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Abstract
Back in 1970’s, E. F. Codd worked on a prototype of a natural language question and answer
application that would sit on top of a relational database system. Soon, natural language interfaces
for databases (NLIDBs) became the holy grail for the database community. Different approaches
have been proposed from the database, machine learning and NLP communities. Interest in the
topic has had its peaks and valleys. After a long and adventurous journey of almost 50 years,
there is a rekindled interest in NLIDBs in recent years, fueled by the need for democratizing data
access and by the recent advances in deep learning and natural language processing in particular.
There is a surge of works on natural language interfaces for databases using neural translation, and
suddenly it becomes hard to keep up with advancements in the field. Are we close to finding the holy
grail of data access? What are the lurking challenges that we need to surpass and what research
opportunities arise? Finally, what is the role of the database community?
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1 Introduction

E. F. Codd, the father of relational databases, said that “If we are to satisfy the needs
of casual users of databases, we must break the barriers that presently prevent these users
from freely employing their native language” [11]. Throughout the 1970s, he worked on a
prototype of a natural language question and answer application that would sit on top of a
relational database system, called Rendezvous. Rendezvous allowed a user with no knowledge
of database systems – and even limited knowledge of a given database’s content – to engage
in a dialog with the system. Almost 50 years after, natural language interfaces for databases
(NLIDBs) are into the spotlight.

NLIDBs or natural language data interfaces are appealing for a number of reasons [3].
They are more suitable for occasional users, alleviating the need for the user to spend time
learning the system’s query language to access data. Some questions are easier expressed in
natural language (e.g., questions involving negation, or quantification). Moreover, natural
language (NL) questions can be brief and support anaphoric and elliptical expressions, where
the meaning of each question is complemented by the discourse context.

The first NLIDBs appeared back in the sixties. For instance, LADDER was developed as
a management aid to Navy decision makers [31]. These early systems interfaced application-
specific non-SQL database systems, and they could not be used with different data. Several
approaches have followed over the years focusing on translating NL questions to SQL over
relational data. Industrial systems also made their appearance. For example, in the late
90’s, Microsoft SQL Server shipped with the English Query feature. Some systems enabled
keyword searches. They relied on data indexes to find relations that contained the query
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keywords and on the database schema to join them and return the answer to a query (e.g.,
[32, 51]). Parsing-based approaches parsed the input question to understand its grammatical
structure and then map it to the structure of the desired SQL query (e.g., [47, 77]).

Recently, the use of deep learning techniques, and in particular LLMs, has given a great
boost in the development of NLIDBs [22, 27, 38, 48, 56, 86]. The creation of two large datasets,
WikiSQL [86] and Spider [81], for training NLIDBs has brought several developments in
this field, with new systems popping up like mushrooms. These have popularized the term
Text-to-SQL (or NL-to-SQL) to refer to NLIDBs that focus on translating NL questions
to SQL. For the first time, it seems possible that technological barriers can be broken and
human-like interaction with data can become a reality.

2 The Inherent Challenges of Natural Language

While using natural language as a query language appears very appealing, it also brings
challenges in query understanding and answering that standard database query languages,
such as SQL, are free of, by design. These challenges, however, plague NLIDBs.

Ambiguity. Natural language is ambiguous for human-computer interaction. Ambiguity
allows more than one interpretation. Unfortunately, there are several types of ambiguity that
a NLIDB needs to resolve [25]. For example, “Paris” may refer to the city or a person (lexical
ambiguity). The question “Find all German movie directors” can be parsed into “directors
that have directed German movies” or “directors from Germany that have directed a movie”
(syntactic ambiguity). The question “Are Brad and Angelina married?” is an example of
semantic ambiguity, as it is unsure if it means they are married to each other or separately.
Context-dependent ambiguity refers to a term having different meanings in different contexts.
For example, “top” in “top scorer” means the highest (total) number of goals, while in “top
movies”, it signifies the greatest rating. As a result of ambiguity, there may be multiple
potential interpretations of a natural language query. Generating and processing them takes
a toll on the system efficiency. It also affects the system’s effectiveness, i.e., its ability to find
which interpretation captures the user intent and correctly answer the user query.

Paraphrasing. Completely different words or sentences can have the same meaning. For
instance, “How many people live in Amsterdam?” and “What is the population of Ams-
terdam?”. Dealing with different NL utterances (paraphrasing) is a challenge, as each one
may need different handling. For instance, the second NL query may be easier for a system
because it is likely that a population attribute exists in the database schema.

Inference. A natural language sentence may not contain all information needed for a system
to fully understand it. In elliptical queries, one or more words are omitted but can still be
understood in the context of the sentence. An example is “Who was the president before
Obama”. The fact that the query refers to US presidents needs to be inferred. In follow-up
questions, which are common in conversations between humans, missing information can be
understood in the context of the dialog. We ask a question, receive an answer, and then ask
a follow-up question assuming that the context of the first question is known. For example,
“Q: Which is the capital of Germany?”, “A: Berlin”, “Q: What about France?”. The system
has to infer that the user is asking for the capital of France.
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User mistakes. Spelling, syntactical or grammatical errors can be understood by a human
but are hard to be recognized and ignored by a system. For example, if the user asks for
“movies by Brad Bitt”, can the system recognize that the user refers to Brad Pitt, and make
the necessary correction, and not to a Brad Bitt that the system does not happen to know
based on the underlying data?

3 A trip down Memory Lane

Prototype NLIDBs appeared in the late sixties and early seventies [12, 63]. For example,
Lunar [74] was a natural language interface to a database with chemical analyses of moon
rocks. LADDER [31] used semantic grammars, a technique that interleaves syntactic and
semantic processing. Early eighties witnessed a lot of research on NLIDBS [3]. For instance,
Chat-80 was implemented entirely in Prolog [72]. It transformed English questions into
Prolog expressions, which were evaluated against a Prolog database. A number of commercial
systems, such as IBM’s LanguageAccess [53] and Intellect [28] from Trinzic, appeared.

