we define c = (d(i) − d(1))−1(d − d(1)1); clearly c ∈ Cn, and c and 1 still generate V . It is
further not hard to see that different elements of Cn generate different planes together with
1, thus we obtain a unique parameterization of V by ec(x, y). ◀

▶ Lemma 13. Let f ∈ C(2). Then, there is a function fn ∈ C(n), such that

fn(x1, x2, . . . , xn) =
{

f(x1, x2) if x2 = x3 = . . . = xn

0 else.

Proof. We prove the lemma by induction on n. For n = 2, we simply set f2 = f . For an
induction step n → n + 1, we first define tn+1(x1, x2, . . . , xn, xn+1) as the sum∑

a∈Zn−1
p

fn(x1, x2 + a(1)(xn+1 − xn), . . . , xn + a(n − 1)(xn+1 − xn))

−
∑

a∈Zn−1
p

fn(x1, x1 + a(1)(xn+1 − xn), . . . , x1 + a(n − 1)(xn+1 − xn)).

Note that, if xn+1 ̸= xn, then tn+1 evaluates to
∑

a∈Zn−1
p

f(x1, a) −
∑

a∈Zn−1
p

f(x1, a) = 0.
On the other hand, if xn = xn+1, then the second sum is equal to 0, while the first one is equal
to pn−1fn(x1, x2, . . . , xn). By the induction hypothesis, the function fn+1 = p−(n−1)tn+1
satisfies the statement of the lemma (note that p−(n−1) exist modulo |L|, since p ∤ |L|). ◀
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We can prove an analogue statement for all 2-dimensional subspaces of Zn
p containing ∆n:

▶ Lemma 14. Let f ∈ C(2), and c ∈ Cn. Then there is a function fc ∈ C(n), such that

fc(x1, x2, . . . , xn) =
{

f(x, y) if (x1, x2, . . . , xn) = ec(x, y)
0 else.

Proof. Let c ∈ C(n). It is easy to see that there is an invertible matrix T ∈ Zn×n
p , such

that T · 1 = 1 and T · (1 − c) = e1. Let T : Zn
p → Zn

p be the corresponding linear map
T (x) = T · x. Let fn as in Lemma 13 and fc(x) := fn ◦ T . Note that by the first
condition, all rows of T sum up to 1, hence T can be expressed by terms of Zid

p . Then
fc(ec(x, y)) = fn(T (x(1 − c) + yc)) = fn(xe1 + y(1 − e1)) = f(x, y), and fc(x) = 0 for
x /∈ ec(Z2

p). ◀

We are now ready to prove the main result of this section:

▶ Lemma 15. Let C be a (Zid
p , L)-clonoid satisfying ∀f ∈ C, x ∈ Zp : f(x, . . . , x) = 0, and let

B be a generating set of C(2) ≤ LZ2
p . Then

(1) C is the (Zid
p , L)-clonoid generated by B, and

(2) Bn := {fc | f ∈ B, c ∈ Cn} is a generating set of C(n) in LZn
p ,

Proof. For any g ∈ C(n) and c ∈ C(n), let us define the binary operation gc = f(ec(x, y)) ∈
C(2). By Lemma 14, gc generates a function gc

c ∈ C(n), that agrees with f(x, y) on all tuples
of the form ec(x, y), and that is 0 else. Since every point of Zn

p \ ∆n is in the image of a
unique map ec, we get g =

∑
c∈Cn

gc
c . Every element of the form gc

c can be clearly written
as a linear combination of elements fc, where f ∈ B. It follows that Bn generates C(n) in
LZn

p , and that the clonoid generated by B is C. ◀

We remark that if L = Zq for a prime q ̸= p, and B is a basis of the vector space
C(2) ≤ LZ2

p , then Bn is a basis of C(n). The generating set Bn can be used to decide efficiently
the following version of the subpower membership problem for C:

▶ Lemma 16. Let C be a (Zid
p , L)-clonoid satisfying ∀f ∈ C, x ∈ Zp : f(x, . . . , x) = 0. Then

we can solve CompRep(C) in polynomial time.

Proof. By Lemma 15, C(n) is the linear closure of Bn. Thus C(u1, . . . , un) is equal to the
linear closure of Bn(u1, . . . , un) := {fc(u1, . . . , un) | f ∈ B, c ∈ Cn}.

Note that the i-th entry fc(u1, . . . , un)(i) of such a generating element can only be different
from 0 if (u1, . . . , un)(i) lies in the 2-dimensional subspace generated by the diagonal ∆n and
c. Thus, there are at most k many vectors c ∈ Cn such that fc(u1, . . . , un) ̸= 0, let c1, . . . , cl

be an enumeration of them. Clearly D = {fc(u1, . . . , un) | f ∈ B, c ∈ {c1, . . . , cl}} generates
C(u1, . . . , un); note that we can compute it in linear time O(kn). From the generating set D

we can compute a compact representation of C(u1, . . . , un) in polynomial time (by generalized
Gaussian elimination, or Theorem 2). ◀

5.2 General (Zid
p , L)-clonoids satisfying p ∤ |L|

For an arbitrary (Zid
p , L)-clonoid C, let us define the subclonoid C∆ = {f ∈ C : f(x, . . . , x) = 0}.

We then show, that every f ∈ C can be written in a unique way as the sum of an element of
C∆, and a function that is generated by C(1). For this, we need the following lemma:

▶ Lemma 17. For any f ∈ C(n), let us define f ′(x) = f(x1, x1, . . . , x1). Then f − f ′ ∈ C∆,
and f ′ is generated by C(1).
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Proof. trivial. ◀

It follows in particular from Lemma 17 and Lemma 15 that every (Zid
p , L)-clonoid C is

generated by any set A ∪ B, such that A generates C(1) in LZp and B generates C(2)
∆ in LZ2

p .
Note that the clonoid generated by A does not need to be disjoint from C∆. We can, however,
still prove results analogous to the previous section.

▶ Lemma 18. Let C be a (Zid
p , L)-clonoid, let A be a generating set of C(1) ≤ LZp and B a

generating set of C(2)
∆ ≤ LZ2

p . For every n, let us define An = {
∑

a∈Zn
p ,a·1=1 f(a · x) | f ∈ A}

and let Bn be defined as in Lemma 15. Then An ∪ Bn is a generating set of C(n) in LZn
p .

Proof. We already know from Lemma 15 that Bn, generates C(n)
∆ ≤ LZn

p .
By Lemma 17, every element f ∈ C(n) can be uniquely written as the sum f ′ and f − f ′.

Furthermore f ′, by definition, is generated by An, and f − f ′ is in C(n)
∆ , which finishes our

proof. ◀

Lemma 18 allows us to straightforwardly generalize Lemma 16 to arbitrary (Zid
p , L)-

clonoids:

▶ Lemma 19. Let C be a (Zid
p , L)-clonoid. Then CompRep(C) ∈ P.

Proof. Let An and Bn be defined as in Lemma 18. Our goal is to compute a compact
representation of C(u1, . . . , un) for some given u1, . . . , un ∈ Zk

p. By Lemma 18, every g ∈ C
decomposes into the sum of g′ and g − g′, where g′ is generated by An and g − g′ is generated
by Bn. Thus any image g(u1, . . . , un) is in the linear closure of all tuples f(u1, . . . , un), for
f ∈ An and Bn(u1, . . . , un) = {f (u1, . . . , un) | f ∈ B, ∈ Cn} in Lk. There are at most
|A|-many tuples of the first form. Furthermore, as in the proof of Lemma 16 we can compute
a generating set of Bn(u1, . . . , un) in polynomial time. By generalized Gaussian elimination
(or Theorem 2), we can obtain a compact representation from these generators in polynomial
time. ◀

Lemma 19 allows us to finish the proof of our main result:

▶ Theorem 20. Let A be a finite Mal’tsev algebra, with a central series 0A < ρ < 1A such
that |A/ρ| = p is a prime, and the blocks of ρ are of size coprime to p. Then SMP(A) ∈ P.

Proof. By Theorem 5, A is isomorphic to a wreath product L ⊗ U, such that U, L are affine
with |U | = p and |L| coprime to p (as |L| is the size of every block of ρ). By Theorem 11,
SMP(A) reduces to CompRep(Diff0(A)) in polynomial time. The difference clonoid is a
clonoid from U to (L, 0). Since both L and U are affine, and therefore have term operations
describing x − y + z, Diff0(A) is also a clonoid from Zid

p to (L, +, 0, −). By Lemma 19,
CompRep(Diff0(A)) is solvable in polynomial time, which finishes the proof. ◀

▶ Corollary 21. For every nilpotent Mal’tsev algebra A with |A| = pq for distinct primes
p ̸= q, we have SMP(A) ∈ P.

Proof. If A is affine, then the result holds by (generalized) Gaussian elimination. So assume
that A is 2-nilpotent, but not affine. So A is isomorphic to L ⊗ U, and wlog. |L| = q and
|U | = p. Then the result follows directly from Theorem 20. ◀
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6 Discussion

In Theorem 20 we proved that every Mal’tsev algebra, which can be written as a wreath
product L ⊗ U with |U | = p and p ∤ |L| has a tractable subpower membership problem. But,
since the reduction discussed in Theorem 11 extends beyond this case, it is natural to ask,
whether we can also extend the tractability also extends to all those cases:

▶ Question 22. Is SMP(L ⊗ U) ∈ P for every supernilpotent Mal’tsev algebra U?

In particular, if U is affine, Question 22 asks, whether the subpower membership problem
of all finite 2-nilpotent Mal’tsev algebras can be solved in polynomial time. By Theorem 11,
this reduces to computing compact representations with respect the clonoids between affine
algebras. Thus answering the question requires a better understanding of such clonoids.

The recent preprint [27] studies such clonoids in the case where U has a distributive
congruence lattice, and L is coprime to U. Such clonoids are always generated by functions of
bounded arity (as in Lemma 14), thus we expect a similar argument as in Lemma 19 to work
in solving CompRep(C). We remark that, in the case of the clonoid of all operations from U
and L this was already implicitly shown in [18] to obtain a polynomial time algorithm for
checking whether two circuits over a 2-nilpotent algebra are equivalent. However [27] does
not cover all clonoids between affine algebras; e.g. for the case U = Zp × Zp and coprime L
nothing is known so far.

A reason why much emphasis is placed on coprime U and L is, that their wreath products
L ⊗T,0 U are not supernilpotent (for non-trivial operations T ), and therefore not covered by
Theorem 2. In fact, finite Mal’tsev algebras in finite language are supernilpotent if and only
if they decompose into the direct product of nilpotent algebras of prime power size (see e.g.
[2, Lemma 7.6.]). It is further still consistent with our current knowledge that the conditions
of Theorem 10 are always met, for coprime L and U. This naturally leads to the question:

▶ Question 23. Is Clo(L × U) ⊆ Clo(L ⊗ U), for all finite nilpotent Mal’tsev algebras L ⊗ U
where L and U have coprime size?

In fact, in an unpublished proof [20], a positive answer to Question 23 is given in the
case that Clo(L ⊗ U) contains a constant operation. A more general version of Question 23
would ask, whether every finite nilpotent Mal’tsev algebra A has a Mal’tsev term m, such
that (A, m) is supernilpotent.

Lastly we would like to mention that recently the property of short pp-defitions was
suggested as a witnesses for SMP(A) ∈ coNP. While Mal’tsev algebras that generate
residually finite varieties have short pp-definitions [10], it is not know whether this is true in
the nilpotent case. Thus we ask:

▶ Question 24. Does every finite nilpotent Mal’tsev algebras A have short pp-definitions
(and hence SMP(A) ∈ NP ∩ coNP)?

Studying Question 24 might especially be a useful approach to discuss the complexity for
algebras of high nilpotent degree, if studying the corresponding difference clonoids turns out
to be too difficult or technical.
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If we then repeatedly call Fix-value to fix the value of the first m-many values of R,
this results in an algorithm that runs in time O(|A|2 · nm)).

Thus, the only thing that remains to prove is that the algorithm Fix-Value is correct.
i.e. it indeed outputs an enumerated R′ with Sig(R′) = Sig(R ∩ {x ∈ Ak | x(1) = a}) (if the
output is not empty). So assume that (i, b, c) ∈ Sig(R ∩ {x ∈ Ak | x(1) = a}). If i = 1, then
clearly (i, b, c) = (1, a, a), which is in Sig(R′). So let us assume wlog. that i > 1. Since R is
a compact representation of R, there exist tuples rb, rc ∈ R (and defining circuits prb

and
prc), witnessing that (i, b, c) ∈ Sig(R). Then R′ contains the tuples t and s = m(t, rb, rc),
as constructed in line 12 and 13 of Algorithm 1. Since rb and rc agree on the first i − 1
coordinates also t and s do. Moreover t(1) = a, t(i) = b, and s(i) = m(b, b, c) = c, thus t and
s witness (i, b, c) ∈ Sig(R ∩x(1) = a). It follows that Sig(R′) = Sig(R ∩{x ∈ Ak | x(1) = a}),
which is what we wanted to prove.

Algorithm 1 An algorithm that, for a given enumerated compact representations R of R =
SgAk (X) outputs an enumerated compact representation R′ of the relation that fixes x1 = a, (where
the defining circuits of R′ are evaluated on X).

1: procedure Fix-Value(a ∈ A, R (enum. c.r. of R = SgAk (X)), Mal’tsev term m)
2: if (1, a, a) ̸∈ Sig(R) then return ∅
3: else
4: Let (t, pt) ∈ R be such that (t, t) is a witness of (1, a, a) ∈ Sig(R).
5: R′ = {(t, pt)}
6: for j > 1 do
7: Recursively apply m to pr1,j(R) to compute Tj = {(x, y) ∈ pr1,j(R) | x = a},
8: and circuits Cj = {p(x,y) | (x, y) ∈ Tj} such that pr1,j(p(x,y)(X)) = (x, y).
9: for (j, b, c) ∈ Sig(R) do

10: Let (rb, prb
), (rc, prc) ∈ R be witnesses of (j, b, c) ∈ Sig(R)

11: if (a, b) ∈ Tj then
12: Let t = p(a,b)(X)
13: s = m(t, rb, rc) and ps = m(p(a,b), prb

, prc
)

14: R′ = R′ ∪ {(t, p(a,b)), (s, ps)}
15: return R′
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We study parameterized and approximation algorithms for a variant of Set Cover, where the
universe of elements to be covered consists of points in the plane and the sets with which the points
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relaxation of the problem called δ-extension, where we need to cover the points by segments that are
extended by a tiny fraction, but we compare the solution’s quality to the optimum without extension.

For the unparameterized variant, we prove that Segment Set Cover does not admit a PTAS
unless P=NP, even if we restrict segments to be axis-parallel and allow 1

2 -extension. On the
other hand, we show that parameterization helps for the tractability of Segment Set Cover:
we give an FPT algorithm for unweighted Segment Set Cover parameterized by the solution
size k, a parameterized approximation scheme for Weighted Segment Set Cover with k being
the parameter, and an FPT algorithm for Weighted Segment Set Cover with δ-extension
parameterized by k and δ. In the last two results, relaxing the problem is probably necessary: we
prove that Weighted Segment Set Cover without any relaxation is W[1]-hard and, assuming
ETH, there does not exist an algorithm running in time f(k) · no(k/ log k). This holds even if one
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1 Introduction

In the classic Set Cover problem, we are given a set of elements (universe) U and a family
of sets F that are subsets of U and sum up to the whole U . The task is to find a subfamily
S ⊆ F such that

⋃
S = U and the size of S is minimum possible.

In the most general form, Set Cover is NP-complete, inapproximable within factor
(1 − δ) ln |U| for any δ > 0 assuming P ̸= NP [5], and W[2]-complete with the natural
parameterization by the size of the solution [4, Theorem 13.21]. However, restricting the
problem to various specialized settings can lead to more tractable special cases. Particularly
well-studied setting is that of Geometric Set Cover, where U consists of points in some
Euclidean space V (most often the plane R2), while F consists of various geometric objects
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in V . In this paper we take a closer look at the Segment Set Cover problem, where we
assume that U is a finite set of points in the plane and F consists of segments in the plane
(not necessarily axis-parallel). Each of these problems has also a natural weighted variant,
where each set A ∈ F comes with a nonnegative real weight w(A) and the task is to find a
solution with the minimum possible total weight.

Approximation. Over the years there has been a lot of work related to approximation al-
gorithms for Geometric Set Cover. Notably, Geometric Set Cover with unweighted
unit disks or weighted unit squares admits a PTAS [6,17]. When we consider the same
problem with weighted disks or squares (not necessarily unit), the problem admits a
QPTAS [16], see also [19]. On the other hand, Chan and Grant proved that unweighted
Geometric Set Cover with axis-parallel fat rectangles is APX-hard [3]. They also showed
similar hardness for Geometric Set Cover with many other standard geometric objects.
See the introductory section of [3] for a wider discussion of approximation algorithms for
Geometric Set Cover with various kinds of geometric objects.

Parameterization. We consider Geometric Set Cover parameterized by the size of
solution: Given an instance (U , F) and a parameter k, the task is to decide whether there is
a solution of cardinality at most k. In the weighted setting, we look for a minimum-weight
solution among those of cardinality at most k, and k remains a parameter.

(Unweighted) Geometric Set Cover where F consists of lines in the plane is called
Point Line Cover, and it is a textbook example of a problem that admits a quadratic
kernel and a 2O(k log k) · nO(1)-time fixed-parameter algorithm (cf. [4, Exercise 2.4]). See
also the work of Kratsch et al. [10] for a matching lower bound on the kernel size and a
discussion of the relevant literature. The simple branching and kernelization ideas behind
the parameterized algorithms for Point Line Cover were generalized by Langerman and
Morin [11] to an abstract variant of Geometric Set Cover where the sets of F can be
assigned a suitable notion of dimension. This framework in particular applies to the problem
of covering points with hyperspaces in Rd.

As proved by Marx, unweighted Geometric Set Cover with unit squares in the plane
is already W[1]-hard [12, Theorem 5]. Later, Marx and Pilipczuk showed that there is
an algorithm running in time nO(

√
k) that solves weighted Geometric Set Cover with

squares or with disks, and that this running time is tight under the Exponential-Time
Hypothesis (ETH) [15]. However, they also showed that any small deviations from the setting
of squares or disks – for instance considering thin rectangles or rectangles with sidelengths
in the interval [1, 1 + δ] for any δ > 0 – lead to problems for which there are lower bounds
refuting running times of the form f(k) · no(k) or f(k) · no(k/ log k), for any computable f .
See [15] for a broader exposition of these results and for more literature pointers.

We are not aware of any previous work that concretely considered the
Segment Set Cover problem. In particular, it seems that the framework of Langer-
man and Morin [11] does not apply to this problem, since no suitable notion of dimension
can be assigned to segments in the plane (more concretely, the fundamental [11, Lemma 1]
fails, which renders further arguments not applicable). In [13] Marx considered the related
Dominating Set problem in intersection graphs of axis-parallel segments, and proved it
to be W[1]-hard. The parameterized complexity of the Independent Set problem for
segments in the plane was studied in the same work of Marx, and independently by Kára
and Kratochvíl [8].
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δ-extension. We also consider the δ-extension relaxation of the Segment Set Cover
problem. Formally, for a center-symmetric object L ⊆ R2 with center of symmetry S =
(xs, ys), the δ-extension of L is the set:

L+δ = {(1 + ϵ) · (x − xs, y − ys) + (xs, ys) : (x, y) ∈ L, 0 ⩽ ϵ < δ}.

That is, L+δ is the image of L under homothety centred at S with scale (1 + δ) but with the
extreme points excluded. In particular, δ-extension turns a closed segment into a segment
without endpoints and a rectangle into the interior of a rectangle; this is a technical detail
that will turn out to be useful in presentation.

In Geometric Set Cover with δ-extension, we assume that in the given instance (U , F),
F consists of center-symmetric objects, and we are additionally given the accuracy para-
meter δ > 0. The task is to find S ⊆ F such that S+δ := {L+δ : L ∈ S} covers all points
in U , but the quality of the solution – be it the cardinality or the weight of S – is compared
to the optimum without assuming extension. Thus, requirements on the the output solution
are relaxed: the points of U have to be covered only after expanding every object of S a tiny
bit. The parameterized variants of Geometric Set Cover with δ-extension are defined
naturally: the task is to either find a solution of size at most k that covers all of U after
δ-extension, or conclude that there is no solution of size k that covers U without extension.

The study of the δ-extension relaxation is motivated by the δ-shrinking relaxation
considered in the context of the Geometric Independent Set problem: given a family
F of objects in the plane, find the maximum size subfamily of pairwise disjoint objects. In
the δ-shrinking model, the output solution is required to be disjoint only after shrinking
every object by a 1 − δ multiplicative factor. Geometric Independent Set remains
W[1]-hard for as simple objects as unit disks or unit squares [13] and admits a QPTAS for
polygons [2], but the existence of a PTAS for the problem is widely open. However, as first
observed by Adamaszek et al. [1], and then confirmed by subsequent works of Wiese [20]
and of Pilipczuk et al. [18], adopting the δ-shrinking relaxation leads to a robust set of FPT
algorithms and (efficient or parameterized) approximation schemes. The motivation of this
work is to explore if the analogous δ-extension relaxation of Geometric Set Cover also
leads to more positive results.

In fact, we are not the first to consider the δ-extension relaxation of
Geometric Set Cover. In [7], Har-Peled and Lee considered the Weighted Geometric
Set Cover problem with δ-extension1 for fat polygons, and proved that the problem admits
a PTAS with running time |F|O(ϵ−2δ−2) · |U|. Given this result, our goal is to understand
the complexity in the setting of ultimately non-fat polygons: segments.

Our contribution. First, we show that Segment Set Cover does not have a polynomial-
time approximation scheme (PTAS) assuming P ̸=NP, even if segments are axis-parallel and
we relax the problem with 1

2 -extension. Thus, there is no hope for the analog of the result of
Har-Peled and Lee [7] in the setting of segments.

▶ Theorem 1. There exists a constant γ > 0 such that, unless P=NP, there is no polynomial-
time algorithm that given an instance (U , F) of (unweighted) Segment Set Cover in
which all segments are axis-parallel, returns a set S ⊆ F such that S+ 1

2 covers U and
|S| ⩽ (1 + γ) · opt, where opt denotes the minimum size of a subset of F that covers U .

1 We note that Har-Peled and Lee considered a different definition of δ-extension, where every object L is
extended by all points at distance at most δ · rad(L), where rad(L) is the radius of the largest circle
inscribed in L. This definition works well for fat polygons, but not so for segments, hence we adopt the
homothetical definition of δ-extension discussed above.
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Theorem 1 justifies also considering parameterization by the solution size k. For this
parameterization, we provide three parameterized algorithms:

an FPT algorithm for (unweighted) Segment Set Cover with k being the parameter;
a parameterized approximation scheme (PAS) for Weighted Segment Set Cover: a
(1 + ϵ)-approximation algorithm with running time of the form f(k, ϵ) · (|U||F|)O(1); and
an FPT algorithm for Weighted Segment Set Cover with δ-extension, where both
k and δ > 0 are the parameters.

Formal statements of these results follow below.

▶ Theorem 2. There is an algorithm that given a family F of segments in the plane, a set
U of points in the plane, and a parameter k, runs in time kO(k) · (|U||F|)O(1), and either
outputs a set S ⊆ F such that |S| ⩽ k and S covers all points in U , or determines that such
a set S does not exist.

▶ Theorem 3. There is an algorithm that given a family F of weighted segments in the plane,
a set U of points in the plane, and parameters k and ϵ > 0, runs in time (k/ϵ)O(k) ·(|U||F|)O(1)

and outputs a set S such that:
S ⊆ F , |S| ⩽ k, and S covers all points in U , and
the weight of S is not greater than 1 + ϵ times the minimum weight of a subset of F of
size at most k that covers U ,

or determines that there is no set S ⊆ F with |S| ⩽ k such that S covers all points in U .

▶ Theorem 4. There is an algorithm that given a family F of weighted segments in the plane,
a set U of points in the plane, and parameters k and δ > 0, runs in time f(k, δ) · (|U||F|)O(1)

for some computable function f and outputs a set S such that:
S ⊆ F , |S| ⩽ k, S+δ covers all points in U , and
the weight of S is not greater than the minimum weight of a subset of F that covers U
without δ-extension,

or determines that there is no set S ⊆ F with |S| ⩽ k such that S covers all points in U .

It is natural to ask whether relying on relaxations – (1+ ϵ)-approximation or δ-extension –
is really necessary for Weighted Segment Set Cover, as Theorem 2 shows that it is not
in the unweighted setting. Somewhat surprisingly, we show that this is the case by proving
the following result. Recall that here we consider Weighted Segment Set Cover as a
parameterized problem where we seek a solution of the minimum total weight among those
of cardinality at most k.

▶ Theorem 5. The Weighted Segment Set Cover problem is W[1]-hard when paramet-
erized by k and assuming ETH, there is no algorithm for this problem with running time
f(k) · (|U| + |F|)o(k/ log k) for any computable function f . Moreover, this holds even if all
segments in F are axis-parallel.

Thus, the uncovered parameterized complexity of Segment Set Cover is an interesting
one: the problem is FPT when parameterized by the solution size k in the unweighted
setting, but this tractability ceases to hold when moving to the weighted setting. However,
fixed-parameter tractability in the weighted setting can be restored if one considers any of
the following relaxations: (1 + ϵ)-approximation or δ-extension.

Organization. In Section 2 we prove Theorems 2, 3 and 4, while in Section 3 we prove
Theorem 5. Due to space constraints, the proof of Theorem 1 is presented only in the full
version of this article [9].
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2 Algorithms

In this section we give our positive results – Theorems 2, 3, and 4. We start with a shared
definition. For a set of collinear points C in the plane, extreme points of C are the endpoints
of the smallest segment that covers all points from set C. In particular, if C consists of one
point or is empty, then there are 1 or 0 extreme points, respectively.

2.1 Unweighted segments and a parameterized approximation scheme
We first a give an FPT algorithm for Weighted Segment Set Cover where we addition-
ally consider the number of different weights to be the parameter.

▶ Theorem 6. There is an algorithm that given a family F of weighted segments in the
plane, a set U of points in the plane, and a parameter k, runs in time (qk)O(k) · (|U||F|)O(1),
where q is the number of different weights used by the weight function, and either outputs a
solution S ⊆ F such that |S| ⩽ k and S covers all points in U , or determines that such a set
S does not exist.

Clearly, Theorem 2 follows from applying Theorem 6 for q = 1. However, later we
use Theorem 6 for larger values of q to obtain our parameterized approximation scheme:
Theorem 3.

We remark that the proof of Theorem 6 relies on branching and kernelization arguments
that are standard in parameterized algorithms. Even though the statement does not formally
follow from the work of Langerman and Morin [11], the basic technique is very similar.

Towards the proof of Theorem 6, we may assume that the given instance (U , F , w), where
w : F → R⩾0 denotes the weight function on F , is reasonable in the following sense: there
do not exist distinct A, B ∈ F with the same weight such that A ∩ U ⊆ B ∩ U . Indeed, then
A could be safely removed from F , since in any solution, taking B instead of A does not
increase the weight and may only result in covering more points in U . In the next lemma
we show that in reasonable instances we can find a small subset of F that is guaranteed to
intersect every small solution.

▶ Lemma 7. Suppose (U , F , w) is a reasonable instance of Weighted Segment Set
Cover where the weight function w uses at most q different values. Suppose further that
there exists a line L in the plane with at least k + 1 points of U on it. Then there exists a
subset R ⊆ F of size at most qk such that every subset S ⊆ F with |S| ⩽ k that covers U
satisfies |R ∩ S| ⩾ 1. Moreover, such a subset R can be found in polynomial time.

Proof. Let us enumerate the points of U that lie on L as x1, x2, . . . , xt in the order in which
they appear on L. By reasonability of (U , F), for every i ∈ {1, . . . , k} there exist at most q

different segments in F that are collinear with L and cover xi, but do not cover xi−1 (or
just cover x1, in case i = 1). Indeed, if A ∈ F is collinear with L, covers xi and does not
cover xi−1, then A ∩ U = {xi, . . . , xj} for some j ⩾ i; so if there was another B ∈ F with
the same property and the same weight as A, then the reasonability of (U , F) would imply
that A = B. Let Ri be the set of segments with the property discussed above; then |Ri| ⩽ q.
Our proposed set is defined as:

R :=
k⋃

i=1
Ri.

Clearly, R can be found in polynomial time and |R| ⩽ qk. It remains to prove that R has
the desired property. Consider any set S ⊆ F of size at most k that covers U .

STACS 2024
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Let SL be the set of segments from S that are collinear with L. Every segment that is
not collinear with L can cover at most one of the points that lie on this line. Hence, if SL

was empty, then S would cover at most k points on line L, but L had at least k + 1 different
points from U on it.

Therefore, we know that SL is not empty and hence |S − SL| ⩽ k − 1. Segments from
S − SL can cover at most k − 1 points among {x1, x2, . . . , xk}, therefore at least one of these
points must be covered by segments from SL. Let i ∈ {1, . . . , k} be the smallest index such
that xi is covered by a segment in SL. Then, by minimality, this segment cannot cover xi−1
(if existent), so it must belong to Ri. We conclude that R ∩ S is nonempty, as desired. ◀

With Lemma 7 in hand, we prove Theorem 6 using a straightforward branching strategy.

Proof of Theorem 6. Let (U , F , w) be the given instance and k be the given parameter:
the target size of a solution. We present a recursive algorithm that proceeds as follows:
(1) As long as there are distinct sets A, B ∈ F with A∩U ⊆ B∩U and w(A) = w(B), remove

A from F . Once this step is applied exhaustively, the instance (U , F , w) is reasonable.
(2) If there is a line with at least k + 1 points from U , we branch over the choice of adding

to the solution one of the at most qk possible segments from the set R provided by
Lemma 7. That is, for every s ∈ R, we recurse on the instance (U − s, F − {s}, w),
and parameter k − 1. If any such recursive call returned a solution S ′, then return the
lightest among solutions S ′ ∪ {s} obtained in this way. Otherwise, return that there is
no solution.

(3) If every line has at most k points on it and |U| > k2, then return that there is no solution.
(4) If |U| ⩽ k2, solve the problem by brute force: check all subsets of F of size at most k.

That the algorithm is correct is clear: the correctness of step (2) follows from Lemma 7,
and to see the correctness of step (3) note that if no line contains more than k points, than
no segment of F can cover more than k points in U , hence having more than k2 points in U
implies that there is no solution of size at most k.

For the time complexity, observe that in the leaves of the recursion we have |U| ⩽ k2,
so |F| ⩽ qk4, because every segment can be uniquely identified by its weight and the two
extreme points it covers (this follows from reasonability). Therefore, there are

(
qk4

⩽k

)
⩽ (qk)O(k)

possible solutions to check, each can be checked in polynomial time. Thus, step (4) takes
time (qk)O(k) whenever applied in the leaf of the recursion.

During the recursion, the parameter k is decreased with every recursive call, so the
recursion tree has depth at most k and at each node we branch over at most qk possibilities.
Thus, there are at most O((qk)k) nodes in the recursion tree, and local computation in each of
them can be done in time (|U||F|)O(1) · (qk)O(k) (the second factor is due to possibly applying
step (4) in the leaves). Thus, the time complexity of the algorithm is (qk)O(k)·(|U||F|)O(1). ◀

Finally, we use Theorem 6 to prove Theorem 3, recalled below for convenience. The idea
is to multiplicatively round the weights so that we obtain an instance with only few different
weight values, on which the algorithm of Theorem 6 can be employed.

▶ Theorem 3. There is an algorithm that given a family F of weighted segments in the plane,
a set U of points in the plane, and parameters k and ϵ > 0, runs in time (k/ϵ)O(k) ·(|U||F|)O(1)

and outputs a set S such that:
S ⊆ F , |S| ⩽ k, and S covers all points in U , and
the weight of S is not greater than 1 + ϵ times the minimum weight of a subset of F of
size at most k that covers U ,

or determines that there is no set S ⊆ F with |S| ⩽ k such that S covers all points in U .
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Proof. Let S⋆ be an optimum solution: a minimum-weight set at most k segments in F
that covers U . The algorithm does not know S⋆, but by branching into at most |F| choices
we may assume that it knows the weight of the heaviest segment in S⋆; call this weight W .
Thus, we have W ⩽ w(S⋆) ⩽ kW . We may dispose of all segments in F whose weight is
larger than W , as they will for sure not participate in the solution.

We define a new weight function w′ : F → R⩾0 as follows. Consider any segment A ∈ F .
If w(A) ⩽ ϵ

2k · W , then set w′(A) := ϵ
2k · W . Otherwise, set w′(A) := W

(1+ϵ/2)i , where i is the
unique integer such that

W

(1 + ϵ/2)i+1 < w(A) ⩽ W

(1 + ϵ/2)i
.

Note that the assumption w(A) > ϵ
2k · W implies that we always have i ⩽ log1+ϵ/2(2k/ϵ) =

O(1/ϵ log(k/ϵ)). As we also have i ⩾ 0 due to removing segments of weight larger than W ,
we conclude that the weight function w′ uses at most O(1/ϵ log(k/ϵ)) different weight values.

Next, observe that for every segment A ∈ F , we have

w′(A) ⩽ (1 + ϵ/2) · w(A) + ϵ

2k
· W.

Summing this inequality through all segments of S⋆ yields

w′(S⋆) ⩽ (1 + ϵ/2) · w(S⋆) + k · ϵ

2k
· W ⩽ (1 + ϵ/2) · w(S⋆) + ϵ/2 · w(S⋆) = (1 + ϵ) · w(S⋆).

As S⋆ is an optimum solution, we conclude that the optimum solution in the instance
(U , F , w′) for parameter k is at most (1 + ϵ) times heavier than the optimum solution in the
instance (U , F , w) for parameter k. Hence, it suffices to apply the algorithm of Theorem 6
to the instance (U , F , w′) and parameter k and return the obtained solution. The running
time is (1/ϵ · k log(k/ϵ))O(k) · (|U||F|)O(1) = (k/ϵ)O(k) · (|U||F|)O(1), as promised. ◀

2.2 Weighted segments with δ-extension
In this section we prove Theorem 4, restated below for convenience.

▶ Theorem 4. There is an algorithm that given a family F of weighted segments in the plane,
a set U of points in the plane, and parameters k and δ > 0, runs in time f(k, δ) · (|U||F|)O(1)

for some computable function f and outputs a set S such that:
S ⊆ F , |S| ⩽ k, S+δ covers all points in U , and
the weight of S is not greater than the minimum weight of a subset of F that covers U
without δ-extension,

or determines that there is no set S ⊆ F with |S| ⩽ k such that S covers all points in U .

Roughly speaking, our approach to prove Theorem 4 is to find a small kernel for the
problem; but we need to be careful with the definition of kernelization, because we work in
the δ-extension model. The key technical tool will be the notion of a dense subset.

Dense subsets. Intuitively speaking, for a set of collinear points C, a subset A ⊆ C is dense
if any small cover of A becomes a cover of C after a tiny extension. This is formalized in the
following definition.

▶ Definition 8. For a set of collinear points C, a subset A ⊆ C is (k, δ)-dense in C if for
any set of segments R that covers A and such that |R| ⩽ k, it holds that R+δ covers C.
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The key combinatorial observation in our approach is expressed in the following Lemma 9:
in every collinear set C one can always find a (k, δ)-dense subset of size bounded by a function
of k and δ. Later, this lemma will allow us to find a kernel for our original problem.

▶ Lemma 9. For every set C of collinear points in the plane, δ > 0 and k ⩾ 1, there exists
a (k, δ)-dense set A ⊆ C of size at most (2 + 4

δ )k. Moreover, such a (k, δ)-dense set can be
computed in time O(|C| · (2 + 4

δ )k).

Proof. We give a proof of the existence of such a dense subset A, and at the end we will argue
that the proof naturally gives rise to an algorithm with the promised complexity. We fix δ

and proceed by induction on k. Formally, we shall prove the following stronger statement:
For any set of collinear points C, there exists a subset A ⊆ C such that:

A is (k, δ)-dense in C,
|A| ⩽ (2 + 4

δ )k, and
the extreme points of C are in A.

Consider first the base case when k = 1. Then it is sufficient to just take A that consists
of the (at most 2) extreme points of C. Indeed, if the extreme points of C are covered with
one segment, then this segment must cover the whole set C (even without extension). Thus,
the set A has size at most 2 < (2 + 4

δ )1, as required.
We now proceed to the inductive step. Assuming inductive hypothesis for any set of

collinear points C and for parameter k, we will prove it for k + 1.
Let s be the minimal segment that includes all points from C. That is, s is the segment

whose endpoints are the extreme points of C.
Split s into M := ⌈1 + 4

δ ⌉ subsegments of equal length. We name these segments
v1, v2, . . . , vM in order, and we consider them closed. Note that |vi| = |s|

M for each 1 ⩽ i ⩽ M ,
where | · | denotes the length of a segment.

Let Ci be the subset of C consisting of points belonging to vi. Further, let ti be the
segment with endpoints being the extreme points of Ci. Note that ti might be a degenerate
single-point segment if Ci consists of one point, or even ti might be empty if Ci is empty.
Figure 1 presents an example of the construction.

v1 v2 v3 v4 v5 v6 v7

t1 t2 t4 t6

a b c = t3 d = t7

a b c d

y z

Figure 1 Example of the construction in the proof of Lemma 9 for M = 7 and some set of
points C (marked with black circles). The top panel shows segments vi. The middle panel shows
segments ti. Note that t5 is an empty segment, because there are no points in C that belong to
v5, while each of the segments t3 and t7 is degenerated to a single point: c and d, respectively.
Segments t1 and t2 share one point b. The bottom panel shows an example of the second case in the
correctness proof: a solution R of size 4 whose all segments intersect t4. Then one of y and z will
cover the whole of C4 after extension.
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We use the inductive hypothesis to choose a (k, δ)-dense subset Ai of Ci, for each
i ∈ {1, . . . , M}. Note that if |Ci| ⩽ 1, then Ai = Ci, so Ai is (k, δ)-dense set for Ci. Also, by
assumption, Ai contains the extreme points of Ci.

Next, we define A :=
⋃M

i=1 Ai. Thus A includes the extreme points of C, because they
are included in the sets A1 and AM .

By induction, the size of each Ai is at most (2 + 4
δ )k. Therefore,

|A| ⩽ M

(
2 + 4

δ

)k

=
⌈

1 + 4
δ

⌉
·
(

2 + 4
δ

)k

⩽

(
2 + 4

δ

)k+1
.

We are left with verifying that A is (k + 1, δ)-dense in C. For this, consider any cover of A

with k + 1 segments and call it R.
Consider any segment ti. If there exists a segment x ∈ R that is disjoint with ti, then

R − {x} constitutes a cover of Ai with at most k segments. Since Ai is (k, δ)-dense in Ci,
(R − {x})+δ covers Ci. So R+δ covers Ci as well.

On the other hand, if for any fixed ti a segment x ∈ R as above does not exist, then
all the k + 1 segments of R intersect ti. An example of such a situation is depicted in the
bottom panel of Figure 1. Let us consider any such ti. By induction, the endpoints of s are
in A1 and AM respectively, so R must cover them. So for each endpoint of s, there exists a
segment in R that contains this endpoint and intersects ti. Let us call these two segments y

and z. It follows that |y| + |z| + |ti| ⩾ |s|. Since |ti| ⩽ |vi| = |s|
M ⩽ |s|

1+ 4
δ

= δ|s|
δ+4 , we have

max(|y|, |z|) ⩾ |s|
(

1 − δ

δ + 4

)
/2 = 2|s|

δ + 4 .

After δ-extension, the longer of the segments y and z will expand at both ends by at least:

δ/2 · max(|y|, |z|) ⩾ δ|s|
δ + 4 = |s|

1 + 4
δ

⩾
|s|
M

= |vi| ⩾ |ti|.

Therefore, the longer of segments y and z will cover the whole segment ti after δ-extension.
We conclude that R+δ covers Ci as well.

Since C =
⋃M

i=1 Ci, we conclude that R+δ covers C. So indeed, A is (k + 1, δ)-dense
in C. This concludes the proof of the existence of such a dense set A. To compute A in time
O

(
|C| ·

(
2 + 4

δ

)k
)

observe that the inductive proof explained above can be easily turned
into a recursive procedure that for a given C and k, outputs a (k, δ)-dense subset of C. The
recursion tree of this procedure has size O

((
2 + 4

δ

)k
)

in total, while every recursive calls uses

O(|C|) time for internal computation, so the total running time is O
(

|C| ·
(
2 + 4

δ

)k
)

. ◀

Long lines. We need a few additional observations in the spirit of the algorithm of Theorem 6.
For a finite set of points U in the plane, call a line L k-long with respect to U if L contains
more than k points from U . We have the following observations.

▶ Lemma 10. Let U be a finite set of points in the plane such that there are more than k

lines that are k-long with respect to U . Then U cannot be covered with k segments.

Proof. We proceed by contradiction. Assume there are at least k + 1 different k-long lines
and there is a set of segments R of size at most k covering all points in U .

Consider any k-long line L. Note that every segment R which is not collinear with L,
covers at most one point that lies on L. Since L is long, there are at least k + 1 points from
U that lie on L. This implies that there must be a segment in R that is collinear with L.

Since we have at least k + 1 different long lines, there are at least k + 1 segments in R
collinear with different lines. This contradicts the assumption that |R| ⩽ k. ◀
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▶ Lemma 11. Let U be a finite set of points in the plane such that there are more than k2

points from U that do not lie on any line that is k-long with respect to U . Then U cannot be
covered with k segments.

Proof. We proceed by contradiction. Assume that we have more than k2 points in U that
do not lie on any k-long line. Call this set A. Suppose there is a set of segments R of size at
most k that covers all points in U .

Since any line in the plane can cover only at most k points in A, the same is also true for
every segment in R. Therefore, the segments from R can cover at most k2 points in A in
total. As |A| > k2, R cannot cover the whole A, which is a subset of U ; a contradiction. ◀

We are now ready to give a proof of Theorem 4.

Proof of Theorem 4. Let (U , F , w) be the input instance of Weighted Segment Set
Cover, where w : F → R⩾0 is the weight function. Further, let k and δ > 0 be the input
parameters. Our goal is to either conclude that (U , F , w) has no solution of cardinality at
most k, or to find an instance (U ′, F ′, w) of size bounded by f(k, δ) for some computable
function f and satisfying U ′ ⊆ U and F ′ ⊆ F , such that the following two properties hold:

(Property 1) For every set S ⊆ F such that |S| ⩽ k and S covers U , there is a set S1 ⊆ F ′

such that |S1| ⩽ k, the weight of S1 is not greater than the weight of S, and S1 covers U ′.
(Property 2) For every set S ⊆ F ′ such that |S| ⩽ k and S covers all points in U ′, S+δ

covers all points in the original set U .
Suppose we constructed such an instance (U ′, F ′, w). Then using Property 1 we know
that an optimum solution of size at most k to (U ′, F ′, w) has no greater weight than an
optimum solution of size at most k to (U , F , w). On the other hand, using Property 2 we
know that any solution to (U ′, F ′, w) after δ-extension covers U . So it will remain to find
an optimum solution to the instance (U ′, F ′, w). This can be done by brute-force in time
|F ′|k+O(1) · |U ′|O(1), which is bounded by a computable function of k and δ.

It remains to construct the instance (U ′, F ′, w). Let ℓ be the number of different lines
that are k-long with respect to U . By Lemmas 10 and 11, if we had more than k different
k-long lines or more than k2 points from U that do not lie on any k-long line, then we can
safely conclude that (U , F , w) has no solution of cardinality at most k, and terminate the
algorithm. So assume otherwise, in particular ℓ ⩽ k.

Next, we cover U with at most k + 1 sets:
D consists of all points in U that do not lie on any k-long line. Then we have |D| ⩽ k2.
For 1 ⩽ i ⩽ ℓ, Ci consists of all points in U that lie on the i-th long line. Then |Ci| > k.

Note that sets Ci do not need to be disjoint.
For every set Ci, we apply Lemma 9 to obtain a subset Ai ⊆ Ci that is (k, δ)-dense

and satisfies |Ai| ⩽ (2 + 4
δ )k. We define U ′ := D ∪

⋃ℓ
i=1 Ai. Thus, U ′ has size at most

k2 + k(2 + 4
δ )k. Further, we define F ′ as follows: for every pair of points in U ′, if there are

segments in F that cover this pair of points, we choose one such segment with the lowest
weight and include it in F ′. Thus F ′ has size at most |U ′|2, which means that both F ′ and U ′

have sizes bounded by O
(
(k2 + k(2 + 4

δ )k)2)
. We are left with verifying Properties 1 and 2.

For Property 2, consider any set S ⊆ F ′ such that |S| ⩽ k and S covers all points in U ′.
Then in particular, for every i ∈ {1, . . . , ℓ}, S in covers all points in Ai. As Ai is (k, δ)-dense
in Ci, we conclude that S+δ covers Ci. Hence S+δ covers D ∪

⋃ℓ
i=1 Ci = U , as required.

For Property 1, consider any solution S to (U , F , w) of size at most k. For every segment
s ∈ S, let Bs be the set of points in U ′ that are covered by s. Bs is of course a set of collinear
points, hence Bs can be covered by any segment that covers the extreme points of Bs.
Therefore, we can replace s with a segment s′ ∈ F that has the lowest weight among the
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segments that cover the extreme points of Bs. Such a segment belongs to F ′ by construction,
and s′ has weight no greater than the weight of s, because s also covers the extreme points
of Bs. Therefore, if S1 ⊆ F ′ is the set obtained by performing such replacement for every
s ∈ S, then S1 has both size and weight not greater than S, and S1 covers U ′. ◀

3 W[1]-hardness of WEIGHTED SEGMENT SET COVER

In this section we prove Theorem 5, recalled below for convenience.

▶ Theorem 5. The Weighted Segment Set Cover problem is W[1]-hard when paramet-
erized by k and assuming ETH, there is no algorithm for this problem with running time
f(k) · (|U| + |F|)o(k/ log k) for any computable function f . Moreover, this holds even if all
segments in F are axis-parallel.

To prove Theorem 5, we give a reduction from a W[1]-hard problem: Partitioned
Subgraph Isomorphism, defined as follows. An instance of Partitioned Subgraph
Isomorphism consists of a pattern graph H , a host graph G, and a function λ : V (G) → V (H)
that colors every vertex of G with a vertex of H. The task is to decide whether there exists
a subgraph embedding ϕ : V (H) → V (G) that respects the coloring λ. That is, the following
conditions have to be satisfied.

λ(ϕ(a)) = a for each a ∈ V (H), and
ϕ(a) and ϕ(b) are adjacent in G for every edge ab ∈ E(H).

The following complexity lower bound for Partitioned Subgraph Isomorphism was
proved by Marx in [14].

▶ Theorem 12 ([14]). Consider the Partitioned Subgraph Isomorphism problem where
the pattern graph H is assumed to be 3-regular. Then this problem is W[1]-hard when
parameterized by k, the number of vertices of H, and assuming the ETH there is no algorithm
solving this problem in time f(k) · |V (G)|o(k/ log k), where f is any computable function.

In the remainder of this section we prove Theorem 5 by providing a parameterized reduc-
tion from Partitioned Subgraph Isomorphism to Weighted Segment Set Cover.
The technical statement of the reduction is encapsulated in the following lemma.

▶ Lemma 13. Given an instance (H, G, λ) of Partitioned Subgraph Isomorphism where
H is 3-regular and has k vertices, one can in polynomial time construct an instance (U , F , w)
of Weighted Segment Set Cover and a positive real W such that:
(1) all segments in F are axis-parallel;
(2) if the instance (H, G, λ) has a solution, then there exists a solution to (U , F , w) of

cardinality 11
2 k and weight at most W ; and

(3) if there exists a solution to (U , F , w) of weight at most W , then the instance (H, G, λ)
has a solution.

Note that in (3) we in fact do not require any bound on the cardinality of the solution,
just on its weight.

It is easy to see that Lemma 13 implies Theorem 12. First, Lemma 13 gives a parameterized
reduction from the W[1]-hard Partitioned Subgraph Isomorphism problem with 3-regular
pattern graphs to Weighted Segment Set Cover parameterized by the cardinality of the
sought solution, which shows that the latter problem is also W[1]-hard. Second, combining
the reduction with an algorithm for Weighted Segment Set Cover with running time as
postulated in Theorem 5 would give an algorithm for Partitioned Subgraph Isomorphism
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with running time f(k) · |V (G)|o(k/ log k) for a computable function f , which would contradict
ETH by Theorem 12. So we are left with giving a proof of Lemma 13, which spans the
remainder of this section.

The key element of the proof will be a construction of a choice gadget that works within
a single line; this construction is presented in the lemma below. Here, a chain is a sequence
(A1, A2, . . . , Aℓ) of subsets of R such that for each i ∈ {1, . . . , ℓ − 1}, all numbers in Ai are
strictly smaller than all numbers in Ai+1.

▶ Lemma 14. Suppose we are given an integer N > 100 and p chains {(Aj,1, . . . , Aj,ℓ) : j ∈
{1, . . . , p}} of length ℓ each such that the sets {Aj,t : j ∈ {1, . . . , p}, t ∈ {1, . . . , ℓ}} are all
pairwise disjoint and contained in {1, . . . , N}. Then one can in polynomial time construct
a set of points U ⊆ R, U ⊇ {1, . . . , N}, as well as a set of segments F contained in R such
that the following holds:

For every j ∈ {1, . . . , p} and every set B that contains exactly one point from each
element of the chain (Aj,1, . . . , Aj,ℓ), there exists RB ⊆ F such that |RB | = ℓ + 1, RB

covers all points of U except for B, and the total length of the segments in RB is equal to
N + 1 − 2ℓ/N2.
For every subset of segments R ⊆ F , if R covers all points in U − {1, . . . , N}, then the
total length of segments in R is at least N + 1 − 2/N .
For every subset of segments R ⊆ F , if the total length of segments of R is not larger than
N + 3

2 and R covers all points in U −{1, . . . , N}, then the total length of segments of R is
equal to N + 1 − 2ℓ/N2 and there exists j ∈ {1, . . . , p} such that for every t ∈ {1, . . . , ℓ},
R does not cover the whole set Aj,t.

Proof. Denote I := {1, . . . , N} and ϵ := 1/N2 for convenience. For every i ∈ I, let

i− := i − ϵ and i+ := i + ϵ.

Define I− := {i− : i ∈ I}, I+ := {i+ : i ∈ I}, and

U := {0} ∪ I− ∪ I ∪ I+.

Next, for every j ∈ {1, . . . , p}, define the following set of segments:

Rj := {[0, a−] : a ∈ Aj,1} ∪
ℓ−1⋃
t=1

{[a+, b−] : (a, b) ∈ Aj,t × Aj,t+1} ∪ {[a+, N + 1] : a ∈ Aj,ℓ}.

We set

F :=
p⋃

j=1
Rj .

See Figure 2 for a visualization of the construction. We are left with verifying the three
postulated properties of U and F .

1 2 3 4 5 6 7 80 9

Figure 2 Construction of Lemma 14 for N = 8. Elements of I ∪ {0} are depicted with circles and
elements of I+ ∪ I− are depicted with squares. Blue segments represent the set RB for B = {3, 7}.
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For the first property, let bt be the unique element of B ∩ Aj,t, for t ∈ {1, . . . , ℓ}, and let

RB := {[0, b−
1 ], [b+

1 , b−
2 ], . . . , [b+

ℓ−1, b−
ℓ ], [b+

ℓ , N + 1]}.

It is straightforward to see that RB covers all the points of U except for B, and that the
total sum of lengths of segments in RB is N + 1 − 2ℓϵ = N + 1 − 2ℓ/N2.

For the second postulated property, observe that each segment of F that covers any
point i+ ∈ I+, in fact covers the whole interval [i+, (i + 1)−] (where (N + 1)− = N + 1).
Similarly, each segment of F that covers any point i− ∈ I−, in fact covers the whole interval
[(i−1)+, i−] (where 0+ = 0). Hence, if R ⊆ F covers all points of U −I, in particular R covers
all points in I+ ∪ I−, hence also all intervals of the form [i+, (i + 1)−] for i ∈ {0, 1, . . . , N}.
The sum of the lengths of those intevals is equal to N + 1 − 2ϵN = N + 1 − 2/N . Hence, the
sum of length of intervals in R must be at least N + 1 − 2/N .

For the third postulated property, observe that if two segments of F intersect, then their
intersection is a segment of length at least 1 − 2ϵ. Since R covers all points of U − I, by the
second property the sum of lengths of the segments in R is at least N + 1 − 2/N . Now if any
of those segments intersected, then the total sum of lengths of the segments in R would be
at least N + 1 − 2/N + (1 − 2ϵ), which is larger than N + 3

2 . We conclude that the segments
of R are pairwise disjoint.

Since 0 ∈ U − I, there is a segment s1 ∈ R that covers 0. By construction, there exists
j ∈ {1, . . . , p} such that s1 = [0, b−

j,1] for some bj,1 ∈ Aj,1. As the segments of R are pairwise
disjoint and cover all points in I+, the next (in the natural order on R) segment in R must
start at b+

j,1, and in particular bj,1 is not covered by R. Since all sets in all chains on input
are pairwise disjoint, the segment in R starting at b+

j,1 must be of the form s2 = [b+
j,1, b−

j,2]
for some bj,2 ∈ Aj,2. Continuing this reasoning, we find that in fact R = RB for some set
B = {bj,1, bj,2, . . . , bj,ℓ} such that bj,t ∈ Aj,t for each t ∈ {1, . . . , ℓ}. In particular, the total
length of segments in R is equal to N + 1 − 2ϵℓ and R does not cover any point in B; the
latter implies that for each t ∈ {1, . . . , ℓ}, R does not cover Aj,t entirely. ◀

With Lemma 14 established, we proceed to the proof of Lemma 13.
Let (H, G, λ) be the given instance of Partitioned Subgraph Isomorphism where H

is a 3-regular graph. Let k := |V (H)| and ℓ := |E(H)|; note that ℓ = 3
2 k. We may assume

that V (H) = {1, . . . , k}, and that whenever uv is an edge in G, we have that λ(u)λ(v) is an
edge of H (other edges in G play no role in the problem and can be discarded). We construct
an instance (U , F , w) of Weighted Segment Set Cover as follows; see Figure 3 for a
visualization.

Figure 3 Example solution in the instance (U , F) constructed in the proof of Lemma 13 for
H = K4. Blue segments belong to the sets Si for i ∈ {1, 2, 3, 4} and orange segments belong to D.

For each edge ab ∈ E(H), let Eab be the subset of those edges uv of G for which
λ(u) = a and λ(v) = b. Thus, {Eab : ab ∈ E(H)} is a partition of E(G). Let N := |E(G)|
and ξ : E(G) → {1, . . . , N} be any bijection such that for each ab ∈ E(H), ξ(Eab) is a
contiguous interval of integers. By copying some vertices of G if necessary, we may assume
that N > 100k.
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Consider any a ∈ {1, . . . , k} and let b1, b2, b3 be the three neighbors of a in H , ordered so
that (ξ(Eab1), ξ(Eab2), ξ(Eab3)) is a chain. For each u ∈ λ−1(a), let Eu be the set of edges of
G incident to u, and let us construct the chain

Cu := (ξ(Eu ∩ Eab1), ξ(Eu ∩ Eab2), ξ(Eu ∩ Eab3)).

Note that all sets featured in all the chains Cu, for u ∈ λ−1(a), are pairwise disjoint. We now
apply Lemma 14 for the integer N and the chains {Cu : u ∈ λ−1(a)}. This way, we construct
a suitable point set Ua ⊆ R and a set of segments Fa contained in R. We put all those points
and segments on the line {(x, a) : x ∈ R}; that is, every point x ∈ Ua is replaced with the
point (x, a), and similarly for the segments of Fa. By somehow abusing the notation, we let
Ua and Fa be the point set and the segment set after the replacement.

Next, for every edge uv of G, we define suv to be the segment with endpoints (ξ(uv), a)
and (ξ(uv), b), where a = λ(u) and b = λ(v).

We set

U :=
k⋃

a=1
Ua and F := {suv : uv ∈ E(G)} ∪

k⋃
a=1

Fa.

Note that all segments in sets Fa are horizontal and each segment suv is vertical, thus F
consists of axis-parallel segments. Each segment s ∈

⋃k
a=1 Fa is assigned weight w(s) equal

to the length of s, and each segment suv for uv ∈ E(G) is assigned weight w(suv) = δ, where
δ := 1/N4. Finally, we set

W := k · (N + 1 − 6/N2) + δℓ.

This concludes the construction of the instance (U , F , w). We are left with verifying the
correctness of the reduction, which is done in the following two claims.

▷ Claim 15. Suppose the input instance (H, G, λ) of Partitioned Subgraph Isomorphism
has a solution. Then the output instance (U , F , w) of Weighted Segment Set Cover
has a solution of cardinality 4k + ℓ = 11

2 k and weight at most W .

Proof. Let ϕ be the supposed solution to (H, G, λ). By the first property of Lemma 14, for
every a ∈ {1, . . . , k} there is a set Rϕ,a of size 4 and total weight N + 1 − 6/N2 that covers
all points from Ua except for the points

(ξ(ϕ(a)ϕ(b1)), a), (ξ(ϕ(a)ϕ(b2)), a), (ξ(ϕ(a)ϕ(b3)), a),

where b1, b2, b3 are the neighbors of a in H. Define

S := {sϕ(a)ϕ(b) : ab ∈ E(H)} ∪
k⋃

a=1
Rϕ,a.

Thus, for each a ∈ {1, . . . , k}, the aforementioned points of Ua not covered by Rϕ,a are
actually covered by the segments sϕ(a)ϕ(b1), sϕ(a)ϕ(b2), sϕ(a)ϕ(b3). We conclude that S covers
all the points in U and has cardinality 4k + ℓ = 11

2 k and total weight W , as promised. ◁

▷ Claim 16. Suppose the output instance (U , F , w) of Weighted Segment Set Cover
has a solution of weight at most W . Then the input instance (H, G, λ) of Partitioned
Subgraph Isomorphism has a solution.
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Proof. Let S be the supposed solution to (U , F , w). Denote

D := S ∩ {suv : uv ∈ E(G)}

and

Sa := S ∩ Fa for a ∈ {1, . . . , k}.

Fix a ∈ {1, . . . , k} for a moment. Observe that the segments from D can only cover points with
positive integer coordinates within the set Ua, hence the whole point set Ua−({1, . . . , N}×{a})
has to be covered by Sa. By the second property of Lemma 14 we infer that the total weight
of Sa must be at least N + 1 − 2/N .

Observe now that

W − k · (N + 1 − 2/N) = δℓ + 2k/N − 6k/N2 <
1
2 .

It follows that the total weight of each set Sa must be smaller than N + 3
2 , for otherwise the

sum of weights of sets Sa would be larger than W . By the third property of Lemma 14, we infer
that for every a ∈ {1, . . . , k}, the total weight of Sa is equal to N + 1 − 6/N2 and there exists
ϕ(a) ∈ λ−1(a) such that Sa does not entirely cover any of the sets ξ(Eϕ(a) ∩ Eab1), ξ(Eϕ(a) ∩
Eab2), ξ(Eϕ(a) ∩ Eab3), where b1, b2, b3 are the three neighbors of a in H . In particular, there
are edges ea,b1 ∈ Eab1 , ea,b2 ∈ Eab2 , ea,b3 ∈ Eab3 , all sharing the endpoint ϕ(a), such that Sa

does not cover the points (ξ(ea,b1), a), (ξ(ea,b2), a), (ξ(ea,b3), a). Call these points Xa and let
X :=

⋃k
a=1 Xa. Note that

|X| = 3k = 2ℓ

and that X must be entirely covered by D.
Since the weight of Sa is equal to N + 1 − 6/N2 for each a ∈ {1, . . . , k}, the weight of D

is upper bounded by

W − k · (N + 1 − 6/N2) = δℓ.

As every member of D has weight δ, we conclude that |D| ⩽ ℓ. Now, one can readily verify
that every segment suv ∈ D can cover at most two points in X, as X cannot contain more
than two points with the same horizontal coordinate (recall that this coordinate is the index
of an edge of G). Moreover, suv can cover two points in X only if u = ϕ(a) and v = ϕ(b),
where a = λ−1(u) and b = λ−1(v). As |X| = 2ℓ and |D| ⩽ ℓ, this must be the case for every
segment in D. In particular, ϕ(a)ϕ(b) must be an edge in G for every edge ab ∈ E(H), so ϕ

is a solution to the instance (H, G, λ) of Partitioned Subgraph Isomorphism. ◁

Claims 15 and 16 finish the proof of Lemma 13. So the proof of Theorem 5 is also done.
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Abstract
Generalised hypertree width (ghw) is a hypergraph parameter that is central to the tractability of
many prominent problems with natural hypergraph structure. Computing ghw of a hypergraph
is notoriously hard. The decision version of the problem, checking whether ghw(H) ≤ k, is
paraNP-hard when parameterised by k. Furthermore, approximation of ghw is at least as hard as
approximation of Set-Cover, which is known to not admit any FPT approximation algorithms.

Research in the computation of ghw so far has focused on identifying structural restrictions to
hypergraphs – such as bounds on the size of edge intersections – that permit XP algorithms for ghw.
Yet, even under these restrictions that problem has so far evaded any kind of FPT algorithm. In this
paper we make the first step towards FPT algorithms for ghw by showing that the parameter can be
approximated in FPT time for graphs of bounded edge intersection size. In concrete terms we show
that there exists an FPT algorithm, parameterised by k and d, that for input hypergraph H with
maximal cardinality of edge intersections d and integer k either outputs a tree decomposition with
ghw(H) ≤ 4k(k + d + 1)(2k − 1), or rejects, in which case it is guaranteed that ghw(H) > k. Thus, in
the special case of hypergraphs of bounded edge intersection, we obtain an FPT O(k3)-approximation
algorithm for ghw.
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1 Introduction

A tree decomposition of a hypergraph H is a pair (T, B) where T is a tree and B : V (T )→
2V (H) assigns a bag to each node, that satisfies certain properties. The treewidth of a
decomposition is maxu∈V (T ) |B(u)| − 1 and the treewidth of H is the least treewidth taken
over all decompositions. In many graph algorithms, treewidth is the key parameter that
determines the complexity of the problem. However, for many problems whose underlying
structure is naturally expressed in terms of hypergraphs the situation is different. The
treewidth of a hypergraph is always at least as large as its rank (−1), i.e., the maximal size
of an edge. Yet, many standard hypergraph problems can be tractable even with unbounded
rank. To counteract this problem, generalised hypertree width (ghw) often takes the place of
treewidth in these cases. The definition of ghw is also based on tree decompositions, with the
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only difference being that the ghw of a decomposition is maxu∈V (T ) ρ(B(u)), where ρ(U) is
the least number of edges required to cover U ⊆ V (H). Parallel to treewidth in graphs, low
ghw is a key criterion for tractability in the hypergraph setting. Prominent examples include
the evaluation of conjunctive queries, database factorisation [19], winner determination in
combinatorial auctions [7], and determining Nash Equilibria in strategic games [8].

Computation of ghw is computationally challenging. The problem is known to be paraNP-
hard [13, 6] and W[2]-hard [9] in the parameterised setting1 (see the discussion of related
work below for details). This is shown by reduction from Set-Cover, which together with
recent breakthrough results on the approximability of Set-Cover [16], also implies that
there can be no FPT approximation algorithms for ghw under standard assumptions. In this
paper, we introduce the first FPT algorithm for approximation of ghw in unbounded rank
hypergraphs. Notably, this comes over 20 years after the parameter was first introduced [12].
As there can be no such algorithm in the general case, we instead consider the restriction
of the cardinality of the intersections of any two edges. Formally, a (2, d)-hypergraph is a
hypergraph where the intersection of any pair of edges has cardinality at most d. We will
study the following problem f -ApproxGHW.

f-ApproxGHW
Input (2, d)-hypergraph H, positive integer k

Parameters k and d

Output A tree decomposition of H with ghw at most f(k, d),
or Reject, in which case ghw(H) > k.

Let α(k, d) refer to the term k(3k + d + 1)(2k − 1). Our main result is the following.

▶ Theorem 1. 4α(k, d)-ApproxGHW is fixed-parameter tractable.

Our algorithm follows classic ideas for FPT algorithms for treewidth but requires significant
new developments. Most critically, we propose an FPT algorithm for computing approximate
(A, B)-separators in (2, d)-hypergraph, i.e., set of vertices S such that sets of vertices A and
B are not connected in H without S.

Related Work. Despite the close relationship between ghw and treewidth, there is a stark
difference in the complexity of recognising the respective widths. While it is famously possible
to decide tw(·) ≤ k in fixed-parameter linear time [2], deciding ghw(·) ≤ k is significantly
harder. Intuitively, this is because techniques for efficiently deciding treewidth fundamentally
rely on bounding the number of vertices in the bag, yet even α-acyclic hypergraphs (those
with ghw 1) can require decompositions with arbitrarily large bags to achieve minimal ghw.
In concrete terms, deciding ghw(·) ≤ k has been shown to be NP-hard for all fixed k > 1 (or
paraNP-hard in terms of parameterised complexity) [13, 6]. Additionally, deciding ghw(·) ≤ k

is known to be W[2]-hard by a reduction from Set Cover [9].
In response, significant effort has been invested in identifying conditions under which

deciding ghw(·) ≤ k is tractable [13, 11] for fixed k (i.e., the problem is in XP). Of particular
note here is the observation that the problem is in XP if we restrict the problem to so-
called (c, d)-hypergraphs, i.e., hypergraphs where any intersection of at least c edges has
cardinality at most d. Notably, this coincides with the most general condition known to
allow kernelization for Set-Cover [20].

1 When discussing the parameterised complexity of deciding whether a width parameter is at most k, we
always refer to the parameterisation by k if not specified otherwise.
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As mentioned above, negative results for FPT approximation of Set-Cover apply also to
approximating ghw. Nonetheless, some approximation results are known when looking beyond
FPT. Importantly, ghw is 3-approximable in XP via the notion of (not generalised) hypertree
width (hw) [12, 1]. Despite this improvement in the case of fixed k, deciding hypertree width
is also W[2]-hard [9] by the same reduction from Set-Cover as ghw. Fractional hypertree
width fhw generalises ghw in the sense that the width is determined by the fractional cover
number of the bags [15]. This width notion is strictly more general than ghw and allows
for cubic approximation on XP [18]. Recently, Razgon [21] proposed an FPT algorithm for
constant factor approximation of ghw for hypergraphs of bounded rank. While we consider
this to be an important conceptual step towards our result, it should be noted that for any
hypergraph H it holds that ghw(H) ≤ tw(H) · rank(H), i.e., assuming bounded rank tightly
couples the problem to deciding treewidth.

Structure of the paper. Our main result combines on multiple novel combinatorial ob-
servations and FPT algorithms and the main body of this paper is therefore focused on
presenting the main ideas and how these parts interact. Full proof details are provided in
the appendix of the full version [17]. After basic technical preliminaries in Section 2, we give
a high-level overview of the individual parts that lead to the main result in Section 3. After
the initial overview, Section 4 presents the key algorithms formally, together with sketches of
their correctness and complexity. Similarly, the main combinatorial ideas are discussed in
Section 5. We discuss potential avenues for future research in Section 6.

2 Preliminaries

We will frequently write [n] for the set {1, 2, . . . , n}. We say that (possibly empty) pairwise
disjoint sets X1, X2, . . . , Xn are a weak partition of set X if their union equals X. We assume
familiarity with standard concepts of parameterised algorithms and refer to [3] for details. We
use poly(·) to represent some polynomial function in the representation size of the argument.

A hypergraph H is a pair of sets (V (H), E(H)) where we call V (H) the vertices of H and
E(H) ⊆ 2V (H) the (hyper)edges of H . We assume throughout that H has no isolated vertices,
i.e., vertices that are not in any edge. For v ∈ V (H), define I(v) := {e ∈ E(H) | v ∈ e}, i.e.,
the set of edges incident to v. We say that H is a (c, d)-hypergraph if for any set {e1, . . . , ec} ⊆
E(H) of c edges, it holds that |

⋂c
i ei| ≤ d. We will refer to the set of (maximal) connected

components of a hypergraph H as CComp(H). The induced subhypergraph of H induced by
U ⊆ V (H) is the hypergraph H ′ with V (H ′) = U and E(H ′) = {e ∩ U | e ∈ E(H)} \ ∅. We
use the notation H[U ] to mean the induced subhypergraph of H induced by U . For tree T

and v ∈ V (T ) we sometimes write T − v to mean the subgraph of T obtained by deleting
v and its incident edges. Let A, B ⊆ V (H). An (A, B)-separator is a set S ⊆ V (H) such
that there is no path from an a ∈ A \ S to a b ∈ B \ S in H[V (H) \ S]. For e ∈ E(H),
U1, . . . , Un ⊆ V (H) we say that e touches U1, . . . , Un if e ∩ Ui ̸= ∅ for all i ∈ [n].

An edge cover µ for U ⊆ V (H) is a subset of E(H) such that U ⊆
⋃

µ. We sometimes
refer to the cardinality of an edge cover as its weight. The edge cover number ρ(U) for set
U ⊆ V (H) is the minimal weight over all edge covers for U . We sometimes say that µ is an
edge cover of H to mean an edge cover of V (H). Similarly, we use ρ(H) instead of ρ(V (H)).
A set of edges E′ ⊆ E(H) is ρ-stable if E′ is a minimal weight cover for

⋃
E′.

A set of sets S1, . . . can naturally be interpreted as a hypergraph, by considering each
set Si as an edge. In that light, it is clear that deciding ρ(H) ≤ k is precisely the same as
deciding whether a set system admits a set cover of size k.

STACS 2024
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▶ Proposition 2 ([4]). There is an FPT algorithm parameterised by k + c + d that decides
for a given (c, d)-hypergraphs H and k ≥ 1 whether ρ(H) ≤ k.

A tree decomposition (TD) of hypergraph H is a pair (T, B) where T is a tree and
B : V (T )→ 2V (H) labels each node of T with its so-called bag, such that the following hold:

(i) for each e ∈ E(H), there is a u ∈ V (T ) such that e ⊆ B(u), and
(ii) for each v ∈ V (H), the set {u ∈ V (U) | v ∈ B(u)} induces a non-empty subtree of T .

We refer to the first property as the containment property and to the second as the con-
nectedness condition. For a set U ⊆ V (T ) we use B(U) as a shorthand for

⋃
u∈U B(u),

i.e., all the vertices that occur in bags of nodes in U . Similarly, for subtree T ′ of T , we
sometimes use B(T ′) instead of B(V (T ′)). The generalised hypertree width (ghw) of a tree
decomposition is maxu∈V (T ) ρ(B(u)), and the generalised hypertree width of H (we write
ghw(H)) is the minimal ghw over all tree decompositions for H. It will be important to
remember at various points that ghw is monotone under taking induced subhypergraphs, i.e.,
ghw(H[U ]) ≤ ghw(H) for all U ⊆ V (H).

3 High-level Overview of Algorithm

The algorithm for 4α(k, d)-ApproxGHW is based on a standard approach for treewidth
computation [22]. However, this approach is in fact applied for a tree decomposition
compression rather than approximation from scratch. In other words, the actual problem
being solved is the following one.

Compress
Input A (2, d)-hypergraph H, integer k,

a TD (T, B) of H with ghw 4α(k, d) + 1 ,
W ⊆ V (H) with ρ(W ) ≤ 3α(k, d)

Parameters k and d

Output A tree decomposition (T ∗, B∗) of H with ghw at most 4α(k, d) such that
W ⊆ B∗(u) for some u ∈ V (T ∗),
or Reject, in which case ghw(H) > k.

▶ Theorem 3. Compress is fixed-parameter tractable.

One natural question is how the Compress being FPT implies 4α(k, d)-ApproxGHW.
This is done through the use of iterative compression, a well known methodology for the
design of FPT algorithms. The resulting algorithm for Theorem 1 is presented in Algorithm 1.
In particular, we let V (H) = {v1, . . . , vn}, set Vi = {v1, . . . , vi} and Hi = H[Vi] and solve
the 4α(k, d)-ApproxGHW for graphs H1, . . . , Hn. If some intermediate Hi is rejected, the
whole H can be rejected. Otherwise, the application to Hi results in a tree decomposition
(Ti, Bi) of ghw at most 4α(k, d). Add vi+1 to each bag of (Ti, Bi). If the ghw of the resulting
decomposition is still at most 4α(k, d) simply move on to the next iteration. Otherwise,
apply the algorithm for Compress rejecting if the algorithm rejects and moving to the next
iteration if a compressed tree decomposition is returned.

Let us turn our attention to the algorithm for Compress. A central ingredient of the
algorithm [22] considers a set S of size O(k) goes through all partitions of S into two balanced
subsets and for each such a partition checks existence of a small separator. However, in our
setting the set S can contain arbitrarily many vertices, as long as it can be covered by a
bounded number of hyperedges. The following statement provides us with an appropriate
variant of the classic result for treewidth that is applicable to our setting.



M. Lanzinger and I. Razgon 48:5

Algorithm 1 An FPT algorithm for 4α(k, d)-ApproxGHW.

Input : (2, d)-hypergraph H, positive integer k

1 {v1, . . . , vn} ← V (H)
2 Let T1 be the tree with a single node r

3 Let B1 be the function r 7→ {v1}
4 for 1 < i ≤ n do
5 Vi ← {v1, . . . , vi}
6 Hi ← H[Vi]
7 Ti ← Ti−1
8 Bi ← {t 7→ Bi−1(t) ∪ {vi} | t ∈ Ti}
9 if ghw((Ti, Bi)) > 4α(k, d) then

10 X ← Compress(Hi, k, (Ti, Bi), ∅)
11 if X is Reject then
12 return Reject
13 (Ti, Bi)← X

14 return (Tn, Bn)

▶ Theorem 4. Let H be a hypergraph with ghw(H) ≤ k and let E′ ⊆ E(H). Then there
exists a weak partition of E′ into three sets E′

0, E′
1, E′

2 such that
1. there is a (

⋃
E′

1,
⋃

E′
2)-separator S such that

⋃
E′

0 ⊆ S and ρ(S) ≤ k,
2. |E′

1| ≤ 2
3 |E

′|, and |E′
2| ≤ 2

3 |E
′|.

Theorem 4 allows us to consider all partitions of a small set of hyperedges covering the
given potentially large set of vertices thus guaranteeing an FPT upper bound for the number
of such partitions.

The other obstacle in upgrading the result [22] is that a balanced separator is no longer
required to be small but rather to have a small edge cover number. In order to compute such
a separator we will need a witnessing tree decomposition of H of a small ghw. This is also
the reason why we employ iterative compression rather than providing a direct algorithm for
approximation. However, even in presence of the tree decomposition, we were still unable to
design a ’neat’ algorithm that would either produce an (approximately) small separator or
reject, implying that a small separator does not exist. Instead, we propose an algorithm for
the following problem with a nuanced reject that is still suitable for our purposes.

ApproxSep
Input A (2, d)-hypergraph H, sets A1, A2 ⊆ V (H),

TD (T, B) of H with ghw p, integers 0 ≤ k0 ≤ k ≤ p

Parameters p and d

Output An (A1, A2)-separator with edge cover number
at most (3k + d + 1)(2k − 1)k0,
or Reject, in which case there either exists no (A1, A2)-separator with
edge cover number at most k0 or ghw(H) > k.

▶ Theorem 5. ApproxSep is fixed-parameter tractable.

We postpone to the next section a more detailed consideration of the algorithm for
ApproxSep. In the rest of this section we discuss the criterion for large ghw used by the
algorithm and the context in which the critetion is checked. For this purpose, we will require
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some technical definitions. For hypergraph H, let us call U ⊆ V (H) a subedge (of H) if there
is e ∈ E(H) such that U ⊆ e. We say that two subedges U1, U2 are incompatible if their
union U1 ∪ U2 is not a subedge.

▶ Definition 6. An (a, b) subedge hypergrid (or (a, b)-shyg) consists of pairwise incompatible
subedges U1, . . . , Ua, S1, . . . , Sb such that:
1. U1, . . . , Ua are pairwise disjoint, and
2. for each j ∈ [b], Sj touches U1, . . . , Ua.

Throughout this paper we will be interested in a specific dimension of subedge hypergrid.
Namely for deciding width k in (2, d)-hypergraphs, we will be interested in the existence of
(3k + d + 1, ξ(k, d)) subedge hypergrids, where ξ is a function in O((kd)d) (refer to Section 5
for details). We will denote the set of all subedge grids of H of this dimension by Sk,d(H).
The reason we care about these subedge hypergrids in particular is that their existence is a
sufficient condition for high ghw.

▶ Theorem 7. Let H be a (2, d)-hypergraph such that Sk,d(H) ̸= ∅. Then ghw(H) > k.

In fact, the algorithm for the ApproxSep problem either constructs a required separator
or discovers that Sk,d(H) ̸= ∅. More precisely, the identification of an element of Sk,d(H)
takes place within the procedure described in Theorem 9 below. The central part the
algorithm for ApproxSep is to pick a vertex t ∈ T (recall that (T, B) is the input tree
decomposition for H) and then guess a set W ⊆ B(t) that shall be part of the separator
being constructed. Technically, the guessing means a loop exploring a family of subsets of
B(t). This family must be of an FPT size and the edge cover of each element of the family
must not be too large compared to k0 This idea is formalised in the notion of gap cover
approximator formally defined below.

▶ Definition 8. For hypergraph H and set U ⊆ V (H) a (β, γ)-gap cover approximator
(for U) is a set X ⊆ 2V (H) such that

(i) For each X ∈ X, ρ(X) ≤ β.
(ii) For each U ′ ⊆ U with ρ(U ′) ≤ γ, there is a X ∈ X such that U ′ ⊆ X.

In order to produce the desired gap cover approximator, the algorithm solving the
ApproxSep problem runs a function GapCoverApprox . The function computes either an
gap cover approximator or an element of Sk,d(H) and, in the latter case, rejects. In particular,
when the algorithm rejects, we know (implicitly) that Sk,d(H) ̸= ∅, which in turn guarantees
that ghw is greater than k in this case and the rejection can be propagated to the top-level.
A formal description of the behaviour of GapCoverApprox is provided below.

▶ Theorem 9. There is an algorithm GapCoverApprox(H, U, p, k, k0) whose input is a (2, d)-
hypergraph H, U ⊆ V (H) with ρ(U) ≤ p, and integers k0 ≤ k ≤ p. The algorithm returns a
((3k + d + 1)k0, k0)-gap cover approximator of U or Reject, in which case it is guaranteed
that ghw(H) > k. The algorithm is in FPT when parameterised in p and d.

4 Algorithmic Details

In this section we sketch proofs of Theorems 3 and 5. In particular, we provide pseudocodes
of the corresponding algorithms and intuitive justification of their correctness and FPT
membership. Algorithm 2 uses as a subroutine the algorithm AppSep, which is discussed
afterwards in Section 4.2.
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4.1 An FPT Algorithm for the Compression Step (Theorem 3)
To prove Theorem 3 we define Algorithm 2, prove that it is correct, and that the algorithm
works FPT time. In general principle the algorithm follows similar ideas to previous algorithms
for checking ghw (e.g., [5]) in that, at each stage, we separate the problem into subproblems
for each connected component, and recurse. The set W provides an interface to how
the subproblem connects to the rest of the decomposition. By guaranteeing that W is
covered in the root of the decomposition for the subproblem (line 8), we guarantee that the
decompositions for all the subproblems can be assembled into a decomposition for the parent
call in lines 8 to 22. (see also [10] where a similar idea is formalised in terms of extended
hypergraphs in the context of checking plain hypertree width).

We move on to giving an overview of the argument for the runtime and correctness of
the algorithm. For the overall time complexity of the algorithm, we first observe that a
single recursive application of the algorithm runs in FPT time. The search for EW in line 1
is FPT by using Proposition 2 to find a cover for W (the procedure from the proposition
is constructive). If the produced cover is smaller than 3α(k, d) + 1 we can incrementally
increase the size of the cover by searching for covers for W ′ ⊇W created by adding a vertex
outside of the cover to W . For line 2 we can naively iterate through all possible partitions of
EW intro three sets and call AppSep, which itself is in FPT by Theorem 5. For line 7 we note
again that testing ρ is FPT by Proposition 2. From line 8 onward, except for the recursion,
the algorithm performs straightforward manipulations of sets and hypergraphs that are of no
deeper interest to our time bound.

Next, we observe that the number of recursive applications is, in fact, polynomial in H.
We naturally organise recursive applications into a successors (recursion) tree and upper
bound the number of nodes of the tree by the product of the height of the tree and the
number of leaves. We observe that the height of the tree is at most |V (H)|. For this we
prove two auxiliary statements. The first is that for X, as computed in line 6, H \X has at
least two connected components. The second, immediately following from the first one is
that for each Hi, created in line 10, |V (Hi)| < |V (H)|. Thus it follows that the number of
vertices of the input hypergraph decreases as we go down the recursion tree thus implying
the upper bound on the height of the tree.

Additionally, we prove that the number of leaves is no larger than ρ(H)2. The main part
of this proof is an induction for the case where the number of sets U1, . . . , Uq obtained at
line 7 is at least 2. In particular, we notice that since ρ(Ui) ≥ 3ρ(X) for each i ∈ [q] and
since ρ(

⋃q
i=1 Ui) =

∑q
i=1 ρ(Ui), it holds that

ρ(Ui ∪X)2 ≤ (ρ(Ui) + ρ(X))2 ≤ (
q∑

i=1
ρ(Ui))2 = ρ(

q⋃
i=1

Ui)2 ≤ ρ(H)2.

To prove correctness of the Reject output, we observe that return of Reject by the
whole algorithm is triggered by return of Reject on line 4, failure to find an appropriate
weak partition, or by rejection in one of its recursive applications. By Theorem 4 and the
ρ-stability of E′, the Reject on line 4 implies that either H , or one of its induced subgraphs
have ghw greater than k. In the latter case, of course also ghw(H) > k.

Finally, the two main aspects of correctness of the non-rejection output are the upper
bound on the ghw of the resulting tree decomposition and that the properties of the tree
decomposition are not lost by the ’gluing’ procedure as specified in lines 8-22 of the algorithm.
The requirement that EW must cover W is essential for ensuring that the properties of the
tree decomposition are not destroyed by the gluing. Intuitively, the parameter Wi in the
recursion on Line 13 represents the connection of the component Hi with the rest of the
decomposition.
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Algorithm 2 The algorithm Compress(H, k, (T, B), W ).

