
On the Convergence Rate of Linear Datalog◦ over
Stable Semirings
Sungjin Im
University of California, Merced, CA, USA

Benjamin Moseley
Carnegie Mellon University, Pittsburgh, PA, USA

Hung Ngo
RelationalAi, Berkeley, CA, USA

Kirk Pruhs
University of Pittsburgh, Pittsburgh, PA, USA

Abstract
Datalog◦ is an extension of Datalog, where instead of a program being a collection of union of
conjunctive queries over the standard Boolean semiring, a program may now be a collection of
sum-product queries over an arbitrary commutative partially ordered pre-semiring. Datalog◦ is more
powerful than Datalog in that its additional algebraic structure alows for supporting recursion with
aggregation. At the same time, Datalog◦ retains the syntactic and semantic simplicity of Datalog:
Datalog◦ has declarative least fixpoint semantics. The least fixpoint can be found via the naïve
evaluation algorithm that repeatedly applies the immediate consequence operator until no further
change is possible.

It was shown in [10] that, when the underlying semiring is p-stable, then the naïve evaluation of
any Datalog◦ program over the semiring converges in a finite number of steps. However, the upper
bounds on the rate of convergence were exponential in the number n of ground IDB atoms.

This paper establishes polynomial upper bounds on the convergence rate of the naïve algorithm
on linear Datalog◦ programs, which is quite common in practice. In particular, the main result
of this paper is that the convergence rate of linear Datalog◦ programs under any p-stable semiring
is O(pn3). Furthermore, we show a matching lower bound by constructing a p-stable semiring
and a linear Datalog◦ program that requires Ω(pn3) iterations for the naïve iteration algorithm to
converge. Next, we study the convergence rate in terms of the number of elements in the semiring
for linear Datalog◦ programs. When L is the number of elements, the convergence rate is bounded
by O(pn log L). This significantly improves the convergence rate for small L. We show a nearly
matching lower bound as well.

2012 ACM Subject Classification Theory of computation → Database query languages (principles)

Keywords and phrases Datalog, convergence rate, semiring

Digital Object Identifier 10.4230/LIPIcs.ICDT.2024.11

Funding Moseley was supported in part by a Google Research Award, an Inform Research Award, a
Carnegie Bosch Junior Faculty Chair, and NSF grants CCF-2121744 and CCF-1845146. Pruhs was
supported in part by NSF grants CCF-1907673, CCF-2036077, CCF-2209654 and an IBM Faculty
Award. Im was supported in part by NSF grants CCF-1844939 and CCF-2121745.

1 Introduction

In order to express common recursive computations with aggregates in modern data analytics
while retaining the syntactic and semantic simplicity of Datalog, [10] introduced Datalog◦, an
extension of Datalog that allows for aggregation and recursion over an arbitrary commutative
partially ordered pre-semiring (POPS). Datalog is exactly Datalog◦ over the Boolean semiring.
Like Datalog, Datalog◦ has a declarative least fixpoint semantics, and the least fixpoint can

© Sungjin Im, Benjamin Moseley, Hung Ngo, and Kirk Pruhs;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Database Theory (ICDT 2024).
Editors: Graham Cormode and Michael Shekelyan; Article No. 11; pp. 11:1–11:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ICDT.2024.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 On the Convergence Rate of Linear Datalog◦ over Stable Semirings

be found via the naïve iteration algorithm that repeatedly applies the immediate consequence
operator until no further change is possible. Moreover, its additional algebraic structure
allows for common recursions with aggregations.

However unlike Datalog, the naïve evaluation of a Datalog◦ program may not always
converge in a finite number of steps. The convergence of a Datalog◦ program over a given
POPS can be studied through its “core semiring”, which is where we focus our attention on
in this paper. This paper will only study Datalog◦ programs over commutative semirings,
referring the readers to [10] for the generality of POPS.