Some of the early systems relied on pattern-matching techniques to answer the user’s
questions (e.g., [36]). A primitive pattern-matching system could use rules like:

pattern: ... “capital” ... <country>
action : Report Capital of row where Country = <country>

This rule says that if a user’s request contains the word “capital” followed by a country
name (i.e., a name appearing in the Country column), then the system should locate the row
which contains the country name, and print the corresponding capital.

Syntax-based systems used a grammar that described the possible syntactic structures of
the user’s questions (e.g., Lunar [74]). A user question would be first parsed (i.e. analysed
syntactically) resulting in a syntax tree like the one shown in Figure 1. Then, the resulting
parse tree would be directly mapped to a query in some database query language. To perform
this mapping, the system would use specific mapping rules that would specify how each part
of the tree would map to a part of the database query. These syntax-based NLIDBs usually
interfaced to application-specific database systems that provided database query languages
carefully designed to facilitate the mapping from the parse tree to the database query. At
this point, it was usually difficult to devise mapping rules to transform directly the parse
tree into some expression in a real-life database query language (e.g. SQL) [3].

Figure 1 An example syntax tree from Lunar [3].

In semantic-grammar systems (e.g., LADDER [31], EUFID [63]), the question-answering
is still done by parsing the input and mapping the parse tree to a database query. The
difference is that the grammar categories (i.e., the non-leaf nodes that will appear in the
parse tree) would correspond to semantic concepts (e.g., Substance, Radiation, or Specimen)
instead of syntactic constituents (e.g., noun-phrase, noun, sentence). An example tree is
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shown in Figure 2. Semantic grammars contain hard-wired knowledge about a specific
knowledge domain, and semantic grammar categories are usually chosen to enforce semantic
constraints. Since the grammar is domain-specific, such systems are very difficult to port to
other knowledge domains.

Figure 2 An example semantic tree [3].

Most recent systems in that period would first transform the natural language question
into an intermediate logical query, that expresses the meaning of the user question in
terms of high-level world concepts, which are independent of the database structure. The
logical query is then translated to an expression in the database query language (e.g.,
CLE [2], TEAM [26]). For example, the Essex system [15] used a principled multi-stage
transformation process: the system first generated a logic query, expressed in a version of
untyped λ-calculus, which was then transformed into a first-order predicate logic expression,
which was subsequently translated into universal-domain relational calculus, domain relational
calculus, tuple relational calculus, and finally SQL.

In many systems, the syntax rules linking non-terminal symbols (non-leaf nodes in the
parse tree) and the corresponding semantic rules are domain-independent; i.e., they could be
used in any application domain. The information, however, describing the possible words (leaf
nodes) and the logic expressions corresponding to the possible words is domain-dependent,
and has to be declared in the lexicon. The logic query does not refer to database objects (e.g.
tables, columns), and it does not specify how to search the database to retrieve the necessary
information. In order to retrieve the information requested by the user, the logic query has
to be transformed into a query expressed in some database query language supported by the
underlying DBMS, using the mapping to database information.

Figure 3 captures the evolution of systems during this period. In early NLIDBs, the
syntax/semantics rules were based on rather ad hoc ideas, and expressed in idiosyncratic
formalisms. In the nineties and later, systems follow some representation-based approach
and adopt advances in the general natural language processing field, for better syntactic and
semantic parsing and interpretation.

4 The Database-Way Era

After 2000, the next 15 years witness the emergence of systems that focus on translating
keyword or NL queries to SQL. They adopt the general architecture shown in Figure 4 [25].

The parser is responsible for gathering linguistic information on the user query. Its output
varies in complexity ranging from a simple set containing meaningful keywords (e.g., movie,
actor, “Brad Pitt”) (e.g., Discover [33]), to a fully structured parse tree (e.g., NaLIR[47]).



G. Koutrika 1:5

Figure 3 Early NLIDBs system architectures.

The entity mapper is responsible for mapping the terms extracted by the Parser to
database elements. Some systems use inverted indexes to map the query terms to values
in the database (e.g., Discover [33]). Others also search the database metadata, such as
relation and attribute names (e.g., DiscoverIR[32]). NaLIR [47] also identifies the nodes in
the parse tree that can be mapped to SQL elements (select, operator, function, quantifier
and logic nodes) using a knowledge base of phrases – for example, the function node COUNT
corresponds to the phrase “number of”.

The interpretation generator infers the semantics of the query as a whole. Dependencies
between terms and phrases are analyzed in order to extract joins, aggregate functions,
comparisons, etc., depending on the operations that every NLIDB system supports. The
output is an intermediate well-defined structured format that captures the meaning of the
query and the order of the operations to be done. This intermediate representation is an
interpretation of the query from the system’s perspective. Intermediate representations are
useful because they are easier to modify, manipulate, and rank, as opposed to SQL queries.
Ambiguity at the term level can be transferred from the output of the entity mapper, due to
multiple mappings for a term. Ambiguity also exists in the linguistic dependencies between
terms, in the extraction of joins, in the order of the operations, and so forth. As a result, the
output of this step may be multiple candidate interpretations ranked according to how well
the system thinks an interpretation captures the user intent.

Indexes and knowledge bases are used by the entity mapper and interpretation generator.
The database inverted indexes are used to map input terms extracted by the parser to
database values. Knowledge bases are additional sources that a system can exploit to
understand the query, such as dictionaries containing word definitions and context-specific
definitions, synonym lists, grammar rules and syntactic patterns.

The SQL translator & executor translates the intermediate interpretation to SQL. This
task heavily depends on the quality of the highest ranked interpretations, since only a
selected few are executed. Each system has its own set of rules to convert an intermediate
representation into a syntactically correct SQL query. Some systems may rank the results
returned by every query, which means that the tuples returned by one query do not always
adopt the score of that query that produced them, but may have their own ranking.