Input : (2, d)-hypergraph H, a positive integer k, a TD (T, B) of H with ghw
4α(k, d) + 1, W ⊆ V (H) wih ρ(W ) ≤ 3α(k, d)

1 EW ← any ρ-stable subset of E(H) covering W of cardinality 3α(k, d) + 1
2 Find a weak partition E0, E1, E2 of EW s.t. ρ(E0) ≤ k, ρ(E1), ρ(E2) ≤ 2α(k, d), and

AppSep(H,
⋃

E1,
⋃

E2, (T, B), k, k, p, V (T )) does not return Reject
3 if no such weak partition exists then
4 return Reject
5 else
6 X ← AppSep(H,

⋃
E1,

⋃
E2, (T, B), k, k, p, V (T ))

7 U1, . . . , Uq ← {C ∈ CComps(H \X) | ρ(C ∪X) > 4α(k, d)}
8 Let T ∗ be a tree with a new node r and B∗(r) = W ∪X

9 for i ∈ [q] do
10 Hi ← H[Ui ∪X]
11 Wi ← (

⋃
EW ∩ Ui) ∪X

12 Bi ← {t 7→ B(t) ∩ (Ui ∪X) | t ∈ V (T )}
13 Oi ← Compress(Hi, k, (T, Bi), Wi)
14 if Oi is Reject then
15 return Reject
16 else
17 (T ′

i , B′
i)← Oi

18 ti ← a node u of T ′
i s.t. Wi ⊆ B′

i(u)
19 Add T ′

i to T ∗ by making ti a neighbour of r and let B∗(u) = B′
i(u) for all

u ∈ T ′
i .

20 for U ∈ CComps(H \X) where ρ(U ∪X) ≤ 4α(k, d) do
21 Add new node u as a neighbour of r to T ∗.
22 Set B∗(u) = U ∪X.
23 return (T ∗, B∗)

4.2 Finding Approximate Separators in FPT (Theorem 5)
The proof of Theorem 5 requires significant extension of notation. First, for a tree decom-
position (T, B) of a hypergraph and X ⊆ V (T ), we denote by ghw(T, B, X) the maximum
of ρ(B(t)) among t ∈ X. We are looking for a separator subject to several constraints.
Repeating these constraints every time we refer to a separator is somewhat distracting and
we therefore define the set of separators that we need to consider for this overview. Define
sep(H, A, B, k0, (T, B), X) as the set of all (A, B)-separators W of H with ρ(W ) ≤ k0 and
W ⊆ B(X) where (T, B) is a tree decomposition of H and X ⊆ V (T ).

The following theorem is a generalisation of Theorem 5.

▶ Theorem 10. There is an algorithm AppSep(H, A, B, (T, B), k0, k, p, X) whose input is
a (2, d)-hypergraph H, A, B ⊆ V (H), three positive integers k0 ≤ k ≤ p, a tree decompos-
ition (T, B) of H and X ⊆ V (T ) such that all the elements of V (T ) \ X are leaves and
ghw(T, B, X) ≤ p. The algorithm either returns an element of sep(H, A, B, (3k + d + 1)(2k−
1)k0, (T, B), X) or Reject. In the latter case, it is guaranteed that either ghw(H) > k or
sep(H, A, B, k0, (T, B), X) = ∅
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Clearly, Theorem 10 implies Theorem 5 by setting X = V (T ). The reason we need this
extra parameter is that in the recursive applications of AppSep some bags may have the edge
cover number larger than p, so we keep track of the set of nodes whose bags are ’small’.

To present the pseudocode, we define a specific choice of a subtree of the given tree. Let T

be a tree, t ∈ V (T ), Y ⊂ V (T ). Then Tt,Y is the subtree of T which is the union of all paths
starting from t whose second vertex belongs to Y . The notion of Tt,Y naturally extends to
subsets of V (T ) and to tree decompositions where T is the underlying tree. In particular, for
X ⊆ V (T ), we denote X ∩V (Tt,Y ) by Xt,Y . Next, if (T, B) is a tree decomposition of H then
by denote by Bt,Y the restriction to B to V (Tt,Y ) and by Ht,Y the graph H[B(V (Tt,Y ))].

We also introduce a variant T +
t,Y of Tt,Y which will be needed for recursive applications of

AppSep. The tree T +
t,Y is obtained from Tt,Y by introducing a new node r and making it adja-

cent to t. The function B+
t,Y is obtained from Bt,Y by setting B+

t,Y (r) =
⋃

t′∈V (T )\V (Tt,Y ) B(t′).
One final notational convention concerns adjusting a tree decomposition (T, B) of H in case
a set W ⊆ V (H) is removed from H. In this case we set B−W (t′) = B(t′) \W for each
t′ ∈ V (T ).

The following statement is important for verifying that these recursive applications are
well-formed.

▶ Theorem 11. Let H be a hypergraph, (T, B) a TD of H, t ∈ V (T ), Y ⊆ NT (t). Then
(Tt,Y , Bt,Y ) is a TD of Ht,Y , (T +

t,Y , B+
t,Y ) is a TD of H and (T, B−W ) is a TD of H \W .

Moreover, let X ⊆ V (T ) such that all the vertices of V (T ) \X are leaves of T . Then all the
vertices of V (Tt,Y ) \Xt,Y are leaves of Tt,Y .

The algorithm (roughly speaking) chooses a vertex t ∈ V (T ), partitions N(t) into Y1 and
Y2 and applies recursively to Ht,Y1 and Ht,Y2 . However, the triple (t, Y1, Y2) is chosen not
arbitrarily but in a way that both Xt,Y1 and Xt,Y2 are significantly smaller than X. The
possibility of such a choice is guaranteed by the following theorem.

▶ Theorem 12. Let T be a tree, X ⊆ V (T ) such that all |X| ≥ 3 and all the vertices of
V (T )\X are leaves. Then there is t ∈ X with degT [X](t) ≥ 2 and a partition Y1, Y2 on NT (t)
so that for each i ∈ {1, 2}, |Xt,Yi

| ≤ 3/4|X|. Moreover, the triple (t, Y1, Y2) can be computed
in a polynomial time.

Theorem 12 can be seen as a variant of a classical statement that a rooted tree has a
descendant rooting a subtree with the number of leaves between one third to two third of
the total number of leaves. The proof is based on a similar argument of picking a root and
gradually descending towards a ’large’ subtree until the desired triple is found.

For the validity of AppSep, it is important to note that each Xt,Yi
preserves for Tt,Yi

the
invariant that all the V (Tt,Yi

) \Xt,Yi
are leaves of Tt,Yi

. We are almost ready to consider the
pseudocode, it only remains to identify auxiliary functions. In particular GetBalVert(T, X)
is a polynomial time algorithm as specified in Theorem 12. Also recall that GapCoverApprox
is an FPT algorithm constructing a ((3k + d + 1)k0, k0)-gap cover approximator in the way
specified by Theorem 9.

The pseudocode of AppSep is presented in Algorithm 1. For the sake of readability, we
make two notational conventions. First, since parameters p and k do not change when passed
through recursive calls, we consider them fixed and do not mention them as part of the input
when recursing. Second, we move consideration of the case with |X| ≤ 2 into a separate
function SmallSep provided in Algorithm 3 and use it as an auxiliary function in Algorithm 4.
Here the idea is straightforward, we naively test for all gap cover approximators whether
they are (A, B)-separators.
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Algorithm 3 The algorithm SmallSep(H, A, B, p, k, k0, (T, B), X).

Input : (2, d)-hypergraph H, A, B ⊆ V (H), positive integers k0 ≤ k ≤ p, a TD
(T, B) of H, X ⊆ V (T ), |X| ≤ 2 all the elements of V (T ) \X are leaves

1 if |X| = 1 then
2 {t} ← X

3 Sets← GapCoverApprox(H, B(t), p, k, k0)
4 else
5 {t1, t2} ← X

6 Sets← GapCoverApprox(H, B(t1) ∪B(t2), p, k, k0)
7 if Sets is Reject then
8 return Reject
9 for W ∈ Sets do

10 if W is an (A, B)-separator then
11 return U

12 return Reject

The general case in AppSep is considerably more complex. Intuitively, the algorithm
searches for separators in small local parts of the tree decomposition by searching through the
output of GapCoverApprox called on the component of that local part of the decomposition
(Lines 1 and 2 of the algorithm). In general this is of course not sufficient to find (A, B)-
separators. What we do instead is to try and find partial separators that ultimately
combine into a single (A, B)-separator. To that end we split the tree decomposition into two
decompositions in a balanced fashion (Line 3). The two cases handled from Lines 4 to 9
cover the special case where the search is propagated to one part of the tree decomposition,
while the body of the loop at Line 13 considers (roughly speaking) all possibilities of splitting
up the separator over both parts.

The first step of proving Theorem 10 is to prove the FPT runtime of AppSep. We first
observe that a single application of AppSep takes FPT time. The efficiency of GetBalVert
and GapCoverApprox has been discussed above. SmallSep is effectively a loop over the
output of GapCoverApprox with polynomial time spent per element. Note that since
GapCoverApprox is computed in FPT time we also obtain a corresponding bound on the size
of the ((3k + d + 1)k0, k0)-gap cover approximator to iterate over. Finally, in the loop of
Line 13, we only need to observe that the number of connected components of B(t) \W is at
most p as otherwise the edge cover number of B(t) is greater than p. Hence, the number of
partitions C1, C2 considered in the loop is O(2p).

Next, we need to demonstrate that the number of recursive applications of AppSep is
FPT. We present the number of applications as a recursive function F (k0, m) where m = |X|.
If m ≤ 2 then there is only a single application through running SmallSep. Otherwise, there
is one recursive application at Line 4 and one at Line 7 where the first parameters remains
the same and the second parameter is at most 3/4m (by selection of t, Y1, Y2). Additionally,
there are also the recursive applications in Lines 14 and 15 where the first parameter is at
most k0 − 1 and the second parameter is at most 3/4m. As a result, we obtain a recursive
formula F (k0, m) ≤ 2F (k0, 3/4m) + g(p)F (k0 − 1, 3/4m). We note that this function can
be bounded above by a fixed-parameter cubic function (see Lemma 43 in the full version
appendix for details) thus establishing the FPT runtime of AppSep.
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Algorithm 4 The algorithm AppSep(H, A, B, (T, B), k0, k, p, X).

Input : (2, d)-hypergraph H, A, B ⊆ V (H), a TD (T, B) of H, positive integers
0 ≤ k0 ≤ k ≤ p, X ⊆ V (T ) s.t. all the elements of V (T ) \X are leaves

1 if |X| ≤ 2 then
2 return SmallSep(H, A, B, p, k, k0, (T, B), X)
3 (t, Y1, Y2)← GetBalVert(T, X)
4 Out← AppSep(H, A, B, (T +

t,Y1
, B+

t,Y1
), k0, Xt,Y1)

5 if Out is not Reject then
6 return Out

7 Out← AppSep(H, A, B, (T +
t,Y2

, B+
t,Y2

), k0, Xt,Y2)
8 if Out is not Reject then
9 return Out

10 Sets← GapCoverApprox(H, B(t), p, k, k0)
11 if Sets is Reject then
12 return Reject
13 for each W ∈ Sets, each k1, k2 > 0 s.t. k1 + k2 ≤ k0, and each weak partition C1, C2

of B(t) \W into unions of connected components of H[B(t) \W ] do
14 Out1 ← AppSep(Ht,Y1\W, (At,Y1∪C1)\W, (Bt,Y1∪C1)\W, (Tt,Y1 , B−W

t,Y1
), k1, Xt,Y1)

15 Out2 ← AppSep(Ht,Y2\W, (At,Y2∪C2)\W, (Bt,Y2∪C2)\W, (Tt,Y2 , B−W
t,Y2

), k2, Xt,Y2)

16 if neither of Out1, Out2 is Reject then
17 return Out1 ∪Out2 ∪W

18 return Reject

Next, we need to demonstrate correctness of the non-rejection output. It is straightforward
to see by construction that the returned set S is a subset of B(X): ultimately, the set S

is comprised of unions of outputs of GapCoverApprox(H, U, . . . ), either directly in Line 10,
or indirectly via SmallSep. In the first case, the returned sets are a subset of B(t), where
t ∈ X by definition of GetBalVert. In the second case, U ⊆ B(Xt,Yi) for i = 1 or i = 2 by
definition of SmallSep. By definition, both Xt,Yi

are subsets of X and thus B(Xt,Yi
) is a

subset of B(X). Since the recursion always restricts parameter X to either Xt,Y1 or Xt,Y2

the inductive application of this observation is immediate.
We need to show S is an (A, B)-separator and that its edge cover number is within a

specified upper bound. Both claims are established by induction. The main part of proving
that S is an (A, B)-separator is showing that if S as returned on Line 17 then it is an
(A, B)-separator. This follows from the induction assumption applied to Out1 and Out2 and
the following statement.

▶ Lemma 13. Let H be a hypergraph, V1, V2 ⊆ V (H) be such that V1 ∪ V2 = V (H) and
Y = V1 ∩ V2 is a (V1, V2)-separator. Let W ⊆ Y and let C1, C2 be a weak partition of Y \W .
Let H1 = H[V1 \ W ] and H2 = H[V2 \ W ]. Let A, B ⊆ V (H). For each i ∈ {1, 2} let
Ai = (A ∩ V (Hi)) ∪ C1, let Bi = (B ∩ V (Hi)) ∪ C2, and let Wi be an (Ai, Bi)-separator of
Hi. Then W1 ∪W2 ∪W is an (A, B)-separator of H.
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To prove that the size of the output S of AppSep matches the required upper bound, we
observe that the output is the union of several sets S1, . . . , Sq each of which is in a family
returned by an application of GapCoverApprox . This guarantees that ρ(Si) ≤ (3k + d + 1)k0.
It only remains to show that q ≤ 2k0−1 (q is the number of sets S1, . . . , Sq whose union make
up S). To this end we observe that the recursive applications invoking GapCoverApprox can
be naturally organised into a recursion tree where each node has two children, accounting for
the recursive applications in Lines 14 and 15 (the applications on Lines 4 and 7 are not relevant
since there is no invocation of GapCoverApprox associated with them). Then q is simply the
number of nodes of the tree. By a simple induction we observe that if k1 and k2 are the
numbers as obtained in Line 13 then k1 +k2 ≤ k0 and the number of nodes rooted by children
of the tree is at most 2k1 − 1 and 2k2 − 1, respectively. Hence, the total number of nodes,
accounting for the root, is at most (2k1−1)+(2k2−1)+1 ≤ 2(k1+k2)−1 ≤ 2k0−1 as required.
For the correctness of the Reject output we first recursively define the Reject triggered by
GapCoverApprox . This happens when AppSep runs SmallSep and the latter returns Reject
in Lines 5 or 10 of Algorithm 3, or Reject is returned in Line 12 of Algorithm 4, or when
Reject is returned in Line 18 of Algorithm 4 and one of recursive applications leading
to this output returns Reject triggered by GapCoverApprox . By inductive application of
Theorem 9 we observe that Reject triggered by GapCoverApprox implies that the ghw of
some induced subgraph of H (and hence of H itself) is greater than k.

Finally, we demonstrate that if the Reject output is not triggered by GapCoverApprox
then sep(H, A, B, k0, (T, B), X) = ∅. First, we assume that |X| ≤ 2 and demonstrate this
for Algorithm 3. It follows from the description that, in the considered case, no element
of Sets is an (A, B) separator. As each W ′ ⊆ B(X) with ρ(W ′) ≤ k0 is a subset of some
element of Sets, it follows that no such W ′ is an (A, B)-separator of H. In the case where
|X| ≥ 3, a Reject not inherited from GapCoverApprox can only be returned in Line 18 of
Algorithm 1. This, in particular, requires Reject to be returned by recursive applications
in Lines 4 or 7. By the induction assumption, sep(H, A, B, k0, (T +

t,Yi
, B+

t,Yi
), Xt,Yi

) = ∅ for
each i ∈ {1, 2}. This means that if there is W ∗ ∈ sep(H, A, B, k0, (T, B), X) then W ∗ is not
a subset of B(Xt,Y1) nor of B(Xt,Y2). We conclude that by the induction assumption, such a
W ∗ would cause a non-rejection output in one of iterations of the loop in Line 13. Since the
algorithm passes through to Line 18, such an iteration does not happen so we conclude that
such a W ∗ does not exist.

5 Combinatorial Statements

In this section we prove Theorem 4 and sketch the proofs for Theorems 7 and 9. While
Theorem 9 also refers to the existence of an algorithm, we consider the nature of the theorem
to be purely combinatorial. The resulting algorithm is simply a naive enumeration of all
possibilities of combining certain sets.

5.1 Theorem 4
For Theorem 4 we can make use of a result from the literature and prove the statement in
full here. We first recall key terminology from Adler et al. [1], who proved the result that we
will use. For a set E′ ⊆ E(H), and C ⊆ V (H) define ext(C, E′) := {e ∈ E′ | e∩C ≠ ∅}. We
say that C is E′-big if |ext(C, E′)| > |E′|

2 . A set E′ ⊆ E(H) is k-hyperlinked if for every set
S ⊆ E(H) with |S| < k, H \

⋃
S has an E′-big connected component. The hyperlinkedness

hlink(H) of H is the maximal k such that H contains a k-hyperlinked set. From another
perspective, if hlink(H) ≤ k, then for any set E′ ⊆ E(H), there is an S ⊆ E(H) with |S| ≤ k

such that no connected component of H \
⋃

S is E′-big. Adler et al. [1] showed the following.
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▶ Proposition 14 ([1]). For every hypergraph H, hlink(H) ≤ ghw(H).

Proof of Theorem 4. By assumption and Proposition 14, we have hlink(H) ≤ k. Then for
E′, there is a set of k edges S ⊆ E(H) such that no connected component of H \ S is E′-big.
Let C1, . . . , Cℓ be the connected components of H \

⋃
S. First, observe that ext(Ci, E′) ∩

ext(Cj , E′) = ∅ for any distinct i, j ∈ [ℓ]. Suppose, w.l.o.g., that |ext(Ci, E′)| ≥ |ext(Ci+1, E′)|
for i ∈ [ℓ − 1]. Let m be the highest integer such that

∑m
i=1 |ext(Ci, E′)| < 2

3 |E
′|. Such

an m ≥ 1 always exists because no component is E′-big. We claim that E′
0 = S ∩ E′,

E′
1 =

⋃m
i=1 ext(Ci, E′), and E′

2 =
⋃ℓ

i=m+1 ext(Ci, E′) are as desired by the statement.
It is clear that E′

0 satisfies the condition of the lemma (for separator
⋃

S). Furthermore,⋃
S is an (

⋃
E′

1,
⋃

E′
2)-separator as the two sets touch unions of different H \

⋃
S components.

The size bound |E′
1| ≤ 2

3 |E
′| holds by construction.

What is left to show is that the size bound also holds for E′
2. To that end we first observe

that |E′
1| ≥ 1

3 |E
′|. Indeed, by the ordering of components by the size of ext, we have that

ext(Cm+1, E′) ≤ |E′
1|. Thus, |E′

1| < 1
3 |E

′| would contradict the choice of m. Since E′
1 and

E′
2 are disjoint, this leaves at most |E′| − |E′

1| ≤ 2
3 |E

′| edges for E′
2. ◀

Proposition 14 already plays an important role in the state of the art of ghw computation.
The implication of a so-called balanced separator of size k has been a key ingredient for
various practical implementations for computing ghw and related parameters [6, 14, 10].
Our application of this idea is somewhat different from this prior work. There, balanced
separators are used to reduce the search space of separators that need to be checked, and to
split up the problem into small subproblems. Our applications of Theorem 4 is different: in
Algorithm 2 for Compress we use it to find a way to separate the interface to the parent
node in the decomposition. Notably, this search requires the split into only a constant number
of sets (rather than the possibly linear number of connected components) which is part of
why we require our variation of the previous hyperlinkedness result.

5.2 Large Subedge Hypergrids (Theorem 7)
Recall from Definition 6 that an (a, b) subedge hypergrid (or (a, b)-shyg) consists of pairwise
incompatible subedges U1, . . . , Ua, S1, . . . , Sb such that: U1, . . . , Ua are pairwise disjoint, and
for each j ∈ [b], Sj touches U1, . . . , Ua. Our proof of Theorem 7 first relates (a, b)-shygs to
more restricted structures that we call strong (a, b)-shygs.

▶ Definition 15. An (a, b)-shyg U1, . . . , Ua, S1, . . . , Sb is strong if Sj ∩ Sj′ ∩
⋃

i∈[a] Ui = ∅
for each j ̸= j′ ∈ [b].

▶ Theorem 16. Let H be a (2, d) hypergraph having a strong (3k + 1, (3k + 1)d + 1)-shyg.
Then ghw(H) > k.

To prove Theorem 7, we first prove Theorem 16 and then demonstrate that non-emptiness
of Sk,d implies existence of a strong (3k + 1, (3k + 1)d + 1)-shyg. We continue with an
overview of our proof of Theorem 16.

An important observation for subedges in (2, d)-hypergraphs is that if a subedge U is
large enough, and in particular if |U | > d, then this will uniquely determine the edge e such
that U ⊆ e. In this section we will refer to this uniquely determined e as e(U). Using this we
state the following auxiliary lemma that gives us a lower bound for separating two subedges
that are part of a shyg.
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▶ Lemma 17. Let U1, U2, S1, . . . , Sb be a strong (2, b)-shyg of a (2, d)-hypergraph H. Let
{e1, . . . , eq} ⊆ E(H) be such that {e(U1), e(U2)} ∩ {e1, . . . , eq} = ∅ and W =

⋃
i∈[q] ei is a

U1, U2-separator. Then q ≥ b/2d.

Back to the proof of Theorem 16, we observe that e(U1), . . . , e(U3k+1) is ρ-stable. This is
because each e(Ui), to ’incorporate’ all Sj must be of size at least (3k + 1)d + 1 and, in a
(2, d)-hypergraph, this is too large to be covered by (3k + 1) other hyperedges. We will then
use Theorem 4 to prove the desired lower bound on ghw(H), by showing that there is the
set {e(U1), . . . , e(U3k+1} cannot be separated in the way specified by Theorem 4. Towards a
contradiction, we assume existence of a weak partition E′

0, E′
1, E′

2 of {e(U1), . . . , e(U3k+1},
|E′

i| ≤ 2k for each i ∈ {1, 2} and W ⊆ V (H) such that ρ(W ) ≤ k,
⋃

E′
0 ⊆ W and W is a⋃

E′
1,

⋃
E′

2- separator. W.l.o.g. we assume existence of {e1, . . . , er} ⊆ E(H), r ≤ k such
that W =

⋃
i∈[q] ei. Let E∗

0 be the set of all elements of e(U1), . . . , e(U3k+1) that are subsets
of W . We note that E′

0 ⊆ E∗
0 and, since no e(Ui) can be covered by k other hyperedges,

E∗
0 ⊆ {e1, . . . , er}. We also note that both E′

1 \ E∗
0 and E′

2 \ E∗
0 are nonempty. Indeed, if

say E′
2 \ E∗

0 = ∅ then 3k + 1 = |{e(U1), . . . , e(U3k+1)}| = |E′
1 ∪ E∗

0 | ≤ 2k + k, or in other
words, in such a situation E′

0, E′
1, E′

2 could not form a weak partition of 3k + 1 edges. Let
e(Ui1) ∈ E′

1 \ E∗
0 and e(Ui2)) ∈ E′

2 \ E∗
0 . Then W is a (Ui1 , Ui2)-separator. By Lemma 17,

r ≥ (3k + 1)d/2d > k, and we arrive at a contradiction. This completes the sketch of the
proof for Theorem 16.

As a next step, we show that a large enough shyg will imply the existence of a strong
(3k + 1, (3k + 1)d + 1)-shyg. We will show this inductively via a graded version of strong
shygs that we will call c-strong shygs. The only difference from Definition 15 is that
|Sj ∩ Sj′ ∩

⋃
i∈[a] Ui| ≤ c for each j ̸= j′ ∈ [b]. Thus a strong shyg is 0-strong one and any

ordinary shyg is d-strong by definition of a (2, d)-hypergraph.
Let us recursively define a function g(c) = gk,d(c) as follows. Let g(0) = (3k +1)d+1. For

c > 0, assuming that g(c− 1) has been defined, we let g(c) = g(0)2(g(c− 1)− 2)) + 1. Further
on, we let ξ(k, d) = gk,d(d) and let Sk,d(H) to be the set of all (3k + d + 1, ξ(k, d))-shygs of
H. The second part of the proof of Theorem 7 is the following statement.

▶ Theorem 18. Let c ≥ 0 and let H be a (2, d)-hypergraph that has a c-strong (3k+1+c, g(c))-
shyg. Then H has a strong (3k + 1, (3k + 1)d + 1)-shyg.

Theorem 7 is immediate from the combination of Theorem 18 with c = d and Theorem 16.
So, let us discuss the proof of Theorem 18.

Proof Sketch. The proof is by induction on c. The case c = 0 is immediate as the considered
shyg is exactly the desired strong shyg. For c > 0, we demonstrate we can ’extract’ from the
considered shyg either a c− 1-strong (3k + c, g(c− 1)) shyg (implying the theorem by the
induction assumption) a strong (3k + 1, g(0))-shyg exactly as required by the theorem.

So, let U1, . . . , U3k+c+1, S1, . . . , Sg(c) be the considered c-strong shyg. Assume first that
there is u ∈

⋃
i∈3k+c+1 Ui that touches g(c− 1) sets Sj . We assume w.l.o.g that u ∈ U3k+c+1

and that the sets Sj touching u are precisely S1, . . . , Sg(c)−1. Since one intersection point
between these sets is spent on U3k+c+1 for any j ̸= j′ ∈ [g(c)−1], |Sj∩Sj′∩

⋃
i∈[3k+c] Ui| ≤ c−1.

In other words, U1, . . . , U3k+c, S1, . . . , Sg(c)−1 is a (c− 1)-strong shyg implying the theorem
by the induction assumption. It remains to assume that each u ∈

⋃
i∈3k+c+1 Ui touches at

most g(c− 1)− 1 sets Sj . We are going to identify I ⊆ [g(c)] of size g(0) so that for each
j ≠ j′ ∈ I, Si ∩ Sj ∩

⋃
i∈[3k+1] Ui = ∅. This means that U1, . . . , U3k+1 along with Sj for each

j ∈ I will form a stron (3k + 1, g(0))-shyg as required by the theorem.
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We use the same elementary argument as if we wanted to show that a graph with many
vertices and a small max-degree contains a large independent set. The initial set CI of
candidate indices is [g(c)] and initially I = ∅. We choose j ∈ CI into I and remove from CI

the j and all the j′ such that Sj ∩ Sj′ ∩
⋃

i∈[3k+1] Ui ̸= ∅ By definition of g(c), it is enough
to show that, apart from j itself, we remove at most (g(0)− 1)(g(c− 1)− 2) other elements.
Indeed, the size of S∗

j = Sj ∩
⋃

i∈[3k+1] Ui is at most (3k + 1)d = g(0)− 1 and each point of
S∗

i , apart from Sj touches at most g(c− 1)− 2 elements simply by assumption. ◀

5.3 Constructing Gap Cover Approximators (Theorem 9)
Our overall plan for the proof of Theorem 9 is to show that we can produce the elements
that make up the desired gap cover approximator, as a combination of four parts, each of
which we can bound appropriately. The resulting algorithm is then primarily a matter of
enumerating all combinations of elements from these parts. In the following we discuss the
construction of these parts and why this yields an FPT algorithm.

The first part is what we will refer to as the set BEp(U) of p-big edges w.r.t. U , which
are those edges e ∈ E(H[U ]) for which |e| > pd. The intuition for the importance of big
edges is simple, in a (2, d)-hypergraph, they are necessary to obtain low weight covers. In
particular, any edge cover of U with weight at most p must contain all edges of BEp(U): if
|e| > pd then the vertices in e cannot be covered by less than p + 1 other edges, since any
other e′ ̸= e will only intersect e in at most d vertices (see Appendix B in the full version
for in-depth discussion of BEp(U) sets). For the rest of this section we will simply say that
edges are big to mean p-big. Similarly, we will refer to all edges that are not p-big as small.

The more challenging part is to determine the structure of those vertices that are not
covered by the big hyperedges. To this end we first define the boundary BE∗

p of the big edges:

BE∗
p(U) := {e \

⋃
(BEp(U) \ {e}) | e ∈ BEp(U)}.

That is BE∗
p(U) contains those subedges of big edges that are unique to a single big edge.

With respect to this set we will be particularly interested in those members that together
cover the intersection of a small edge with the vertices in the boundary. We formalise this
via the spanning set sp(e) for e ∈ E(H[U ]) \ BEp(U), which is the set E′ ⊆ BE∗

p(U) such
that e∩

⋃
E′ = e∩

⋃
BE∗

p(U). We will refer to the cardinality of sp(e) as the span of e. The
final part we need is those vertices U0

p that are not part of any subedge in the boundary BE∗
p,

formally U0
p = U \

⋃
BE∗

p(U). In addition to the three parts described above, may need to
add subsets of U0

p to construct the elements of the gap cover approximator. In particular,
to add those vertices that are not part of any big edge. The key observation here is that,
under the assumption that ρ(U) ≤ p, there cannot be too many such vertices and specifically
|U0

p | = O(p2d).
Ultimately, what we prove is that for any U ′ ⊆ U with ρ(U ′) ≤ k0, there is a set X such

that X ⊇ U ′ and ρ(X) ≤ (3k + 1 + d)k0, where X is the union of big edges, short edges
and Y ⊆ U0

p . The short edges are actually split in two cases, depending on their span. The
construction of X may require some number of short edges with span at most 3k + d, as
well some short edges with span greater than 3k + d. The last set is the most challenging
in terms of achieving an FPT algorithm. All other sets can be bounded in terms of p and
d (a small edge with a small span is covered by the union of its span leading to the stated
approximation factor). Such a bound seems to not be achievable for the set of small edges
with large span. To get around this issue, we show that if there are many small edges with
large span, then this implies the existence of a large subedge hypergrid. In more concrete
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terms, if there is a set E′ ⊆ BE∗
p(U) with |E′| > 3k + d and sp−1(E′) > ξ(k, d) (with ξ as

in the definition of Sk,d(H)), then Sk,d(H) ̸= ∅. In consequence, we can detect the case for
which we could not achieve an FPT bound, and we know that in this case we can safely reject
as ghw(H) is guaranteed to be greater than k.

6 Conclusion

We have presented a fixed-parameter tractable algorithm for approximating the generalised
hypertree width of hypergraphs with bounded intersection size. In particular, we give an
algorithm that either decides in f(k, d)poly(H) time whether a (2, d)-hypergraph H has
ghw(H) ≤ 4k(k +d+1)(2k−1) or rejects, in the latter case it is guaranteed that ghw(H) ≥ k.

Our main result represents a first step into the area of FPT algorithms for ghw. Our
focus has been on developing the overarching framework, and we expect that with further
refinement, better approximation factors are achievable and present a natural avenue for
further research. The most immediate question is whether subcubic approximation can be
achieved. Recall that the (3k + d + 1)(2k − 1)k0 factor for ApproxSep comes from two
sources, (3k + d + 1)k0 is a result of using (3k + d + 1)k0, k0-gap cover approximators to
find partial covers. The factor (2k − 1) is a result of combining the partial separators. It is
unclear whether either of these factors can be avoided.

For full proof details and an extensive discussion of possible future work we refer to reader
to the full version of this paper [17].
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Abstract
This article focuses on the sub-exponential time lower bounds for two canonical #P-hard problems:
counting the vertex covers of a given graph (#VC) and counting the matchings of a given graph
(#Matching), under the well-known counting exponential time hypothesis (#ETH).

Interpolation is an essential method to build reductions in this article and in the literature. We
use the idea of block interpolation to prove that both #VC and #Matching have no 2o(N) time
deterministic algorithm, even if the given graph with N vertices is a 3-regular graph. However,
when it comes to proving the lower bounds for #VC and #Matching on planar graphs, both block
interpolation and polynomial interpolation do not work. We prove that, for any integer N > 0, we
can simulate N pairwise linearly independent unary functions by gadgets with only O(log N) size in
the context of #VC and #Matching. Then we use log-size gadgets in the polynomial interpolation

to prove that planar #VC and planar #Matching have no 2o(
√

N
log N

) time deterministic algorithm.
The lower bounds hold even if the given graph with N vertices is a 3-regular graph.

Based on a stronger hypothesis, randomized exponential time hypothesis (rETH), we can avoid
using interpolation. We prove that if rETH holds, both planar #VC and planar #Matching have no
2o(

√
N) time randomized algorithm, even that the given graph with N vertices is a planar 3-regular

graph. The 2Ω(
√

N) time lower bounds are tight, since there exist 2O(
√

N) time algorithms for planar
#VC and planar #Matching.

We also develop a fine-grained dichotomy for a class of counting problems, symmetric Holant*.
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1 Introduction

As an analog of NP, Valiant [19] defined the class #P of counting problems, which non-
deterministic polynomial time Turing machines can compute with outputting the number of
accepting computations. #P-hardness is similarly defined as NP-hardness. Two canonical
counting problems, counting the vertex covers of a given graph (#VC) and counting the
matchings of a given graph (#Matching), were proven to be #P-hard [18], even if the graph
is sparse or planar. The two problems caused continuous attention in the past years [1, 6–8].

For the two problems, trivial 2npoly(n) or 2mpoly(m) time algorithms exist by checking
all possible solutions, where n or m denotes the number of vertices or edges in the input
graph. A series of improved algorithms [9, 10, 16, 17, 22] for the two problems still need
exponential time. According to the well-believed exponential time hypothesis (ETH) [12, 13],
Dell et al. [8] put forward the counting version #ETH which states #3-SAT can not be
solved in sub-exponential time. Under #ETH, many counting problems were proved that
they have no 2o(n) or 2o(m) time deterministic algorithm. For example, counting the vertex
covers of a graph with maximum degree 3 [1, 7, 15] and counting the matchings of a graph
with maximum degree 4 [7] both have no 2o(n) time algorithm. And there are also some
fine-grained dichotomies [1,15] driven from the lower bound of #VC. If the two problems are
restricted on planar graphs, there are O(2

√
n) time algorithms [16,22]. However, the tight

lower bounds for the two problems restricted on planar graphs are still open. Marx et al. [16]
proved that counting the matchings of a graph, with a tree decomposition of width tw given,
has no 2o(tw) time algorithm under #ETH, even if the graph has maximum degree 8.

This article considers the lower bound results for #VC and #Matching on 3-regular
graphs. We represent the two problems in the Holant framework [3], where each counting
problem is defined by a set of functions. This helps us comprehend the difficulty of problems
and build reductions between them more easily. One motivation behind this work is to
enhance and complement the current lower bound results. Besides, the two problems on
3-regular graphs are starting problems that drive a series of dichotomy theorems [2, 4, 14].
Compared to the restriction that graphs are with maximum degree 3, the two problems
on 3-regular graphs are defined by fewer functions in the Holant framework. For example,
#Matching on 3-regular graphs is defined by only a ternary function in the Holant framework.
This brings great convenience in building reductions. So another motivation is to prepare for
developing fine-grained dichotomy theorems, which state that a problem in a class either is
tractable in polynomial time or has no 2o(n) time algorithm (or no 2o(

√
n) time algorithm on

planar graphs).
We prove the 2Ω(n) time lower bound for #VC and #Matching on 3-regular graphs,

presented in Section 3. In Section 4, we apply polynomial interpolation via log size gadgets
to obtaining the nearly tight 2Ω(

√
n

log n ) time lower bound for #VC and #Matching on planar
3-regular graphs under #ETH. In Section 5, we avoid the use of interpolation and prove the
tight 2Ω(

√
n) time lower bound for #VC and #Matching on planar 3-regular graphs, based

on a stronger assumption rETH. In Section 6, we develop a simple fine-grained dichotomy
for a class of counting problems.

2 Preliminaries

2.1 Notations and definitions
Let N, Z, and C be the set of natural numbers, the set of integers, and the set of complex
numbers, respectively. [q] of some positive integer q denotes the finite domain {1, 2, ..., q}. A
domain of size 2 is called the Boolean domain, where any entry is assigned 0 or 1. A function
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(or called signature) F : {0, 1}k → C of some non-negative integer k is a complex-valued
Boolean function, where k is called the arity of F . F is a symmetric function if its value is
invariant under the permutation of its variables. The value of a Boolean symmetric function
F only depends on the Hamming weight of the input assignment, so F can be written as
[f0, f1, ...fk] where fi is the value of F accepting an assignment with Hamming weight i ∈ [k].
A function of arity 1 or 2 is called a unary function or a binary function, respectively. A
Boolean unary function F is usually written as a vector [F (0), F (1)], and a Boolean binary

function H is usually written as a matrix
(

H(0, 0) H(0, 1)
H(1, 0) H(1, 1)

)
. For example, the binary

equality function =2 is written as [1, 0, 1], the binary dis-equality function ̸=2 is written as
[0, 1, 0], the equality function =k of some arity k ≥ 3 is written as [1, 0, ..., 0, 1], the binary
function OR2 is written as [0, 1, 1], and the ternary function OR3 is written as [0, 1, 1, 1].

An undirected graph G is denoted by a pair (V, E), where V is the set of vertices and E

is the set of edges. Multiple edges may exist between the same pair of vertices and self-loops
in E. Let N(v) ⊆ V and E(v) ⊆ E denote the adjacent vertices and incident edges of v,
respectively. The degree of a vertex v is denoted by dv = |E(v)| (a self-loop is counted twice,
and an l-multiple edge of some integer l is counted l times). ∆ = max{dv | v ∈ V } denotes
the maximum degree of G. A bipartite graph G is also written as a tuple (VL ∪ VR, E), where
VL, VR are two disjoint nonempty sets of vertices, and each edge e ∈ E has one endpoint in
VL and another in VR.

We introduce two individual counting problems on graphs in the following.

▶ Definition 1 (#VC). A vertex cover of a graph G(V, E) is a set S ⊂ V , such that S

contains at least one endpoint of e for every edge e ∈ E. The problem #Vertex Cover (#VC)
is defined as

Input: a graph G(V, E),
Output: the number of vertex covers of G.

An independent set of a graph G(V, E) is a set S ⊆ V , such that S contains at most one
endpoint of e for every edge e ∈ E. The problem #Independent Set (#IS) is defined as
counting the independent sets of a given graph. V − S for any vertex cover S must be
an independent set, so #IS(G) = #VC(G) for any graph G with n vertices, i.e., the two
problems #IS and #VC are equivalent.

▶ Definition 2 (#Matching). A matching of a graph G(V, E) is a set M ∈ E, such that e1
and e2 do not intersect for any pair e1, e2 ∈ M . The problem #Matching is defined as

Input: a graph G(V, E),
Output: the number of matchings of G.

We use the prefix 3R-, 3∆-, or pl- to denote the restriction that the input graphs
are 3-regular, have max-degree no more than 3, or are planar, respectively. For example,
#pl-3R-VC denotes counting the vertex covers for a given planar 3-regular graph.

To better analyze the complexity of the above two problems, we express them in the
Boolean Holant [3] framework. A Boolean Holant problem, dubbed Holant(F), is paramet-
erized by a set F of Boolean functions. A tuple Ω = (G, π) is called signature grid over
F , where G(V, E) is a graph, and the mapping π assigns to every vertex v ∈ V a function
Fv ∈ F with a linear order to the edges in E(v).

STACS 2024
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▶ Definition 3 (Holant [3]). Let F be a set of Boolean functions. The Boolean Holant problem
Holant(F) is defined as

Input: Ω = (G, π) over F

Output : Holant(Ω) =
∑

σ:E→{0,1}

∏
v∈V

Fv(σ|E(v)),

where σ|E(v) is the restriction of σ to E(v) and Fv(σ|E(v)) depends on the ordered input tuple
σ|E(v). If

∏
v∈V Fv(σ|E(v)) ̸= 0 for a fixed assignment σ, we called σ a satisfying assignment.

Given any function F and any non-zero constant λ, the two functions λF and F are
equivalent in the context of Holant, since the factor λ only brings a constant multiplicative
factor to the final result. The operator transforming any function F to λF for some constant
λ ∈ C − {0} is called normalization. We usually hide the information of π into the graph
G, so Ω is represented by G for simplification. If F is finite, then the graph G must be
bounded degree. If F = {F} consists of only one function F , we directly use Holant(F )
denotes Holant(F). The problem Holant∗(F) denotes the problem Holant(F ∪ U) where U
is the set of all unary functions.

Let F , H be two sets of Boolean functions. A bipartite signature grid Ω(G, π) over
F|H consists of a bipartite graph G(VL ∪ VR, E) and a mapping π which maps each vertex
v ∈ VL or v ∈ VR to a function F ∈ F or a function H ∈ H, respectively. The problem
Holant(F|H) is similarly defined, with a bipartite signature grid Ω over F|H as an input.
Trivially, Holant(F) is equivalent to Holant(F| =2).

We re-describe the problems #VC and #Matching as Boolean Holant problems. It is trivial
to re-describe #Matching. Given a graph G(V, E), we map the function Fv = [1, 1, 0, ..., 0] of
arity dv to every vertex v ∈ V . The function Fv takes value 1 if no more than one incident edge
of v is assigned 1; otherwise, it takes 0. Holant(G) is the number of matching of G. #Matching
is exactly the problem Holant({[1, 1], [1, 1, 0], [1, 1, 0, 0], ......}), #3∆-Matching is the problem
Holant({[1, 1], [1, 1, 0], [1, 1, 0, 0]}), and #3R-Matching is the problem Holant([1, 1, 0, 0]).

Considering re-describing the problem #VC. Given the input graph G(V, E), we map
the equality function =dv

to each vertex v ∈ V . For every edge e ∈ E, we add a extra
vertex ue assigned the function OR2 to divide it. These define a new bipartite signature grid
G′(V ∪ Ve, E′) where Ve = {ue|e ∈ E} denotes the set of new vertices. Given a satisfying
assignment to E′, let the set S ⊆ V consist of the vertices v ∈ V whose incident edges all
are assigned 1. S must be a vertex cover of G. Conversely, given a vertex cover S of G, the
incident edges E′(v) ∈ E′ of each v ∈ S are assigned 1, and the other edges are assigned
0. Such an assignment must satisfy

∏
v∈V ∪Ve

Fv = 1. So Holant(G′) is the number of the
vertex covers of G. #VC is exactly the problem Holant({=1, =2, ......}|OR2), #3∆-VC is the
problem Holant({=1, =2, =3}|OR2), and #3R-VC is the problem Holant(=3 |OR2).

2.2 Counting exponential time hypothesis

Impagliazzo et al. [12,13] put forward the well-known exponential time hypothesis (ETH),
which states that the satisfiability of a given 3-CNF formula (3-SAT) can not be decided in
sub-exponential time. Dell et al. [8] put forward the relaxed counting version #ETH.

▶ Conjecture 4 (#ETH [8]). There exists a constant ε > 0 such that no deterministic
algorithm can solve #3-SAT in O(2εn) time, where n denotes the number of variables of the
input formula.
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The 2Ω(n) time lower bound can be strengthened to 2Ω(m) where m denotes the number of
clauses in the input formula, according to the Sparsification Lemma [13].

A stronger hypothesis, randomized exponential time hypothesis (rETH) [8], states that
the same lower bound also holds for the probabilistic algorithm.

▶ Conjecture 5 (rETH [8]). There is a constant ε > 0 such that no randomized algorithm
can decide 3-SAT in O(2εn) time with error probability at most 1/3.

Polynomial-time Turing reductions, signed as ≤poly or ≤p, can not always preserve the
sub-exponential time lower bound since the size of the generated instances may increase
non-linearly. Impagliazoo et al. [13] introduced another particular class of Turing reductions:
sub-exponential time reduction families (SERF), which preserves the sub-exponential time
lower bound. We restrict the definition of SERF to problems on graphs.

▶ Definition 6 ([7, 13]). Let A and B be two problems on graphs. A sub-exponential time
reduction family from A to B is an algorithm T with oracle access for B. T accepts a tuple
(G, ε) as input, where G is an input of A and ε > 0 is a running time parameter of T , and
(1) computes A(G) in time O(2ε|V (G)|) with
(2) only invoking the oracle of B on graphs with O(|V (G)|) vertices.
If such an algorithm exists, We say that A is SERF-reducible to B, written as A ≤serf B.

Suppose A ≤serf B. If B has a O(2εn) time algorithm for some constant ε > 0, where n

denotes the number of vertices in the input graph, then we can solve A(G) in O(2ε|V (G)|) ·
O(2ε·O(|V (G)|)) = O(2ε′|V (G)|) time for some constant ε′ > 0. Conversely, if A has no sub-
exponential time algorithm, so does B. SERF reductions are known to be transitive [13,
Section 1.1.4].

Ying [15] built a series of SERF reductions and proved the sub-exponential time lower
bound for #3∆-VC under #ETH.

▶ Lemma 7 ([15]). If #ETH holds, then there exists a constant ε > 0 such that #3∆-VC
has no O(2εn) time deterministic algorithm, where n denotes the number of vertices in the
input graph.

Calabro et al. [5] proved an isolation lemma and built a SERF reduction from 3-SAT to
Unique 3-SAT, which is a sub-problem of 3-SAT with the restriction that the input 3-CNF
formula has at most one satisfying assignment.

▶ Lemma 8 ([5]). If rETH holds, then there exists a constant ε > 0 such that Unique 3-SAT
has no O(2εm) time randomized algorithm, where m denotes the number of clauses in the
input formula.

2.3 Gadget construction
To preserve the 2Ω(

√
N) time lower bound, the SERF reduction should be strengthened to

only 2o(
√

N) time cost.
A trivial but useful method to build such a reduction is called gadget construction. A

gadget is also a signature grid (G, π), where G = (V, E ∪ X) is a graph with some dangling
edges X. A dangling edge has one endpoint in V and the other dangling. The gadget defines
a function of arity k = |X|

Γ(x1, x2, ..., xk) =
∑

σ:E→{0,1}

∏
v∈V

Fv(σ̂|E(v)),
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where (x1, x2, ..., xk) ∈ {0, 1}k is an assignment to X and σ̂ is the extension of the assignment
σ by (x1, x2, ..., xk). If Fv ∈ F for every vertex v ∈ V , the gadget is called an F-gate with
signature Γ. For example, Figure 1 shows a {[1, 1, 0, 0]}-gate with signature [4, 2, 1, 1]. Given

Figure 1 A {[1, 1, 0, 0]}-gate with signature [4, 2, 1, 1].

an instance G of Holant([4, 2, 1, 1]), we can replace each occurrence of [4, 2, 1, 1] by such
a gadget. The value of the new instance equals the original value. So Holant([4, 2, 1, 1])
is reduced to Holant([1, 1, 0, 0]). Such a reduction built by gadget construction is a SERF
reduction. Besides, the reduction only costs poly(N) time, where N denotes the number of
vertices in the input graph. So the reductions built by gadget constructions can preserve the
2Ω(

√
N) time lower bound. Ying [23] used gadget constructions to prove the following lemma.

▶ Lemma 9 ([23]). If #ETH holds, then there exists a constant ε > 0 such that planar
Holant({=2, =3, ̸=2, OR3}) has no O(2ε

√
N ) time algorithm, where N denotes the number of

vertices in the input graph.

2.4 Holographic transformation
Another method is called holographic transformation [20,21], which also preserves the 2Ω(

√
N)

time lower bound.
The tensor product ⊗ is the Kronecker product, that is, for two matrices X = Xa×b

and Y = Yc×d, X ⊗ Y is an ac × bd matrix with entry Xi,jYk,l at (i, k) ∈ [a] × [c] row and
(j, l) ∈ [b] × [d] column, where a, b, c, d are some positive integers. Tensor power is defined
recursively X⊗k = X⊗(k−1) ⊗ X for some integer k > 0.

Let T be a 2 × 2 invertible matrix. Given a Boolean function F of some arity k, written
as a column vector in C2k , we write TF = T ⊗kF as the transformed function. For a set F of
functions, TF = {TF |F ∈ F}. FT = FT ⊗k and FT = {FT |F ∈ F} are similarly defined,
where F is written as a row vector. Given an instance G of Holant(F|H), we generate a new
bipartite graph G′ from G, by reassigning the function FT or T −1H to each vertex which is
assigned the function F ∈ F or H ∈ H, respectively. Valiant’s Holant Theorem [21] shows
that Holant(G) = Holant(G′).

▶ Lemma 10 ([21]). Let F and H be two function sets. Given an invertible 2 × 2 matrix T ,

Holant(F|H) ≤p Holant(FT |T −1H).

In addition, the generated instance has the same number of vertices and edges as the original.

3 Lower bounds for #3R-VC and #3R-Matching under #ETH

In this section, we build SERF-reductions from #3∆-VC to prove the 2Ω(N) time lower
bounds for #3R-VC and #3R-Matching, where N denotes the number of vertices in the
input graph.
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3.1 Lower bound for #3R-VC

We build a SERF-reduction from #3∆-VC to #3R-VC. In fact, we prove the equivalent
reduction Holant({=1, =2, =3}|OR2) ≤serf Holant(=3 |OR2) by gadget constructions.

▶ Theorem 11. If #ETH holds, then there exists a constant ε > 0 such that the number of
vertex covers of a 3-regular graph with N vertices can not be computed in O(2εN ) time.

Proof. We first reduce Holant({=1, =2, =3}|OR2) to Holant(=3 |{OR2, [1, 1]}). A function
=1 can be realized by one function =3 connected with two unary functions [1, 1], and a
function =2 can be realized by one function =3 connected with one unary function [1, 1]. We
realize [1, 1] by the {=3}|{OR2}-gate shown in Figure 2.

Figure 2 A {=3}|{OR2} gate with signature [1, 1].

By the above, Holant({=1, =2, =3}|OR2) ≤serf Holant(=3 |OR2) and we can conclude
this theorem, according to Lemma 7. ◀

3.2 Lower bound for #3R-Matching

We build a SERF-reduction from #3R-VC to #3R-Matching, i.e., we demonstrate that
Holant(OR2| =3) ≤serf Holant([1, 1, 0, 0]) by the idea of block interpolation [7], which is
actually multivariate polynomial interpolation.

We first introduce a lemma, which is essential during the interpolation process.

▶ Lemma 12 ([11,18]). Let A, B, C, D be positive rational numbers, and x0, y0 be rational
numbers. Define the sequences {xl}l≥0 and {yl}l≥0 recursively by xl+1 = Axl + Byl and
yl+1 = Cxl + Dyl. Then the sequence { xl

yl
}l≥0 is pairwise different as long as AD − BC ≠ 0

and By2
0 − Cx2

0 − (A − D)x0y0 ̸= 0.

▶ Theorem 13. If #ETH holds, then there exists some constant ε > 0 such that #3R-
Matching can not be calculated in O(2εN ) time, where N is the number of vertices in the
input graph.

Proof. We establish the following reduction chain.

Holant([0, 1, 1] | [1, 0, 0, 1]) ≤serf Holant([−1, 2, 0] | [4, 2, 1, 1]) (1)
≤serf Holant({[−1, 2, 0], [1, 1, 0, 0]}) (2)
≤serf Holant([1, 1, 0, 0]) (3)

1. The reduction (1) is proved by the holographic transformation defined by Q =(
0 3

√
4

1
2

3
√

4 1
2

3
√

4

)
, since
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[0, 1, 1](Q−1)⊗2 = (0, 1, 1, 1)( 1
3
√

2

( 1
2

3
√

4 − 3
√

4
− 1

2
3
√

4 0

)
⊗ 1

3
√

2

( 1
2

3
√

4 − 3
√

4
− 1

2
3
√

4 0

)
)

= (0, 1, 1, 1)
3
√

4
4


1 −2 −2 4

−1 0 2 0
−1 2 0 0
1 0 0 0


=

3
√

4
4 (−1, 2, 2, 0) =

3
√

4
4 [−1, 2, 0]

and

Q⊗3[1, 0, 0, 1] = (
3
√

4
2 )3



0 0 0 0 0 0 0 8
0 0 0 0 0 0 4 4
0 0 0 0 0 4 0 4
0 0 0 0 2 2 2 2
0 0 0 4 0 0 0 4
0 0 2 2 0 0 2 2
0 2 0 2 0 2 0 2
1 1 1 1 1 1 1 1





1
0
0
0
0
0
0
1


= 1

2



8
4
4
2
4
2
2
2


=



4
2
2
1
2
1
1
1


.

(4, 2, 2, 1, 2, 1, 1, 1)T has the indexes 000, 001, 010, 011,100,101,110, and 111 in order, and
it is the column vector of the function [4, 2, 1, 1].

2. The reduction (2) is built by gadget constructions. We replace each occurrence of the
function [4, 2, 1, 1] by the {[1, 1, 0, 0]}-gate showed in Figure-1.

3. The reduction (3) is built by the idea of block interpolation. Let G be an instance of
Holant({[−1, 2, 0], [1, 1, 0, 0]}) and V ′ ⊆ V (G) denote the vertices assigned the function
[−1, 2, 0]. Suppose |V ′| = n ≤ |V (G)|. We divide V ′ to r = n

d disjoint blocks B1, B2, ..., Br

for some positive integer d, such that each block |Bi| = d for i ∈ [r] (w.l.o.g, n is divisible by
d.)2. We label each satisfying assignment to E(G) a type t⃗ = (t1, t2, ..., tr) ∈ {0, 1, ..., d}r,
where ti denotes the number of vertices v ∈ Bi with E(v) assigned (0, 0). Let ρt⃗ denote the
number of satisfying assignments with type t⃗. Then Holant(G) =

∑
t⃗ ρt⃗

∏r
i=1(−1)ti(2)d−ti .

Define a multivariate polynomial

µ(x1, x2, ..., xr) =
∑

t⃗

ρt⃗

r∏
i=1

(xi)ti

on variables x1, x2, ..., xr ∈ C. Holant(G) = 2n · µ(− 1
2 , − 1

2 , ..., − 1
2 ).

Given l⃗ = (l1, l2, ..., lr) ∈ Nr, we replace each vertex v ∈ Bi by a gadget with a binary
signature which is realized by a ternary function [1, 1, 0, 0] connecting with a unary
function showed in Figure 3.
The unary function realized by the gadget Sl can be written as [s0

l , s1
l ] where {s0

l } and
{s1

l } satisfy the recurrences: s0
l = 25s0

l−1 + 13s1
l−1 and s1

l = 13s0
l−1 + 7s1

l−1 with initial
conditions s0

0 = 50 and s1
0 = 26. Actually, s0

l represents the number of matchings of the
underlying graph of Sl, which do not include the dangling edge. And s1

l represents the
number of matchings that include the dangling edge. If we connect [s0

l , s1
l ] to a ternary

function [1, 1, 0, 0], then we realize a binary function [s0
l + s1

l , s0
l , 0]. The value of Gl⃗ is

Holant(Gl⃗) =
∑

t⃗

ρt⃗

r∏
i=1

(s0
li

+ s1
li

)ti(s0
li

)d−ti =
r∏

i=1
(s0

li
)d · µ(1 +

s1
l1

s0
l1

, 1 +
s1

l2

s0
l2

, ..., 1 +
s1

lr

s0
lr

).

2 We can add the gadget, an isolated 3-multiple edge whose two endpoints are assigned [1, 1, 0, 0] and one
edge is divided by an extra vertex assigned [−1, 2, 0], to fit the assumption without affecting Holant(G).
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Figure 3 A {[1, 1, 0, 0]}-gate Sl for some integer l.

We construct a series of graphs Gl⃗ for l⃗ ∈ [d+1]r to invoke the oracle of Holant([1, 1, 0, 0]).
Then, we obtain the values of µ in (d + 1)r distinct points, since { s1

l

s0
l

}l≥0 is pairwise
different according to Lemma 12. So we can solve all coefficients ρt⃗ of µ by Lagrange
interpolation, and compute Holant(G) in poly((d + 1)r) time. Each Gl⃗ is constructed in
poly(|V (G)|) time and it has O(d|V (G)|) vertices.
Give a running time parameter ε, we choose a constant d such that log(d+1)

d ≤ ε. The
total time of the above reduction is

(d + 1)r(poly(|V (G)|)) + poly((d + 1)r) = O(2
log(d+1)

d n) = O(2ε|V (G)|).

The above reduction is a SERF reduction.

SERF reductions are transitive. So Holant(OR2| =3) ≤serf Holant([1, 1, 0, 0]). This
lemma is true by Theorem 11. ◀

4 Lower bounds for #pl-3R-VC and #pl-3R-Matching under #ETH

We build reductions from pl-Holant({=2, =3, ̸=2, OR3}) which has the 2Ω(
√

N) time lower
bound. Gadget constructions and holographic transformations preserve the 2Ω(

√
N) time

lower bound, but their ability is limited in building reductions. We need a more potent
method: interpolation.

Unfortunately, both polynomial interpolation and block interpolation can not build
a reduction preserving the 2Ω(

√
N) time lower bound. The reduction built by polynomial

interpolation costs polynomial time but generates new graphs with O(N2) size. The reduction
built by block interpolation generates new graphs with O(N) size but costs 2o(N) time. In
the process of block interpolation, the proof of Theorem 13 as an example, we can choose
d = O(

√
N log N) such that the time costs is 2o(

√
N), but the generated graphs have

O(N
√

N log N) size.
The type of interpolations that preserves the 2Ω(

√
N) time lower bound has yet to be

developed. We struggled for it but failed. We step back and consider building reductions
that cost 2o(

√
N) time and generate graphs with O(N log N) vertices.

4.1 Polynomial interpolation via log size gadgets
In the traditional application of interpolation, for any integer d > 0, people build a series
of O(d) size gadgets to realize a sequence of d pairwise linearly independent functions and
generate new instances with size O(dN). Inspired by the proof of Theorem 1.3 in [8], we
innovatively put up the way to construct a sequence of d pairwise linearly independent
functions by gadgets only with size O(log d).
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▶ Lemma 14. Let A, B ∈ C2×2 be two non-singular matrices.
Given a nonzero column vector s ∈ C2, the sequence of column vectors {Mi · · · M1s}i≥1

with Mi ∈ {A, B} is pairwise linearly independent if the following conditions are satisfied.
(1) det([As Bs]) ̸= 0, and
(2) for any pair column vectors v1, v2 ∈ {Mi · · · M1s}i≥1 (v1, v2 are not necessarily distinct),

det([Av1 Bv2]) ̸= 0.

Proof. We prove by induction on the positive integer i.
1. i = 1. As and Bs are linearly independent according to the condition (1).
2. Inductively we assume the lemma is proven for i = l − 1 for any l ≥ 2, and now assume

i = l. Let v1, v2 be two distinct column vectors in {Ml−1 × · · · × M1s}. v1, v2 are linearly
independent. Av1, Av2 are linearly independent, otherwise, |A| = 0 or v1, v2 are linearly
dependent, which contradicts to the assumption. So the sequence {AMl−1 · · · M1s} is
pairwise linearly independent. Similarly, the sequence {B × Ml−1 · · · M1s} is pairwise
linearly independent.
Av1, Bv2 for any pair column vectors in {Ml−1 × · · · × M1s} are linearly independent
according to the condition (2). So The sequence {AMl−1 · · · M1s, BMl−1 · · · M1s} is
pairwise linearly independent.

This lemma is true. ◀

If we have three gadgets with signatures A, B, s which satisfy the conditions in Lemma 14,
then, for any d ∈ N, we can construct a sequence of d gadgets with unary signatures which
are pairwise linearly independent. Besides, each gadget has O(log d) size.

▶ Lemma 15. Let F be a set of complex-valued Boolean functions. Suppose the following
gadgets can be realized by the F .
(1) two non-singular recursive gadgets with binary signature A, B ∈ C2×2 and
(2) a unary start gadget with signature s written as a column vector,
which satisfy det([As Bs]) ̸= 0 and det([Av1 Bv2]) ̸=2 0 for any unary signatures v1, v2 ∈
{Mi · · · M1s}i≥0 with Mi ∈ {A, B}.

Then for a finite sequence of unary functions S = {[x1, y1], · · · , [xm, ym]} with xj , yj ∈ C

for any j ∈ [m], Holant(F ∪ S) ≤p Holant(F). Furthermore, Holant(F) has no 2o(
√

N
log N )

time algorithm if Holant(F ∪ S) has no 2o(
√

n) time algorithm, where N, n denote the number
of vertices of the input.

The result also holds for planar Holant(F) if the gadgets are planar.

Proof. Let G(V ∪ S, E) with n vertices be an instance of Holant(F ∪ S), where S denotes
the set of vertices each assigned a unary function in S. Let Sj ⊆ S denotes the set of vertices
assigned [xj , yj ] where j ∈ [m]. We label each assignment to E a type t = (t1, t2, ..., tm)
where tj ∈ {0, 1, 2, ..., |Sj |} denotes the number of vertices v ∈ Sj whose incident edge is
assigned 0. Then Holant(G) =

∑
t ρt

∏
j∈[m](xj)tj (yj)|Sj |−tj where ρt denotes the sum of

the products of the signatures in V under the assignments with type t.
If we obtain the values of all coefficients ρt, then we can compute Holant(G). According

to Lemma 14, for any integer n > 0, we can simulate a sequence of n pairwise linearly
independent unary gadgets {[w1, z1], [w2, z2], ..., [wn, zn]} by the signature set F . Each
gadget has O(log n) size.

Define l = (l1, l2, ..., lm) where lj ∈ N for j ∈ [m]. We construct a graph Gl by replacing
each vertex in Sj with a vertex assigned the signature [wlj , zlj ]. The value of Gl is

Holant(Gl) =
∑

t

ρt

∏
j∈[m]

(wlj )tj (zlj )|Sj |−tj (1)
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By taking l ∈ [|S1| + 1] × [|S2| + 1] × · · · × [|Sm| + 1], we construct a system of (|S1| +
1) × (|S2| + 1) × · · · × (|Sm| + 1) ≤ (n + 1)m equations of the form as (1):

Holant(G(1,1,...,1))
Holant(G(1,1,...,2))

...
Holant(G(|S1|+1,|S2|+1,...,|Sm|+1))

 = M ·


ρ(0,0,...,0)
ρ(0,0,...,1)

...
ρ(|S1|,|S2|,...,|Sm|)


where the matrix M = M1 ⊗ M2 ⊗ · · · ⊗ Mm with

Mj =


z

|Sj |
1 w1z

|Sj |−1
1 · · · w

|Sj |
1

z
|Sj |
2 w2z

|Sj |−1
2 · · · w

|Sj |
2

...
...

. . .
...

z
|Sj |
|Sj |+1 w|Sj |+1z

|Sj |−1
|Sj |+1 · · · w

|Sj |
|Sj |+1


for j ∈ [m]. Since {[w1, z1], ..., [w|Sj |+1, z|Sj |+1]} is pairwise linearly independent, det(Mj) ̸= 0
for any j ∈ [m]. So the matrix M is invertible.

We can compute all ρt by solving the system after obtaining the values of Holant(Gl)
by invoking the oracle of Holant(F). Let T (N) be the time cost of the oracle, where N is
the vertices number of the input graph. In the above reduction, we build at most (n + 1)m

new graphs in (n + 1)mpoly(n) time, and each new graph has O(n log(n + 1)) vertices. The
reduction time is (n + 1)mpoly(n) + (n + 1)mT (c · n log(n + 1)) + poly((n + 1)m) where c is
some constant. Since m is also a constant, the reduction is a polynomial time reduction. So
Holant(F ∪ S) ≤p Holant(F).

Suppose Holant(F) has 2o(
√

N
log N ) time algorithm, that is, T (N) = 2ε(

√
N

log N ) for any
ε > 0. Then we can solve Holant(G) in

(n + 1)mpoly(n) + (n + 1)m2
ε(
√

cn log(n+1)
log c+log n+log log(n+1) )

+ poly((n + 1)m) ≤ 2ε′√n (2)

for any ε′ > 0, by choose small enough ε. Then we obtain the 2o(
√

n) algorithm for the
problem Holant(F ∪ S). It is a contradiction to the assumption that Holant(F ∪ S) has no
2o(

√
n) time algorithm. ◀

Using block interpolation via log size gadget does not improve the lower bound.

4.2 Lower bound for planar #3R-VC
We reduce pl-Holant({=2, =3, ̸=2, OR3}) to pl-Holant(=3 |OR2). We use the problem pl-
Holant(=3 |{OR2, [−1, 1]}) as an intermediate.

▶ Lemma 16. If #ETH holds, then there exists some constant ε > 0 such that planar
Holant(=3 |{OR2, [−1, 1]}) has no O(2ε

√
N ) time algorithm, where N denotes the number of

vertices of the instance.

Proof. We prove that pl-Holant({=2, =3, ̸=2, OR3}) ≤p pl-Holant(=3 |{OR2, [−1, 1]}) by
gadget constructions. For any instance G of pl-Holant({=2, =3, ̸=2, OR3}), we add a vertex
assigned the function =2 to divide each edge, and replace every occurrence of ̸=2 or OR3
by the corresponding {=3}|{OR2, =2, [−1, 1]}-gates shown in Figure 4. We generate a new
graph G′ which is an instance of pl-Holant({=2, =3}|{OR2, [−1, 1], =2}).

STACS 2024
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(a) Realizing ̸=2. (b) Realizing OR3.

Figure 4 The constructions of some gadgets with signature ̸=2 and OR3.

(a) Realizing (=2) in the
left.

(b) Realizing [1, 0, −1]. (c) Realizing (=2) in the right.

Figure 5 The constructions of gadgets with signature (=2).

Then we replace each the occurrence of =2 in the left of G′ by a {=3}|{=2}-gate shown
in Figure 5-(a) and each occurrence of =2 in the right of G′ by the {=3}|{OR2, [−1, 1]}-gate
shown in Figure 5-(c). The finial graph G′′ is an instance of Holant(=3 |{OR2, [−1, 1]}) .

So Holant({=2, =3, ̸=2, OR3}) ≤p Holant(=3 |{OR2, [−1, 1]}) with preserving planarity.
The reductions cost polynomial time, and G′′ has cN vertices for some constant c, where N

denotes the number of vertices in G. Suppose Holant(G′′) can be solved in O(2ε
√

cN ) time
for any ε > 0, then Holant(G) can be solved in poly(N) + O(2ε

√
cN ) = O(2ε′√N ) time for

any ε′ > 0. It is a contradiction to Lemma 9. ◀

Next we interpolate the function [−1, 1] in the context of planar Holant(=3 |OR2).

▶ Theorem 17. If #ETH holds, then there exists some constant ε > 0 such that planar
Holant(=3 |OR2) has no O(2ε

√
N

log N ) time algorithm, where N denotes the number of vertices
of the instance.

Proof. In the context of planar Holant(=3 |OR2), we build two recursive gadgets with

signatures A =
(

1 1
1 2

)
, B =

(
1 4
2 5

)
shown in Figure 6, and a start gadget with signature

s = [1, 1]T shown in Figure 2. det(A), det(B) ̸= 0 and det([As Bs]) ̸= 0.
Consider the sequence {Mi · · · M1s}i≥1 where Mi ∈ {A, B}. The elements in A, B, s are

positive, so any unary signature in this sequence is written as [z, w] with z, w > 0 and can be
normalized as [x, 1] with 0 < x ≤ 1. Let v1 = [x1, 1]T , v2 = [x2, 1]T be two unary functions
in the sequence. If det([Av1 Bv2]) = 0 then x1x2 + x1 = 3, that is a contradiction since
0 < x1, x2 ≤ 1. So, the conditions in Lemma 15 are satisfied. According to Lemma 15 and
Lemma 16, this theorem is true. ◀
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(a) With the signature [1, 1, 2].

(b) With the signature
(1 4

2 5

)
.

Figure 6 The recursive gadgets to simulate a sequence of unary functions of the form {[xi, 1]}i≥0

in the context of planar Holant(=3 |OR2).

4.3 Lower bound for planar #3R-Matching

We reduce from planar Holant(=3 |{OR2, [−1, 1]}). We firstly do a holographic transform-

ation defined by Q =
(

3√4
2 −

3√4
2

− 3
√

4 0

)
. Q⊗2(0, 1, 1, 1)T = ( 3√4)2

4 (−1, 2, 2, 0)T , Q(−1, 1)T =

3
√

4(−1, 1)T , and (=3)(Q−1)⊗3 = [4, 2, 1, 1]. Then pl-Holant(=3 |{OR2, [−1, 1]}) is reduced
to pl-Holant([4, 2, 1, 1]|{[−1, 2, 0], [−1, 1]}). The function [4, 2, 1, 1] can be realized by a
{[1, 1, 0, 0]}-gate showed in Figure 3 and the function [−1, 2, 0] can be realized by the function
[1, 1, 0, 0] connected with a unary function [2, −3], so pl-Holant([4, 2, 1, 1]|{[−1, 2, 0], [−1, 1]})
can be reduce to pl-Holant({[1, 1, 0, 0], [2, −3], [−1, 1]}) with preserving the 2Ω(

√
N) time lower

bound.

▶ Lemma 18. If #ETH holds, then there exists some constant ε > 0 such that planar
Holant({[1, 1, 0, 0], [2, −3], [−1, 1]}) has no O(2ε

√
N ) time algorithm, where N is the number

of vertices in the input.

Then we interpolate the two unary functions in the context of planar Holant({[1, 1, 0, 0]}).

▶ Theorem 19. If #ETH holds, then there exists some constant ε > 0 such that planar
Holant([1, 1, 0, 0]) has no O(2ε

√
N

log N ) time algorithm, where N is the number of vertices in
the input.

Proof. In the context of planar Holant([1, 1, 0, 0]), we construct two recursive gadgets A =(
2 1
1 0

)
, B =

(
6 3
3 2

)
and a start gadget s = [1, 1]T , showed in Figure 7. det(A), det(B) ̸= 0

and det([As Bs]) ̸= 0.
Consider the sequence {Mi · · · M1s}i≥1 where Mi ∈ {A, B}. Each unary function in the

sequence can be normalized to [x, 1] with x > 0. Let v1 = [x1, 1]T , v2 = [x2, 1]T be two
unary signatures in the sequence. If det([Av1 Bv2]) = 0 then x1 + 3x2 + 2 = 0, which is a
contradiction. So this lemma is true by Lemma 15 and Lemma 18. ◀
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(a) Start gadget with signa-
ture [1, 1].

(b) Recursive gadget with signa-

ture
(2 1

1 0

)
.

(c) Recursive gadget with signa-

ture
(6 3

3 2

)
where [2, 1, 0] is real-

ized by (b).

Figure 7 The gadgets to simulate a sequence of unary functions of the form {[xi, 1]}i≥0 in the
context of planar Holant({[1, 1, 0, 0]}).

5 Lower bounds for #pl-3R-VC and #pl-3R-Matching under rETH

It can be observed that the use of interpolation weakens the lower bounds with the
√

log N

factor in the exponent. In this section, based on a stronger assumption rETH, we build
polynomial reductions from Unique 3-SAT. We use the character that, for any instance G of
Unique 3-SAT, Holant(G) is either 0 or 1. In these reductions, we do not require the exact
values of the generated instances; we only need to decide whether the values are 0 or not.
Therefore, we can avoid the use of interpolation.

Unique 3-SAT can also be treated as a sub-problem of #3-SAT that is equivalent
to Holant({=1, =2, ...} ∪ {̸=2, OR1, OR2, OR3}), where OR1 = [0, 1]. According to the
reductions in [23], Holant({=1, =2, ...} ∪ {̸=2, OR1, OR2, OR3}) can be reduced to pl-
Holant({=2, =3, ̸=2, OR3}) in polynomial time by equivalent gadget constructions. That is,
given a 3-CNF formula ϕ with N variables and M clauses, we can transform ϕ to a planar
graph Gϕ with O((M + N)2) = O(M2) vertices in poly((M + N)2) = poly(M2) time. And
Gϕ is an instance of pl-Holant({=2, =3, ̸=2, OR3}). Suppose ϕ has at most one satisfying
assignment, that is, #SAT(ϕ) = Holant(Gϕ) is either 0 or 1.

In the following, we consider transforming Gϕ to some instance of #pl-3R-VC or #pl-3R-
Matching.

5.1 Lower bound for planar #3R-VC

According to the proof of Lemma 16, we transfer Gϕ to a graph G which is an instance of
pl-Holant(=3 |{OR2, [−1, 1]}). G has O(M2) vertices and Holant(G) = Holant(Gϕ) is either
0 or 1.

Let G′ be a graph constructed from G by replacing each occurrence of [1, −1] by a gadget
with signature [1, 1], showed in Figure 2. Since 1 ≡ −1 mod 2, (Holant(G′) mod 2) =
Holant(G). G′ is an instance of planar Holant(=3 |OR2). Suppose G has cM2 vertices for
some constant c. If we can compute Holant(G′) in 2o(

√
cM2) time, i.e., in 2ε

√
cM2 time for

any ε > 0, then we can compute #SAT(ϕ) by the above in 2ε
√

cM2 + poly(M2) ≤ 2ε′M time
for any ε′ > 0. It contradicts Lemma 8. So we can obtain the following lemma.

▶ Theorem 20. If rETH holds, then there exists some constant ε > 0 such that planar
Holant(=3 |OR2), i.e., counting the vertex covers of a given planar 3-regular graph, has no
O(2ε

√
N ) time randomized algorithm. N denotes the number of vertices of the input graph.
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5.2 Lower bound for planar #3R-Matching

We obtain the graph G from Gϕ as in Section 5.1. Then we do a holographic transformation

defined by Q =
(

3√4
2 −

3√4
2

− 3
√

4 0

)
. Because (=3)(Q−1)⊗3 = [4, 2, 1, 1], Q⊗2(0, 1, 1, 1)T =

( 3
√

4)−1(−1, 2, 2, 0)T or Q(−1, 1)T = 3
√

4(−1, 1)T The generated instance G1 is an instance of
Holant([4, 2, 1, 1]|{( 3

√
4)−1[−1, 2, 0], 3

√
4[−1, 1]}). Holant(G1) = Holant(G).

It is worth noting that the non-zero multiple factor to a function can not be ignored when
considering the value of an individual instance.

We replace each [4, 2, 1, 1] by the {[1, 1, 0, 0]}-gate showed in Figure 3, replace each
3
√

4[−1, 1] by [1, −1], and replace each ( 3
√

4)−1[−1, 2, 0] by [1, −2, 0]. The new graph, denoted
by G2, is an instance of planar Holant({[1, 1, 0, 0], [1, −1], [1, −2, 0]}). For some fixed integers
c, d, Holant(G1) = (−1)c( 3

√
4)d · Holant(G2). We further replace each occurrence of [1, −2, 0]

by the gadget showed in Figure 8-(a). This defines G3 with Holant(G2) = Holant(G3). G3
is an instance of planar Holant({[1, 1, 0, 0], [1, −1], [3, −2]}).

=!

=!

=" ="

=! [1,1]

[1,0, −1]

[1,0, −1]

[1,1,0,0] [1,1,0,0]

[1,1,0,0] [1,1,0,0] [3, −2]

[1, −1]

[1,1,0,0]

[1,1,0,0]

[1,1,0,0]

[1,1,0,0]

(a) Realizing [1, −2, 0].

=!

=!

=" ="

=! [1,1]

[1,0, −1]

[1,0, −1]

[1,1,0,0] [1,1,0,0]

[1,1,0,0] [1,1,0,0] [−2,3]

[1, −1]

[1,1,0,0]

[1,1,0,0]

[1,1,0,0]

[1,1,0,0]

(b) Realizing [3, 1].

=!

=!

=" ="

=! [1,1]

[1,0, −1]

[1,0, −1]

[1,1,0,0] [1,1,0,0]

[1,1,0,0] [1,1,0,0] [−2,3]

[1, −1]

[1,1,0,0]

[1,1,0,0]

[1,1,0,0]

[1,1,0,0]

(c) Realizing [4, 2].

Figure 8 The constructions of some gadgets.

We replace each occurrence of [1, −1] and each occurrence of [3, −2] by the gadget with
signature [4, 2] and the gadget with signature [3, 1], respectively. Such gadgets are showed in
Figure 8. This defines a new instance G′′ of planar Holant([1, 1, 0, 0]). Because 1 ≡ 4 mod 3,
2 ≡ −1 mod 3 and 1 ≡ −2 mod 3, so Holant(G′′) = Holant(G3) mod 3.

Since (−1)c( 3
√

4)d·Holant(G2) = Holant(G) is either 0 or 1, Holant(G) = 0 if ((−1)c( 3
√

4)d·
Holant(G3) mod 3) = 0, and Holant(G) = 1 if ((−1)c( 3

√
4)d · Holant(G3) mod 3) ̸= 0.

If Holant(G′′) can be computed in O(2ε(
√

cM2)) time for any ε > 0, then #SAT(ϕ) can
be solved in O(2ε′M ) time for any constant ε′ > 0. It is a contradiction to Lemma 8.

▶ Theorem 21. If rETH holds, then there exists some constant ε > 0 such that planar
Holant([1, 1, 0, 0]), i.e., counting all matchings of any given planar 3-regular graph, has no
O(2ε

√
N ) time randomized algorithm. N denotes the number of vertices in the input graph.
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6 Fine-grained dichotomy for symmetric Holant*

We develop a fine-grained dichotomy theorem for a class of counting problems: symmetric
Holant∗, from #3R-VC and #3R-Matching. A function is degenerate if it can be written as
the tensor power of some unary functions. A Holant problem defined by a set of degenerate
functions is trivially computed in polynomial time, so we only consider non-degenerate
functions.

▶ Theorem 22. Let F be a set of non-degenerate symmetric Boolean functions. Holant∗(F)
is computable in polynomial time if F satisfies one of the following cases.
1. Every function in F is of arity no more than two.
2. There exist two constants a and b, which are not both zero and depending only on F , such

that for all functions [x0, x1, ..., xn] ∈ F one of the two conditions is satisfied: (1) for
every k = 0, 1, ..., n − 2, there is axk + bxk+1 − axk+2 = 0; (2) n = 2 and the function
[x0, x1, x2] is of the form [2aλ, bλ, −2aλ] for some constant λ ∈ C.

3. For every function [x0, x1, ..., xn] ∈ F one of the two conditions is satisfied: (1) for every
k = 0, 1, ..., n − 2, there is xk + xk+2 = 0; (2) n = 2 and the function [x0, x1, x2] is of the
form [λ, 0, λ] for some constant λ ∈ C.

Otherwise, there exists some constant ε > 0 such that it has no 2εN time deterministic
algorithm under #ETH. N denotes the number of vertices in the input graph.

For planar Holant∗(F) which does not satisfy the tractable conditions, there also exists
some constant ε′ > 0 such that it has no 2ε′√N time deterministic algorithm under #ETH.
Besides, it has no 2ε′√N time randomized algorithm under rETH.

Proof. We follow the original proofs in [4] to develop a fine-grained dichotomy theorem for
the class symmetric Holant∗. Given the problem Holant∗(F), the problem has a polynomial
time algorithm [4] if F satisfies the tractable conditions; otherwise, Cai et al. used gadget
constructions and holographic transformations to build the polynomial reductions from
Holant∗(=3 |OR2) or Holant∗([1, 0, 0, 1]) to Holant∗(F). Since gadget constructions and
holographic transformations all preserve the 2Ω(N) or 2Ω(

√
N) time lower bound. Besides,

these reductions only use planar gadgets.
So the problem Holant∗(F), with F violating the tractable conditions, has the 2Ω(N) time

lower bound under #ETH. Moreover, it has the 2Ω(
√

N) time lower bound if the inputs are
restricted to planar graphs. ◀

7 Conclusion

Based on #ETH, we prove the tight 2Ω(N) time lower bounds for Holant(=3 |OR2) and
Holant([1, 0, 0, 1]) by Theorem 11 and Theorem 13. And we prove the tight 2Ω(

√
N) time lower

bounds for pl-Holant∗(=3 |OR2) and pl-Holant∗([1, 0, 0, 1]) under #ETH. We also present a
fine-grained dichotomy theorem for a class of counting problems, symmetric Holant∗.

One of the further works is the development of the fine-grained dichotomy theorem under
#ETH. The development is challenged when the inputs of counting problems are restricted
to planar graphs since we only prove the nearly tight 2Ω(

√
N

log N ) time lower bound for pl-
Holant(=3 |OR2) and pl-Holant([1, 0, 0, 1]). The problem that whether pl-Holant(=3 |OR2)
or pl-Holant([1, 0, 0, 1]) has 2o(

√
N) time algorithm or not, under #ETH, is still open. However,

this paper still presents a novelty application of polynomial interpolation, which can be
popularized to prove the nearly tight 2Ω(

√
N

log N ) time lower bound for more generalized
planar counting problems.
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Based on rETH, we prove the tight 2Ω(
√

N) time lower bound for #pl-3R-VC and #pl-
3R-Matching. The reductions under rETH need to pay close attention to the exact values of
the generated instances, so their generality is limited. However, these reductions still provide
a method that avoids interpolation for developing the tight lower bound for planar counting
problems.
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Abstract
We study the memory requirements of Nash equilibria in turn-based multiplayer games on possibly
infinite graphs with reachability, shortest path and Büchi objectives.

We present constructions for finite-memory Nash equilibria in these games that apply to arbitrary
game graphs, bypassing the finite-arena requirement that is central in existing approaches. We
show that, for these three types of games, from any Nash equilibrium, we can derive another Nash
equilibrium where all strategies are finite-memory such that the same players accomplish their
objective, without increasing their cost for shortest path games.

Furthermore, we provide memory bounds that are independent of the size of the game graph for
reachability and shortest path games. These bounds depend only on the number of players.

To the best of our knowledge, we provide the first results pertaining to finite-memory constrained
Nash equilibria in infinite arenas and the first arena-independent memory bounds for Nash equilibria.
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1 Introduction

Games on graphs. Games on graphs are a prevalent framework to model reactive systems,
i.e., systems that continuously interact with their environment. Typically, this interaction
is modelled as an infinite-duration two-player (turn-based) zero-sum game played on an
arena (i.e., a game graph) where a system player and an environment player are adversaries
competing for opposing goals (e.g., [18, 1, 14]), which can be modelled, e.g., by numerical
costs for the system player. Determining whether the system can enforce some specification
boils down to computing how low of a cost the system player can guarantee. We then
construct an optimal strategy for the system which can be seen as a formal blueprint for a
controller of the system to be implemented [24, 1]. For implementation purposes, strategies
should have a finite representation. We consider finite-memory strategies (e.g., [3]) which are
strategies defined by Mealy machines, i.e., automata with outputs on their edges.