It is known that the commutative semirings for which the iterative evaluation of Datalog◦

programs is guaranteed to converge are exactly those semirings that are stable [10]. A
semiring is p-stable if the number of iterations required for any one-variable recursive linear
Datalog◦ program to reach a fixed point is at most p, and a semiring is stable if there exists
a p for which it is p-stable. Further, every non-stable semiring has a simple (linear) Datalog◦

program with one variable with the property that the iterative evaluation of this program
over that semiring will not converge. Thus it is natural to concentrate on Datalog◦ programs
over stable semirings. Previously, the best known upper bound on the convergence rate,
which is the number of iterations until convergence, is

∑n
i=1(p + 2)i = Θ(pn) steps, where n

is the number of ground atoms for the IDB’s that ever have a nonzero value at some point in
the iterative evaluation of the Datalog◦ program, and the underlying semiring is p-stable. In
contrast there are no known lower bounds that show that iterative evaluation requires an
exponential (in the parameter n) number of steps to reach convergence.

The exact general upper bound on the convergence rate of Datalog◦ programs over p-stable
semirings is open, even for the special case of linear Datalog◦ programs. Linear Datalog◦

programs are quite common in practice.1 Thus, in this paper we focus on this “easiest” case
where the exact convergence rate is not known.

Currently, the best known upper bound on the convergence rate of linear Datalog◦

programs over p-stable semirings is
∑n

i=1(p + 1)i steps. This bound is unsatisfactory in the
following sense. The prototypical example of a p-stable semiring is the tropical semiring
Trop+

p , (see Section 2 for a definition of Trop+
p); in this case, it is known that the naïve

algorithm converges in O(pn) steps for linear Datalog◦ programs [10]. These results leave open
the possibility that the convergence rate of the naïve algorithm on linear Datalog◦ programs
over p-stable semirings could be exponentially smaller than the best known guarantee.

This paper seeks to obtain tighter bounds on the convergence rate of naïve evaluation of
linear Datalog◦ programs. As the iterative evaluation of Datalog◦ programs is a reasonably
natural and important algorithm/process, bounding the running time of this process is of
both theoretical interests and practical interests. In practice, a known upper bound on the
convergence rate allows the database system to determine before hand an upper bound on
the number of iterations that will be required to evaluation a particular Datalog◦ program.

1.1 Background
Before stating our main results, we need to back up to set the stage a bit. A (traditional)
Datalog program Π consists of a set of rules of the form:

R0(X0) :- R1(X1) ∧ · · · ∧Rm(Xm) (1)

1 For example, we can express transitive closure, all-pairs-shortest-paths, or weakly connected components
in linear Datalog◦.

S. Im, B. Moseley, H. Ngo, and K. Pruhs 11:3

where R0, . . . , Rm are predicate names (not necessarily distinct) and each Xi is a tuple
of variables and/or constants. The atom R0(X0) is called the head, and the conjunction
R1(X1) ∧ · · · ∧Rm(Xm) is called the body of the rule. Multiple rules with the same head
are interpreted as a disjunction. A predicate that occurs in the head of some rule in Π is
called an intensional database predicate or IDB, otherwise it is called an extensional database
predicate or EDB. The EDBs form the input database, and the IDBs represent the output
instance computed by Π. The finite set of all constants occurring in an EDB is called the
active domain, and denoted ADom. A Datalog program is linear if every rule has at most
one IDB predicate in the body.

There is an implicit existential quantifier over the body for all variables that appear in
the body but not in the head, where the domain of the existential quantifier is ADom. In a
linear Datalog program every conjunction has at most one IDB.

▶ Example 1. The textbook example of a linear Datalog program is the following one, which
computes the transitive closure of a directed graph, defined by the edge relation E(X, Y):

T (X, Y) :- E(X, Y)
T (X, Y) :- T (X, Z) ∧ E(Z, Y)

Here E is an EDB predicate, T is an IDB predicate, and ADom consists of the vertices in the
graph. The other way to write this program is to write it as a union of conjunctive queries
(UCQs), where the quantifications are explicit:

T (X, Y) :- E(X, Y) ∨ ∃Z (T (X, Z) ∧ E(Z, Y)) (2)

A Datalog program can be thought of as a function (called the immediate consequence
operator, or ICO) that maps a set of ground IDB atoms to a set of ground IDB atoms. Every
rule in the program is an inference rule that can be used to infer new ground IDB atoms
from old ones. For a particular EDB instance, this function has a unique least fixpoint which
can be obtained via repeatedly applying the ICO until a fixpoint is reached [1]. This least
fixpoint is the semantics of the given Datalog program. The algorithm is called the naïve
evaluation algorithm, which converges in a polynomial number of steps in the size of the
input database, given that the program is of fixed size.