These approaches bring the following notable novelties (a detailed experimental evaluation
of representative systems sheds light into their capabilities [25]):
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Figure 4 Database NLIDBs system architecture.

(1) A database mapping problem. Query translation is viewed as a database mapping
problem: mapping query terms to database elements (tables, columns and values) and
finding the desired interconnections of these data elements that capture the user intent.
For this reason, the entity mapper, which maps the query terms to database elements,
comes right after the parser as a crucial step towards understanding the query from the
perspective of the database. Together, they ensure that the final SQL will be semantically
correct. Note that, in earlier, representation-based, systems, this mapping would happen at
a later stage through the semantic interpreter (using rules and some model of the world).
Discover [33] introduced the concept of generating query interpretations as subgraphs of the
database schema graph, called joining networks or (trees), adopted by several systems (e.g.,
DiscoverIR [32], Spark [51], SODA [4]). The interpretation generator constructs multiple
joining networks that connect the relations that contain the query terms through edges that
are the primary key-foreign key relationships between them. Précis [41, 62] extended the
concept of joining networks and introduced the logical database subset that contains not
only items directly related to the given query keywords but also items implicitly related to
them, with the purpose of providing to the user greater insight into the data. ATHENA [57]
translated the input natural language query (NLQ) into an intermediate query language over
a domain ontology, which was subsequently translated into SQL.

(2) Query disambiguation. Dealing with the ambiguity of natural language is important
for these systems. Query disambiguation is performed at two levels: interpreting a single
term (entity mapper), and interpreting the whole query (interpretation generator). A query
term may have multiple potential mappings to database elements. The entity mapper may
assign a score to each possible mapping – for example, an information retrieval-style score
(e.g., [32]) – in order to distinguish between likely and not likely mappings. On the other
hand, terms may not map directly to any database element due to synonyms and non-exact
matches. The system may attempt to find the closest mappings using a knowledge base with
synonyms (e.g., SODA [4]), or a string similarity algorithm (e.g., NaLIR[47]). To minimize the
chances of ambiguity and properly interpret the query intent, some systems impose stricter
syntactic constraints on their input (e.g., [4], [83]). The position of the keywords, functions
and operators matters and minor changes can alter the semantics or even render the query
incomprehensible. For example, a query could be “count movies actor “Brad Pitt””. Using
this approach, ExpressQ [83] was the first system to accept keyword queries with aggregate
functions and groupBy. The interpretation generator may rank query interpretations using
simple ranking schemes, like the size of the joining network (Discover [33]), the sum of
term scores normalized by the tree size ([32]) or a function of the edge weights [62]. More
elaborated formulas have been used. For example, Spark [51] models a joining tree as a
virtual document, and computes its score as a function of an information retrieval score, a
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Figure 5 Neural NLIDBs system architecture.

completeness factor that quantifies how many different query keywords are included in the
tree, and the tree size. NaLIR [47] ranks query interpretations based on: (i) the number of
parse tree nodes that violate the grammar, (ii) the mappings between the parse tree nodes
and the database elements that can help infer the desired structure of a parse tree, and (iii)
the similarity to the original linguistic parse tree.

(3) Execution-coupled translation. A characteristic of these systems is that they are
responsible not just for translating the query but also for generating the final response to
the query. The SQL translator & executor ensures the syntactic correctness of the generated
SQL queries. The response is ranked according to how well it matches the user query. A lot
of effort has been put into the execution algorithm, aiming to return the top-k results faster.
To achieve this, heuristics are applied to stop the execution without materializing all the
possible joining trees (e.g., DiscoverIR [32]), or accessing fewer parts of the data (Spark [51]).
Précis [41] progressively populates the relations in a logical subset to reduce the number of
database rows fetched to the ones needed in the answer. ⌟

Early systems of this period are keyword-based, adopting the fundamental characteristic
of search engines [1]. NaLIR [47] supported NL queries and used the Stanford Parser [14] to
generate a dependency parse tree, where nodes represent the terms and edges represent the
linguistic relationships between them. Its interpretation generator corrected any possible
flaws in the structure of the parse tree to make it grammatically valid. ATHENA++ [59]
combines linguistic patterns from NL queries with deep domain reasoning using ontologies to
enable nested query detection and generation for specific domains.

5 The Deep Learning Era

If in the end of the nineties, “the development of NLIDBs is no longer as fashionable a
topic within academic research” [3], after 2017, there has been an explosion of works on
NLIDBs [38, 37]. These approaches tackle the text-to-SQL problem as a language translation
problem, and train a neural network on a large amount of {NL query/SQL} pairs [38].

Figure 5 shows the architecture of a neural NLIDB [38]. In its core lies the neural network
that typically follows an encoder-decoder architecture. The encoder takes one or more inputs
of variable shapes and transforms them into one or more internal representations with fixed
shapes that are consumed by the decoder. Additionally, the encoder usually infuses the
representation of each input with information from the rest of the inputs, so as to create
a more informed representation that better captures the instance of the problem at hand,
through a mechanism called neural attention. The decoder uses the representations calculated
by the encoder and makes predictions on the most probable SQL query (or parts of it).

Given that the inputs of an NLIDB are mainly textual, the natural language representation
creates an efficient numerical representation of the input that can be accepted by the encoder.
Early systems used pre-trained word embeddings for NL representation, such as GloVe [54]
(e.g., SQLNet [75], IncSQL [61]). Recent systems rely on Pre-trained Language Models (PLMs)
such as BERT [16] (e.g., HydraNet [52], ValueNet [7]), that provide better representations.
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Apart from the NL question, the inputs to an NLIDB may include table and column
names, values, primary-to-foreign key relationships and relationships between columns and
tables. Input encoding structures the inputs so that the encoder can process them. Options
range from encoding each column with the NL query separately as in HydraNet [52] to
schema graph encoding (e.g., RAT-SQL [68]). Output decoding consists of designing the
structure of the predictions that the network will make, as well as choosing the appropriate
network for making such predictions (e.g., a SQL query can be viewed as a simple string, or
as a structured program which follows a certain grammar).