Nash equilibria. In some applications, this purely adversarial model may be too restrictive.
This is the case in settings with several agents, each with their own objective, who are not
necessarily opposed to one another. Such situations are modelled by multiplayer non-zero-sum
games on graphs. The counterpart of optimal strategies in this setting is typically a notion
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of equilibrium. We focus on Nash equilibria [22] (NEs) in the following; an NE is a tuple of
strategies, one per player, such that no player has an incentive to unilaterally deviate from
their strategy.

Reachability games. We focus on variants of reachability games on possibly infinite arenas.
In a reachability game, the goal of each player is given by a set of target vertices to be visited.
We also study shortest path games, where players aim to visit their targets as soon as possible
(where time is modelled by non-negative edge weights), and Büchi games, where players aim
to visit their targets infinitely often. NEs are guaranteed to exist for these games: see [7, 12]
for reachability games and for shortest path games in finite arenas, the full version of this
work [20] for shortest path games in general and [25] for Büchi games.

Usually, finite-memory NEs for these games are given by strategies whose size depends
on the arena (e.g., [7, 26, 6]). These constructions consequently do not generalise to infinite
arenas. The main idea of these approaches is as follows. First, one shows that there exist
plays resulting from NEs with a finite representation, e.g., a lasso. This play is then encoded
in a Mealy machine. If some player is inconsistent with the play, the other players switch
to a (finite-memory) punishing strategy to sabotage the deviating player; this enforces the
stability of the equilibrium. This punishing mechanism is inspired by the proof of the folk
theorem for NEs in repeated games [15, 23].

Contributions. Our contributions are twofold. First, we present constructions for finite-
memory NEs for reachability, shortest path and Büchi games that apply to arbitrary arenas,
bypassing the finite-arena requirement that is central in existing approaches. More precisely,
for these three types of games, we show that from any NE, we can derive another NE where
all strategies are finite-memory and such that the same players accomplish their objective,
without increasing their cost for shortest path games. In other words, our constructions are
general and can be used to match or improve any NE cost profile.

Second, for reachability and shortest-path games, we provide memory bounds that are
independent of the size of the arena which are quadratic in the number of players.

Our key observation is that it is not necessary to fully implement the punishment
mechanism: some deviations do not warrant switching to punishing strategies. This allows
us to encode only part of the information in the memory instead of an entire play.

Related work. We refer to the survey [9] for an extensive bibliography on games played on
finite graphs, to [8] for a survey centred around reachability games and to [14] as a general
reference on games on graphs. We discuss three research direction related to this work.

The first direction is related to computational problems for NEs. In the settings we
consider, NEs are guaranteed to exist. However, NEs where no player satisfy their objective
can coexist with NEs where all players satisfy their objective [25, 26]. A classical problem is
to decide if there exists a constrained NE, i.e., such that certain players satisfy their objective
in the qualitative case or such that the cost incurred by players is bounded from above in a
quantitative case (e.g., [10, 2]). Deciding the existence of a constrained NE is NP-complete
for reachability and shortest path games [6] and is in P for Büchi objectives [26].

Second, the construction of our finite-memory NEs rely on characterisations of plays res-
ulting from NEs. Their purpose is to ensure that the punishment mechanism described above
can be used to guarantee the stability of an equilibrium. In general, these characterisations
can be useful from an algorithmic perspective; deciding the existence of a constrained NE
boils down to finding a play that satisfies the characterisation. Characterisations appear in
the literature for NEs [26, 27, 2], but also for other types of equilibria, e.g., subgame perfect
equilibria [5] and secure equilibria [10].
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Finally, there exists a body of work dedicated to better understanding the complexity of
optimal strategies in zero-sum games. We mention [17] for memoryless strategies, and [3]
and [4] for finite-memory strategies in finite and infinite arenas respectively. In finite arenas,
for the finite-memory case, a key notion is arena-independent finite-memory strategies, i.e.,
strategies based on a memory structure that is sufficient to win in all arenas whenever
possible. In this work, the finite-memory strategies we propose actually depend on the arena;
only their size does not. We also mention [19]: in games on finite arenas with objectives from
a given class, finite-memory NEs exist if certain conditions on the corresponding zero-sum
games hold.

Outline. Due to space constraints, we only provide an overview of our work: technical
details can be found in the full paper [20]. This work is structured as follows. In Sect. 2,
we summarise prerequisite definitions. We establish the existence of memoryless punishing
strategies by studying zero-sum games in Sect. 3. Characterisations of NEs are provided in
Sect. 4. We prove our main results on finite-memory NEs in reachability and shortest path
games in Sect. 5. Finally, Sect. 6 is dedicated to the corresponding result for Büchi games.

2 Preliminaries

Notation. We write N, R for the sets of natural and real numbers respectively, and let
R = R ∪ {+∞, −∞} and N = N ∪ {+∞}. For any n ∈ N, n ≥ 1, we let JnK = {1, . . . , n}.

Games. Let (V, E) be a directed graph where V is a (possibly infinite) set of vertices and
E ⊆ V × V is an edge relation. For any v ∈ V , we write SuccE(v) = {v′ ∈ V | (v, v′) ∈ E}
for the set of successor vertices of v. An n-player arena is a tuple A = ((Vi)i∈JnK, E), where
(Vi)i∈JnK is a partition of V . We assume that there are no deadlocks in the arenas we consider,
i.e., for all v ∈ V , SuccE(v) is not empty. We write Pi for player i.

A play starts in an initial vertex and proceeds as follows. At each round of the game,
the player controlling the current vertex selects a successor of this vertex and the current
vertex is updated accordingly. The play continues in this manner infinitely. Formally, a play
of A is an infinite sequence v0v1 . . . ∈ V ω such that (vℓ, vℓ+1) ∈ E for all ℓ ∈ N. For a play
π = v0v1 . . . and ℓ ∈ N, we let π≥ℓ = vℓvℓ+1 . . . denote the suffix of π from position ℓ and
π≤ℓ = v0 . . . vℓ denote the prefix of π up to position ℓ. A history is any finite non-empty prefix
of a play. We write Plays(A) and Hist(A) for the set of plays and histories of A respectively.
For i ∈ JnK, we let Histi(A) = Hist(A) ∩ V ∗Vi. For any history h = v0 . . . vr, we let first(h)
and last(h) respectively denote v0 and vr. For any play π, first(π) is defined similarly.

We formalise the goal of a player in two ways. In the qualitative case, we describe the
goal of a player by a set of plays, called an objective. We say that a play π satisfies an
objective Ω if π ∈ Ω. For quantitative specifications, we assign to each play a quantity using
a cost function costi : Plays(A) → R that Pi intends to minimise. Any goal expressed by an
objective Ω can be encoded using a cost function costi which assigns 0 to plays in Ω and 1
to others; aiming to minimise this cost is equivalent to aiming to satisfy the objective. For
this reason, we present further definitions using cost functions, and explicitly mention when
notions are specific to objectives.

A game is an arena augmented with the goals of each player. Formally, a game is a tuple
G = (A, (costi)i∈JnK) where A is an arena and, for all i ∈ JnK, costi is the cost function of Pi.
The cost profile of a play π is (costi(π))i∈JnK. Given two plays π and π′, we say that the cost
profile of π is preferable to that of π′ if costi(π) ≤ costi(π′) for all i ∈ JnK.
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Objectives and costs. We consider a qualitative and quantitative formulation for the goal
of reaching a target, and the goal of infinitely often reaching a target. Let T ⊆ V denote a
set of target vertices. We often refer to the set T as a target.

We first consider the reachability objective, which expresses the goal of reaching T .
Formally, the reachability objective (for T ) Reach(T ) is defined by the set {v0v1v2 . . . ∈
Plays(A) | ∃ ℓ ∈ N, vℓ ∈ T}. The complement of the reachability objective Safe(T ) =
Plays(A) \ Reach(T ), which expresses the goal of avoiding T , is called the safety objective.

Second, we introduce a cost function formalising the goal of reaching a target as soon as
possible. In this context, we assign (non-negative) weights to edges via a weight function
w : E → N, which model, e.g., the time taken when traversing an edge. The weight function is
extended to histories as follows; for h = v0 . . . vr ∈ Hist(A), we let w(h) =

∑r−1
ℓ=0 w((vℓ, vℓ+1)).

We define the truncated sum cost function (for T and w), for all plays π = v0v1 . . ., by
TST

w(π) = w(π≤r) if r = min{ℓ ∈ N | vℓ ∈ T} exists and TST
w(π) = +∞ otherwise.

Finally, we define the Büchi objective, expressing the goal of reaching a target infinitely
often. Formally, the Büchi objective (for T ) Büchi(T ) is defined by the set {v0v1v2 . . . ∈
Plays(A) | ∀ ℓ ∈ N, ∃ ℓ′ ≥ ℓ, vℓ′ ∈ T}. The complement of a Büchi objective is a co-Büchi
objective: the co-Büchi objective (for T ), which expresses the goal of visiting T finitely often,
is defined as coBüchi(T ) = Plays(A) \ Büchi(T ).

We refer to games where all players have a reachability objective (resp. a truncated sum
cost function, a Büchi objective) as reachability (resp. shortest path, Büchi) games.

Let T1, . . . , Tn ⊆ V be targets for each player and π = v0v1 . . . ∈ Plays(A). For reachability
and shortest path games, we introduce the notation VisPlT1,...,Tn(π) = {i ∈ JnK | π ∈
Reach(Ti)} as the set of players whose targets are visited in π and VisPosT1,...,Tn

(π) =
{min{ℓ ∈ N | vℓ ∈ Ti} | i ∈ VisPl(π)} as the set of earliest positions at which targets are
visited along π. For Büchi games, we define InfPlT1,...,Tn

(π) = {i ∈ JnK | π ∈ Büchi(Ti)} as
the set of players whose target is visited infinitely often in π. When T1, . . . , Tn are clear
from the context, we omit them.

Strategies. Strategies describe the decisions of players during a play. These choices may
depend on the past, and not only the current vertex of the play. Formally, a strategy of
Pi in an arena A is a function σi : Histi(A) → V such that for all histories h ∈ Histi(A),
(last(h), σi(h)) ∈ E. A strategy profile is a tuple σ = (σi)i∈JnK, where σi is a strategy of Pi

for all i ∈ JnK. To highlight the role of Pi, we sometimes write σ = (σi, σ−i), where σ−i

denotes the strategy profile of the players other than Pi.
A play π = v0v1v2 . . . is consistent with a strategy σi of Pi if for all ℓ ∈ N, vℓ ∈ Vi

implies vℓ+1 = σi(π≤ℓ). A play is consistent with a strategy profile if it is consistent with all
strategies of the profile. Given an initial vertex v0 and a strategy profile σ, there is a unique
play Out(σ, v0) from v0 that is consistent with σ, called the outcome of σ from v0.

We identify two classes of strategies of interest in this work. A strategy σi is memoryless
if the moves it prescribes depend only on the current vertex, i.e., if for all h, h′ ∈ Histi(A), if
last(h) = last(h′), then σi(h) = σi(h′). We view memoryless strategies as functions Vi → V .

A strategy is finite-memory if it can be encoded by a Mealy machine, i.e., a finite
automaton with outputs. A Mealy machine (for Pi) is a tuple M = (M, minit, up, nxti) where
M is a finite set of memory states, minit is an initial memory state, up : M × V → M is a
memory update function and nxti : M × Vi → V is a next-move function.

To describe the strategy induced by a Mealy machine, we first define the iterated update
function ûp : V ∗ → M by induction. We write ε for the empty word. We let ûp(ε) = minit
and for all wv ∈ V ∗, ûp(wv) = up(ûp(w), v). The strategy σM

i induced by M is defined, for
all histories h = h′v ∈ Histi(A), by σM

i (h) = nxti(ûp(h′), v).
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v0 t12 v1

v2

t13

(a) A weighted arena with several NEs.

v0 v∞

v1 v2 v3 . . .t

(b) An infinite arena where there is no P2 optimal strategy
from v∞ in the zero-sum shortest path game with T = {t}.

Figure 1 Two weighted arenas. Circles and squares respectively denote P1 and P2 vertices. Edge
labels denote their weight and unlabelled edges have a weight of 1.

We say that a finite-memory strategy σi has memory size b ∈ N if there is some Mealy
machine (M, minit, up, nxti) encoding σi with |M | = b and b is the smallest such number.
▶ Remark 1. Some authors define the updates of Mealy machines using edges rather than
vertices. Any vertex-update Mealy machine can directly be seen as an edge-update Mealy ma-
chine. The converse is not true. In particular, a vertex-update Mealy machine representation
of a strategy can require a larger size than an equivalent edge-update Mealy machine.

Nash equilibria. Let G = (A, (costi)i∈JnK) be a game and v0 be an initial vertex. Given a
strategy profile σ = (σi)i∈JnK, we say that a strategy τi of Pi is a profitable deviation (with
respect to σ from v0) if costi(Out((τi, σ−i), v0)) < costi(Out(σ, v0)). A Nash equilibrium (NE)
from v0 is a strategy profile such that no player has a profitable deviation. Equivalently,
σ is an NE from v0 if, for all i ∈ JnK and all plays π consistent with σ−i starting in v0,
costi(π) ≥ costi(Out(σ, v0)). In general, NEs with incomparable cost profiles may coexist.

▶ Example 2. Consider the shortest path game played on the arena depicted in Fig. 1a where
T1 = {t12, t1} and T2 = {t12}. The memoryless strategy profile (σ1, σ2) with σ1(v0) = t12
and σ2(v1) = v2 is an NE from v0 with cost profile (3, 3). Another NE from v0 would be the
memoryless strategy profile (σ′

1, σ′
2) such that σ′

1(v0) = v1 and σ′
2(v1) = t1; the cost profile

of its outcome is (2, +∞), which is incomparable with (3, 3). ⌟

Zero-sum games. In a zero-sum game, two players compete with opposing goals. Formally,
a two-player zero-sum game is a two-player game G = (A, (cost1, cost2)) where A is a two-
player arena and cost2 = −cost1. We usually shorten the notation of a zero-sum game to
G = (A, cost1) due to the definition.

Let v0 ∈ V . If infσ1 supσ2 cost1(Out((σ1, σ2), v0)) = supσ2 infσ1 cost1(Out((σ1, σ2), v0)),
where σi is quantified over the strategies of Pi, we refer to the above as the value of v0 and
denote it by val(v0). A game is determined if the value is defined in all vertices.

A strategy σ1 of P1 (resp. σ2 of P2) is said to ensure α ∈ R from a vertex v0 if all plays
π consistent with σ1 (resp. σ2) from v0 are such that cost1(π) ≤ α (resp. cost1(π) ≥ α). A
strategy of Pi is optimal from v0 ∈ V if it ensures val(v0) from v0. A strategy is a uniform
optimal strategy if it ensures val(v) from v for all v ∈ V . Optimal strategies do not necessarily
exist, even if the value does.

▶ Example 3. Consider the two-player zero-sum game played on the weighted arena illustrated
in Fig. 1b where the cost function of P1 is TS{t}

w . Let α ∈ N \ {0}. It holds that val(vα) = α.
On the one hand, P1 can ensure a cost of α from vα by moving leftward in the illustration.
On the other hand, P2 can ensure a cost of α from vα with the memoryless strategy that
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moves from v∞ to vα. It follows that this same memoryless strategy of P2 ensures α + 1 from
v∞. We conclude that val(v∞) = +∞. However, P2 cannot prevent t from being reached
from v∞, despite its infinite value. Therefore, P2 does not have an optimal strategy. ⌟

If the goal of P1 is formulated by an objective Ω, we say that a strategy σ1 of P1 (resp. σ2
of P2) is winning from v0 if all plays consistent with it from v0 satisfy Ω (resp. Plays(A) \ Ω).
The set of vertices from which P1 (resp. P2) has a winning strategy is called their winning
region denoted by W1(Ω) (resp. W2(Plays(A) \ Ω)). A strategy σ1 of P1 (resp. σ2 of P2) is a
uniform winning strategy if it is winning from all vertices in W1(Ω) (resp. W2(Plays(A) \ Ω)).

Given an n-player game G = (A, (costi)i∈JnK) where A = ((Vi)i∈JnK, E), we define the
coalition game (for Pi) as the game opposing Pi to the coalition of the other players, formally
defined as the two-player zero-sum game Gi = (Ai, costi) where Ai = ((Vi, V \ Vi), E). We
write P−i to refer to the coalition of players other than Pi

We also refer to two-player zero-sum games where the objective (resp. cost function) of
P1 is a reachability objective (resp. a truncated sum cost function, a Büchi objective) as
reachability (resp. shortest path, Büchi) games.

3 Zero-sum games: punishing strategies

In this section, we present results on strategies in zero-sum games. They are of interest for
the classical punishment mechanism used to construct NEs (described in Sect. 1). Intuitively,
this mechanism functions as follows: if some player deviates from the intended outcome
of the NE, the other players coordinate as a coalition to prevent the player from having a
profitable deviation. The strategy of the coalition used to sabotage the deviating player is
called a punishing strategy.

We explain that we can always find memoryless punishing strategies. First, we recall
classical results on reachability and Büchi games. Second, we describe memoryless punishing
strategies for shortest path games. We fix a two-player arena A = ((V1, V2), E) and a target
T ⊆ V for the remainder of this section.

Reachability and Büchi games. Zero-sum reachability games enjoy memoryless determinacy:
they are determined and for both players, there exist memoryless uniform winning strategies.
Furthermore, any vertex of P2 that is winning for P2 has a successor in this winning region.
Any strategy of P2 that selects only such successors can be shown to be winning from any
vertex in their winning region. The statements above follow, e.g., from the proof of [21,
Proposition 2.18]. We summarise this information in the following theorem.

▶ Theorem 4. Both players have memoryless uniform winning strategies in reachability games.
Let G = (A, Reach(T )), W2(Safe(T )) be the winning region of P2 in G, v0 ∈ W2(Safe(T ))
and σ2 be a strategy of P2. If for all histories h ∈ Hist2(A) starting in v0 containing only
vertices of W2(Safe(T )), we have σ2(h) ∈ W2(Safe(T )), then σ2 is winning from v0.

Büchi games also enjoy memoryless determinacy. If follows from the memoryless determ-
inacy of parity games [13], a class of objectives subsuming Büchi objectives.

▶ Theorem 5. Both players have memoryless uniform winning strategies in Büchi games.

Shortest path games. Let w : E → N be a weight function and G = (A, TST
w) be a zero-sum

shortest path game. First, we remark that G is determined. It can be shown using the
determinacy of games with open objectives [16]. Furthermore, P1 has a memoryless uniform
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optimal strategy. Intuitively, this is because P1 has no need to remember the past, and only
should follow a shortest path to a target from the current vertex. Although P2 does not
necessarily have an optimal strategy (Ex. 3), it can be shown that there exists a family of P2
memoryless strategies labelled by non-negative integers that are winning from any vertex
in the winning region of P2 in the reachability game (A, Reach(T )) and that ensure the
minimum of the integer and the value of the vertex from any other vertex. This information
is summarised in the following theorem. Its proof is provided in the full paper [20].

▶ Theorem 6. The game G is determined. A memoryless uniform optimal strategy exists
for P1. For all α ∈ N, there exists a memoryless strategy σα

2 of P2 such that, for all v ∈ V :
(i) σα

2 is winning from v for P2 in the game (A, Reach(T )) if v ∈ W2(Safe(T )) and (ii) σα
2

ensures a cost of at least min{val(v), α}.

4 Characterising Nash equilibria outcomes

We provide characterisations of plays that are outcomes of NEs in reachability, Büchi and
shortest path games. These characterisations relate to the corresponding zero-sum games:
they roughly state that a play is an NE outcome if and only if the cost incurred by a player
from a vertex of the play is less than the value of said vertex in the coalition game opposing
the player to the others. We provide a characterisation for reachability and Büchi games,
and then a characterisation for shortest path games. We fix an arena A = ((Vi)i∈JnK, E) and
targets T1, . . . , Tn ⊆ V for this entire section. Proofs of the results below are presented in
the full paper [20].

Reachability and Büchi games. We first consider reachability and Büchi games: their
respective NE outcome characterisations are close. Let G = (A, (Ωi)i∈JnK) be a reachability
or Büchi game. We denote by Wi(Ωi) the winning region of the first player of the coalition
game Gi = (Ai, Ωi), in which Pi is opposed to the other players. The characterisation follows.
It relies on the existence of punishing strategies. An identical characterisation for finite
arenas can be found in [11].

▶ Theorem 7. Assume G is a reachability (resp. Büchi) game. Let π = v0v1 . . . be a
play. Then π is the outcome of an NE from v0 if and only if, for all i ∈ JnK \ VisPl(π)
(resp. i ∈ JnK \ InfPl(π)), vℓ /∈ Wi(Reach(Ti)) (resp. vℓ /∈ Wi(Büchi(Ti))) for all ℓ ∈ N.

Shortest path games. Let w : E → N be a weight function. We now consider a shortest
path game G = (A, (TSTi

w )i∈JnK). For any v ∈ V , we denote by vali(v) the value of v in the
coalition game Gi = (Ai, TSTi

w ). We keep the notation Wi(Reach(Ti)) of the previous section.
In reachability and Büchi games, Thm. 7 indicates that the value in coalition games (i.e.,

who wins) is sufficient to characterise NE outcomes. It is also the case in finite arenas for
shortest path games [6, Theorem 15]. However, it is not in arbitrary arenas.

▶ Example 8. Let us consider the arena depicted in Fig. 1b and let T1 = {t} and T2 = {v0}.
It holds that val1(v0) = +∞ (it follows from val1(v∞) = +∞ which is shown in Ex. 3).
Therefore, the cost of all suffixes of the play vω

0 for P1 matches the value of their first vertex
v0. However, for any strategy profile resulting in vω

0 from v0, P1 has a profitable deviation in
moving to v∞ and using a reachability strategy to ensure a finite cost. ⌟
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A value-based characterisation fails because of vertices v ∈ Wi(Reach(Ti)) such that
vali(v) is infinite. Despite the infinite value of such vertices, Pi has a strategy such that their
cost is finite no matter the behaviour of the others. To obtain a characterisation, we impose
additional conditions on players whose targets are not visited that are related to reachability
games. We obtain the following characterisation.

▶ Theorem 9. Let π = v0v1 . . . be a play. Then π is an outcome of an NE from v0
in G if and only (i) for all i ∈ JnK \ VisPl(π) and ℓ ∈ N, we have vℓ /∈ Wi(Reach(Ti))
and (ii) for all i ∈ VisPl(π) and all ℓ ≤ ri, it holds that TSTi

w (π≥ℓ) ≤ vali(vℓ) where
ri = min{r ∈ N | vr ∈ Ti}.

5 Finite-memory Nash equilibria in reachability games

In this section, we describe finite-memory strategy profiles for NEs with memory bounds
that depend solely on the numbers of players in reachability and shortest path games. These
finite-memory strategy profiles behave differently to those described for the characterisations
in Thm. 7 and Thm. 9. Intuitively, following a deviation of Pi, the coalition P−i does not
necessarily switch to a punishing strategy for Pi. Instead, they may attempt to keep following
a suffix of the equilibrium’s original outcome if the deviation does not appear to prevent it.

This section is structured as follows. We illustrate the constructions for reachability
and shortest path games with examples in Sect. 5.1. In Sect. 5.2, we provide templates for
finite-memory NEs and technical notions to define them. In Sect. 5.3, we show that we
can derive, from any NE outcome, another with a simple structure and provide the general
constructions for finite-memory NEs with memory size independent of the arena. The details
of the last two sections are provided in the full paper [20].

We fix an arena A = ((Vi)i∈JnK, E), target sets T1, . . . , Tn ⊆ V and a weight function
w : E → N for the remainder of this section. We introduce a new operator in this section.
Given two histories h = v0 . . . vℓ and h′ = vℓvℓ+1 . . . vr, we let h · h′ = v0 . . . vℓvℓ+1 . . . vr; we
say that h · h′ is the combination of h and h′. The combination h · π of a history h and a
play π such that last(h) = first(π) is defined similarly.

5.1 Examples
In this section, we illustrate the upcoming construction for finite-memory NEs for both
settings of interest. We start with a reachability game.

▶ Example 10. We consider the game on the arena depicted in Fig. 2a where the objective
of Pi is Reach({ti}) for i ∈ J4K. We present a finite-memory NE with outcome π =
v0v1v2t1v2v1v0tω

2 to illustrate the idea behind the upcoming construction.
First, observe that π can be seen as the combination of the simple history sg1 = v0v1v2t1

and the simple lasso sg2 = t1v2v1v0tω
2 . The simple history sg1 connects the initial vertex

to the first visited target, and the simple lasso sg2 connects the first target to the second
and contains the suffix of the play. Therefore, if we were not concerned with the stability of
the equilibrium, the outcome π could be obtained by using a finite-memory strategy profile
where all strategies are defined by a Mealy machine with state space J2K. Intuitively, these
strategies would follow sg1 while remaining in their first memory state 1, then, when t1 is
visited, they would update their memory state to 2 and follow sg2.

We build on these simple Mealy machines with two states. We include additional
information in each memory state. We depict a suitable Mealy machine state space and
update scheme in Fig. 2b. The rectangles grouping together states (P3, j) and (P4, j)
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v0t2 v1 v2 t1

v3 v4

v5t3 t4

(a) An arena. Circles, squares, diamonds and hexagons
are resp. P1, P2, P3, P4 vertices.

(P3, 1)

(P4, 1)

(P3, 2)

(P4, 2)

v2 v1

t1

t1

v2 v1

(b) An illustration of the update scheme of
a Mealy machine. Transitions that do not
change the memory state are omitted.

Figure 2 A reachability game and a representation of a Mealy machine update scheme suitable
for an NE from v0.

represent the memory state j of the simpler Mealy machine, for j ∈ J2K. The additional
information roughly encodes the last player to act among the players whose objective is not
satisfied in π. More precisely, an update is performed from the memory state (Pi, j) only if
the vertex fed to the Mealy machine appears in sgj for j ∈ J2K.

By construction, if Pi (among P3 and P4) deviates and exits the set of vertices of sgj

when in a memory state of the form (·, j), then the memory updates to (Pi, j) and does not
change until the play returns to some vertex of sgj (which is not possible here due to the
structure of the graph, but may be in general). For instance, assume P3 moves from v1 to
v3 after the history h = v0v1v2t1v2v1. Then the memory after h is in state (P3, 2) and no
longer changes from there on.

It remains to explain how the next-move function of the Mealy machine should be defined
to ensure an NE. Essentially, for a state of the form (Pi, j) and vertices in sgj , we assign
actions as in the simpler two-state Mealy machine described previously. On the other hand,
for a state of the form (Pi, j) and a vertex not in sgj , we use a memoryless punishing strategy
against Pi. In this particular case, we need only specify what P1 should do in v5. Naturally,
in memory state (Pi, j), P1 should move to the target of the other player. It is essential to
halt memory updates for vertices v3 and v4 to ensure the correct player is punished.

We close this example with comments on the structure of the Mealy machine. Assume the
memory state is of the form (Pi, j). If a deviation occurs and leads to a vertex of sgj other
than the intended one, then the other players will continue trying to progress along sgj and
do not specifically try punishing the deviating player. Similarly, if after a deviation leaving
the set of vertices of sgj (from which point the memory is no longer updated until this set is
rejoined), a vertex of sgj is visited again, then the players resume trying to progress along
this history and memory updates resume. In other words, these finite-memory strategies
do not pay attention to all deviations and do not have dedicated memory that commit to
punishing deviating players for the remainder of a play after a deviation. ⌟

We now give an example for the shortest path case. The Mealy machines we propose are
slightly larger in this case. We argue that it may be necessary to commit to a punishing
strategy if the set of vertices of the history the players want to progress along is left. This
requires additional memory states. Our example shows that it may be necessary to punish
deviations from players whose targets are visited, as they can possibly improve their cost.

▶ Example 11. We consider the shortest path game on the weighted arena depicted in
Fig. 3a where the target of Pi is Ti = {t, t12} for i ∈ J2K and T3 = {t} for P3. We argue that
a finite-memory NE with outcome π = v0v1v3tω from v0 cannot be obtained by adapting the
construction of Ex. 10. We provide an alternative construction that builds on the same ideas.
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v0 v1

v2

v3 t

v4t12

10

(a) A weighted arena. Edge labels indicate their
weight. Unlabelled edges have a weight of 1.

(P1, 1) (P2, 1)

(P3, 1)

P3 P2P1

t

v0, v1

v0
v1

v3 v3

t
v2
t12
v4

v2
t12
v4v2

t12
v4

(b) An illustration of the update scheme of a Mealy
machine. Transitions that do not change the memory
state are omitted.

Figure 3 A shortest path game and a representation of a Mealy machine update scheme suitable
for some NE from v0.

In this case, π is a simple lasso, much like the second part of the play in the previous
example. First, let us assume a Mealy machine similar to that of Ex. 10, i.e., such that it
tries to progress along π whenever it is in one of its vertices. The update scheme of such a
Mealy machine would be obtained by removing the transitions to states of the form Pi from
Fig. 3b (replacing them by self-loops).

If P3 uses a strategy based on such a Mealy machine, then P1 has a profitable deviation
from v0: if P1 moves from v0 to v2, then either P1 incurs a cost of 2 if P2 moves to t12 from
v2 or a cost of 3 if P2 moves to v3 as P3 would then move to t by definition of the Mealy
machine. To circumvent this issue, if Pi exits the set of vertices of π, we update the memory
to the punishment state Pi. This results in the update scheme depicted in Fig. 3b. Next-move
functions to obtain an NE can be defined as follows, in addition to the expected behaviour
to obtain π: for P2, nxt2((P1, 1), v2) = nxt2(P1, v2) = v3 and for P3, nxt3(P1, v3) = v4.

Similarly to the previous example, players do not explicitly react to deviations that
move to vertices of π; if P3 deviates after reaching v3 and moves back to v0, the memory of
the other players does not update to state P3. Intuitively, there is no need to switch to a
punishing strategy for P3 as going back to the start of the intended outcome is more costly
than conforming to it, preventing the existence of a profitable deviation.

This example differs slightly from the general construction below, which would decompose
π into two parts: a history v0v1v3t from the initial vertex to the first target and the suffix tω

of the play after all targets are visited. In full generality, this separation is needed [20]. ⌟

5.2 Segments and strategies
In Sect. 5.1, we illustrated that the finite-memory Nash equilibria we construct in reachability
and shortest path games share a common structure. In this section, we provide the generic
part of these Mealy machines. We first introduce decompositions of plays. We then partially
define Mealy machines encoding strategies based on so-called simple decompositions.

Decomposing plays. We fix π = v0v1 . . . ∈ Plays(A) for this whole section. We first
introduce some terminology. A play or history is simple if no vertex occurs twice within.
A play is a simple lasso if it is of the form pcω where pc ∈ Hist(A) is a simple history. A
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segment of π is either a suffix π≥ℓ of π (ℓ ∈ N) or any history of the form vℓ . . . vℓ′ (ℓ ≤ ℓ′).
We denote segments by sg to avoid distinguishing finite and infinite segments of plays in the
following. A segment is simple if it is a simple history, a simple play or a simple lasso.

A (finite) segment decomposition of π is a sequence D = (sg1, . . . , sgk) where sgj is
a history for all j < k, sgk is a suffix of π, last(sgj) = first(sgj+1) for all j < k and
π = sg1 · . . . · sgk. We assume that among the histories of a decomposition, there are none of
the form h = v, i.e., there are no trivial segments. The segment decomposition D is simple
if all segments within are simple. If there is some NE outcome with a given cost profile,
we show that there is an NE outcome with a preferable cost profile that admits a simple
segment decomposition. To obtain finite-memory NEs, we build on NE outcomes with a
simple segment decomposition.

Finite-memory decomposition-based strategies. Let π = v0v1 . . . ∈ Plays(A) be a play
that admits a simple segment decomposition D = (sg1, . . . , sgk). We partially define a Mealy
machine that serves as the basis for the finite-memory NEs described in the next section.

The memory state space is made of pairs of the form (Pi, j) for some j ∈ JkK. We do not
consider all such pairs, e.g., it is not necessary in Ex. 10. Therefore, we parameterise our
construction by a non-empty set of players I ⊆ JnK. We consider the memory state space
M I,D = {Pi | i ∈ I} × JkK. The initial state mI,D

init is any state of the form (Pi, 1) ∈ M I,D.
The update function upI,D behaves similarly to Fig. 2b. It keeps track of the last player

in I to have moved and the current segment. Formally, for any (Pi, j) ∈ M I,D and vertex
v occurring in sgj , we let upI,D((Pi, j), v) = (Pi′ , j′) where (i) i′ is such that v ∈ Vi′ if
v ∈

⋃
i′′∈I Vi′′ and otherwise i′ = i, and (ii) j′ = j + 1 if j < k and v = last(sgj) and j′ = j

otherwise. Updates from (Pi, j) for a vertex that does not appear in sgj are left undefined.
The next-move function nxtI,D

i of Pi proposes the next vertex of the current segment.
Formally, given a memory state (Pi′ , j) ∈ M I,D and a vertex v ∈ Vi that occurs in sgj ,
we let nxtI,D

i ((Pi′ , j), v) be the vertex occurring after v in sgj+1 if j < k and v = last(sgj),
and otherwise we let it be the vertex occurring after v in sgj . Like updates, the next-move
function is left undefined in memory states (Pi, j) for a vertex that does not appear in sgj .

5.3 Nash equilibria
We now present finite-memory NEs with memory bounds depending only on the number of
players. We first derive, given an NE outcome, another NE outcome that admits a simple
decomposition. We impose additional technical properties on these decompositions to define
NEs with strategies based on them. We then define finite-memory strategies based on these
simple decompositions by extending the partial definition above to obtain finite-memory
NEs. We deal with reachability games then shortest paths games.

Simplifying outcomes. We explain that from any NE outcome in a shortest path game, we
can derive another NE outcome with a preferable cost profile that admits a simple segment
decomposition. The result extends to reachability games. We consider two cases.

First, we consider NE outcomes such that all players who see their target have the initial
vertex of the outcome in it, generalising the case where no players see their targets. From
these outcomes, we can directly derive an NE outcome that is a simple lasso or simple play.

▶ Lemma 12. Let π′ ∈ Plays(A) be the outcome of an NE from v0 ∈ V in a shortest
path game G = (A, (TSTi

w )i∈JnK) such that VisPos(π′) ⊆ {0}. There exists an NE outcome
π ∈ Plays(A) from v0 with the same cost profile as π′ that is a simple lasso or a simple play
and such that VisPos(π) ⊆ {0}. In particular, π has the simple segment decomposition (π).
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We now consider NE outcomes such that some player sees their target later than in the
initial vertex. In this case, we can derive an NE outcome with a simple decomposition such
that the simple histories of the decomposition connect the first target elements that are
visited. We impose a technical condition on these simple histories, to ensure that no player
has a profitable deviation by skipping ahead in a segment.

▶ Lemma 13. Let π′ be the outcome of an NE from v0 ∈ V in a shortest path game
G = (A, (TSTi

w )i∈JnK). Assume that |VisPos(π′) \ {0}| = k > 0. There exists an NE outcome π

from v0 with VisPos(π) \ {0} = {ℓ1 < . . . < ℓk} that admits a simple segment decomposition
(sg1, . . . , sgk+1) such that (i) (sg1, . . . , sgk · sgk+1) is also a simple decomposition of π; (ii)
for all j ∈ JkK, sg1 · . . . · sgj = π≤ℓj

; (iii) for all j ∈ JkK, w(sgj) is minimum among all
histories that share their first and last vertex with sgj and traverse a subset of the vertices
occurring in sgj; and (iv) for all i ∈ JnK, TSTi

w (π) ≤ TSTi
w (π′).

Reachability games. We fix a reachability game G = (A, (Reach(Ti))i∈JnK). We construct
finite-memory NEs by extending the partially-defined Mealy machines of Sect. 5.2 and
generalising the strategies presented in Ex. 10. The main result is the following.

▶ Theorem 14. Let σ′ be an NE from a vertex v0. There exists a finite-memory NE
σ from v0 such that VisPl(Out(σ, v0)) = VisPl(Out(σ′, v0)) where each strategy of σ has a
memory size of at most n2. Precisely, a memory size of max{1, n − |VisPl(Out(σ′, v0))|} ·
max{1, |VisPos(Out(σ′, v0)) \ {0}|} suffices.

Proof sketch. Consider an NE outcome π and its simple decomposition D = (sg1, . . . , sgk)
provided by Lem. 12 and Lem. 13 (point (i)) for Out(σ′, v0). The general idea of the
construction is to use the state space M I,D where I ⊆ JnK is the set of players who do not see
their targets if it is non-empty, or a single arbitrary player if all players see their target. Let
i′ ∈ I and j ∈ JkK. We extend upI,D to leave unchanged the memory state if in state (Pi′ , j)
whenever the current vertex is not in sgj . In this same situation, the next-move functions
nxtI,D

i are extended to assign moves from a uniform memoryless winning strategy of the
second player in the coalition game Gi′ = (Ai′ , Reach(Ti′)) (which exists by Thm. 4). The
equilibrium’s stability is a consequence of Thm. 7 and the second statement of Thm. 4. ◀

We remark that Thm. 14 provides a memory bound that is linear in the number of players
when no players see their target and when all players see their target.

▶ Corollary 15. If there exists an NE from v0 such that no (resp. all) players see their target
in its outcome, then there is a finite-memory NE from v0 such that no (resp. all) players see
their target in its outcome such that all strategies have a memory size of at most n.

Shortest path games. We now fix a shortest path game G = (A, (TSTi
w )i∈JnK). We provide

an alternative generalisation of the partially-defined Mealy machines described in Sect. 5.2,
this time generalising the strategies provided in Ex. 11. Ex. 11 shows that only altering the
construction of Thm. 14 to also monitor (and punish) players whose targets are visited is not
sufficient. To overcome this, we change the approach so players commit to punishing any
player who exits the current segment of the intended outcome.

▶ Theorem 16. Let σ′ be an NE from a vertex v0. There exists a finite-memory NE σ from
v0 such that VisPl(Out(σ, v0)) = VisPl(Out(σ′, v0)) and, for all i ∈ JnK, TSTi

w (Out(σ, v0)) ≤
TSTi

w (Out(σ′, v0)) where each strategy of σ has a memory size of at most n2 + 2n. Precisely,
a memory size of n · (|VisPos(Out(σ′, v0)) \ {0}| + 2) suffices.
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Proof sketch. The construction is similar to that of Thm. 14. We obtain a suitable NE
outcome π and its decomposition D in the same way, and build on M I,D, upI,D, nxtI,D

i with
I = JnK. If we apply Lem. 13 here, we consider the first decomposition the lemma provides
and not the one from point (i) of the lemma. Intuitively, merging the last two segments,
as done in the decomposition from Lem. 13, point (i), prevents players from reacting to
deviations within the merged segment and could enable a profitable deviation.

In this case, instead of freezing memory updates if the current segment is left when
the memory state is of the form (Pi, j), the memory switches to a memory state Pi that
is never left. This switch can only occur if Pi deviates. The next-move function, for this
memory state, assigns moves from a punishing strategy obtained from the coalition game
Gi = (Ai, TSTi

w ) by Thm. 6, chosen to hinder Pi, ensuring that in case of a deviation, Pi’s
cost is at least that of the original outcome.

The conditions imposed on outcomes of Lem. 13 (notably condition (iii)) and the charac-
terisation of Thm. 9 imply the correctness of this construction. Condition (iii) of Lem. 13
ensures that a player cannot reach their target with a lesser cost by traversing the vertices
within a segment in another order, whereas the characterisation of Thm. 9 guarantees that
the punishing strategies sabotage deviating players sufficiently. ◀

In this case, Thm. 16 provides the memory bound 2n if no players visit their target.
However, the construction of Thm. 9 applies to such NEs in shortest path games.

▶ Corollary 17. If there exists an NE from v0 such that no players see their target in its
outcome, then there is a finite-memory NE from v0 such that no players see their target in
its outcome such that all strategies have a memory size of at most n.

6 Finite-memory Nash equilibria in Büchi games

We now present finite-memory NEs for Büchi games. We illustrate in Sect. 6.1 that the
constructions for reachability and shortest path games do not extend directly to Büchi
games. We build on the techniques of Sect. 5.2 to provide finite-memory NEs in Sect. 6.2.
We fix an arena A = ((Vi)i∈JnK, E), targets T1, . . . , Tn ⊆ V and the Büchi game G =
(A, (Büchi(Ti))i∈JnK) for this entire section. Proofs and details of this section are presented
in the full version of the paper [20].

6.1 Examples
For reachability and shortest path games, we relied on simple segment decompositions
between consecutive targets along some NE outcome to obtain finite-memory NEs. Our
strategies based on these decompositions do not explicitly punish players who deviate. We
show that this can be problematic when dealing with Büchi objectives.

▶ Example 18. Consider the game on the arena depicted in Fig. 4a where the objectives of
P1 and P2 are Büchi({v1}) and Büchi({v2}) respectively. The play v0v1vω

2 is the outcome of
an NE by Thm. 7. To mimic the construction underlying Thm. 14 and Thm. 16, we would
consider a finite-memory strategy based on the decomposition D = (v0v1v2, vω

2 ). However, if
P2 uses such a strategy, P1 would enforce their objective via the memoryless strategy σ1 such
that σ2(v1) = v0, resulting in the outcome (v0v1)ω, as P2 would not punish the deviation. ⌟

In the previous example, the issue with the proposed decomposition lies with the oc-
currence of a target of P2, whose objective is not satisfied in the intended outcome, within
some segment of the decomposition. To circumvent this issue, we construct strategies that
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v0 v1 v2

(a) An arena where a direct segment-based ap-
proach fails to obtain an NE.

v0 v1

v2

v3

v4

(b) An arena on which players should commit to
punishing strategies once a segment is left.

Figure 4 Two arenas. Circle, squares and diamonds are resp. P1, P2 and P3 vertices.

follow two phases in the following section. In their first phase, these strategies punish any
deviations from the intended outcome. For their second phase, we adapt the strategies of
Section 5.2. To ensure no profitable deviations may appear in the second phase, we start it
at a point of the intended outcome from which no more targets of losing players occur.

We close this section by illustrating that the punishing mechanism used for finite-memory
NEs in reachability games does not suffice, i.e., players must commit to their punishing
strategies once some player exits the current segment in the second phase mentioned above.

▶ Example 19. Consider the game on the arena depicted in Fig. 4b where the objectives of
P1, P2 and P3 are Büchi({v1}) and Büchi({v2, v4}) and Büchi({v4}) respectively. The play
π = (v0v1v3)ω is the outcome of an NE by Thm. 7. Consider a P1 strategy based on the
decomposition (π) that uses the punishment mechanism we introduced for reachability games.
Then the behaviour of P1 does not change if P2 moves from v0 to v2 instead of v1: P1 would
move from v1 to v3 and then to v0. It follows that P2 would have a profitable deviation no
matter the strategy of P3.

To obtain an NE where all players use strategies based on the decomposition (π), P1,
must commit to a punishing strategy for P2 if v2 is visited. For P2 and P3 we consider the
memoryless strategies σ2 and σ3 such that σ2(v0) = σ3(v2) = v1. It is easy to check that
this is an NE. ⌟

6.2 Finite-memory Nash equilibria
In this section, we establish the counterpart of Thm. 14 and Thm. 16 for Büchi games. It is
split in two statements (Thm. 21 and Thm. 23) that depend on the form of the outcome of
the considered NE. Each case is considered in a dedicated section. First, we consider NE
outcomes with a vertex that occurs infinitely often within. We then show the result for NE
outcomes without infinitely occurring vertices. For both cases, we first provide NE outcomes
with a simple structure and then construct corresponding finite-memory NEs.

We consider alternative segment decompositions in this section. These decompositions
differ from those defined in Sect. 5 in the following way. First, we allow infinite segment
decompositions and tolerate decompositions such that their first segment is trivial. We
extend the definition of simple segment to include simple cycles.

Throughout this section, we assume without loss of generality that any considered NE
outcome π is such that InfPl(π) is not empty. This can be ensured by adding a new player
for whom all vertices are targets if necessary.

Outcomes with an infinitely occurring vertex. The first case we consider is a generalisation
of the finite-arena case: in a finite arena, all plays contain some infinitely occurring vertex.
To obtain finite-memory NEs, we use the two-phase mechanism presented previously with
an adaptation of the decomposition-based finite-memory strategies of Section 5.2 that can
handle infinite ultimately periodic decompositions.
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The following lemma provides NE outcomes with a simple structure on which we rely to
define finite-memory NEs.

▶ Lemma 20. Let π′ be the outcome of an NE from v0 ∈ V in the Büchi game G such that
some vertex occurs infinitely often in π′ and let k = |InfPl(π′)|. Then there exists an NE
outcome π from v0 with InfPl(π) = InfPl(π′) such that π admits an infinite simple segment
decomposition (sg0, sg1, . . .) such that (i) for all j ≥ 1 and all i ∈ JnK \ InfPl(π), no vertex of
Ti occurs in sgj and (ii) for all j ≥ 1, sgj = sgj+k.

We now state the main theorem of this section.

▶ Theorem 21. Let σ′ be an NE from a vertex v0 such that some vertex occurs infinitely
often in its outcome. There exists a finite-memory NE σ from v0 such that InfPl(Out(σ, v0)) =
InfPl(Out(σ′, v0)). If A is finite, a memory size of at most |V | + n2 + n suffices.

Proof sketch. Let π and D = (sg0, sg1, . . .) be given by Lem. 20 for Out(σ′, v0) and let
k = |InfPl(π)|. We obtain finite-memory NEs via the the two-phase finite-memory strategies
described in Sect. 6.1. For the first phase, we follow the history sg0. For the second phase,
we switch to a strategy that is based on the decomposition D′ = (sg1, sg2, . . .). Although
this decomposition is infinite, we can construct a finite-memory strategy based on D by
exploiting its ultimately periodic nature. To achieve this, we alter the definitions of Sect. 5.2:
when reading last(sgk) in memory states of the form (Pi, k), we update the memory to an
appropriate memory state of the form (Pi′ , 1).

By completing the behaviour described above with switches to memoryless punishing
strategies (Thm. 5) if sg0 is not accurately simulated or if a player exits the current segment,
we obtain a finite-memory NE. The stability of the NE follows from Thm. 7 for deviations
that induce the use of punishing strategies and the property that no targets of losing players
occur in segments sgj , j ≥ 1 for other deviations. ◀

With the classical approach to derive NEs from outcomes with a finite representation
(Sect. 1), we can also design finite-memory NEs for outcomes obtained by Lem. 20. If |V | is
finite, the resulting strategies of this approach have a memory size of at most (|V | + 2)n. It
follows our construction is preferable if there are few players compared to vertices.

Outcomes without an infinitely occurring vertex. We now deal with NE outcomes that
can only appear in infinite arenas. We once again rely on a two-phase mechanism where the
first phase is unchanged. The second phase is loosely based on an infinite decomposition.
Intuitively, we allocate infinitely many disjoint segments to a same group of memory state.
Due to this, players may not react to someone exiting the current segment.

The following lemma is the counterpart of Lemma 20 for this case.

▶ Lemma 22. Let π′ be the outcome of an NE from v0 ∈ V in the Büchi game G such that
no vertex occurs infinitely often in π′. Then there exists an NE outcome π from v0 with
InfPl(π) = InfPl(π′) such that π admits an infinite simple segment decomposition (sg0, sg1, . . .)
such that (i) for all j ≥ 1 and all i ∈ JnK \ InfPl(π), no vertex of Ti occurs in sgj and (ii) for
all j ̸= j′, sgj and sgj′ have no vertices in common if j and j′ have the same parity.

We can now state the last theorem of this section.

▶ Theorem 23. Let σ′ be an NE from a vertex v0 such that no vertex occurs infinitely often
in its outcome. There exists a finite-memory NE σ from v0 such that InfPl(Out(σ, v0)) =
InfPl(Out(σ′, v0)).

STACS 2024
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Proof sketch. Let π be the play and D = (sg0, sg1, . . .) be the decomposition of π given by
Lem. 22 for Out(σ′, v0). We rely once again on strategies with two phases. The first phase
is defined exactly as for Thm. 21. For the second phase, we also adapt the definitions of
Sect. 5.2. The update and next-move function in the original definitions are defined for
each memory state of the form (Pi, j) based on the segment sgj . In this case, we define the
update and next-move functions in memory states of the form (Pi, 1) (resp. (Pi, 2)) based on
all odd segments (resp. all even segments besides sg0) of D simultaneously, such that when
the end of an even segment is reached in a memory state of the form (Pi, 2), the memory
is updated to a state of the form (Pi′ , 1). The fact all odd (resp. even) segments traverse
pairwise disjoint set of vertices ensures that the next-move function is well-defined.

If at some point in the second phase, a vertex that does not occur in an odd segment is
read in a memory state (Pi, 1), the memory is updated to a punishing state Pi, such that
players attempt to punish Pi with a memoryless strategy (Thm. 5). We proceed similarly for
the even case. The resulting finite-memory strategy profile is an NE from v0. On the one
hand, any deviation such that the memory never updates to a punishing state must only have
vertices that occur in segment sgj with j ≠ 0 in the limit. By choice of D, this deviation
cannot be profitable. Otherwise, it can be argued that the punishing strategy does in fact
sabotage the deviating player, so long as their objective is not satisfied in π, by Thm. 7. ◀
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1 Introduction

The prominent model of finite-state string automata has seen a variety of extensions in the
past few decades. Notably, their qualitative evaluation was generalized to a quantitative
one to yield the weighted automata of [26]. These automata are able to neatly represent
process factors such as costs, consumption of resources or time, and probabilities related to
the input, and have been extensively studied [25]. Semirings [17, 18] present themselves as a
well suited algebraic structure for evaluating the weights because of their generality as well
as their reasonable computational efficiency that is derived from distributivity.

Parallel to this development, finite-state string automata have been generalized to process
other forms of inputs such as infinite words [23], graphs [3] and trees [5]. Finite-state
tree automata and the regular tree languages they generate have been widely researched
since their introduction in [7, 27, 28]. These models prove to be useful in a variety of
application areas including natural language processing [19], image generation [8], and
compiler construction [29]. Many applications require both features: trees as more expressive
input structure and quantitative evaluation. This led to the development of several weighted
tree automata (WTA) models. An extensive overview can be found in [12, Chapter 9].

Finite-state tree automata have serious limitations; notably, they cannot guarantee that
two specific subtrees are always equal in the accepted trees provided that those subtrees can
be arbitrarily large. Similarly finite-state string automata cannot ensure that the number
of a’s and b’s in the accepted words is equal. These restrictions are well-known [13], and
the mentioned drawback was addressed in [21], where an extension was proposed that can
explicitly require certain subtrees to be equal or different. This extension is very convenient
in the study of tree transformations [12] that can duplicate subtrees, and it is also the primary
tool used in the seminal paper [15] to prove the decidability of the HOM-problem.
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The HOM-problem, a previously long-standing open question in the study of tree lan-
guages, asks whether the image of a regular tree language under a given tree homomorphism
is also regular. The image need not be regular since tree homomorphisms can also duplicate
subtrees. Indeed, if this duplication ability is removed from the tree homomorphism (e.g.,
linear tree homomorphisms), then the image is always regular [13]. The HOM-problem
was recently solved in [15, 16], where the image is represented by a tree automaton with
constraints, for which it is then determined whether it generates a regular tree language.
Later the HOM-problem was shown to be EXPTIME-complete [6].

In the weighted case, decidability of the HOM-problem remains wide open. Previous
research on the preservation of regularity in the weighted setting [4, 9, 10, 11] focuses on
cases that explicitly exclude the duplication power of the homomorphism. Recently, the
weighted HOM-problem over zero-sum free semirings was addressed, but only solved for
significantly restricted inputs [22]. In the present work, we prove that the HOM-problem for
regular weighted tree languages over the semiring N of nonnegative integers can be decided
in polynomial time. The proof outline is as follows: Consider such a regular N-weighted tree
language and a nondeleting, nonerasing tree homomorphism. First, we represent this image
efficiently using an extension (WTGh) of weighted tree automata that permits constraints [20].
Next, we ask whether this WTGh generates a regular weighted tree language. This semantic
problem is reduced to an easier, essentially syntactic property: the large duplication property.
In turn, this allows us to prove decidability of the weighted HOM-problem in polynomial time
by directly proving it for the large duplication property. If the WTGh for the homomorphic
image does not have this property, then we give an effective construction of an equivalent
N-weighted tree automaton without constraints (albeit in exponential time), thus proving
its regularity. Otherwise, we use a pumping lemma presented in [20] and isolate a strictly
non-regular part from the WTGh. The most challenging part of our proof and our main
technical contribution is showing that the remaining trees in the homomorphic image cannot
compensate for the non-regular behavior of this isolated part. For this, we employ Ramsey’s
theorem [24] to identify a witness for the non-regularity of the whole weighted tree language.

Compared to the unweighted case where the HOM-problem is EXPTIME-complete [6],
the N-weighted HOM-problem can be decided in polynomial time. Both proofs reduce the
(non)regularity of the homomorphic image in question to a decidable property of the tree
grammar with constraints representing it; however, the unweighted regularity notion is
very different from the corresponding notion for weighted tree languages over N. Unlike
the Boolean semiring B, which corresponds to the unweighted case, the semiring N can
be embedded into a field, which allows us to apply methods of linear algebra. The large
duplication property, to which we successfully reduce the N-weighted HOM-problem, is
certainly necessary, but insufficient in the unweighted case. This is due to the fact that the
Boolean semiring is idempotent, which permits covering an irregular tree language with the
help of a regular one (e.g., the union L ∪ TΣ = TΣ of an irregular tree language L with the
regular tree language TΣ of all trees is again regular). We will prove that such covers cannot
happen in the semiring N of nonnegative integers. As a consequence, the large duplication
property is necessary and sufficient for non-regularity of weighted tree languages over N. In
summary, our overall strategy for approaching the HOM-problem is similar to [15], but the
required notions and details of the proofs significantly differ.

Tree automata and grammars with constraints are applied in domains such as automated
deduction [2] or security verification [1]. In this context, studying quantitative extensions of
these models is naturally relevant. Tree structures are also central in XML, and homomorphic
transformations on trees allow us to modify the codes while preserving the hierarchical
structure. Moreover, the HOM-problem plays a role in the context of term rewriting [14]: For
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a term rewrite system, the set of normal forms (i.e., terms to which no rule can be applied)
can be expressed as the complement of a homomorphic image; a better understanding of
these images can help generalize known results in this field.

2 Preliminaries

We denote the set of nonnegative integers by N. For i, j ∈ N we let [i, j] = {k ∈ N | i ≤ k ≤ j}
and [j] = [1, j]. Let Z be an arbitrary set. The cardinality of Z is denoted by |Z|, and the set
of words over Z (i.e., the set of ordered finite sequences of elements of Z) is denoted by Z∗.

Trees, Substitutions, and Contexts

A ranked alphabet (Σ, rk) consists of a finite set Σ and a mapping rk : Σ→ N that assigns
a rank to each symbol of Σ. If there is no risk of confusion, then we denote the ranked
alphabet (Σ, rk) by Σ alone. We write σ(k) to indicate that rk(σ) = k. Moreover, for
every k ∈ N we let Σk = rk−1(k) and rk(Σ) = max {k ∈ N | Σk ≠ ∅} be the maximal rank of
symbols of Σ. Let X = {xi | i ∈ N} be a countable set of (formal) variables. For every n ∈ N,
we let Xn = {xi | i ∈ [n]}. Given a ranked alphabet Σ and a set Z, the set TΣ(Z) of
Σ-trees indexed by Z is the smallest set such that Z ⊆ TΣ(Z) and σ(t1, . . . , tk) ∈ TΣ(Z) for
every k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ(Z). We abbreviate TΣ(∅) simply by TΣ, and any
subset L ⊆ TΣ is called a tree language.

Let Σ be a ranked alphabet, Z a set, and consider a tree t ∈ TΣ(Z). The
set pos(t) of positions of t is defined by pos(z) = {ε} for all z ∈ Z and
by pos(σ(t1, . . . , tk)) = {ε} ∪ {iw | i ∈ [k], w ∈ pos(ti)} for all k ∈ N, σ ∈ Σk,
and t1, . . . , tk ∈ TΣ(Z). With their help, we define the size ‘size(t)’ and height ‘ht(t)’
of t as size(t) = |pos(t)| and ht(t) = maxw∈pos(t)|w|. Positions are partially ordered by
the standard prefix order ≤ on [rk(Σ)]∗, and they are totally ordered by the ascending
lexicographic order ⪯ on [rk(Σ)]∗, in which prefixes are larger; i.e., ε is the largest element.
More precisely, for v, w ∈ pos(t) if there exists u ∈ [rk(Σ)]∗ with vu = w, then we write v ≤ w,
call v a prefix of w, and let v−1w = u because u is uniquely determined if it exists. Provided
that u = u1 · · ·un with u1, . . . , un ∈ [rk(Σ)] we also define the path [v, . . . , w] from v to w as
the sequence (v, vu1, vu1u2, . . . , w) of positions. Any two positions that are ≤-incomparable
are called parallel.

Given t, t′ ∈ TΣ(Z) and w ∈ pos(t), the label t(w) of t at w, the subtree t|w of t at w,
and the substitution t[t′]w of t′ into t at w are defined by z(ε) = z|ε = z and z[t′]ε = t′

for all z ∈ Z and by t(ε) = σ, t(iw′) = ti(w′), t|ε = t, t|iw′ = ti|w′ , t[t′]ε = t′, and
t[t′]iw′ = σ

(
t1, . . . , ti−1, ti[t′]w′ , ti+1, . . . , tk

)
for all trees t = σ(t1, . . . , tk) with k ∈ N, σ ∈ Σk,

t1, . . . , tk ∈ TΣ(Z), all i ∈ [k], and all w′ ∈ pos(ti). For all sets S ⊆ Σ ∪ Z of symbols,
we let posS(t) = {w ∈ pos(t) | t(w) ∈ S}, and we write poss(t) instead of pos{s}(t) for
every s ∈ Σ ∪ Z. The set of variables occuring in t is var(t) = {x ∈ X | posx(t) ̸= ∅}.
Finally, consider n ∈ N and a mapping θ′ : Xn → TΣ(Z). Then by substitution, θ′ in-
duces a mapping θ : TΣ(Z) → TΣ(Z) defined by θ(x) = θ′(x) for every x ∈ Xn, θ(z) = z

for every z ∈ Z \ Xn, and θ(σ(t1, . . . , tk)) = σ(θ(t1), . . . , θ(tk)) for all k ∈ N, σ ∈ Σk,
and t1, . . . , tk ∈ TΣ(Z). For t ∈ TΣ(Z), we denote θ(t) by tθ or, more commonly, by
t[x1 ← θ′(x1), . . . , xn ← θ′(xn)].

Let □ /∈ Σ. A context is a tree C ∈ TΣ(□) with pos□(C) ̸= ∅. More specifically, we
call C an n-context if n = |pos□(C)|. For an n-context C and t1, . . . , tn ∈ TΣ, we define the
substitution C[t1, . . . , tn] as follows. Let pos□(C) = {w1, . . . , wn} be the occurrences of □
in C in lexicographic order w1 ≺ · · · ≺ wn. Then we let C[t1, . . . , tn] = C[t1]w1 · · · [tn]wn .
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Tree Homomorphisms and Weighted Tree Grammars

Given ranked alphabets Σ and Γ, let h′ : Σ → TΓ(X) be a mapping with h′(σ) ∈ TΓ(Xk)
for all k ∈ N and σ ∈ Σk. We extend h′ to h : TΣ → TΓ by h(α) = h′(α) ∈ TΓ(X0) = TΓ
for all α ∈ Σ0 and h(σ(t1, . . . , tk)) = h′(σ)[x1 ← h(t1), . . . , xk ← h(tk)] for all k ∈ N,
σ ∈ Σk, and t1, . . . , tk ∈ TΣ. The mapping h is called the tree homomorphism induced by h′,
and we identify h′ and its induced tree homomorphism h. For the complexity analysis of
our decision procedure, we define the size of h as size(h) =

∑
σ∈Σ size(h(σ)). We call h

nonerasing (respectively, nondeleting) if h′(σ) /∈ X (respectively, var(h′(σ)) = Xk) for
all k ∈ N and σ ∈ Σk. In this contribution, we will only consider nonerasing and nondeleting
tree homomorphisms h : TΣ → TΓ, which are therefore input finitary; i.e., the preimage h−1(u)
is finite for every u ∈ TΓ since |t| ≤ |u| for every t ∈ h−1(u). Any mapping A : TΣ → N is
called N-weighted tree language, and we define the weighted tree language hA : TΓ → N for
every u ∈ TΓ by hA(u) =

∑
t∈h−1(u) A(t) and call it the image of A under h. This definition

relies on the tree homomorphism to be input-finitary; otherwise the defining sum is not finite,
so the value hA(u) is not necessarily well-defined.

A weighted tree grammar with equality constraints (WTGc) [20] is a tuple (Q, Σ, F, P, wt),
in which Q is a finite set of states, Σ is a ranked alphabet of input symbols, F : Q → N
assigns a final weight to every state, P is a finite set of productions of the form (ℓ, q, E)
with ℓ ∈ TΣ(Q) \ Q, q ∈ Q, and finite subset E ⊆ N∗ × N∗, and wt: P → N assigns a
weight to every production. A production p = (ℓ, q, E) ∈ P is usually written p = ℓ

E−→ q

or p = ℓ
E−→wt(p) q, and the tree ℓ is called its left-hand side, q is its target state, and E

are its equality constraints, respectively. Equality constraints (v, v′) ∈ E are also written
as v = v′. A state q ∈ Q is final if F (q) ̸= 0.

Next, we recall the derivation semantics of WTGc from [20]. Let (v, v′) ∈ N∗ × N∗ be
an equality constraint and t ∈ TΣ. The tree t satisfies (v, v′) if and only if v, v′ ∈ pos(t)
and t|v = t|v′ , and for a finite set C ⊆ N∗ × N∗ of equality constraints, we write t |= C

if t satisfies all (v, v′) ∈ C. Let G = (Q, Σ, F, P, wt) be a WTGc. A sentential form
(for G) is a tree ξ ∈ TΣ(Q). Given an input tree t ∈ TΣ, sentential forms ξ, ζ ∈ TΣ(Q), a
production p = ℓ

E−→ q ∈ P , and a position w ∈ pos(ξ), we write ξ ⇒p,w
G,t ζ if ξ|w = ℓ,

ζ = ξ[q]w, and t|w |= E; i.e., the equality constraints E are fulfilled on t|w. A se-
quence d = (p1, w1) · · · (pn, wn) ∈ (P × N∗)∗ is a derivation (of G) for t if there ex-
ist ξ0, . . . , ξn ∈ TΣ(Q) such that ξ0 = t and ξi−1 ⇒pi,wi

G,t ξi for all i ∈ [n]. We call d

left-most if additionally w1 ≺ w2 ≺ · · · ≺ wn. Note that the sentential forms ξ0, . . . , ξn

are uniquely determined if they exist, and for any derivation d for t there exists a unique
permutation of d that is a left-most derivation for t. We call d complete if ξn ∈ Q, and in
this case we also call it a derivation to ξn. The set of all complete left-most derivations
for t to q ∈ Q is denoted by Dq

G(t). A complete derivation to some final state is called
accepting. If for every p ∈ P , there exists a tree t ∈ TΣ, a final state q and a deriva-
tion (p1, w1) · · · (pm, wm) ∈ Dq

G(t) such that F (q) ·
∏n

i=1 wt(pi) ̸= 0 and p ∈ {p1, . . . , pm}; i.e.
if every production is used in an accepting derivation with nonzero weights, then G is trim.

Let d = (p1, w1) · · · (pn, wn) ∈ Dq
G(t) for some t ∈ TΣ and i ∈ [n]. Moreover,

let {j1, . . . , jℓ} be the set {j ∈ [n] | wi ≤ wj} with the indices j1 < · · · < jℓ of those positions
of which wi is a prefix. We refer to (pj1 , w−1

i wj1), . . . , (pjℓ
, w−1

i wjℓ
) as the derivation for t|wi

incorporated in d. Conversely, for w ∈ N∗ we abbreviate the derivation (p1, ww1) · · · (pn, wwn)
by wd.

The weight of a derivation d = (p1, w1) · · · (pn, wn) is defined as wtG(d) =
∏n

i=1 wt(pi).
The weighted tree language generated by G, written JGK : TΣ → N, is defined for all t ∈ TΣ by
JGK(t) =

∑
q∈Q, d∈Dq

G
(t) F (q) · wtG(d). For t ∈ TΣ and q ∈ Q, we will often use the
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value wtq
G(t) defined as wtq

G(t) =
∑

d∈Dq
G

(t) wtG(d). Using distributivity, JGK(t) then sim-
plifies to JGK(t) =

∑
q∈Q F (q) · wtq

G(t). We call two WTGc equivalent if they generate the
same weighted tree language.

We call a WTGc (Q, Σ, F, P, wt) a weighted tree grammar (WTG) if E = ∅ for every
production ℓ

E−→ q ∈ P ; i.e., no production utilizes equality constraints. Instead of ℓ
∅−→ q we

also simply write ℓ→ q. Moreover, we call a WTGc a weighted tree automaton with equality
constraints (WTAc) if posΣ(ℓ) = {ε} for every production ℓ

E−→ q ∈ P , and a weighted tree
automaton (WTA) if it is both a WTG and a WTAc. The classes of WTGc and WTAc are
equally expressive, and they are strictly more expressive than the class of WTA [20]. We call
a weighted tree language regular if it is generated by a WTA and constraint-regular if it is
generated by a WTGc. Productions with weight 0 are obviously useless, so we may assume
that wt(p) ̸= 0 for every production p. Finally, we define the size of a WTGc as follows.

▶ Definition 1. Let G = (Q, Σ, F, P, wt) be a WTGc and p = ℓ
E−→ q ∈ P be a production.

We define the height of p as ht(p) = ht(ℓ) and its size as size(p) = size(ℓ), the height of P

as ht(P ) = maxp∈P ht(p) and its size as size(P ) =
∑

p∈P size(p), and finally the height of G

as ht(G) = |Q| · ht(P ) and its size as size(G) = |Q|+ size(P ).

It is known [20] that WTGc of a particular shape can represent homomorphic images of
regular weighted tree languages. This subclass of WTGc will be central in our work.

▶ Definition 2. A WTGc
(
Q, Σ, F, P, wt

)
is classic if every production p = ℓ

E−→ q ∈ P

satisfies E ⊆ posQ(ℓ)2; i.e., all equality constraints point to the Q-labeled positions of its left-
hand side. Without loss of generality, we can assume that every set E of equality constraints is
reflexive, symmetric, and transitive, that is, an equivalence relation on a subset D ⊆ posQ(ℓ),
so not all occurrences of states need to be constrained.

A classic WTGc is eq-restricted if it has a so-called sink state ⊥ ∈ Q \ F such that (i)
σ(⊥, . . . ,⊥)→1 ⊥ belongs to P for all σ ∈ Σ, and no other productions target ⊥, and (ii)
for every production ℓ

E−→ q with q ̸= ⊥, if posQ(ℓ) = {p1, . . . , pn} and qi = ℓ(pi) for i ∈ [n],
the following conditions hold:
1. For each i ∈ [n], the set {qj | pj ∈ [pi]≡E

} \ {⊥} is a singleton.
2. There exists exactly one pj ∈ [pi]≡E

such that qj ̸= ⊥.

In other words, an eq-restricted WTGc G has a designated nonfinal sink state ⊥ ∈ Q

such that F (⊥) = 0 as well as pγ = γ(⊥, . . . ,⊥)→ ⊥ ∈ P and wt(pγ) = 1 for every γ ∈ Γ.
In addition, every production p = ℓ

E−→ q ∈ P satisfies the following two properties.
First, E ⊆ posQ(ℓ)2; i.e., all equality constraints point to the Q-labeled positions of its
left-hand side. Second, ℓ(v) = ⊥ and ℓ(w) ̸= ⊥ for every v ∈ [w′]E \ {w} and w′ occurring in
E, where w = min⪯[w′]E ; i.e., all but the lexicographically least position in each equivalence
class of E are guarded by state ⊥. Essentially, an eq-restricted WTGc G performs its
checks (and charges weights) exclusively on the lexicographically least occurrences of equality-
constrained subtrees. All the other subtrees, which by means of the constraint are forced to
coincide with another subtree, are simply ignored by the WTGc, which formally means that
they are processed in the designated sink state ⊥. In the following, we will use ⊥ to denote
such a sink state, and write Q ∪ {⊥} to explicitly indicate its presence.

To simplify our terminology, we will refer to eq-restricted WTGc simply as WTGh.

▶ Theorem 3 (see [20, Theorem 5]). Let G = (Q, Σ, F, P, wt) be a trim WTA and h : TΣ → TΓ
be a nondeleting and nonerasing tree homomorphism. Then there exists a trim WTGh G′

with JG′K = hJGK. Moreover, size(G′) ∈ O
(
size(G) · size(h)

)
and ht(G′) ∈ O

(
size(h)

)
.
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▶ Example 4. Let G = (Q ∪ {⊥}, Γ, F, P, wt) with Q = {q, qf}, Γ = {α(0), γ(1), δ(3)},
F (q) = F (⊥) = 0 and F (qf ) = 1, and the following set P of productions.{

α→1 q, γ(q)→2 q, δ
(
q, γ(⊥), q

) 1=21−→1 qf , α→1 ⊥, γ(⊥)→1 ⊥, δ(⊥,⊥,⊥)→1 ⊥
}

The WTGc G is a WTGh. It generates the homomorphic image JGK = hA for the tree
homomorphism h induced by the mapping α 7→ α, γ 7→ γ(x1), and σ 7→ δ

(
x2, γ(x2), x1

)
applied to the regular weighted tree language A : TΣ → N given by A(t) = 2|posγ (t)| for
every t ∈ TΣ with Σ = {α(0), γ(1), σ(2)}. The weighted tree language JGK is itself not regular
because its support is clearly not a regular tree language.

The restrictions in the definition of a WTGh allow us to trim it effectively.

▶ Lemma 5. Let G = (Q ∪ {⊥}, Σ, F, P, wt) be a WTGh. An equivalent, trim WTGh G′

can be constructed in polynomial time.

Proof. First, recall that we may assume wt(p) ̸= 0 for every p ∈ P because wtG(d) = 0 for
every derivation d of G that contains a production p with wt(p) = 0. For the proof, we
employ a simple reachability algorithm. For every n ∈ N and U ⊆ Q, let

Q0 = ∅ Qn+1 = Qn ∪
⋃

(ℓ
E−→q)∈P

ℓ∈TΣ(Qn)

{q} ΠU =
⋃

(ℓ
E−→q)∈P

ℓ∈TΣ(U)

{
(q, q′) ∈ U2 | posq′(ℓ) ̸= ∅

}
.

Since Q is finite, there exists N with QN = QN+1. Let Q′ = QN . A straightforward proof
shows that q ∈ Q′ if and only if for some t ∈ TΣ there exists d ∈ Dq

G(t) with wtG(d) ̸= 0. To
ensure the reachability of a final state, we let ◁ be the smallest reflexive and transitive relation
on Q′ that contains ΠQ′ . Then P ′ = {ℓ E−→ q ∈ P | q ∈ Q′, ∃qf ∈ Q′ : F (qf) ̸= 0, qf ◁ q}, and
the desired WTGh is simply G′ = (Q ∪ {⊥}, Σ, F, P ′, wt |P ′). ◀

3 Substitutions in the Presence of Equality Constraints

This short section recalls from [20] some definitions together with a pumping lemma for
WTGh, which will be essential for deciding the integer-weighted HOM-problem. First, we
need to refine the substitution of trees such that it complies with existing constraints.

▶ Definition 6 (see [20] and cf. [15]). Let G = (Q ∪ {⊥}, Σ, F, P, wt) be a WTGh. Moreover,
let q, q′ ∈ Q, t, t′ ∈ TΣ, and d ∈ Dq

G(t) as well as d′ ∈ Dq′

G(t′) such that q ̸= ⊥ ̸= q′ and
d = d(p, ε) uses p = c[q1, . . . , qk] E,∅−→ q ∈ P as its final production. For every i ∈ [k]
let wi = posxi

(c) and di be the unique left-most derivation for ti = t|posxi
(c) incorporated

in d. Finally, for every u ∈ TΣ let d⊥
u be the unique left-most derivation for u to ⊥. For

every w ∈ pos(t) at which the production used in d targets q′, we recursively define the
derivation substitution dJd′Kw of d′ into d at w and the resulting tree tJt′Kd

w as follows.
If w = ε, then dJd′Kε = d′ and tJt′Kd

ε = t′. Otherwise w = wjw for some j ∈ [k] and we have

dJd′Kw = d′
1 · · · d′

k(p, ε) and tJt′Kd
w = c[t′

1, . . . , t′
k] ,

where for each i ∈ [k] we have
if i = j (i.e., wi is a prefix of w), then d′

i = wi(diJd′Kw) and t′
i = tiJt′Kd′

i
w ,

if qi = ⊥ and wi ∈ [wj ]≡E
(i.e., it is a position that is equality restricted to wj), then

d′
i = wid

⊥
u and t′

i = u with u = tjJt′K
d′

j
w , and

otherwise d′
i = widi and t′

i = ti (i.e., derivation and tree remain unchanged).
It is straightforward to verify that dJd′Kw is a complete left-most derivation for tJt′Kd

w to q.
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▶ Example 7. Consider the WTGh G of Example 4 and the following tree t it generates
into which we want to substitute the tree t′ = γ(α) at position w = 11.

t =

δ

γ

α

γ

γ

α

γ

α

tJt′K11 =

δ

γ

γγγ

ααα

γ

γ

γγγ

ααα

γ

α

We consider the following complete left-most derivation for t to qf .

d =
(

α→ q, 11
) (

γ(q)→ q, 1
) (

α→ ⊥, 211
) (

γ(⊥)→ ⊥, 21
)

(
α→ q, 31

) (
γ(q)→ q, 3

) (
δ
(
q, γ(⊥), q

) 1=21−→ qf , ε
)

Moreover, let d′ =
(
α → q, 1

) (
γ(q) → q, ε

)
and d′

⊥ =
(
α → ⊥, 1

) (
γ(⊥) → ⊥, ε

)
.

With the notation of Definition 6, in the first step we have v1 = 1, v2 = 21, v3 = 3,
d1 = d3 = d′, d2 = d′

⊥, and ŵ = v−1
1 w = 1. Respecting the only constraint 1 = 21,

we set d′
1 = d1Jd′Kŵ = d′Jd′K1, d′

2 = d2Jd′
⊥Kŵ = d′

⊥Jd′
⊥K1, and d′

3 = d3 = d′. Eventually,
d′

1 =(α→ q, 11)(γ(q)→ q, 1)(γ(q)→ q, ε) and d′
2 =(α→ ⊥, 11)(γ(⊥)→ ⊥, 1)(γ(⊥)→ ⊥, ε).

Hence, we obtain the following derivation dJd′K11 for our new tree tJt′K11.

dJd′K11 =
(

α→ q, 111
) (

γ(q)→ q, 11
) (

γ(q)→ q, 1
) (

α→ ⊥, 2111
) (

γ(⊥)→ ⊥, 211
)

(
γ(⊥)→ ⊥, 21

) (
α→ q, 31

) (
γ(q)→ q, 3

) (
δ
(
q, γ(⊥), q

) 1=21−→ qf , ε
)

Although t|31 = α also coincides with the subtree t|11 = α we replaced, these two subtrees
are not equality-constrained, so the simultaneous substitution does not affect t|31.

The substitution of Definition 6 allows us to prove a pumping lemma for the class of
WTGh: If d is an accepting derivation of a WTGh G = (Q ∪ {⊥}, Σ, F, P, wt) for a tree t

with ht(t) > ht(G), then there exist at least |Q \ {⊥}|+ 1 positions w1 > · · · > w|Q|+1 in t at
which d applies productions with non-sink target states. By the pigeonhole principle, there
thus exist two positions wi > wj in t at which d applies productions with the same non-sink
target state. Employing the substitution we just defined, we can substitute t|wj

into wi and
obtain a derivation of G for tJt|wj Kwi . This process can be repeated to obtain an infinite
sequence of trees strictly increasing in size. Formally, the following lemma was proved in [20].

▶ Lemma 8 ([20, Lemma 4]). Let G = (Q ∪ {⊥}, Σ, F, P, wt) be a WTGh. Consider some
tree t ∈ TΣ and non-sink state q ∈ Q \ {⊥} such that ht(t) > ht(G) and Dq

G(t) ̸= ∅. Then
there are infinitely many pairwise distinct trees t0, t1, . . . such that Dq

G(ti) ̸= ∅ for all i ∈ N.

▶ Example 9. Recall the WTGh G of Example 4. We have ht(P ) = 2 and ht(G) = 4, but
for simplicity, we choose the smaller tree t = δ(γ(α), γ(γ(α)), γ(α)), which we also considered
in Example 7, since it also allows pumping. The derivation d presented in Example 7 for t

applies the productions (α→ q) at 11 and γ(q)→ q at 1, so we substitute t|1 = γ(α) at 11
to obtain tJγ(α)K11. In fact, this is exactly the substitution we illustrated in Example 7.
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4 The Decision Procedure

Let us now turn to the N-weighted version of the HOM-problem. In the following, we show
that the regularity of the homomorphic image of a regular N-weighted tree language is
decidable in polynomial time. More precisely, we prove the following theorem.

▶ Theorem 10. The weighted HOM-problem over N is polynomial; i.e. for fixed ranked
alphabets Γ and Σ, given a trim WTA A over Γ, and a nondeleting, nonerasing tree homo-
morphism h : TΓ → TΣ, it is decidable in polynomial time whether hJAK is regular.

In the beginning, the proof of Theorem 10 resembles the unweighted case [15]: Given a
regular weighted tree language A (represented by a trim WTA) and a tree homomorphism h,
we first construct a trim WTGh G for its image JGK = hA applying Theorem 3. We then
show that JGK is regular if and only if the equality constraints used in G only act on subtrees
of height at most ht(G). In other words, if there exists a production ℓ

E−→ q in G such that
for some equality constraint (u, v) ∈ E with non-sink state q = ℓ(u) there exists a tree t ∈ TΣ
with ht(t) > ht(G) and Dq

G(t) ̸= ∅, then JGK is not regular, and if no such production exists,
then JGK is regular. There are thus three parts to our proof. First, we show that the existence
of such a production is decidable in polynomial time. Then we show that JGK is regular if
no such production exists. Finally, we show that JGK is not regular if such a production
exists. The latter part employs Ramsey’s theorem [24] and is the most significant technical
contribution in our paper. For convenience, we attach a name to the property described here.

▶ Definition 11. Let G = (Q∪{⊥}, Σ, F, P, wt) be a trim WTGh. We say that G has the large
duplication property if there exist a production ℓ

E−→ q ∈ P , an equality constraint (u, v) ∈ E

with ℓ(u) ̸= ⊥ = ℓ(v), and a tree t ∈ TΣ such that ht(t) > ht(G) and D
ℓ(u)
G (t) ̸= ∅.

We start with the decidability of the large duplication property.

▶ Lemma 12. Consider a fixed ranked alphabet Σ. The following is decidable in polynomial
time: Given a trim WTGh G, does it satisfy the large duplication property?

Proof. Let G = (Q ∪ {⊥}, Σ, F, P, wt) and construct the directed graph G = (Q, E) with
edges E =

⋃
ℓ

E−→q∈P
{(q′, q) | q′ ∈ Q, posq′(ℓ) ̸= ∅}. Clearly, the large duplication property

is equivalent to the condition that there exists a production ℓ
E−→ q ∈ P , an equality

constraint (u, v) ∈ E with ℓ(u) ̸= ⊥ = ℓ(v), and a state q′ ∈ Q \ {⊥} such that there exists a
cycle from q′ to q′ in G and a path from q′ to ℓ(u) in G. This equivalent condition can be
checked in polynomial time. The equivalence of the two statements is easy to establish. If
the large duplication property holds, then the pumping lemma [20, Lemma 4] exhibits the
required cycle and path. Conversely, if the cycle and path exist, then the pumping lemma [20,
Lemma 4] can be used to derive arbitrarily tall trees for which a derivation exists. ◀

Next, we show that if a WTGh G does not satisfy the large duplication property, then its
generated weighted tree language JGK is regular. To this end, we construct the linearization
of G. The linearization of a WTGh G is a WTG that simulates all derivations of G which
only ensure the equality of subtrees of height at most ht(G). For this, we replace every
production ℓ

E−→ q in G by the collection of all productions ℓ′ → q which can be obtained by
instantiating E, i.e., substituting each position constrained by E with a compatible tree of
height at most ht(G) that satisfies E. Note that positions in ℓ that are unconstrained by E

are unaffected by these substitutions. Formally, we define the linearization following [15,
Definition 7.1].
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▶ Definition 13. Let G = (Q ∪ {⊥}, Σ, F, P, wt) be a WTGh. The linearization lin(G)
of G is the WTG lin(G) = (Q ∪ {⊥}, Σ, F, Plin, wtlin), where Plin and wtlin are defined as
follows. For ℓ′ ∈ TΣ(Q) \ Q and q ∈ Q, we let (ℓ′ → q) ∈ Plin if and only if there exist a
production (ℓ E−→ q) ∈ P , positions w1, . . . , wk ∈ posQ∪{⊥}(ℓ), and trees t1, . . . , tk ∈ TΣ with
{w1, . . . , wk} =

⋃
w∈pos⊥(ℓ)[w]E; i.e., E constrains exactly the positions w1, . . . , wk,

ti = tj if (wi, wj) ∈ E for all i, j ∈ [k],
ℓ′ = ℓ[t1]w1 · · · [tk]wk

, and

D
ℓ(wi)
G (ti) ̸= ∅ and ht(ti) ≤ ht(G) for all i ∈ [k].

For every such production ℓ′ → q we define wtlin(ℓ′ → q) as the sum over all weights

wt(ℓ E−→ q) ·
∏

i∈[k]

wtℓ(wi)
G (ti)

for all (ℓ E−→ q) ∈ P , w1, . . . , wk ∈ posQ∪{⊥}(ℓ), and t1, . . . , tk ∈ TΣ as above.

If a trim WTGh G does not satisfy the large duplication property, then every equality
constraint in every derivation of G only ensures the equality of subtrees of height at most ht(G).
Thus, lin(G) and G generate the same weighted tree language JGK = Jlin(G)K, which is then
regular because lin(G) is a WTG. Thus we summarize:

▶ Proposition 14. Let G be a trim WTGh and suppose that G does not satisfy the large
duplication property. Then JGK is a regular weighted tree language.

Finally, we show that if a WTGh G = (Q∪{⊥}, Σ, F, P, wt) satisfies the large duplication
property, then JGK is not regular. For this, we first show that if G satisfies the large duplication
property, then we can decompose it into two WTGh G1 and G2 such that JGK = JG1K+ JG2K
and at least one of JG1K and JG2K is not regular. To conclude the desired statement, we then
show that the sum JGK = JG1K + JG2K is also not regular. For the decomposition, consider
the following idea. Assume that there exists a production p = (ℓ E−→ q) ∈ P as in the large
duplication property such that F (q) ̸= 0. Then we create two copies G1 and G2 of G as
follows. In G1 we set all final weights to 0, add a new state f with final weight F (q), and
add the new production (ℓ E−→ f) with the same weight as p. On the other hand, in G2
we set the final weight of q to 0, add a new state f with final weight F (q), and for every
production p′ = (ℓ′ E′

−→ q) ∈ P except p, we add the new production ℓ′ E′

−→ f to G2 with
the same weight as p′. Then JGK = JG1K + JG2K because every derivation of G whose last
production is p is now a derivation of G1 to f , and every other derivation is either directly a
derivation of G2 or, in case of other derivations to q, is a derivation of G2 to f .

By our assumption on the production p = (ℓ E−→ q), there exist a tall tree t ∈ TΣ
with ht(t) > ht(G) and a constraint (u, v) ∈ E with ℓ(u) ̸= ⊥ = ℓ(v) and D

ℓ(u)
G (t) ̸= ∅. Thus,

every tree t′ generated by G1 satisfies t′|u = t′|v, and by Lemma 8, there exist infinitely many
pairwise distinct trees with a derivation to ℓ(u). The support (i.e., set of nonzero weighted
trees) of JG1K is therefore not a regular tree language. This implies that JG1K is not regular,
as the support of every regular weighted tree language over N is a regular tree language [12].

In general, we cannot expect that a production ℓ
E−→ q as in the large duplication property

exists that already targets a final state. We therefore “grow” productions from the top,
beginning with a production whose target state is final, by substituting Q-labeled positions
with left-hand sides of other productions until we have “synthesized” a production which
satisfies the large duplication property. We then construct G1 by adding this newly formed
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production as a production to a new state f . We construct G2 simply to ensure that it
simulates all derivations of G that are not already accounted for by G1. Formally, we show
the following lemma.

▶ Lemma 15. Let G = (Q ∪ {⊥}, Σ, F, P, wt) be a trim WTGh that satisfies the large
duplication property. Then there exist two trim WTGh G1 = (Q1 ∪ {⊥}, Σ, F1, P1, wt1) and
G2 = (Q2 ∪ {⊥}, Σ, F2, P2, wt2) such that JGK = JG1K + JG2K and for some f ∈ Q1 we have

F1(f) ̸= 0 and F1(q) = 0 for all q ∈ Q1 \ {f}, and
there exists exactly one production pf = (ℓf

Ef−→ f) ∈ P1 with target state f , and for this
production there exists (u, v) ∈ Ef with ℓf(u) ̸= ℓf(v) = ⊥ and an infinite sequence of
pairwise distinct trees t0, t1, t2, . . . ∈ TΣ such that D

ℓf(u)
G1

(ti) ̸= ∅ for all i ∈ N.

Proof. Let p = (ℓ E−→ q) ∈ P be a production as in the large duplication property. Since
G is trim, there exist a tree t′ ∈ TΣ, a final state qf ∈ Q with F (qf) ̸= 0, a deriva-
tion d = (p1, w1) · · · (pm, wm) ∈ Dqf

G(t′), and i ∈ [m] such that pi = p. In other words,
there is a derivation utilizing production p. We let pj = ℓj

Ej−→ qj for every j ∈ [m], and
let wi1 > · · · > wik

be the sequence of prefixes of wi among the positions {w1, . . . , wm} in
strictly descending order with respect to the prefix order. In particular, we have wi1 = wi

and wik
= ε.

For a position w and a set E′ of constraints, we define wE′ = {(wu, wv) | (u, v) ∈ E′}.
We want to join the left-hand sides of the productions pi1 , . . . , pik

to a new produc-
tion ℓik

[ℓik−1 ]wik−1
· · · [ℓi1 ]wi1

Ef−→ qf with Ef =
⋃

j∈[k] wij
Eij

. However, we need to ensure
that wi1 , . . . , wik

do not occur in Ef. Therefore, we assume that p, t′, qf, d, and i above are
chosen such that wi is of minimal length among all possible choices. Then we see as follows
that wi1 , . . . , wik

do not occur in Ef.
Let (u, v) ∈ E with ℓ(u) ̸= ℓ(v) = ⊥ and t ∈ TΣ with ht(t) > ht(G) and D

ℓ(u)
G (t) ̸= ∅.

Suppose there exists j ∈ [k] such that wij
occurs in Ef. Then there exists (u′, v′) ∈ Eij+1

with wij
= wij+1u′. Then the tree t′JtKwiu|wij

shows us that pij+1 is also a production as in
the large duplication property, but |wij+1 | < |wi|, so wi is not of minimal length.

We define G1 = (Q1 ∪ {⊥}, Σ, F1, P1, wt1) as follows. Let f /∈ Q ∪ {⊥} be a new state.
We set Q1 = Q ∪ {f}, F1(f) = F (qf), and F1(q′) = 0 for all q′ ∈ Q. For the produc-
tion pf = (ℓik

[ℓik−1 ]wik−1
· · · [ℓi1 ]wi1

Ef−→ f) with Ef =
⋃

j∈[k] wij
Eij

, we let P1 = P ∪ {pf},
wt1(pf) =

∏
j∈[k] wt(pij

), and wt1(p′) = wt(p′) for all p′ ∈ P . Then G1 simulates all
derivations of G with productions pi1 , . . . , pik

at the positions wi1 , . . . , wik
, respectively.

For the existence of the infinite sequence of trees, let (u, v) ∈ E with ℓ(u) ̸= ℓ(v) = ⊥
and t ∈ TΣ with ht(t) > ht(G) and D

ℓ(u)
G (t) ̸= ∅. By Lemma 8, there exists an infin-

ite sequence t0, t1, t2, . . . ∈ TΣ of pairwise distinct trees with D
ℓ(u)
G (ti) ̸= ∅ for all i ∈ N.

Since D
ℓ(u)
G (ti) ⊆ D

ℓ(u)
G1

(ti) for all i ∈ N, this is the desired sequence. We conclude the
definition of G1 by noting that (wiu, wiv) ∈ Ef and that the left-hand side ℓf of pf satis-
fies ℓf(wiu) = ℓ(u).

Next, we construct G2 such that it simulates all remaining derivations of G in the following
sense. If d is a derivation of G to a state different from qf, then it is a derivation of G2 to that
same state. If d is a derivation of G to qf but its last production is not pik

, then it is simulated
by a derivation of G2 to a new state f . If d is a derivation of G and its last production
is pik

but the production at wik−1 is not pik−1 , then it again is simulated by a derivation
of G2 to f , and so on. To have a more compact definition for G2, we use the symbol □ to
denote a tree of height 0 and a term □[ℓik

]wik
· · · [ℓij+1 ]wij+1

[ℓ′]wij
for j = k is to be read

as □[ℓ′]wij
. We let f /∈ Q ∪ {⊥} be a new state and define G2 = (Q2 ∪ {⊥}, Σ, F2, P2, wt2)

by Q2 = Q ∪ {f}, F2(qf) = 0, F2(f) = F (qf), and F2(q′) = F (q′) for all q′ ∈ Q \ {qf}.
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t′ = σ

γ1

σ

α α

α

pf = σ

γ1

σ

q0 ⊥

q0

111=112−→ 8 f

Figure 1 The tree t′ and the new production pf .

For the set P2 of productions, we let

P2 = P ∪
⋃

j∈[k]

{
□[ℓik

]wik
· · · [ℓij+1 ]wij+1

[ℓ′]wij

Ef−→ f
∣∣∣ p′ = (ℓ′ E′

−→ qij
) ∈ P \ {pij

},

Ef = wij
E′ ∪

k⋃
j′=j+1

wij′ Eij′

}
.

For a production pf = □[ℓik
]wik
· · · [ℓij+1 ]wij+1

[ℓ′]wij

Ef−→ f constructed from p′ as above we
let wt2(pf ) = wt(p′) ·

∏k
j′=j+1 wt(pij′ ) and for every p′ ∈ P we let wt2(p′) = wt(p′). Then

we have JGK(t) = JG1K(t) + JG2K(t) for every t ∈ TΣ. Note that trimming G1 and G2 will
not remove any of the newly added productions under the assumption that G is trim. ◀

▶ Example 16. We present an example for the decomposition in Lemma 15. Consider the
trim WTGh G = (Q ∪ {⊥}, Σ, P, F, wt) with Q = {q0, q̄, qf}, Σ = {α(0), γ(1), σ(2), γ

(1)
1 , γ

(1)
2 },

final weights F (qf) = 1 and F (q0) = F (q̄) = F (⊥) = 0, and the set P = P⊥ ∪ P ′ defined
by P ′ =

{
α→1 q0, γ(q0)→1 q0, σ(q0,⊥) 1=2−→2 q̄, γ1(q̄)→2 q̄, γ2(q̄)→2 q̄, σ(q̄, q0)→2 qf

}
and the usual productions targeting ⊥ in P⊥. Trees of the form γ(· · · (γ(α)) · · · ) of arbitrary
height are subject to the constraint 1 = 2, so G satisfies the large duplication property.

We consider t′ as in Figure 1 and use its (unique) derivation in G. Following the approach
sketched above, we choose a new state f and define G1 = (Q ∪ {f} ∪ {⊥}, Σ, F1, P1, wt1),
where F1(f) = 1 and F1(q) = 0 for every q ∈ Q ∪ {⊥}, and P1 = P ∪ {pf} with the new
production pf depicted in Figure 1, which joins all the productions of G used to derive t′,
from the one evoking the large duplication property to the one targeting a final state. It
remains to construct a WTGh G2 such that JGK = JG1K + JG2K. All productions of G still
occur in G2, but qf is not final anymore. Instead, we add a state f with F2(f) = F (qf) = 1
and make sure that this state adopts all other accepting derivations that formerly led to qf.
For this, we handle first the derivations that coincide with the derivation for t′ at the juncture
positions ε and 1, but not at 2. This leads to the following new productions p1

1 and p1
2:

p1
1 = σ

γ1

γ1

q̄

q0

→8 f p1
2 = σ

γ1

γ2

q̄

q0

→8 f .
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Next we cover the derivations that differ from the derivation for t′ at the position 1 but
coincide with it at the root. This leads to the new productions

p2
1 = σ

σ

q0 ⊥

q0

11=12−→ 4 f p2
2 = σ

γ2

q0

q0

→4 f .

Apart from the production incorporated at the root of pf, no other production of G targets qf
directly, so no more productions are added to P2.

Finally, we define the WTGh G2 = (Q∪{f}∪{⊥}, Σ, F2, P2, wt2) with F2(f) = F (qf) = 1,
F2(qf) = F2(q0) = F2(q̄) = F2(⊥) = 0, and P2 = P ∪ {p1

1, p1
2} ∪ {p2

1, p2
2}.

It remains to show that the existence of a decomposition JGK = JG1K+JG2K as in Lemma 15
implies the non-regularity of JGK. For this, we employ the following idea. Consider a ranked
alphabet Σ containing a letter σ of rank 2, a WTA G′ = (Q, Σ, F, P, wt) over Σ (which
exemplifies G2), and a sequence t0, t1, t2, . . . ∈ TΣ of pairwise distinct trees. At this point, we
assume that P contains all possible productions, but we may have wt(p) = 0 for p ∈ P . Using
the initial algebra semantics [12], we can find a matrix representation for the weights assigned
by G′ to trees of the form σ(ti, tj) as follows. We enumerate the states Q = {q1, . . . , qn}
and for every i ∈ N define a (column) vector νi ∈ Nn by (νi)k = wtqk

G′(ti) for k ∈ [n].
Furthermore, we define a matrix N ∈ Nn×n by Nkh =

∑
q∈Q F (q) · wt(σ(qk, qh) → q) for

k, h ∈ [n]. Then JG′K(σ(ti, tj)) = νT
i Nνj for all i, j ∈ N, where νT

i is the transpose of νi.
We employ this matrix representation to show that the sum of JG′K and the (non-regular)

characteristic function 1L of the tree language L = {σ(ti, ti) | i ∈ N} is not regular. We
proceed by contradiction and assume that JG′K + 1L is regular. Thus we can find an
analogous matrix representation using a matrix N ′ and vectors ν′

i for JG′K + 1L. Since the
trees t0, t1, t2, . . . are pairwise distinct, we can write(

JG′K + 1L

)(
σ(ti, tj)

)
= (ν′

i)TN ′ν′
j = JG′K

(
σ(ti, tj)

)
+ δij = νT

i Nνj + δij

for all i, j ∈ N, where δij denotes the Kronecker delta. The vectors ν′
i and νi contain

nonnegative integers, so we may consider the concatenated vectors ⟨ν′
i, νi⟩ as vectors of Qm

where m ∈ N is the sum of number of states of G′ and of the WTA we assumed recog-
nizes JG′K + 1L. Since Qm is a finite dimensional Q-vector space, the Q-vector space spanned
by the family (⟨ν′

i, νi⟩)i∈N is also finite dimensional. We may thus select a finite generating
set from (⟨ν′

i, νi⟩)i∈N. For simplicity, we assume that ⟨ν′
1, ν1⟩, . . . , ⟨ν′

K , νK⟩ form such a gener-
ating set. Thus there exist a1, . . . , aK ∈ Q with ⟨ν′

K+1, νK+1⟩ =
∑

i∈[K] ai⟨ν′
i, νi⟩. Applying

the usual distributivity laws for matrix multiplication, we reach a contradiction as follows.(
JG′K + 1L

)(
σ(tK+1, tK+1)

)
= (ν′

K+1)TN ′ν′
K+1 =

∑
i∈[K]

ai(ν′
i)TN ′ν′

K+1

=
∑

i∈[K]

aiν
T
i NνK+1 = νT

K+1NνK+1 = JG′K
(
σ(tK+1, tK+1)

)
For the general case, we do not want to assume that JG2K is regular, so we cannot assume

to have a matrix representation as we had for JG′K above. In order to make our idea work, we
identify a set of trees for which the behavior of JG1K+ JG2K resembles that of JG′K+ 1L; more
precisely, we construct a context C and a sequence t0, t1, t2, . . . of pairwise distinct trees
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such that (JG1K+ JG2K)(C(ti, tj)) = ν
(1)
i Nν

(2)
j + δijµi for all i, j ∈ N and additionally, µi > 0

for all i ∈ N. This representation then allows us to perform linear algebra computations in
order to prove that JG1K + JG2K is non-regular. Unfortunately, working with a 2-context C

may be insufficient if G1 uses constraints of the form {v = v′, v′ = v′′}, where more than
two positions are constrained to be pairwise equivalent. Therefore, we have to consider more
general n-contexts C and then identify a sequence of trees such that the equation above is
satisfied on C(ti, tj , tj , . . . , tj).

Isolating this desired sequence of trees is the most technically involved proof in our paper.
We illustrate the effect of this selection in Example 19 below. Along the way, we will use the
following version of Ramsey’s theorem [24]. For a set X, we denote by

(
X
2
)

the set of all
subsets of X of size 2.

▶ Theorem 17. Let k ≥ 1 be an integer and f :
(N

2
)
→ [k] a mapping. There exists an infinite

subset E ⊆ N such that f |(E
2) ≡ i for some i ∈ [k].

▶ Lemma 18. Let G = (Q∪{⊥}, Σ, F, P, wt) be a trim WTGh. If G satisfies the large duplic-
ation property, then there exists an integer r ≥ 2, an r-context C ∈ TΣ(□), trees (ti)i∈N ⊆ TΣ,
an integer m ∈ N, row vectors (ν(1)

i )n∈N ⊆ Nm, column vectors (ν(2)
i )n∈N ⊆ Nm, a matrix

N ∈ Nm×m, and weights (µi)i∈N ⊆ N\{0} with JGK(C(tk, th, th, . . . , th)) = ν
(1)
k Nν

(2)
h +δkhµk

for all k, h ∈ N.

Proof. By Lemma 15 there exist two trim WTGh G1 = (Q1 ∪ {⊥}, Σ, F1, P1, wt1) and
G2 = (Q2 ∪ {⊥}, Σ, F2, P2, wt2) with JGK(t) = JG1K(t) + JG2K(t) for all t ∈ TΣ. Additionally,
there exists f ∈ Q1 with F1(f) ̸= 0 and F1(q) = 0 for all q ∈ Q1 \ {f} and there exists
exactly one production pf = (ℓf

Ef−→ f) ∈ P1 whose target state is f . Finally, for this
production pf there exists (u(1), v(1)) ∈ Ef with ℓf(u(1)) ̸= ℓf(v(1)) = ⊥ and an infinite
sequence t0, t1, t2, . . . ∈ TΣ of pairwise distinct trees with D

ℓf(u(1))
G1

(ti) ̸= ∅ for all i ∈ N.
Let t ∈ TΣ be such that Df

G1
(t) ̸= ∅, and let u

(1)
1 , . . . , u

(1)
r be an enumeration of all

positions that are equality-constrained to u(1) via Ef, where we assume that u
(1)
1 = u(1). We

define a context C = t[□]
u

(1)
1
· · · [□]

u
(1)
r

. Then JG1K(C(ti, tj , tj , . . . , tj)) > 0 iff i = j.
Let us establish some additional notations. Let k, h ∈ N and assume there is q ∈ Q2

with F2(q) ̸= 0 and d = (p1, w1) · · · (pm, wm) ∈ Dq
G2

(C(tk, th, th, . . . , th)). Let pi = ℓi
Ei−→ qi

for every i ∈ [m], and for a set X ⊆ pos(C(tk, th, th, . . . , th)), we let i1 < · · · < in be such
that wi1 , . . . , win

is an enumeration of {w1, . . . , wm} ∩X; i.e., all positions in X to which d

applies productions. We set d|X = (pi1 , wi1) · · · (pin
, win

), wt2(d|X) =
∏

j∈[n] wt2(pij
), and

Dkh = {d′|pos(C) | ∃q′ ∈ Q2 : F2(q′) ̸= 0, d′ ∈ Dq′

G2
(C(tk, th, th, . . . , th))}.

We now employ Ramsey’s theorem in the following way. For k, h ∈ N with k < h,
we consider the mapping {k, h} 7→ Dkh. This mapping has a finite range as every Dkh is
a set of finite words over the alphabet P2 × pos(C) of length at most size(C). Thus, by
Ramsey’s theorem, we obtain a subsequence (tij )j∈N with Dikih

= D< for all k, h ∈ N and
some set D<. For simplicity, we assume Dkh = D< for all k, h ∈ N with k < h. Similarly,
we select a further subsequence and assume Dkh = D> for all k, h ∈ N with k > h. Finally,
the mapping k 7→ Dkk also has a finite range, so by the pigeonhole principle, we may select
a further subsequence and assume that Dkk = D= for all k ∈ N and some set D=. In the
following, we show that D< = D> ⊆ D=.

For now, we assume D< ̸= ∅, let (p1, w1) · · · (pm, wm) ∈ D<, and let pi = ℓi
Ei−→ qi

for every i ∈ [m]. Also, we define Ckh = C(tk, th, th, . . . , th), Ck□ = C(tk,□,□, . . . ,□),
and C□h = C(□, th, th, . . . , th) for k, h ∈ N. We show that every constraint from every Ei is
satisfied on all Ckh with k, h ≥ 1, not just for k < h. More precisely, let i ∈ [m], (u′, v′) ∈ Ei,
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and (u, v) = (wiu
′, wiv

′). We show Ckh|u = Ckh|v for all k, h ≥ 1. Note that by assumption,
Ckh|u = Ckh|v is true for all k, h ∈ N with k < h. We show our statement by a case
distinction depending on the position of u and v in relation to the positions u

(1)
1 , . . . , u

(1)
r .

1. If both u and v are parallel to u(1)
1, then Cij |u and Cij |v do not depend on i. Thus,

C0j |u = C0j |v for all j ≥ 1 implies the statement.
2. If u is in prefix-relation with u(1)

1 and v is parallel to u(1)
1, then Cij |v does not depend

on i. If u ≤ u(1)
1, then by our assumption that (ti)i∈N are pairwise distinct, we obtain the

contradiction C02|v = C02|u ̸= C12|u = C12|v, where C02|v = C12|v should hold. Thus,
we have u(1)

1 ≤ u and in particular, Cij |u does not depend on j. Thus, for all i, j ≥ 1
we obtain Cij |u = Ci,i+1|u = Ci,i+1|v = C0,i+1|v = C0,i+1|u = C0j |u = C0j |v = Cij |v. If
v is in prefix-relation with u(1)

1 and u is parallel to u(1)
1, then we come to the same

conclusion by formally exchanging u and v in this argumentation.
3. If u and v are both in prefix-relation with u(1)

1, then u and v being parallel to each
other implies u(1)

1 ≤ u and u(1)
1 ≤ v. In particular, both u and v are parallel to

all u
(1)
2 , . . . , u

(1)
r . Thus, we obtain, as in the first case, that Cij |u and Cij |v do not depend

on j and the statement follows from Ci,i+1|u = Ci,i+1|v for all i ∈ N.
Let k, h ≥ 1 and dC ∈ D<, and let q ∈ Q2, dk,k+1 ∈ Dq

G2
(Ck,k+1), and dh−1,h ∈ Dq

G2
(Ch−1,h)

such that dC = dk,k+1|pos(C) = dh−1,h|pos(C). Then for dk = dk,k+1|pos(Ck,k+1)\pos(C□,k+1)
and dh = dh−1,h|pos(Ch−1,h)\pos(Ch−1,□), we can reorder d = dkdhdC to a complete left-most
derivation of G2 for Ckh, as all equality constraints from dk are satisfied by the assumption
on dk,k+1, all equality constraints from dh are satisfied by the assumption on dh−1,h, and
all equality constraints from dC are satisfied by our case distinction. Considering the
special cases k = 2, h = 1, and k = h = 1, and the definitions of D> and D=, we
obtain dC ∈ D21 = D> and dC ∈ D11 = D=, and hence, D< ⊆ D> and D< ⊆ D=.

The converse inclusion D> ⊆ D< follows with an analogous reasoning. In conclusion, we
obtain D< = D> ⊆ D=. By the reasoning above, the case D< = ∅ we excluded earlier is
only possible if also D> = ∅, in which case we again have D< = D> ⊆ D=.

Let d1, . . . , dn be an enumeration of D<, i ∈ [n], and k ∈ N. We define the sets

D
(1)
i,k =

{
d|pos(Ck,k+1)\pos(C□,k+1) | d ∈ Dq

G2
(Ck,k+1), di = d|pos(C), q ∈ Q2

}
D

(2)
i,k =

{
d|pos(Ck+1,k)\pos(Ck+1,□) | d ∈ Dq

G2
(Ck+1,k), di = d|pos(C), q ∈ Q2

}
and the corresponding weights ν

(1)
i,k =

∑
d∈D

(1)
i,k

wt2(d) and ν
(2)
i,k =

∑
d∈D

(2)
i,k

wt2(d). Let qi

be the target state of the last production in di and define νi = F2(qi) · wt2(di). Then for
all k, h ∈ N we have JG2K(Ckh) =

∑
i∈[n](ν

(1)
i,k · νi · ν(2)

i,h ) + δkhµ′
k for nonnegative (µ′

j)j∈N,
which stem from the fact that potentially D= \D< ̸= ∅. We arrange the weights ν

(1)
i,k into

a row vector ν
(1)
k , and the weights ν

(2)
i,h into a column vector ν

(2)
h , and the weights νi

into a diagonal matrix N such that JG2K(Ckh) = ν
(1)
k Nν

(2)
h + δkhµ′

k. Finally, recall
that JG1K(Ckh) > 0 iff k = h for all k, h ∈ N. Thus we set µk = µ′

k + JG1K(Ckk) and ob-
tain JGK(Ckh) = JG2K(Ckh)+JG1K(Ckh) = ν

(1)
k Nν

(2)
h +δkhµk with µk > 0 for all k, h ∈ N. ◀

Before concluding the correctness of our decision procedure for the weighted HOM-problem,
we want to exemplify how the Lemma 12 acts on a simple weighted tree language.

▶ Example 19. Consider the WTGh G = ({q, qf ,⊥}, {a(0), g(1), f (2)}, F, P, wt) with final
weights F (qf ) = 1, F (q) = F (⊥) = 0 and the following productions:

P =
{

a→1 q, g(q)→2 q, f(q,⊥) 1=2−→1 qf , f
(
q, g(⊥)

) 1=21−→1 qf

}
∪ P⊥
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where P⊥ = {a→1 ⊥, g(⊥)→1 ⊥, f(⊥,⊥)→1 ⊥}. The production f(q,⊥) 1=2−→1 qf and the
tree ght(G)(a) satisfy the conditions in the large duplication property, so let G1 denote the
WTGh constructed according to Lemma 15 which simulates all derivations of G that use this
production at ε. Consider the sequence ti = gi+ht(G)(a) for i ∈ N. The context C = f(□,□)
satisfies JG1K

(
C(ti, tj)

)
̸= 0 iff i = j. In order to reproduce the linear-algebra argument

from the special case of JG′K + 1L described above, we need a matrix representation for the
remaining part JG2K, possibly with an additional factor δij . In terms of the weights computed
by G2, we can achieve this by the condition that JG2K

(
C(ti, tj)

)
̸= 0 either for all i, j ∈ N,

or for none, or only if i = j. However, because of the production f
(
q, g(⊥)

) 1=21−→1 qf , for
each i we have JG2K

(
C(ti, ti+1)

)
̸= 0 and JG2K

(
C(ti, tj)

)
= 0 for all j ≠ i + 1. To fix this

issue, we may select the subsequence (t2i)i∈N: In that case, we have JG2K
(
C(t2i, t2j)

)
= 0 for

all i, j ∈ N, and the matrix representation for JG2K is trivial.

Let us now conclude the decidability of the N-weighted HOM-problem.

▶ Theorem 20. Let G = (Q ∪ {⊥}, Σ, F, P, wt) be a trim WTGh. If G satisfies the large
duplication property, then JGK is not regular.

Proof. Let C ∈ TΣ(□), (ti)i∈N ⊆ TΣ, m ∈ N, (ν(1)
i )n∈N, (ν(2)

i )n∈N ⊆ Nm, N ∈ Nm×m, and
(µi)i∈N ⊆ N \ {0} be as in Lemma 18, i.e., JGK(C(tk, th, th, . . . , th)) = ν

(1)
k Nν

(2)
h + δkhµk

for all k, h ∈ N. If JGK is regular, then we can assume a representation for all k, h ∈ N as
JGK(C(tk, th, th, . . . , th)) = g(κk, κh, κh, . . . , κh), where κh is a finite vector of weights over N
where each entry corresponds to the sum of all derivations for th to a specific state of a
WTA, and g is a multilinear map encoding the weights of the derivations for C(□,□, . . . ,□)
depending on the specific input states at the □-nodes and the target state at the root ε. We
choose K such that the concatenated vectors ⟨κ1, ν

(1)
1 ⟩, . . . , ⟨κK , ν

(1)
K ⟩ form a generating set

of the Q-vector space spanned by (⟨κi, ν
(1)
i ⟩)i∈N. Then there are coefficients a1, . . . , aK ∈ Q

with κK+1 =
∑

i∈[K] aiκi and ν
(1)
K+1 =

∑
i∈[K] aiν

(1)
i . Thus, we reach our contradiction by

ν
(1)
K+1Nν

(2)
K+1 + µK+1 = g(κK+1, κK+1, . . . , κK+1) =

∑
i∈[K]

aig(κi, κK+1, . . . , κK+1)

=
∑

i∈[K]

aiν
(1)
i Nν

(2)
K+1 = ν

(1)
K+1Nν

(2)
K+1. ◀

5 Conclusion

In this contribution, we proved that the N-weighted HOM-problem is decidable. Formally,
given a regular weighted tree language A over N and a nondeleting, nonerasing tree homo-
morphism h as input, it is decidable in polynomial time whether the homomorphic image hA

is again regular. This was achieved by reducing the HOM-problem to the newly introduced
large duplication property, which formalizes the non-regular behavior of the investigated
weighted tree language hA, and then showing that this property is decidable.

Initially, hA is represented by a generalized tree grammar (WTGh) as introduced in [20].
Such a device expresses the duplication of subtrees performed by h by means of explicit equality
constraints. This WTGh is trimmed and tested directly for the large duplication property. If
it does not satisfy this property, we construct an equivalent weighted tree grammar without
constraints, which proves regularity of the generated weighted tree language. However, if the
trim WTGh for hA does satisfy the large duplication property, then no equivalent weighted
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tree grammar exists. To prove this, we first identify a special sequence of productions, isolate
it from the remainder of the WTGc, and then prove that it induces a non-regularity which
cannot be compensated by the remaining derivations of the WTGh.

We require h to be nondeleting and nonerasing simply to ensure that hA is well-defined
in general. These properties have no impact on the correctness of the reduction or the
computational complexity of the large duplication property, to which we reduce the N-
weighted HOM-problem. Indeed, our decision procedure for this problem is polynomial,
while the unweighted HOM-problem is EXPTIME-complete [6]. In the N-weighted setting
we proved that the large duplication property is sufficient for non-regularity; this is the main
technical difficulty and utilizes Ramsey’s theorem to identify a sequence of trees that acts
as a witness for the non-regularity of the homomorphic image. A matrix representation
that resembles the initial algebra semantics is then utilized to prove non-regularity. In the
unweighted case the large duplication property is clearly necessary, but not sufficient. This
difference is caused by the different algebraic structures of the underlying semirings. Whereas
the semiring N embeds into a field, the Boolean semiring is idempotent, which can be used to
cover non-regular behavior with regular behavior making it irrelevant. Essentially we proved
that such covers are impossible in N, which simplifies the execution of the decision procedure
and allows us to prove polynomial-time decidability of the N-weighted HOM-problem.
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Abstract
We analyze the running time of the Hartigan–Wong method, an old algorithm for the k-means
clustering problem. First, we construct an instance on the line on which the method can take 2Ω(n)

steps to converge, demonstrating that the Hartigan–Wong method has exponential worst-case
running time even when k-means is easy to solve. As this is in contrast to the empirical performance
of the algorithm, we also analyze the running time in the framework of smoothed analysis. In
particular, given an instance of n points in d dimensions, we prove that the expected number of
iterations needed for the Hartigan–Wong method to terminate is bounded by k12kd · poly(n, k, d, 1/σ)
when the points in the instance are perturbed by independent d-dimensional Gaussian random
variables of mean 0 and standard deviation σ.
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1 Introduction

Clustering is an important problem in computer science, from both a practical and a
theoretical perspective. On the practical side, identifying clusters of similar points in large
data sets has relevance to fields ranging from physics to biology to sociology. Recent advances
in machine learning and big data have made the need for efficient clustering algorithms even
more apparent. On the theoretical side, clustering problems continue to be a topic of research
from the perspective of approximation algorithms, heuristics, and computational geometry.

Perhaps the best-studied clustering problem is that of k-means clustering. In this problem,
one is given a finite set of points X ⊆ Rd and an integer k. The goal is to partition the
points into k subsets, such that the sum of squared distances of each point to the centroid of
its assigned cluster, also called its cluster center, is minimized.

Despite great effort to devise approximation algorithms for k-means clustering, the method
of choice remains Lloyd’s method [11]. This method starts with an arbitrary choice of centers,
and assigns each point to its closest center. The centers are then moved to the centroids of
each cluster. In the next iteration, each point is again reassigned to its closest center, and
the process repeats.
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It is not hard to show that this process strictly decreases the objective function whenever
either a cluster center changes position, or a point is reassigned. Hence, no clustering can
show up twice during an execution of this algorithm. Since the number of partitions of n

points into k sets is at most kn, the process must eventually terminate.
Although Lloyd’s method has poor approximation performance both in theory and in

practice [2], its speed has kept it relevant to practitioners. This is in startling contrast to its
worst-case running time, which is exponential in the number of points [15].

To close the gap between theory and practice, Arthur et al. have shown that Lloyd’s
method terminates in expected polynomial time on perturbed point sets, by means of a
smoothed analysis [1]. This provides some theoretical justification for the use of Lloyd’s
method in practice.

Another, less well-known heuristic for clustering is the Hartigan–Wong method [8]. In
this method, one proceeds point-by-point. Given an arbitrary clustering, one checks whether
there exists a point that can be reassigned to a different cluster, such that the objective
function decreases. If such a point exists, it is reassigned to this new cluster. If no such
points exist, the algorithm terminates and the clustering is declared locally optimal.

Although at first sight the Hartigan–Wong method might seem like a simpler version
of Lloyd’s method, it is qualitatively different. If Lloyd’s method reassigns a point x from
cluster i to cluster j, then x must be closer to the center of cluster j than to that of cluster i.
In the Hartigan–Wong method, this is not true; x may be reassigned even when there are no
cluster centers closer to x than its current center. This can be beneficial, as Telgarsky &
Vattani showed that the Hartigan–Wong method is more powerful than Lloyd’s method [14].

To be precise, every local optimum of the Hartigan–Wong method is also a local optimum
of LLoyd’s method, while the converse does not hold. Telgarsky & Vattani moreover
performed computational experiments, which show that the Hartigan–Wong method not only
tends to find better clusterings than Lloyd’s, but also has a similar running time on practical
instances. Despite these promising results, theoretical knowledge of the Hartigan–Wong
method is lacking.

In this paper, we aim to advance our understanding of this heuristic. Our contributions
are twofold. First, we construct an instance on the line on which the Hartigan–Wong method
can take 2Ω(n) iterations to terminate. Considering that k-means clustering can be solved
exactly in polynomial time in d = 1, this shows that the worst-case running time of the
Hartigan–Wong method is very poor even on easy instances. This is in contrast to Lloyd’s
method, where all known non-trivial lower bounds require d ≥ 2.

▶ Theorem 1. For each m ∈ N≥2 there exists an instance of k-means clustering on the line
with n = 4m− 3 points and k = 2m− 1 clusters on which the Hartigan–Wong method can
take 2Ω(n) iterations to converge to a local optimum.

Second, we attempt to reconcile Theorem 1 with the observed practical performance
of the Hartigan–Wong method. We perform a smoothed analysis of its running time, in
which each point in an arbitrary instance is independently perturbed by a Gaussian random
variable of variance σ2.

▶ Theorem 2. Let n, k, d ∈ N, and assume 4kd ≤ n. Fix a set of n points Y ⊆ [0, 1]d, and
assume that each point in Y is independently perturbed by a d-dimensional Gaussian random
variable with mean 0 and standard deviation σ, yielding a new set of points X . Then the
expected running time of the Hartigan–Wong method on X is bounded by

O

(
k12kd+5d12n12.5+ 1

d ln4.5(nkd)
σ4

)
= k12kd · poly(n, k, d, 1/σ).
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Although we do not attain a polynomial smoothed running time in all problem para-
meters, we note that for Lloyd’s method one of the first smoothed analyses yielded a
similar kkd poly(n, 1/σ) bound. This was later improved to poly(n, k, d, 1/σ). We therefore
regard Theorem 2 as a first step to settling the conjecture by Telgarsky & Vattani that the
Hartigan–Wong method, like Lloyd’s method, should have polynomial smoothed running
time.

We note that Theorem 1 shows that there exists an instance on which there exists some
very specific sequence of iterations that has exponential length. In essence, this means that
the exponential running time is only shown for a very specific pivot rule for choosing which
point to reassign to which cluster in each iteration. By contrast, Theorem 2 holds for any
pivot rule, not simply for any particular choice.

2 Preliminaries and Notation

Given vectors x, y ∈ Rd, we write ⟨x, y⟩ for the standard Euclidean inner product on Rd,
and ∥x∥ =

√
⟨x, x⟩ for the standard norm.

Given a set of k clusters C = {C1, . . . , Ck}, a configuration of a cluster Ci ∈ C is an
assignment of a set of points to Ci. We will denote the clusters by calligraphic letters, and
their configurations by regular letters; i.e., the configuration of Ci will be denoted Ci. This
distinction is sometimes useful. For the majority of this paper, however, we will not make this
distinction explicitly, and will refer to both a cluster and its configuration interchangeably
by regular letters.

Given a finite set of points S ⊆ Rd, we define the center of mass of S as

cm(S) = 1
|S|
∑
x∈S

x.

With this definition, we can formally define the objective function of k-means. Let C =
{Ci}k

i=1 be a partition of a finite set of points X ⊆ Rd. Then the objective function
of k-means is

Φ(C) =
k∑

i=1

∑
x∈Ci

∥x− cm(Ci)∥2 =
k∑

i=1
Φ(Ci),

where we define Φ(Ci) =
∑

x∈Ci
∥x− cm(Ci)∥2. We will also refer to Φ(C) as the potential

function.
For both the worst-case and smoothed complexity bounds, we need to analyze the

improvement of a single iteration. Thus, we need a simple expression for this quantity.
Lemmas 3 and 4 allow us to obtain such an expression. These results were already obtained
by Telgarsky & Vattani [14].

▶ Lemma 3 (Telgarsky & Vattani [14]). Let S and T be two disjoint nonempty sets of points
in Rd. Then

Φ(S ∪ T )− Φ(S)− Φ(T ) = |S| · |T |
|S|+ |T | · ∥ cm(S)− cm(T )∥2.

▶ Lemma 4 (Telgarsky & Vattani [14]). Let S and T be two disjoint nonempty sets of points
in Rd with |S| > 1. Suppose we move a point x ∈ S from S to T . Then

Φ(S \ {x}) + Φ(T ∪ {x})−Φ(T )−Φ(S) = |T |
|T |+ 1∥ cm(T )− x∥2− |S|

|S| − 1∥ cm(S)− x∥2.
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Let C be some clustering of X . Suppose in some iteration of the Hartigan–Wong method,
we move x ∈ Ci to Cj . Let the gain of this iteration be denoted ∆x(Ci, Cj). Then Lemma 4
tells us that

∆x(Ci, Cj) = |Ci|
|Ci| − 1∥x− cm(Ci)∥2 − |Cj |

|Cj |+ 1∥x− cm(Cj)∥2.

At first sight, it seems like Lemma 4 leaves open the possibility that a cluster is left
empty. The following lemma shows that this can never happen.

▶ Lemma 5. No iteration can leave a cluster empty.

Proof. Suppose before an iteration, Ci = {x} for some x ∈ X, and after the iteration C ′
i = ∅

and C ′
j = Cj ∪ {x}, i.e. x is moved from cluster i to cluster j. The gain of this iteration is

then (Lemma 3)

Φ(Ci)+Φ(Cj)−Φ(∅)−Φ(Cj∪{x}) = Φ(Cj)−Φ(Cj∪{x}) = − |Cj |
|Cj |+ 1∥x−cm(Cj)∥2 ≤ 0,

since cm(Ci) = x and Φ(∅) = 0. Since every iteration must improve the clustering, this
concludes the proof. ◀

3 Exponential Lower Bound

In this section, we construct a family of k-means instances on the line on which the Hartigan–
Wong method can take an exponential number of iterations before reaching a local optimum.
To be precise, we prove the following theorem.

▶ Theorem 1 (Restated). For each m ∈ N≥2 there exists an instance of k-means clustering
on the line with n = 4m− 3 points and k = 2m− 1 clusters on which the Hartigan–Wong
method can take 2Ω(n) iterations to converge to a local optimum.

The construction we employ is similar to the construction used by Vattani for Lloyd’s
method [15]. However, the Hartigan–Wong method only reassigns a single point in each
iteration, and we are free to choose which point we reassign. Moreover, we are even free
to choose which cluster we move a point to if there are multiple options. This allows us to
simplify the construction and embed it in a single dimension, rather than the plane used by
Vattani.

We define a set of m gadgets Gi, i ∈ {0, . . . , m− 1}. Each gadget except for the “leaf”
gadget G0 consists of four points, and has two clusters Gi(C0) and Gi(C1) associated with
it. Moreover, each gadget except G0 has three distinguished states, called “morning”,
“afternoon”, and “asleep”. The leaf gadget only has two states, “awake” and “asleep ”.

During the morning state, a gadget Gi watches Gi−1. If Gi−1 falls asleep, then it is
awoken by Gi; this is achieved by moving a point of Gi to one of the clusters of Gi−1. This
allows Gi−1 to perform a sequence of iterations, which ends with Gi−1 back in its morning
state.

Meanwhile, Gi performs a sequence of iterations that transition it to its afternoon state.
During the afternoon state, it once more watches Gi−1. When the latter falls asleep, Gi once
again wakes Gi−1, and transitions itself to its asleep state.

The leaf gadget G0, as it does not watch any gadgets, only ever awakens and immediately
falls asleep again.
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We end the sequence of iterations once gadget m− 1 falls asleep. Observe that with this
construction, Gi falls asleep twice as often as Gi+1. With the condition that Gm−1 falls
asleep once, we obtain a sequence of at least 2m−1 iterations. With n = 4m− 3, this yields
Theorem 1.

For space reasons, we only describe the instance and the exponential-length sequence
here. The proof that this sequence is improving, which completes the proof of Theorem 1, is
deferred to the full version.

Formal Construction
We now give a detailed construction of a unit gadget, G. All gadgets except for G0 are
scaled and translated versions of G. The unit gadget is a tuple G = (S, C0, C1), where S =
{a, b, p, q} ⊆ R, and C0 and C1 are two clusters. The positions of the points in S are given in
Table 1. In addition, the gadget is depicted schematically in Figures 1 and 2. Note that the
relative positions of the points in these figures do not correspond to Table 1, but are chosen
for visual clarity.

Table 1 Positions of the points in S(G), the leaf point f , and the translation vector t0 between
gadgets G1 and G2.

Point a b p q f t0

Position 9 6 5 13 0 8

We remark that the points in Table 1 are not simply chosen by trial-and-error. As will
be explained shortly, we can obtain from our construction a series of inequalities that must
be satisfied by the points in S. We then obtained these points by solving the model

min a2 + b2 + p2 + q2 + f2 + t2
0

s.t. each move decreases the clustering cost,
a, b, p, q, f, t0 ∈ Z

using Gurobi [7]. The first constraint here amounts to satisfying a series of inequalities of
the form ∆x(A, B) > 0 for x ∈ S(G) and A, B subsets of the points in a gadget and its
neighboring gadgets. For space reasons, we defer their derivation and verification to the full
version. The objective function here is purely chosen so that Gurobi prefers to choose small
integers in the solution.

To construct Gi from the unit gadget (for i ≥ 1), we scale the unit gadget by a factor 5i−1,
and translate it by ti =

∑i−1
j=0 5jt0, where t0 = 8. Since each gadget only ever exchanges

points with its neighbors in the sequence we are about to construct, it will suffice in proving
Theorem 1 to consider only iterations involving Gi, Gi−1 and Gi+1 for some fixed i > 2. For
the leaf gadget, we simply have G0 = (S0, C0), where S0 = {f} = {0}.

Before we go on to construct an improving sequence of exponential length, we define the
earlier-mentioned states. For ease of notation, we will refer to the points of Gi as ai, bi, and
so on, and to the clusters of Gi as C0(Gi) and C1(Gi). Then we say the state of Gi>0 is:

asleep, if C0(Gi) = {bi} and C1(Gi) = {ai, qi} (in this state, pi is in some cluster of Gi−1);
morning, if C0(Gi) = {pi, qi, bi} and C1(Gi) = {ai};
afternoon, if C0(Gi) = {bi} and C1(Gi) = {pi, qi, ai}.

For the leaf gadget, we say its state is:
asleep, if C0(G0) = {f};
awake, otherwise.
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Morning

aibipi qiai−1 qi−1

Waking up Gi−1 (1)

aibipi qiai−1 qi−1

Waking up Gi−1 (2)

aibipi qiai−1

Afternoon

aibipi qiai−1 qi−1

Waking up Gi−1 / asleep

aibipi qiai−1 qi−1

Figure 1 Schematic depiction of the interactions between Gi and Gi−1 during the morning and
afternoon phases of Gi.

We now explicitly determine a sequence of iterations of exponential length. In the proof
of Theorem 1, we show that this sequence is improving. To analyze the sequence, we consider
the perspective of Gi as it wakes up Gi−1 and falls asleep; and then as it is awoken by Gi+1.
We first consider only the case that Gi−1 ̸= G0. See Figure 1 and Figure 2 for a schematic
depiction of the sequence described below.

Morning

We start with Gi in the morning state, and Gi−1 asleep. To wake up Gi−1, the point pi

moves to C1(Gi−1), which currently contains ai−1 and qi−1. This triggers the wakeup phase
of Gi−1; we will analyze this phase later from the perspective of Gi. When the wakeup phase
completes, C1(Gi−1) contains ai−1 and pi, and pi moves to C1(Gi). Subsequently qi moves
from C0(Gi) to C1(Gi). Observe that this puts Gi into the afternoon state.

Afternoon

In this state, Gi is once again watching Gi−1. Once the latter falls asleep, pi moves from C1(Gi)
to C1(Gi−1), which triggers another wakeup phase of Gi−1. Additionally, this move causes Gi

to fall asleep. Thus, at the end of the wakeup phase of Gi−1, we have Gi+1 wake up Gi.

Waking up

First, the point pi+1 joins C1(Gi). Next, pi moves from C1(Gi−1) to C0(Gi). Then, qi moves
from C1(Gi) to C0(Gi), and finally, pi+1 leaves C1(Gi), and joins either C1(Gi+1) (if Gi+1 was
in the morning state when waking up Gi) or C0(Gi+1) (if Gi+1 was in the afternoon state; in
this case, the move of pi+1 occurs during the wakeup phase of Gi+1).

Leaf gadget

The leaf gadget does not watch or wake up any other gadgets. It only wakes up when p1
moves into C0(G0), and falls asleep again when p1 moves back to a cluster of G1.
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Asleep

aibipi qiai−1 qi−1 pi+1

Gi+1 wakes up Gi (1)

aibipi qiai−1 qi−1 pi+1

Gi+1 wakes up Gi (2)

aibipi qi pi+1

Gi+1 wakes up Gi (3)

aibipi qi pi+1

Morning

aibipi qi pi+1

Figure 2 Schematic depiction of the interactions between Gi, Gi−1 and Gi+1 during the wakeup
phase of Gi. Note that the final state of Gi corresponds to the first state depicted in Figure 1.

Initialization

The sequence starts with all gadgets in the asleep, except for Gm−1, which is in its morning
state.

At every step, we have the gadget with the smallest index that is not asleep wake up
the gadget that it is watching. From this sequence of iterations, we can retrieve a series
of inequalities, each of which encodes the condition that the gain of every iteration must
be positive. To prove Theorem 1, we must show that the points in Table 1 satisfy these
inequalities.

An implementation of the sequence described above is provided in the following link:
https://pastebin.com/raw/McdArCWg.

4 Smoothed Analysis

For a smoothed analysis, the first hope might be to straightforwardly adapt a smoothed
analysis of Lloyd’s algorithm, e.g. that of Arthur, Manthey and Röglin [1]. On closer
inspection, however, such analyses strongly rely on a couple of properties of Lloyd’s method
that are not valid in the Hartigan–Wong method.

First, in Lloyd’s algorithm the hyperplane that bisects two cluster centers also separates
their corresponding clusters, since every point is always assigned to the cluster center closest
to itself. Second, the two stages of Lloyd’s algorithm, moving the cluster centers and
reassigning points, both decrease the potential. Neither of these properties are satisfied by
iterations of the Hartigan–Wong method. Hence, any analysis that relies on either property
cannot be easily repurposed.

Instead, we will use a different technique, more closely related to the analysis of the Flip
heuristic for Max-Cut with squared Euclidean distances by Etscheid and Röglin [6]. The
main result we will work towards in this section is stated in Theorem 2.
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4.1 Technical Preliminaries
Let Y ⊆ [0, 1]d be a set of n points. Throughout the remainder, we will denote by X the set
of points obtained by perturbing each point in Y independently by a d-dimensional Gaussian
vector of mean 0 and standard deviation σ ≤ 1. Note that this last assumption is not actually
a restriction. If σ > 1, we scale down the set Y so that Y ⊆ [0, 1/σ]d, and subsequently
perturb the points by Gaussian variables with σ = 1. Since the number of iterations required
to terminate is invariant under scaling of the input point set, this is equivalent to the original
instance.

Our analysis is based on the standard technique of proving that it is unlikely that a
sequence of iterations decreases the potential function by a small amount. For this technique
to work, we additionally require the potential function to be bounded from above and from
below with sufficiently high probability. Since it is obvious that the potential is non-negative
for any clustering, it is enough to guarantee that the perturbed point set X lies within the
hypercube [−D/2, D/2]d for some finite D. To that end, we have the following lemma.

▶ Lemma 6. Let D =
√

2n ln(nkd). Then P(X ⊈ [−D/2, D/2]d) ≤ k−n.

Similar results to Lemma 6 can be found in previous works on the smoothed analysis of
algorithms on Gaussian-perturbed point sets [13, 1]. The only difference in our version is the
value of D. Hence, we omit the proof.

Lemma 6 allows us to assume that all points lie within [−D/2, D/2]d after the perturbation.
Formally, we must take into account the failure event that any point lies outside this hypercube.
However, since the probability of this event is at most k−n, this adds only a negligible +1
to the smoothed complexity bound which we prove in Theorem 2. We therefore ignore the
failure event in the sequel.

We need to show that we can approximate the gain of an iteration if we have a good
approximation to the cluster centers. Recall that ∆x(Ci, Cj) is the gain of moving a point x

from Ci to Cj . Since we wish to use approximations to the centers of Ci and Cj , it is
convenient to define the variable

∆|Ci|,|Cj |
x (a, b) = |Ci|

|Ci| − 1∥x− a∥2 − |Cj |
|Cj |+ 1∥x− b∥2.

This variable is the gain that would be incurred if the centers of Ci and Cj , with fixed
sizes |Ci| and |Cj |, were a and b. Indeed, note that ∆|Ci|,|Cj |

x (cm(Ci), cm(Cj)) = ∆x(Ci, Cj).
When their intended values are clear from context, we will often omit the superscripts |Ci|
and |Cj | from ∆|Ci|,|Cj |

x (a, b).

4.2 Approximating Iterations
Before we begin with the analysis, we provide a rough outline. Suppose we tile the hyper-
cube [−D/2, D/2]d with a rectangular grid of spacing ϵ. Then any point in [−D/2, D/2]d is
at a distance of at most

√
dϵ from some grid point. Since we need the positions of the cluster

centers ci = cm(Ci) for i ∈ [k], we guess k grid points c′
i for their positions. If we guess

correctly, meaning c′
i is the grid point closest to ci for each i ∈ [k], then we can approximate

the gain ∆ of an iteration by replacing the cluster centers with these grid points in the
formula for ∆ (Lemma 7).

The price for this approximation is a union bound over all choices of the grid points.
However, we can compensate for this by noticing that, when we move a point between
clusters, we know exactly how the cluster centers move. Thus, if the guessed grid points
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are good approximations, we can obtain new good approximations by moving them the
same amount. Thus, we only need to guess once, and can use this guess for a sequence of
iterations. Then we can bound the probability that all iterations in this sequence yield a
small improvement.

▶ Lemma 7. Suppose the point x moves from cluster i to cluster j. Let Ci and Cj denote
the configurations of these clusters before this move, and let ci = cm(Ci) and cj = cm(Cj).
Let c′

i and c′
j be two points such that ∥ci − c′

i∥, ∥cj − c′
j∥ ≤ ϵ for some 0 ≤ ϵ ≤

√
dD. Then

|∆x(Ci, Cj)−∆x(c′
i, c′

j)| ≤ 9
√

dDϵ,

In particular, ∆x(Ci, Cj) ∈ (0, ϵ] implies |∆x(c′
i, c′

j)| ≤ 10
√

dDϵ.

Proof. Observe that

∥x− ci∥2 = ∥x− c′
i + c′

i − ci∥2 = ∥x− c′
i∥2 + ∥ci − c′

i∥2 + 2⟨c′
i − ci, x− c′

i⟩.

Thus,

∆x(Ci, Cj) = ∆x(c′
i, c′

j) + |Ci|
|Ci| − 1

(
∥ci − c′

i∥2 + 2⟨c′
i − ci, x− c′

i⟩
)

− |Cj |
|Cj |+ 1

(
∥cj − c′

j∥2 + 2⟨c′
j − cj , x− c′

i⟩
)
.

By the Cauchy-Schwarz inequality, |⟨c′
i − ci, x − c′

i⟩| ≤ ϵ · ∥x − c′
i∥. Since all points

are contained in [−D/2, D/2]d, it holds that ci ∈ [−D/2, D/2]d. From this fact and the
assumption that ∥ci − c′

i∥ ≤ ϵ ≤
√

dD, it follows that ∥x− c′
i∥ ≤

√
dD.

Moving ∆x(c′
i, c′

j) to the left and taking an absolute value, we then obtain

|∆x(Ci, Cj)−∆x(c′
i, c′

j)| ≤
(
|Ci|
|Ci| − 1 + |Cj |

|Cj |+ 1

)
· 3
√

dDϵ.

To finish the proof, observe that by Lemma 5 the first term inside the parentheses is at
most 2, while the second term is bounded by 1. We then have that ∆x(Ci, Cj) ∈ (0, ϵ] implies
∆x(c′

i, c′
j) ∈ (−9

√
dDϵ, (9

√
dD + 1)ϵ], which yields the lemma. ◀

In the following, we fix a set A ⊆ X of active points which will move during a sequence of
the Hartigan–Wong method. We also fix the configuration of the active points, the sizes of
the clusters |C1| and |C2| at the start of the sequence, and the order π : A→ [|A|] in which
the points move. Observe that these data also fix the sizes of the clusters whenever a new
point moves.

While performing a sequence of iterations, the cluster centers move. Hence, even if we
have a good approximation to a cluster center, it may not remain a good approximation after
the iteration. However, if we know which points are gained and lost by each cluster, then we
can compute new good approximations to the cluster centers from the old approximations.
The following lemma captures this intuition.

▶ Lemma 8. Let t1, t2 be two iterations of the Hartigan–Wong method in a sequence in
which the points A ⊆ X move, with t1 < t2. Suppose in the iterations t1 through t2 − 1,
cluster i loses the points S− and gains the points S+. Let ci(t) denote the cluster center of
cluster i before t takes place, and let Ct

i denote its configuration before t. Let c′
i(t1) ∈ Rd,

and c′
i(t2) = |Ct1

i
|

|Ct2
i

|
c′

i(t1) + 1
|Ct2

i
|

(∑
x∈S+

x−
∑

x∈S−
x
)

. Then

∥c′
i(t2)− ci(t2)∥ = |C

t1
i |
|Ct2

i |
· ∥c′

i(t1)− ci(t1)∥.

Moreover, if ∥c′
i(0)− ci(0)∥ ≤ ϵ, then ∥c′

i(tj)− ci(tj)∥ ≤ 2|A|ϵ for all j ∈ [|A|].
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Proof. Since the center of a cluster is defined as its center of mass, we can write

|Ct2
i | cm(Ct2

i ) =
∑

x∈C
t1
i

∪S+\S−

x = |Ct1
i | cm(Ct1

i ) +
∑

x∈S+

x−
∑

x∈S−

x.

Thus,

|Ct2
i |ci(t2) = |Ct1

i |ci(t1) +
∑

x∈S+

x−
∑

x∈S−

x.

Observe then that

∥c′
i(t2)− ci(t2)∥ = |C

t1
i |
|Ct2

i |
· ∥c′

i(t1)− ci(t1)∥.

This proves the first claim. To prove the second claim, we set t1 = 0 and t2 = tj for some
j ∈ [|A|] to obtain

∥ci(tj)− c′
i(tj)∥ = |C

0
i |

|Ctj

i |
· ∥ci(0)− c′

i(0)∥ ≤ (|A|+ 1)ϵ ≤ 2|A|ϵ,

since at most |A| points are active during any subsequence. ◀

4.3 Analyzing Sequences
We now know that we can closely approximate the gain of a sequence of iterations, provided
that we have good approximations to the cluster centers at the start of the sequence. The
next step is then to show that there is only a small probability that such an approximate
sequence improves the potential by a small amount. For that, we first require the following
technical lemma.

▶ Lemma 9. Let X be a d-dimensional Gaussian random variable with arbitrary mean µ

and standard deviation σ ≤ 1, and let Z = a∥X∥2 + ⟨v, X⟩ for fixed a ∈ R \ {0} and v ∈ Rd.
Then the probability that Z falls in an interval of size ϵ ≤ 1 is bounded from above by
O
(

1
|a| 4√

d

√
ϵ

σ2

)
.

Proof. Let Zi = aX2
i + viXi, so that Z =

∑d
i=1 Zi. We define the auxiliary variable

Z̄i = Zi +v2
i /(4a) and set Z̄ =

∑d
i=1 Z̄i. Since a and v are fixed, the densities of Z and Z̄ are

identical up to translation, and so we can analyze Z̄ instead. Observe that Z̄i/a =
(
Xi + vi

2a

)2.
Thus, Z̄/a is equal in distribution to ∥Y ∥2, where Y is a d-dimensional Gaussian variable
with mean µ+v/(4a) and variance σ2. We see then that Z̄/a has the density of a non-central
chi-squared distribution.

For λ ≥ 0, denote by f(x, λ, d) the non-central d-dimensional chi-squared density with
non-centrality parameter λ and standard deviation σ. Then [10]

f(x, λ, d) =
∞∑

i=0

e−λ/2(λ/2)i

i! f(x, 0, d + 2i).

Now observe that f(x, 0, d) is bounded from above by O
(

1/(
√

dσ2)
)

for d ≥ 2. We can thus
compute for an interval I of size ϵ

P(∥Y ∥2 ∈ I) =
∫

I

f(x, λ, d) ≤ c · ϵ√
dσ2

,
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for some c > 0. Moreover, since probabilities are bounded from above by 1, we can replace
the right-hand side by

O

( √
ϵ

4
√

dσ

)
.

Adding in the scaling factor of 1/|a| then yields the lemma for d ≥ 2,
For d = 1, we have

f(x, 0, 1) = 1√
2πσ2

· e− x
2σ2√

x/σ2
.

Let I be an interval of size ϵ. Then

P(∥Y ∥2 ∈ I) =
∫

I

f(x, λ, 1) dx ≤
∞∑

i=1

e−λ/2(λ/2)i

i!

∫
I

f(x, 0, 1 + 2i) dx +
∫

I

f(x, 0, 1) dx.

The first term is bounded by O(
√

ϵ/σ) by the same argument we used for d ≥ 2. For the
second term, we use the expression for f(x, 0, 1) above to bound the integral as∫

I

f(x, 0, 1) dx ≤ 1√
2πσ2

∫ ϵ

0

e− x
2σ2√

x/σ
dx = O(

√
ϵ/σ).

This proves the lemma for d = 1 when we again add in the scaling factor 1/|a|. ◀

With Lemma 9, we can show that a single fixed approximate iteration is unlikely to yield
a small improvement.

▶ Lemma 10. Let a, b ∈ Rd be fixed. Let ∆x(a, b) be the improvement of the first move of x

in S, if the cluster centers in this iteration are located at a and b. Let I be an interval of
size ϵ ≤ 1. Then

P(∆x(a, b) ∈ I) = O

(
n
4
√

d
·
√

ϵ

σ2

)
.

Proof. By Lemma 4, we have

∆x(a, b) = |Ci|
|Ci| − 1∥x− a∥2 − |Cj |

|Cj |+ 1∥x− b∥2

=
(
|Ci|
|Ci| − 1 −

|Cj |
|Cj |+ 1

)
∥x∥2 +

〈
2
(
|Cj |
|Cj |+ 1b− |Ci|

|Ci| − 1a

)
, x

〉
+ |Ci|
|Ci| − 1∥a∥

2 − |Cj |
|Cj |+ 1∥b∥

2,

where |Ci| and |Cj | denote the sizes of clusters i and j before the iteration, and we assume x

moves from cluster i to cluster j.
Since the sizes of the clusters as well as a and b are fixed, the last term in the above is

fixed, and hence we may disregard it when analyzing P(∆x(a, b) ∈ I). Since x is a Gaussian
random variable, we can apply Lemma 9 to find

P(∆x(a, b) ∈ I) = O

((
|Ci|
|Ci| − 1 −

|Cj |
|Cj |+ 1

)−1
· 1

4
√

d
·
√

ϵ

σ2

)
.
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It remains to bound quantity in the inner brackets from below. Since each cluster is bounded
in size by n, we have

|Ci|
|Ci| − 1 −

|Cj |
|Cj |+ 1 ≥

n

n− 1 −
n

n + 1 = 2n

(n− 1)(n + 1) ≥
1
n

,

and we are done. ◀

As stated at the start of the analysis, analyzing a single iteration is not enough to prove
Theorem 2. The following lemma extends Lemma 10 to a sequence of iterations, given a
fixed point set A ⊆ X that moves in the sequence.

▶ Lemma 11. Fix an active set A and starting cluster sizes |Ci| for i ∈ [k]. Moreover, fix an
order π : A→ [|A|] in which the points in A move, i.e., π(x) < π(y) means x moves for the
first time before y moves for the first time. Let ∆ denote the minimum improvement of a
sequence satisfying these hypotheses over all possible configurations of X \A. Then for ϵ ≤ 1,

P(∆ ≤ ϵ) ≤
(

2D

ϵ

)kd

·
(

O(1) · k|A| · d3/4Dn|A|
√

ϵ

σ

)|A|

.

Proof. For x ∈ A, let ∆x denote the improvement of the first move of x ∈ A. We label the
points in A as (x1, . . . , x|A|) according to π. Let ∆ = (∆i)|A|

i=1.
To compute the vector ∆, we would need to know the configuration and positions of the

points P = X \A, since these are required to compute the k cluster centers. However, if we
had approximations to the cluster centers in every iteration corresponding to the entries
of ∆, then we could compute an approximation to ∆ by Lemma 7.

Since the cluster centers are convex combinations of points in [−D/2, D/2]d, we know
that the cluster centers at the start of S must also lie in [−D/2, D/2]d. Thus, there exist
grid points c′

i (i ∈ [k]) within a distance
√

dϵ of the initial cluster centers.
Knowing these grid points, we would like to apply Lemma 8 in order to update the

approximate cluster centers whenever a new point moves. We then need to know the points
gained and lost by each cluster between first moves of each x ∈ A. Observe that to obtain
this information, it suffices to know the configuration of the active points before the first
move of each x ∈ A. Thus, we fix these configurations.

We collect the gain of each first move of a point in A, where we replace the cluster centers
by these approximations, into a vector ∆′. By the reasoning above and by Lemmas 7 and 8,
if there exist initial cluster centers ci (i ∈ [k]) such that ∆x ∈ (0, ϵ] for all x ∈ A, then there
exist grid points c′

i, such that |∆′
x| ≤ 20|A|dDϵ for all x ∈ A. (Compared to Lemma 7, we

gain an extra factor of 2|A| due to Lemma 8.)
By this reasoning, it suffices to obtain a bound on P

(⋂
x∈A |∆′

x| ≤ 20|A|dDϵ
)
. We can

then take a union bound over these events for all (D/ϵ + 1)kd ≤ (2D/ϵ)kd choices of c′
i

for i ∈ [k], and a union bound over the configuration of A before the first move of each x ∈ A.
To show that P

(⋂
x∈A |∆′

x| ≤ 20|A|dDϵ
)

is bounded as desired, we consider the following
algorithm.
1. Set t = 1.
2. Reveal xt, and compute ∆xt(c′

it
, c′

jt
), where xt moves from Cit to Cjt .

3. If |∆xt
(c′

it
, c′

jt
)| > 20|A|dDϵ, then return GOOD and halt.

4. If t = |A|, return BAD.
5. Update the positions of the approximate cluster centers using Lemma 8.
6. Continue executing moves in the sequence until we encounter the first move of xt+1.

Observe that the information we fixed before executing this algorithm suffices to compute
approximations to the cluster centers whenever a new point moves.

7. Set t← t + 1 and go to step 2.
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The sequence of iterations improves the potential by at most ϵ only if the above algorithm
returns BAD. We now argue that

P(BAD) ≤
(

O(1) · d3/4Dn|A|
√

ϵ/σ
)|A|

.

Let BADt be the event that the above algorithm loops for at least t iterations. Then P(BAD) =
P(BAD|A|). Since P(BADt | ¬BADt−1) = 0, we can immediately conclude that for all t ∈
{2, . . . , |A|},

P(BADt) = P(BADt | BADt−1)P(BADt−1).

By Lemma 10, we have P(BADt | BADt−1) ≤ O(1) · d3/4Dn|A|
√

ϵ/σ. Thus, P(BADt) is
bounded as claimed.

Taking a union bound over all choices of the approximate grid points at the start of
the sequence yields the factor (2D/ϵ)kd. Finally, we must take a union bound over the
configuration of A before the first move of each x ∈ A, yielding a factor k|A|2 , which concludes
the proof. ◀

Armed with Lemma 11, we can bound the probability that there exists a sequence in
which a fixed number of points moves, which improves the potential by at most ϵ.

▶ Lemma 12. Let ∆min denote the minimum improvement of any sequence of moves in
which exactly 4kd distinct points switch clusters. Then for ϵ ≤ 1,

P(∆min ≤ ϵ) ≤
(

O(1) · k8kd+4d11D5n8+ 1
d ϵ

σ4

)kd

.

Proof. Fix an active set A of 4kd distinct points, an order π : A→ [|A|] in which the points
in A move, and the sizes of the two clusters at the start of the sequence.

We have by Lemma 11

P(∆(S) ≤ ϵ) ≤
(

2D

ϵ

)kd(
O(1) · k2kd · d7/4Dn

√
ϵ

σ

)4kd

=
(

O(1) · d7 · k8kd ·D5n4ϵ

σ4

)kd

.

We conclude the proof by a union bound over the choices of A, π, and the sizes of the
clusters at the start of the sequence, which yields a factor of at most (4kd)4kd · n4kd+1. ◀

With Lemma 12, we are in a position to prove the main result of this section. The proof
is essentially mechanical, following techniques used in many previous smoothed analyses
[1, 3, 4, 5, 6, 13].

▶ Theorem 2 (Restated). Let n, k, d ∈ N, and assume 4kd ≤ n. Fix a set of n points Y ⊆
[0, 1]d, and assume that each point in Y is independently perturbed by a d-dimensional
Gaussian random variable with mean 0 and standard deviation σ, yielding a new set of
points X . Then the expected running time of the Hartigan–Wong method on X is bounded by

O

(
k12kd+5d12n12.5+ 1

d ln4.5(nkd)
σ4

)
= k12kd · poly(n, k, d, 1/σ).

Proof. First, we recall that the point set X is contained in [−D/2, D/2]d. This yields an
upper bound for the value of the potential function for the initial clustering C,

Φ(C) =
k∑

i=1

∑
x∈Ci

∥x− cm(Ci)∥2 ≤ kndD2.
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We divide the sequence of iterations executed by the Hartigan–Wong method into contiguous
disjoint blocks during which exactly 4kd distinct points move. By Lemma 12, we know that
the probability that any such block yields a bad improvement is small.

Let T be the number of such blocks traversed by the heuristic before we reach a local
optimum. Then

P(T ≥ t) ≤ P
(

∆min ≤
kndD2

t

)
≤ min

{
1,

O(1) · k8kd+5d12D7n9+ 1
d

σ4 · 1
t

}
.

This probability becomes nontrivial when

t >

⌈
O(1) · k8kd+5d12D7n9+ 1

d

σ4

⌉
=: t′.

Observe that t′ = Ω(kndD2), justifying our use of Lemma 12 above. Thus, we find

E(T ) =
kn∑
t=1

P(T ≥ t) ≤ t′ + t′ ·
kn∑

t=t′

1
t
≤ t′ + t′ ·

∫ kn

t′

1
t

dt ≤ t′ + t′ · ln(kn).

The upper limit of kn to the sum is simply the number of possible clusterings of n points
into k sets, which is a trivial upper bound to the number of iterations. To conclude, we
observe that any block in which exactly 4kd distinct points move has a length of at most k4kd,
as otherwise some clustering would show up twice. Thus, we multiply E(T ) by k4kd to obtain
a bound for the smoothed complexity. Finally, we insert the value of D =

√
2n ln(nkd). ◀

5 Discussion

Theorems 1 and 2 provide some of the first rigorous theoretical results concerning the
Hartigan–Wong method method that have been found since Telgarsky & Vattani explored
the heuristic in 2010 [14]. Of course, many interesting open questions still remain.

Worst-case construction. Theorem 1 establishes the existence of exponential-length se-
quences on the line, but leaves open the possibility that a local optimum may be reachable
more efficiently by a different improving sequence. To be precise: given an instance of k-means
clustering on the line and an initial clustering, does there always exist a sequence of iterations
of the Hartigan–Wong method of length poly(n, k) starting from this clustering and ending
in a local optimum? Although the d = 1 case appears very restricted at first sight, this
question seems surprisingly difficult to answer.

In addition, the construction we use in Theorem 1 requires k = Θ(n) clusters. This opens
up the question whether similar worst-case constructions can be made using fewer, perhaps
even O(1), clusters. Note that this is not true for Lloyd’s method, since the number of
iterations of Lloyd’s method is bounded by nO(kd) [9], which is polynomial for k, d ∈ O(1).

Smoothed complexity. Theorem 2 entails, to our knowledge, the first step towards settling
the conjecture by Telgarsky & Vattani [14] that the Hartigan–Wong method has polynomial
smoothed complexity. Our result is reminiscent of the smoothed complexity bound of Lloyd’s
method obtained in 2009 by Manthey & Röglin [12], which is kkd · poly(n, 1/σ). In the case
of Lloyd’s method, the smoothed complexity was later settled to poly(n, k, d, 1/σ) [1].
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Observe that our bound is polynomial for constant k and d, and even for kd log k ∈
O(log n). While this is certainly an improvement over the trivial upper bound of kn, it falls
short of a true polynomial bound. We hope that our result can function as a first step to
a poly(n, k, d, 1/σ) smoothed complexity bound of the Hartigan–Wong method.

We remark that the exponents in the bound in Theorem 2 can be easily improved by
a constant factor for d ≥ 2. The reason is that in Lemma 9, the factor

√
ϵ emerges from

the d = 1 case, while for d ≥ 2 we could instead obtain ϵ. We chose to combine these cases
for the sake of keeping the analysis simple, as we expect the bound in Theorem 2 would be
far from optimal regardless.

Improving the smoothed bound. We do not believe that the factor of kO(kd) is inherent
in the smoothed complexity of the Hartigan–Wong method, but is rather an artifact of our
analysis. To replace this factor by a polynomial in k and d, it seems that significantly new
ideas might be needed.

The factors arise from two sources in our analysis. First, we take a union bound over the
configuration of the active points each time we apply Lemma 8, yielding factors of kO(kd).
Second, we analyze sequences in which Θ(kd) points move in order to guarantee a significant
potential decrease. This incurs a factor of the length of such a sequence, which is another
source of a factor kO(kd). We do not see how to avoid such factors when taking our approach.

One avenue for resolving this problem might be to analyze shorter sequences in which
a significant number of points move. Angel et al. used such an approach in their analysis
of the Flip heuristic for Max-Cut. They identify in any sequence L of moves a shorter
subsequence B, such that the number of unique vertices that flip in B is linear in the length
of B. The major challenge is then to find sufficient independence in such a short subsequence,
which in our case seems challenging, as we need to compensate for a factor ϵ−kd in Lemma 11.

Since our analysis greatly resembles the earlier analysis of the Flip heuristic for Squared
Euclidean Max Cut [6], it might be helpful to first improve the latter. This analysis yields a
bound of 2O(d) · poly(n, 1/σ). If this can be improved to poly(n, d, 1/σ), then it is likely that
a similar method can improve on our analysis for the Hartigan–Wong method as well.

References
1 David Arthur, Bodo Manthey, and Heiko Röglin. Smoothed Analysis of the k-Means Method.

Journal of the ACM, 58(5):19:1–19:31, October 2011. doi:10.1145/2027216.2027217.
2 David Arthur and Sergei Vassilvitskii. K-means++: The advantages of careful seeding. In

Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’07, pages 1027–1035, USA, January 2007. Society for Industrial and Applied Mathematics.

3 Matthias Englert, Heiko Röglin, and Berthold Vöcking. Worst Case and Probabilistic Analysis
of the 2-Opt Algorithm for the TSP. Algorithmica, 68(1):190–264, January 2014. doi:
10.1007/s00453-013-9801-4.

4 Matthias Englert, Heiko Röglin, and Berthold Vöcking. Smoothed Analysis of the 2-Opt
Algorithm for the General TSP. ACM Transactions on Algorithms, 13(1):10:1–10:15, September
2016. doi:10.1145/2972953.

5 Michael Etscheid and Heiko Röglin. Smoothed Analysis of the Squared Euclidean Maximum-
Cut Problem. In Nikhil Bansal and Irene Finocchi, editors, Algorithms - ESA 2015, Lecture
Notes in Computer Science, pages 509–520, Berlin, Heidelberg, 2015. Springer. doi:10.1007/
978-3-662-48350-3_43.

6 Michael Etscheid and Heiko Röglin. Smoothed Analysis of Local Search for the Maximum-Cut
Problem. ACM Transactions on Algorithms, 13(2):25:1–25:12, March 2017. doi:10.1145/
3011870.

STACS 2024

https://doi.org/10.1145/2027216.2027217
https://doi.org/10.1007/s00453-013-9801-4
https://doi.org/10.1007/s00453-013-9801-4
https://doi.org/10.1145/2972953
https://doi.org/10.1007/978-3-662-48350-3_43
https://doi.org/10.1007/978-3-662-48350-3_43
https://doi.org/10.1145/3011870
https://doi.org/10.1145/3011870


52:16 Worst-Case and Smoothed Analysis of the Hartigan–Wong Method

7 Gurobi Optimization LLC. Gurobi Optimizer Reference Manual. Gurobi Optimization, LLC,
2023.

8 J. A. Hartigan and M. A. Wong. Algorithm AS 136: A K-Means Clustering Algorithm.
Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1):100–108, 1979.
doi:10.2307/2346830.

9 M Inaba, Naoki Katoh, and Hiroshi Imai. Variance-based k-clustering algorithms by Voronoi
diagrams and randomization. IEICE Transactions on Information and Systems, E83D, June
2000.

10 Norman L. Johnson, Samuel Kotz, and Narayanaswamy Balakrishnan. Continuous Univariate
Distributions, Volume 2. John Wiley & Sons, May 1995.

11 S. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory,
28(2):129–137, March 1982. doi:10.1109/TIT.1982.1056489.

12 Bodo Manthey and Heiko Röglin. Improved Smoothed Analysis of the k-Means Method. In
Proceedings of the 2009 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
Proceedings, pages 461–470. Society for Industrial and Applied Mathematics, January 2009.
doi:10.1137/1.9781611973068.51.

13 Bodo Manthey and Rianne Veenstra. Smoothed Analysis of the 2-Opt Heuristic for the TSP:
Polynomial Bounds for Gaussian Noise. In Leizhen Cai, Siu-Wing Cheng, and Tak-Wah Lam,
editors, Algorithms and Computation, Lecture Notes in Computer Science, pages 579–589,
Berlin, Heidelberg, 2013. Springer. doi:10.1007/978-3-642-45030-3_54.

14 Matus Telgarsky and Andrea Vattani. Hartigan’s Method: K-means Clustering without
Voronoi. In Proceedings of the Thirteenth International Conference on Artificial Intelligence
and Statistics, pages 820–827. JMLR Workshop and Conference Proceedings, March 2010.

15 Andrea Vattani. K-means Requires Exponentially Many Iterations Even in the Plane. Discrete
& Computational Geometry, 45(4):596–616, June 2011. doi:10.1007/s00454-011-9340-1.

https://doi.org/10.2307/2346830
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1137/1.9781611973068.51
https://doi.org/10.1007/978-3-642-45030-3_54
https://doi.org/10.1007/s00454-011-9340-1


Homomorphism-Distinguishing Closedness for
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Abstract
Two graphs are homomorphism indistinguishable over a graph class F , denoted by G ≡F H, if
hom(F, G) = hom(F, H) for all F ∈ F where hom(F, G) denotes the number of homomorphisms
from F to G. A classical result of Lovász shows that isomorphism between graphs is equivalent
to homomorphism indistinguishability over the class of all graphs. More recently, there has been
a series of works giving natural algebraic and/or logical characterizations for homomorphism
indistinguishability over certain restricted graph classes.

A class of graphs F is homomorphism-distinguishing closed if, for every F /∈ F , there are graphs
G and H such that G ≡F H and hom(F, G) ̸= hom(F, H). Roberson conjectured that every class
closed under taking minors and disjoint unions is homomorphism-distinguishing closed which implies
that every such class defines a distinct equivalence relation between graphs. In this work, we confirm
this conjecture for the classes Tk, k ≥ 1, containing all graphs of tree-width at most k.

As an application of this result, we also characterize which subgraph counts are detected by the
k-dimensional Weisfeiler-Leman algorithm. This answers an open question from [Arvind et al., J.
Comput. Syst. Sci., 2020].
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1 Introduction

In 1967, Lovász [16] proved that two graphs G andH are isomorphic if and only if hom(F,G) =
hom(F,H) for every graph F where hom(F,G) denotes the number of homomorphisms from
F to G. A natural follow-up question is to ask whether it is necessary to take the class
of all graphs F to obtain the above result, and which kind of other equivalence relations
can be obtained by restricting F to come from a proper subclass of all graphs. For a
graph class F , we say that two graphs G and H are F-equivalent, denoted by G ≡F H, if
hom(F,G) = hom(F,H) for all F ∈ F . Hence, Lovász’s [16] result says that ≡A is identical
to the isomorphism relation where A denotes the class of all graphs.

In recent years, there has been a series of works giving natural algebraic and/or logical
characterizations for homomorphism indistinguishability over certain restricted classes of
graphs. For example, this includes graphs of bounded tree-width [8], graphs of bounded
path-width [13], graphs of bounded tree-depth [12, 13] and the class of planar graphs [17]. In
particular, those results imply that the equivalence relations ≡F obtained from the mentioned
graph classes F do not correspond to isomorphism, and moreover, these equivalence relations
are pairwise distinct.
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In [21], Roberson initiated a more systematic study of the question which types of
graph classes F lead to different equivalence relations ≡F . A class of graphs F is called
homomorphism-distinguishing closed if, for every F /∈ F , there are graphs G and H such
that G ≡F H and hom(F,G) ̸= hom(F,H).

▶ Conjecture 1 (Roberson [21]). Let F be a graph class closed under taking disjoint unions
and minors. Then F is homomorphism-distinguishing closed.

In particular, this conjecture implies that every graph class closed under taking disjoint
unions and minors defines a distinct equivalence relation ≡F . Note that not every graph class
is homomorphism-distinguishing closed. For example, the class D2 of 2-degenerate graphs
(which is not closed under taking minors) is not homomorphism-distinguishing closed since
the corresponding equivalence relation defines the isomorphism relation between graphs [8].

For k ≥ 1 let Tk denote the class of all graphs of tree-width at most k. Roberson [21]
showed that Tk is homomorphism-distinguishing closed for k ∈ {1, 2}. In this work, we
generalize this to all k ≥ 1.

▶ Theorem 2. The class Tk is homomorphism-distinguishing closed for all k ≥ 1.

For the proof, we rely on known characterizations of homomorphism indistinguishability
over the class Tk [6, 8, 13] and existing constructions of non-isomorphic pairs of graphs that
are difficult to distinguish (see, e.g., [2, 5, 21]).

We remark that, since the first publication of the result, it has already been used in [22]
to analyse the Lasserre semidefinite programming hierarchy for graph isomorphism via a
characterization in terms of homomorphism counts. Also, the results have been used in [9]
which in particular uses a similar strategy to prove that the class T Dq of all graphs of
tree-depth at most q is homomorphism-distinguishing closed for all q ≥ 1.

As an application of this result, we are able to characterize which subgraph counts are
detected by the Weisfeiler-Leman algorithm (see also [1]). The Weisfeiler-Leman algorithm
(WL) is a standard heuristic in the context of graph isomorphism testing (see, e.g., [2]) which
recently also gained attention in a machine learning context [19, 20, 26, 28]. For k ≥ 1,
the k-dimensional Weisfeiler-Leman algorithm (k-WL) computes an isomorphism-invariant
coloring of the k-tuples of vertices of a graph G. If the color patterns computed for two
graphs G and H do not match, the graphs are non-isomorphic. In this case, we say that
k-WL distinguishes G and H. It is known that two graphs G and H are distinguished by
k-WL if and only if G ̸≡Tk

H, i.e., indistinguishability by k-WL can be characterized by
homomorphism indistinguishability over the class of graphs of tree-width at most k [6, 8, 13].

In [10], Fürer initiated research on the question of which subgraph counts are detected by
k-WL. Let F and G be two graphs. We write sub(F,G) to denote the number of subgraphs of
G isomorphic to F . We say the function sub(F, ·) is k-WL invariant if sub(F,G) = sub(F,H)
for all graphs G,H that are indistinguishable by k-WL. For example, Fürer [10] shows that
sub(Cℓ, ·) is 2-WL invariant for all ℓ ≤ 6 (where Cℓ denotes the cycle on ℓ vertices), but
sub(K4, ·) is not 2-WL invariant. In [1], Arvind, Fuhlbrück, Köbler and Verbitsky further
extended this line of research by showing sub(F, ·) is k-WL invariant for all graphs F that have
hereditary tree-width at most k. For a graph F we define its hereditary tree-width, denoted
by hdtw(F ), to be the maximum tree-width of a homomorphic image of F . Arvind et al. [1]
also provide some isolated negative results, but could not obtain a complete classification of
which subgraph counts are detected by k-WL even for the special case k = 2.

Building on Theorem 2, we provide a complete classification of which subgraph counts
are detected by k-WL for all k ≥ 1. This answers an open question from [1].
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▶ Theorem 3. Let F be a graph and k ≥ 1. Then sub(F, ·) is k-WL invariant if and only if
hdtw(F ) ≤ k.

Observe that the backward direction is already proved in [1], i.e., the main contribution
of this work is to show that for every graph F with hdtw(F ) > k, the k-WL algorithm fails
to detect subgraph counts from F .