Neural NLIDBs have the following notable features (see [38] for a detailed survey):

(1) A neural translation problem. Viewing the problem as a language translation one,
neural text-to-SQL systems take as input a NL query and return a SQL query. Depending
on how their decoder generates the output, they can be divided into three categories [10]:
(a) sequence-based, (b) sketch-based slot-filling, and (c) grammar-based approaches.

Sequence-based approaches generate the predicted SQL, or a large part of it, as a sequence
of words (comprising SQL tokens and schema elements) [8, 50, 86]. Seq2SQL [86] was one of
the first neural networks created specifically for the text-to-SQL task and was based on a
previous work focusing on generating logical forms using neural networks [17]. The system
predicts an aggregation function and the column for the SELECT clause as classification
tasks and generates the WHERE condition clause using a seq-to-seq network. The latter
network is burdened with generating parts of the query and can lead to syntactic errors,
which is its major drawback. The network architecture combines LSTM and linear layers,
and its inputs are represented as GloVe embeddings. More recent sequence-based approaches
are more effective thanks to the use of large pre-trained seq-to-seq Transformer [67] models
(e.g., T5 [55], BART [46]) and the use of smarter decoding techniques that constrain the
predictions of the decoder and prevent it from producing invalid queries (e.g., PICARD [58]).

Sketch-based slot-filling approaches (e.g., XSQL [30], SQLOVA [35], HydraNet [52],
SQLNet [75]) consider a query sketch with a number of empty slots that must be filled in,
and use neural networks to predict the most probable elements for each slot, such as the
table columns that appear in the SELECT clause. In this way, the SQL generation task
is transformed into a set of classification tasks. SQLNet [75], one of the first sketch-based
approaches, was based on the observation that the way Seq2SQL [86] chose to generate
the WHERE clause was prone to errors that could be avoided. For this reason, a set of
query sketches were developed and separate neural networks were created to fill each type
of slot. While dividing the text-to-SQL problem into small sub-tasks makes it easier to
generate syntactically correct queries, sketch-based approaches have two drawbacks. Firstly,
the resulting neural network architecture may end up being quite complex since dedicated
networks may be used for each slot or part of the query. Furthermore, it is hard to extend to
complex SQL queries, because generating sketches for any type of SQL query is not trivial.

Grammar-based approaches (e.g., RyanSQL [10], IRNet [27], IncSQL [61], Rat-SQL [68])
produce a sequence of grammar rules instead of simple tokens in their output. These grammar
rules are instructions that, when applied, can create a structured query. The most often used
grammar-based decoders by text-to-SQL systems have been previously proposed for code
generation as an Abstract Syntax Tree (AST) [78, 79]. These models take into account the
grammar of the target code language (in our case, the SQL grammar) and consider the target
program to be an AST, whose nodes are expanded at every tree level using the grammar
rules, until all branches reach a terminal rule. When it reaches a terminal rule, the model
might generate a token, for example, a table name, an operator or a condition value, in the



G. Koutrika 1:9

case of text-to-SQL. The decoder uses a LSTM-based architecture that predicts a sequence
of actions, where each action is the next rule to apply to the program AST. Because the
available predictions are based both on the given grammar and the current state of the AST,
the possibility of generating a grammatically incorrect query is greatly reduced.

(2) Learning schema linking. Schema linking aims at the discovery of possible mentions
of database elements in the NL question. For this purpose, query candidates are extracted
from the question and are matched to database candidates from the underlying database.
Query candidates may be single words, n-grams (IRNet [27]), or named entities (ValueNet [7],
TypeSQL [80]). Database candidates are tables, columns, and values stored in the database.
To accelerate the search of discovered query candidates in the database values, indexes have
been widely used in earlier, non-neural, text-to-SQL systems [32, 47]. ValueNet [7] also
adopts this approach. The second part of schema linking is the process of mapping the query
candidates to database candidates. Each mapping is called a schema link. These discovered
schema links are fed into the neural network that is responsible for the translation.

The mapping can be performed using exact or partial matching (IRNet [27]) and approx-
imate string matching (ValueNet [7]). Text-to-SQL systems [5, 6] have also used learned word
embeddings from the area of semantic parsing [42]. The system learns word embeddings using
the words of the text-to-SQL training corpus and combines them with additional features
that are calculated using NER, edit distance and indicators for exact token and lemma
match. These embeddings are then used to calculate the similarity of query candidates to
DB candidates. While this approach is expensive, it allows for more flexible and intelligent
matching. Given the complexity of schema linking, it is also possible to train a model to
perform schema linking with better results. For example, a Conditional Random Field (CRF)
model [43] can be trained on a small group of hand-labelled samples to recognize column
links, table links and value links for numerical and textual values [8].

SDSQL [34] follows a very different approach. It is simultaneously trained on two tasks:
(a) the text-to-SQL task, similarly to all systems, and (b) the Schema Dependency Learning
task for discovering schema links using a deep biaffine network [18, 19]. In this case, the
schema links discovered by the system are not directly used for predicting the SQL query;
still, training for both tasks simultaneously has a positive effect on the system performance.

Neural Attention. While attention layers do not directly determine a match, they can
highlight connections between query and DB candidates, which can improve the system’s
internal representation and boost its performance. SQLNet [75] was the first system to
introduce such a mechanism, named Column Attention, that processes the NLQ and column
names and finds relevant columns for each word of the NLQ. PLMs based on the Transformer
neural architecture [67], which encapsulates an attention mechanism, have become very
popular for input encoding, greatly benefiting the accuracy of text-to-SQL systems (e.g., [58]).
RAT-SQL [68] proposed a modified Transformer layer, called Relation-Aware Transformer
(RAT), that biases the attention mechanism of the Transformer towards already-known
relations from the DB schema and discovered schema links.