For the proof, we use a well-known result [4] that allows us to formulate subgraph counts
as a linear combination of certain homomorphism counts, and then combine Theorem 2 with
an auxiliary lemma from [24].

We stress that Theorem 3 is also relevant in a machine-learning context. Indeed, it is
known that the expressive power of graph neural networks (GNNs), which are a common
tool for processing graph-structured data, is closely related to the expressive power of k-WL
(see, e.g., [19, 20]). On the other hand, counting small subgraph patterns, also called network
motifs [18], is a common technique in the study of large networks (see, e.g. [7, 14, 23, 27]
for the use of network motifs in computational biology). Hence, it is natural to ask which
subgraph counts can be detected by certain GNNs. This question has been studied in [3], but
similar to [10, 1] only limited results have been obtained. Exploiting the connections between
GNNs and k-WL (see, e.g., [19, 20]), Theorem 3 can provide a much more complete picture
of which subgraph counts can be detected by GNNs. In fact, in a recent work, Lanzinger and
Barceló [15] extend Theorem 3 to so-called knowledge graphs which are typically considered
by GNNs.

We also remark that another extension of Theorem 3 has been obtained by Göbel,
Goldberg and Roth [11] who determine the WL-dimension of counting the number of answers
to an existential conjunctive query.

2 Preliminaries

A graph is a pair G = (V,E) with vertex set V = V (G) and edge relation E = E(G). In
this paper all graphs are finite, simple (no loops or multiple edges), and undirected. We
denote edges by vw ∈ E(G) where v, w ∈ V (G). The neighborhood of v ∈ V (G) is denoted
by NG(v). Moreover, we write EG(v) to denote the set of edges incident to v. If the graph
is clear from context, we usually omit the index G and simply write N(v) and E(v). For
A ⊆ V (G) we denote by G[A] the induced subgraph of G on A. Also, we denote by G \A the
induced subgraph on the complement of A, that is G \A := G[V (G) \A].

An isomorphism from a graph G to another graph H is a bijective mapping φ : V (G) →
V (H) which preserves the edge relation, that is, vw ∈ E(G) if and only if φ(v)φ(w) ∈ E(H)
for all v, w ∈ V (G). Two graphs G and H are isomorphic (G ∼= H) if there is an isomorphism
from G to H. We write φ : G ∼= H to denote that φ is an isomorphism from G to H.

Let F and G be two graphs. A homomorphism from F to G is a mapping φ : V (F ) → V (G)
such that φ(v)φ(w) ∈ E(G) for all vw ∈ E(F ). We write hom(F,G) to denote the number
of homomorphisms from F to G.

Let G be a graph. A graph H is a minor of G if H can be obtained from G by deleting
vertices and edges of G as well as contracting edges of G. More formally, let B = {B1, . . . , Bh}
be a partition of V (G) such that G[Bi] is connected for all i ∈ [h]. We define G/B to be the
graph with vertex set V (G/B) := B and

E(G/B) := {BB′ | ∃v ∈ B, v′ ∈ B′ : vv′ ∈ E(G)}.

A graph H is a minor of G if there is a partition B = {B1, . . . , Bh} of connected subsets
Bi ⊆ V (G) such that H is isomorphic to a subgraph of G/B. A graph G excludes H as a
minor if H is not a minor of G.
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Figure 1 The figure shows the graphs CFI(G) and CFIx(G) where G is the 2 × 4 grid. The sets
MG,∅(v) and MG,{u0}(v) are highlighted in gray. The vertex u0 is located in the top-right corner of
the grid. The marked edges show the difference between the two graphs.

3 Homomorphism Indistinguishability and Oddomorphisms

Toward the proof of Theorem 2, we need to cover several tools introduced in [21].

▶ Definition 4 (Roberson [21]). Let F and G be graphs and suppose φ is a homomorphism
from F to G. We say a vertex a ∈ V (F ) is odd (with respect to φ) if |NF (a) ∩ φ−1(v)| is
odd for every v ∈ NG(φ(a)). Similarly, we say a vertex a ∈ V (F ) is even with respect to φ
if |NF (a) ∩ φ−1(v)| is even for every v ∈ NG(φ(a)).

An oddomorphism from F to G is a homomorphism φ from F to G such that
(I) every vertex a ∈ V (F ) is odd or even (with respect to φ), and

(II) φ−1(v) contains an odd number of odd vertices for every v ∈ V (G).
A weak oddomorphism from F to G is a homomorphism φ from F to G such that there is a
subgraph F ′ of F for which φ|V (F ′) is an oddomorphism from F ′ to G.

Next, we introduce a construction for pairs of similar graphs from a base graph G that
has also been used in [21]. Actually, variants of this construction have already been used in
several earlier works (see, e.g., [2, 5]).

Let G be a graph and let U ⊆ V (G). For v ∈ V (G) we define δv,U := |{v}∩U |. We define
the graph CFI(G,U) (the name refers to the authors of [2] where a very similar construction
was first used in a related context) with vertex set

V (CFI(G,U)) := {(v, S) | v ∈ V (G), S ⊆ E(v), |S| ≡ δv,U mod 2}

and edge set

E(CFI(G,U)) := {(v, S)(u, T ) | uv ∈ E(G), uv /∈ S △ T}

(here, S△T denotes the symmetric difference of S and T , i.e., S△T := (S \T )∪ (T \S)). For
v ∈ V (G) we also write MG,U (v) := {(v, S) | S ⊆ E(v), |S| ≡ δv,U mod 2} for the vertices in
CFI(G,U) associated with v.

The following lemma is well-known (see, e.g., [2, 21])

▶ Lemma 5. Let G be a connected graph and let U,U ′ ⊆ V (G). Then CFI(G,U) ∼=
CFI(G,U ′) if and only if |U | ≡ |U ′| mod 2.

We define CFI(G) := CFI(G, ∅) and CFIx(G) := CFI(G, {u0}) for some u0 ∈ V (G). A
visualization can also be found in Figure 1.

▶ Theorem 6 (Roberson [21, Theorem 3.13]). Let F,G be graphs and suppose G is connected.
Then hom(F,CFI(G)) ≥ hom(F,CFIx(G)). Moreover, hom(F,CFI(G)) > hom(F,CFIx(G))
if and only if there exists a weak oddomorphism from F to G.
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We require two additional tools from [21] stated below.

▶ Lemma 7 ([21, Lemma 5.6]). Let F and G be graphs such that there is a weak oddomorphism
from F to G. Also suppose G′ is a minor of G. Then there is a minor F ′ of F such that
there is an oddomorphism from F ′ to G′.

▶ Lemma 8 ([21, Theorem 6.2]). Let F be a class of graphs such that
(1) if F ∈ F and there is a weak oddomorphism from F to G, then G ∈ F , and
(2) F is closed under disjoint unions and restrictions to connected components.
Then F is homomorphism-distinguishing closed.

4 Graphs of Bounded Tree-Width

In this section, we present the proof of Theorem 2. We rely on game characterizations for
graphs of bounded tree-width as well as homomorphism indistinguishability over graphs of
tree-width at most k.

4.1 Games
First, we cover the cops-and-robber game that characterizes tree-width of graphs. Fix some
integer k ≥ 1. For a graph G, we define the cops-and-robber game CopRobk(G) as follows:

The game has two players called Cops and Robber.
The game proceeds in rounds, each of which is associated with a pair of positions (v̄, u)
with v̄ ∈

(
V (G)

)k and u ∈ V (G).
To determine the initial position, the Cops first choose a tuple v̄ = (v1, . . . , vk) ∈

(
V (G)

)k

and then the Robber chooses some vertex u ∈ V (G) \ {v1, . . . , vk} (if no such u exists,
the Cops win the play). The initial position of the game is then set to (v̄, u).
Each round consists of the following steps. Suppose the current position of the game is
(v̄, u) = ((v1, . . . , vk), u).
(C) The Cops choose some i ∈ [k] and v′ ∈ V (G).
(R) The Robber chooses a vertex u′ ∈ V (G) such that there exists a path from u

to u′ in G \ {v1, . . . , vi−1, vi+1, . . . , vk}. After that, the game moves to position(
(v1, . . . , vi−1, v

′, vi+1, . . . , vk), u′).
If u ∈ {v1, . . . , vk} the Cops win. If there is no position of the play such that the Cops
win, then the Robber wins.

We say that the Cops (and the Robber, respectively) win CopRobk(G) if the Cops (and
the Robber, respectively) have a winning strategy for the game. We also say that k cops can
catch a robber on G if the Cops have a winning strategy in this game.

▶ Theorem 9 ([25]). A graph G has tree-width at most k if and only if k + 1 cops can catch
a robber on G.

Next, we discuss a game-theoretic characterization of two graphs being indistinguishable
via homomorphism counts from graphs of tree-width at most k.

Let k ≥ 1. For graphs G and H on the same number of vertices, we define the bijective
k-pebble game BPk(G,H) as follows:

The game has two players called Spoiler and Duplicator.
The game proceeds in rounds, each of which is associated with a pair of positions (v̄, w̄)
with v̄ ∈

(
V (G)

)k and w̄ ∈
(
V (H)

)k.
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To determine the initial position, Duplicator plays a bijection f :
(
V (G)

)k →
(
V (H)

)k

and Spoiler chooses some v̄ ∈
(
V (G)

)k. The initial position of the game is then set to
(v̄, f(v̄)).
Each round consists of the following steps. Suppose the current position of the game is
(v̄, w̄) = ((v1, . . . , vk), (w1, . . . , wk)).
(S) Spoiler chooses some i ∈ [k].
(D) Duplicator picks a bijection f : V (G) → V (H).
(S) Spoiler chooses v ∈ V (G) and sets w := f(v). Then the game moves to position(

v̄[i/v], w̄[i/w]
)

where v̄[i/v] := (v1, . . . , vi−1, v, vi+1, . . . , vk) is the tuple obtained from
v̄ by replacing the i-th entry by v.

If mapping each vi to wi does not define an isomorphism of the induced subgraphs of
G and H, Spoiler wins the play. More precisely, Spoiler wins if there are i, j ∈ [k] such
that vi = vj ⇎ wi = wj or vivj ∈ E(G) ⇎ wiwj ∈ E(H). If there is no position of the
play such that Spoiler wins, then Duplicator wins.

We say that Spoiler (and Duplicator, respectively) wins BPk(G,H) if Spoiler (and
Duplicator, respectively) has a winning strategy for the game. Also, for a position (v̄, w̄)
with v̄ ∈

(
V (G)

)k and w̄ ∈
(
V (H)

)k, we say that Spoiler (and Duplicator, respectively)
wins BPk(G,H) from position (v̄, w̄) if Spoiler (and Duplicator, respectively) has a winning
strategy for the game started at position (v̄, w̄).

The following theorem follows from [2] and [6, 8, 13].

▶ Theorem 10. Suppose k ≥ 1. Let G and H be two graphs. Then hom(F,G) = hom(F,H)
for every F ∈ Tk if and only if Duplicator wins the game BPk+1(G,H).

4.2 Indistinguishable Graphs
The main step in the proof of Theorem 2 is to show that CFI(G) and CFIx(G) can not be
distinguished via homomorphism counts from graphs of tree-width at most k for all connected
graphs G of tree-width strictly greater than k. The proof follows similar arguments from [5]
used to prove a closely related statement. Toward this end, the next lemma provides certain
useful isomorphisms between CFI-graphs.

▶ Lemma 11. Let G be a connected graph and suppose u, v ∈ V (G). Let P be a path from u

to v. Then there is an isomorphism φ : CFI(G, {u}) ∼= CFI(G, {v}) such that
(1) φ(MG,{u}(w)) = MG,{v}(w) for all w ∈ V (G), and
(2) φ(w, S) = (w, S) for all w ∈ V (G) \ V (P ) and (w, S) ∈ MG,{u}(w).

Proof. Let E(P ) denote the set of edges on the path P . Clearly,
|E(P ) ∩ E(u)| = 1 and |E(P ) ∩ E(v)| = 1,
|E(P ) ∩ E(w)| = 2 for all w ∈ V (P ) \ {u, v}, and
|E(P ) ∩ E(w)| = 0 for all w ∈ V (G) \ V (P ).

We define φ(w, S) := (w, S△ (E(P ) ∩E(w))) for all (w, S) ∈ CFI(G, {u}). It is easy to check
that φ : CFI(G, {u}) ∼= CFI(G, {v}) and the desired properties are satisfied. ◀

The next lemma forms the key technical step in the proof of Theorem 2.

▶ Lemma 12. Let G be a connected graph of tree-width tw(G) ≥ k. Then Duplicator wins
the k-bijective pebble game played on CFI(G) and CFIx(G).
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Proof. Let us fix some vertex u0 ∈ V (G) so that CFIx(G) = CFI(G, {u0}). Since tw(G) ≥ k,
the Robber has a winning strategy in the cops-and-robber game CopRobk(G) by Theorem 9.
We translate the winning strategy for the Robber in CopRobk(G) into a winning strategy
for Duplicator in the k-bijective pebble game played on CFI(G) and CFIx(G).

We first construct the bijection f for the initialization round. Suppose x̄ = (x1, . . . , xk) ∈
(V (CFI(G)))k. We define A(x̄) := (v1, . . . , vk) where vi ∈ V (G) is the unique vertex such
that xi ∈ MG,∅(vi).

Now let u be the vertex chosen by the Robber if the Cops initially place themselves
on A(x̄). Let P be a shortest path from u to u0 (recall that G is connected), and let φ
denote the isomorphism from CFI(G, {u}) to CFI(G, {u0}) constructed in Lemma 11. We
set f(x̄) := (φ(x1), . . . , φ(xk)). It is easy to see that this gives a bijection f (we use the same
isomorphism φ for all tuples x̄ having the same associated tuple A(x̄)).

Now, throughout the game, Duplicator maintains the following invariant. Let (x̄, ȳ) denote
the current position. Then there is a vertex u ∈ V (G) and an isomorphism φ : CFI(G, {u}) ∼=
CFI(G, {u0}) such that

φ(MG,{u}(w)) = MG,{u0}(w) for all w ∈ V (G),
φ(x̄) = ȳ,
u does not appear in the tuple A(x̄), and
the Robber wins from the position (A(x̄), u), i.e., if the Cops are placed on A(x̄) and the
Robber is on u.

Note that this condition is satisfied by construction after the initialization round.
Also observe that Duplicator never looses the game in such a position. Indeed, the mapping

φ restricts to an isomorphism between CFI(G, ∅) −MG,∅(u) = CFI(G, {u}) −MG,{u}(u) and
CFI(G, {u0}) − MG,{u0}(u). Hence, since no vertex associated with u is pebbled in either
graph, the pair (x̄, ȳ) induces a local isomorphism.

So it remains to show that Duplicator can maintain the above invariant in each round of
the k-bijective pebble game. Suppose (x̄, ȳ) is the current position. Also let (A(x̄), u) be the
associated position in the cops-and-robber game. Suppose that A(x̄) = (v1, . . . , vk).

Let i ∈ [k] denote the index chosen by Spoiler. We describe the bijection f chosen by
Duplicator. Let v ∈ V (G). Let u′ be the vertex the Robber moves to if the Cops choose i and
v (i.e., the i-th cop changes its position to v) in the position (A(x̄), u). Let P denote a path
from u to u′ that avoids {v1, . . . , vk} \{vi}. Let ψ denote the isomorphism from CFI(G, {u′})
to CFI(G, {u}) constructed in Lemma 11. We set f(x) := φ(ψ(x)) for all x ∈ MG,∅(v).

It is easy to see that f is a bijection. Let x denote the vertex chosen by Spoiler and let
y := f(x). Let x̄′ := x̄[i/x] and ȳ′ := ȳ[i/y], i.e., the pair (x̄′, ȳ′) is the new position of the
game. Also, we set φ′ := ψ ◦φ (i.e., φ′(z) = φ(ψ(z))) where ψ denotes the isomorphism from
CFI(G, {u′}) to CFI(G, {u}) used in the definition of f(x).

Clearly, φ′(MG,{u′}(w)) = MG,{u0}(w) for all w ∈ V (G), since the corresponding condi-
tions are satisfied for the mappings ψ and φ. We have φ′(x) = y by definition. All the other
entries of x̄′ are fixed by the mapping ψ (see Lemma 11, Part (2)) which overall implies that
φ′(x̄′) = ȳ′. Also, u′ does not appear in the tuple A(x̄′) by construction, and the Robber
wins from the position (A(x̄′), u′).

So overall, this means that Duplicator can maintain the above invariant which provides
the desired winning strategy. ◀

With this, we are almost ready to prove Theorem 2. The next corollary states the key
consequence of Lemma 12 that allows us to apply Lemma 8.
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▶ Corollary 13. Let k ≥ 1 and let F be a graph of tree-width tw(F ) ≤ k. Also let G be a
graph and suppose there is a weak oddomorphism from F to G. Then tw(G) ≤ k.

Proof. Suppose towards a contradiction that tw(G) > k. Then there is a connected subgraph
G′ of G such that tw(G′) > k. By Lemma 7, we conclude that there is a minor F ′ of F
such that there is an oddomorphism from F ′ to G′. In particular, tw(F ′) ≤ tw(F ) ≤ k. By
Theorem 6, we conclude that hom(F ′,CFI(G′)) > hom(F ′,CFIx(G′)). Using Theorem 10 it
follows that Spoiler wins the (k + 1)-bijective pebble game BPk+1(CFI(G′),CFIx(G′)). But
this contradicts Lemma 12 since tw(G′) ≥ k + 1. ◀

Proof of Theorem 2. Let k ≥ 1 be fixed. By Corollary 13, the class Tk satisfies Condition 1
from Lemma 8. Also, the class Tk clearly satisfies Condition 2 from Lemma 8. So Tk is
homomorphism-distinguishing closed by Lemma 8. ◀

5 Weisfeiler-Leman and Subgraph Counts

In this section, we prove Theorem 3. Towards this end, we first need to formally introduce
the WL algorithm.

5.1 The Weisfeiler-Leman Algorithm
Let χ1, χ2 : V k → C be colorings of the k-tuples of vertices, where C is some finite set of
colors. We say χ1 refines χ2, denoted χ1 ⪯ χ2, if χ1(v̄) = χ1(w̄) implies χ2(v̄) = χ2(w̄) for
all v̄, w̄ ∈ V k. The colorings χ1 and χ2 are equivalent, denoted χ1 ≡ χ2, if χ1 ⪯ χ2 and
χ2 ⪯ χ1.

We describe the k-dimensional Weisfeiler-Leman algorithm (k-WL) for all k ≥ 1. For
an input graph G let χk,G

(0) : (V (G))k → C be the coloring where each tuple is colored with
the isomorphism type of its underlying ordered subgraph. More precisely, χk,G

(0) (v1, . . . , vk) =
χk,G

(0) (v′
1, . . . , v

′
k) if and only if, for all i, j ∈ [k], it holds that vi = vj ⇔ v′

i = v′
j and

vivj ∈ E(G) ⇔ v′
iv

′
j ∈ E(G).

We then recursively define the coloring χk,G
(i+1) obtained after i+ 1 rounds of the algorithm

(for i ≥ 0). For k ≥ 2 and v̄ = (v1, . . . , vk) ∈ (V (G))k we define

χk,G
(i+1)(v̄) :=

(
χk,G

(i) (v̄),Mi(v̄)
)

where

Mi(v̄) :=
{{(

χk,G
(i) (v̄[1/w]), . . . , χk,G

(i) (v̄[k/w])
) ∣∣∣ w ∈ V (G)

}}
and v̄[i/w] := (v1, . . . , vi−1, w, vi+1, . . . , vk) is the tuple obtained from v̄ by replacing the i-th
entry by w. For k = 1, the definition is similar, but we only iterate over neighbors of v1, i.e.,

Mi(v1) :=
{{
χk,G

(i) (w)
∣∣∣ w ∈ NG(v1)

}}
.

There is a minimal i∞ ≥ 0 such that χk,G
(i∞) ≡ χk,G

(i∞+1) and for this i∞ we define χk,G := χk,G
(i∞).

Let G and H be two graphs. We say that k-WL distinguishes G and H if there exists a
color c such that∣∣∣{v̄ ∈

(
V (G)

)k
∣∣∣ χk,G(v̄) = c

}∣∣∣ ̸=
∣∣∣{w̄ ∈

(
V (H)

)k
∣∣∣ χk,H(w̄) = c

}∣∣∣.
We write G ≃k H if k-WL does not distinguish G and H.

Recall that Tk denotes the class of graphs of tree-width at most k. The following
characterization follows from [6, 8, 13] (see also Theorem 10).
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▶ Theorem 14. Suppose k ≥ 1. Let G and H be two graphs. Then G ≃k H if and only if
G ≡Tk

H.

Recall that we write sub(F,G) to denote the number of subgraphs of G isomorphic to
F . We write sub(F, ·) to denote the function that maps each graph G to the corresponding
subgraph count sub(F,G).

▶ Definition 15. Let F be a graph. The function sub(F, ·) is k-WL invariant if

sub(F,G) = sub(F,H) (1)

for all graphs G,H such that G ≃k H.

5.2 Subgraph Counts
Using the framework from [4], it is possible to describe the subgraph count sub(F,G) as a
linear combination

sub(F,G) =
∑
i∈[ℓ]

αi · hom(Fi, G)

for certain graphs F1, . . . , Fℓ and coefficients α1, . . . , αℓ ∈ R that only depend on F . More
precisely, the graphs F1, . . . , Fℓ are exactly the homomorphic images of F .

▶ Definition 16. Let F and H be two graphs. We say that H is a homomorphic image of F
if there is a surjective homomorphism φ : V (F ) → V (H) such that

E(H) = {φ(v)φ(w) | vw ∈ E(F )}.

We write spasm(F ) to denote the set of homomorphic images of F . The hereditary tree-width
of F , denoted by hdtw(F ), is the maximum tree-width of a graph in spasm(F ), i.e.,

hdtw(F ) := max
H∈spasm(F )

tw(H).

In the following, we assume that spasm(F ) contains only one representative from each
isomorphism class, i.e., for every homomorphic image H of F there is exactly one graph
H ′ ∈ spasm(F ) that is isomorphic to H. In particular, the set spasm(F ) is finite.

The backward direction of Theorem 3 has already been proved in [1].

▶ Lemma 17 ([1, Corollary 4.3]). Let F be a graph such that hdtw(F ) ≤ k. Then sub(F, ·)
is k-WL invariant.

For the sake of completeness, we still include the simple proof.

Proof. Let F be a graph such that hdtw(F ) ≤ k and let L := spasm(F ). By [4] there is a
unique function α : L → R \ {0} such that

sub(F,G) =
∑
L∈L

α(L) · hom(L,G)

for all graphs G.
Now let G,H be two graphs such that G ≃k H. Then hom(L,G) = hom(L,H) for all

graph L ∈ Tk by Theorem 14. Since hdtw(F ) ≤ k, we get that L ⊆ Tk. So, in particular,
hom(L,G) = hom(L,H) for all graph L ∈ L. It follows that sub(F,G) = sub(F,H). ◀

STACS 2024



53:10 Homomorphism-Distinguishing Closedness for Graphs of Bounded Tree-Width

For the other direction, we combine Theorem 2 and the following lemma from [24].

▶ Lemma 18 ([24, Lemma 4]). Let F be a class of graphs that is homomorphism-distinguishing
closed. Let L be a finite set of pairwise non-isomorphic graphs and α : L → R \ {0}. Also
suppose that for all graphs G,H it holds that

G ≡F H =⇒
∑
L∈L

α(L) · hom(L,G) =
∑
L∈L

α(L) · hom(L,H). (2)

Then L ⊆ F .

▶ Lemma 19. Let F be a graph such that sub(F, ·) is k-WL invariant. Then hdtw(F ) ≤ k.

Proof. Let F denote the class of graphs of tree-width at most k. By Theorem 2 the class
F is homomorphism-distinguishing closed. Let L := spasm(F ). By [4] there is a unique
function α : L → R \ {0} such that

sub(F,G) =
∑
L∈L

α(L) · hom(L,G)

for all graphs G. Since sub(F, ·) is k-WL invariant it follows that Equation (2) is satisfied
for all graphs G,H using Theorem 14. So spasm(F ) = L ⊆ F by Lemma 18. This implies
that hdtw(F ) ≤ k. ◀

Proof of Theorem 3. The theorem follows directly from Lemmas 17 and 19. ◀

6 Conclusion

We proved that for every k ≥ 1 the class Tk of all graphs of tree-width at most k is
homomorphism-distinguishing closed. As a consequence, we could answer an open question
from [1] and precisely classify the subgraph counts detected by k-WL.

Still, Conjecture 1 remains wide open. As an intermediate step, it may be interesting to
consider minor- and union-closed classes of bounded tree-width. More precisely, let F be a
graph class closed under taking disjoint unions and minors, and there is some k ≥ 1 such that
every F ∈ F has tree-width at most k. Can we show that F is homomorphism-distinguishing
closed? Towards this end, it may also be interesting to obtain a direct proof of Corollary 13
that does not rely on the characterization from Theorem 10.
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Abstract
We study the existence of positional strategies for the protagonist in infinite duration games over
arbitrary game graphs. We prove that prefix-independent objectives in Σ0

2 which are positional
and admit a (strongly) neutral letter are exactly those that are recognised by history-deterministic
monotone co-Büchi automata over countable ordinals. This generalises a criterion proposed by
[Kopczyński, ICALP 2006] and gives an alternative proof of closure under union for these objectives,
which was known from [Ohlmann, TheoretiCS 2023].

We then give two applications of our result. First, we prove that the mean-payoff objective is
positional over arbitrary game graphs. Second, we establish the following completeness result: for
any objective W which is prefix-independent, admits a (weakly) neutral letter, and is positional over
finite game graphs, there is an objective W ′ which is equivalent to W over finite game graphs and
positional over arbitrary game graphs.
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1 Introduction

1.1 Context

Games. We study infinite duration games on graphs. In such a game, two players, Eve and
Adam, alternate forever in moving a token along the edges of a directed, possibly infinite
graph (called arena), whose edges are labelled with elements of some set C. An objective
W ⊆ Cω is specified in advance; Eve wins the game if the label of the produced infinite path
belongs to W . A strategy in such a game is called positional if it depends only on the current
vertex occupied by the token, regardless of the history of the play.

We are interested in positional objectives: those for which existence of a winning strategy
for Eve entails existence of a winning positional strategy for Eve, on a arbitrary arena.
Sometimes we also consider a weaker property: an objective is positional over finite arenas if
the above implication holds on any finite arena.
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Early results. Although the notion of positionality is already present in Shapley’s sem-
inal work [29], the first positionality result for infinite duration games was established by
Ehrenfeucht and Mycielsky [10], and it concerns the mean-payoff objective

Mean-Payoff≤0 =
{

w0w1 · · · ∈ Zω | lim sup
k

1
k

k−1∑
i=0

wi ≤ 0
}

,

over finite arenas. Nowadays, many proofs are known that establish positionality of mean-pay-
off games over finite arenas.

Later, and in a different context, Emerson and Jutla [11] as well as Mostowski [23]
independently established positionality of the parity objective

Parityd =
{

p0p1 · · · ∈ {0, 1, . . . , d}ω | lim sup
k

pk is even
}

over arbitrary arenas. This result was used to give a direct proof of the possibility of
complementing automata over infinite trees, which is the key step in modern proofs of Rabin’s
theorem on decidability of S2S [27]. By now, several proofs are known for positionality of
parity games, some of which apply to arbitrary arenas.

Both parity games and mean-payoff games have been the object of considerable attention
over the past three decades; we refer to [12] for a thorough exposition. By symmetry,
these games are positional not only for Eve but also for the opponent, a property we call
bi-positionality. Parity and mean-payoff objectives, as well as the vast majority of objectives
that are considered in this context, are prefix-independent, that is, invariant under adding or
removing finite prefixes.

Bi-positionality. Many efforts were devoted to understanding positionality in the early 2000’s.
These culminated in Gimbert and Zielonka’s work [15] establishing a general characterisation
of bi-positional objectives over finite arenas, from which it follows that an objective is
bi-positional over finite arenas if and only if it is the case for 1-player games. On the other
hand, Colcombet and Niwiński [8] established that bi-positionality over arbitrary arenas is
very restrictive: any prefix-independent objective which is bi-positional over arbitrary arenas
can be recast as a parity objective.

Together, these two results give a good understanding of bi-positional objectives, both
over finite and arbitrary arenas.

Positionality for Eve. In contrast, less is known about those objectives which are positional
for Eve, regardless of the opponent (this is sometimes called half-positionality). This
is somewhat surprising, considering that positionality is more in-line with the primary
application in synthesis of reactive systems, where the opponent, who models an antagonistic
environment, need not have structured strategies. The thesis of Kopczyński [19] proposes
a number of results on positionality, but no characterisation. Kopczyński proposed two
classes of prefix-independent objectives, concave objectives and monotone objectives, which
are positional respectively over finite and over arbitrary arenas. Both classes are closed under
unions, which motivated the following conjecture.

▶ Conjecture 1 (Kopczyński’s conjecture [19, 18]). Prefix-independent positional objectives
are closed under unions.

This conjecture was disproved by Kozachinskiy in the case of finite arenas [20], however,
it remains open for arbitrary ones (even in the case of countable unions instead of unions).
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Neutral letters. Many of the considered objectives contain a neutral letter, that is an element
ε ∈ C such that W is invariant under removing arbitrary many occurrences of the letter ε

from any infinite word. For instance, ε = 0 is a neutral letter of the parity objective Parityd.
There are two variants of this definition, strongly neutral letter and weakly neutral letter,
which are formally introduced in the preliminaries. It is unknown whether adding a neutral
letter to a given objective may affect its positionality [19, 25].

Neutral letters are typically used when one wants to modify a given game arena, by
allowing players to make some additional decisions. This requires to create intermediate
edges in such a way that their labels do not affect the overall outcome of the play.

Borel classes. To stratify the complexity of the considered objectives we use the Borel
hierarchy [17]. This follows the classical approach to Gale-Stewart games [13], where the
determinacy theorem was gradually proved for more and more complex Borel classes: Σ0

2
in [31] and Σ0

3 in [9]. This finally led to Martin’s celebrated result on all Borel objectives [22].
To apply this technique, we assume for the rest of the paper that C is at most countable.

Thus, Cω is a Polish topological space, with open sets of the form L · Cω where L ⊆ C∗ is
arbitrary. Closed sets are those whose complement is open. The class Σ0

2 contains all sets
which can be obtained as a countable union of some closed sets.

Recent developments. A step forward in the study of positionality (for Eve) was recently
made by Ohlmann [25] who established that an objective admitting a (strongly) neutral letter
is positional over arbitrary arenas if and only if it admits well-ordered monotone universal
graphs. Note that this characterisation concerns only positionality over arbitrary arenas.
This allowed Ohlmann to prove closure of prefix-independent positional objectives (over
arbitrary arenas) admitting a (strongly) neutral letter under finite lexicographic products,
and, further assuming membership in Σ0

2, under countable unions1.
Bouyer, Casares, Randour, and Vandenhove [2] also used universal graphs to characterise

positionality for objectives recognised by deterministic Büchi automata. They observed that
for such an objective W finiteness of the arena does not impact positionality: W is positional
over arbitrary arenas if and only if it is positional over finite ones.

Going further, Casares and Ohlmann [6, 4] recently proved a characterisation of posi-
tionality for all ω-regular objectives. As a by-product, it follows that Conjecture 1 holds for
ω-regular objectives2, and that again finiteness of the arena does not impact positionality.

1.2 Contributions
Positionality in Σ0

2. As mentioned above, Kopczyński introduced the class of monotonic
objectives, defined as those of the form Cω \ Lω, where L is a language recognised by a finite
linearly-ordered automaton with certain monotonicity properties on transitions. He then
proved that monotonic objectives are positional over arbitrary arenas. Such objectives are
prefix-independent and belong to Σ0

2; our first contribution is to extend Kopczyński’s result
to a complete characterisation (up to neutral letters) of positional objectives in Σ0

2.

1 In [25], an assumption called “non-healing” is used. This assumption is in fact implied by membership
in Σ0

2.
2 In fact, Casares proved a strengthening of the conjecture when only one objective is required to be

prefix-independent.
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▶ Theorem 2. Let W ⊆ Cω be a prefix-independent Σ0
2 objective admitting a strongly neutral

letter. Then W is positional over arbitrary arenas if and only if it is recognised by a countable
history-deterministic well-founded monotone co-Büchi automaton.

The proof of Theorem 2 is based on Ohlmann’s structuration technique which is the key
ingredient to the proof of [25]. As an easy by-product of the above characterisation, we
reobtain the result that Kopczynski’s conjecture holds for countable unions of Σ0

2 objectives
(assuming that the given objectives all have strongly neutral letters).

▶ Corollary 3. If W0, W1, . . . are all positional prefix-independent Σ0
2 objectives, each admit-

ting a strongly neutral letter, then the union
⋃

i∈N Wi is also positional.

From finite to arbitrary arenas. The most important natural example of an objective which
is positional over finite arenas but not over infinite ones is Mean-Payoff≤0, as defined above.
As a straightforward consequence of their positionality [3, Theorem 3], it holds that over
finite arenas, Mean-Payoff≤0 coincides with the energy condition

Bounded =
{

w0w1 · · · ∈ Zω | sup
k

k−1∑
i=0

wi is finite
}

,

which turns out to be positional even over arbitrary arenas [25].
Applying Corollary 3, we establish that with strict threshold, the mean-payoff objective

Mean-Payoff<0 =
{

w0w1 · · · ∈ Zω | lim sup
k

1
k

k−1∑
i=0

wi < 0
}

is in fact positional over arbitrary arenas.
Now say that two prefix-independent objectives are finitely equivalent, written W ≡ W ′,

if they are won by Eve over the same finite arenas. As observed above, Mean-Payoff≤0 ≡
Bounded, which is positional over arbitrary arenas. Likewise, its complement

Zω \ Mean-Payoff≤0 =
{

w0w1 · · · ∈ Zω | lim sup
k

1
k

k−1∑
i=0

wi ≥ 0
}

is, up to changing each weight w ∈ Z by the opposite one −w ∈ Z, isomorphic to

{
w0w1 · · · ∈ Zω | lim inf

k

1
k

k−1∑
i=0

wi < 0
}

.

The latter condition is finitely equivalent to Mean-Payoff<0 (where the liminf is replaced
with a limsup), which, as explained above, turns out to be positional over arbitrary arenas.

Thus, both Mean-Payoff≤0 and its complement are finitely equivalent to objectives that
are positional over arbitrary arenas. This brings us to our main contribution, which generalises
the above observation to any prefix-independent objective admitting a (weakly) neutral letter
which is positional over finite arenas.

▶ Theorem 4. Let W ⊆ Cω be a prefix-independent objective which is positional over finite
arenas and admits a weakly neutral letter. Then there exists an objective W ′ ≡ W which is
positional over arbitrary arenas.
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Structure of the paper. Section 2 introduces all necessary notions, including Ohlmann’s
structurations results. Section 3 proves our characterisation result Theorem 2 and its
consequence Corollary 3, and provides a few examples. Then we proceed in Section 4 with
establishing positionality of Mean-Payoff<0 over arbitrary arenas, and proving Theorem 4.

2 Preliminaries

Graphs. We fix a set of letters C, which we assume to be at most countable. A C-graph
G is comprised of a (potentially infinite) set of vertices V (G) together with a set of edges
E(G) ⊆ V (G) × C × V (G). An edge e = (v, c, v′) ∈ E(G) is written v

c−→ v′, with c being
the label of this edge. We say that e is outgoing from v, that it is incoming to v′, and that
it is adjacent to both v and to v′. We assume that each vertex v ∈ V (G) has at least one
outgoing edge (we call this condition being sinkless, with a sink understood as a vertex with
no outgoing edge).

We say that G is finite (resp. countable) if both V (G) and E(G) are finite (resp. countable).
The size of a graph is defined to be |G| = |V (G)|.

A (finite) path is a (finite) sequence of edges with matching endpoints, meaning of the
form v0

c0−→ v1, v1
c1−→ v2, . . . , which we conveniently write as v0

c0−→ v1
c1−→ . . . . We say that

π is a path from v0 in G, and that vertices v0, v1, v2, . . . appearing on the path are reachable
from v0. We use G[v0] to denote the restriction of G to vertices reachable from v0. The label
of a path π is the sequence c0c1 . . . of labels of its edges; it belongs to Cω if π is infinite and
to C∗ otherwise. We sometimes write v

w
⇝ to say that w labels an infinite path from v, or

v
w
⇝ v′ to say that w labels a finite path from v to v′. We write L(G, v0) ⊆ Cω for the set of

labels of all infinite paths from v0 in G, and L(G) ⊆ Cω for the set of labels of all infinite
paths in G, that is the union of L(G, v0) over all v0 ∈ V (G).

A graph morphism from G to G′ is a map ϕ : V (G) → V (G′) such that for every edge
v

c−→ v′ ∈ E(G), it holds that ϕ(v) c−→ ϕ(v′) ∈ E(G′). We write G
ϕ−→ G′. We sometimes say

that G embeds in G′ or that G′ embeds G, and we write G → G′, to say that there exists
a morphism from G to G′. Note that G → G′ implies L(G) ⊆ L(G′).

A graph G is v0-rooted if it has a distinguished vertex v0 ∈ V (G) called the root. A tree T

is a t0-rooted graph such that all vertices in T admit a unique finite path from the root t0.

Games. A C-arena is given by a C-graph A together with a partition of its vertices
V (A) = VEve ⊔ VAdam into those controlled by Eve VEve and those controlled by Adam VAdam.
A strategy (for Eve) (S, π) in an arena A is a graph S together with a surjective morphism
π : S → A satisfying that for every vertex v ∈ VAdam, every outgoing edge v

c−→ v′ ∈ E(A),
and every s ∈ π−1(v), there is an outgoing edge s

c−→ s′ ∈ E(S) with π(s′) = v′. Recall that
under our assumptions every vertex needs to have at least one outgoing edge, thus for every
v ∈ VEve and every s ∈ π−1(v) there must be at least one outgoing edge from s in S.

The example arenas in this work are drawn following a standard notation, where circles
(resp. squares) denote vertices controlled by Eve (resp. Adam). Vertices with a single outgoing
edge are denoted by a simple dot, it does not matter who controls them.

A strategy is positional if π is injective. In this case, we can assume that V (S) = V (A)
and E(S) ⊆ E(A), with π being identity.

An objective is a set W ⊆ Cω of infinite sequences of elements of C. In this paper,
we will always work with prefix-independent objectives, meaning objectives which satisfy
cW = W for all c ∈ C; this allows us to simplify many of the definitions. A graph G satisfies
an objective W if L(G) ⊆ W . A game is given by a C-arena A together with an objective W .

STACS 2024
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It is winning (for Eve) if there is a strategy (S, π) such that S satisfies W . In this case, we
also say that Eve wins the game (A, W ) with the strategy (S, π). We say that an objective W

is positional (over finite arenas or over arbitrary arenas) if for any (finite or arbitrary) arena
A, if Eve wins the game (A, W ) then she wins (A, W ) with a positional strategy.

Neutral letters. A letter ε ∈ C is said to be weakly neutral for an objective W ⊆ Cω if for
any word w ∈ Cω decomposed into w = w0w1 . . . with non-empty words wi ∈ C+,

w ∈ W ⇐⇒ εw0εw1ε · · · ∈ W.

A weakly neutral letter ε ∈ C is strongly neutral if in the above, the wi can be chosen empty,
and moreover, εω ∈ W .

A few examples: for the parity objective, the priority 0 is strongly neutral; for Bounded,
the weight 0 is strongly neutral; for Mean-Payoff≤0, the letter 0 is only weakly neutral
(because 1ω /∈ Mean-Payoff≤0 however 010010001 · · · ∈ Mean-Payoff≤0), and likewise for
Mean-Payoff<0 because 0ω /∈ Mean-Payoff<0.

Monotone and universal graphs. An ordered graph is a graph G equipped with a total
order ≥ on its set of vertices V (G). We say that it is monotone if

v ≥ u
c−→ u′ ≥ v′ in G implies v

c−→ v′ ∈ E(G).

Such a graph is well founded if the order ≥ on V (G) is well founded.
We will use a variant of universality called (uniform) almost-universality (for trees), which

is convenient when working with prefix-independent objectives. A C-graph U is almost
W -universal, if U satisfies W , and for any tree T satisfying W , there is a vertex t ∈ V (T )
such that T [t] → U . We will rely on the following inductive result from [25].

▶ Theorem 5 (Follows from Theorem 3.2 and Lemma 4.5 in [25]). Let W ⊆ Cω be a pre-
fix-independent objective such that there is a graph which is almost W -universal. Then W is
positional over arbitrary arenas.

Structuration results. The following results were proved in Ohlmann’s PhD thesis (Theor-
ems 3.1 and 3.2 in [24]); the two incomparable variants stem from two different techniques.

▶ Lemma 6 (Finite structuration). Let W be a prefix-independent objective which is positional
over finite arenas and admits a weakly neutral letter, and let G be a finite graph satisfying W .
Then there is a monotone graph G′ satisfying W such that G → G′.

▶ Lemma 7 (Infinite structuration). Let W be a prefix-independent objective which is positional
over arbitrary arenas and admits a strongly neutral letter, and let G be any graph satisfying W .
Then there is a well-founded monotone graph G′ satisfying W such that G → G′.

Note that in both results, we may assume that |G′| ≤ |G|, simply by restricting to the
image of G. Details of the proof of Lemma 7 can be found in [25, Theorem 3]; Lemma 6
appears only in Ohlmann’s PhD thesis [24].

Automata. A co-Büchi automaton over C is a q0-rooted C × {N , F}-graph A. In this
context, vertices V (A) are called states, edges E(A) are called transitions, and the root q0

is called the initial state. Moreover, transitions of the form q
(c,N )−−−→ q′ are called normal

transitions and simply denoted q
c−→ q′, while transitions of the form q

(c,F)−−−→ q′ are called
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co-Büchi transitions and denoted q •
c−→ q′. For simplicity, we assume automata to be complete

(for any state q and any letter c, there is at least one outgoing transition labelled c from q)
and reachable (for any state q there is some path from q0 to q in A).

A path q0
(c0,a0)−−−−→ q1

(c1,a1)−−−−→ . . . in A is accepting if it contains only finitely many co-Büchi
transitions, meaning that only finitely many of ai equal F . If q ∈ V (A) is a state then define
the language L(A, q) ⊆ Cω of a co-Büchi automaton from a state q ∈ V (A) as the set of
infinite words which label accepting paths from q in A. The language of A denoted L(A) is
L(A, q0). Note that in this paper, automata are not assumed to be finite.

We say that an automaton is monotone if it is monotone as a C ×{N , F}-graph. Likewise,
morphisms between automata are just morphisms of the corresponding C × {N , F}-graphs
that moreover preserve the initial state. Note that A → A′ implies L(A) ⊆ L(A′). A co-Büchi
automaton is deterministic if for each state q ∈ V (A) and each letter c ∈ C there is exactly
one transition labelled by c outgoing from q.

A resolver for an automaton A is a deterministic automaton R with a morphism R → A.
Note that the existence of this morphism implies that L(R) ⊆ L(A). Such a resolver is
sound if additionally L(R) ⊇ L(A) (and thus L(R) = L(A)). A co-Büchi automaton is
history-deterministic if there exists a sound resolver R. Our definition of history-determinism
is slightly non-standard, but it fits well with our overall use of morphisms and of possibly
infinite automata. This point of view was also adopted by Colcombet (see [7, Definition 13]).
For more details on history-determinism of co-Büchi automata, we refer to [21, 1, 28].

We often make use of the following simple lemma, which follows directly from the
definitions and the fact that composing morphisms results in a morphism.

▶ Lemma 8. Let A, A′ be automata such that A → A′, A is history-deterministic, and
L(A) = L(A′). Then A′ is history-deterministic.

Say that an automaton A is saturated if it has all possible co-Büchi transitions: V (A) ×
(C × {F}) × V (A) ⊆ E(A). The saturation of an automaton A is obtained from A by adding
all possible co-Büchi transitions. Similar techniques of saturating co-Büchi automata have
been previously used to study their structure [21, 16, 28].

Note that languages of saturated automata are always prefix-independent. The lemma
below states that co-Büchi transitions are somewhat irrelevant in history-deterministic
automata recognising prefix-independent languages.

▶ Lemma 9. Let A be a history-deterministic automaton recognising a prefix-independent
language and let A′ be its saturation. Then L(A) = L(A′) and A′ is history-deterministic.
Moreover, L(A′) = L(A′, q) for any state q of A′.

Proof. Clearly A → A′ thus L(A) ⊆ L(A′); it suffices to prove L(A′) ⊆ L(A) and conclude by
Lemma 8. Let w0w1 · · · ∈ L(A′) and let q0

(w0,a0)−−−−−→ q1
(w1,a1)−−−−−→ . . . be an accepting path for w

in A′. Then for some i, qi
(wi,ai)−−−−→ qi+1

(wi+1,ai+1)−−−−−−−→ . . . is comprised only of normal transitions.
Thus, this suffix of the path does not use edges added during the saturation process, which
means this suffix is an accepting path in A. We conclude that wiwi+1 · · · ∈ L(A) and thus
w ∈ L(A) by prefix-independence.

The claim that L(A′, q) is independent on q follows directly from prefix-independence
and the fact that A′ is saturated. ◀
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3 Positional prefix-independent Σ0
2 objectives

3.1 A characterisation
Recall that Σ0

2 objectives are countable unions of closed objectives; for the purpose of
this paper it is convenient to observe that these are exactly those objectives recognised by
(countable) deterministic co-Büchi automata (see for instance [30]).

The goal of the section is to prove Theorem 2 which we now restate for convenience.

▶ Theorem 2. Let W ⊆ Cω be a prefix-independent Σ0
2 objective admitting a strongly neutral

letter. Then W is positional over arbitrary arenas if and only if it is recognised by a countable
history-deterministic well-founded monotone co-Büchi automaton.

Before moving on to the proof, we proceed with a quick technical statement that allows
us to put automata in a slightly more convenient form.

▶ Lemma 10. Let A be a history-deterministic automaton recognising a non-empty prefix-in-
dependent language. There exists a history-deterministic automaton A′ with L(A′) = L(A)
and such that from every state q′ ∈ V (A′), there is an infinite path comprised only of normal
transitions. Moreover, if A is countable, well founded, and monotone, then so is A′.

Proof. Let V ⊆ V (A) be the set of states q ∈ V (A) from which there is an infinite path
of normal transitions. Note that V ̸= ∅ since L(A) is non-empty. First, since every path
from V (A) \ V visits at least one co-Büchi transition, we turn all normal transitions adjacent
to states in V (A) \ V into co-Büchi ones; this does not affect L(A) or history-determinism.
Next, we saturate A and restrict it to V . Call A′ the resulting automaton; if q0 /∈ V then we
pick the initial state q′

0 of A′ arbitrarily in V . It is clear that restricting A to some subset of
states, changing the initial state, as well as saturating, are operations that preserve being
countable, well founded, and monotone.

We claim that L(A) = L(A′). The inclusion L(A′) ⊆ L(A) follows from the proof of
Lemma 9 so we focus on the converse: let w = w0w1 · · · ∈ L(A) and take an accepting path π

for w. Then there is a suffix of π which remains in V and therefore defines a path in A′; we
conclude thanks to prefix-independence of L(A′).

It remains to see that A′ is history-deterministic. For this, we observe that any transition
adjacent to states in V (A) \ V is a co-Büchi transition; therefore the map ϕ : V (A) →
V (A′) = V which is identity on V and sends V (A) \ V to the initial state of A′ defines
a morphism A → A′. We conclude by Lemma 8. ◀

To prove Theorem 2, we separate both directions so as to provide more precise hypotheses.

▶ Lemma 11. Let W be a prefix-independent Σ0
2 objective admitting a strongly neutral letter.

Then W is recognised by a countable history-deterministic monotone well-founded automaton.

Proof. If W = ∅ then the saturated automaton with a single state and no normal transitions
gives the wanted result; therefore we assume W to be non-empty. Let A be a history-
deterministic co-Büchi automaton recognising W with initial state q0; thanks to Lemma 10
we assume that every state in A participates in an infinite path of normal transitions. Let G

be the C-graph obtained from A by removing all the co-Büchi transitions. The fact that G

is sinkless (and therefore, G is indeed a graph) follows from the assumption on A. Since W

is prefix-independent, it holds that G satisfies W .
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Apply the infinite structuration result (Lemma 7, which requires the strongly neutral
letter) to G to obtain a well-founded monotone graph G′ satisfying W and such that G

ϕ−→ G′.
Note that we may restrict V (G′) to the image of ϕ. Due to the fact that C is countable, this
guarantees that G′ is countable.

Now let A′ be the co-Büchi automaton obtained from G′ by turning every edge into
a normal transition, setting the initial state to be q′

0 = ϕ(q0), and saturating. Note that
A′ is countable monotone and well-founded; we claim that A′ is history-deterministic and
recognises W , as required.

Let w ∈ L(A′). Then w = uw′ where w′ ∈ L(G′) ⊆ W . It follows from prefix-independence
that w ∈ W . Conversely, let w0w1 · · · ∈ W as witnessed by an accepting path π = q0

(w0,a0)−−−−−→
q1

(w1,a1)−−−−−→ . . . from q0 in A. This path has only finitely many co-Büchi transitions.
Then consider the path π′ = ϕ(q0) w0−−→ ϕ(q1) w1−−→ . . . in A′, where we use co-Büchi

transitions only when necessary, meaning when there is no normal transition ϕ(qi)
wi−→ ϕ(qi+1)

in A′. Since π visits only finitely many co-Büchi transitions, it is eventually a path in G,
and thus since ϕ is a morphism, π′ is eventually a path in G′, and hence it sees only finitely
many co-Büchi transitions in A′. Hence L(A′) = W .

It remains to show that A′ is history-deterministic. But since A′ is saturated and G → G′

we have A → A′ and thus Lemma 8 concludes. ◀

For the converse direction, we do not require a neutral letter.

▶ Lemma 12. If W is a prefix-independent objective recognised by a countable history-de-
terministic monotone well-founded co-Büchi automaton then W is positional over arbitrary
arenas.

Proof. As previously, if W is empty then it is trivially positional, so we assume that W

is non-empty, and we take an automaton A satisfying the hypotheses above and apply
Lemma 10 so that every state participates in an infinite path of normal transitions. Let U

be the C-graph obtained from A by removing all co-Büchi transitions and turning normal
transitions into edges; thanks to Lemma 10, U is sinkless so it is indeed a graph. We prove
that U is almost W -universal for trees. Let T be a tree satisfying W and let t0 be its root.

Since A is history-deterministic, there is a mapping ϕ : V (T ) → V (A) such that for each
edge t

c−→ t′ ∈ E(T ), there is a transition ϕ(t) (c,a)−−−→ ϕ(t′) in A with some a ∈ {N , F}, and
such that for all infinite paths t0

w0−−→ t1
w1−−→ . . . in T , there are only finitely many co-Büchi

transitions on the path ϕ(t0) (w0,a0)−−−−−→ ϕ(t1) (w1,a1)−−−−−→ . . . in A.

▷ Claim 13. There is a vertex t′
0 ∈ V (T ) such that for all infinite paths t′

0
w0−−→ t′

1
w1−−→ . . .

from t′
0 in T , there is no co-Büchi transition on the path ϕ(t0) w0−−→ ϕ(t1) w1−−→ . . . in A.

Proof. Assume towards contradiction that no such vertex exists. Then starting from the
root t0, we build an infinite path t0

w0⇝ t1
w1⇝ . . . in T such that ϕ(t0) w0⇝ ϕ(w1) w1⇝ . . . has

infinitely many co-Büchi transitions in A. Indeed, assuming the path built up to ti, we
simply pick ti

wi⇝ ti+1 such that there is a co-Büchi transition in A on the corresponding
path ϕ(ti)

wi⇝ ϕ(ti+1). Thus, we constructed a path contradicting the observation below: this
path has infinitely many co-Büchi transitions in A. ◁

There remains to observe that ϕ maps T [t′
0] to U , and thus U is almost W -universal for trees.

We conclude by applying Lemma 5. ◀
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3.2 A few examples
Kopczyński-monotonic objectives. In our terminology, Kopczyński’s monotonic objectives
correspond to the prefix-independent languages that are recognised by finite monotone
co-Büchi automata. Note that such automata are of course well-founded, but also they are
history-deterministic (even determinisable by pruning): one should always follow a transition
to a maximal state. Therefore our result proves that such objectives are positional over
arbitrary arenas. A very easy example is the co-Büchi objective

co-Büchi = {w ∈ {N , F}ω | w has finitely many occurrences of F},

which is recognised by a (monotone) automaton with a single state. Some more advanced
examples are given in Figure 1.

a

a

a

b
b

b
b

a

a,b
a

a

c c

Figure 1 Two finite monotone co-Büchi automata recognising prefix-independent languages. For
clarity, the co-Büchi transitions are not depicted but connect every pair of states; likewise, edges
following from monotonicity (such as the dashed ones for example), are omitted. The automaton
on the left recognises words with finitely many aab infixes. The automaton on the right recognises
words with finitely many infixes in c(a∗cb∗)+c.

Finite support. The finite support objective is defined over ω by

Finite = {w ∈ ωω | finitely many distinct letters appear in w}

Consider the automaton A over V (A) = ω with

v
w−→ v′ ∈ E(A) ⇐⇒ w, v′ ≤ v,

co-Büchi transitions everywhere, and initial state 0 (see Figure 2).

...

0 0,1 0,1,2

0,1 0,1,2

2

Figure 2 An automaton A for objective Finite. Co-Büchi edges, as well as some edges following
from monotonicity (such as the dashed one) are omitted for clarity.

It is countable, history-deterministic, well-founded, and monotone and recognises L(A) =
Finite. Details of the proof are easy and left to the reader. Positionality of Finite can also
be established by Corollary 3, as it is a countable union of the safety languages F ω ⊆ ωω,
where F ranges over finite subsets of ω. As far as we are aware, this result is novel.3

3 A similar positionality result is proved in [14], but it assumes finite degree of the arena, vertex-labels
(which is more restrictive), and injectivity of the colouring of the arena.
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Energy objectives. Recall the energy objective

Bounded =
{

w0w1 · · · ∈ Zω | sup
k

k−1∑
i=0

wi is finite
}

,

which is prefix-independent and belongs to Σ0
2. Consider the automaton A whose set of

states is ω, with the initial state 0 and with all possible co-Büchi transitions, and normal
transitions of the form v

w−→ v′ where w ≤ v − v′. Note that A is well-founded and monotone,
so we should prove that it is history-deterministic and recognises Bounded.

Note that any infinite path of normal edges v0
w0−−→ v1

w1−−→ . . . in A is such that for all i,
wi ≤ vi − vi+1, and therefore

k−1∑
i=0

wi ≤ v0 − vk ≤ v0

and thus L(A) ⊆ Bounded.
A resolver for A works as follows: keep a counter c (initialised to zero), and along the

run, from a vertex v and when reading an edge w,
if v ≥ w then take the normal transition v

w−→ v − w;
otherwise, take the co-Büchi transition v •

w−→ c and increment the counter.

Eventually non-increasing objective. Over the alphabet ω, consider the objective

ENI =
{

w0w1 · · · ∈ ωω | there are finitely many i such that wi+1 > wi

}
.

Note that since ω is well-founded, a sequence belongs to ENI if and only if it is eventually
constant. Consider the automaton A over ω with the initial state 0, with all possible co-Büchi
transitions, and with normal transitions v

w−→ v′ if and only if v ≥ w ≥ v′. Note that A is
countable, well-founded, and monotone, so we should prove that it recognises ENI and is
history-deterministic.

First, note that any infinite path of normal edges v0
w0−−→ v1

w1−−→ . . . in A is such that
v0 ≥ w0 ≥ v1 ≥ w1 ≥ . . . , and therefore L(A) ⊆ ENI. A sound resolver for A simply goes to
the state w when reading a letter w, using a normal transition if possible, and a co-Büchi
transition otherwise. We leave the formal definition to the reader.

Eventually non-decreasing objective. In contrast, the objective

END = {w0w1 · · · ∈ ωω | there are finitely many i such that wi+1 < wi}

is not positional over arbitrary arenas, as witnessed by Figure 3.

. . .

. . .

1

1

1

2

22

3

33

4

4

4

Figure 3 An arena over which Eve requires a non-positional strategy in order to produce
a sequence which is eventually non-decreasing.
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3.3 Closure under countable unions
We now move on to Corollary 3, which answers Kopczyński’s conjecture in the affirmative in
the case of Σ0

2 objectives.

▶ Corollary 3. If W0, W1, . . . are all positional prefix-independent Σ0
2 objectives, each admit-

ting a strongly neutral letter, then the union
⋃

i∈N Wi is also positional.

Proof. Let W0, W1, . . . be a family of countably many prefix-independent Σ0
2 objectives

admitting strongly neutral letters. Using Theorem 2 we get countable history-deterministic
well-founded monotone co-Büchi automata A0, A1, . . . for the respective objectives; without
loss of generality we assume that they are saturated (Lemma 9).

Then consider the automaton A obtained from the disjoint union of the Ai’s by adding
all possible co-Büchi transitions, and all normal transitions from Ai to Aj with i > j. The
initial state in A can be chosen arbitrarily. Note that A is well-founded, monotone, and
countable, so we should prove that it recognises W =

⋃
i Wi and is history-deterministic.

Note that any infinite path in A which visits finitely many co-Büchi transitions eventually
remains in some Ai, and thus by prefix-independence, L(A) ⊆ W .

It remains to prove history-determinism of A. Let R0, R1, . . . be resolvers for A0, A1, . . .

witnessing that these automata are history deterministic. Consider a resolver which stores
a sequence of states (r0, r1, . . .), with ri being a state of Ri. Initially these are all initial
states of the respective resolvers and the transitions follow the transitions of all the resolvers
synchronously. Additionally, we store a round-robin counter, which indicates one of the
resolvers, following the sequence R0; R0, R1; R0, R1, R2; R0, R1, R2, R3; . . . If we see a normal
transition in the currently indicated resolver, then we also see a normal transition in R, and
otherwise, we update the counter to the next resolver and see a co-Büchi transition in R.

We now prove that the above resolver is sound. For that, consider a word w which belongs
to L(An) for some n. Assume for the sake of contradiction that the path in A constructed
by the above resolver reading w contains infinitely many co-Büchi transitions. It means that
infinitely many times the resolver Rn reached a co-Büchi state in An. But this contradicts the
assumption that Rn is sound. We conclude that W is positional by applying Lemma 12. ◀

4 From finite to arbitrary arenas

In this section we study the difference between positionality over finite and arbitrary arenas.

4.1 Mean-payoff games
There are, in fact, four non-isomorphic variants of the mean-payoff objective. Three of them
fail to be positional over arbitrary arenas (even over bounded degree arenas), as expressed
by the following facts.

▶ Proposition 14. The mean-payoff objective Mean-Payoff≤0 over w0w1 · · · ∈ Zω with the
condition lim supk

1
k

∑k−1
i=0 wi ≤ 0 is not positional over arbitrary arenas.

Proof. Consider the arena depicted on Figure 4. Eve can win by following bigger and bigger
loops which reach arbitrarily far to the right. This strategy brings the average of the weights
closer and closer to 0.

Nevertheless, each positional strategy of Eve either moves infinitely far to the right
(resulting in limk

1
k

∑k−1
i=0 wi = 1) or repeats some finite loop which results in a fixed positive

limit limk
1
k

∑k−1
i=0 wi > 0. In both cases it violates Mean-Payoff≤0. ◀
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Figure 4 The arena used in the proof of Proposition 14.

▶ Proposition 15. Consider two lim inf variants of the mean-payoff objective over w0w1 · · · ∈
Zω: one where we require that lim infk

1
k

∑k−1
i=0 wi ≤ 0, and the other where that same quantity

is < 0. Both these objectives are not positional over arbitrary arenas.

Figure 5 The arena used in the proof of Proposition 15.

Proof. Consider the arena depicted on Figure 5. Again, Eve has a winning strategy for both
these objectives by always going sufficiently far to the left, to ensure that the average drops
below for instance − 1

2 .
Nevertheless, each positional strategy of Eve either moves infinitely far to the left (resulting

again in limk
1
k

∑k−1
i=0 wi = 1), or repeats some finite loop, reaching a minimal negative weight

−2n for some n > 0. Now, Adam can win against this strategy by repeating a loop going
to the right, in such a way to reach a weight 2n+1. The label of such a path satisfies
limk

1
k

∑k−1
i=0 wi = 2n+1−1

4n+4 > 0, violating both objectives. ◀

The remaining fourth type of a mean-payoff objective is „lim sup < 0”:

Mean-Payoff<0 =
{

w0w1 · · · ∈ Zω | lim sup
k

1
k

k−1∑
i=0

wi < 0
}

.

▶ Proposition 16. The objective Mean-Payoff<0 is positional over arbitrary arenas.

Proof. Consider the tilted boundedness objective with parameter n ≥ 1, defined as

Tilted-Boundedn =
{

w0w1 · · · ∈ Zω | sup
k

k−1∑
i=0

(wi + 1/n) is finite
}

Note that renaming weights by w 7→ nw maps Tilted-Boundedn to Bounded∩(nZ)ω, therefore
it follows easily that Tilted-Boundedn is positional over arbitrary arenas. Note also that for
every n the objective Tilted-Boundedn belongs to Σ0

2, as a union ranging over N ∈ N of
closed (in other words safety) objectives

{
w0w1 · · · ∈ Zω | ∀k∈N

∑k−1
i=0 (wi + 1/n) ≤ N

}
.

▷ Claim 17. It holds that Mean-Payoff<0 =
⋃

n≥1 Tilted-Boundedn.
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Proof of Claim 17. Write mp(w) = lim supk 1/k
∑k−1

i=0 wi. If

w = w0w1 · · · ∈ Tilted-Boundedn

then there is a bound N such that for all k,
∑k−1

i=0 (wi + 1/n) ≤ N , therefore 1/k
∑k−1

i=0 wi ≤
N/k − 1/n and thus mp(w) ≤ −1/n < 0, so w ∈ Mean-Payoff<0. Conversely, if w ∈
Mean-Payoff<0 and n is large enough so that 1/n ≤ mp(w), then w ∈ Tilted-Boundedn. ◁

Now, positionality of Mean-Payoff<0 follows from the claim together with Corollary 3, as
all Tilted-Boundedn are prefix-independent, admit a strongly neutral letter, are positional,
and belong to Σ0

2.4 ◀

4.2 A completeness result
Equivalence over finite arenas. Recall that two prefix-independent objectives W, W ′ ⊆ Cω

are said to be finitely equivalent, written W ≡ W ′, if for all finite C-arenas A,

Eve wins (A, W ) ⇐⇒ Eve wins (A, W ′).

Since one may view strategies as games controlled by Adam, we obtain the following
motivating result.

▶ Lemma 18. If W ≡ W ′ and W is positional over finite arenas then so is W ′.

Proof. Let A be a finite C-arena such that Eve wins (A, W ′). Then Eve wins (A, W ), so
she wins with a positional strategy S. Looking at S as a finite C-arena controlled by Adam
yields that Eve wins (S, W ′), thus S satisfies W ′. ◀

We now move on to the proof of our completeness result.

▶ Theorem 4. Let W ⊆ Cω be a prefix-independent objective which is positional over finite
arenas and admits a weakly neutral letter. Then there exists an objective W ′ ≡ W which is
positional over arbitrary arenas.

We start with the following observation, which is a standard topological argument based
on König’s lemma. Note that the assumption of finiteness of G is essential here.

▶ Lemma 19. Let G be a finite C-graph and v ∈ G. Then L(G, v) is a closed subset of Cω.

We may now give the crucial definition. Given a prefix-independent objective W ⊆ Cω,
we define its finitary substitute to be

Wfin = {w ∈ Cω | w labels a path in some finite graph G which satisfies W}.

Note that Wfin ⊆ W . Now observe that

W =
⋃

G finite graph
G satisfies W

L(G) =
⋃

G finite graph
G satisfies W

v∈V (G)

L(G, v),

and since there are (up to isomorphism) only countably many finite graphs, it follows from
Lemma 19 that Wfin ∈ Σ0

2.

4 We thank Lorenzo Clemente for suggesting to use closure under union. A direct proof (constructing a
universal graph) is available in the unpublished preprint [26].
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▶ Lemma 20. Let W ⊆ Cω be a prefix-independent objective which is positional over finite
arenas. Then Wfin ≡ W .

Proof. Let A be a finite C-arena. Since Wfin ⊆ W , it is clear that if Eve wins (A, Wfin)
then she wins (A, W ). Conversely, assume Eve wins (A, W ). Then she has a positional
strategy S in A which is winning for W . Since S is a finite graph, it is also winning for Wfin
and therefore Eve wins (A, Wfin). ◀

We should make the following sanity check.

▶ Lemma 21. If W is prefix-independent, then Wfin as well.

Proof. Take a letter c ∈ C, we aim to show that cWfin = Wfin. Let w ∈ cWfin, and let G be
a finite graph satisfying W such that cw labels a path from v ∈ V [G] in G. Then w labels
a path from a c-successor of v in G, thus w ∈ Wfin.

Conversely, let w ∈ Wfin, and let G be a finite graph satisfying W such that w labels
a path from v ∈ V [G] in G. Let G′ be the graph obtained from G by adding a fresh vertex v′

with a unique outgoing c-edge towards v. Since W is prefix-independent, G′ satisfies W .
Since cw labels a path from v′ in G′, it follows that cw ∈ Wfin. ◀

We are now ready to prove Theorem 4.

Proof of Theorem 4. Let W be a prefix-independent objective which is positional over finite
arenas and admits a weakly neutral letter ε. We show that Wfin is positional over arbitrary
arenas. Since Lemma 20 implies that Wfin ≡ W , this concludes the proof of Theorem 4.

Thanks to Lemma 6, any finite graph H satisfying W can be embedded into a monotone
finite graph G which also satisfies W ; note that L(H) ⊆ L(G). Therefore

Wfin =
⋃

H finite graph
H satisfies W

L(H) =
⋃

G finite monotone graph
G satisfies W

L(G).

Let G0, G1, . . . be an enumeration (up to isomorphism) of all finite monotone graphs sat-
isfying W . Then consider the automaton A obtained from the disjoint union of the Gi’s
by adding all normal transitions from Gi to Gj for i > j, and saturating with co-Büchi
transitions. The initial state q0 is chosen to be max V (G0), the maximal state in G0. Note
that A is countable, monotone, and well founded, so there remains to prove that L(A) = Wfin
and that A is history-deterministic.

Clearly for any monotone graph G satisfying W , it holds that L(G) ⊆ L(A), and thus
Wfin ⊆ L(A). Conversely, let w ∈ L(A), and consider an accepting path π for W . Then
eventually, π visits only normal edges, and therefore eventually, π remains in some Gi. Thus
w = uw′ with w′ ∈ L(Gi) ⊆ Wfin, we conclude by prefix-independence of Wfin (Lemma 21).

To prove that A is history-deterministic we now build a resolver: intuitively, we determin-
istically try to read in G0, then if we fail, go to G1, then G2 and so on. The fact that reading
in each Gi can be done deterministically follows from monotonicity: for each v ∈ V (Gi) and
each c ∈ C, the set {v′ ∈ V (Gi) | v

c−→ v′ ∈ E(Gi)} of c-successors of v is downward closed.
We let δi(v, c) denote the maximal c-successor of v in Gi if it it exists, and δi(v, c) = ⊥ if v

does not have a c-successor. It is easy to see that in a monotone graph G, v ≤ v′ implies
L(G, v) ⊆ L(G, v′); in words, more continuations are available from bigger states.

Now we define the resolver A by V (R) = V (A), r0 = q0 = max V (G0), and for any
q, q′ ∈ V (A) and c ∈ C,

q
c−→ q′ ∈ E(A) ⇐⇒ ∃i, q, q′ ∈ V (Gi) and q′ = δi(q) ̸= ⊥

q •
c−→ q′ ∈ E(A) ⇐⇒ ∃i, q ∈ V (Gi) and δi(q, c) = ⊥ and q′ = max V (Gi+1).
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Clearly, R is deterministic and R → A so R is a resolver; it remains to prove soundness. Take
w ∈ L(A) and let i such that w ∈ L(Gi). Let π be the unique path from r0 = max V (G0) in
R labelled by w. We claim that π remains in

⋃
j≤i V (Gj) and thus it can only visit at most

i co-Büchi transitions, so it is accepting. Assume for contradiction that π reaches V (Gi+1).
Then it is of the form π = π0π1 . . . πiπ

′ where each πj is a path from max(V (Gj)) in Gj and
π′ starts from max(Gi+1). Let w0, w1, . . . , wi and w′ be the words labelling the paths, so that
w = w0w1 . . . wiw

′. Denote q = max(V (Gi)). Then wi is not a label of a finite path from q in
Gi, therefore wiw

′ /∈ L(Gi, q) = L(Gi). At the same time w ∈ L(Gi) thus q
w0...wi−1
⇝ q′ wiw′

⇝
for some q′ ∈ V (Gi). But then wiw

′ ∈ L(Gi, q′) ⊆ L(Gi, q), a contradiction. ◀

5 Conclusion

We gave a characterisation of prefix-independent Σ0
2 objectives which are positional over

arbitrary arenas as being those recognised by countable history-deterministic well-founded
monotone co-Büchi automata. We moreover deduced that this class is closed by unions.
We proved that, with a proper definition, mean-payoff games are positional over arbitrary
arenas. Finally, we showed that any prefix-independent objective which is positional over
finite arenas is finitely equivalent to an objective which is positional over arbitrary arenas.

Open questions. There are many open questions on positionality. Regarding Σ0
2 objectives,

the remaining step would be to lift the prefix-independence assumptions; this requires some
new techniques as the proofs presented here do not immediately adapt to this case. Another
open question is whether the 1-to-2 player lift holds in Σ0

2: is there a Σ0
2 objective which is

positional on arenas controlled by Eve, but not on two player arenas?
As mentioned in the introduction, Casares [4] obtained a characterisation of positional

ω-regular objectives, while we characterised (prefix-independent) Σ0
2 positional objectives.

A common generalisation, which we see as a far reaching open question would be to charac-
terise positionality within ∆0

3; hopefully establishing closure under union for this class.
Another interesting direction would be to understand finite memory for prefix-independent

Σ0
2 objectives; useful tools (such as structuration results) are already available [5]. A related

(but independent) path is to develop a better understanding of (non-prefix-independent)
closed objectives, which so far has remained elusive.
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Abstract
Many important graph classes are characterized by means of layouts (a vertex ordering) excluding
some patterns. For example, a graph G = (V, E) is a proper interval graph if and only if G has a
layout L such that for every triple of vertices such that x ≺L y ≺L z, if xz ∈ E, then xy ∈ E and
yz ∈ E. Such a triple x, y, z is called an indifference triple. In this paper, we investigate the concept
of excluding a set of patterns in tree-layouts rather than layouts. A tree-layout TG = (T, r, ρG) of
a graph G = (V, E) is a tree T rooted at some node r and equipped with a one-to-one mapping
ρG between V and the nodes of T such that for every edge xy ∈ E, either x is an ancestor of y,
denoted x ≺TG y, or y is an ancestor of x. Excluding patterns in a tree-layout is now defined using
the ancestor relation. This leads to an unexplored territory of graph classes. In this paper, we
initiate the study of such graph classes with the class of proper chordal graphs defined by excluding
indifference triples in tree-layouts. Our results combine characterization, compact and canonical
representation as well as polynomial time algorithms for the recognition and the graph isomorphism
of proper chordal graphs. For this, one of the key ingredients is the introduction of the concept of
FPQ-hierarchy generalizing the celebrated PQ-tree data-structure.
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1 Introduction

Context. A graph class C is hereditary if for every graph G ∈ C and every induced subgraph
H of G, which we denote H ⊆i G, we have that H ∈ C. A minimal forbidden subgraph
for C is a graph F /∈ C such that for every induced subgraph H ⊆i F , H ∈ C. Clearly, a
hereditary graph class C is characterized by its set of minimal forbidden subgraphs. Let F
be a set of graphs that are pairwise not induced subgraphs of one another. We say that a
graph G is an F-free graph, if it does not contain any graph of F as an induced subgraph.
If F = {H}, then we simply say that G is H-free if H ̸⊆i G. Important graph classes are
characterized by a finite set F of minimal forbidden subgraphs. A popular example is the
class of cographs [32, 45]. A graph G is a cograph if either G is the single vertex graph, or
it is the disjoint union of two cographs, or its complement is a cograph. It is well known
that G is a cograph if and only if it is a P4-free graph [32, 11]. As witnessed by chordal
graphs [26, 3], not every hereditary graph family is characterized by excluding a finite set of
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minimal forbidden subgraphs: a graph is chordal if it does not contain a chordless cycle of
length at least 4 as an induced subgraph.

To circumvent this issue, Skrien [44] and Damaschke [13] proposed to embed graphs in
some additional structure such as vertex orderings, also called layouts. An ordered graph is
then defined as a pair (G, ≺G) such that ≺G is a total ordering of the vertex set V of the
graph G = (V, E). We say that an ordered graph (H, ≺H) is a pattern of the ordered graph
(G, ≺G), which we denote by (H, ≺H) ⊆p (G, ≺G), if H ⊆i G and for every pair of vertices
x and y of H, x ≺G y if and only if x ≺H y. A graph G excludes the pattern (H, ≺H), if
there exists a layout ≺G of G such that (H, ≺H) ̸⊆p (G, ≺G). More generally, a graph class
C excludes a set P of patterns if for every graph G ∈ C, there exists a layout ≺G such that
for every pattern (H, ≺H) ∈ P , (H, ≺H) ̸⊆p (G, ≺G). We let L(P) denote the class of graphs
excluding a pattern from P. Hereafter, a small size pattern (H, ≺H) will be encoded by
listing its set of (ordered) edges and non-edges. There are two patterns on two vertices and
eight patterns on three vertices (see Figure 1).

1 ≺ 2
⟨12⟩

1 ≺ 2
⟨12⟩

1 ≺ 2 ≺ 3
⟨12, 13, 23⟩

1 ≺ 2 ≺ 3
⟨12, 13, 23⟩

1 ≺ 2 ≺ 3
⟨12, 13, 23⟩

1 ≺ 2 ≺ 3
⟨12, 13, 23⟩

1 ≺ 2 ≺ 3
⟨12, 13, 23⟩

1 ≺ 2 ≺ 3
⟨12, 13, 23⟩

1 ≺ 2 ≺ 3
⟨12, 13, 23⟩

1 ≺ 2 ≺ 3
⟨12, 13, 23⟩

Figure 1 The 10 patterns on at most 3 vertices. L(⟨12, 13, 23⟩) is the class of chordal graphs.

Interestingly, it is known that chordal graphs are characterized by excluding a unique
pattern: Pchordal =

{
⟨12, 13, 23⟩

}
, see Figure 1 [13, 15]. This characterization relies on the

fact that a graph is chordal if and only if it admits a simplicial elimination ordering 1 [14, 43].
Ginn [20] proved that for every pattern (H, ≺H) such that H is neither the complete graph
nor the edge-less graph, characterizing the graph family L((H, ≺H)) requires an infinite
family of forbidden induced subgraphs. Observe however that excluding a unique pattern is
important for that result: cographs are characterized as P4-free graphs (see discussion above)
but needs a set Pcograph of several excluded patterns (see Figure 2) to be characterized [13]:

Pcograph =
{

⟨12, 13, 23⟩, ⟨12, 13, 23⟩,
⟨12, 13, 14, 23, 24, 34⟩, ⟨12, 13, 14, 23, 24, 34⟩, ⟨12, 13, 14, 23, 24, 34⟩

}

1 ≺ 2 ≺ 3 ≺ 4
⟨12, 13, 14, 23, 24, 34⟩

1 ≺ 2 ≺ 3 ≺ 4
⟨12, 13, 14, 23, 24, 34⟩

1 ≺ 2 ≺ 3 ≺ 4
⟨12, 13, 14, 23, 24, 34⟩

Figure 2 The three size 4 forbidden patterns of cographs.

In [16], Duffus et al. investigate the computational complexity of the recognition problem
of L((H, ≺H)) for a fixed ordered graph (H, ≺H). They conjectured that if H is neither the
complete graph nor the edge-less graph, then recognizing L((H, ≺H)) is NP-complete if H or

1 A vertex is simplicial if its neighbourhood induces a clique. A simplicial elimination ordering can
be defined by a layout ≺G of G = (V, E) such that every vertex x is simplicial in the subgraph
G[{y ∈ V | y ≺G x}].
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its complement is 2-connected. Hell et al. [28] have recently shown that if P only contains
patterns of size at most 3, then L(P) can be recognized in polynomial time using a 2-SAT
approach. Besides chordal graphs (see discussion above), these graph classes comprise very
important graph classes, among others:

Interval graphs [27, 2, 22] exclude Pint =
{

⟨12, 13, 23⟩, ⟨12, 13, 23⟩
}

[40]: A graph is an
interval graph if it is the intersection graph of a set of intervals on the real line. The
existence of a Pint-layout for interval graphs follows from the fact that a graph is an
interval graph if and only if it is chordal and co-comparability.
Proper interval graphs [41, 42] exclude Pproper = Pint ∪

{
⟨12, 13, 23⟩

}
. A graph is a proper

interval graph if it is the intersection graph of a set of proper intervals on the real line
(no interval is a subset of another one). This characterization of proper interval graphs
as L(Pproper) follows from the existence of the so-called indifference orderings that are
exactly the layouts excluding Pproper [41, 42].
Trivially perfect graphs [21] exclude PtrivPer = Pchordal ∪

{
⟨12, 13, 23⟩

}
. A graph G is

a trivially perfect graph if and only if it is {P4, C4}-free, or equivalently G is the
comparability graph of a rooted tree T (two vertices are adjacent if one is the ancestor
of the other). A PtrivPer-free layout is obtained from a depth first search ordering of T .
Moreover every layout of P4 and C4 contains one of the patterns of PtrivPer (see [17]).

For more examples, the reader should refer to [13, 17]. Feuilloley and Habib [17] list all the
graph classes that can be obtained by excluding a set of patterns each of size at most 3.

From layouts to tree-layouts. A layout ≺G of a graph G = (V, E) on n vertices can be
viewed as an embedding of G into a path P on n vertices rooted at one of its extremities.
Under this view point, it becomes natural to consider graph embeddings in graphs that are
more general than rooted paths. Recently, Guzman-Pro et al. [23] have studied embeddings
in a cyclic ordering. In this paper, we consider embedding the vertices of a graph in a rooted
tree, yielding the notion of tree-layout.

▶ Definition 1. Let G = (V, E) be a graph on n vertices. A tree-layout of G is a triple
TG = (T, r, ρG) where T is a tree on a set VT of n nodes rooted at r and ρG : V → VT is a
bijection such that for every edge xy ∈ E, either x is an ancestor of y, denoted by x ≺T y,
or y is an ancestor of x.

a

b c

d

e f

g h

G = (V, E)
r = ρ(b)

ρ(f)

ρ(c)

ρ(a)

ρ(e)

u = ρ(g)

ρ(h) ρ(d)

(T, r, ρ)

Figure 3 A tree layout (T, r, ρ) of a graph G = (V, E).

Let TG = (T, r, ρG) be a tree-layout of a graph G. We observe that, from Definition 1,
T is not a Trémaux tree since it is not necessarily a spanning tree of G (see [39] and [6]
for similar concepts). It is easy to see that if T is a path, then TG defines a layout of
G. So from now on, we shall define a layout as a triple LH = (P, r, ρH), where P is a
path that fulfils the conditions of Definition 1. An ordered graph then becomes a pair
(H, LH) where LH = (P, r, ρH) is a layout of G. Excluding a pattern (H, LH) in a tree-layout

STACS 2024
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TG = (T, r, ρG) of a graph G is defined similarly as excluding a pattern in a layout, but now
using the ancestor relation ≺T . For a set P of patterns, we can also define the class T(P)
of graphs admitting a tree-layout that excludes every pattern P ∈ P. If P = {(H, LH)},
we simply write T((H, LH)). Observe that, as a layout is a tree-layout, for a fixed set P of
patterns, we always have L(P) ⊆ T(P). As an introductory example, let us consider the
pattern ⟨12⟩. The following observation directly follows from the definitions of a tree-layout
and trivially perfect graphs.

▶ Observation 2. The class L(⟨12⟩) is the set of complete graphs while the class T(⟨12⟩) is
the set of trivially perfect graphs.

So the class of trivially perfect graphs can be viewed as the tree-like version of the class of
complete graphs. This view point motivates the systematic study of the unexplored territory
composed by graph classes defined by excluding a set of patterns in a tree-layout.

Our contributions. As a first case study, we consider the patterns characterizing interval
graphs and proper interval graphs. We first show that if we consider the interval graphs
patterns Pint, the same phenomena as for

{
⟨12⟩

}
holds, leading to a novel (up to our

knowledge) characterization of chordal graphs as being exactly T(Pint) (see Theorem 3).
As already discussed, proper interval graphs are obtained by restricting interval graphs

to the intersection of a set of proper intervals (no interval is a subinterval of another). It is
known that K1,3 is an interval graph but not a proper one. Following this line, Gavril [19],
in his seminal paper characterizing chordal graphs as the intersection graphs of a subset
of subtrees of a tree, considered the class of intersection graphs of a set of proper subtrees
of a tree (no subtree is contained in an another). Using an easy reduction, Gavril proved
that this again yields a characterization of chordal graphs. So this left open the question of
proposing a natural definition for proper chordal graphs, a class of graphs that should be
sandwiched between proper interval graphs and chordal graphs but incomparable to interval
graphs. In a recent paper, Chaplick [9] investigated this question and considered the class of
intersection graphs of non-crossing paths in a tree.

Our main contribution is to propose a natural definition of proper chordal graphs by means
of forbidden patterns on tree-layouts: a graph is proper chordal if it belongs to T(Pproper), the
class of graphs admitting a Pproper-free tree-layout, hereafter called indifference tree-layout.
Recall that Pproper are the patterns characterizing proper interval graphs on layouts. It can
be observed that proper chordal graphs and intersection graphs of non-crossing paths in a
tree are incomparable graph classes. Table 1 resumes the discussion above.

Forbidden patterns Layouts Tree-layouts
⟨12⟩ Cliques Trivially perfect graphs

⟨12, 13, 23⟩, ⟨12, 13, 23⟩, ⟨12, 13, 23⟩ Proper interval graphs Proper chordal graphs
⟨12, 13, 23⟩, ⟨12, 13, 23⟩ Interval graphs Chordal graphs

Table 1 Graph classes obtained by excluding ⟨12⟩, Pproper and Pint.

We then provide a thorough study of the combinatorial and algorithmic aspects of
proper chordal graphs. Our first result (see Theorem 6) is a characterization of indifference
tree-layouts (and henceforth of proper chordal graphs). As discussed in Section 3, (proper)
interval graphs may have multiple (proper) interval models. For a given graph, these interval
models are all captured in a canonical representation encoded by the celebrated PQ-tree
data-structure [7]. We show that the set of indifference tree-layouts can also be represented
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in a canonical and compact way by means of a tree data-structure generalizing PQ-trees,
that we call FPQ-hierarchies, see Theorem 11. These structural results have very interesting
algorithmic implications. First, we can design a polynomial time recognition algorithm for
proper chordal graphs, see Theorem 14. Second, we show that the isomorphism problem
restricted to proper chordal graphs is polynomial time solvable, see Theorem 16. Interestingly,
this problem is GI-complete on (strongly) chordal graphs [38, 46]. So considering proper
chordal graphs allows us to push the tractability further towards its limit. We believe that
beyond proper chordal graphs, the concept of FPQ-hierarchy is interesting on its own as it is
strongly related to the concept of (weakly) partitive families [12, 10] and thereby the theory
of modular decomposition [37, 25].

2 Preliminaries

2.1 Notations and definitions

Graphs. In this paper, every graph is finite, loopless, and without multiple edges. A graph
is a pair G = (V, E) where V is its vertex set and E ⊆ V 2 is the set of edges. For two
vertices x, y ∈ V , we let xy denoted the edge e = {x, y}. We say that the vertices x and
y are incident with the edge xy. The neighbourhood of a vertex x is the set of vertices
N(x) = {y ∈ V | xy ∈ E}. The closed neighbourhood of a vertex x is N [x] = N(x) ∪ {x}.
Let S be a subset of vertices of V . The graph resulting from the removal of S is denoted
by G − S. If S = {x} is a singleton we write G − x instead of G − {x}. The subgraph of G

induced by S is G[S] = G − (V \ S). We say that S is a separator of G if G − S contains
more connected components than G. We say that S separates X ⊆ V (G) from Y ⊆ V (G) if
X and Y are subsets of distinct connected components of G − S. If x is a vertex such that
x /∈ S and S ⊆ N(x), then we say that x is S-universal.

Rooted trees. A rooted tree is a pair (T, r) where r is a distinguished node2 of the tree
T . We say that a node u is an ancestor of the node v (and that u is a descendant of v) if u

belongs to the unique path of T from r to v. If u is an ancestor of v, then we write u ≺(T,r) v.
For a node u of T , the set A(T,r)(u) contains every ancestor of u, that is every node v of
T such that v ≺(T,r) u. Likewise, the set D(T,r)(u) contains every descendant of u, that is
every node v of T such that u ≺(T,r) v. We may also write A(T,r)[u] = A(T,r)(u) ∪ {u} and
D(T,r)[u] = D(T,r)(u) ∪ {u}. The least common ancestor of two nodes u and v is denoted
lca(T,r)(u, v). For a node u, we define Tu as the subtree of (T, r) rooted at u and containing
the descendants of u. We let L(T, r) denote the set of leaves of (T, r) and for a node u,
L(T,r)(u) is the set of leaves of (T, r) that are descendants of the node u.

Ordered trees. An ordered tree is a rooted tree (T, r) such that the children of every internal
node are totally ordered. For an internal node v, we let denote σv

(T,r) the permutation of its
children. An ordered tree is non-trivial if it contains at least one internal node. An ordered
tree (T, r) defines a permutation σ(T,r) of its leaf set L(T, r) as follows. For every pair of
leaves x, y ∈ L(T, r), let ux and uy be the children of v = lca(T,r)(x, y) respectively being an
ancestor of x and of y. Then x ≺σ(T,r) y if and only if ux ≺σv

T,r
uy.

2 To avoid confusion, we reserve the term vertex for graphs and node for trees.
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Tree-layouts of graphs. Let T = (T, r, ρ) be a tree-layout of a graph G = (V, E) (see
Definition 1). Let x and y be two vertices of G. We note x ≺T y if ρ(x) is an ancestor of
ρ(y) in (T, r) and use AT(x), DT(x) to respectively denote the ancestors and descendants of
x. The notations L(T), Tx, LT(x) are derived from the notations defined above.

2.2 A novel characterization of chordal graphs
Gavril [19] characterized chordal graphs as the intersection graphs of a family of subtrees of
a tree. Given a chordal graph G = (V, E), a tree-intersection model of G = (V, E) is defined
as a triple MT

G = (T, T , τG) where T is a tree, T is a family of subtrees of T and τG : V → T
is a bijection such that xy ∈ E if and only if τG(x) intersects τG(y). Hereafter, we denote
by T x ∈ T the subtree of T such that T x = τG(x). Likewise, an intersection model of an
interval graph G is MI

G = (P, P, τG) where P is a path, P is a family of subpaths of P . The
interval, or subpath, τG(x) ∈ P will be denoted P x. So, chordal graphs clearly appear as the
tree-like version of interval graphs. We prove that this similarity can also be observed when
characterizing these graph classes by means of forbidden patterns. Recall that the class of
interval graphs is L(Pint) where Pint =

{
⟨12, 13, 23⟩, ⟨12, 13, 23⟩

}
.

▶ Theorem 3. The class of chordal graphs is T(Pint).

2.3 Proper interval graphs and proper chordal graphs
Proper interval graphs. A graph G = (V, E) is a proper interval graph if it is an interval
graph admitting an interval model MI

G such that for every pair of intervals none is a subinterval
of another [41, 42]. In terms of a pattern characterization, we have seen that the class of proper
interval graphs is L(Pproper) where Pproper =

{
⟨12, 13, 23⟩, ⟨12, 13, 23⟩, ⟨12, 13, 23⟩

}
[42, 13].

Hereafter a layout that is Pproper-free is called an indifference layout. Indifference layouts
have several characterizations, see Theorem 4 below.

▶ Theorem 4. [35, 41] Let LG be a layout of a graph G. The following properties are
equivalent.
1. LG is an indifference layout;
2. for every vertex v, N [v] is consecutive in LG;
3. every maximal clique is consecutive in LG;
4. for every pair of vertices x and y with x ≺LG

y, N(y) ∩ ALG
(x) ⊆ N(x) ∩ ALG

(x) and
N(x) ∩ DLG

(y) ⊆ N(y) ∩ DLG
(y).

Proper chordal graphs. To understand what are the tree-like proper interval graphs, we
propose the following definition.

▶ Definition 5. A graph G = (V, E) is a proper chordal graph if G ∈ T(Pproper).

Hereafter, a tree-layout TG of a graph G that is Pproper-free will be called an indifference
tree-layout. We first prove that Theorem 4 generalizes to indifference tree-layouts.

▶ Theorem 6. Let TG = (T, r, ρG) be a tree-layout of a graph G. The following properties
are equivalent.
1. TG is an indifference tree-layout;
2. for every vertex x, the vertices of N [x] induces a connected subtree of T ;
3. for every maximal clique K, the vertices of K appear consecutively on a path from r in T ;
4. for every pair of vertices x and y such that x ≺TG

y, N(y) ∩ ATG
(x) ⊆ N(x) ∩ ATG

(x)
and N(x) ∩ DTG

(y) ⊆ N(y) ∩ DTG
(y).
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Clearly, as an indifference layout is an indifference tree-layout, every proper interval graph
is a proper chordal graph. Also, as Pchordal ⊂ Pproper, proper chordal graphs are chordal
graphs. However this inclusion is strict as k-suns, for k ≥ 3, are not proper chordal. More
generally, Figure 4 positions proper chordal graphs with respect to important subclasses of
chordal graphs, see [8] for definitions of these classes.

proper chordal
proper interval

interval

rooted directed path

strongly chordal

chordal

Figure 4 Relationship between proper chordal graphs and subclasses of chordal graphs.

3 FPQ-trees and FPQ-hierarchies

Let P be a set of patterns. In general, a graph G ∈ L(P) admits several P-free layouts. A
basic example is the complete graph Kℓ on ℓ vertices, which is a proper interval graph. It is
easy to observe that every layout of Kℓ is an indifference layout (i.e. a Pproper-free layout),
but also a Pint-free layout and a Pchordal-free layout. Let us discuss in more details the case
of proper interval graphs and interval graphs.

Two vertices x and y of a graph G are true-twins if N [x] = N [y]. It is easy to see that
the true-twin relation is an equivalence relation. If G contains some true-twins, then, by
Theorem 4, the vertices of any equivalence class occurs consecutively (and in arbitrary order)
in an indifference layout. It follows that for proper interval graphs, the set of indifference
layouts depends on the true-twin equivalence classes. Indeed, a proper interval graph G

without any pair of true-twins has a unique (up to reversal) indifference layout.
In the case of interval graphs, the set of intersection models, and hence of Pint-free layouts,

is structured by means of modules [18], in a similar way to the true-twin equivalence classes
for Pproper-free layouts. A subset M of vertices of a graph G is a module if for every x /∈ M ,
either M ⊆ N(x) or M ⊆ N(x). Observe that a true-twin equivalence class is a module. A
graph may have exponentially many modules. For example, every subset of vertices of the
complete graph is a module. Hsu [29] proved that interval graphs having a unique intersection
model are those without any trivial module.

The set of modules of a graph forms a so-called partitive family [10] and can thereby be
represented through a linear size tree, called the modular decomposition tree (see [25] for
a survey on modular decomposition). To recognize interval graphs in linear time, Booth
and Lueker [7] introduced the concept of PQ-trees which is closely related to the modular
decomposition tree or more generally to the theory of (weakly-)partitive families [10, 12].
Basically, a PQ-tree on a set X is a labelled ordered tree having X as its leaf set. Since every
ordered tree defines a permutation of its leaf set, by defining an equivalence relation based
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55:8 Tree-Layout Based Graph Classes: Proper Chordal Graphs

on the labels of the node, every PQ-tree can be associated to a set of permutations of X. In
the context of interval graphs, X is the set of maximal cliques and a PQ-tree represents the
set of so-called consecutive orderings of the maximal cliques characterizing interval graphs.

As shown by Figure 5, a proper chordal graph can also have several indifference tree-
layouts. In order to represent the set of Pproper-tree-layouts of a given graph, we will define a
structure called FPQ-hierarchies, based on FPQ-trees [34], a variant of PQ-trees.

a

1

b
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c
3

d

1

a

d

b

c

3

2

1

a

b

d

c

3

2

3

c

d

b

a

1

2

Figure 5 A graph G with three possible indifference tree-layouts, two of them rooted at vertex 1,
the third one at vertex 3.

3.1 FPQ-trees
An FPQ-tree on the ground set X is a labelled, ordered tree T such that its leaf set L(T) is
mapped to X. The internal nodes of T are of three types, F-nodes, P-nodes, and Q-nodes. If
|X| = 1, then T is the tree defined by a leaf and a Q-node as the root. Otherwise, F-nodes
and Q-nodes have at least two children while P-nodes have at least three children.

Let T and T′ be two FPQ-trees. We say that T and T′ are isomorphic if they are
isomorphic as labelled trees. We say that T and T′ are equivalent, denoted T ≡FPQ T′, if
one can be turned into a labelled tree isomorphic to the other by a series of the following
two operations: permute(u) which permutes in any possible way the children of a P-node u;
and reverse(u) which reverses the ordering of the children of a Q-node u. It follows that the
equivalence class of an FPQ-tree T on X defines a set SFPQ(T) of permutations of X.

Let S be a subset of permutations of X. A subset I ⊆ X is a factor of S if in every
permutation of S, the elements of I occur consecutively. It is well known that the set
of factors of a set of permutations form a so called weakly-partitive family [10, 12]. As a
consequence, we have the following property, which was also proved in [36].

▶ Lemma 7. [10, 12, 36] Let ST be the subset of permutations of a non-empty set X

associated to a PQ-tree T. Then a subset I ⊆ X is a factor of ST if and only if there exists
an internal node u of T such that

either I = LT(u);
or u is a Q-node and there exists a set of children v1, . . . , vs of u that are consecutive in
<T,u and such that I =

⋃
1≤i≤s LT(vi).

We observe that u = lcaT(I).

Given a set S ⊆ 2X of subsets of the ground set X, we let Convex(S) denote the set of
permutations of X such that for every S ∈ S, S is a factor of Convex(S). For a PQ-tree T ,
the set of permutation SPQ(T) is defined similarly as for FPQ-trees.

▶ Lemma 8. [24] Let X be a non-empty set and let S ⊆ 2X . In linear time in |S|, we can
compute a PQ-tree T on X such that SPQ(T) = Convex(S) or decide that Convex(S) = ∅.
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a b c

d

F

Q

Figure 6 An FPQ-tree T with SFPQ(T) = {abcd, cbad}. The set of non-trivial common factors of
ST is I = {{a, b, c}, {a, b}, {b, c}}. The permutations dabc and dcba also belong to Convex(I).

A set N ⊆ 2X of subsets of X is nested if for every Y, Z ∈ N , either Y ⊆ Z or Z ⊆ Y .
Let C = ⟨N1, . . . , Nk⟩ be a collection of nested sets Ni ⊆ 2X (1 ≤ i ≤ k). Observe that
a subset Y ⊆ X may occur in several nested sets of C. We set S =

⋃
1≤i≤k Ni. We say

that a permutation σ ∈ Convex(S) is C-nested if for every 1 ≤ i ≤ k and every pair of sets
Y, Z ∈ Ni such that Z ⊂ Y , then Y \ Z ≺σ Z. We let Nested-Convex(C, S) denote the subset
of permutations of Convex(S) that are C-nested.

▶ Lemma 9. Let C = ⟨N1, . . . , Nk⟩ be a collection of nested sets such that for every 1 ≤ i ≤ k,
Ni ⊂ 2X . If Nested-Convex(C, S) ̸= ∅, with S =

⋃
1≤i≤k Ni, then there exists an FPQ-tree T

on X such that ST = Nested-Convex(C, S). Moreover, such an FPQ-tree, when it exists, can
be computed in polynomial time.

3.2 FPQ-hierarchies
A hierarchy of ordered trees H is defined on a set T = {T0, T1, . . . , Tp} of non-trivial (i.e.
with at least two vertices) ordered trees arranged in an edge-labelled tree, called the skeleton
tree SH. More formally, for 0 < i ≤ p, the root ri of Ti is attached, through a skeleton edge
ei, to an internal node fi of some tree Tj with j < i. Suppose that ei = rifi is the skeleton
edge linking the root ri of Ti to a node fi of Tj having c children. Then the label of ei is a
pair of integers I(ei) = (ai, bi) ∈ [c] × [c] with ai ≤ bi. The contraction of the trees of T in a
single node each, results in the skeleton tree SH.

From a hierarchy of ordered trees H, we define a rooted tree TH whose node set is⋃
0≤i≤p L(Ti) and that is built as follows. The root of TH is ℓ0 the first leaf of L(T0) in σT0 .

For every 0 ≤ i ≤ p, the permutation σTi of L(Ti), defined by Ti, is a path of TH. Finally, for
1 ≤ i ≤ p, let ℓi be the first leaf of L(Ti) in σTi

. Suppose Ti is connected in H to Tj through
the skeleton edge ei = rifi with label I(ei) = (ai, bi). Let uj the bi-th child of fi in Tj and ℓ

be the leaf of Tj that is a descendant of uj and largest in σTj
. Then set ℓ as the parent of ℓi

in TH. See Figure 7 for an example.
An FPQ-hierarchy is a hierarchy of FPQ-trees with an additional constraint on the labels

of the skeleton edges. Let ei = rifi be the skeleton from the root ri of Ti to the node fi of Tj

with j ≤ i. If fj is a P-node with c children, then I(ei) = (1, c). As in the case of FPQ-trees,
we say two FPQ-hierarchies H and H′ are isomorphic if they are isomorphic as labeled ordered
trees. That is the types of the nodes, the skeleton edges and their labels are preserved. We say
that H and H′ are equivalent, denoted H ≈FPQ H′, if one can be turned into an FPQ-hierarchy
isomorphic to the other by a series of permute(u) and reverse(u) operations (with u being
respectively a P-node and a Q-node) to modify relative ordering of the tree-children of u.
Suppose that u is a Q-node with c children incident to a skeleton edge e. Then applying
reverse(u) transforms I(e) = (a, b) into the new label Ic(e) = (c + 1 − b, c + 1 − a). It
follows that the equivalence class of an FPQ-hierarchy H on the set T = {T0, T1, . . . , Tp}
of FPQ-trees defines a set TFPQ(H) of rooted trees on

⋃
0≤i≤p L(Ti). Observe that since
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reversing a Q-node modifies the labels of the incident skeleton edges, two rooted trees of
TFPQ(H) may not be isomorphic (see Figure 7).
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Figure 7 An FPQ-hierarchy H. The set TFPQ(H) contains 12 rooted trees, two of which are
depicted. Observe that from the left to the right tree, the ordering on the leaves of the Q-node is
reversed and that the ordering on the leaves of the P-nodes are different. In both trees however, the
path containing {x, y, z} is attached below the leaves {b, c} since these leaves form the interval [2, 3]
of the Q-node and this interval is the label of the unique skeleton edge.

4 Compact representation of the set of indifference tree-layouts

In this section, we show how, given a proper chordal graph G and a vertex x ∈ V , an
FPQ-hierarchy H can be constructed to represent the set of indifference tree-layouts rooted
at a vertex x (if such an indifference tree-layout exists). To that aim, we first provide a
characterization of indifference tree-layout alternative to Theorem 6. This characterization
naturally leads us to define the notion of block that, for a fixed vertex x of a proper chordal
graph, drives the combinatorics of the set of indifference tree-layouts rooted at x.

Let S be a non-empty vertex subset of a connected graph G = (V, E) and let C be a
connected component of G − S. We say that x ∈ C is S-maximal if for every vertex y ∈ C,
N(y) ∩ S ⊆ N(x) ∩ S. Observe that if C contains two distinct S-maximal vertices x and y,
then N(x) ∩ S = N(y) ∩ S.

▶ Definition 10. Let S be a subset of vertices of a graph G = (V, E) and let C be a connected
component of G − S. A maximal subset of vertices X ⊆ C is an S-block, if every vertex of
X is S-maximal and (N(S) ∩ V (C))-universal.

We let the reader observe that a connected component C of G − S may not contain an
S-block. However, if C contains an S-block, then it is uniquely defined. In the following
paragraph we summarize the approach taken towards showing Theorem 11.

It can be shown that indifference tree-layouts are characterized as those such that for every
vertex x distinct from ρ−1

G (r), x is ATG
(x)-maximal and (N(ATG

(x)) ∩ DTG
[x])-universal.

This implies that every vertex x distinct from the root of an indifference tree-layout can be
associated with a non-empty ATG

(x)-block containing x. Hereafter, we let BTG
(x) denote

that block. If x = ρ−1
G (r), then we set BTG

(x) = {x}. Then, we prove that for every
vertex x ∈ V , the vertices of the block BTG

(x) appear consecutively on a path rooted at
x and induces a clique in G. Moreover, we show that the set of B(TG) containing the
inclusion-maximal blocks of TG, partitions the vertex set of G. It follows that we can define
the block tree of TG, which we denote TG|BT(G), by contracting every block of B(TG) into
a single node. We get that if a connected proper chordal graph admits two indifference
tree-layouts rooted at the same vertex, then the corresponding block trees are isomorphic,
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implying that the block tree only depends on the root vertex. Thereby, from now on, we let
BG(x) and Btree

G (x) respectively denote the set of maximal blocks and the block tree of any
indifference tree-layout of G rooted at vertex x. However the uniqueness of the block tree is
not enough to fully describe the set of indifference tree-layouts rooted at x, as it does not
reflect how each block is precisely attached to its parent block.

Towards this, let TG = (T, r, ρG) be an indifference tree layout of a graph G = (V, E). Let
BTG

(x) ∈ B(TG) with x distinct from the root of TG. We denote by CTG
(x) the connected

component of G − ATG
(x) containing x. Let C1, . . . Ck be the connected components of

G[CTG
(x) \ BTG

(x)]. We define CTG
(x) = ⟨N1, . . . , Nk⟩ a collection of sets of 2BTG

(x):
for every 1 ≤ i ≤ k and every vertex y ∈ Ci such that N(y) ∩ BTG

(x) ̸= ∅, then we add
N(y)∩BTG

(x) to Ni. We define Sx =
⋃

1≤i≤k Ni. We can prove that CTG
(x) = ⟨N1, . . . , Nk⟩

is a collection of nested sets and that Nested-Convex(CTG
(x), Sx) ̸= ∅.

The discussion above allows us to establish the existence of a canonical FPQ-hierarchy
HG(x) encoding the set of indifference tree-layouts of G rooted at x (see Figure 8).

▶ Theorem 11. Let G = (V, E) be a proper chordal graph. If G has an indifference tree-layout
rooted at some vertex x, then there exists an FPQ-hierarchy HG(x) such that a tree-layout
TG = (T, r, ρG) of G is an indifference tree-layout such that ρ−1

G (r) = x if and only if
TG ∈ TFPQ(HG(x)). Moreover HG(x) is unique and, given an indifference tree-layout rooted
at x, it can be computed in polynomial time.
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Figure 8 On the left hand side, an indifference tree-layout T rooted at vertex x of a proper
chordal graph G. For every vertex, only the edge (blue or red) to its highest neighbor in T is
depicted. The boxes represent the partition into blocks. The FPQ-hierarchy HG(x) is depicted in the
middle. Observe that for the FPQ-tree T of the block BT(a) = {a, b, c, d, e}, S(T) = {abcde, aedcb}.
It follows that TFPQ(HG(x)) contains the two indifference tree-layouts T and T′.

5 Algorithmic aspects

In this section, we first design a polynomial time recognition problem of proper chordal
graphs. Then we show that using the FPQ-hierarchies, we can resolve the graph isomorphism
problem between two proper chordal graphs in polynomial time.
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5.1 Recognition
Given a graph G = (V, E), the recognition algorithm test for every vertex x ∈ V , if G has an
indifference tree-layout rooted at x. We proceed in two steps. First, we compute the block
tree Btree

G (x) of G rooted at x that would correspond to the skeleton tree of the FPQ-hierarchy
HG(x) if G has an indifference tree-layout rooted at x. Then, in the second step, instead of
computing HG(x), we verify that Btree

G (x) can indeed be turned into an indifference tree-layout
of G. If eventually we can construct an indifference tree-layout, then G is proper chordal. If
G is proper chordal and has an indifference tree-layout rooted at x, then the algorithm will
succeed.

Computing the blocks and the block tree. We assume that the input graph G = (V, E) is
proper chordal and consider a vertex x ∈ V that is the root of some indifference tree-layout
of G. As discussed above, the first step aims at computing the skeleton tree of HG(x) (see
Theorem 11). That skeleton tree is the block tree Btree

G (x) that can be obtained from any
indifference tree-layout rooted at x by contracting the blocks of BG(x) into a single node
each. To compute Btree

G (x), we perform a search on G starting at x (see Algorithm 1 below).
At every step of the search, if the set of searched vertices is S, then the algorithm either
identifies, in some connected component C of G − S, a new block S-block of BG(x) and
connects it to the current block tree, or (if C does not contain an S-block) stops and declares
that there is no block tree rooted at x.

Algorithm 1 Block tree computation.
Input: A graph G = (V, E) and a vertex x ∈ V .
Output: The block tree Btree

G (x), if G has an indifference tree-layout rooted at x.
1 set S ← {x}, B ←

{
{x}

}
and Btree ← (B, ∅);

2 while S ̸= V do
3 let C be a connected component of G− S;
4 if C contains a S-block X then
5 S ← S ∪X and B ← B ∪

{
X

}
;

6 let B ∈ B such that N(X) ∩B ̸= ∅ and that is the deepest;
7 add an edge in Btree between B and X;
8 else
9 stop and return G has no indifference tree-layout rooted at x

10 end
11 end
12 return Btree;

▶ Lemma 12. Let x be a vertex of a graph G = (V, E). If G is proper chordal and has an
indifference tree-layout rooted at x, then Algorithm 1 returns the block tree Btree

G (x) that is
the skeleton tree of the FPQ-hierarchy HG(x).

Before describing the second step of the algorithm, let us discuss some properties of Btree

returned by Algorithm 1 when B is a partition of V . An extension of Btree is any tree TBtree

obtained by substituting every node B ∈ B by an arbitrary permutation σB of the vertices of
B. In this construction, if B is the parent of B′ in Btree, x is the last vertex of B in σB that
has a neighbor in B′ and x′ is the first vertex of B′ in σB′ , then the parent of x′ in TBtree is a
vertex of B that appears after x in σ.
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▶ Observation 13. Let x be a vertex of a graph G = (V, E). If Btree is returned by Algorithm 1,
then every extension TBtree of Btree is a tree-layout of G. And moreover, if B, B′, and B′′

are three blocks of B such that B ≺Btree B′ ≺Btree B′′, then for every y ∈ B, y′ ∈ B′, y′′ ∈ B′′,
yy′′ ∈ E implies that y′y ∈ E and y′y′′ ∈ E.

Nested sets. From Observation 13, an extension of Btree is not yet an indifference tree-
layout of G. However, if G is a proper chordal graph that has an indifference tree-layout
TG = (T, r, ρG) rooted at x, then, by Lemma 12, Btree = Btree

G (x). It then follows from the
proof of Theorem 11 that TG is an extension of Btree. The second step of the algorithm
consists in testing if Btree has an extension that is an indifference tree-layout.

By Lemma 12, we can assume that Algorithm 1 has returned BG(x) and Btree
G (x). To

every block B of BG(x), we assign a collection of nested subsets of 2B which we denote
CB = ⟨N1, . . . , Nk⟩ (see Algorithm 2 for a definition of CB). The task of the second step
of the recognition algorithm is to verify that for every block B, Nested-Convex(CB , SB) ̸= ∅
where SB = ∪1≤i≤kNi.

To define the collection CB , we need some notations. Let AB denote the subset of BG(x)
such that if B′ ∈ AB , then B′ is an ancestor of B in Btree

G (x). Then we set AB = ∪B′∈AB
B′

and denote CB the connected component of G − AB containing B.

Algorithm 2 Proper chordal graph recognition.
Input: A graph G = (V, E);
Output: Decide if G is a proper chordal graph.

1 foreach x ∈ V do
2 if Algorithm 1 applied on G and x returns Btree

G (x) then
3 foreach block B ∈ BG(x) do
4 let C1, . . . , Ck be the connected components of G[CB ]−B;
5 foreach Ci in C1, . . . , Ck do Ni ← {X ⊆ B | ∃y ∈ Ci, X = N(y) ∩B} ;
6 set CB = ⟨N1, . . . ,Nk⟩ and SB =

⋃
i∈[k]Ni;

7 end
8 if ∀B ∈ B(x), CB is a collection of nested sets st. Nested-Convex(CB ,SB) ̸= ∅ then
9 stop and return G is a proper chordal graph;

10 end
11 end
12 end
13 return G is not a proper chordal graph;

▶ Theorem 14. We can decide in polynomial time whether a graph G = (V, E) is proper
chordal. Moreover, if G is proper chordal, an indifference tree-layout of G can be constructed
in polynomial time.

5.2 Isomorphism
We observe that, because an FPQ-hierarchy does not carry enough information to reconstruct
the original graph, two non-isomorphic proper chordal graphs G and G′ may share an
FPQ-hierarchy (Figure 9) satisfying the conditions of Theorem 11. More precisely, given
an FPQ-hierarchy of a proper chordal graph G that satisfies the conditions of Theorem 11,
one can reconstruct an indifference tree-layout T of G. But T is not sufficient to test
the adjacency between a pair of vertices. Indeed, for a given vertex y, we cannot retrieve
N(y) ∩ AT(y) from HG(x) since only the intersection of N(y) with the parent block is present
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in HG(x). In the example of Figure 9, the vertices w and w′ are also adjacent to c and b,
which do not belong to their parent block.

x

a

b

c

v

u

w w′

T

x

a

b

c

u
v

w

w′

G

x

a

b

c
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u

w w′

T′

x

a

b

c

u
v
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w′
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[1, 1](1)
Q

x

[1, 2](2) [2, 3](2)
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a b c

Q

u

Q

v

Q

w

Q

w′H(x)

Figure 9 Two proper chordal graphs G and G′ with their respective indifference tree-layouts T
and T′. We observe that G and G′ are not isomorphic, but their respective skeleton trees TG(x) and
TG′ (x) are. Moreover, H(x) is an FPQ-hierarchy such that TFPQ(H(x)) contains all the indifference
tree-layouts rooted at x of G and of G′. We obtain H∗(x) for G by adding to H(x) the blue labels
on the skeleton edges.

Let HG(x) be the FPQ-hierarchy satisfying the conditions of Theorem 11, we define the
indifference FPQ-hierarchy, denoted H∗

G(x), obtained from HG(x) by adding to every skeleton
edge e, a label Â(e). Suppose that e is incident to the root of the FPQ-tree of the block B,
then we set Â(e) = |N(B) ∩ AT(B)|. We say that two indifference FPQ-hierarchies H∗

1 and
H∗

2 are equivalent, denoted H∗
1 ≈∗

FPQ H∗
2, if H1 ≈FPQ H2 and for every pair of mapped skeleton

edges e1 and e2 we have Â(e1) = Â(e2).
Let S1 ∈ 2X1 be a set of subsets of X1 and S2 ∈ 2X2 be a set of subsets of X2. We say

that S1 and S2 are isomorphic if there exists a bijection f : X1 → X2 such that S1 ∈ S1 if
and only if S2 = {f(x) | x ∈ S1} ∈ S2. For S1 ⊆ X1, we denote by f(S1) = {f(y) | y ∈ S1}.

▶ Lemma 15. Let G1 = (V1, E1) and G2 = (V2, E2) be two (connected) proper chordal
graphs. Let H∗

1(x1) be an indifference FPQ-hierarchy of G1 and H∗
2(x2) be an indifference

FPQ-hierarchy of G2. Then H∗
1(x1) ≈∗

FPQ H∗
2(x2) if and only if G1 and G2 are isomorphic

with x1 mapped to x2.

From Lemma 15, testing graph isomorphism on proper chordal graphs reduces to testing
the equivalence between two indifference FPQ-hierarchies. To that aim, we use a similar
approach to the one developed for testing interval graph isomorphism [36]. That is, we adapt
the standard unordered tree isomorphism algorithm that assigns to every unordered tree a
canonical isomorphism code [47, 1]. Testing isomorphism then amounts to testing equality
between two isomorphism codes.

We proceed with a detailed description of the isomorphism test. Let H∗ be an indifference
FPQ-hierarchy of a proper chordal graph G = (V, E). Intuitively, the isomorphism code of
H∗ is a string obtained by concatenating information about the root node of H∗ and the
isomorphism codes of the sub-hierarchies rooted at its children. To guarantee the canonicity
of the isomorphism code of H∗, some of the codes of these sub-hierarchies need to be sorted
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lexicographically. To that aim, we use the following convention:

L <lex F <lex P <lex Q <lex 0 <lex 1 . . . <lex n <lex . . . ,

Moreover the separating symbols (such as brackets, commas. . . ) used in the isomorphism
code for the sake of readability are irrelevant for the sort.

Before formally describing the isomorphism code of H∗, let us remind that, in an indiffer-
ence FPQ-hierarchy, we can classify the children of any node t in two categories: we call a
node t′ a skeleton child of t if the tree edge e = tt′ is a skeleton edge of H∗, otherwise we
call it a block child of t. We observe that the block children of a node t belong with t to the
FPQ-tree of some block of BG(x). It follows from the definition of an FPQ-tree, that the
block children of a given node t are ordered and depending on the type of t, these nodes can
be reordered. On the contrary, the skeleton children of a node t are not ordered.

For every node t of H∗, we define a code, denoted code(t). We will define the isomorphism
code of H∗ as code(H∗) = code(r), where r is the root node of H∗. We let b1, . . . , bk denote
the block children of node t (if any, and ordered from 1 to k) and s1, . . . , sℓ denote the
skeleton children of t (if any). For a node t, the set of eligible permutations of the indices
[1, k] of its chidlren depends on type(t):

if type(t) = F, then the identity permutation is the unique eligible permutation;
if type(t) = P, then every permutation is eligible;
if type(t) = Q, then the identity or its reverse permutation are the two eligible permuta-
tions.

The code of t, denoted code(t), is obtained by minimizing with respect to <lex over all
eligible permutations β of t:

code(t, β) =

 size(t) ◦ type(t)◦
code(bβ(1)) ◦ · · · ◦ code(bβ(k))◦

label(sπβ(1), β) ◦ code(sπβ(1)) ◦ · · · ◦ label(sπβ(ℓ), β) ◦ code(sπβ(ℓ))

where:
type(t) ∈ {L, F, P, Q}, indicates whether t a leaf (L), a F-node, a P-node, or a Q-node.
size(t) ∈ N, stores the number of nodes in the sub-hierarchy rooted at t (including t).
label(s, β), with s being a skeleton child s of t and β being a permutation of [1, k]. Let e be
the skeleton edge of H∗ between s and t. If I(e) = [a, b], we set Ic(e) = [k +1−b, k +1−a].
Then, we set label(s) = ⟨Iβ(e), A(e)⟩, where

Iβ(e) =
{

I(e), β is the identity permutation
Ic(e), otherwise.

πβ is, for some permutation β of [1, k], a permutation of [1, ℓ] that minimizes, with respect
to <lex:

label(sπβ(1), β) ◦ code(sπβ(1)) ◦ · · · ◦ label(sπβ(ℓ), β) ◦ code(sπβ(ℓ)).

Using the previous definitions, we can show that if H∗
1 and H∗

2 are indifference FPQ-
hierarchies of the graphs G1 and G2 respectively, then H∗

1 ≈∗
FPQ H∗

2 if and only if code(H∗
1) =

code(H∗
2).

▶ Theorem 16. Let G1 and G2 be two proper chordal graphs. One can test in polynomial
time if G1 = (V1, E1) and G2 = (V2, E2) are isomorphic graphs.
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Proof. The algorithm is working as follows. First, compute a tree-layout T1 of G1 and the
indifference FPQ-hierarchy H∗

1 such that T1 ∈ TFPQ(H1). This can be done in polynomial
time by Theorem 14. Then for every vertex x2 ∈ V2, we test if there exists an indifference
tree-layout T2 rooted at x2; compute the corresponding indifference FPQ-hierarchy H∗

2 and
test whether H∗

1 ≈∗
FPQ H∗

2. Testing equivalence between FPQ-hierarchies can be done by
computing and comparing the isomorphism codes of H∗

1 and H∗
2. Moreover, this latter task

can be achieved in polynomial time. By Lemma 15, if one of these tests is positive, then we
can conclude that G1 and G2 are isomorphic graphs. ◀

6 Conclusion

A rough analysis of the complexity of the algorithms would lead to a O(n4)-time complexity
for the proper chordal graph recognition problem and a for the isomorphism test. We let open
the question of deriving a faster algorithms. Our results demonstrate that proper chordal
graphs form a rich class of graphs. First, its relative position with respect to important
graph subclasses of chordal graphs and the fact that the isomorphism problem belongs to P
for proper chordal graphs shows that they form a non-trivial potential island of tractability
for many other algorithmic problems. In this line, we leave open the status of Hamiltonian
cycle, which is polynomial time solvable in proper interval graphs [4, 30] and interval graphs
[31, 5], but NP-complete on strongly chordal graphs [38]. We were only able to resolve the
special case of split proper chordal graphs. An intriguing algorithmic question is whether
proper chordal graphs can be recognized in linear time. Second, the canonical representation
we obtained of the set of indifference tree-layouts rooted at some vertex witnesses the rich
combinatorial structure of proper chordal graphs. We believe that this structure has to be
further explored and could be important for the efficient resolution of more computational
problems. For example, as proper chordal graphs form a hereditary class of graphs, one
could wonder if the standard graph modification problems (vertex deletion, edge completion
or deletion, and etc.), which are NP-complete by [33], can be resolved in FPT time. The
structure of proper chordal graphs is not yet fully understood. The first natural question on
this aspect is to provide a forbidden induced subgraph characterization. This will involve
infinite families of forbidden subgraphs. Furthermore understanding what makes a vertex
the root of an indifference tree-layout is certainly a key ingredient for a fast recognition
algorithm. We would like to stress that a promising line of research is to consider further
tree-layout based graph classes. For this, following the work of Damaschke [13], Hell et
al. [28] and Feuilloley and Habib [17] on layouts, we need to investigate in a more systematic
way various patterns to exclude, including rooted tree patterns.
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Abstract
Let Rϵ denote randomized query complexity for error probability ϵ, and R := R1/3. In this work we
investigate whether a perfect composition theorem R(f ◦ gn) = Ω(R(f) · R(g)) holds for a relation
f ⊆ {0, 1}n × S and a total inner function g : {0, 1}m → {0, 1}.

Composition theorems of the form R(f ◦ gn) = Ω(R(f) · M(g)) are known for various measures M.
Such measures include the sabotage complexity RS defined by Ben-David and Kothari (ICALP 2015),
the max-conflict complexity defined by Gavinsky, Lee, Santha and Sanyal (ICALP 2019), and the
linearized complexity measure defined by Ben-David, Blais, Göös and Maystre (FOCS 2022). The
above measures are asymptotically non-decreasing in the above order. However, for total Boolean
functions no asymptotic separation is known between any two of them.

Let Dprod denote the maximum distributional query complexity with respect to any product (over
variables) distribution . In this work we show that for any total Boolean function g, the sabotage
complexity RS(g) = Ω̃(Dprod(g)). This gives the composition theorem R(f ◦ gn) = Ω̃(R(f) · Dprod(g)).
In light of the minimax theorem which states that R(g) is the maximum distributional complexity of
g over any distribution, our result makes progress towards answering the composition question.

We prove our result by means of a complexity measure Rprod
ϵ that we define for total Boolean

functions. Informally, Rprod
ϵ (g) is the minimum complexity of any randomized decision tree with

unlabelled leaves with the property that, for every product distribution µ over the inputs, the
average bias of its leaves is at least ((1 − ϵ) − ϵ)/2 = 1/2 − ϵ. It follows by standard arguments
that Rprod

1/3 (g) = Ω(Dprod(g)). We show that Rprod
1/3 is equivalent to the sabotage complexity up to a

logarithmic factor.
Ben-David and Kothari asked whether RS(g) = Θ(R(g)) for total functions g. We generalize

their question and ask if for any error ϵ, Rprod
ϵ (g) = Θ̃(Rϵ(g)). We observe that the work by

Ben-David, Blais, Göös and Maystre (FOCS 2022) implies that for a perfect composition theorem
R1/3(f ◦ gn) = Ω(R1/3(f) · R1/3(g)) to hold for any relation f and total function g, a necessary
condition is that R1/3(g) = O( 1

ϵ
· R 1

2 −ϵ(g)) holds for any total function g. We show that Rprod
ϵ (g)

admits a similar error-reduction Rprod
1/3 (g) = Õ( 1

ϵ
· Rprod

1
2 −ϵ

(g)). Note that from the definition of Rprod
ϵ it

is not immediately clear that Rprod
ϵ admits any error-reduction at all.

We ask if our bound RS(g) = Ω̃(Dprod(g)) is tight. We answer this question in the negative, by
showing that for the NAND tree function, sabotage complexity is polynomially larger than Dprod.
Our proof yields an alternative and different derivation of the tight lower bound on the bounded
error randomized query complexity of the NAND tree function (originally proved by Santha in
1985), which may be of independent interest. Our result shows that sometimes, Rprod

1/3 and sabotage
complexity may be useful in producing an asymptotically larger lower bound on R(f ◦ gn) than
Ω̃(R(f) · Dprod(g)). In addition, this gives an explicit polynomial separation between R and Dprod

which, to our knowledge, was not known prior to our work.
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1 Introduction

A decision tree or a query algorithm for a relation f ⊆ {0, 1}n × S can query various bits of
an input bit string x = (x1, . . . , xn) in an adaptive fashion, with the goal of outputting an
s ∈ S such that (x, s) ∈ f . A randomized decision tree is assumed to have access to some
source of randomness, and may choose a variable to query based on responses to previous
queries, and the randomness. The complexity of a decision tree is the number of variables
that it queries in the worst case. A decision tree that uses no randomness and for every x

outputs an s such that (x, s) ∈ f is called a deterministic decision tree computing f . The
randomized query complexity of f for error ϵ, denoted by Rϵ(f), is the least complexity of
any randomized decision tree that, for every input x, outputs s such that (x, s) ∈ f with
probability (over its own randomness) at least 1 − ϵ. Similarly, the deterministic query
complexity of f , denoted by D(f), is the least complexity of any deterministic decision
tree computing f . For a probability distribution µ over the domain of f , the distributional
query complexity of f with respect to µ and for error ϵ, denoted by Dµ

ϵ (f), is the least
complexity of any deterministic decision tree that, for a random input x sampled from µ,
fails to output an s such that (x, f) ∈ f with probability at most ϵ. Define R(f) := R1/3(f)
and Dµ(g) := Dµ

1/3(g). See Appendix A for more details about the aforementioned notions.
For a total Boolean function g : {0, 1}m → {0, 1}, the composition f ◦ gn is the relation

comprising all pairs ((x1, . . . , xn), s) ∈ ({0, 1}m)n such that ((g(x1), . . . , g(xn)), s) ∈ f .
It is easy to see that D(f ◦ gn) ≤ D(f) ·D(g); a decision tree for f ◦ gn may be constructed

simply by simulating an optimal tree of f , and serving each query that it makes by solving
the corresponding copy of g using an optimal tree of g. For randomized query algorithms,
a similar idea works out, albeit with some additional work to handle errors, to show that
R(f ◦ gn) = O(R(f) · R(g) · log R(f)).

Composition questions ask whether the aforementioned upper bounds on the complexity
of f ◦ gn are asymptotically optimal. These are fundamental questions about the structure
of optimal algorithms for f ◦ gn, and have received considerable attention in research.

It is known from the works of Montenaro [11] and Tal [19] that D(f◦gn) = D(f)·D(g). Thus
the composition question for deterministic query complexity has been completely answered.
On the contrary, in spite of extensive research, a complete answer to the composition question
for randomized query complexity is still lacking.

1.1 Past works on randomized query composition
Past works dealt with a more general composition question for randomized query complexity,
where the inner function g is allowed to be partial. The definition of f ◦ gn and the
aforementioned upper bounds on D(f ◦ gn) and R(f ◦ gn) can be accordingly generalized;
we are omitting the details in this paper. In 2015, Ben-David and Kothari [16] defined
the sabotage complexity measure RS(g) of a partial Boolean function g. They showed that
R(f ◦ gn) = Ω(R(f) · RS(g)). They further showed that for total g, RS(g) = Ω̃(

√
R(g)),

implying R(f ◦ gn) = Ω̃(R(f) ·
√

R(g)). In 2019, Gavinsky, Lee, Santha and Sanyal [6]
introduced the max-conflict complexity χ(g) and showed that R(f ◦ gn) = Ω(R(f) · χ(g)).
They further showed that even for partial functions g, χ(g) = Ω(

√
R(g)), implying R(f ◦gn) =

Ω(R(f) ·
√

R(g)). Moreover, they showed that for all partial functions g, χ(g) = Ω(RS(g)).
They also demonstrated unbounded separation between χ(g) and RS(g) for a partial g. In
2022, Ben-David, Blais, Göös and Maystre [4] introduced the linearized complexity measure
L(g). They showed that for any partial g, R(f ◦ gn) = Ω(R(f) · L(g)), and that L is the
largest measure M for which the statement R(f ◦ gn) = Ω(R(f) ·M(g)) holds. They also
demonstrated polynomial separation between L(g) and χ(g) for a partial g.
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A different line of work has focused on proving bounds on R(f ◦ gn) of the form Ω(M(f) ·
R(g)) for some complexity measure M [1, 7, 2]. In 2020 Ben-David and Blais [3] defined the
noisy query complexity noisyR and showed that noisyR is the largest measure M for which
the statement R(f ◦ gn) = Ω(M(f) · R(g)) holds. In 2023, Chakraborty et al. [5] showed
that for the special case when R(f) = Θ(n), a near-perfect randomized query composition
theorem R(f ◦ gn) = Ω̃(R(f) · R(g)) holds.

1.2 Our results
This work investigates the possibility of a perfect randomized query composition theorem
R(f ◦ gn) = Ω(R(f) · R(g)) when g is a total function. As discussed in the preceding section,
past works have introduced measures RS, χ and L that are asymptotically non-decreasing in
the above order. As discussed before, we also know that any two of them can be asymptotically
separated. However, the Boolean functions that witness these separations are all partial,
and to the best of our knowledge, no separation between these measures is known for total
functions. Does one of these measures coincides with R for total functions?

Ben-David and Kothari asked in their paper whether RS(g) = Θ(R(g)) for total g.
Our first result is that for any total g, RS(g) is, up to a logarithmic factor, at least the
maximum distributional query complexity of g for any product (over variables) distribution.
Let PROD be the set of all product distributions over the domain {0, 1}m of g. Define
Dprod(g) := maxµ∈PROD{Dµ(g)}.

▶ Theorem 1. For any total function g : {0, 1}m → {0, 1},

RS(g) = Ω̃(Dprod(g)).

Informally, the sabotage complexity captures the minimum number of randomized queries
required to distinguish any pair of input strings on which the function values differ (see
Section 2.3 for a formal definition). Theorem 1 shows that this task is at least as hard as
deciding the function on every possible product distribution (potentially with a different
query algorithm for each distribution).

Together with the composition theorem of Ben-David and Kothari, Theorem 1 immediately
yields the following corollary.

▶ Corollary 2. For any total function g : {0, 1}m → {0, 1},

R(f ◦ gn) = Ω̃(R(f) · Dprod(g)).

The minimax theorem (Fact 17) states that R(g) = maxµ Dµ(g), where the maximum is
over all probability distributions over the domain of g. In this light Corollary 2 makes
progress towards answering the randomized composition question for total inner functions.
An additional motivation for our first result is that product distributions comprise a natural
class of distributions that has received significant attention in Boolean function complexity
research [9, 8, 10, 17].

We prove Theorem 1 by introducing a new complexity measure Rprod
ϵ . Informally speaking,

Rprod
ϵ (g) is the minimum complexity of any randomized decision tree with unlabelled leaves

with the property that, for every product distribution µ over the inputs, the average bias of
its leaves is at least ((1− ϵ)− ϵ)/2 = 1/2− ϵ. Define Rprod(g) := Rprod

1/3 (g). See Section 2.2
for formal definitions. It follows by standard arguments that Rprod(g) = Ω(Dprod(g)) (see
Claim 11). Our next next result shows that RS is characterized by Rprod up to a logarithmic
factor.

STACS 2024
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▶ Theorem 3. For all total functions g : {0, 1}m → {0, 1},
1. RS(g) = O(Rprod(g)), and
2. RS(g) = Ω(Rprod(g)/ log Rprod(g)).

Theorem 1 follows immediately from Theorem 3(2) and the fact that Rprod(g) = Ω(Dprod(g))
(Claim 11).

Since any non-trivial product distribution is supported on all of {0, 1}m, Rprod(g) and
Dprod(g) are well-defined only for total functions g. The proof of Theorem 3 (that goes via
Lemma 6 discussed later) makes important use of the totality of g. We hope that the measure
Rprod, the characterization of RS presented in Theorem 3, and the insights acquired in our
proof techniques, specially pertaining to ways of exploiting totality, will be useful in future
research to resolve whether RS(g) = Θ(R(g)) for total functions g.

In light of Theorem 3 the question whether R(g) = Θ(RS(g)) for total functions g

translates to the question whether R(g) = Θ̃(Rprod(g)). We generalize this question for every
error ϵ.

▶ Question 4. Is it true that for every total function g : {0, 1}m → {0, 1} and ϵ : N→ (0, 1/2),
Rϵ(m)(g) = Θ̃(Rprod

ϵ(m)(g))?

From the work of Ben-David, Blais, Göös and Maystre [4] it follows that for any error
parameter ϵ, the linearized complexity measure L(g) of g is bounded above by O

(
1
ϵ · R 1

2 −ϵ(g)
)

.
As discussed before, they also show that L is the largest measure M for which the statement
R(f ◦ g) = Ω(R(f)M(g)) holds for all relations f and partial functions g. We thus have that
for a perfect composition theorem R(f ◦ g) = Ω(R(f)R(g)) to hold for any relation f and
any total Boolean function g, a necessary condition is that R(g) = O( 1

ϵ · R 1
2 −ϵ(g)) holds for

any total Boolean function g. In light of Question 4, we may ask if Rprod
ϵ admits a similar

error reduction. Our next result answers this question in the affirmative (up to a logarithmic
factor).

▶ Theorem 5. For every total function g : {0, 1}m ∈ {0, 1} and ϵ : N→ (0, 1/2),

Rprod(g) = Õ

(
1

ϵ(m) · R
prod
1
2 −ϵ(m)(g)

)
.

We remark here that from the definition of Rprod
ϵ it is not immediately clear that it admits

any error-reduction at all.
To prove Theorems 3 and 5, we define a version of sabotage complexity with errors,

that we denote by RSϵ. Informally, RSϵ(g) is the minimum number of randomized queries
required to distinguish every pair of inputs with different function values with probability at
least 1− ϵ (see Section 2.3 for a formal definition). Let s(g) denote the sensitivity of g (see
Section 2.1 for a formal definition). The following lemma constitutes the technical core of
our proofs of Theorems 3 and 5.

▶ Lemma 6. For all total Boolean functions g : {0, 1}n → {0, 1}, and ϵ : N→ (0, 1/2),
1. Rprod(g) = O

(
1

ϵ(n) · RS1−ϵ(n)(g) log s(g)
)

, and
2. RS1−2ϵ(n)(g) ≤ Rprod

1
2 −ϵ(n)(g).

Is the bound in Theorem 1 tight? Our next result gives a negative answer to this question.
We show that for the NAND tree function (defined shortly), RS and Dprod are polynomially
separated. Consider a complete binary tree of depth d. Each leaf is labelled by a distinct
Boolean variable. Each internal node is a binary NAND gate. For each input, the evaluation
of this Boolean formula is the output of the NAND tree function, that we denote by gd.
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▶ Theorem 7. Dprod(gd) = O(RS(gd)1−Ω(1)).

Saks and Wigderson [14] showed that the zero-error randomized query complexity of gd is
Θ(αd) for α = 1+

√
33

4 . Later Santha [15] showed that R(gd) = Θ(αd). We prove Theorem 7
in two parts. First, we show an upper bound of O((α− Ω(1))d) on Dprod(gd).

▶ Lemma 8. There exists a constant δ > 0 such that Dprod(gd) = O((α− δ)d).

Works by Pearls [13] and Tarsi [19] showed that there exists a constant η > 0 such that
for all distributions µ where each variable is set to 1 independently with some probability
p, Dµ(gd) = O((α − η)d). In Lemma 8 we bound Dµ(gd) for any product distribution µ.
Our bound is quantitatively weaker than those by Pearls [13] and Tarsi [19], and we do not
comment on its tightness.

Lemma 8 also gives an explicit polynomial separation between R and Dprod which, to our
knowledge, was not known prior to our work.

Next, we prove a tight lower bound on RS(gd). As a by-product, our proof of the following
lemma yields a different proof of the bound R(gd) = Ω(αd) from the one by Santha [15], and
may be of independent interest.

▶ Lemma 9. RS(gd) = Ω(αd).

Lemma 9, together with the upper bound by Saks and Wigderson, shows that RS(gd) =
Θ(R(gd)). From the composition theorem proven by Ben-David and Kothari, we thus have
that for all relations f , R(f ◦ gd) = Θ(R(f) · R(gd)).

Lemmata 8 and 9 immediately imply Theorem 7.

1.3 Proof ideas
In this section, we sketch the ideas and techniques that have gone into the proofs of our
results. We begin with Lemma 6, from which Theorems 3 and 5 follow. We then discuss
Lemmata 8 and 9, from which Theorem 7 follows.

Lemma 6

We first discuss part 2, which is easier. Note that if a randomized algorithm R decides g on
each input with error probability 1

2 − ϵ, then by a union bound two simultaneous runs of
R on x ∈ g−1(0), y ∈ g−1(1) decide both g(x) and g(y) with error probability 1− 2ϵ. This
implies that R distinguishes x and y with error probability 1− 2ϵ.

Now we turn to part 1. This step needs arguments involving sensitivity and influence of
Boolean functions, that are defined and discussed in Section 2.1. The first step is showing
that distinguishing each pair of inputs with high confidence is equivalent to reading each
sensitive bit of each input with the same confidence (Lemma 14). Using this, by a sequence
of arguments involving standard error-reduction, we infer that there is a randomized tree R
of complexity O

(
1

ϵ(n) · RS1−ϵ(n)(g) log s(g)
)

that, for every input, with probability 1− 1
s(g) ,

queries all its sensitive bits. This translates to the claim that the average influence of the
restrictions of g to the leaves of R is low. Poincaré inequality (Lemma 10) now lets us
conclude that that the average bias of those restrictions is small, yielding the lemma.

Lemma 8

Saks and Wigderson gave a zero-error recursive algorithm for gd. Their algorithm recursively
evaluates a randomly chosen child of the root. If that child evaluates to 0, the algorithm
outputs 1 and terminates. Else, the algorithm recursively evaluates the other child and
outputs the complement.
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If the output of the function is 0, then the algorithm will be forced to evaluate both
children. However, if the output is 1, then the algorithm avoids evaluating one of the children
with probability 1/2.

We observe that if the inputs are sampled from a product distributions, then firstly, the
output will not always be 0; so we will always have scope to avoid evaluating one child.
Secondly, we will also have both children evaluating to 0 with positive probability, in which
case we are guaranteed to save evaluating one child.

We modify the algorithm by Saks an Wigderson to tap these opportunities; in each step
we query the child which is more likely to evaluate to 0. Note that this requires knowledge
of the distribution. We look at two successive levels of the tree and show that the above
considerations bring us significant advantage over the algorithm by Saks and Wigderson.

Lemma 9

As mentioned before, here we work with the original definition of sabotage complexity. Our
proof splits into the following steps.

1. We recursively define a “hard” distribution Pd over pairs in g−1
d (0)× g−1

d (1).
2. We consider an arbitrary zero-error randomized algorithm R for gd. We now wish to give

a lower bound on the number of queries it makes on expectation to distinguish a random
pair sampled from Pd.

3. Using R, we recursively define a sequence of algorithms Ad,Ad−1, . . . ,A0 such that for
each i, Ai is a zero-error algorithm for gi.

4. We establish a recursive relation amongst the expected number of queries that gi makes
to distinguish a pair sampled from Pi, for various i. We make a distinction between
queries based on their answers (0 or 1). This step involves a small case analysis involving
all deterministic trees with two variables.

5. We finish by solving the recursion established in the previous step.

2 Preliminaries

Refer to Appendix A for some notations and definitions that will be used throughout the
paper.

2.1 Sensitivity and influence
For a total Boolean function g, a variable xi is said to be sensitive for an input x if
g(x) ̸= g(x⊕i). The sensitivity of x with respect to g, denoted by s(g, x), is the number of
sensitive bits of x, i.e., |{i ∈ [n] | g(x) ̸= g(x⊕i)}|. The sensitivity of g, denoted by s(g), is
the maximum sensitivity of any input x with respect to g, i.e.,

s(g) = max
x∈{0,1}m

s(g, x).

For a product distribution µ ∈ PROD given by parameters p1, . . . , pm, the influence of xi

with respect to g and µ is defined as

Infi(g) := 4pi(1− pi) Pr
x∼µ

[g(x) ̸= g(x⊕i)],

and the influence of g with respect to µ is defined as

Inf(g) =
m∑

i=1
Infi(g).
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The following inequality follows easily from the above definitions, linearity of expectation,
and the observation that 4pi(1− pi) ≤ 1 for all pi ∈ [0, 1].

Inf(g) ≤ Ex∼µs(g, x). (1)

Let Var(g) denote the variance of the random variable g(x) when x is drawn from µ. The
Poincaré inequality bounds Var(g) in terms of Inf(g).

▶ Lemma 10 (Poincaré inequality). For every product distribution µ, 4Var(g) ≤ Inf(g).

A proof of the Poincaré inequality may be found in [12].
In the notations Infi, Inf and Var, the dependence on µ is suppressed. µ will be clear from
the context.

2.2 Randomized query complexity for product distributions
Let µ be a product distribution, and T be a deterministic decision tree. For each leaf ℓ of
T , let pµ

ℓ be the probability that the computation of T on an input drawn from µ reaches
ℓ. Let pµ denote the probability distribution (pµ

ℓ )ℓ over the leaves of T . We say that a
randomized decision tree R computes g with error ϵ for product distributions if for every
product distribution µ ∈ PROD,

ET ∼REℓ∼pµ [min{ Pr
x∈µ|ℓ

[g(x) = 0], Pr
x∈µ|ℓ

[g(x) = 1]}] ≤ ϵ,

where the inner expectation is over the leaves of T . We define min{Prx∈µ|ℓ
[f(x) =

0], Prx∈µ|ℓ
[f(x) = 1]} to be 0 if pµ

ℓ = 0; the conditional distribution µ|ℓ is not defined
in this case. The randomized query complexity of g for product distribution for error ϵ,
denoted by Rprod

ϵ (f), is the minimum query complexity of a randomized decision tree R that
satisfies the above condition. Define Rprod(f) := Rprod

1/3 (f).
Note that in the above definition, no reference has been made to the labels of the leaves

of T . For the purpose of this definition, R can be thought of as a probability distribution
over trees whose leaves are unlabelled.

The following claim shows that Dprod
ϵ (g) is bounded above by Rprod

ϵ (g). A proof may be
found in Section B.

▷ Claim 11. For every Boolean function g and parameter ϵ ∈ [0, 1/2], Dprod
ϵ (g) ≤ Rprod

ϵ (g).

2.3 Sabotage complexity
The sabotage complexity of a Boolean function g for error ϵ, denoted by RSϵ(g), is defined to
be the minimum query complexity of any randomized decision tree R for which the following
is true: For every x = (x1, . . . , xm) ∈ g−1(0), y = (y1, . . . , ym) ∈ g−1(1), with probability
at least 1− ϵ, a decision tree T drawn from R when run on x queries an index i such that
xi ̸= yi

1. Define RS(g) := RS1/3(g).
Sabotage complexity was defined by Ben-David and Kothari [16]. They defined the

measure as the minimum expected query complexity of any randomized decision tree to
distinguish each pair of inputs x ∈ g−1(0), y ∈ g−1(1). However, as the authors observed,
the definition stated above is within a constant factor of the original definition in [16]. See
more discussion on this in Section 5 where we work with the original definition.

1 Note that T queries an index i such that xi ≠ yi when run on x if and only if T queries an index j such
that xj ̸= yj when run on y.
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56:8 Randomized Query Composition and Product Distributions

The following fact can be proven by standard BPP amplification.

▶ Fact 12. ∀ϵ, ϵ′ ∈ (0, 1) and ϵ < ϵ′, RSϵ(g) = O
(

RSϵ′(g) · log(1/ϵ)
log(1/ϵ′)

)
.

Ben-David and Kothari proved that the sabotage complexity is lower bounded by many
complexity measures that are studied in the context of decision trees. In particular, RS(g) is
lower bounded by s(g).

▶ Fact 13 ([16]). For all Boolean function g : {0, 1}m → {0, 1}, RS(g) = Ω(s(g)).

3 Sabotage complexity and product distributions

In this section we first prove Lemma 6. We then use Lemma 6 to prove Theorems 3 and 5.
The following lemma says that to distinguish each pair of inputs on which the function values
differ with high probability, it is necessary and sufficient to query each sensitive bit of each
input with high probability.

▶ Lemma 14. Let g : {0, 1}n → {0, 1} be a total Boolean function. Then, RSϵ(g) ≤ r if and
only if there is a randomized decision tree R of query complexity at most r such that for each
input x and each variable xi sensitive for x, PrT ∼R[T does not query xi when run on x] ≤ ϵ.

Proof.
(If) Let R be a randomized decision tree of complexity at most r such that for every input

x and every variable xi sensitive for x, PrT ∼R[T does not query xi when run on x] ≤ ϵ.
We will show that R fails to distinguish any pair w ∈ g−1(0), y ∈ g−1(1) with probability
at most ϵ. Fix such a pair w, y. let B = {i1, . . . , ik} be the positions where w and y differ.
Define B0 := ∅ and for 1 ≤ j ≤ k, define Bj := {i1, . . . , ij}. Let m be the smallest index
such that g(w⊕Bm) = 1. Thus, variable wm is sensitive for w⊕Bm−1 and w⊕Bm . Now,
observe that if T does not query any variable wij with ij ∈ B when run on w, then T

does not query wm when run on w⊕Bm−1 . By our assumption about R, the probability
of this happening when T is sampled from R is at most ϵ.

(Only if) Let RSϵ(g) ≤ r. Thus there exists a randomized decision tree R of query complexity
r that fails to distinguish each pair w ∈ g−1(0), y ∈ g−1(1) with probability at most
ϵ. Without loss of generality, assume that x ∈ g−1(0). Then x⊕i ∈ g−1(1). Since
distinguishing x and x⊕i is equivalent to querying xi when run on x, the proof follows. ◀

Now we proceed to proving Lemma 6. For convenience, we use ϵ for ϵ(n) throughout the
following proof.

Proof of Lemma 6.
Part 1. Let RS1−ϵ(g) = r. By Lemma 14, there exists a randomized query algorithm
R of complexity at most r such that for each input x and each variable xi sensitive for
x, PrT ∼R[T does not query xi when run on x] ≤ 1 − ϵ. Let R′ be the algorithm obtained
by repeating R 2

ϵ ln s(g) times with independent randomness. Thus for each input x and
each variable xi sensitive for x, we have that PrT ∼R′ [T does not query xi when run on x] ≤
(1− ϵ)( 1

ϵ ·2 ln s(g)) ≤ 1
s(g)2 , where we have used the inequality 1−x ≤ e−x for all x ∈ (−∞,∞).

Again for each input x, by a union bound over all variables xi sensitive for x, we have
that the probability that a deterministic tree sampled from R′ does not query all variables
sensitive for x when run on x, is at most s(g,x)

s(g)2 ≤ 1
s(g) . The query complexity of R′ is

O( 1
ϵ · RS1−ϵ(g) log s(g)). We will show that R′ computes g with error 1/3 for product

distributions. This will complete the proof of this part.
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To this end, fix a product distribution µ. For any deterministic decision tree T and input
x of f , define

Q(T, x) =
{

1 if T does not query all sensitive variables of x when run on x,
0 otherwise.

By the property of R′, for every input x, we have that

ET ∼R′ [Q(T, x)] = Pr
T ∼R′

[Q(T, x) = 1] ≤ 1
s(g) .

Since the above is true for each x, we have the following for a random input x sampled from
µ.

ET ∼R′Ex∼µ[Q(T, x)] ≤ 1
s(g) . (2)

For each leaf ℓ of T , let pµ
ℓ be the probability that the computation of T on an input drawn

from µ reaches ℓ and pµ denote the probability distribution (pµ
ℓ )ℓ over the leaves of T . We

rewrite (2) as follows.

ET ∼R′Eℓ∼pµEx∼µ|ℓ
[Q(T, x)] ≤ 1

s(g) , (3)

treating Ex∼µ|ℓ
[Q(T, x)] as 0 if pµ

ℓ = 0. Now, fix an arbitrary leaf ℓ of T such that pµ
ℓ > 0, and

consider the Boolean function g |ℓ. Note that for any x ∈ ℓ, if Q(T, x) = 0, then s(g |ℓ, x) = 0.
We thus have that

Ex∼µ|ℓ
[s(g |ℓ, x)] ≤ Pr

x∼µ|ℓ

[Q(T, x) = 1] · s(g |ℓ) ≤ Ex∼µ|ℓ
[Q(T, x)] · s(g). (4)

Since µ is a product distribution and ℓ is a subcube, µ |ℓ is also a product distribution.
Equations (1) and (4) thus imply that

Inf(g |ℓ) ≤ Ex∼µ|ℓ
[Q(T, x)] · s(g). (5)

Together with Poincaré inequality (Lemma 10), (5) implies that

Var(f |ℓ) ≤
1
4 ·Ex∼µ|ℓ

[Q(T, x)] · s(f). (6)

Now, for a random variable X taking value in {0, 1}, Var(X) = 4 Pr[X = 0] Pr[X = 1] ≥
2 min{Pr[X = 0], Pr[X = 1]} (since max{Pr[X = 0], Pr[X = 1]} ≥ 1

2 ). Since ℓ is an arbitrary
leaf, we have by Equations (6) and (3) that

ET ∼R′Eℓ∼pµ [min{ Pr
x∼µ|ℓ

[g(x) = 0], Pr
x∼µ|ℓ

[g(x) = 1]}]

≤1
2 ·ET ∼R′Eℓ∼pµ [Var(g |ℓ)] by the above discussion

≤1
8 ·ET ∼R′Eℓ∼pµEx∼µ|ℓ

[Q(T, x)] · s(g) by Equation (6)

≤1
8 <

1
3 . by Equation (3)

Since µ is an arbitrary product distribution, we have that R′ computes g with error 1/3 for
product distributions.
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Part 2. Fix a randomized query algorithm R that attains Rprod
1
2 −ϵ

(g). We will show that R
also attains RS1−2ϵ(g). By Lemma 14 it is sufficient to show that for each input x and each
variable xi sensitive for x, PrT ∼R[T does not query xi when run on x]≤ 1− 2ϵ. To this end,
fix an input x and a variable xi sensitive for x. Now consider the distribution µ that places
a probability mass of 1/2 on x and places the remaining mass of 1/2 on x⊕i. Note that µ is
a product distribution. Thus from the property of R we have that

ET ∼REℓ∼pµ [min{ Pr
x∈µ|ℓ

[g(x) = 0], Pr
x∈µ|ℓ

[g(x) = 1]}] ≤ 1
2 − ϵ. (7)

Now if T does not query xi when run on x, then T has a leaf ℓ that contains both x and
xi, pµ

ℓ = 1, and for all other leaves ℓ′ of T , pµ
ℓ′ = 0. Furthermore, min{Prx∈µ|ℓ

[g(x) =
0], Prx∈µ|ℓ

[g(x) = 1]} = 1/2. Thus, Eℓ∼pµ [min{Prx∈µ|ℓ
[g(x) = 0], Prx∈µ|ℓ

[g(x) = 1]}] = 1/2.
We thus have that,

ET ∼REℓ∼pµ [min{ Pr
x∈µ|ℓ

[g(x) = 0], Pr
x∈µ|ℓ

[g(x) = 1]}]

≥ Pr
T ∼R

[T does not query xi when run on x] · 1
2 . (8)

Equations (7) and (8) imply that

Pr
T ∼R

[T does not query xi when run on x] · 1
2 ≤

1
2 − ϵ

=⇒ Pr
T ∼R

[T does not query xi when run on x] ≤ 1− 2ϵ.

This completes the proof. ◀

Now we prove Theorems 3 and 5.

Proof of Theorem 3 Part 1. Substituting ϵ(n) = 1/6 in part 2 of Lemma 6 we have that

Rprod(g) ≥ RS2/3 = Ω(RS(g)),

where the second equality follows from Fact 12. ◀

Theorem 3 (1) and Fact 13 imply that

Rprod(g) = Ω(s(g)). (9)

Proof of Theorem 3 Part 2.

RS(g) = RS1/3(g) ≥ RS2/3(g)
= Ω(Rprod(g)/ log s(g)) by Lemma 6 part 1 with ϵ(n) = 1/3
= Ω(Rprod(g)/ log Rprod(g)) by Equation (9)

◀

Proof of Theorem 5. We have

Rprod(g) = O

(
1

ϵ(n) · RS1−ϵ(n)(g) log s(g)
)

Part (1) of Lemma 6

= O

(
1

ϵ(n) · RS1−2ϵ(n)(g) log s(g)
)

since 1− ϵ(n) ≥ 1− 2ϵ(n)

= O

(
1

ϵ(n) · R
prod
1
2 −ϵ(n)(g) log s(g)

)
by part (2) of Lemma 6

= O

(
1

ϵ(n) · R
prod
1
2 −ϵ(n)(g)) log Rprod(g)

)
. by Equation (9)

◀
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4 Separation between Dprod and R

In this section we prove Lemma 8. Recall that gd denotes the NAND tree function of depth d.
Snir [18] and Saks and Wigderson [14] were the first to study gd in the context of randomized
query complexity. As mentioned in Section 1, it is known from the works of Saks and
Wigderson [14] and Santha [15] that R(gd) = Θ(dα) where α = 1+

√
33

4 .
For a distribution µ, the the zero-error distributional complexity of a Boolean function g,

that we denote by Dµ
0 (g), is the least expected number of queries made by any (deterministic)

tree T on a random input sampled from µ. Define Dprod
0 (g) := maxµ∈PROD Dµ

0 (g). By
Markov’s inequality, it follows that Dprod(g) = O(Dprod

0 (g)).

Proof of Lemma 9. We will prove an upper bound on Dprod
0 (g). By the preceding discussion,

that will prove the lemma.
Let µ be any product distribution over {0, 1}n. Define T (d, µ) := Dµ

0 (gd) and T (d) :=
Dprod

0 (gd). Consider the query algorithm Aµ
2 given in Algorithm 1.

Algorithm 1 Aµ(x).

1 Input: Query access to x = (x1, . . . , x2d).
2 g ← gd.
3 if g is a variable then
4 Query g. Return the outcome of the query.
5 end
6 else
7 Let gℓ and gr respectively be the left and right subtrees of g.
8 Let µℓ and µr respectively be the product distributions induced on the input

spaces of gℓ and gr by µ.
9 t← arg maxi∈{ℓ,r} Pry∼µi

[gi(y) = 0].
10 s← {ℓ, r} \ {t}.
11 For i ∈ {ℓ, r}, let x(i) be the input to gi.
12 if Aµt

(x(t)) = 0 then
13 return 1.
14 end
15 else
16 return Aµs(x(s)).
17 end
18 end

Aµ works as follows: if d = 1, i.e., if gd is a single variable, then Aµ queries and returns
the value of the variable. Else, Aµ recursively evaluates a subtree of the root of gd whose
probability of evaluating to 0 is at least that of the other subtree.3 If the recursive call
returns 0, Aµ returns 1. Else, Aµ recursively evaluates the other subtree of the root of gd

and returns the complement of the value returned by that recursive call. It is clear that on
every input, Aµ returns the correct answer with probability 1.

2 Note that Aµ needs the knowwledge of µ.
3 By “recursively evaluates” we mean that Aµ invokes Aµ′ for the distribution µ′ induced by µ on the

domain of the subfunction under consideration.
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Now we analyze the query complexity of A. For i ∈ {ℓ, r}, define pi := Prx(i)∼µi
[gd(x(i)) =

0]. WLOG assume that pℓ ≥ pr. Aµ on input x will recursively evaluate gℓ by invoking Aµℓ

on input x(ℓ). If the recursive call returns 1, then A will recursively evaluate gr by invoking
Aµr on input x(r). We thus have that,

T (d, µ) = T (d− 1, µℓ) + (1− pℓ)T (d− 1, µr). (10)

Let αℓ, αr respectively be the probabilities that the left and right children of gℓ evaluate
to 0. Similarly, let βℓ, βr respectively be the probabilities that the left and right children
of gr evaluate to 0. Without loss of generality assume that αℓ ≥ αr, βℓ ≥ βr and αℓ ≤ βℓ

(other cases are similar). By using a similar analysis as above and then upper bounding
distributional query complexity for specific product distributions by the product distributional
complexity we have that,

T (d− 1, µℓ) ≤ T (d− 2) + (1− αℓ)T (d− 2), and (11)
T (d− 1, µr) ≤ T (d− 2) + (1− βℓ)T (d− 2)

≤ T (d− 2) + (1− αℓ)T (d− 2). (12)

Substituting Equations (11) and (12) in (10) we have that

T (d) ≤ T (d, µ)
≤ (2− αℓ)(2− pℓ)T (d− 2). (13)

Now, we have that pℓ = (1 − αr)(1 − αℓ) ≥ (1 − αℓ)2.4 Substituting in Equation (13) we
have that

T (d) ≤ (2− αℓ)(2− (1− αℓ)2)T (d− 2)
= (2− αℓ)(1 + 2αℓ − α2

ℓ )T (d− 2). (14)

The maximum value of the function f(x) := (2 − x)(1 + 2x − x2) in the domain [0, 1] is
2

27 · (17 + 7
√

7). From Equation (14) we have that

T (d) = O

(√
2
27 · (17 + 7

√
7))
)d

= O(α− δ)d for some constant δ > 0. ◀

5 Sabotage complexity of NAND tree

In this section, we prove Lemma 9. Recall that gd stands for the NAND tree function of
depth d. Define g0(b) = b for b ∈ {0, 1}.

For a randomized query algorithm R that decides g : {0, 1}m → {0, 1} with error probabil-
ity 0, and for inputs x, y such that g(x) = 0, g(y) = 1, define the expected sabotage complexity
of R on the pair x, y, denoted by RSE(R, x, y), to be the expected number of queries that R
makes until (and including) it queries an index i such that xi ≠ yi when run on x (or y). Define
the expected sabotage complexity RSE(R) to be maxx,y∈{0,1}m,g(x)=0,g(y)=1 RSE(R, x, y),
and the expected sabotage complexity RSE(g) to be the minimum RSE(R) for any random-
ized query algorithm R that decided g with error probability 0. As observed by Ben-David
and Kothari, RSE(g) = Θ(RS(g)). In this section, we will work with RSE in place of RS(g).

4 Here we use that µ is a product distribution.
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It follows by standard arguments that for every distribution D on g−1(0) × g−1(1)
there exists a zero-error randomized (even deterministic) decision tree R of g such that
E(x,y)∼D[RSE(|R, x, y)] ≤ RSE(g). To prove Lemma 9 it thus suffices to exhibit a hard
distribution D on g−1(0) × g−1(1) such that for every zero-error randomized tree R of g,
E(x,y)∼D[RSE(|R, x, y)] is large. The first step in our proof is to define a hard distribution.

A hard distribution

We define a probability distribution Pd on gd
−1(0)× gd

−1(1) as follows. Define P0 to be the
point distribution {(0, 1)}. For d ≥ 1, Pd is defined recursively by the following sampling
procedure. Let n := 2d−1.

1. Sample (x, y) ∼ Pd−1. Let x = (x1, . . . , xn) and y = (y1, . . . , yn).
2. Sample b := (b1, . . . , bn) uniformly at random from {0, 1}n.
3. For each i = 1, . . . , n, let ui = (u(0)

i , u
(1)
i ), vi = (v(0)

i , v
(1)
i ) ∈ {0, 1}2 be defined as follows:

a. If (xi, yi) = (0, 0), set ui, vi ← (1, 1).
b. If (xi, yi) = (0, 1), set ui ← (1, 1) and set vi ← (bi, 1− bi).
c. If (xi, yi) = (1, 0), set ui ← (bi, 1− bi) and set vi ← (1, 1).
d. If (xi, yi) = (1, 1), set ui, vi ← (bi, 1− bi).

4. Let x′ be the string obtained from x by replacing each xi by ui. Similarly let y′ be the
string obtained from y by replacing each yi by vi.

5. Return (x′, y′).

Notice that for each i = 1, . . . , n, xi = NAND(u(1)
i , u

(2)
i ) and yi = NAND(v(1)

i , v
(2)
i ). Hence,

gd(x′) = gd−1(x) and gd(y′) = gd−1(y). Thus we inductively establish that Pd is supported
on g−1

d (0)× g−1
d (1). The following observation can be verified to be true by a simple case

analysis.

▶ Observation 15. For each i = 1, . . . , n, xi = u
(bi)
i and yi = v

(bi)
i . Furthermore, u

(1−bi)
i =

v
(1−bi)
i = 1.

In light of Observation 15, the sampling process above can be intuitively described as follows.
We first sample (x, y) from Pd−1. Then, for each i, we sample two two-bit strings ui and vi

that are jointly distributed in a certain way. If xi = yi, then ui = vi. If xi ≠ yi, then the
values of xi and yi are embedded (as complements) in the bi-th bits of ui and vi respectively.
The (1− bi)-th bit of ui and vi are set to 1. The marginals of Pd can be seen to be obtained
by conditioning uniform distribution on the “reluctant inputs” considered by Saks and
Wigderson [14] to the events g(x) = 0 and g(x) = 1. We couple these two conditional
distributions in a specific way to obtain Pd.

A sequence of algorithms

Now we proceed to prove a lower bound on E(x,y)∼Pd
[RSE(R, x, y)] for any zero-error algorithm

R of gd. Towards this goal, let R be a zero-error randomized query algorithm for gd. Now,
using R, we will define a sequence of randomized query algorithms Ad,Ad−1, . . . ,A1,A0,
where for each t = d, d − 1, . . . , 0, At is a zero-error randomized query algorithm for gt.
Define Ad := R. Now for t ≤ d− 1, define At recursively as follows. Let x = (x1, . . . , x2t)
be the input to At.
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1. Sample b = (b1, . . . , b2t) uniformly at random from {0, 1}2t .
2. For each i = 1, . . . , 2t, define ui ∈ {0, 1}2 as in the definition of Pd above. Let x′ ∈
{0, 1}2t+1 be the string obtained from x by replacing each xi by ui.

3. Simulate At+1 on x′. If At+1 queries u
(1−bi)
i for some i, answer 1. If At+1 queries u

(bi)
i

for some i, make a query to xi and answer xi. The correctness of this simulation follows
from Observation 15.

4. When At+1 terminates, terminate and return what At+1 returns.5

We observe that gt(x) = gt+1(x′). Thus we may inductively establish that for every t =
1, . . . , d, At is a zero-error randomized decision tree of gt. Moreover, observe that sampling
(x, y) from Pt and running At on x (or y) amounts to sampling (x′, y′) from Pt+1 and running
At+1 on x′ (or y′). Furthermore, At queries the first index i such that xi ̸= yi exactly when
the simulation of At+1 inside it queries the first index j such that x′

j ̸= y′
j . We will index

the bits of x′ as tuples (i, b) where i ∈ {1, . . . , 2t} and b ∈ {0, 1}. Thus x′
(i,b) = u

(b)
i .

The lower bound
For each b ∈ {0, 1}, each t = 0, . . . , d and each (x, y) in the support of Pt, define Q(t, b, x, y) to
be the number of variables with value b queried by At when run on x until (and including) At

queries an index i such that xi ̸= yi. Define Q(t, b) to be the expected value of Q(t, b, x, y) for
a random sample (x, y) from Pt, where the expectation is over both the internal randomness
of At, and the randomness of Pt. Our goal is to derive a recursive relationship amongst
the quantities Q(t, b), and then obtain a lower bound on Q(d, b). Since E[RSE(R, x, y)] =
Q(d, 0) + Q(d, 1), the lemma will follow.

Let 0 ≤ t ≤ d. For (x, y) in the support of Pt and i ∈ {1, . . . , 2t} define I(t, b, i, x, y) := 1
if xi = b and At queries xi when run on x not later than it queries an index on which x and
y differ, and define I(t, b, i, x, y) := 0 otherwise. We thus have that

Q(t, b, x, y) =
2t∑

i=1
I(t, b, i, x, y). (15)

Consider 0 ≤ t ≤ d− 1, an (x, y) in the support of Pt, bits b, b′ ∈ {0, 1} and i ∈ {1, . . . , 2t}
such that xi = b. We are interested in a lower bound on the quantity

F (t, b, b′, i, x, y) := E[I(t + 1, b′, (i, 0), x′, y′) + I(t + 1, b′, (i, 1), x′, y′)]
E[I(t, b, i, x, y)] , (16)

whenever the denominator is not 0. We now describe F in words. t, b, b′, i, x and y are fixed.
xi is assumed to be b. The denominator is the probability that At queries xi not later than
it queries an index where x and y differ. The numerator is the expected number of b′-valued
variables in {u(0)

i , u
(1)
i } that is queried by the simulation of At+1 inside At, not later than

the simulation of At+1 queries an index where x′ and y′ differ (which, as discussed before,
is exactly when At queries an index where x and y differ). Both expectations are over the
randomness of At, which includes the sampling of b = (b1, . . . , b2t) and the randomness in
At+1 that is simulated inside At. Note that x′ and y′ are random strings, as they depend on
b1, . . . , b2t .

5 The return value is not important here. We are bothered only about separating x and y. The algorithms
may be thought to have unlabelled leaves.
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Lower bounding F

We wish to show a lower bound on F (t, b, b′, i, x, y). Towards this, let us fix a deterministic
decision tree T in the support of At+1. Furthermore, fix the values of all bj for j ̸= i.
This fixes all the bits of the string x′ except u

(0)
i and u

(1)
i . Now, consider the expression

for F where the expectations are conditioned on the above fixings, and are only over the
randomness of bi (notice that bi determines u

(0)
i , u

(1)
i and whether At queries xi). Under

the above fixing, the action of T on the variables u
(0)
i and u

(1)
i before it queries an index

where x′ and y′ differ is a deterministic decision tree on these two variables. We assume
that the tree is not the empty tree (which in particular implies that T does not query
an index where x′ and y′ differ before it queries any of u

(0)
i and u

(1)
i ). Assume further

that if one of the two variables is queried and found to be 0, the other one is not queried
(as their NAND is already fixed to 1, and so the value of gd is insensitive to the value
of the other variable). Under these assumptions there are only two structurally different
trees on two variables. The two trees T0 and T1 are given below. Two other trees can
be obtained by interchanging the roles of u

(0)
i and u

(1)
i in T0 and T1. However, from the

symmetry of the NAND function and our distributions, considering T0 and T1 suffices.

u
(0)
i ?

0 1

T0

u
(0)
i ?

u
(1)
i ?

0 1

10

T1

We now show how to bound F for b = 1 and b′ = 0. Bounds for other combinations can be
derived similarly; we list them in Table 1.

First consider tree T0. Assume that xi = b = 1. Consider the denominator of F . At

queries xi if and only if T0 queries u
(bi)
i . T0 queries only u

(0)
i . Thus, T0 queries u

(bi)
i if and

only if bi = 0, which happens with probability 1/2. Thus the denominator is 1/2.
Now consider the numerator. Number of variables with value b′ = 0 queried by T is 1 if

u
(0)
i = 0 and 0 otherwise. u

(0)
i = 0 if and only if bi = 0, which happens with probability 1/2.