(3) Output refinement. Output refinement can be applied on a trained model to avoid
producing incorrect SQL queries. Execution-guided decoding [70] can execute partially
complete SQL queries at prediction time and decide to avoid a certain prediction if the
execution fails or if it returns an empty output. Execution-guided decoding is system-
agnostic and can increase the system accuracy. Constrained decoding is a method for
incrementally parsing and constraining auto-regressive decoders, to prevent them from
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producing grammatical or syntactical errors (PICARD [58]). For each token prediction,
PICARD examines the generated sequence so far along with the k most probable next tokens
and discards all tokens that would produce a grammatically incorrect SQL query, use an
attribute that is not present in the DB at hand, or use a table column without having its
table in the query scope. Other systems with sequence-based decoders have proposed similar
decoding techniques to avoid errors (e.g., SeaD [76] and BRIDGE [50]).

(4) Datasets & evaluation. A text-to-SQL dataset (or benchmark) is a set of NL/SQL
query pairs defined over one or more databases, used to train and evaluate neural text-to-SQL
systems. Text-to-SQL datasets become a critical asset due to their integral role in enabling
the development of such systems and serving as a common reference for evaluation. Previous,
non-neural systems did not use common datasets, instead they employed a variety of small
datasets that combined different databases and query sets of varying size and complexity. The
lack of a common dataset to be used by different system evaluations impeded a fair system
comparison and a clear view of the text-to-SQL landscape in previous years. This situation
drastically changes with the emergence of WikiSQL [86] and Spider [81], in 2017 and 2018
respectively. These are the first large-scale, multi-domain benchmarks that made it possible
to train and evaluate neural text-to-SQL systems and provided a common tool to compare
different systems easily. While other benchmarks have followed (e.g., [9, 24, 44, 49, 84]),
these two remain the most popular ones. ⌟

The first neural NLIDBs (e.g., [75, 86]) could generate simple queries over single tables
of the WikiSQL dataset. Recent systems [7, 27, 68] can generate complex SQL queries
over relational databases and achieve high performance scores on Spider. Schema linking
is not always an explicit component of a neural NLIDB. Systems such as Seq2SQL [86],
SQLNet [75], and HydraNet [52] do not perform schema linking, relying mainly on the neural
network to correctly translate the NL question over the underlying data. However, it is
not clear whether pre-trained neural architectures defy the need for schema linking. On
the other hand, there is little evidence on how fast and scalable schema linking approaches
are, especially for very large databases, with the exception of DBTagger [66] that provides
experimental insights into the time and memory requirements of its schema linking approach.

Most systems do not ensure that the generated SQL is syntactically correct (e.g.,
Seq2SQL [86], SQLNet [75], HydraNet [52], IncSQL [61], RyanSQL [10]). Output refinement
can be applied on a trained model to avoid producing incorrect SQL queries. However, it
adds an additional burden to the system and increases the time needed to generate a SQL
query. Its effectiveness versus the incurred overhead are yet to be studied.

The remarkable rise of neural NLIBDs has not been followed by their widespread adoption
in commercial products yet. There are many obstacles on the way to deliver the promise
of truly enabling accessing data using natural language. A significant one is their view of
the text-to-SQL problem as a language translation problem and their focus on translation
accuracy over a specific dataset [29]. This is one side of the coin though, as we explain next.

6 Not (just) a Language Translation Problem: The Role of SQL and
the Database Schema

Even if a system eliminated all linguistic problems and could perfectly understand a NL
query, additional challenges stem from the SQL expressivity and the schema of the data.

The language SQL was developed by IBM, as a human-friendly way to query relational
data. However, SQL is a structured language with a strict grammar, which leads to limited
expressivity when compared to natural language or other programming languages. For
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example, it lacks constructs for iteration and recursion, amongst other things. There are
queries that are easy to express in natural language, but their respective SQL is more complex
and less intuitive. For example, the query “Return the movie with the best rating” may be
mapped to a nested SQL query. While the original NL query is simple, building the complex
SQL query may be challenging for the system. Full natural language is more expressive than
single SQL queries. There are computationally reasonable queries that might be expressed in
NL, but which cannot be answered by a single SQL query. Finally, while a sentence in natural
language may contain mistakes, and still be understood by a human, a SQL query needs to
be syntactically and semantically correct to be executable over the underlying database.

The database schema also poses challenges. As one instance, a query like “Who is the
director of “Beautiful Mind” may hide implicit join operations due to database normalization.
Moreover, similar NL queries may need different processing on two different database schemas.
For example, in a university database, every person is either a Student or a Faculty member,
so these comprise two relations. On the other hand, movies have several genres that cannot
be stored as different tables. They are stored in a Genre relation and are connected with
movies through a many-to-many relationship. As a result, similar queries, such as “comedies
released in 2018” and “students enrolled in 2018” are handled differently. In the former case,
the system maps “comedies” to a value in the Genre table and joins it with the Movie table
whereas it just maps “students” to the Student relation in the latter case.

All these challenges make the text-to-SQL problem challenging. Not only it is difficult to
understand a NL query but it is also difficult to build the correct SQL query. Perhaps even
more critically, similar questions may lead to a different outcome over different databases:
one question may be successfully translated over one database and the other may not, due to
issues such as ambiguity, paraphrasing, and different database schemas. Neural approaches
addressing the problem as purely a language translation one ignore the particularities of the
problem that stem from SQL and the database schema. Not surprisingly though, database
approaches that view the text-to-SQL problem as mainly a database mapping one, also fall
short in appreciating its multi-dimensional nature. Both perspectives, neural and database,
have their merits to consider along their shortcomings in the quest of better NLIDBs.