Thus the denominator is 1
2 · 1 = 1/2. Hence, in this case, F = (1/2)/(1/2) = 1.

Next, consider tree T1. In this case, xi is guaranteed to be queried, as the tree always
queries the variable whose value is 0. Thus, the denominator is 1. The numerator is also 1;
exactly one of the two variables is b′ = 0 and T1 stops when it queries a 0. Thus, in this case
too, F = 1/1 = 1.

We conclude that when b = 1 and b′ = 0, a lower bound on F is min{1, 1} = 1. The above
analysis holds for a fixed T , as long as its restriction to {u(1)

i , u
(2)
i } until it queries an index

where x′ and y′ differ, is not an empty tree. By averaging, the lower bounds in Table 1 hold
for At+1 and a random b1, . . . , b2t as long as with positive probability the aforementioned
restricted tree is not empty.
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Table 1 Lower bounds on F .

b b′ F

0 0 ≥ 0
0 1 ≥ 2
1 0 ≥ 1
1 1 ≥ 1/2

A recursive relation for Q(t, b)

Fix 0 ≤ t ≤ d − 1, inputs x, y ∈ {0, 1}2t such that (x, y) is in the support of Pt, and bit
b′ ∈ {0, 1}. Now, consider Q(t + 1, b′, x′, y′). Note that x′ and y′ are random strings, and are
determined by x, y (fixed) and b1, . . . , b2t (random). We have that

Q(t + 1, b′, x′, y′) =
2t∑

i=1
(I(t + 1, b′, (i, 0), x′, y′) + I(t + 1, b′, (i, 1), x′, y′)). (17)

We split the above sum into two parts depending on xi.

Q(t + 1, b′, x′, y′) =
∑

1≤i≤2t,xi=0

(I(t + 1, b′, (i, 0), x′, y′) + I(t + 1, b′, (i, 1), x′, y′))

+
∑

1≤i≤2t,xi=1

(I(t + 1, b′, (i, 0), x′, y′) + I(t + 1, b′, (i, 1), x′, y′)). (18)

Now, we take an expectation on both sides over b1, . . . , b2t and the randomness of At+1, and
apply linearity of expectation.

E[Q(t + 1, b′, x′, y′)] =
∑

1≤i≤2t,xi=0

E[I(t + 1, b′, (i, 0), x′, y′) + I(t + 1, b′, (i, 1), x′, y′)]

+
∑

1≤i≤2t,xi=1

E[I(t + 1, b′, (i, 0), x′, y′) + I(t + 1, b′, (i, 1), x′, y′)]. (19)

Note that if E[I(t, 0, i, x, y)] is not 0, then the summands of the first sum are F (t, 0, b′, i, x, y) ·
E[I(t, 0, i, x, y)]. A similar statement holds for the second sum. We thus have,

E[Q(t + 1, b′, x′, y′)] ≥
∑

1≤i≤2t,xi=0,I(t,0,i,x,y)̸=0

F (t, 0, b′, i, x, y) ·E[I(t, 0, i, x, y)]

+
∑

1≤i≤2t,xi=1,I(t,1,i,x,y)̸=0

F (t, 1, b′, i, x, y) ·E[I(t, 1, i, x, y)]. (20)

We would now like to consider b′ = 0 and 1 separately, and plug the bounds of Table 1 into
Equation (20). If E[I(t, b, i, x, y)] is non-zero, then with positive probability, the restriction
of the tree T considered earlier to variables u

(0)
i , u

(1)
i is not the empty tree; thus the lower

bounds of Table 1 are applicable. We thus have

E[Q(t + 1, 0, x′, y′)] ≥ E[Q(t, 1, x, y)], and (21)

E[Q(t + 1, 1, x′, y′)] ≥ 2E[Q(t, 0, x, y)] + 1
2E[Q(t, 1, x, y)]. (22)
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Finally, we take expectations over (x, y) ∼ Pt. As discussed before, this has the effect of
inducing the distribution Pt+1 on (x′, y′). We thus have

Q(t + 1, 0) ≥ Q(t, 1), and (23)

Q(t + 1, 1) ≥ 2Q(t, 0) + 1
2Q(t, 1). (24)

One can directly check by enumerating all deterministic zero-error trees for t = 0, 1 that
Q(0, 0), Q(0, 1), Q(1, 0) and Q(1, 1) are all Ω(1). It thus follows from Equations (23) and (24)
that Q(t, b) = Ω(αt) for b ∈ {0, 1}. In particular, Q(d, 0), Q(d, 1) = Ω(αd). This completes
the proof of Lemma 9.
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A Extended preliminaries

The notation [n] denotes the set {1, . . . , n}. Throughput the paper, g : {0, 1}m → {0, 1}
will stand for a Boolean function and x = (x1, . . . , xm) will stand for a generic input to
g. For b ∈ {0, 1}, f−1(b) = {x ∈ {0, 1}n | f(x) = b}. For a subset S of {0, 1}m, let f |S
denote the restriction of f to S. A probability distribution µ over {0, 1}m is a function
µ : {0, 1}m → [0, 1] such that

∑
x∈{0,1}m µ(x) = 1. For a subset S of {0, 1}m, define

µ(S) :=
∑

x∈S µ(x). For a subset S of {0, 1}m such that µ(S) > 0, µ|S is the distribution
obtained by conditioning µ on the event that the sample belongs to S. In other words:

µ|S(x) =
{

0 if x /∈ S,
µ(x)
µ(S) if x ∈ S

µ is said to be a product distribution if there exist p1, . . . , pm ∈ [0, 1] such that for each
x ∈ {0, 1}n, µ(x) =

∏m
i=1(xipi + (1− xi)(1− pi)). In other words, each xi is independently

equal to 1 with probability pi and 0 with probability 1 − pi. Let PROD be the set of all
product distributions of {0, 1}m.

For a subset I ∈ [m] of indices, x⊕I denotes the string obtained from x by flipping the
variables xi for each i ∈ I. If I = {i}, we abuse notation and write x⊕i.

▶ Definition 16 (Subcube). A subset C of {0, 1}m is called a subcube if there exists a set
S ∈ [m] of indices and bits {bi | i ∈ S} such that C = {x ∈ {0, 1}m | ∀i ∈ S, xi = bi}. The
co-dimension of C is defined to be |S|.

A.1 Decision trees for Boolean functions
A decision tree for m variables is a binary tree T . Each internal node of T is labelled by a
variable xi for i ∈ [m], and has two children that corresponds to xi = 0 and xi = 1. Each
leaf is labelled by 0 or 1. A decision tree is evaluated on a given input x = (x1, . . . , xm), as
follows. Start at the root. In each step, if the current node is an internal node, then query
its label xi. Then navigate to that child of the current node that corresponds to the value of
xi. The computation stops when it reaches a leaf, and outputs the label of the leaf. Let T (x)
denotes the output of the tree at x.
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The inputs x that take the tree T to leaf ℓ is exactly the ones which agree with the path
from the root to ℓ for every variable queried on the path. Thus, the set of such inputs is a
subcube of {0, 1}m of co-dimension equal to the depth of ℓ. The notation ℓ will also refer to
the subcube corresponding to the leaf ℓ.

T is said to compute g : {0, 1}m → {0, 1} if

∀x ∈ {0, 1}m, T (x) = g(x).

The Deterministic Decision Tree complexity of g, denoted by D(g) is the minimum depth of
a decision tree that computes f .

Let µ be a distribution over {0, 1}m. For a given error parameter ϵ ∈ [0, 1/2], T computes
g with error probability ϵ over µ if

Pr
x∼µ

[g(x) ̸= T (x)] ≤ ϵ.

The distributional query complexity of g for error ϵ with respect to µ, denoted by Dµ
ϵ (f), is

the minimum depth of a decision tree that computes f with error probability ϵ over µ.
A randomized decision tree is a probability distribution R over deterministic decision

trees. R is said to compute g with error probability ϵ if

∀x ∈ {0, 1}m, Pr
T ∼R

[T (x) ̸= g(x)] ≤ ϵ.

The query complexity of R is the maximum depth of any decision tree in its support.
The rrandomized query complexity of g for error ϵ, denoted by Rϵ(g), is the minimum
query complexity of any randomized decision tree R that computes g with error ϵ. Define
R(g) := R1/3(g). The following fact is well-known (see, for example [6] for a proof).

▶ Fact 17 (Minimax theorem). Rϵ(g) = maxµ Dµ
ϵ (g).

We define the product distributional query complexity of g with error ϵ, Dprod
ϵ (g), as follows.

Dprod
ϵ (g) := max

µ∈PROD
Dµ

ϵ (g).

B Proof of Claim 11

In this section we prove Claim 11.

Proof of Claim 11. Let R be a randomized decision tree that achieves Rprod
ϵ (g). Fix a product

distribution µ. From R, we will construct a deterministic decision tree (with labelled leaves)
T ′ that errs with probability at most ϵ with respect to µ. This will complete the proof.

To this end, consider any deterministic decision tree T (with unlabelled leaves) in the
support of R. We label each leaf ℓ of T as follows. Condition µ on ℓ (assume that the
conditional probability is defined; otherwise label ℓ arbitrarily). If the probability of the
event “g(x) = 1” with respect to this conditional distribution is at least 1/2, we label ℓ as 1.
Else, we label ℓ as 0.

In this way we label each leaf of each deterministic decision tree in the support of R. By
the guarantee of R, the resulting randomized decision tree (with labelled leaves) computes g

on inputs from µ with error at most ϵ.
Finally, by averaging, it follows that there exists a deterministic tree T ′ in the support of

R which computes g on a random x ∼ µ with error probability at most ϵ. ◁
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Abstract
We consider the following problem that we call the Shortest Two Disjoint Paths problem: given
an undirected graph G = (V, E) with edge weights w : E → R, two terminals s and t in G, find two
internally vertex-disjoint paths between s and t with minimum total weight. As shown recently by
Schlotter and Sebő (2022), this problem becomes NP-hard if edges can have negative weights, even
if the weight function is conservative, i.e., there are no cycles in G with negative total weight. We
propose a polynomial-time algorithm that solves the Shortest Two Disjoint Paths problem for
conservative weights in the case when the negative-weight edges form a constant number of trees
in G.
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1 Introduction

Finding disjoint paths between given terminals is a fundamental problem in algorithmic
graph theory and combinatorial optimization. Besides its theoretical importance, it is also
motivated by numerous applications in transportation, VLSI design, and network routing.
In the Disjoint Paths problem, we are given k terminal pairs (si, ti) for i ∈ {1, . . . , k} in
an undirected graph G, and the task is to find pairwise vertex-disjoint paths P1, . . . , Pk so
that Pi connects si with ti for each i ∈ {1, . . . , k}. This problem was shown to be NP-hard
by Karp [7] when k is part of the input, and remains NP-hard even on planar graphs [10].
Robertson and Seymour [11] proved that there exists an f(k)n3 algorithm for Disjoint
Paths with k terminal pairs, where n is the number of vertices in G and f some computable
function; this celebrated result is among the most important achievements of graph minor
theory. In the Shortest Disjoint Paths problem we additionally require that P1, . . . , Pk

have minimum total length (in terms of the number of edges). For fixed k, the complexity
of this problem is one of the most important open questions in the area. Even the case for
k = 2 had been open for a long time, until Björklund and Husfeldt [3] gave a randomized
polynomial-time algorithm for it in 2019. For directed graphs the problem becomes much
harder: the Directed Disjoint Paths problem is NP-hard already for k = 2. The Disjoint
Paths problem and its variants have also received considerable attention when restricted to
planar graphs [6, 5, 8, 1, 4, 14, 9].

The variant of Disjoint Paths when s1 = · · · = sk = s and t1 = · · · = tk = t is
considerably easier, since one can find k pairwise (openly vertex- or edge-) disjoint paths
between s and t using a max-flow computation. Applying standard techniques for computing
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a minimum-cost flow (see e.g. [15]), one can even find k pairwise disjoint paths between s

and t with minimum total weight, given non-negative weights on the edges. Notice that
if negative weights are allowed, then flow techniques break down for undirected graphs:
in order to construct an appropriate flow network based on our undirected graph G, the
standard technique is to direct each edge of G in both directions; however, if edges can
have negative weight, then this operation creates negative cycles consisting of two arcs, an
obstacle for computing a minimum-cost flow. Recently, Schlotter and Sebő [13] have shown
that this issue is a manifestation of a complexity barrier: finding two openly disjoint paths
with minimum total weight between two vertices in an undirected edge-weighted graph is
NP-hard, even if weights are conservative (i.e., no cycle has negative total weight) and each
edge has weight in {−1, 1}.1 Note that negative edge weights occur in network problems
due to various reasons: for example, they might arise as a result of some reduction (e.g.,
deciding the feasibility of certain scheduling problems with deadlines translates into finding
negative-weight cycles), or as a result of data that is represented on a logarithmic scale. We
remark that the Single-Source Shortest Paths problem is the subject of active research
for the case when negative edges are allowed; see Bernstein et al. [2] for an overview of the
area and their state-of-the-art algorithm running in near-linear time on directed graphs.

Our contribution

We consider the following problem which concerns finding paths between two fixed terminals
(as opposed to the classic Shortest Disjoint Paths problem):

Shortest Two Disjoint Paths:
Input: An undirected graph G = (V, E), a weight function w : E → R that is conservative

on G, and two vertices s and t in G.
Task: Find two paths P1 and P2 between s and t with V (P1) ∩ V (P2) = {s, t} that

minimizes w(P1) + w(P2).

A solution for an instance (G, w, s, t) of Shortest Two Disjoint Paths is a pair of
(s, t)-paths that are openly disjoint, i.e., do not share vertices other than their endpoints.

From the NP-hardness proof for Shortest Two Disjoint Paths by Schlotter and
Sebő [13] it follows that the problem remains NP-hard even if the set of negative-weight
edges forms a perfect matching. Motivated by this intractability, we focus on the “opposite”
case when the subgraph of G spanned by the set E− = {e ∈ E : w(e) < 0} of negative-
weight edges, denoted by G[E−], has only few connected components.2 Note that since w is
conservative on G, the graph G[E−] is acyclic. Hence, if c denotes the number of connected
components in G[E−], then G[E−] in fact consists of c trees.

We can think of our assumption that c is constant as a compromise for allowing negative-
weight edges but requiring that they be confined to a small part of the graph. For a
motivation, consider a network where negative-weight edges arise as some rare anomaly. Such
an anomaly may occur when, in a certain part of a computer network, some information can
be collected while traversing the given edge. If such information concerns, e.g., the detection
of (possibly) faulty nodes or edges in the network, then it is not unreasonable to assume that
these faults are concentrated to a certain part of the network, due to underlying physical
causes that are responsible for the fault.

1 In fact, Schlotter and Sebő use an equivalent formulation of the problem where, instead of finding two
openly disjoint paths between s and t, the task is to find two vertex-disjoint paths between {s1, s2} and
{t1, t2} for four vertices s1, s2, t1, t2 ∈ V .

2 See Section 2 for the precise definition of a subgraph spanned by an edge set.
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Ideally, one would aim for an algorithm that is fixed-parameter tractable (FPT) when
parameterized by c; however, already the case c = 1 turns out to be challenging. We prove
the following result, which can be thought of as a first step towards an FPT algorithm:

▶ Theorem 1. For each constant c ∈ N, Shortest Two Disjoint Paths can be solved in
polynomial time on instances where the set of negative edges spans c trees in G.

Our algorithm first applies standard flow techniques to find minimum-weight solutions
among those that have a simple structure in the sense that there is no negative tree in G[E−]
used by both paths. To deal with more complex solutions where there is at least one tree T

in G[E−] used by both paths, we use recursion to find two openly disjoint paths from s to T ,
and from T to t; to deal with the subpaths of the solution that heavily use negative edges
from T , we apply an intricate dynamic programming method that is based on significant
insight into the structural properties of such solutions.

Organization

We give all necessary definitions in Section 2. In Section 3 we make initial observations about
optimal solutions for an instance (G, w, s, t) of Shortest Two Disjoint Paths, and we
also present a lemma of key importance that will enable us to create solutions by combining
partial solutions that are easier to find (Lemma 10). We present the algorithm proving our
main result, Theorem 1, in Section 4. In Section 4.1 we give a general description of our
algorithm, and explain which types of solutions can be found using flow-based techniques. We
proceed in Section 4.2 by establishing structural observation that we need to exploit in order
to find those types of solutions where more advanced techniques are necessary. Section 4.3
contains our dynamic programming method for finding partial solutions which, together with
Lemma 10, form the heart of our algorithm. We conclude with some questions for further
research in Section 5. All proofs are deferred to the full version of our paper [12].

2 Notation

For a positive integer ℓ, we use [ℓ] := {1, 2, . . . , ℓ}.
Let a graph G be a pair (V, E) where V and E are the set of vertices and edges, respectively.

For two vertices u and v in V , an edge connecting u and v is denoted by uv or vu.
For a set of X of vertices (or edges), let G−X denote the subgraph of G obtained by

deleting the vertices (or edges, respectively) of X; if X = {x} then we may simply write
G− x instead of G− {x}. Given a set F ⊆ E of edges in G, we denote by V (F ) the vertices
incident to some edge of F . The subgraph of G spanned by F is the graph (V (F ), F ); we
denote this subgraph as G[F ].

A walk W in G is a series e1, e2, . . . , eℓ of edges in G for which there exist vertices
v0, v1, . . . , vℓ in G such that ei = vi−1vi for each i ∈ [ℓ]; note that both vertices and edges
may appear repeatedly on a walk. We denote by V (W ) the set of vertices contained by or
appearing on W , that is, V (W ) = {v0, v1, . . . , vℓ}. The endpoints of W are v0 and vℓ, or in
other words, it is a (v0, vℓ)-walk, while all vertices on W that are not endpoints are inner
vertices. If v0 = vℓ, then we say that W is a closed walk.

A path is a walk on which no vertex appears more than once. By a slight abuse of
notation, we will usually treat a path as a set {e1, e2, . . . , eℓ} of edges for which there
exist distinct vertices v0, v1, . . . , vℓ in G such that ei = vi−1vi for each i ∈ [ℓ]. For any i

and j with 0 ≤ i ≤ j ≤ ℓ we will write P [vi, vj ] for the subpath of P between vi and vj ,
consisting of edges ei+1, . . . , ej . Note that since we associate no direction with P , we have
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P [vi, vj ] = P [vj , vi]. Given two vertices s and t, an (s, t)-path is a path whose endpoints
are s and t. Similarly, for two subsets S and T of vertices, an (S, T )-path is a path with one
endpoint in S and the other endpoint in T .

We say that two paths are vertex- or edge-disjoint, if they do not share a common vertex
or edge, respectively. Two paths are openly disjoint, if they share no common vertices
apart from possibly their endpoints. Given vertices s1, s2, t1, and t2, we say that two
({s1, s2}, {t1, t2})-paths are permissively disjoint, if a vertex v can only appear on both paths
if either v = s1 = s2 or v = t1 = t2. Two paths properly intersect, if they share at least one
edge, but neither is the subpath of the other.

A cycle in G is a set {e1, e2, . . . , eℓ} of distinct edges in G such that e1, e2, . . . , eℓ−1 form a
path in G− eℓ whose endpoints are connected by eℓ. A set T ⊆ E of edges in G is connected,
if for every pair of edges e and e′ in T , there is a path contained in T containing both e

and e′. If T is connected and acyclic, i.e., contains no cycle, then T is a tree in G. Given
two vertices a and b in a tree T , we denote by T [a, b] the unique path contained in T whose
endpoints are a and b. For an edge uv ∈ T and a path P within T such that uv /∈ P , we say
that v is closer to P in T than u, if v ∈ V (T [u, p]) for some vertex p ∈ V (P ).

Given a weight function w : E → R on the edge set of G, we define the weight of any
edge set F ⊆ E as w(F ) =

∑
e∈F w(e). We extend this notion for any pair F = (F1, F2)

of edge sets by letting w(F) = w(F1) + w(F2). The restriction of w to an edge set F ⊆ E,
i.e., the function whose domain is F and has value w(f) on each f ∈ F , is denoted by w|F .
We say that w (or, to make the dependency on G explicit, the weighted graph (G, w)) is
conservative, if no cycle in G has negative total weight.

3 Structural Observations

Let G = (V, E) be an undirected graph with a conservative weight function w : E → R. Let
E− = {e ∈ E : w(e) < 0} denote the set of negative edges, and T the set of negative trees
they form. More precisely, let T be the set of connected components in the subgraph G[E−];
the acyclicity of each T ∈ T follows from the conservativeness of w. For any subset T ′ of T ,
we use the notation E(T ′) =

⋃
T ∈T ′ E(T ) and V (T ′) =

⋃
T ∈T ′ V (T ).

In Section 3.1 we gather a few useful properties of conservative weight functions. In
Section 3.2 we collect observations on how an optimal solution can use different trees in T .
We close the section with a lemma of key importance in Section 3.3 that enables us to compose
solutions by combining two path pairs without violating our requirement of disjointness.

3.1 Implications of Conservative Weights
The next two lemmas establish implications of the conservativeness of our weight function.
Lemma 2 concerns closed walks, while Lemma 3 considers paths running between two vertices
on some negative tree in T . These lemmas will be useful in proofs where a given hypothetical
solution is “edited” – by removing certain subpaths from it and replacing them with paths
within some negative tree – in order to obtain a specific form without increasing its weight.

▶ Lemma 2. If W is a closed walk that does not contain any edge with negative weight more
than once, then w(W ) ≥ 0.

▶ Lemma 3. Let x, y, x′, y′ be four distinct vertices on a tree T in T .
(1) If Q is an (x, y)-walk in G using each edge of E− at most once, then w(Q) ≥ w(T [x, y]).
(2) If Q is an (x, y)-path and Q′ is an (x′, y′)-path vertex-disjoint from Q, then

w(Q) + w(Q′) ≥ w(T [x, y] \ T [x′, y′]) + w(T [x′, y′] \ T [x, y]).
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3.2 Solution Structure on Negative Trees
We first observe a simple property of minimum-weight solutions.

▶ Definition 4 (Locally cheapest path pairs). Let s1, s2, t1, t2 be vertices in G, and let P1
and P2 be two permissively disjoint ({s1, s2}, {t1, t2})-paths. A path T [u, v] in some T ∈ T
is called a shortcut for P1 and P2, if u and v both appear on the same path, either P1 or P2,
and there is no inner vertex or edge of T [u, v] contained in P1 ∪ P2. We will call P1 and P2
locally cheapest, if there is no shortcut for them.

The idea behind this concept is the following. Suppose that P1 and P2 are permissively
disjoint ({s1, s2}, {t1, t2})-paths, and T [u, v] is a shortcut for P1 and P2. Suppose that u

and v both lie on Pi (for some i ∈ [2]), and let P ′
i be the path obtained by replacing Pi[u, v]

with T [u, v]; we refer to this operation as amending the shortcut T [u, v]. Then P ′
i is also

permissively disjoint from P3−i and, since Lemma 2 implies w(Pi[u, v]) ≥ −w(T [u, v]) > 0,
has weight less than w(Pi). Hence, we have the following observation.

▶ Observation 5. Let P1 and P2 be two permissively disjoint ({s1, s2}, {t1, t2})-paths ad-
mitting a shortcut T [z, z′]. Suppose that z and z′ are on the path, say, P1. Let P ′

1 be
the path obtained by amending T [z, z′] on P1. Then P ′

1 and P2 are permissively disjoint
({s1, s2}, {t1, t2})-paths and w(P ′

1) < w(P1).

▶ Corollary 6. Any minimum-weight solution for (G, w, s, t) is a pair of locally cheapest
paths.

For convenience, for any (s, t)-path P and vertices u, v ∈ V (P ) we say that u precedes v

on P , or equivalently, v follows u on P , if u lies on P [s, v]. When defining a vertex as the
“first” (or “last”) vertex with some property on P or on a subpath P ′ of P then, unless
otherwise stated, we mean the vertex on P or on P ′ that is closest to s (or farthest from s,
respectively) that has the given property.

The following lemma shows that if two paths in a minimum-weight solution both use
negative trees T and T ′ for some T, T ′ ∈ T then, roughly speaking, they must traverse T

and T ′ in the same order; otherwise one would be able to replace the subpaths of the solution
running between T and T ′ by two paths, one within T and one within T ′, of smaller weight.

▶ Lemma 7. Let P1 and P2 be two openly disjoint (s, t)-paths of minimum total weight,
and let T and T ′ be distinct trees in T . Suppose that v1, v2, v′

1 and v′
2 are vertices such that

vi ∈ V (T ) ∩ V (Pi) and v′
i ∈ V (T ′) ∩ V (Pi) for i ∈ [2], with v1 preceding v′

1 on P1. Then v2
precedes v′

2 on P2.

The following lemma is a consequence of Corollary 6 and Lemma 7, and considers a
situation when one of the paths in an optimal solution visits a negative tree T ∈ T at least
twice, and visits some T ′ ∈ T \ {T} in between.

▶ Lemma 8. Let P1 and P2 be two openly disjoint (s, t)-paths of minimum total weight, and
let T and T ′ be distinct trees in T . Suppose that v1, v′

2, and v3 are vertices appearing in this
order on P1 when traversed from s to t, and suppose v1, v3 ∈ V (T ) while v′

2 ∈ V (T ′). Then
V (P2) ∩ V (T ) ̸= ∅;
V (P2) ∩ V (T ′) = ∅;
no vertex of V (P1) ∩ V (T ′) precedes v1 or follows v3 on P1.

We say that two paths P1 and P2 are in contact at T , if there is a tree T ∈ T and two
distinct vertices v1 and v2 in T such that v1 lies on P1, and v2 lies on P2. Lemmas 7 and 8
imply the following fact that will enable us to use recursion in our algorithm to find solutions
that consist of two paths in contact.
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▶ Lemma 9. Let P1 and P2 be two openly disjoint (s, t)-paths of minimum total weight, and
assume that they are in contact at some tree T ∈ T . For i ∈ [2], let ai and bi denote the
first and last vertices of Pi on T when traversed from s to t. Then we can partition T \ {T}
into (Ts, T0, Tt) such that for each T ′ ∈ T \ {T} and i ∈ [2] it holds that

(i) if Pi[s, ai] contains a vertex of T ′, then T ′ ∈ Ts

(ii) if Pi[bi, t] contains a vertex of T ′, then T ′ ∈ Tt

(iii) if Pi[ai, bi] contains a vertex of T ′, then T ′ ∈ T0.

Given a solution (P1, P2) whose paths are in contact at some tree T ∈ T , a partition
of T \ {T} is T -valid with respect to (P1, P2), if it satisfies the conditions of Lemma 9.

3.3 Combining Path Pairs

The following lemma will be a crucial ingredient in our algorithm, as it enables us to combine
“partial solutions” without violating the requirement of vertex-disjointness.

▶ Lemma 10. Let p1, p2, q1, q2 be vertices in G, and let T ∈ T contain vertices v1 and v2
with v1 ̸= v2. Let P1 and P2 be two permissively disjoint ({p1, p2}, {v1, v2})-paths in G, and
let Q1 and Q2 be two permissively disjoint ({v1, v2}, {q1, q2})-paths in G that are locally
cheapest. Assume also that we can partition T into two sets T1 and T2 with T ∈ T2 such that

(i) V (T ) ∩ V (P1 ∪ P2) = {v1, v2}, and
(ii) P1 ∪ P2 contains no edge of E(T2), and Q1 ∪Q2 contains no edge of E(T1).

Then we can find in linear time two permissively disjoint ({p1, p2}, {q1, q2})-paths S1 and S2
in G such that w(S1) + w(S2) ≤ w(P1) + w(P2) + w(Q1) + w(Q2).

We remark that Lemma 10 heavily relies on the condition that v1 and v2 are both on T :
to construct the desired paths S1 and S2, we not only use the path pairs (P1, P2) and (Q1, Q2)
but, if necessary, remove certain subpaths from them and stitch together the remainder with
a path running within T .

4 Polynomial-Time Algorithm for Constant |T |

This section contains the algorithm proving our main result, Theorem 1. Let (G, w, s, t)
be our instance of Shortest Two Disjoint Paths with input graph G = (V, E), and
assume that the set E− of negative edges spans c trees in G for some constant c. We present
a polynomial-time algorithm that computes a solution for (G, w, s, t) with minimum total
weight, or correctly concludes that no solution exists for (G, w, s, t). The running time of our
algorithm is O(n2c+9) where n = |V |, so in the language of parameterized complexity, our
algorithm is in XP with respect to the parameter c.

In Section 4.1 we present the main ideas and definitions necessary for our algorithm, and
provide its high-level description together with some further details. We will distinguish
between so-called separable and non-separable solutions. Finding an optimal and separable
solution will be relatively easy, requiring extensive guessing but only standard techniques for
computing minimum-cost flows. By contrast, finding an optimal but non-separable solution
is much more difficult. Therefore, in Section 4.2 we collect useful properties of optimal, non-
separable solutions. These observations form the basis for an important subroutine necessary
for finding optimal, non-separable solutions; this subroutine is presented in Section 4.3.
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4.1 The Algorithm
We distinguish between two types of solutions for our instance (G, w, s, t) of Shortest Two
Disjoint Paths.

▶ Definition 11 (Separable solution). Let (P1, P2) be a solution for (G, w, s, t). We say that
P1 and P2 are separable, if either

they are not in contact, i.e., there is no tree T ∈ T that shares distinct vertices with
both P1 and P2, or
there is a unique tree T ∈ T such that P1 and P2 are in contact at T , but the intersection
of T with both P1 and P2 is a path, possibly containing only a single vertex;

otherwise they are non-separable.

In Section 4.1.1 we show how to find an optimal, separable solution, whenever such a
solution exists for (G, w, s, t). Section 4.1.2 deals with the case when we need to find an
optimal, non-separable solution. Our algorithm for the latter case is more involved, and
relies on a subroutine that is based on dynamic programming and is developed throughout
Sections 4.2 and 4.3. The existence of this subroutine is stated in Corollary 33.

4.1.1 Finding Separable Solutions
Suppose that (P1, P2) is a minimum-weight solution for (G, w, s, t) that is separable. The
following definition establishes conditions when we are able to apply a simple strategy for
finding a minimum-weight solution using well-known flow techniques.

▶ Definition 12 (Strongly separable solution). Let (P1, P2) be a solution for (G, w, s, t).
We say that P1 and P2 are strongly separable, if they are separable and they are either not
in contact at any tree of T , or they are contact at a tree of T that contains s or t.

Suppose that P1 and P2 are either not in contact, or they are in contact at a tree of T
that contains s or t. Let T ̸∋s,t denote the set of all trees in T that contain neither s nor t.
For each T ∈ T ̸∋s,t that shares a vertex with Pi for some i ∈ [2], we define aT as the first
vertex on Pi (when traversed from s to t) that is contained in T ; note that T cannot share
vertices with both P1 and P2 as they are strongly separable, so Pi is uniquely defined.

Our approach is the following: we guess the vertex aT for each T ∈ T ̸∋s,t, and then
compute a minimum-cost flow in an appropriately defined network. More precisely, for each
possible choice of vertices Z = {zT ∈ V (T ) : T ∈ T ̸∋s,t}, we build a network NZ as follows.

▶ Definition 13 (Flow network NZ for strongly separable solutions). Given a set Z ⊆ V

such that Z ∩ V (T ) = {zT } for each T ∈ T ̸∋s,t, we create NZ as follows. We direct each
non-negative edge in G in both directions. Then for each T ∈ T ̸∋s,t, we direct the edges
of T away from zT .3 If some T ∈ T contains s, then we direct all edges of T away from s;
similarly, if some T ∈ T contains t, then we direct all edges of T towards t. We assign
a capacity of 1 to each arc and to each vertex4 in the network except for s and t, and we
retain the cost function w (meaning that we define w(−→e ) as w(e) for any arc −→e obtained by
directing some edge e). We let s and t be the source and the sink in NZ , respectively.

3 Directing a tree T away from a vertex z ∈ V (T ) means that an edge uv in T becomes an arc (u, v) if
and only if T [z, u] has fewer edges than T [z, v]; directing T towards z is defined analogously.

4 The standard network flow model can be adjusted by well-known techniques to allow for vertex capacities.
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▶ Lemma 14. If there exists a strongly separable solution for (G, w, s, t) with weight k, then
there exists a flow of value 2 having cost k in the network NZ for some choice of Z ⊆ V

containing exactly one vertex from each tree in T ̸∋s,t. Conversely, a flow of value 2 and
cost k in the constructed network NZ for some Z yields a solution for (G, w, s, t) with weight
at most k.

Next, we show how to deal with the case when a minimum-weight solution (P1, P2) is
separable, but not strongly separable; then there is a unique tree T ∈ T at which P1 and P2
are in contact. In such a case, we can simply delete an edge from T in a way that paths P1
and P2 cease to be in contact in the resulting instance. This way, we can reduce our problem
to the case when there is a strongly separable optimal solution; note, however, that the
number of trees spanned by the negative edges (our parameter c) increases by 1.

▶ Lemma 15. If there exists a separable, but not strongly separable solution for (G, w, s, t) with
weight k, then there exists an edge e ∈ E− such that setting G′ = G− e and E′ = E \{e}, the
instance (G′, w|E′ , s, t) admits a strongly separable solution with weight at most k. Conversely,
a solution for (G′, w|E′ , s, t) is also a solution for (G, w, s, t) with the same weight.

Thanks to Lemmas 14 and 15, if there exists a minimum-weight solution for (G, w, s, t)
that is separable, then we can find some minimum-weight solution using standard algorithms
for computing minimum-cost flows. In Section 4.1.2 we explain how we can find a minimum-
weight non-separable solution for (G, w, s, t).

4.1.2 Finding Non-separable Solutions
To find a minimum-weight solution for (G, w, s, t) that is not separable, we need a more
involved approach. We now provide a high-level presentation of our algorithm for finding a
non-separable solution of minimum weight. We remark that Algorithm STDP contains a
pseudocode; however, we believe that it is best to read the following description first.

Step 1. We guess certain properties of a minimum-weight non-separable solution (P1, P2):
First, we guess a tree T ∈ T that shares distinct vertices both with P1 and P2, i.e., a tree
at which P1 and P2 are in contact. Second, we guess a partition (Ts, T0, Tt) of T \ {T}
that is T -valid with respect to (P1, P2).

Step 2. If Ts ̸= ∅, then we guess the first vertex of P1 and of P2 contained in V (T ), denoted
by a1 and a2, respectively. We use recursion to compute two permissively disjoint
(s, {a1, a2})-paths using only the negative trees in Ts, and to compute two permissively
disjoint ({a1, a2}, t)-paths using only the negative trees in T \ Ts. Observe that by Ts ̸= ∅
and T ∈ T \ Ts, we search for these paths in graphs that contain only a strict subset of
the negative trees in T . Thus, our parameter c strictly decreases in both constructed
sub-instances. We combine the obtained pairs of paths into a solution by using Lemma 10.
We proceed in a similar fashion when Tt ̸= ∅.

Step 3. If Ts = Tt = ∅, then for both i ∈ [2] we guess the first and last vertex of Pi contained
in V (T ), denoted by ai and bi, respectively. We apply standard flow techniques to
compute two (s, {a1, a2})-paths and two ({b1, b2}, t)-paths with no inner vertices in V (T )
that are pairwise permissively disjoint. Then, we apply the polynomial-time algorithm
we devise for computing a pair of permissively disjoint ({a1, a2}, {b1, b2})-paths in G.
This algorithm is the cornerstone of our method, and is based on important structural
observations that allow for efficient dynamic programming. We combine the obtained
pairs of paths into a solution by applying Lemma 10.

Step 4. We output a solution of minimum weight among all solutions found in Steps 2 and 3.

Let us now provide more details about these steps; see also Algorithm STDP.
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Step 1: Initial guesses on T

There are c = |T | possibilities to choose T from T , and there are 3c−1 further possibilities to
partition T \ {T} into (Ts, T0, Tt), yielding c3c−1 possibilities in total for our guesses.

Step 2: Applying recursion

To apply recursion in Step 2 when Ts ̸= ∅, we guess two distinct vertices a1 and a2 in T , and
define the following sub-instances.

▶ Definition 16 (Sub-instances for Ts ̸= ∅). For some ∅ ̸= Ts ⊆ T and distinct vertices a1
and a2, we create a graph Gs by adding a new vertex a⋆, and connecting it to both a1 and a2
with an edge of weight wa⋆ = |w(T [a1, a2])|/2. We create instances I1

s and I2
s as follows:

to get I1
s , we delete E(T \ Ts) and V (T \ Ts) \ {a1, a2} from Gs, and designate s and a⋆

as our two terminals;
to get I2

s , we delete V (Ts) from Gs, and designate a⋆ and t as our two terminals.

We use recursion to solve Shortest Two Disjoint Paths on sub-instances I1
s and I2

s .
Note that conservativeness is maintained for both I1

s and I2
s , due to our choice of wa⋆ and

statement (1) of Lemma 3. If both sub-instances admit solutions, we obtain two permissively
disjoint (s, {a1, a2})-paths Q↗

1 and Q↗
2 from our solution to I1

s by deleting the vertex a⋆.
Similarly, we obtain two permissively disjoint ({a1, a2}, t)-paths Q↘

1 and Q↘
2 from our solution

to I2
s by deleting the vertex a⋆. Next we use Lemma 10 to create a solution for our original

instance (G, w, s, t) using paths Q↗
1 , Q↗

2 , Q↘
1 , and Q↘

2 .
If Tt ≠ ∅, then we proceed similarly: after guessing two distinct vertices b1 and b2 in T ,

we use a construction analogous to Definition 16.

▶ Definition 17 (Sub-instances for Tt ̸= ∅). For some ∅ ≠ Ts ⊆ T and distinct vertices b1
and b2, we create a graph Gt by adding a new vertex b⋆, and connecting it to both b1 and b2
with an edge of weight wb⋆ = |w(T [b1, b2])|/2. We create instances I1

t and I2
t as follows:

to get I1
t , we delete V (Tt) from Gt, and designate s and b⋆ as our two terminals;

to get I2
t , we delete E(T \ Tt) and V (T \ Tt) \ {b1, b2} from Gt and designate b⋆ and t as

our two terminals.

We use recursion to solve Shortest Two Disjoint Paths on sub-instances I1
t and I2

t ;
again, conservativeness is ensured for I1

t and I2
t by our choice of wb⋆ and statement (1)

of Lemma 3. If both sub-instances admit solutions, we obtain two permissively dis-
joint (s, {b1, b2})-paths Q↗

1 and Q↗
2 from our solution to I1

t by deleting the vertex b⋆. Similarly,
we obtain two permissively disjoint ({b1, b2}, t)-paths Q↘

1 and Q↘
2 from our solution to I2

t

by deleting the vertex b⋆. Again, we use Lemma 10 to create a solution for our original
instance (G, w, s, t) using paths Q↗

1 , Q↗
2 , Q↘

1 , and Q↘
2 .

We state the correctness of Step 2 in the following lemma:

▶ Lemma 18. Suppose that (P1, P2) is a minimum-weight solution for (G, w, s, t) such that
P1 and P2 are in contact at some T ∈ T ,
ai and bi are the first and last vertices of Pi contained in T , respectively, for i ∈ [2], and
(Ts, T0, Ts) is a T -valid partition w.r.t. (P1, P2).

Then instances I1
s and I2

s admit solutions whose total weight (summed over all four paths)
is w(P1) + w(P2) + 4wa⋆ . Furthermore, given a solution Si for Ii

s for both i ∈ [2], we can
compute in linear time a solution for (G, w, s, t) of weight at most w(S1) + w(S2)− 4wa⋆ .
The same holds when substituting I1

s , I2
s , and wa⋆ with I1

t , I2
t , and wb⋆ in these claims.
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Algorithm STDP Solving Shortest Two Disjoint Paths with conservative weights.

Input: An instance (G, w, s, t) where w is conservative on G.
Output: A solution for (G, w, s, t) with minimum weight, or ∅ if no solution exist.

1: Let S = ∅.
2: for all E′ ⊆ E such that E \ E′ ⊆ E− and |E \ E′| ≤ 1 do ▷ Separable solutions.
3: Create the instance (G[E′], w|E′ , s, t).
4: Let T ̸∋s,t = {T : T is a maximal tree in G[E′ ∩ E−] with s, t /∈ V (T )}.
5: for all Z ⊆ V such that |Z ∩ V (T )| = 1 for each T ∈ T ̸∋s,t do
6: Create the network NZ from instance (G[E′], w|E′ , s, t). ▷ Use Def. 13.
7: if ∃ a flow f of value 2 in NZ then
8: Compute a minimum-cost flow f of value 2 in NZ .
9: Construct a solution (S1, S2) from f using Lemma 14.

10: S ← (S1, S2).
11: for all T ∈ T do ▷ Non-separable solutions.
12: for all partitions (Ts, T0, Tt) of T \ {T} do
13: if Ts ̸= ∅ then
14: for all a1, a2 ∈ V (T ) with a1 ̸= a2 do
15: Create sub-instances I1

s and I2
s . ▷ Use Def. 16.

16: Compute (Q↗
1 , Q↗

2 ) = STDP(I1
s ).

17: Compute (Q↘
1 , Q↘

2 ) = STDP(I2
s ).

18: if (Q↗
1 , Q↗

2 ) ̸= ∅ and (Q↘
1 , Q↘

2 ) ̸= ∅ then
19: Create a solution (S1, S2) from (Q↗

1 , Q↗
2 ) and (Q↘

1 , Q↘
2 ) using Lemma 18.

20: S ← (S1, S2).
21: else if Tt ̸= ∅ then
22: for all b1, b2 ∈ V (T ) with b1 ̸= b2 do
23: Create sub-instances I1

t and I2
t . ▷ Use Def. 17.

24: Compute (Q↗
1 , Q↗

2 ) = STDP(I1
t ).

25: Compute (Q↘
1 , Q↘

2 ) = STDP(I2
t ).

26: if (Q↗
1 , Q↗

2 ) ̸= ∅ and (Q↘
1 , Q↘

2 ) ̸= ∅ then
27: Create a solution (S1, S2) from (Q↗

1 , Q↗
2 ) and (Q↘

1 , Q↘
2 ) using Lemma 18.

28: S ← (S1, S2).
29: else ▷ Ts = Tt = ∅.
30: for all a1, a2, b1, b2 ∈ V (T ) that constitute a reasonable guess do
31: if ∃ a flow f of value 4 in N(a1,b1,a2,b2) then ▷ Use Def. 19.
32: if ∃ two permissively disjoint ({a1, a2}, {b1, b2})-paths in G then
33: Compute a minimum-cost flow f of value 4 in N(a1,b1,a2,b2).
34: Compute permissively disjoint ({a1, a2}, {b1, b2})-paths Q1 and Q2.
35: ▷ Use Corollary 33 in Section 4.3
36: Construct a solution (S1, S2) from f , Q1, and Q2 using Lemma 20.
37: S ← (S1, S2).
38: if S = ∅ then return ∅.
39: else Let S⋆ be the cheapest pair among those in S, and return S⋆.
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Step 3: Applying flow techniques and dynamic programming

We now describe Step 3 in more detail, which concerns the case when Ts = Tt = ∅.
First, we guess vertices a1, b1, a2, and b2; the intended meaning of these vertices is that

ai and bi are the first and last vertices of Pi contained in V (T ), for both i ∈ [2]. We only
consider guesses that are reasonable, meaning that they satisfy the following conditions:

if s ∈ V (T ), then s = a1 = a2, otherwise a1 ̸= a2;
if t ∈ V (T ), then t = b1 = b2, otherwise b1 ̸= b2;
T [a1, b1] and T [a2, b2] share at least one edge.

Then we compute four paths from {s, t} to {a1, b1, a2, b2} in the graph G − E(T ) −
(V (T ) \ {a1, a2, b1, b2}) with minimum weight such that two paths have s as an endpoint,
the other two have t as an endpoint, and no other vertex appears on more than one path. To
this end, we define the following network and compute a minimum-cost flow of value 4 in it.

▶ Definition 19 (Flow network N(a1,b1,a2,b2) for non-separable solutions.). Given vertices
a1, b1, a2, and b2, we create N(a1,b1,a2,b2) as follows. First, we delete all edges in E− and all
vertices in V (T ) \ {a1, a2, b1, b2} from G, and direct each edge in G in both directions. We
then add new vertices s⋆ and t⋆, along with arcs (s⋆, s) and (s⋆, t) of capacity 2, and arcs
(ai, t⋆) and (bi, t⋆) for i = 1, 2 with capacity 1.5 We assign capacity 1 to all other arcs, and
also to each vertex of V (G)\{s, t}. All newly added arcs will have cost 0, otherwise we retain
the cost function w. We let s⋆ and t⋆ be the source and the sink in N(a1,b1,a2,b2), respectively.

Next, we compute two ({a1, a2}, {b1, b2})-paths Q1 and Q2 in G with minimum total
weight that are permissively disjoint. A polynomial-time computation for this problem, build-
ing on structural observations from Section 4.2, is provided in Section 4.3 (see Corollary 33).
Finally, we apply Lemma 10 (in fact, twice) to obtain a solution to our instance (G, w, s, t)
based on a minimum-cost flow of value 4 in N(a1,b1,a2,b2) and paths Q1 and Q2. We finish
this section with Lemma 20, stating the correctness of Step 3.

▶ Lemma 20. Suppose that (P1, P2) is a minimum-weight solution for (G, w, s, t) such that
P1 and P2 are non-separable, and in contact at some T ∈ T ,
ai and bi are the first and last vertices of Pi contained in T , respectively, for i ∈ [2], and
(∅, T \ {T}, ∅) is a T -valid partition w.r.t. (P1, P2).

Let Q1 and Q2 be two permissively disjoint ({a1, a2}, {b1, b2})-paths in G with minimum total
weight. Then the following holds:
If w⋆ is the minimum cost of a flow of value 4 in the network N(a1,b1,a2,b2), then w⋆ +w(Q1)+
w(Q2) ≤ w(P1) + w(P2). Conversely, given a flow of value 4 in the network N(a1,b1,a2,b2)
with cost w⋆, together with paths Q1 and Q2, we can find a solution for (G, w, s, t) with cost
at most w⋆ + w(Q1) + w(Q2) in linear time.

4.2 Properties of a Non-separable Solution
Let us now turn our attention to the subroutine lying at the heart of our algorithm for
Shortest Two Disjoint Paths: an algorithm that, given two source terminals and two
sink terminals on some tree T ∈ T , computes two permissively disjoint paths from the two
source terminals to the two sink terminals, with minimum total weight. It is straightforward
to see that any non-separable solution whose paths are in contact at T contains such a pair

5 In the degenerate case when s = a1 = a2 or t = b1 = b2 this yields two parallel arcs from s or t to t⋆.
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of paths. Therefore, as described in Section 4.1.2, finding such paths is a necessary step
to computing an optimal, non-separable solution for our instance (G, w, s, t). This section
contains observations about the properties of such paths.

Let us now formalize our setting. Let a1, a2, b1, and b2 be vertices on a fixed tree T ∈ T
such that T [a1, b1] and T [a2, b2] intersect in a path X (with at least one edge), with one
component of T \ X containing a1 and a2, and the other containing b1 and b2. Let the
vertices on X be x1, . . . , xr with x1 being the closest to a1 and a2. We will use the notation
Ai = T [ai, x1] and Bi = T [bi, xr] for each i ∈ [2]. For each i ∈ [r], let Ti be the maximal
subtree of T containing xi but no other vertex of X. We also define T(i,j) =

⋃
i≤h≤j Th for

some i and j with 1 ≤ i ≤ j ≤ r.
For convenience, for any path Q that has ai ∈ {a1, a2} as its endpoint, we will say that

Q starts at ai and ends at its other endpoint. Accordingly, for vertices u, v ∈ V (Q) we say
that u precedes v on Q, or equivalently, v follows u on Q, if u lies on Q[ai, v]. When defining
a vertex as the “first” (or “last”) vertex with some property on Q or on a subpath Q′ of Q

then, unless otherwise stated, we mean the vertex on Q or on Q′ that is closest to ai (or
farthest from ai, respectively) that has the given property.

Using Lemma 2 and (an extended version of) Lemma 3, we can establish the following
properties of a non-separable minimum-weight solution.

▶ Definition 21 (X-monotone path). A path Q starting at a1 or a2 is X-monotone if for
any vertices u1 and u2 on Q such that u1 ∈ V (Tj1) and u2 ∈ V (Tj2) for some j1 < j2 it
holds that u1 precedes u2 on Q.

▶ Definition 22 (Plain path). A path Q is plain, if whenever Q contains some xi ∈ V (X),
then the vertices of Q in Ti induce a path in Ti. In other words, if vertices xj ∈ V (X) and
u ∈ V (Tj) both appear on Q, then T [u, xj ] ⊆ Q.

▶ Lemma 23. Let Q1 and Q2 be two permissively disjoint ({a1, a2}, {b1, b2})-paths in G with
minimum total weight. Then both Q1 and Q2 are X-monotone and plain.

The following observation summarizes our understanding on how an optimal solution
uses paths A1, A2, B1, and B2.

▶ Lemma 24. If Q1 and Q2 are two permissively disjoint ({a1, a2}, {b1, b2})-paths that
are locally cheapest and also plain, then one of them contains A1 or A2, and one of them
contains B1 or B2.

4.3 Computing Partial Solutions
In this section we design a dynamic programming algorithm that computes two permissively
disjoint ({a1, a2}, {b1, b2})-paths of minimum total weight (we keep all definitions introduced
in Section 4.2, including our assumptions on vertices a1, b1, a2, and b2). In Section 4.2 we
have established that two permissively disjoint ({a1, a2}, {b1, b2})-paths of minimum total
weight are necessarily X-monotone, plain, and they form a locally cheapest pair. A natural
approach would be to require these same properties from a partial solution that we aim to
compute. However, it turns out that the property of X-monotonicity is quite hard to ensure
when building subpaths of a solution. The following relaxed version of monotonicity can be
satisfied much easier, and still suffices for our purposes:

▶ Definition 25 (Quasi-monotone path). A path P starting at a1 or a2 is quasi-monotone, if
the following holds: if xi ∈ V (P ) for some i ∈ [r], then all vertices in

⋃
h∈[i−1] V (Th)∩ V (P )

precede xi on P , and all vertices in
⋃

h∈[r]\[i] V (Th) ∩ V (P ) follow xi on P .
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▶ Definition 26 (Well-formed path pair). Two paths P1 and P2 form a well-formed pair, if
they are locally cheapest, and both are plain and quasi-monotone.

We are now ready to define partial solutions, the central notion that our dynamic
programming algorithm relies on.

▶ Definition 27 (Partial solution). Given vertices u ∈ V (Ti) and v ∈ V (Tj) for some i ≤ j

and a set τ ⊆ T \ {T}, two paths Q1 and Q2 form a partial solution (Q1, Q2) for (u, v, τ ), if
(a) Q1 and Q2 are permissively disjoint ({a1, a2}, {u, v})-paths;
(b) Q1 and Q2 are a well-formed pair;
(c) Q1 ends with the subpath T [xi, u];
(d) V (T(i+1,r)) ∩ V (Q2) ⊆ {v};
(e) if Q1 ∪Q2 contains a vertex of some T ′ ∈ T \ {T}, then T ′ ∈ τ ;
(f) there exists no tree T ′ ∈ T \ {T} such that Q1 and Q2 are in contact at T ′.

We will say that the vertices of V (T \(τ ∪{T})) are forbidden for (τ, T ); then condition (e)
asks for Q1 ∪Q2 not to contain vertices forbidden for (τ, T ).

Before turning our attention to the problem of computing partial solutions, let us first show
how partial solutions enable us to find two permissively disjoint ({a1, a2}, {b1, b2})-paths.

▶ Lemma 28. Paths P1 and P2 are permissively disjoint ({a1, a2}, {b1, b2})-paths of minimum
weight in G if and only if they form a partial solution for (bh, b3−h, T \ {T}) of minimum
weight for some h ∈ [2].

We now present our approach for computing partial solutions using dynamic programming.

Computing partial solutions: high-level view

For each u ∈ V (Ti) and v ∈ V (Tj) for some i ≤ j, and each τ ⊆ T \ {T}, we are going
to compute a partial solution for (u, v, τ) of minimum weight, denoted by F (u, v, τ), using
dynamic programming; if there exists no partial solution for (u, v, τ), we set F (u, v, τ) = ∅.

To apply dynamic programming, we fix an ordering ≺ over V (T ) fulfilling the condition
that for each i′ < i, u ∈ V (Ti) and u′ ∈ V (Ti′) we have u′ ≺ u. We compute the values
F (u, v, τ ) based on the ordering ≺ in the sense that F (u′, v′, τ ′) is computed before F (u, v, τ )
whenever u′ ≺ u. This computation is performed by Algorithm PartSol which determines
a partial solution F (u, v, τ) based on partial solutions already computed.

To compute F (u, v, τ ) in a recursive manner, we use an observation that either the partial
solution has a fairly simple structure, or it strictly contains a partial solution for (u′, v′, τ ′)
for some vertices u′ and v′ with u′ ∈ V (Ti′) and i′ < i, and some set τ ′ ⊆ τ . We can thus
try all possible values for u′, v′ and τ ′, and use the partial solution (Q′

1, Q′
2) we have already

computed and stored in F (u′, v′, τ ′). To obtain a partial solution for (u, v, τ) based on Q′
1

and Q′
2, we append paths to Q′

1 and to Q′
2 so that they fulfill the requirements of Definition 27

– most importantly, that Q1 ends with T [xi, u], that Q2 ends at v, and that Q1 ∪Q2 contains
no vertex of V (T \ (τ ∪ {T})). To this end, we create a path P1 = Q′

2 ∪ T [v′, u] and a path
P2 = Q′

1 ∪R where R is a shortest (u′, v)-path in a certain auxiliary graph. Essentially, we
use the tree T for getting from v′ to u, and we use the “remainder” of the graph for getting
from u′ to v; note that we need to avoid the forbidden vertices and ensure condition (f) as
well. The precise definition of the auxiliary subgraph of G that we use for this purpose is
provided in Definition 29. If the obtained path pair (P1, P2) is indeed a partial solution
for (u, v, τ), then we store it. After trying all possible values for u′, v′, and τ ′, we select a
partial solution that has minimum weight among those we computed.
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▶ Definition 29 (Auxiliary graph). For some T ∈ T , let P ⊆ T be a path within T , let u and
v be two vertices on T , and let τ ⊆ T \ {T}. Then the auxiliary graph G⟨P, u, v, τ⟩ denotes
the graph defined as

G⟨P, u, v, τ⟩ = G−
(⋃
{V (Th) : V (Th) ∩ V (P ) = ∅} ∪ V (P ) \ {u, v} ∪ V (T \ (τ ∪ {T}))

)
.

In other words, we obtain G⟨P, u, v, τ⟩ from G by deleting all trees Th that do not intersect P ,
and deleting P itself as well, while taking care not to delete u or v, and additionally deleting
all vertices forbidden for (τ, T ).

Working towards explaining the main ideas behind Algorithm PartSol, we start with
two simple observations. The first one, stated by Lemma 30 below, essentially says that a
path in a partial solution that uses a subtree Th of T for some h ∈ [r] should also go through
the vertex xh whenever possible, that is, unless the other path uses xh.

▶ Lemma 30. Let Q1 and Q2 be two permissively disjoint, locally cheapest ({a1, a2}, {xi, v})-
paths for some v ∈ V (Tj) where 1 ≤ i ≤ j ≤ r. Let z ∈ V (Th) for some h ≤ j such that
h < j or xh ∈ V (T [z, v]). If z ∈ V (Q1 ∪Q2), then xh ∈ V (Q1 ∪Q2).

As a consequence of Lemma 30, applied with a1 taking the role of z and x1 taking the
role of xh, we get that every partial solution for some (u, v, τ) must contain x1; using that
both paths in a partial solution must be plain, we get the following fact.

▶ Observation 31. Let (Q1, Q2) be a partial solution for (u, v, τ ) for vertices u ∈ V (Ti) and
v ∈ V (Tj) for some i ≤ j and for τ ⊆ T \ {T}. Then either Q1 or Q2 contains A1 or A2.

Let us now give some insight on Algorithm PartSol that computes a minimum-weight
partial solution (Q1, Q2) for (u, v, τ), if it exists, for vertices u ∈ V (Ti) and v ∈ V (Tj) with
i ≤ j and trees τ ⊆ T \{T}. It distinguishes between two cases based on whether Q2 contains
a vertex of T [x1, xi] or not; see Figure 1 for an illustration. In both cases it constructs
candidates for a partial solution, and then chooses one among these with minimum weight.

Case A: Q2 does not contain any vertices from T [x1, xi]. In this case, due to Observation 31,
we know that Q1 contains Ah for some h ∈ [2]; let us fix this value of h. Since Q1 and Q2
are locally cheapest and Q1 ends with T [xi, u], we also know that Q1 must contain T [x1, xi].
Therefore, we obtain Q1 = Ah ∪ T [x1, u]. In this case, we can also prove that Q2 is
a shortest (a3−h, v)-path in the auxiliary graph G⟨Ah ∪ T [x1, u], a3−h, v, τ⟩. Hence,
Algorithm PartSol computes such a path R and constructs the pair (Ah ∪ T [x1, u], R)
as a candidate for a partial solution for (u, v, τ).

Case B: Q2 contains a vertex from T [x1, xi]. In this case, let xi′ be the vertex on T [x1, xi−1]
closest to xi that appears on Q2, and let u′ be the last vertex of Q2 in Ti′ ; since Q2 is plain,
we know T [xi′ , u′] ⊆ Q2. Let xj′ denote the vertex on T [xi′ , xi] closest to xi′ that appears
on Q1; then i′ < j′ ≤ i. As Q1 and Q2 are locally cheapest, T [xj′ , xi] ⊆ Q1 follows. Let
v′ denote the first vertex of Q1 in Tj′ . Since Q1 is plain, we know T [v′, xj′ ] ⊆ Q1.
Define Q̃1 = Q2\Q2[u′, v] and Q̃2 = Q1\Q1[v′, u]. Let also τ ′ denote those trees in T \{T}
that share a vertex with Q̃1 ∪ Q̃2. We can then prove that (Q̃1, Q̃2) is a partial solution
for (u′, v′, τ ′); moreover, Q2[u′, v] is a path in the auxiliary graph G⟨T [v′, u], u′, v, τ \ τ ′⟩.
Thus, Algorithm PartSol takes a partial solution (Q′

1, Q′
2) for (u′, v′, τ ′), already com-

puted, and computes a shortest (u′, v)-path R in G⟨T [v′, u], u′, v, τ \ τ ′⟩. It then creates
the path pair (Q′

2 ∪ T [v′, u], Q′
1 ∪R) as a candidate for a partial solution for (u, v, τ).
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a1

a2

b1

b2u
v

xi xj

x1

xrQ1

Q2

(a) Case A. The figure assumes Q1 = A1 ∪ T [x1, u] (so h = 1).
a1

a2

b1

b2
u

v

u′

v′

xixi′ xjxj′

x1̃

Q1

Q2Q̃2

Q1

(b) Case B. The subpaths Q̃2 and Q̃1 of Q1 and Q2, respectively, form a partial solution for (u′, v′, τ ′)
and are depicted in bold, with their endings marked by a parenthesis-shaped delimiter.

Figure 1 Illustration for Algorithm PartSol. Edges within T are depicted using solid lines,
edges not in T using dashed lines. Paths Q1 and Q2 are shown in blue and in green, respectively
(see the online version for colored figures).

Algorithm PartSol Computes a partial solution F (u, v, τ) of minimum weight for (u, v, τ) where
u ∈ V (Ti) and v ∈ V (Tj) with i ≤ j, and τ ⊆ T \ {T }.

Input: Vertices u and v where u ∈ V (Ti) and v ∈ V (Tj) for some i ≤ j, and a set τ ⊆ T \{T}.
Output: A partial solution F (u, v, τ) for (u, v, τ) of minimum weight, or ∅ if not existent.

1: Let S = ∅.
2: for all h ∈ [2] do
3: if Ah ∪ T [x1, u] is a path then
4: if v is reachable from a3−h in G⟨Ah ∪ T [x1, u], a3−h, v, τ⟩ then
5: Compute a shortest (a3−h, v)-path R in G⟨Ah ∪ T [x1, u], u, a3−h, v, τ⟩.
6: if (Ah ∪ T [x1, u], R) is a partial solution for (u, v, τ) then
7: S ← (Ah ∪ T [x1, u], R).
8: for all i′ ∈ [i− 1] and u′ ∈ V (Ti′) do
9: for all j′ ∈ [i] \ [i′] and v′ ∈ V (Tj′) such that T [xj′ , v′] ∩ T [xi, u] = ∅ do

10: for all τ ′ ⊆ τ do
11: if F (u′, v′, τ ′) = ∅ then continue;
12: Let (Q′

1, Q′
2) = F (u′, v′, τ ′).

13: if v is not reachable from u′ in G⟨T [v′, u], u′, v, τ \ τ ′⟩ then continue;
14: Compute a shortest (u′, v)-path R in G⟨T [v′, u], u′, v, τ \ τ ′⟩.
15: Let P1 = Q′

2 ∪ T [v′, u] and P2 = Q′
1 ∪R.

16: if (P1, P2) is a partial solution for (u, v, τ) then
17: S ← (P1, P2).
18: if S = ∅ then return ∅.
19: else Let S⋆ be the cheapest pair among those in S, and return F (u, v, τ) := S⋆.
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The following lemma guarantees the correctness of Algorithm PartSol. Formally, we say
that F (u, v, τ) is correctly computed if either it contains a minimum-weight partial solution
for (u, v, τ), or no partial solution for (u, v, τ) exists and F (u, v, τ) = ∅.

▶ Lemma 32. Let i, j ∈ [r] with i ≤ j, u ∈ V (Ti), v ∈ V (Tj) and τ ⊆ T \ {T}. As-
suming that the values F (u′, v′, τ ′) are correctly computed for each u′ ∈ V (Ti′) with i′ < i,
Algorithm PartSol correctly computes F (u, v, τ).

Using the correctness of Algorithm PartSol, as established by Lemma 32, and the
observation in Lemma 28 on how partial solutions can be used to find two permissively
disjoint ({a1, a2}, {b1, b2})-paths of minimum total weight, we obtain the following.

▶ Corollary 33. For each constant c ∈ N, there is a polynomial-time algorithm that finds two
permissively disjoint ({a1, a2}, {b1, b2})-paths of minimum total weight in G (if such paths
exist), where the set of negative edges in G spans c trees.

5 Conclusion

We have presented a polynomial-time algorithm for solving the Shortest Two Disjoint
Paths problem on undirected graphs G with conservative edge weights, assuming that the
number of connected components in the subgraph G[E−] spanned by all negative-weight
edges is a fixed constant c. The running time of our algorithm is O(n2c+9) on an n-vertex
graph. Is it possible to give a substantially faster algorithm for this problem? In particular,
is it possible to give a fixed-parameter tractable algorithm for Shortest Two Disjoint
Paths on undirected conservative graphs when parameterized by c?

More generally, is it possible to find in polynomial time k openly disjoint (s, t)-paths with
minimum total weight for some fixed k ≥ 3 in undirected conservative graphs with constant
values of c?
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Algorithms for Computing Closest Points for
Segments
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Abstract
Given a set P of n points and a set S of n segments in the plane, we consider the problem of
computing for each segment of S its closest point in P . The previously best algorithm solves
the problem in n4/32O(log∗ n) time [Bespamyatnikh, 2003] and a lower bound (under a somewhat
restricted model) Ω(n4/3) has also been proved. In this paper, we present an O(n4/3) time algorithm
and thus solve the problem optimally (under the restricted model). In addition, we also present
data structures for solving the online version of the problem, i.e., given a query segment (or a line
as a special case), find its closest point in P . Our new results improve the previous work.
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1 Introduction

Given a set P of n points and a set S of n segments in the plane, we consider the problem of
computing for each segment of S its closest point in P . We call it the segment-closest-point
problem. Previously, Bespamyatnikh [6] gave an n4/32O(log∗ n) time algorithm for the problem,
improving upon an O(n4/3 logO(1) n) time result of Agarwal and Procopiuc. The problem can
be viewed as a generalization of Hopcroft’s problem [1, 10, 13, 20, 30], which is to determine
whether any point of a given set of n points lies on any of the given n lines. Erickson [21]
proved an Ω(n4/3) time lower bound for Hopcroft’s problem under a somewhat restricted
partition model. This implies the same lower bound on the segment-closest-point problem.
For Hopcroft’s problem, Chan and Zheng [10] recently gave an O(n4/3) time algorithm, which
matches the lower bound and thus is optimal.

In this paper, with some new observations on the problem as well as the techniques from
Chan and Zheng [10] (more specifically, the Γ-algorithm framework for bounding algebraic
decision tree complexities), we present a new algorithm that solves the segment-closest-point
problem in O(n4/3) time and thus is optimal under Erickson’s partition model [21]. It should
be noted that our result is not a direct application of Chan and Zheng’s techniques [10], but
rather many new observations and techniques are needed. For example, one subroutine in our
problem is the following outside-hull segment queries: Given a segment outside the convex
hull of P , find its closest point in P . Bespamyatnikh and Snoeyink [7] built a data structure
in O(n) space and O(n log n) time such that each query can be answered in O(log n) time.
Unfortunately, their query algorithm does not fit the Γ-algorithm framework of Chan and
Zheng [10]. To resolve the issue, we develop another algorithm for the problem based on new
observations. Our approach is simpler, and more importantly, it fits into the Γ-algorithm
framework of Chan and Zheng [10]. The result may be interesting in its own right.
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We also consider the online version of the problem, called the segment query prob-
lem: Preprocess P so that given a query segment, its closest point in P can be found
efficiently. For the special case where the query segment is outside the convex hull of
P , one can use the data structure of Bespamyatnikh and Snoeyink [7] mentioned above.
For simplicity, we use (T1(n), T2(n), T3(n)) to denote the complexity of a data struc-
ture if its preprocessing time, space, and query time are on the order of T1(n), T2(n),
and T3(n), respectively. Using this notation, the complexity of the above data struc-
ture of Bespamyatnikh and Snoeyink [7] is O(n log n, n, log n). The general problem,
however, is much more challenging. Goswami, Das, and Nandy [25]’s method yields a
result of complexity O(n2, n2, log2 n). We present a new data structure of complexity
O(nm(n/m)δ, nm log(n/m),

√
n/m log(n/m)), any m with 1 ≤ m ≤ n log2 log n/ log4 n and

any δ > 0. Note that for the large space case (i.e., when m = n log2 log n/ log4 n), the complex-
ity of our data structure is O(n2/ log4−δ n, n2 log3 log n/ log4 n, log2 n), which improves the
above result of [25] on the preprocessing time and space by a factor of roughly log4 n. We also
give a faster randomized data structure of complexity O(nm log(n/m), nm log(n/m),

√
n/m)

for any m with 1 ≤ m ≤ n/ log4 n, where the preprocessing time is expected and the query
time holds with high probability. In addition, using Chan’s randomized techniques [8]
and Chan and Zheng’s recent randomized result on triangle range counting [10], one can
obtain a randomized data structure of complexity O(n4/3, n4/3, n1/3). Note that this data
structure immediately leads to a randomized algorithm of O(n4/3) expected time for the
segment-closest-point problem. As such, for solving the segment-closest-point problem, our
main effort is to derive an O(n4/3) deterministic time algorithm. Note that this is aligned
with the motivation of proposing the Γ-algorithm framework in [10], whose goal was to obtain
an O(n4/3) deterministic time algorithm for Hopcroft’s problem although a much simpler
randomized algorithm of O(n4/3) expected time was already presented.

If each query segment is a line, we call it the line query problem, which has been ex-
tensively studied. Previous work includes Cole and Yap [17]’s and Lee and Ching [28]’s
data structures of complexity O(n2, n2, log n), Mitra and Chaudhuri [31]’s work of complex-
ity O(n log n, n, n0.695), Mukhopadhyay [32]’s result of complexity O(n1+δ, n log n, n1/2+δ)
for any δ > 0. As observed by Lee and Ching [28], the problem can be reduced to ver-
tical ray-shooting in the dual plane, i.e., finding the first line hit by a query vertical ray
among a given set of n lines. Using the ray-shooting algorithms, the best deterministic res-
ult is O(n1.5, n,

√
n log n) [35] while the best randomized result is O(n log n, n,

√
n) [11];

refer to [2, 4, 10, 16] for other (less efficient) work on ray-shootings. We build a
new deterministic data structure of complexity O(nm(n/m)δ, nm log(n/m),

√
n/m), for

any 1 ≤ m ≤ n/ log2 n. We also have another faster randomized result of complexity
O(nm log(n/m), nm log(n/m),

√
n/m), for any m with 1 ≤ m ≤ n/ log2 n, where the prepro-

cessing time is expected while the query time holds with high probability. Our results improve
all previous work except the randomized result of Chan and Zheng [11]. For example, if
m = 1, our data structure is the only deterministic one whose query time is O(

√
n) with near

linear space; if m = n/ log2 n, our result achieves O(log n) query time while the preprocessing
is subquadratic, better than those by Cole and Yap [17] and Lee and Ching [28].

Other related work. If all segments are pairwise disjoint, then the segment-closest-point
problem was solved in O(n log2 n) time by Bespamyatnikh [6], improving over the O(n log3 n)
time algorithm of Bespamyatnikh and Snoeyink [7].

If every segment of S is a single point, then the problem can be easily solved in O(n log n)
time using the Voronoi diagram of P . Also, for any segment s ∈ S, if the point of s closest to
P is an endpoint of s, then finding the closest point of s in P can be done using the Voronoi
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diagram of P . Hence, the remaining issue is to find the first point of P hit by s if we drag s

along the directions perpendicularly to s. If all segments of S have the same slope, then the
problem can be solved in O(n log n) time using the segment dragging query data structure of
Chazelle [12], which can answer each query in O(log n) time after O(n) space and O(n log n)
time preprocessing. However, the algorithm [12] does not work if the query segments have
arbitrary slopes. As such, the challenge of the problem is to solve the dragging queries for
all segments of S when their slopes are not the same.

The segment-farthest-point problem has also been studied, where one wants to find for
each segment of S its farthest point in P . The problem appears much easier. For the line
query problem (i.e., given a query line, find its farthest point in P ), Daescu et al. [18] gave a
data structure of complexity O(n log n, n, log n). Using this result, they also proposed a data
structure of complexity O(n log n, n log n, log2 n) for the segment query problem. Using this
segment query data structure, the segment-farthest-point can be solved in O(n log2 n) time.

Outline. The rest of the paper is organized as follows. In Section 2, we introduce some
notation and concepts. In Section 3, we present our O(n4/3) deterministic time algorithm
for the segment-closest-point problem. We actually solve a more general problem where the
number of points is not equal to the number of segments, referred to as the asymmetric case,
and our algorithm runs in O(n2/3m2/3 + n log n + m log2 n) time with n as the number of
points and m as the number of segments. For the line case of the problem where all segments
are lines, a simpler algorithm is presented in the full paper and the algorithm also runs in
O(n4/3) time (and O(n2/3m2/3 + (n + m) log n) time for the asymmetric case). The online
query problem is sketched in Section 4 with details in the full paper. Due to the space limit,
many lemma proofs are omitted but can be found in the full paper.

2 Preliminaries

For two closed subsets A and B in the plane, let d(A, B) denote the minimum distance between
any point of A and any point of B. The point p of A closest to B, i.e., d(p, B) = d(A, B),
is called the closest point of B in A. For any two points a and b in the plane, we use ab to
denote the segment with a and b as its two endpoints.

For any point p in the plane, we use x(p) and y(p) to denote its x- and y-coordinates,
respectively. For a point p and a region A in the plane, we say that p is to the left of A if
x(p) ≤ x(q) for all points q ∈ A, and p is strictly to the left of A if x(p) < x(q) for all points
q ∈ A; the concepts (strictly) to the right is defined symmetrically.

For a set Q of points in the plane, we usually use VD(Q) to denote the Voronoi diagram
of Q and use CH(Q) to denote the convex hull of Q; we also use Q(A) to denote the subset
of Q in A, i.e., Q(A) = Q ∩ A, for any region A in the plane.

Cuttings. Let H be a set of n lines in the plane. Let HA denote the subset of lines of H

that intersect the interior of A (we also say that these lines cross A), for a compact region
A in the plane. A cutting is a collection Ξ of closed cells (each of which is a triangle) with
disjoint interiors, which together cover the entire plane [13, 30]. The size of Ξ is the number
of cells in Ξ. For a parameter r with 1 ≤ r ≤ n, a (1/r)-cutting for H is a cutting Ξ satisfying
|Hσ| ≤ n/r for every cell σ ∈ Ξ.

A cutting Ξ′ c-refines another cutting Ξ if every cell of Ξ′ is contained in a single cell of
Ξ and every cell of Ξ contains at most c cells of Ξ′. A hierarchical (1/r)-cutting for H (with
two constants c and ρ) is a sequence of cuttings Ξ0, Ξ1, . . . , Ξk with the following properties.
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Ξ0 is the entire plane. For each 1 ≤ i ≤ k, Ξi is a (1/ρi)-cutting of size O(ρ2i) which c-refines
Ξi−1. In order to make Ξk a (1/r)-cutting, we set k = ⌈logρ r⌉. Hence, the size of the last
cutting Ξk is O(r2). If a cell σ ∈ Ξi−1 contains a cell σ′ ∈ Ξi, we say that σ is the parent of
σ′ and σ′ is a child of σ. As such, one could view Ξ as a tree in which each node corresponds
to a cell σ ∈ Ξi, 0 ≤ i ≤ k.

For any 1 ≤ r ≤ n, a hierarchical (1/r)-cutting of size O(r2) for H (together with Hσ for
every cell σ of Ξi for all i = 0, 1, . . . , k) can be computed in O(nr) time [13]. Also, it is easy
to check that

∑k
i=0

∑
σ∈Ξi

|Hσ| = O(nr).

3 The segment-closest-point problem

In this section, we consider the segment-closest-point problem. Let P be a set of n points
and S a set of n segments in the plane. The problem is to compute for each segment of S its
closest point in P . We make a general position assumption that no segment of S is vertical
(for a vertical segment, its closest point can be easily found, e.g., by building a segment
dragging query data structure [12] along with the Voronoi diagram of P ).

We start with a review of an algorithm of Bespamyatnikh [6], which will be needed in
our new approach.

3.1 A review of Bespamyatnikh’s algorithm [6]
As we will deal with subproblems in which the number of lines is not equal to the number of
segments, we let m denote the number of segments in S and n the number of points in P .
As such, the size of our original problem (S, P ) is (m, n).

Let H be the set of the supporting lines of the segments of S. For a parameter r with
1 ≤ r ≤ min{m,

√
n}, compute a hierarchical (1/r)-cutting Ξ0, Ξ1, . . . , Ξk for H. For each

cell σ ∈ Ξi, 0 ≤ i ≤ k, let P (σ) = P ∩ σ, i.e., the subset of the points of P in σ; let S(σ)
denote the subset of the segments of S intersecting σ. We further partition each cell of Ξk

into triangles so that each triangle contains at most n/r2 points of P and the number of new
triangles in Ξk is still bounded by O(r2). For convenience, we consider the new triangles as
new cells of Ξk (we still define P (σ) and S(σ) for each new cell σ in the same way as above;
so now |P (σ)| ≤ n/r2 and |S(σ)| ≤ m/r hold for each cell σ ∈ Ξk).

For each cell σ ∈ Ξk, form a subproblem (S(σ), P (σ)) of size (m/r, n/r2), i.e., find for
each segment s of S(σ) its closest point in P (σ). After the subproblem is solved, to find the
closest point of s in P , it suffices to find its closest point in P \ P (σ). To this end, observe
that P \ P (σ) is exactly the union of P (σ′′) for all cells σ′′ such that σ′′ is a child of an
ancestor σ′ of σ and s ̸∈ S(σ′′). As such, for each of such cells σ′′, find the closest point of s in
P (σ′′). For this, since s ̸∈ S(σ′′), s is outside σ′′ and thus is outside the convex hull of P (σ′′).
Hence, finding the closest point of s in P (σ′′) is an outside-hull segment query and thus
the data structure of Bespamyatnikh and Snoeyink [7] (referred to as the BS data structure
in the rest of the paper) is used, which takes O(|P (σ′′)|) space and O(|P (σ′′)| log |P (σ′′)|)
time preprocessing and can answer each query in O(log |P (σ′′)|) time. More precisely, the
processing can be done in O(|P (σ′′)|) time if the Voronoi diagram of P (σ′′) is known.

For the time analysis, let T (m, n) denote the time of the algorithm for solving a problem of
size (m, n). Then, solving all subproblems takes O(r2) · T (m/r, n/r2) time as there are O(r2)
subproblems of size (m/r, n/r2). Constructing the hierarchical cutting as well as computing
S(σ) for all cells σ in all cuttings Ξi, 0 ≤ i ≤ k, takes O(mr) time [13]. Computing P (σ)
for all cells σ can be done in O(n log r) time. Preprocessing for constructing the BS data
structure for P (σ) for all cells σ can be done in O(n log n log r) time as

∑
σ∈Ξi

|P (σ)| = n
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for each 0 ≤ i ≤ k, and k = O(log r). We can further reduce the time to O(n(log r + log n))
as follows. We build the BS data structure for cells of the cuttings in a bottom-up manner,
i.e., processing cells of Ξk first and then Ξk−1 and so on. After the preprocessing for P (σ)
for a cell σ ∈ Ξk, which takes O(|P (σ)| log(n/r2)) time since |P (σ)| ≤ n/r2, the Voronoi
diagram of P (σ) is available. After the preprocessing for all cells σ of Ξk is done, for each
cell σ′ of Ξk−1, to construct the Voronoi diagram of P (σ′), merge the Voronoi diagrams of
P (σ) for all children σ of σ′. To this end, as σ′ has O(1) children, the merge can be done
in O(|P (σ′)|) time by using the algorithm of Kirkpatrick [27], and thus the preprocessing
for P (σ′) takes only linear time. In this way, the total preprocessing time for all cells in
all cuttings Ξi, 0 ≤ i ≤ k, is bounded by O(n(log r + log(n/r2))) time, i.e., the time spent
on cells of Ξk is O(n log(n/r2)) and the time on other cuttings is O(n log r) in total. Note
that log r + log(n/r2) = log(n/r). As for the outside-hull segment queries, according to
the properties of the hierarchical cutting,

∑k
i=0

∑
σ∈Ξi

|S(σ)| = O(mr). Hence, the total
number of outside-hull segment queries on the BS data structure is O(mr) and thus the
total query time is O(mr log n). In summary, the following recurrence is obtained for any
1 ≤ r ≤ min{m,

√
n}:

T (m, n) = O(n log(n/r) + mr log n) + O(r2) · T (m/r, n/r2). (1)

Using the duality, Bespamyatnikh [6] gave a second algorithm (we will not review this
algorithm here because it is not relevant to our new approach) and obtained the following
recurrence for any 1 ≤ r ≤ min{n,

√
m}:

T (m, n) = O(nr log n + m log r log n) + O(r2) · T (m/r2, n/r). (2)

Setting m = n and applying (2) and (1) in succession (using the same r) obtain T (n, n) =
O(nr log n) + O(r4) · T (n/r3, n/r3). Setting r = n1/3/ log n leads to

T (n, n) = O(n4/3) + O((n/ log3 n)4/3) · T (log3 n, log3 n). (3)

The recurrence solves to T (n, n) = n4/32O(log∗ n), which is the time bound obtained in [6].

3.2 Our new algorithm
In this section, we improve the algorithm to O(n4/3) time.

By applying recurrence (3) three times we obtain the following:

T (n, n) = O(n4/3) + O((n/b)4/3) · T (b, b), (4)

where b = (log log log n)3.
Using the property that b is tiny, we show in the following that after O(n) time prepro-

cessing, we can solve each subproblem T (b, b) in O(b4/3) time (for convenience, by slightly
abusing the notation, we also use T (m, n) to denote a subproblem of size (m, n)). Plugging
the result into (4), we obtain T (n, n) = O(n4/3).

More precisely, we show that after O(2poly(b)) time preprocessing, where poly(·) is a
polynomial function, we can solve each T (b, b) using O(b4/3) comparisons, or alternatively,
T (b, b) can be solved by an algebraic decision tree of height O(b4/3). As b = (log log log n)3,
2poly(b) is bounded by O(n). To turn this into an algorithm under the standard real-RAM
model, we explicitly construct the algebraic decision tree for the above algorithm (we may
also consider this step as part of preprocessing for solving T (b, b)), which can again be done
in O(2poly(b)) time. As such, that after O(n) time preprocessing, we can solve each T (b, b) in
O(b4/3) time. In the following, for notational convenience, we will use n to denote b, and our
goal is to prove the following lemma.
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▶ Lemma 1. After O(2poly(n)) time preprocessing, T (n, n) can be solved using O(n4/3)
comparisons.

We apply recurrence (1) by setting m = n and r = n1/3, and obtain the following

T (n, n) = O(n log n + n4/3 log n) + O(n2/3) · T (n2/3, n1/3). (5)

Recall that the term n4/3 log n is due to that there are O(n4/3) outside-hull segment queries.
To show that T (n, n) can be solved by O(n4/3) comparisons, there are two challenges: (1)
solve all outside-hull segment queries using O(n4/3) comparisons; (2) solve each subproblem
T (n2/3, n1/3) using O(n2/3) comparisons.

Γ-algorithm framework. To tackle these challenges, we use a Γ-algorithm framework for
bounding decision tree complexities proposed by Chan and Zheng [10]. We briefly review it
here (see Section 4.1 [10] for the details). Roughly speaking, this framework is an algorithm
that only counts the number of comparisons (called Γ-comparisons in [10]) for determining
whether a point belongs to a semialgebraic set of O(1) degree in a constant-dimensional space.
Solving our segment-closest-point problem is equivalent to locating the cell C∗ containing a
point p∗ parameterized by the input of our problem (i.e., the segments of S and the points of
P ) in an arrangement A of the boundaries of poly(n) semialgebraic sets in O(n)-dimensional
space. This arrangement can be built in O(2poly(n)) time without examining the values of
the input and thus does not require any comparisons. In particular, the number of cells
of A is bounded by nO(n). As a Γ-algorithm progresses, it maintains a set Π of cells of A.
Initially, Π consisting of all cells of A. During the course of the algorithm, Π can only shrink
but always contains the cell C∗. At the end of the algorithm, C∗ will be found. Define the
potential Φ = log |Π|. As A has nO(n) cells, initially Φ = O(n log n). For any operation or
subroutine of the algorithm, we use ∆Φ to denote the change of Φ. As Φ only decreases
during the algorithm, ∆Φ ≤ 0 always holds and the sum of −∆Φ during the entire algorithm
is O(n log n). This implies that we may afford an expensive operation/subroutine during the
algorithm as long as it decreases Φ a lot.

Two algorithmic tools are developed in [10] under the framework: basic search lemma
(Lemma 4.1 [10]) and search lemma (Lemma A.1 [10]). Roughly speaking, given r predicates
(each predicate is a test of whether γ(x) is true for the input vector x), suppose it is promised
that at least one of them is true for all inputs in the active cells; then the basic search lemma
can find a predicate that is true by making O(1 − r · ∆Φ) comparisons. Given a binary
tree (or a more general DAG of O(1) degree) such that each node v is associated with a
predicate γv, suppose for each internal node v, γv implies γu for a child u of v for all inputs
in the active cells. Then, the search lemma can find a leaf v such that γv is true by making
O(1 − ∆Φ) comparisons.

An application of both lemmas particularly discussed in [10] is to find a predecessor of a
query number among a sorted list of input numbers. In our algorithm, as will be seen later,
the subproblem that needs the Γ-algorithm framework is also finding predecessors among
sorted lists and thus both the basic search lemma and the search lemma are applicable.

In the following two subsections, we will tackle the above two challenges, respectively. By
slightly abusing the notation, let P be a set of n points and S a set of n segments for the
problem in recurrence (5).
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Figure 1 Illustrating an outside-hull segment query.

3.3 Solving outside-hull segment queries
Recall that we have used the BS data structure to answer the outside-hull segment queries.
Unfortunately the algorithm does not fit the Γ-algorithm framework. Indeed, the BS data
structure is a binary tree. However, each node of the tree represents a convex hull of a subset
of points and it is not associated with a predicate that we can use to apply the Γ-algorithm
framework (e.g., the search lemma as discussed above).

In the following, we first present a new algorithm for solving the outside-hull segment
queries. Our algorithm, whose performance matches that of the BS data structure, is simpler,
and thus may be of independent interest; more importantly, it leads to an algorithm that fits
the Γ-algorithm framework to provide an O(n4/3) upper bound.

Let Q be a set of n′ points. The problem is to preprocess Q so that given any query
segment s outside the convex hull CH(Q) of Q, the closest point of s in Q can be computed
efficiently. Recall that in our original problem (i.e., the recurrence (5)) Q is a subset of P

and the sum of n′ for all subsets of P that we need to build the outside-hull query data
structures is O(n log n). We make this an observation below, which will be referred to later.

▶ Observation 2. The size of the subsets of P that we need to build the outside-hull query
data structures is O(n log n), i.e.,

∑
n′ = O(n log n).

In the preprocessing, we compute the Voronoi diagram VD(Q) of Q, from which we can
obtain the convex hull CH(Q) in linear time. For each edge e of CH(Q), we determine the
subset Qe of points of Q whose Voronoi cells intersect e in order along e. This order is
exactly the order of the perpendicular projections of the points of Qe onto e [7].

Consider a query segment s that is outside CH(Q). Let ps be the first point of Q hit by s

if we drag s along the direction perpendicularly to s and towards CH(Q); see Fig. 1. For
ease of exposition, we assume that ps is unique. Our goal is to compute ps in the case where
the point of s closest to Q is not an endpoint of s since the other case can be easily solved
by using VD(Q). Henceforth, we assume that the point of s closest to Q is not an endpoint
of s, implying that ps is the point of Q closest to s. Without loss of generality, we assume
that s is horizontal and s is below CH(Q). Let a and b be the left and right endpoints of s,
respectively (see Fig. 1).

We first find the lowest vertex v of CH(Q), which can be done in O(log n′) time by doing
binary search on CH(Q). If x(a) ≤ x(v) ≤ x(b), then v is ps and we are done with the query.
Otherwise, without loss of generality, we assume that x(b) < x(v). By binary search on
CH(Q), we find the edge e in the lower hull of CH(Q) that intersects the vertical line through
b. Since x(a) ≤ x(b) < x(v), e must have a negative slope (see Fig. 1). Then, as discussed
in [7], ps must be in Qe. To find ps efficiently, we first make some observations (which were
not discovered in the previous work).
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Suppose p1, p2, . . . , pm are the points of Qe, sorted following the order of their Voronoi
cells in VD(Q) intersecting e from left to right. We define two special indices i∗ and j∗ of Qe

with respect to a and b, respectively.

▶ Definition 3. Define j∗ as the largest index of the point of Qe that is to the left of b.
Define i∗ as the smallest index of the point of Qe such that pj is to the right of a for all
j ≥ i∗.

Note that j∗ must exist as ps is in Qe and is to the left of b. We have the following lemma.

▶ Lemma 4. If i∗ does not exist or i∗ > j∗, then ps cannot be the closest point of s in Q.

By Lemma 4, if i∗ does not exist or if i∗ > j∗, then we can simply stop the query
algorithm. In the following, we assume that i∗ exists and i∗ ≤ j∗. Let Qe[i∗, j∗] denote the
subset of points of Qe whose indices are between i∗ and j∗ inclusively. The following lemma
implies that we can use the supporting line of s to search ps.

▶ Lemma 5. Suppose ps is the closest point of s in Q. Then, ps is the point of Qe[i∗, j∗]
closest to the supporting line of s (i.e., the line containing s).

Based on Lemma 5, we have the following three steps to compute ps: (1) compute j∗; (2)
compute i∗; (3) find the point of Qe[i∗, j∗] closest to the supporting line ℓs of s.

The following Lemma 6, which is for outside-hull segment queries, is a by-product of our
above observations. Its complexity is the same as that in [7]. However, we feel that our new
query algorithm is simpler and thus this result may be interesting in its own right.

▶ Lemma 6. Given a set Q of n′ points in the plane, we can build a data structure of O(n′)
space in O(n′ log n′) time such that each outside-hull query can be answered in O(log n′) time.
The preprocessing time is O(n′) if the Voronoi diagram of Q is known.

The query algorithm of Lemma 6 actually does not fit the Γ-algorithm framework. Instead,
following the above observations we will give another query algorithm that fits the Γ-algorithm
framework. We now give a new algorithm that fits the Γ-algorithm framework. The new
algorithm requires slightly more preprocessing than Lemma 6. But for our purpose, we are
satisfied with O(n4/3) preprocessing time. We have different preprocessing for each of the
three steps of the query algorithm, as follows.

The first step: computing j∗. For computing j∗, we will use the basic search lemma (i.e.,
Lemma 4.1) in [10]. In order to apply the lemma, we perform the following preprocessing.

Recall that Qe = {p1, p2, . . . , pm} is ordered by their Voronoi cells intersecting e. We
partition the sequence into r contiguous subsequences of size roughly m/r each. Let Qi

e denote
the i-th subsequence, with 1 ≤ i ≤ r. For each i ∈ [1, r], we compute and explicitly maintain
the convex hull CH(i) of all points in the union of the subsequences Qj

e, j = i, i + 1, . . . , r.
Next, for each subsequence Qi

e, we further partition it into r contiguous sequences of size
roughly |Qi

e|/r and process it in the same way as above. We do this recursively until the
subsequence has no more than r points. In this way, we obtain a tree T with m leaves such
that each node has r children. For each node v, we use CH(v) to denote the convex hull
that is computed above corresponding to v (e.g., if v is the child of the root corresponding
to Qi

e, then CH(v) is CH(i) defined above). The total time for constructing T can be easily
bounded by O(mr log m logr m) as the height of T is O(logr m).

Now to compute j∗, we search the tree T : starting from the root, for each node v, we
apply the basic search lemma on all r children of v. Indeed, this is possible due to the
following. Consider the root v. For each i with 1 ≤ i ≤ r, let xi denote the x-coordinate
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of the leftmost point of the union of the subsequences Qj
e, j = i, i + 1, . . . , r; note that

xi is also the leftmost vertex of CH(i). It is not difficult to see that x1 ≤ x2 ≤ . . . ≤ xr.
Observe that pj∗ is in Qi

e if and only if xi ≤ x(b) < xi+1. Therefore, we find the index i

such that xi ≤ x(b) < xi+1 and then proceed to the child of v corresponding to Qi
e. This

property satisfies the condition of the basic search lemma (essentially, we are looking for the
predecessor of b in the sequence x1, x2, . . . , xr and this is somewhat similar to the insertion
sort algorithm of Theorem 4.1 [10], which uses the basic search lemma). By the basic search
lemma, finding the index i can be done using O(1 − r∆Φ) comparisons provided that the
x-coordinates x1, x2, . . . , xr are available to us (we will discuss how to compute them later).
We then follow the same idea recursively until we reach a leaf. In this way, the total number
of comparisons for computing j∗ is O(logr m − r∆Φ).

By setting r = mϵ for a small constant ϵ, the preprocessing time is O(m1+ϵ log m) and
computing j∗ can be done using O(1 − mϵ∆Φ) comparisons. Recall that there are O(n4/3)
queries in our original problem (i.e., recurrence (5)) and the total time for −∆Φ during the
entire algorithm is O(n log n). Also, since m is the number of points of Q whose Voronoi
cells intersecting the edge e of CH(Q), the sum of m for all outside-hull segment query data
structures for all edges of CH(Q) is |Q|, which is n′. By Observation 2, the sum of n′ for all
data structures in our original problem is O(n log n). Hence, the total preprocessing time
for our original problem is O(n1+ϵ log2+ϵ n), which is bounded by O(n4/3) if we set ϵ to a
small constant (e.g., ϵ = 1/4). As such, with a preprocessing step of O(n4/3) time, we can
compute j∗ for all queries using a total of O(n4/3) comparisons.

The above complexity analysis for computing j∗ is based on the assumption that the
leftmost point of CH(v) for each node v of T is known. To find these points during the
queries, we take advantage of the property that all queries are offline, i.e., we know all query
segments before we start the queries. Notice that although there are O(n4/3) queries, the
number of distinct query segments is n, i.e., those in S (a segment may be queried on different
subsets of P ). Let s be the current query segment and p be the leftmost point of a convex
hull CH(v) with respect to s (i.e., by assuming s is horizontal). Let ρ1 be the ray from p

going vertically upwards. Let ρ2 be another ray from p going through the clockwise neighbor
of p on CHv, i.e., ρ2 contains the clockwise edge of CHv incident to v. Observe that for
another query segment s′, p is still the leftmost point of CHv with respect to s′ as long as
the direction perpendicular to s′ is within the angle from ρ1 clockwise to ρ2. Based on this
observation, before we start any query, we sort the perpendicular directions of all segments
of S along with the directions of all edges of all convex hulls of all nodes of the trees T for all
outside-hull segment query data structures in our original problem (i.e., the recurrence (5)).
As analyzed above, the total size of convex hulls of all trees T is O(n1+ϵ log2+ϵ n). Hence, the
sorting can be done in O(n1+ϵ log3+ϵ n) time. Let L be the sorted list. We solve the queries
for segments following their order in L. Let s and s′ be two consecutive segments of S in L.
After we solve all queries for s, the directions between s and s′ in L correspond to those nodes
of the trees T whose leftmost points need to get updated, and we then update the leftmost
points of those nodes before we solve queries for s′. The total time we update the tree nodes
for all queries is proportional to the total size of all trees, which is O(n1+ϵ log2+ϵ n).

In summary, after O(n4/3) time preprocessing, computing j∗ for all O(n4/3) outside-hull
segment queries can be done using O(n4/3) comparisons.

The second step: computing i∗. For computing i∗, the idea is similar and we only sketch
it. In the preprocessing, we build the same tree T as above for the first step. One change is
that we add the first point p of the subsequence Qi

e to the end of Qi−1
e , i.e., p appears in

both Qi
e and Qi−1

e . This does not change the complexities asymptotically.
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For each query, to compute i∗, consider the root v. Observe that i∗ is in Qi
e if and only

if xi < x(a) ≤ xi+1 (xi and xi+1 are defined in the same way as before). As such, we can
apply the basic search lemma to find i∗ in O(1 − mϵ∆Φ) comparisons. We can use the same
approach as above to update the leftmost points of convex hulls of nodes of the trees T (i.e.,
computing a sorted list L and process the queries of the segments following their order in L).

In summary, after O(n4/3) time preprocessing, computing i∗ for all O(n4/3) outside-hull
segment queries can be done using O(n4/3) comparisons.

The third step. The third step is to find the point ps of Qe[i∗, j∗] closest to ℓ(s), where
ℓ(s) is the supporting line of s. We first discuss the preprocessing step on Qe.

We build a balanced binary search tree Te whose leaves corresponding to the points of
Qe = {p1, p2, . . . , pm} in their index order as discussed before. For each node v of Te, we use
Qe(v) to denote the set of points in the leaves of the subtree rooted at v. For each node v of
Te, we explicitly store the convex hull of Qe(v) at v. Further, for each leaf v, which stores a
point pi of Qe, for each ancestor u of v, we compute the convex hull CHr(v, u) of all points
pi, pi+1, . . . , pj , where pj is the point in the rightmost leaf of the subtree at u. We do this
in a bottom-up manner starting from v following the path from v to u. More specifically,
suppose we are currently at a node w, which is v initially. Suppose we have the convex hull
CHr(v, w). We proceed on the parent w′ of w as follows. If w is the right child of w′, then
CHr(v, w′) is CHr(v, w) and thus we do nothing. Otherwise, we merge CHr(v, w) with the
convex hull of Qe(w′′) at w′′, where w′′ is the right child of w′. Since points of CHr(v, w)
are separated from points of Qe(w′′) by a line perpendicular to e [7], we can merge the two
hulls by computing their common tangents in O(log m) time [33]. We use a persistent tree to
maintain the convex hulls (e.g., by a path-copying method) [19, 34] so that after the merge
we still keep CHr(v, w). In this way, we have computed CHr(v, w′) and we then proceed on
the parent of w′. We do this until we reach the root. As such, the total time and extra
space for computing the convex hulls for a leaf v is O(log2 m), and the total time and space
for doing this for all leaves is O(m log2 m). Symmetrically, for each leaf v, which stores a
point pi of Qe, for each ancestor u of v, we compute the convex hull CHl(v, u) of all points
ph, ph+1, . . . , pi, whether ph is the point in the leftmost leaf of the subtree at u. Computing
the convex hulls CHl(v, u) for all ancestors u for all leaves v can be done in O(m log2 m) in
a similar way as above. In addition, we construct a lowest common ancestor (LCA) data
structure on the tree Te in O(m) time so that the LCA of any two query nodes of Te can be
found in O(1) time [5, 26]. The total preprocessing time for constructing the tree Te as above
is O(m log2 m). Recall that the sum of m for all outside-hull segment query data structures
is O(n log n). Hence, the total preprocessing time of all data structures is O(n log3 n).

Now consider the third step of the query algorithm. Suppose i∗ and j∗ are known. The
problem is to compute the point ps of Qe[i∗, j∗] closest to the supporting line ℓ(s) of s. Let
u and v be the two leaves of Te storing the two points pi∗ and pj∗ , respectively. Let w be
the lowest common ancestor of u and v. Let u′ and v′ be the left and right children of w,
respectively. It is not difficult to see that the convex hull of CHr(u, u′) and CHl(v, v′) is the
convex hull of Qe[i∗, j∗]. As such, to find ps, it suffices to compute the vertex of CHr(u, u′)
closest to ℓ(s) and the vertex of CHl(v, v′) closest to ℓ(s), and among the two points, return
the one closer to ℓ(s) as ps. To implement the algorithm, finding w can be done in O(1) time
using the LCA data structure [5, 26]. To find the closest vertex of CHr(u, u′) to ℓ(s), recall
that the preprocessing computes a balanced binary search tree (maintained by a persistent
tree), denoted by Tr(u, u′), for maintaining CHr(u, u′). We apply a search lemma of Chan
and Zheng (Lemma A.1 [10]) on the tree Tr(u, u′). Indeed, the problem is equivalent to
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finding the predecessor of the slope of ℓ(s) among the slopes of the edges of CHr(u, u′).
Using the search lemma, we can find the vertex of CHr(u, u′) closest to ℓ(s) using O(1 − ∆Φ)
comparisons. Similarly, the vertex of CHl(v, v′) closest to ℓ(s) can be found using O(1 − ∆Φ)
comparisons. In this way, ps can be computed using O(1 − ∆Φ) comparisons.

In summary, with O(n log3 n) time preprocessing, the third step of the query algorithm
for all O(n4/3) queries can be done using a total of O(n4/3) comparisons (recall that the sum
of −∆Φ in the entire algorithm is O(n log n)).

Summary. Combining the three steps discussed above, all O(n4/3) outside-hull segment
queries can be solved using O(n4/3) comparisons. Recall that the above only discussed the
query on the data structure for a single edge e of the convex hull of Q. As the first procedure
of the query, we need to find the vertex of CH(Q) closest to the supporting line of s. For
this, we can maintain the convex hull CH(Q) by a balanced binary search tree and apply
the search lemma of Chan and Zheng (Lemma A.1 [10]) in the same way as discussed above.
As such, this procedure for all queries uses O(n4/3) comparisons. The second procedure of
the query is to find the edge of CH(Q) intersecting the line through one of the endpoints of
s and perpendicular to s. This operation is essentially to find a predecessor of the above
endpoint of s on the vertices of the lower hull of CH(Q). Therefore, we can also apply the
search lemma of Chan and Zheng, and thus this procedure for all queries also uses O(n4/3)
comparisons. As such, we can solve all O(n4/3) outside-hull segment queries using O(n4/3)
comparisons, or alternatively, we have an algebraic decision tree of height O(n4/3) that can
solve all O(n4/3) queries.

3.4 Solving the subproblems T (n2/3, n1/3)
We now tackle the second challenge, i.e., solve each subproblem T (n2/3, n1/3) in recurrence (5)
using O(n2/3) comparisons, or solve all O(n2/3) subproblems T (n2/3, n1/3) in (5) using
O(n4/3) comparisons.

Recall that P is the set of n points and S is the set of n segments for the original problem
in recurrence (5). If the closest point of a segment s ∈ S to P is an endpoint of s, then
finding the closest point of s in P can be done using the Voronoi diagram of P . Hence, it
suffices to find the first point of P hit by s if we drag s along the directions perpendicularly
to s. There are two such directions, but in the following discussion we will only consider
dragging s along the upward direction perpendicularly to s (recall that s is not vertical due
to our general position assumption) and let ps be the first point of P hit by s, since the
algorithm for the downward direction is similar. As such, the goal is to compute ps for each
segment s ∈ S.

For notational convenience, let m = n1/3 and thus we want to solve T (m2, m) using
O(m2) comparisons. More specifically, we are given m points and m2 segments; the problem
is to compute for each segment s the point ps (with respect to the m points, i.e., the first
point hit by s if we drag s along the upward direction perpendicular to s). Our goal is to solve
all O(m2) segment dragging queries using O(m2) comparisons after certain preprocessing.
In what follows, we begin with the preprocessing algorithm.

Preprocessing. For two sets A = {a1, a2, . . . , am} and B = {b1, b2, . . . , bm} of m points
each, we say that they have the same order type if for each i, the index order of the points of
A sorted around ai is the same as that of the points of B sorted around bi (equivalently, in
the dual plane, the index order of the dual lines intersecting the dual line of ai is the same as
that of the dual lines intersecting the dual line of bi); the concept has been used elsewhere,
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e.g., [3, 10, 23]. Because constructing the arrangement of a set of m lines can be computed
in O(m2) time [15], we can decide whether two sets A and B have the same order type in
O(m2) time, e.g., simply follow the incremental line arrangement construction algorithm [15].
We actually build an algebraic decision tree TD so that each node of TD corresponds to a
comparison of the algorithm. As such, the height of TD is O(m2) and TD has 2O(m2) leaves,
each of which corresponds to an order type (note that the number of distinct order types is
at most m6m [24], but here using 2O(m2) as an upper bound suffices for our purpose).

Let Q be a set of m points whose order type corresponds to a leaf v of TD. Let KQ

denote the set of the slopes of all lines through pairs of points of Q. Note that |KQ| = O(m2).
We sort the slopes of KQ. Consider two consecutive slopes k1 and k2 of the sorted KQ. In
the dual plane, for any vertical line ℓ whose x-coordinate is between k1 and k2, ℓ intersects
the dual lines of all points of Q in the same order (because k1 and k2 respectively are
x-coordinates of two consecutive vertices of the arrangement of dual lines). This implies the
following in the primal plane. Consider any two lines ℓ1 and ℓ2 whose slopes are between k1
and k2 such that all points of Q are above ℓi for each i = 1, 2. Then, the order of the lines
of Q by their distances to ℓ1 is the same as their order by the distances to ℓ2. However, if
we project all points of Q onto ℓ1 and ℓ2, the orders of their projections along the two lines
may not be the same. To solve our problem, we need a stronger property that the above
projection orders are also the same. To this end, we further refine the order type as follows.

For each pair of points qi and qj of Q, we add the slope of the line perpendicular to the
line through p and q to KQ. As such, the size of KQ is still O(m2). Although KQ has O(m2)
values, all these values are defined by the m points of Q. Using this property, KQ can be
sorted using O(m2) comparisons [10, 22].

For two sets Q = {q1, q2, . . . , qm} and Q′ = {q′
1, q′

2, . . . , q′
m} of m points each with the

same order type, we say that they have the same refined order type if the order of KQ is
the same as that of KQ′ , i.e., the slope of the line through qi and qj (resp., the slope of
the line perpendicular to the line through qi and qj) is in the k-th position of the sorted
list of KQ if and only if the slope of the line through q′

i and q′
j (resp., the slope of the line

perpendicular to the line through q′
i and q′

j) is in the k-th position of the sorted list of KQ′ .
We further enhance the decision tree TD by attaching a new decision tree at each leaf v of
TD for sorting KQ (recall that KQ can be sorted using O(m2) comparisons, i.e., there is
an algebraic decision tree of height O(m2) that can sort KQ), where Q is a set of m points
whose order type corresponds to v. We still use TD to refer to the new tree. The height of
TD is still O(m2).

We perform the following preprocessing work for each leaf v of TD. Let Q be a set of
m points that has the refined order type of v. We associate Q with v, compute and sort
KQ, and store the sorted list using a balanced binary search tree. Let k1 and k2 be two
consecutive slopes in the sorted list of KQ. Consider a line ℓ whose slope is in (k1, k2) such
that ℓ is below all points of Q. We project all points perpendicularly onto ℓ. According to
the definition of KQ, the order of the projections is fixed for all such lines ℓ whose slopes
are in (k1, k2). Without loss of generality, we assume that ℓ is horizontal. Let q1, q2, . . . , qm

denote the points of Q ordered by their projections on ℓ from left to right and we maintain
the sorted list in a balanced binary search tree. For each pair (i, j) with 1 ≤ i ≤ j ≤ m, let
Q[i, j] = {qi, qi+1, . . . , qj}; we sort all points of Q[i, j] by their distances to ℓ and store the
sorted list in a balanced binary search tree. As such, the time we spent on the preprocessing
at v is O(m5 log m).

Since TD is a decision tree of height O(m2), the number of leaves of TD is 2O(m2).
Therefore, the total preprocessing time for all leaves of TD is m5 log m · 2O(m2). As TD can
be built in O(2poly(m)) time, the total preprocessing time is bounded by O(2poly(m)).
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Solving a subproblem T (m2, m). Consider a subproblem T (m2, m) with a set P ′ of
m points and a set S′ of m2 segments. We arbitrarily assign indices to points of P ′ as
{p1, p2, . . . , pm}. By using the decision tree TD, we first find the leaf v of TD that corresponds
to the refined order type of P ′, which can be done using O(m2) comparisons as the height of
TD is O(m2). Let Q = {q1, q2, . . . , qm} be the set of m points associated with v. Below we
find for each segment s ∈ S′ its point ps in P ′. Let ℓ denote the supporting line of s.

We first find two consecutive slopes k1 and k2 in KP ′ such that the slope of ℓ is in [k1, k2).
Note that we do not explicitly have the sorted list of KP ′ , but recall that we have the sorted
list of KQ stored at v. Since P ′ and Q have the same refined order type, a slope defined by
two points pi and pj is in the k-th position of KP ′ if and only if the slope defined by two
points qi and qj is in the k-th position of KQ. Hence, we can search KQ instead; however,
whenever we need to use a slope whose definition involves a point qi ∈ Q, we use pi instead.
In this way, we could find k1 and k2 using O(log m) comparisons. Further, since we have
the balanced binary search tree storing KQ, we can apply the search lemma of Chan and
Zheng [10] as discussed above to find k1 and k2 using only O(1 − ∆Φ) comparisons.

Without loss of generality, we assume that s is horizontal. Let a and b denote the left
and right endpoints of s, respectively. Suppose we project all points of P ′ perpendicularly
onto ℓ. Let pπ(1), pπ(2), . . . , pπ(m) be the sorted list following their projections along ℓ from
left to right, where π(i) is the index of the i-th point in this order. We wish to find the index
i such that a is between pπ(i−1) and pπ(i) as well as the index j such that b is between pπ(j)
and pπ(j+1). To this end, we do the following. Since P ′ and Q have the same refined order
type, if we project all points of Q perpendicularly onto ℓ, then qπ(1), qπ(2), . . . , qπ(m) is the
sorted list following their projections along ℓ with the same permutation π(·). Hence, to find
the index i, we can query a in the sorted list qπ(1), qπ(2), . . . , qπ(m), which is maintained at
v due to our preprocessing, but again, whenever we need to use a point qπ(k), we use pπ(k)
instead. Using the search lemma of Chan and Zheng as discussed before, we can find i using
O(1 − ∆Φ) comparisons. Similarly, the index j can be found using O(1 − ∆Φ) comparisons.

Let P ′
ℓ [i, j] = {pπ(i), pπ(i+1), . . . , pπ(j)}. By the definitions of i and j, the point ps we are

looking for is the point of P ′
ℓ [i, j] closest to the line ℓ. To find ps, we do the following. Let

ℓ′ be a line parallel to ℓ but is below all points of P ′ and Q. Let P ′
ℓ′ [i, j] denote the sorted

list of P ′
ℓ [i, j] ordered by their distances from ℓ′. Then, ps can be found by binary search on

P ′
ℓ′ [i, j]. Since P ′ and Q have the same refined order type, we can instead do binary search

on Qℓ′ [i, j], whose order is consistent with that of Q[i, j], which is maintained at v due to
the preprocessing. As such we can search Q[i, j], but again whenever the algorithm wants to
use a point qk ∈ Q[i, j], we will use pk instead to perform a comparison. Using the search
lemma of Chan and Zheng, we can find ps using O(1 − ∆Φ) comparisons.

The above shows that ps can be found using O(1 − ∆Φ) comparisons. Therefore, doing
this for all O(m2) segments can be done using O(m2 − ∆Φ) comparisons.

In summary, with O(2poly(n)) time preprocessing, we can solve each subproblem
T (n2/3, n1/3) using O(n2/3) comparisons without considering the term −∆Φ, whose total
sum in the entire algorithm of recurrence (5) is O(n log n).

3.5 Wrapping things up
The above proves Lemma 1, and thus T (n, n) in (5) can be bounded by O(n4/3) after
O(2poly(n)) time preprocessing as discussed before. Equivalently, T (b, b) in (4) can be
bounded by O(b4/3) after O(2poly(b)) time preprocessing. Notice that the preprocessing work
is done only once and for all subproblems T (b, b) in (4). Since b = (log log log n)3, we have
2poly(b) = O(n). As such, T (n, n) in (4) solves to O(n4/3) and we have the following.
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▶ Theorem 7. Given a set of n points and a set of n segments in the plane, we can find for
each segment its closest point in O(n4/3) time.

The following solves the asymmetric case of the problem (see the full paper for details).

▶ Corollary 8. Given a set of n points and a set of m segments in the plane, we can find for
each segment its closest point in O(n2/3m2/3 + n log n + m log2 n) time.

4 The online query problem

Let P be a set of n points in the plane. We wish to build a data structure so that the point
of P closest to a query segment can be computed efficiently.

4.1 The line query problem
We first consider the special case where the query segment is a line ℓ. The main idea is
to adapt the simplex range searching data structures [9, 29, 30] (which works in any fixed
dimensional space; but for our purpose it suffices to only consider half-plane range counting
queries in the plane). Each of these half-plane range counting query data structures [9, 29, 30]
defines canonical subsets of P and usually only maintains the cardinalities of them. To solve
our problem, roughly speaking, the change is that we compute and maintain the convex hulls
of these canonical subsets, which increases the space by a factor proportional to the height of
the underlying trees (which is O(log n) for the data structures in [9, 30] and is O(log log n)
for the one in [29]). To answer a query, we follow the similar algorithms as half-plane range
counting queries on these data structures. The difference is that for certain canonical subsets,
we do binary search on their convex hulls to find their closest vertices to the query line, which
does not intersect these convex hulls (in the half-plane range counting query algorithms
only the cardinalities of these canonical subsets are added to a total count). This increases
the query time by a logarithmic factor comparing to the original half-plane range counting
query algorithms. We manage to reduce the additional logarithmic factor using fractional
cascading [14] on the data structures of [9, 30] because each node in the underlying trees
of these data structures has O(1) children. Some extra efforts are also needed to achieve
the claimed performance. Finally, the trade-off is obtained by combining these results with
cuttings in the dual space.

In the rest of this subsection, we present a randomized result based on Chan’s partition
tree [9] while the deterministic results are given in the full paper.

A randomized result based on Chan’s partition tree [9]. We first review Chan’s partition
tree [9]. Chan’s partition tree T for the point set P is a tree structure by recursively
subdividing the plane into triangles. Each node v of T is associated with a triangle △(v),
which is the entire plane if v is the root. If v is an internal node, it has O(1) children, whose
associated triangles form a disjoint partition of △(v). Let P (v) = P ∩ △(v), i.e., the subset
of points of P in △(v). For each internal node v, the cardinality |P (v)| is stored at v. If v is
a leaf, then |P (v)| = O(1) and P (v) is explicitly stored at v. The height of T is O(log n) and
the space of T is O(n). Let α(T ) denote the maximum number of triangles △(v) among all
nodes v of T crossed by any line in the plane. Given P , Chan’s randomized algorithm can
compute T in O(n log n) expected time such that α(T ) = O(

√
n) holds with high probability.

To solve our problem, we modify the tree T as follows. For each node v, we compute the
convex hull CH(v) of P (v) and store CH(v) at v. This increases the space to O(n log n), but
the preprocessing time is still bounded by O(n log n).
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Given a query line ℓ, our goal is to compute the point of P closest to ℓ. We only discuss
how to find the closest point of ℓ among all points of P below ℓ since the other case is similar.
Starting from the root of T , consider a node v. We assume that ℓ crosses △(v), which is
true initially when v is the root. For each child u of v, we do the following. If ℓ crosses △(u),
then we proceed on u recursively. Otherwise, if △(u) is below ℓ, we do binary search on
the convex hull CH(u) to find in O(log n) time the closest point to ℓ among the vertices of
CH(u) and keep the point as a candidate. Since each internal node of T has O(1) children,
the algorithm eventually finds O(α(T )) candidate points and among them we finally return
the one closest to ℓ as our solution. The total time of the algorithm is O(α(T ) · log n).

To further reduce the query time, we observe that all nodes v whose triangles △(v) are
crossed by ℓ form a subtree Tℓ of T containing the root. This is because if the triangle △(v)
of a node v is crossed by ℓ, then the triangle △(u) is also crossed by ℓ for any ancestor u of v.
In light of the observation, we can further reduce the query algorithm time to O(α(T )+ log n)
by constructing a fractional cascading structure [14] on the convex hulls of all nodes of T

so that if a tangent to the convex hull at a node v is known, then the tangents of the same
slope to the convex hulls of the children of v can be found in constant time. The total time
for constructing the fractional cascading structure is linear in the total size of all convex
hulls, which is O(n log n). With the fractional cascading structure, we only need to perform
binary search on the convex hull at the root and then spend only O(1) time on each node of
Tℓ and each of their children. As such, the query time becomes O(α(T ) + log n), which is
bounded by O(

√
n) with high probability.

▶ Lemma 9. Given a set P of n points in the plane, we can build a data structure of
O(n log n) space in O(n log n) expected time such that for any query line its closest point in
P can be computed in O(

√
n) time with high probability.

4.2 The segment query problem
To answer the general segment queries, the main idea is essentially the same as the line case
with one change: whenever we compute the convex hull for a canonical subset of P (e.g., the
subset P (v) for a node v in a partition tree) for outside-hull line queries, we instead build
the BS data structure [7] for outside-hull segment queries. Because the fractional cascading
does not help anymore, the query time in general has an additional logarithmic factor, with
the exception that when using Chan’s partition tree [9] we still manage to bound the query
time by O(

√
n) due to some nice properties of the partition tree.

In the rest of this subsection, we present a randomized result based on Chan’s partition
tree [9] while the deterministic results are given in the full paper.

The randomized result. For our randomized result using Chan’s partition tree [9] (by
modifying the one in Section 4.1), for each node v of the partition tree T , we construct the
BS data structure for P (v). The total space is still O(n log n). For the preprocessing time,
constructing the BS data structure can be done in linear time if we know the Voronoi diagram
of P (v). For this, as discussed in Section 3.1, we can process all nodes of T in a bottom-up
manner and using the linear-time Voronoi diagram merge algorithm of Kirkpatrick [27]. As
such, constructing the BS data structures for all nodes of T can be done in O(n log n) time
in total. Therefore, the total preprocessing time is still O(n log n) expected time.

The query algorithm follows the same scheme as before but instead use the BS algorithm
to answer outside-hull segment queries. The total query time becomes O(

√
n log n) with high

probability. In fact, due to certain properties of Chan’s partition tree, the time is bounded
by O(

√
n), as shown in the following lemma (similar idea was used elsewhere, e.g., [11]).
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▶ Lemma 10. The query time is bounded by O(
√

n) with high probability.

As such, we obtain the following result.

▶ Lemma 11. Given a set P of n segments in the plane, we can build a data structure of
O(n log n) space in O(n log n) expected time such that for any query segment its closest point
in P can be computed in O(

√
n) time with high probability.

As discussed in Section 1, another randomized solution of complexity O(n4/3, n4/3, n1/3)
can be obtained using Chan’s randomized techniques [8] and Chan and Zheng’s recent
randomized result on triangle range counting [10]. Refer to the full paper for details. We
thank an anonymous reviewer for suggesting the idea.
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Abstract
We study propositional proof systems with inference rules that formalize restricted versions of the
ability to make assumptions that hold without loss of generality, commonly used informally to
shorten proofs. Each system we study is built on resolution. They are called BC−, RAT−, SBC−,
and GER−, denoting respectively blocked clauses, resolution asymmetric tautologies, set-blocked
clauses, and generalized extended resolution – all “without new variables.” They may be viewed as
weak versions of extended resolution (ER) since they are defined by first generalizing the extension
rule and then taking away the ability to introduce new variables. Except for SBC−, they are known
to be strictly between resolution and extended resolution.

Several separations between these systems were proved earlier by exploiting the fact that they
effectively simulate ER. We answer the questions left open: We prove exponential lower bounds for
SBC− proofs of a binary encoding of the pigeonhole principle, which separates ER from SBC−. Using
this new separation, we prove that both RAT− and GER− are exponentially separated from SBC−.
This completes the picture of their relative strengths.
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1 Introduction

When writing proofs informally, it is sometimes convenient to make assumptions that hold
“without loss of generality.” For instance, if we are proving a statement about real numbers
x and y, we might assume without loss of generality that x ≥ y and continue the proof under
this additional assumption. Such an assumption requires justification, for instance by arguing
that the two variables are interchangeable in the statement being proved. Assumptions of
this kind are not essential to proofs but they simplify or shorten the presentation.

We study propositional proof systems1 with inference rules that allow making such
assumptions. Extended resolution [21] (equivalently, Extended Frege [5]) already simulates
this kind of reasoning; however, it presumably does more, and its strength is poorly understood.
We thus focus on “weak” systems built on top of resolution [1, 20] and lacking the ability to
introduce any new variables, while still being able to reason without loss of generality. Each
system relies on a polynomial-time verifiable syntactic condition to automatically justify
the assumption being made, and the exact form of this condition determines the strength
of the proof system. The systems are defined by first generalizing the extension rule and
then taking away the ability to introduce new variables, so, for lack of a better term, we

1 Throughout the rest of this paper, by “proof” we mean a proof of unsatisfiability (i.e., a refutation).
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will refer to these systems collectively as “weak extended resolution systems” in this section.
Although we are referring to them as weak, some variants are surprisingly strong in that
they admit polynomial-size proofs of the pigeonhole principle, bit pigeonhole principle, parity
principle, clique–coloring principle, and Tseitin tautologies, as well as being able to undo
(with polynomial-size derivations) the effects of or-ification, xor-ification, and lifting with
indexing gadgets [2]. In this paper, we study the relative strengths of several variants of
those systems and answer the questions left open in previous work [23, Section 1.4].

1.1 Motivation
Our interest in weak extended resolution systems is rooted in two different areas: proof
complexity and satisfiability (SAT) solving.

1.1.1 Proof complexity
Proof complexity is concerned with the sizes of proofs in propositional proof systems. The
notion of a proof system as accepted in proof complexity is rather general – it covers not only
the “textbook” deductive systems for propositional logic but also several systems that capture
different forms of mathematical reasoning. For instance, the widely studied proof systems of
cutting planes [6] and polynomial calculus [3] utilize simple forms of geometric and algebraic
reasoning, respectively. Weak extended resolution systems are somewhat similar, although
they do not originate from any specific branch of mathematics. Instead, they capture the
pervasive technique of reasoning without loss of generality, often used to shorten proofs. Since
proof complexity is concerned with proof size, the limits of the degree of brevity achievable
by this form of reasoning is a natural question from the perspective of proof complexity.

Moreover, the upper bounds proved by Buss and Thapen [2] show that many of the usual
“hard” combinatorial principles used for proof complexity lower bounds are easy to prove in
certain weak extended resolution systems. In other words, a modest amount of the ability
to reason without loss of generality lends surprising strength to even a system as weak as
resolution, and the full strength of extended resolution is not required for the combinatorial
principles previously mentioned. Thus, many of the existing separations between extended
resolution and the commonly studied proof systems can be attributed to the fact that
extended resolution can reason without loss of generality while the other systems cannot.
Searching for principles that separate extended resolution from the weak extended resolution
systems will help us better understand other facets of the strength of extended resolution.

1.1.2 SAT solving
Another motivation for studying the weak extended resolution systems is their potential
usefulness for improvements in SAT solvers, which are practical implementations of proposi-
tional theorem provers that determine whether a given formula in conjunctive normal form is
satisfiable. When a solver claims unsatisfiability, it is expected to produce a proof that can be
used to verify the claim efficiently. Modern SAT solvers, which are based on conflict-driven
clause learning (CDCL) [17], essentially search for resolution proofs. Consequently, the
well-known exponential lower bounds against resolution (e.g., [7, 22]) imply exponential
lower bounds against the runtimes of CDCL-based solvers. To overcome the limitations of
resolution, SAT solvers are forced to go beyond CDCL.

Many of the current solvers employ “inprocessing” techniques [11], which support in-
ferences of the kind that we study in this paper. These techniques are useful in practice;
however, they are implemented as ad hoc additions to CDCL. Weak extended resolution
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systems hold the potential for improving SAT solvers in a more principled manner (e.g.,
through the development of a solving paradigm that corresponds to one of those systems in a
manner similar to how CDCL corresponds to resolution). In comparison, proof systems such
as cutting planes, polynomial calculus, DNF resolution [13], or Frege [5] appear more difficult
to take advantage of, at least in part due to their richer syntax. When dealing only with
clauses, it becomes possible to achieve highly efficient constraint propagation, which is an
important reason for the speed of CDCL-based solvers. Extended resolution also works only
with clauses; however, there are currently no widely applicable heuristics for introducing new
variables during proof search. Weak extended resolution systems are relatively strong despite
using only clauses without new variables. Thus, those systems are promising for practical
proof search algorithms.

Earlier works [10, 8] showed that solvers based on certain weak extended resolution
systems can automatically discover small proofs of some formulas that are hard for resolution,
such as the pigeonhole principle and the mutilated chessboard principle. Still, those solvers
fall behind CDCL-based solvers on other classes of formulas. Moreover, there appears to be
a tradeoff when choosing a system for proof search: stronger systems enable smaller proofs;
however, proof search in such systems is costlier with respect to proof size. To be able to
choose the ideal system for proof search (e.g., the weakest system that is strong enough
for one’s purposes), it is important to understand the relative strengths of the systems in
question. This paper is a step towards that goal.

1.2 Background
We briefly review some background, deferring formal definitions to Section 2. For compre-
hensive overviews of related work, see Buss and Thapen [2] and Yolcu and Heule [23].

The proof systems we study are based on the notion of “redundancy.” A clause is
redundant with respect to a formula if it can be added to or removed from the formula
without affecting satisfiability. Redundancy is a generalization of logical implication: if
Γ |= C then the clause C is redundant with respect to the set Γ of clauses;2 however, the
converse is not necessarily true. When proving unsatisfiability, deriving redundant clauses
corresponds to making assumptions that hold without loss of generality.3 To ensure that
proofs can be checked in polynomial time, we work with restricted versions of redundancy
that rely on syntactic conditions.

Possibly the simplest interesting version is blockedness [14, 15]. We say a clause C is
blocked with respect to a set Γ of clauses if there exists a literal p ∈ C such that all possible
resolvents of C on p against clauses from Γ are tautological (i.e., contain a literal and its
negation). Kullmann [16] showed that blocked clauses are special cases of redundant clauses
and thus considered an inference rule that, given a formula Γ, allows us to extend Γ with a
clause that is blocked with respect to Γ. This rule, along with resolution, gives the proof
system called blocked clauses (BC). It is apparent from the definition of a blocked clause
that deleting clauses from Γ enlarges the set of clauses that are blocked with respect to Γ.
With this observation, Kullmann defined a strengthening of BC called generalized extended
resolution (GER) that allows temporary deletion of clauses from Γ. Later works [11, 12]
defined more general classes of redundant clauses and proof systems based on them, called
resolution asymmetric tautologies (RAT) and set-blocked clauses (SBC). Both RAT and SBC

2 We use “set of clauses” and “formula” interchangeably.
3 When refuting a formula Γ, deriving a redundant clause C may be viewed as stating the following: “If

there exists an assignment satisfying Γ, then there also exists an assignment satisfying both Γ and C,
so without loss of generality we can assume that C holds.”
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use relaxed versions of blocked clauses: RAT changes the word “tautological” in the definition
of a blocked clause, and, in a sense, SBC considers possible resolvents on more than a single
literal.

As defined, BC simulates extended resolution since extension clauses can be added in
sequence as blocked clauses if we are allowed to introduce new variables (see [16, Section 6]).
Thus, we disallow new variables to weaken the systems. A proof of Γ is without new variables
if it contains only the variables that already occur in Γ. We denote a proof system variant
that disallows new variables with the superscript “−” (e.g., BC− is BC without new variables).
We are concerned in this paper with the strengths of the systems RAT−, SBC−, and GER−,
each of which generalizes BC− in different ways.

As a technical side note, the systems we study are unusual in the following respects: They
are not monotonic, since a clause redundant with respect to Γ is not necessarily redundant
with respect to Γ′ ⊇ Γ. This causes deletion (i.e., the ability to delete clauses in the middle
of a proof) to increase the strength of those systems. It also requires one to pay attention
to the order of inferences when proving upper bounds. Additionally, they are not a priori
closed under restrictions, which means that extra care is required when proving lower bounds
against them. More specifically, a proof system P that simulates BC− is not closed under
restrictions unless P also simulates extended resolution [2, Theorem 2.4]. It follows from
earlier lower bounds [16, 2] and Section 3 in this paper that BC−, RAT−, SBC−, and GER−

are not closed under restrictions.

1.3 Results
This work follows up on Yolcu and Heule [23], which proved separations between the different
generalizations of BC− by exploiting the fact that, although the systems cannot introduce
new variables, they nevertheless effectively simulate [18] extended resolution. Their strategy
uses so-called “guarded extension variables,” where we consider systems P and Q that both
effectively simulate a strong system R, and we incorporate extension variables into formulas
in a guarded way that allows P to simulate an R-proof while preventing Q from making
any meaningful use of the extension variables to achieve a speedup. This allows using, as
black-box, a separation of R from Q to separate P from Q. For more details about this
strategy, we refer the reader to Yolcu and Heule [23, Section 1.3].

In this paper, we prove the following results, where each formula indexed by n has
nO(1) variables and nO(1) clauses. Figure 1 summarizes the proof complexity landscape
around BC− after these results.

We first show exponential lower bounds for SBC− proofs of a binary encoding of the
pigeonhole principle called the “bit pigeonhole principle,” defined in Section 3. (Note that the
usual unary encoding of the pigeonhole principle admits polynomial-size proofs in SBC− [23,
Lemma 7.1].)

▶ Theorem 1. The bit pigeonhole principle BPHPn requires SBC− proofs of size 2Ω(n).

We then show, using constructions that incorporate guarded extension variables
into BPHPn, that RAT− and GER− are both exponentially separated from SBC−.

▶ Theorem 2. There exists an infinite sequence (Γn)∞
n=1 of unsatisfiable formulas such that

Γn admits RAT− proofs of size nO(1) but requires SBC− proofs of size 2Ω(n).

▶ Theorem 3. There exists an infinite sequence (∆n)∞
n=1 of unsatisfiable formulas such that

∆n admits GER− proofs of size nO(1) but requires SBC− proofs of size 2Ω(n).
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Figure 1 In the above diagram, the proof systems are placed in three-dimensional space with
BC−, the weakest system, at the origin. Moving away from the origin along each axis corresponds
to a particular way of generalizing (i.e., strengthening) a proof system. The systems prefixed
with “D” allow the arbitrary deletion of a clause as a proof step. For systems P and Q, we use
P Q to denote that P simulates Q; (and P Q to indicate an “interesting” simulation,
where P is not simply a generalization of Q); P Q to denote that P is exponentially separated
from Q (i.e., there exists an infinite sequence of formulas admitting polynomial-size proofs in P

while requiring exponential-size proofs in Q); and P Q to denote that P both simulates Q and
is exponentially separated from Q. Arrows in red indicate the relationships that are new in this
paper. To reduce clutter, some relationships that are implied by transitivity are not displayed (e.g.,
DBC− simulates RAT− and is exponentially separated from it through DRAT−).

The above results, along with earlier ones, completely describe the relative strengths
of the weakest generalizations of BC− along each axis in Figure 1. For lower bounds, this
pushes the frontier to the system called set propagation redundancy (SPR−) [9]. We do not
define SPR− formally in this paper, although it may be thought of intuitively as combining
SBC− and RAT−. The upper bounds proved by Buss and Thapen [2] establish SPR− as an
interesting target for proof complexity lower bounds. (Note that the binary encoding of
the pigeonhole principle that we use to prove exponential lower bounds for SBC− admits
polynomial-size proofs in SPR− [2, Theorem 4.4].)

2 Preliminaries

We assume that the reader is familiar with propositional logic, proof complexity, resolution,
and extended resolution. We review some concepts to describe our notation. For notation
we follow Yolcu and Heule [23] from which this section is adapted.
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We denote the set of strictly positive integers by N+. For n ∈ N+, we let [n] := {1, . . . , n}.
For a sequence S = (x1, . . . , xn), its length is n, which we denote by |S|.

2.1 Propositional logic
We use 0 and 1 to denote False and True, respectively. A literal is a propositional variable
or its negation. A set of literals is tautological if it contains a pair of complementary literals
x and x. A clause is the disjunction of a nontautological set of literals. We use ⊥ to denote
the empty clause. We denote by V and L respectively the sets of all variables and all literals.
A conjunctive normal form formula (CNF) is a conjunction of clauses. Throughout this
paper, by “formula” we mean a CNF. We identify clauses with sets of literals and formulas
with sets of clauses. In the rest of this section we use C, D to denote clauses and Γ, ∆ to
denote formulas.

We say D is a weakening of C if C ⊆ D. We denote by var(Γ) the set of all the variables
occurring in Γ.

When we know C ∪ D to be nontautological, we write it as C ∨ D. We write C ∨̇ D to
indicate a disjoint disjunction, where C and D have no variables in common. We take the
disjunction of a clause and a formula as

C ∨ ∆ := {C ∨ D : D ∈ ∆ and C ∪ D is nontautological}.

An assignment α is a partial function α : V ⇀ {0, 1}, which also acts on literals by
letting α(x) := α(x). We identify α with the set {p ∈ L : α(p) = 1}, consisting of all the
literals it satisfies. For a set L of literals, we let L := {x : x ∈ L}. In particular, we use C

to denote the smallest assignment that falsifies all the literals in C. We say α satisfies C,
denoted α |= C, if there exists some p ∈ C such that α(p) = 1. We say α satisfies Γ if for
all C ∈ Γ we have α |= C. For C that α does not satisfy, the restriction of C under α is
C|α := C \ {p ∈ C : α(p) = 0}. Extending this to formulas, the restriction of Γ under α is
Γ|α := {C|α : C ∈ Γ and α ̸|= C}.

We say Γ and ∆ are equisatisfiable, denoted Γ ≡sat ∆, if they are either both satisfiable or
both unsatisfiable. With respect to Γ, a clause C is redundant if Γ \ {C} ≡sat Γ ≡sat Γ ∪ {C}.
We sometimes write Γ ∪ {C} as Γ ∧ C.

2.2 Proof complexity and resolution
For a proof system P and a formula Γ, we define

sizeP (Γ) := min{|Π| : Π is a P -proof of Γ}

if Γ is unsatisfiable and sizeP (Γ) := ∞ otherwise. A proof system P simulates Q if every Q-
proof can be converted in polynomial time into a P -proof of the same formula. Proof systems
P and Q are equivalent if they simulate each other. We say P is exponentially separated
from Q if there exists some sequence (Γn)∞

n=1 of formulas such that sizeP (Γn) = nO(1) while
sizeQ(Γn) = 2Ω(n). We call such a sequence of formulas easy for P and hard for Q.

Let C ∨̇ x and D ∨̇ x be clauses, where x is a variable, such that the set C ∪ D is
nontautological. We call the clause C ∨ D the resolvent of C ∨ x and D ∨ x on x. We define
a resolution proof in a slightly different form than usual: as a sequence of formulas instead
of a sequence of clauses.4

4 The resulting proof system is equivalent to the usual version of resolution.
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▶ Definition 4. A resolution proof of a formula Γ is a sequence Π = (Γ1, . . . , ΓN ) of formulas
such that Γ1 = Γ, ⊥ ∈ ΓN , and for all i ∈ [N − 1], we have Γi+1 = Γi ∪ {C}, where C is
either the resolvent of two clauses in Γi or a weakening of some clause in Γi. The size of Π
is N .

We write Res to denote the resolution proof system. A well known fact is that resolution
is closed under restrictions: if (Γ1, Γ2, . . . , ΓN ) is a resolution proof of Γ, then for every
assignment α, the sequence (Γ1|α, Γ2|α, . . . , ΓN |α) contains as a subsequence a resolution
proof of Γ|α. This implies in particular the following.

▶ Lemma 5. For every formula Γ and every assignment α, sizeRes(Γ|α) ≤ sizeRes(Γ).

A unit propagation proof is a resolution proof where each use of the resolution rule has
as at least one of its premises a clause that consists of a single literal. Unit propagation is
not complete. With Γ a formula and L = {p1, . . . , pk} a set of literals, we write Γ ⊢1 L to
denote that there exists a unit propagation proof of Γ ∧ p1 ∧ · · · ∧ pk.

We next define extended resolution (ER), which is a strengthening of resolution.

▶ Definition 6. Let Γ be a formula and p, q be arbitrary literals. Consider a new variable x

(i.e., not occurring in any one of Γ, p, q). We refer to {x ∨ p, x ∨ q, x ∨ p ∨ q} as a set of
extension clauses for Γ. In this context, we call x the extension variable.

▶ Definition 7. A formula Λ is an extension for a formula Γ if there exists a se-
quence (λ1, . . . , λt) such that Λ =

⋃t
i=1 λi, and for all i ∈ [t], we have that λi is a set

of extension clauses for Γ ∪
⋃i−1

j=1 λj.

▶ Definition 8. An extended resolution proof of a formula Γ is a pair (Λ, Π), where Λ is an
extension for Γ and Π is a resolution proof of Γ ∪ Λ. The size of (Λ, Π) is |Λ| + |Π|.

2.3 Redundancy criteria
We recall the syntactic redundancy criteria that lead to the inference rules we study. The
definitions are taken from Yolcu and Heule [23, Section 3], which in turn adapted them from
previous works [16, 11, 12, 9, 2].

▶ Definition 9. A clause C = p ∨̇ C ′ is a blocked clause (BC) for the literal p with respect
to a formula Γ if, for every clause D of the form p ∨̇ D′ in Γ, the set C ′ ∪ D′ is tautological.

▶ Definition 10. A clause C = p ∨̇ C ′ is a resolution asymmetric tautology (RAT) for the
literal p with respect to a formula Γ if, for every clause D of the form p ∨̇ D′ in Γ, we have
Γ ⊢1 C ′ ∪ D′.

▶ Definition 11. A clause C is a set-blocked clause (SBC) for a nonempty L ⊆ C with
respect to a formula Γ if, for every clause D ∈ Γ with D ∩ L ̸= ∅ and D ∩ L = ∅, the
set (C \ L) ∪ (D \ L) is tautological.

We say C is a BC with respect to Γ if there exists a literal p ∈ C for which C is a BC with
respect to Γ, and similarly for RAT and SBC. It was shown in previous works [16, 11, 12]
that BCs, RATs, and SBCs are redundant, which makes it possible to use them to define
proof systems.

▶ Definition 12. A blocked clauses proof of a formula Γ is a sequence Π = (Γ1, . . . , ΓN )
of formulas such that Γ1 = Γ, ⊥ ∈ ΓN , and for all i ∈ [N − 1], we have Γi+1 = Γi ∪ {C},
where C is either the resolvent of two clauses in Γi, a weakening of some clause in Γi, or a
blocked clause with respect to Γi. The size of Π is N .

STACS 2024
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We write BC to denote the blocked clauses proof system. Replacing “blocked clause”
by “resolution asymmetric tautology” in the above definition gives the RAT proof system.
Replacing it by “set-blocked clause” gives the SBC proof system.5 RAT and SBC are two gen-
eralizations of BC, and we now define another, called generalized extended resolution (GER),
which reduces the dependence of the validity of BC inferences on the order of clause addi-
tions (see [16, Section 1.3]). We need to introduce the concept of a blocked extension6 before
we can proceed with the definition of GER.

▶ Definition 13. A formula Λ is a blocked extension for a formula Γ if there exists a
subset Γ′ of Γ and an ordering (C1, . . . , Cr) of all the clauses in Λ ∪ (Γ \ Γ′) such that for
all i ∈ [r] the clause Ci is blocked with respect to Γ′ ∪

⋃i−1
j=1{Cj}.

▶ Definition 14. A generalized extended resolution proof of a formula Γ is a pair (Λ, Π),
where Λ is a blocked extension for Γ and Π is a resolution proof of Γ ∪ Λ. The size of (Λ, Π)
is |Λ| + |Π|.

Note that the definitions in this section do not prohibit BCs, RATs, or SBCs with respect
to Γ from containing variables not occurring in Γ. We study the variants of BC, RAT, SBC,
and GER that disallow the use of new variables. A proof of Γ is without new variables if all
the variables occurring in the proof are in var(Γ). In the case of GER, this constraint applies
to both the blocked extension and the resolution part: a proof (Λ, Π) of Γ is without new
variables if all the variables occurring in Λ or Π are in var(Γ). We use BC−, RAT−, SBC−,
and GER− to denote the variants without new variables.

3 Lower bound for the bit pigeonhole principle

Let n = 2k, with k ∈ N+. For a propositional variable v, let us write v ̸= 0 and v ̸= 1 to
denote the literals v and v, respectively. The bit pigeonhole principle is the contradiction
stating that each pigeon in [n+1] can be assigned a distinct binary string from {0, 1}k, where
we identify strings with holes. For each pigeon x ∈ [n + 1], the variables px

1 , . . . , px
k represent

the bits of the string assigned to x. More formally, we write the bit pigeonhole principle as

BPHPn :=
⋃

x,y∈[n+1], x ̸=y

(h1,...,hk)∈{0,1}k

{
k∨

ℓ=1
px

ℓ ̸= hℓ ∨
k∨

ℓ=1
py

ℓ ̸= hℓ

}
,

which asserts that for all x, y ∈ [n+1] such that x ̸= y, the binary strings px
1 . . . px

k and py
1 . . . py

k

are different.7 We denote by Px the set {px
1 , . . . , px

k, px
1 , . . . , px

k} of all the literals concerning
pigeon x.

For a set L of literals, its pigeon-width is the number of distinct pigeons it mentions,
where a pigeon x ∈ [n + 1] is mentioned if there exists some ℓ ∈ [k] such that some literal of
the variable px

ℓ is in L. We write L(x) to denote the set L ∩ Px. In other words, L(x) is the
largest subset of L that mentions only the pigeon x.

5 For an SBC proof to be polynomial-time verifiable, every step in the proof that adds a clause C as
set-blocked is expected to indicate the subset L ⊆ C for which C is set-blocked. With that said, we
leave this requirement out of our definitions to reduce clutter.

6 Instead of the original definition of a blocked extension [16, Definition 6.3], we use a convenient
characterization [16, Lemma 6.5], which is simpler to state, as the definition.

7 In our asymptotic results that use the bit pigeonhole principle, it is tacitly understood that BPHPn

could be defined for every integer n ≥ 2 (as opposed to only powers of two) by letting BPHPn be
identical to BPHPm, where m is the largest power of two not exceeding n.



E. Yolcu 59:9

Before proceeding with the SBC− lower bound for the bit pigeonhole principle, we observe
the result below, which will also be useful later. It is deduced in a straightforward way from
the definition of a set-blocked clause, using the following fact: if a clause C is an SBC with
respect to a formula Γ, then C is an SBC with respect to every subset of Γ. (Note that a
similar result does not necessarily hold for RAT−.)

▶ Lemma 15. Without loss of generality, all of the set-blocked clause additions in an
SBC− proof are performed before any resolution or weakening steps.

Lemma 15 allows us to reduce SBC− lower bounds for a formula Γ to resolution lower
bounds for another formula Γ ∪ Σ, where Σ is a set of clauses derivable from Γ by a sequence
of set-blocked clause additions without new variables.

A common strategy for proving resolution lower bounds is to first show that every proof
contains some “complex” clause (in our case, a clause of large pigeon-width), and then argue
that the existence of a small proof implies the existence of another proof where no clause
is complex. The second step typically involves restricting the clauses of the proof under a
suitable assignment. We work with assignments that correspond to partial matchings of
pigeons to holes, as in the case of the RAT− lower bound by Buss and Thapen [2, Section 5].

We say an assignment ρ that sets some variables of BPHPn is a partial matching if ρ sets
all of the bits for the pigeons it mentions in such a way that no two pigeons are in the
same hole, thus representing a matching of pigeons to holes. To prove SBC− lower bounds
for BPHPn, we will need the following pigeon-width lower bound for resolution proofs of
restrictions of BPHPn under partial matchings, which is established by a straightforward
Adversary strategy in the Prover–Adversary game [19]. We define the pigeon-width of a
proof as the maximum pigeon-width of any clause in the proof.

▶ Lemma 16 ([2, Lemma 5.2]). Let ρ be a partial matching of m pigeons to holes. Then
every resolution proof of (BPHPn)|ρ has pigeon-width at least n − m.

We will additionally need a pigeon-width lower bound for set-blocked clauses (without
new variables) with respect to BPHPn, which follows from a simple inspection.

▶ Lemma 17. Every set-blocked clause with respect to BPHPn that is without new variables
has pigeon-width n + 1.

Proof. Let C = L ∨̇ C ′ be a set-blocked clause for L with respect to BPHPn that is without
new variables. Let x be a pigeon mentioned in L. Such a pigeon exists since L is nonempty.
Let y be a pigeon different from x. We claim that C mentions y.

Let D ∈ BPHPn be a clause that contains L(x) ∪ C ′(x) and mentions y. Such a clause
exists since L(x) ∪ C ′(x) is simply a nontautological subset of Px and, by the definition
of BPHPn, each such subset is contained in some clause in BPHPn that mentions y. Note that
every clause in BPHPn mentions exactly two pigeons; in particular, the clause D mentions
only the pigeons x and y.

Since D is a clause, it is nontautological. As a consequence, D ∩ L(x) is empty and
C ′(x) ∪ (D \ L) is nontautological. Then, since C is set-blocked for L with respect to BPHPn,
either D ∩ (L \ L(x)) is nonempty or (C ′ \ C ′(x)) ∪ (D \ L) is tautological. Now, neither
of L \ L(x) and C ′ \ C ′(x) mentions x. Since D mentions only the pigeons x and y, the
pigeon y must be mentioned by L in the former case and C ′ in the latter. Either way, C

mentions y. ◀

▶ Theorem 18. The formula BPHPn requires exponential-size proofs in SBC−.
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Proof. Let Π be an SBC− proof of BPHPn of size N . By Lemma 15, we may view Π as a
resolution proof of the formula BPHPn ∪Σ, where Σ is a set of clauses derivable from BPHPn

by a sequence of set-blocked clause additions without new variables. We will show by the
probabilistic method that if N < 2n/64, then there exists a partial matching ρ of n/2 pigeons
to holes such that (BPHPn)|ρ has a resolution proof of pigeon-width strictly less than n/2.

Let R be a random partial matching constructed by choosing a random pigeon and
assigning it to a random available hole until n/2 pigeons are matched to holes. We denote by
ri the random assignment performed at the ith step of this process: if pigeon x was assigned
to hole (h1, . . . , hk), then ri(px

ℓ ) = hℓ for all ℓ ∈ [k].
We say a clause is wide if it has pigeon-width at least n/2. Let C be a wide clause. Let x

denote the ith pigeon chosen when constructing R, with i ≤ n/4. The probability that x is
mentioned by C is at least

n/2 − (n/4 − 1)
n + 1 ≥ 1/4.

Suppose that x is mentioned by C through a literal p. When x is about to be assigned to a
hole, there are at least n/2−(n/4−1) ≥ n/4 available ones that would result in ri satisfying p.
Therefore, the conditional probability that ri satisfies C given that the assignments r1, . . . , ri−1
do not satisfy C is at least 1/16. As a result,

Pr[R ̸|= C] < (1 − 1/16)n/4 ≤ 2−n/64.

Suppose that N < 2n/64. Let ∆ be the set of all the wide clauses appearing in Π. By
the union bound, Pr[R ̸|= ∆] < 1. Thus, there exists a partial matching ρ of n/2 pigeons to
holes such that ρ |= ∆. Also, observe that ρ |= Σ because we have Σ ⊆ ∆ by Lemma 17.

Since resolution is closed under restrictions, when we restrict the proof Π under ρ we
obtain a resolution proof of (BPHPn ∪ Σ)|ρ = (BPHPn)|ρ without any wide clauses, which
contradicts Lemma 16. ◀

4 Separations using guarded extension variables

From this point on, given a formula Γ, we use (Λ, Π) to denote the minimum-size ER proof
of Γ,8 where Λ is the union of a sequence of t(Γ) := |Λ|/3 sets of extension clauses such that
the ith set λi is of the form {xi ∨ pi, xi ∨ qi, xi ∨ pi ∨ qi}. We thus reserve

{
x1, . . . , xt(Γ)

}
as the set of extension variables used in Λ. We assume without loss of generality that the
variables of pi and qi are in var(Γ) ∪ {x1, . . . , xi−1} for all i ∈ [t(Γ)].

4.1 Separation of RAT− from SBC−

Let Γ be a formula and (Λ, Π) be the minimum-size ER proof of Γ as described above.
Consider the transformation

G(Γ) := Γ ∪
t(Γ)⋃
i=1

[
(xi ∨ Γ) ∪ (xi ∨ Γ)

]
, (1)

where x1, . . . , xt(Γ) are the extension variables used in Λ.
It becomes possible to prove G(Γ) in RAT− by simulating the ER proof of Γ using the

extension variables present in the formula, resulting in the following.

8 We refer to the minimum-size proof with the assumption of having fixed some way of choosing a proof
among those with minimum size.
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▶ Lemma 19 ([23, Lemma 5.1]). For every formula Γ, sizeRAT−(G(Γ)) ≤ sizeER(Γ).

For SBC−, the formula G(Γ) is at least as hard as Γ. We need the following definition
before we prove this fact.

▶ Definition 20. The projection of a formula Γ onto a literal p is the formula

projp(Γ) := {C \ {p} : C ∈ Γ and p ∈ C}.

Our main tool in proving SBC− lower bounds against the constructions that incorporate
guarded extension variables is a version of the following characterization of blocked clauses,
which was already observed by Kullmann (see [16, Section 4]).

▶ Lemma 21 ([23, Lemma 3.15]). A clause C = p ∨̇ C ′ is a BC for p with respect to a
formula Γ if and only if the assignment C ′ satisfies projp(Γ).

Lemma 21 suffices for proving BC− lower bounds against G(Γ) (see [23, Lemma 5.2]);
however, for SBC− lower bounds we need the following result.

▶ Lemma 22. If a clause C = L ∨̇ C ′ is an SBC for L with respect to a formula Γ, then for
every p ∈ L, the assignment L ∪ C ′ satisfies projp(Γ).

Proof. Suppose that C = L ∨̇ C ′ is an SBC for L with respect to Γ, let p ∈ L, and let
D′ ∈ projp(Γ). Then the clause D = p ∨̇ D′ is in Γ. Note that D ∩ L is nonempty. Then,
since C is an SBC for L, either D ∩ L is nonempty or C ′ ∪ (D \ L) is tautological.
Case 1: D ∩ L ̸= ∅. Since p /∈ L, the set D′ ∩ L also is nonempty; therefore L |= D′.
Case 2: C ′ ∪ (D \ L) is tautological. Since neither of C ′ and D \ L is tautological, their

union is tautological if and only if C ′ ∩ (D \ L) is nonempty. This implies in particular
that C ′ ∩ D′ is nonempty; therefore C ′ |= D′. ◀

Lemma 22 implies that if the projection of a formula onto a literal p is unsatisfiable, then,
with respect to the formula, no clause is set-blocked for any set that contains p.

The intuition behind the construction of G(Γ) is as follows. We incorporate the extension
variables into the formula while having Γ be the projection for each added literal. Thus, if
Γ is unsatisfiable, we render the extension variables useless in set-blocked clause additions
with respect to G(Γ) while still allowing RAT− to take advantage of them. In particular, it
becomes unnecessary for a set-blocked clause C with respect to G(Γ) to include any of the
extension variables present in the formula. This is because every such clause C has some
subset C ′ without any of the extension variables that is still set-blocked with respect to G(Γ).
Moreover, since Γ ⊆ G(Γ), the clause C ′ is set-blocked also with respect to Γ. The alternative
way to use the extension variables in G(Γ) is to derive xi from xi ∨ Γ, but this involves
proving Γ. When Γ is hard for SBC−, we leave no way for SBC− to make any meaningful use
of the extension variables to achieve a speedup. In the end, an SBC− proof of G(Γ) might as
well ignore the extension variables present in the formula, falling back to an SBC− proof of Γ.

▶ Lemma 23. For every formula Γ, sizeSBC−(G(Γ)) ≥ sizeSBC−(Γ).

Proof. When Γ is satisfiable, the inequality holds trivially, so suppose that Γ is unsatisfiable.
Suppose that G(Γ) has an SBC− proof of size N . By Lemma 15, we may view such a proof

as a resolution proof of the formula G(Γ) ∪ Σ, where Σ is a set of clauses derivable from G(Γ)
by a sequence of set-blocked clause additions without new variables. Let X =

{
x1, . . . , xt(Γ)

}
denote the set of extension variables incorporated into G(Γ), and consider an assignment α

defined as

α(v) =
{

1 if v ∈ X

undefined otherwise.
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By Lemma 5, there exists a resolution proof of the formula (G(Γ) ∪ Σ)|α = Γ ∪ Σ|α of size
at most N − |Σ|. We claim that the clauses in Σ|α can be derived in sequence from Γ by
set-blocked clause additions, which implies that there exists an SBC− proof of Γ of size at
most N .

Let S = (C1, . . . , Cr) be the ordering in which the clauses of Σ are derived from G(Γ). We
will show that if we restrict each clause in S under α and remove the satisfied clauses, then
the remaining sequence of clauses can be derived from Γ in the same order by set-blocked
clause additions. More specifically, the goal is to prove that for all i ∈ [r] such that α does
not satisfy Ci, the clause Ci|α is set-blocked with respect to Γ ∪ Φi−1|α, where

Φi−1 :=
⋃

j∈[i−1]

{Cj}.

Let i ∈ [r], and consider the clause Ci, which we write as C from this point on. Suppose
that α does not satisfy C, so the variables from X can occur only negatively in C. Let
L ⊆ C be a subset for which C is set-blocked with respect to G(Γ) ∪ Φi−1. We will prove
that C|α is set-blocked for L|α with respect to both Γ and Φi−1|α, which, by the definition
of a set-blocked clause, implies that C|α is set-blocked with respect to Γ ∪ Φi−1|α.

Before proceeding, observe that L cannot contain any variables from X: If some xi is
in L, then the assignment L ∪ (C \ L) satisfies projxi

(G(Γ)) = Γ by Lemma 22. Since Γ is
unsatisfiable, no such assignment exists. Therefore, L cannot contain xi, which implies that
L|α = L.
C|α is set-blocked for L with respect to Γ: Since Γ ⊆ G(Γ), the clause C is set-blocked

for L in particular with respect to Γ. Noting that the variables from X do not occur in Γ,
we conclude that C|α also is set-blocked for L with respect to Γ.

C|α is set-blocked for L with respect to Φi−1|α: Consider an arbitrary D′ ∈ Φi−1|α,
which is the restriction under α of some clause D ∈ Φi−1 that α does not satisfy.
Suppose D′ ∩ L ̸= ∅ and D′ ∩ L = ∅. We need to show that (C|α \ L) ∪ (D′ \ L) is
tautological.
Since D′ ⊆ D, we immediately have D ∩ L ̸= ∅. Now, recall that the variables from X

do not occur in L, and observe that D′ is simply D with the variables from X removed.
We thus have D ∩ L = ∅. Then, because C is set-blocked for L with respect to Φi−1, the
set E = (C \L) ∪ (D \L) must be tautological. A variable that occurs both positively and
negatively in E cannot be from X, since in that case α would satisfy C or D. Therefore,
the set (C|α \ L) ∪ (D′ \ L) also is tautological. ◀

Invoking Lemmas 19 and 23 with Γ as the bit pigeonhole principle gives us the separation.

▶ Theorem 24. The formula G(BPHPn) admits polynomial-size proofs in RAT− but requires
exponential-size proofs in SBC−.

Proof. Buss and Thapen [2, Theorem 4.4] gave polynomial-size proofs of BPHPn in SPR−,
which ER simulates.9 By Lemma 19, we have sizeRAT−(G(BPHPn)) = nO(1). Theorem 18
and Lemma 23 give sizeSBC−(G(BPHPn)) = 2Ω(n). Thus, the bit pigeonhole principle with
G applied to it exponentially separates RAT− from SBC−. ◀

9 It is also possible to deduce the existence of polynomial-size ER proofs of BPHPn from the fact that
the pigeonhole principle (PHPn) is easy for ER [4], combined with the observation that PHPn can be
derived from BPHPn in polynomial size in ER.



E. Yolcu 59:13

4.2 Separation of GER− from SBC−

We proceed in a similar way to the previous section. Let Γ be a formula and (Λ, Π) be the
minimum-size ER proof of Γ. Let m ∈ N+, and let

{y1, . . . , ym, z1, . . . , zm} ⊆ V \ var(Γ ∪ Λ)

be a set of 2m distinct variables. Consider

Vm(Γ) :=
t(Γ)⋃
i=1

m⋃
j=1

{xi ∨ yj ∨ zj , xi ∨ yj ∨ zj},

Wm(Γ) :=
m⋃

j=1

[
{yj ∨ zj} ∪ (yj ∨ Γ) ∪ (zj ∨ Γ)

]
,

Im(Γ) := Γ ∪ Vm(Γ) ∪ Wm(Γ), (2)

where x1, . . . , xt(Γ) are the extension variables used in Λ.
To prove Im(Γ) in GER− by simulating the ER proof of Γ, we essentially remove the

clauses in Vm(Γ), derive the extension clauses, and rederive Vm(Γ) by a sequence of blocked
clause additions.

▶ Lemma 25. For every formula Γ and every m ∈ N+, sizeGER−(Im(Γ)) ≤ sizeER(Γ).

Proof. Let (Λ, Π) be the minimum-size ER proof of Γ. We will show that the clauses
in Λ ∪ Vm(Γ) can be derived from Γ ∪ Wm(Γ) in some sequence by blocked clause additions,
which implies by Definition 13 that Λ is a blocked extension for Im(Γ).

Recall that extension clauses can be derived in sequence by blocked clause additions.
The formula Λ is an extension for Γ ∪ Wm(Γ), so we derive Λ by such a sequence. Next,
from Γ ∪ Wm(Γ) ∪ Λ, we derive the clauses in Vm(Γ) in any order. Let V ′ be a proper subset
of Vm(Γ), and let C be a clause in Vm(Γ) \ V ′. For some i ∈ [t(Γ)] and j ∈ [m], the clause C

is of the form p ∨ yj ∨ zj , where p is either xi or xi. With respect to Γ ∪ Wm(Γ) ∪ Λ ∪ V ′,
the clause C is blocked for yj since the only earlier occurrence of yj is the clause yj ∨ zj and
{p, zj , zj} is tautological. It follows by induction that we can derive Vm(Γ) from Γ∪Wm(Γ)∪Λ.
Thus, Λ is a blocked extension for Im(Γ).

Noting that Π is a resolution proof of Γ ∪ Λ and that Im(Γ) contains Γ as a subset, we
conclude that there exists a GER− proof of Im(Γ) of size |Λ| + |Π| = sizeER(Γ). ◀

For SBC−, the formula Im(Γ) stays at least as hard as Γ if fewer than 2m set-blocked
clauses are derived. As before, our goal is to render the added variables useless in set-blocked
clause additions.

We will eventually choose Γ to be hard for SBC−, which makes the literals yj and zj

useless in set-blocked clause additions. Moreover, the presence of the clause yj ∨ zj ensures
that if a clause is set-blocked for a set containing yj or zj , then the clause is a weakening
of yj ∨ zj . Such clauses are killed by assignments that set yj and zj to the same value.

We also need to consider the clauses that are set-blocked for sets containing the variables xi.
The projection of Im(Γ) onto xi or xi is the formula

⋃m
j=1{yj ∨ zj}, which has 2m minimal

satisfying assignments. Without deriving clauses that rule out all of those assignments,
SBC− proofs cannot use the variables xi in any meaningful way. Since the variables yj and zj

are rendered useless in set-blocked clause additions, the assignments can only be ruled out
one at a time, which forces SBC− proofs of Im(Γ) to either derive at least 2m clauses or
ignore the variables xi.
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▶ Lemma 26. For every formula Γ and every m ∈ N+,

sizeSBC−(Im(Γ)) ≥ min{2m, sizeSBC−(Γ)}.

Proof. Fix some m ∈ N+. When Γ is satisfiable, the inequality holds trivially, so suppose
that Γ is unsatisfiable.

Suppose that Im(Γ) has an SBC− proof of size N . By Lemma 15, we may view such a
proof as a resolution proof of the formula Im(Γ) ∪ Σ, where Σ is a set of clauses derivable
from Im(Γ) by a sequence of set-blocked clause additions without new variables. We claim
that if |Σ| < 2m, then there exists an SBC− proof of Γ of size at most N . This implies the
desired lower bound.

Let X =
{

x1, . . . , xt(Γ)
}

and U = {y1, . . . , ym, z1, . . . , zm} denote the two sets of variables
incorporated into Im(Γ). Consider a clause C = L ∨̇ C ′ that is set-blocked for L with respect
to Im(Γ). We start by inspecting the ways in which the variables from X ∪ U can occur in L:

We first consider the variables from U . If either yj or zj for some j ∈ [m] occurs in L, then,
by Lemma 22, the assignment L ∪ C ′ satisfies Γ since Γ is contained in the projections
of Im(Γ) onto the negations of these literals. Thus, since Γ is unsatisfiable, neither of
the literals yj and zj for any j ∈ [m] can occur in L. Moreover, if the literal yj occurs
in L, then, by Lemma 22, the assignment L ∪ C ′ satisfies zj since the clause yj ∨ zj is
in Im(Γ). In that case, since zj cannot occur in L, the literal zj must occur in C ′, which
implies that C contains the literal zj . Thus, if the literal yj occurs in L, then C contains
the literal zj . By a similar argument, if the literal zj occurs in L, then C contains the
literal yj . To summarize, if some variable from U is in L, then C is a weakening of some
clause in

⋃m
j=1{yj ∨ zj}.

Next, we consider the variables from X. For all j ∈ [m], define Aj := {yj , zj} (intended
to be viewed as an assignment). Let A = A1 × · · · × Am. Suppose that a literal p of
some xi is in L. Then, by Lemma 22, the assignment L ∪ C ′ satisfies the formula

projp(Im(Γ)) =
m⋃

j=1
{yj ∨ zj}.

This implies that if no variable from U occurs in L, then there exists some assignment β ∈
A such that β ⊆ C ′. We say C is a good clause if some variable from X occurs in L but
no variable from U occurs in L.

From this point on, suppose |Σ| < 2m. For each good clause E in Σ, choose a single
subset F ⊆ E such that F ∈ A. Let ∆ be the collection of those subsets. Since |∆| < 2m,
there exists some β ∈ A such that β /∈ ∆. Recall that for each j ∈ [m], the assignment β

sets exactly one of the variables yj and zj . Let β′ be the smallest assignment extending β

such that β′(yj) = β′(zj) for all j ∈ [m].

▷ Claim 27. Let C be a clause in Σ, and let L ⊆ C be a subset for which C is set-blocked
with respect to Im(Γ). If some variable from X ∪ U occurs in L, then β′ satisfies C.

Proof. Let C be a clause in Σ set-blocked for L ⊆ C with respect to Im(Γ). Suppose that
some variable from X ∪ U occurs in L. Then either var(L) ∩ U ̸= ∅ or C is a good clause.
Case 1: var(L) ∩ U ̸= ∅. Since C is a weakening of some clause in

⋃m
j=1{yj ∨ zj} and

β′(yj) = β′(zj) for all j ∈ [m], the assignment β′ satisfies C.
Case 2: C is a good clause. Let F be a subset of C such that F ∈ ∆. Since β /∈ ∆, there

exists some j ∈ [m] such that either yj ∈ β and zj ∈ F or zj ∈ β and yj ∈ F . We have
β′(zj) = 1 in the former case and β′(yj) = 0 in the latter. Either way, β′ satisfies F and
hence it also satisfies C. ◁
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Now, let α be the assignment defined as

α(v) =


1 if v ∈ X

β′(v) if v ∈ U

undefined otherwise.

The point of α is to set all of the variables from X ∪ U in such a way that kills all of the
clauses in Σ that are set-blocked for sets containing those variables, leaving behind only the
clauses that could also be derived in an SBC− proof of Γ.

The rest of the argument is similar at a high level to the proof of Lemma 23, so we will be
relatively brief. By Lemma 5, there exists a resolution proof of the formula (Im(Γ) ∪ Σ)|α =
Γ ∪ Σ|α of size at most N − |Σ|. We claim that the clauses in Σ|α can be derived in sequence
from Γ by set-blocked clause additions.

As before, let S = (C1, . . . , Cr) be the ordering in which the clauses of Σ are derived
from Im(Γ). We will prove that for all i ∈ [r] such that α does not satisfy Ci, the clause Ci|α
is set-blocked with respect to Γ ∪ Φi−1|α, where

Φi−1 :=
⋃

j∈[i−1]

{Cj}.

Let i ∈ [r], and consider the clause Ci, which we write as C from this point on. Let
L ⊆ C be a subset for which C is set-blocked with respect to Im(Γ) ∪ Φi−1. Suppose that
α does not satisfy C. Noting that α extends β′, by Claim 27, no variable from X ∪ U is
in L. As a result, L|α = L. We will prove that C|α is set-blocked for L with respect to both
Γ and Φi−1|α.
C|α is set-blocked for L with respect to Γ: Since Γ ⊆ Im(Γ), the clause C is set-blocked

for L in particular with respect to Γ. No variable from X ∪U occurs in Γ, so the clause C|α
also is set-blocked for L with respect to Γ.

C|α is set-blocked for L with respect to Φi−1|α: Consider an arbitrary D′ ∈ Φi−1|α,
which is the restriction under α of some clause D ∈ Φi−1 that α does not satisfy.
Suppose D′ ∩ L ̸= ∅ and D′ ∩ L = ∅. We need to show that (C|α \ L) ∪ (D′ \ L) is
tautological.
We have D ∩ L ̸= ∅ because D′ ⊆ D. Recall that no variable from X ∪ U is in L, and
observe that D′ is simply D with the variables from X∪U removed. This implies D∩L = ∅.
Now, because C is set-blocked for L with respect to Φi−1, the set E = (C \ L) ∪ (D \ L)
must be tautological. A variable that occurs both positively and negatively in E cannot be
from X∪U , since in that case α would satisfy C or D. Therefore, the set (C|α\L)∪(D′\L)
also is tautological. ◀

Invoking Lemmas 25 and 26 with a suitable choice of m and with Γ as the bit pigeonhole
principle gives us the separation.

▶ Theorem 28. For every unsatisfiable formula Γ, let m(Γ) := ⌈log(sizeSBC−(Γ))⌉ and define
K(Γ) := Im(Γ)(Γ). The formula K(BPHPn) admits polynomial-size proofs in GER− but
requires exponential-size proofs in SBC−.

Proof. Buss and Thapen [2, Theorem 4.4] gave polynomial-size proofs of BPHPn in SPR−,
which ER simulates. By Lemma 25, we have sizeGER−(K(BPHPn)) = nO(1). Theorem 18
and Lemma 26 give sizeSBC−(K(BPHPn)) = 2Ω(n). Thus, the bit pigeonhole principle with
K applied to it exponentially separates GER− from SBC−. ◀
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