7 Where we Stand: Limitations and Lessons Learnt

The systems that approach the text-to-SQL as a database mapping problem provide a more
grounded solution that leverages the underlying data and relationships to intrepret the NL
question and build an executable SQL query. They also include explicit methods for dealing
with query ambiguity both at the level of query terms as well as at the level of the query.
However, existing approaches struggle with more complex and diverse NL queries and cannot
easily cope with NL challenges, such as synonyms, paraphrasing and typos [25].

On the other hand, neural NLIDBs, often completely ignoring the underlying data,
promise to be more generalizable both in terms of the different types of NL queries the
methods can understand as well as the different databases they can work on thanks to their
extensive training. However, in practice, existing approaches focus on limited-scope problems
and their accuracy severely degrades with more complex and diverse NL and SQL queries
as well as complex databases [39]. They depend on training data and cannot cope with
unseen databases and queries. For example, Spider [81], which is very popular for training
and evaluating text-to-SQL systems, contains queries over 200 relational databases from
138 different domains. These are toy databases with simple schemas and small sizes not
resembling real-world databases. Moreover, most neural approaches support size-limiting
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input representations that cannot possibly leverage the wealth of a real-world database
comprising hundreds of tables and attributes. These limitations become highly relevant when
applying a text-to-SQL system to an actual database [29] used in a business, research or
any other real-world use case. Such databases can pose difficulties not encountered in the
datasets used to train and evaluate such systems, for example, a large number of tables and
attributes and table and column names that use domain-specific terminology. Last but not
least, models used so far are typically quite large, questioning their practical use 1.

8 The Challenges of NLIDBs

The challenges coming from the NL side and the challenges from the SQL and database side
combined create a set of novel and unique to NLIDBs challenges that haunt current efforts.

Query answerability: How to tell if the NL question can be answered or not and why.
For SQL queries, the answerability question can be answered deterministically based on two
checks: syntactic and semantic correctness. When a database receives a SQL query, the
parser checks whether the query adheres to the SQL syntax (syntactic parsing) and whether
it contains tables and columns that exist in the underlying database (semantic parsing).
Both checks are easy, fast, and conclusive. If the query contains any (syntactic or semantic)
error, the system stops query processing and informs the user of the exact problem that
makes the query unanswerable. The user can correct the query accordingly. In a NLIDB,
the query answerability question is more convoluted: does the NL question map to SQL that
captures the query intent and is executable over the underlying database? It is hard to define
a set of comprehensive checks needed but it is also hard to answer them always successfully.

Two important checks are still (a) semantic correctness, meaning that the concepts
mentioned in the query can be mapped to database columns and tables, and (b) syntactic
correctness of the generated SQL. In database approaches to NLIDBs, the entity mapper
performs the semantic parsing while the interpretation generator is responsible for the
syntactic parsing since it makes sure that syntactically correct SQL queries are generated.
Due to issues such as the language ambiguity, and the linguistic and conceptual gap between
how the user formulates the query and how the system stores the data, NLIDBs may fail to
recognize that a question is answerable. For instance, for the query “How many people live in
Amsterdam?”, a NLIDB may not link the population attribute in the database schema to
“How many people live”. A NLIDB may also fail to recognize that a NL question cannot be
answered, and still try to generate a SQL query. These problems are even more pronounced in
neural NLIDBs. Especially those that do not employ schema linking and output refinement
techniques are more prone to generate non-executable queries.

For NL questions, there have been some attempts to define query answerability devising
categories of unanswerable questions [69, 85]. For example, the calculation unanswerable
category requires mapping the concept mentioned in the user question to composite opera-
tions over existing table columns that are not known SQL operations or even user-defined
functions [69]. The out-of-scope category means that the question is out of SQL’s operation
scope, such as when the user requests for charts [69]. Improper to DB refers to questions
such as small talk or asking-opinion questions that are not proper to any databases [85].

Neural end-to-end parsing models ignore modeling questions in a fine-grained manner,
which results in an inability to precisely detect and locate the specific reasons for unanswerable
questions [69]. Furthermore, most existing text-to-SQL datasets used for training lack

1 The training cost as well as the energy consumption [60] of such big models are important concerns.
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ambiguous and unanswerable questions (e.g. Spider [81]) or if they contain, they are not
marked in a way that the system can recognize them and learn accordingly (e.g., WikiSQL [86]).
A NLIDB parsing system should detect answerable and unanswerable questions, and it should
locate the specific reasons and generate corresponding explanations to guide the user in
rectification. To that end, some recent efforts have emerged [82, 69]. For example, a weakly
supervised DTE (Detecting-Then-Explaining) model for error detection, localization, and
explanation [69] is trained on a dataset called TRIAGESQL [85].

Query coverage: What is the set of NL questions allowed. A NLIDB’s query capabilities
are not obvious to the user [25, 64]. Users find it difficult to understand what kinds of
questions the system can or cannot cope with. It is often not clear to the user whether a
rejected question is outside the system’s query coverage (what types of NL statements it
can recognize as queries that can be mapped to SQL), or whether it is outside the system’s
conceptual coverage (how the data is actually stored). Users are often forced to rephrase their
questions, until a form the system can understand is reached. In other cases, users never try
questions the NLIDB could in principle handle, because they think the questions are outside
the subset of natural language supported by the NLIDB. To frame the query coverage of
the system, some NLIDBs explicitly restrict the set of natural language expressions the user
is allowed to input, so that the limits of this subset are obvious to the user (e.g., the early
PRE [21], SODA [4] and ExpressQ [83]). Clearly, there is a trade-off for an NLIDB between:
(i) the usability and expressivity of natural language, and (ii) the reduction of ambiguity by
imposing a more structured input syntax, which may lead to higher effectiveness.

In order to understand and expand the query coverage of NLIDBs, benchmarks play
a critical role. Existing ones fail to address the question of what type of NL and SQL
queries a system can understand and build, respectively. One important reason for that
is the lack of a query categorization. Spider [81] has four very coarse-grained classes of
queries. The first organized effort to understanding the query coverage of a NLIDB is a
query benchmark [25] consisting of keyword and natural language queries over three datasets,
divided into 17 categories that aim to test the systems on specific linguistic and SQL aspects
of the problem of translating free-form queries to SQL. The authors also provide a full
experimental methodology that studies both the effectiveness (correctness of answers), and
the efficiency (execution time) of the systems.

Other benchmarks focus on testing specific query capabilities. For instance, Spider-
DK [24] extends Spider to explore system capabilities at cross-domain generalization (i.e.,
robustness to domain-specific vocabulary across different domains), while Spider-Syn [23]
focuses on robustness to synonyms and different vocabulary. TRIAGESQL [85] focuses
on the answerability problem and defines four types of unanswerable questions along with
answerable questions. Clearly, more effort is needed in coming up with benchmarks that can
provide clear insights into query coverage.

There are several types of queries that current benchmarks do not cover and neural systems
are not trained to answer. For instance, meta-knowledge questions are questions referring to
knowledge about knowledge (e.g., ASK [65]), such as “What information is in the database?”,
“What is known about ships?” [62] or “What are the possible employee job titles?” In modal
questions, the user asks whether something can or must be the case. For example: “Can a
female employee work in sales?” Furthermore, NLIDBs cannot answer temporal questions [3]
because they cannot cope with the semantics of natural language temporal expressions (e.g.
tenses/aspects, temporal subordinators), and they were designed to interface to “snapshot”
databases, that do not facilitate the manipulation of time-dependent information.
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Domain portability: How to cope with new domain knowledge. Early NLIDBs were each
designed for a particular database application. Lunar [74], for example, was designed to
support English questions, referring to a database of a particular structure, holding data
about moon rocks. Such application-tailored NLIDBs were very difficult to port to different
applications or databases. Different to the built-in formal query language interpreters
that commercial database systems come with, more recent NLIDBs usually require tedious
configuration phases before they can be used for a different database or domain. A knowledge
engineer needs to capture the domain knowledge, such as rules, knowledge bases or ontologies
(e.g., CLE [2], SODA [4], ATHENA [57]). The db administrator needs to create inverted
indexes (e.g., TEAM [26], DISCOVER [33]). Neural systems cannot make good predictions
for unseen NL questions and domains unless trained.

The top neural NLIDBs achieve high accuracy numbers on Spider. However, the majority
of databases in the Spider benchmark are of low complexity, and contain general knowledge.
Furthermore, most queries are simple without complex structures or operations. Neural
machine translation systems pre-trained on common knowledge datasets, like Spider, typically
fail in complex domains due to the large disparity in subject matter [84]. Real-world databases
often store large amounts of data with hundreds of attributes. These attributes may have
non-descriptive names or store numerical measurements (an example is the astrophysics
database called Sloan Digital Sky Survey (SDSS)2). Learning the mapping of a token from
a natural language question to the relevant database attribute may necessitate additional
training as well as ontologies that describe the meaning of attributes and tables. On top of
that, domain-specific queries may be more elaborate containing functions and mathematical
operators between attributes.

Given the difficulties that arise when creating an NL interface for a real-world database,
one approach is to build specialized, domain-specific benchmarks for training and evaluating
such systems. For instance, Spider-DK [24] extends Spider to explore system capabilities at
cross-domain generalization (i.e., robustness to domain-specific vocabulary across different
domains). BIRD [49] is a dataset with questions over large-scale databases that can better
represent real use-case scenarios. ScienceBenchmark [84] focuses on three real-world, highly
domain-specific databases. EHRSQL [45] contains questions over two databases related to
health records. Manually crafting a benchmark for a new domain requires domain-specific
expertise and is challenging due to the volume of data needed. Hence, an alternative approach
is data augmentation, i.e. automatic benchmark generation [84].

Verification: How to tell if the system response matches the NL question. A NLIDB
may generate queries in its output that contain errors and do not match the NL question’s
intent. For example, the output SQL may contain wrong columns or tables, values that are
not found in the data or they are found in a different form, unnecessary or wrong joins, and
so forth. Even when an NLIDB cannot understand a question or the query is not answerable,
the system may still try to generate a SQL query (as most neural systems do). Another
problem is that NL questions often have several readings, and the system may select a
reading of a question that is different from the reading the user had in mind. In these cases,
it may be hard for the user to understand that the system has actually answered a different
question. To avoid such misunderstandings, TQA [13] was a very early system that contained
a module that converted the SQL query back to natural language. Query explanations in
natural language provide a means for users to cross-check their question to the explanations
of the predicted SQL queries and validate the results [20, 40, 71].

2 https://www.sdss.org/

https://www.sdss.org/
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Efficiency. For a NLIDB, focusing on improving its query answering capabilities is only one
side of the coin. Its response time also matters for their adoption. It consists of two parts:
the NL translation time and the SQL execution time.

The NL translation time is an overhead to the overall query execution time that the user
will experience, and hence needs to be optimized. Unfortunately, current systems overlook
the significance of optimized execution, and employ methods that are time-consuming and
do not scale well to large databases. Neural NLIDBs typically rely on very complex models.
While the use of large PLMs usually translates to higher accuracy, it also translates to higher
inference times. Output refinement techniques are also adding extra overhead. For example,
one of the best-performing models on the Spider dataset, T5-3B+PICARD, uses a large PLM
along with a computationally-intensive output refinement technique [58]. Schema linking
also contributes to the overall translation time. These techniques have been shown to be
beneficial for systems working on the Spider dataset, but they have yet to be tested on
large-scale databases, where their overhead may be significant. Even though using indices
and other DB lookup techniques might speed up schema linking, it is still questionable if
looking up multiple words or n-grams for every NLQ, is efficient in a real application.

The SQL execution time is also important. A NL question may be written in SQL in
many equivalent but not equally efficient ways. It is the NLIDB’s responsibility to choose the
most efficient one. Current neural systems only focus on the translation. Early text-to-SQL
systems originating from the database community [32, 33, 47, 51, 83] not only tried to
generate correct SQL queries but also optimal in terms of execution speed. Hence, many of
them contained logic for generating code that would return the desired results fast.

A NLIDB should have a fast response time, even when the question cannot be interpreted.
Ultimately, allowing the user to express questions in natural language should free them from
the technical details of how this query should be expressed in the underlying system language
and how it should be executed efficiently.

Reasoning. Most NLIDBs are direct interfaces to the underlying database, in the sense
that they simply translate user questions to suitable database queries. In some cases, it may
not be possible to answer a natural language question, although all the necessary raw data
are present in the database. Questions involving common sense or domain expertise are
typical examples. In these cases, to produce the answer, the NLIDB must be able to carry
out reasoning based on the data stored in the database [3].

9 Looking Forward: From SQL to NQL

In practice, no modern DBMS comes with an integrated NL query language, nor does exist
a NL client that connects to a database seamlessly like an SQL client and allows a user to
pose queries in NL. Nevertheless, with the galloping progress of deep learning methods, the
emergence of LLMs and vector databases, and several other developments, many researchers
go as far as to envision that NQL (Natural Query Language) will replace SQL. In any
scenario, below, we discuss some requirements for a NQL (Natural Query Language) that
open up several fascinating research directions. Interestingly, such requirements have been
discussed in early systems before the advent of neural NLIDBs (e.g., [63]).

R1. Query expressivity: Using a query language such as SQL, the user knows exactly what
queries are possible. In a similar vein, the set of NL queries that a NLIDB supports
should be clearly defined so that a user is aware of the available query capabilities.
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R2. Data independence: A NLIDB should support the same query expressivity for different
databases. In other words, the same type of NL query should be possible over any
database. For example, if the user could ask “what is the average X of Y” in one database,
then this type of query should be possible in any other database.

R3. Performance: The system should transparently find the most efficient way to answer a
NL query, minimizing both the translation overhead and the query execution cost.

R4. Scalability: A NLIDB should be feasible and scalable over any database.

Requirement R1 is important because up to now almost none of the known text-to-SQL
systems provides a clearly defined query language or specification of its query capabilities. For
the user, it is a trial-and-error process to see what queries can be understood and answered
by the system. Is it possible to come up with a query language specification that systems
can refer to in order to describe their query expressivity?

Towards R1, a query categorization in the spirit of [25] may be a good starting point.
This could enable the creation of appropriate benchmarks for the comparison of the query
capabilities of different systems. Even devising an appropriate query categorization and an
appropriate benchmark raises several challenges: what categories to choose, what queries
should be in each category, which datasets to use. Furthermore, one should take into account
SQL equivalence (different SQL queries that return the same results), and NL ambiguity (a
NL query may have more than one correct translation over the data).

Requirement R2 complements R1 in saying that the same query expressivity should be
supported over any database. This comes naturally with query languages such as SQL. For
instance, SPJ queries can be supported over any data. For a NLIDB, that does not hold.
Going from one database to another, the same type of queries may not be supported. As we
have already pointed out, this is a major concern for neural systems.

One could build specialized, domain-specific benchmarks for training and evaluating text-
to-SQL systems for a new database. Manually crafting such benchmarks is time-consuming.
Data augmentation, i.e., automatic benchmark generation, is an open research direction [73].
However, benchmarks provide a means to demonstrate query expressivity. How does one
ensure data independence is a different beast and finding better training datasets is not the
solution to the problem. Rethinking the system design is needed instead.

Towards this direction, approaches that have been proposed by the database community
have been shown to be more effective from the data independence perspective, since they
rely on the information that the database provides. This potentially points to the need of
re-thinking our approach to the text-to-SQL problem. Some parts of the solution may require
DB methods to ensure data independence and some other parts may use neural models to
generalize system knowledge, for example on the diversity and complexity of NL queries.
How would a system that combines such capabilities look like?

Requirement R3 is about making NQL queries efficient. While the state-of-the-art systems
are still dealing with “getting the answer right”, they are mostly overlooking the “getting
the answer fast”. Improving translation speed by building efficient methods is necessary.
But this may not be enough. Text-to-SQL systems originating from the DB community not
only tried to generate correct SQL queries but also optimal in terms of execution speed.
Improving the overall NQL answering time, i.e., both the translation and the execution,
opens up several research opportunities, from building more efficient models to mapping
translation and execution to operators and building NQL query plans that can be optimized.
In fact, implementing natural language query capabilities closer to the DBMS would open up
several opportunities to leverage both worlds, the database and NLP, from NLQ otpimization
to learning and improving the system’s query capabilities.
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R4 highlights the need for realistic solutions. Deep learning text-to-SQL systems typically
rely on very complex models, which have been trained and evaluated on toy databases
(contained in existing benchmarks). In several cases, it may not be possible to have the
required resources to train such enormous models. Furthermore, since these models require
that the database schema is given as input, they do not scale well to very large databases,
with hundreds of attributes and tables (such as astrophysics and biological data). Instead
of focusing on increasing the model complexity aiming at translation accuracy, we need to
design solutions that also take into account system efficiency, complexity, and scale.

10 Conclusion

Querying data in natural language has been the holy grail of the database community for
several decades. Several efforts ended up in frustrated users with unmet expectations and
disappointed researchers and developers. Commercial products were given up. However,
the landscape has changed. On the one hand, technologies evolve and become increasingly
more powerful. On the other hand, people are becoming accustomed to interacting with
devices and software using natural language. In a few years, the way we interact with data
will probably be very different from what we know nowadays.
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