Like Datalog programs, a Datalog◦ program consists of a set of rules, where the unions of
conjunctive queries are now replaced with sum-product queries over a commutative semiring
S = (S,⊕,⊗, 0, 1); see Section 2. Each rule has the form:

R0(X0) :-
⊕

R1(X1)⊗ · · · ⊗Rm(Xm) (3)

where sum ranges over the active ADom of the variables not in X0. Further each ground
atom in an EDB predicate or IDB predicate is associated with an element of the semiring S,
and the element associated with a tuple in an EDB predicate is specified in the input. The
EDBs form the input database, and the ground atoms in the IDB’s that have an associated
semiring value that is nonzero represent the output instance computed by the Datalog◦

program. Note that in a Datalog program the ground atom present in the input or output
databases can be thought of as those that are associated with the element 1 in the standard
Boolean semiring. A Datalog program is a Datalog◦ program over the Boolean semiring
S = ({true, false},∨,∧, false, true). Again a Datalog◦ program is linear if every rule has no
more than one IDB prediciate in its body.

ICDT 2024

11:4 On the Convergence Rate of Linear Datalog◦ over Stable Semirings

▶ Example 2. A simple example of a linear Datalog◦ program is the following,

T (X, Y) :- E(X, Y)⊕
⊕

Z

T (X, Z)⊗ E(Z, Y), (4)

which is (2) with (∨,∧,∃Z) replaced by (⊕,⊗,
⊕

Z).
When interpreted over the Boolean semiring, we obtain the transitive closure program from

Example 1. When interpreted over the tropical semiring Trop+ = (R+ ∪ {∞}, min, +,∞, 0),
we have the All-Pairs-Shortest-Path (APSP) program, which computes the shortest path
length T (X, Y) between all pairs X, Y of vertices in a directed graph specified by an edge
relation E(X, Y), where the semiring element associated with E(X, Y) is the length of the
directed edge (X, Y) in the graph:

T (X, Y) :- min
(

E(X, Y), min
Z

(T (X, Z) + E(Z, Y))
)

(5)

A Datalog◦ program can be thought of as an immediate consequence operator (ICO).
To understand how the ICO works in Datalog◦, consider a rule with head R and let A be
a ground atom for R with associated semiring value y, and assume that for A the body
of this rule evaluates to the semiring element x. As a result of this, the ICO associates
A with x ⊕ y. Note that the functioning of the Datalog◦ ICO, when the semiring is the
standard Boolean semiring, is identical to how the Datalog ICO functions. The iterative
evaluation of a Datalog◦ program works in rounds/steps, where initially the semiring element
0 is associated with each possible ground atom in an IDB, and on each round the ICO is
applied to the current state. So in the context of the Datalog◦ program in Example 1, if
(a, b) was a ground atom in T with associated semiring element x, meaning that the shortest
known directed path from vertex a to vertex b has length x, and (b, c) was a ground atom in
E with associated semiring element y, meaning that there is a directed edge from b to c with
length y, then the ICO would make the semiring element associated with A the minimum
(as minimum is the addition operation in the tropical semiring) of its current value and x + y

(as normal additional is the multiplication operation in the tropical semiring).
Since the final associated semiring values of the ground atoms in an IDB are not initially

known, it is natural to think of them as (IDB) variables. Then the grounded version of the
ICO of a Datalog◦program is a map f : Sn → Sn, where n is the number of ground atoms
for the IDB’s that ever have a nonzero value at some point in the iterative evaluation of the
Datalog◦ program. For instance, in (5), there would be one variable for each pair (x, y) of
vertices where there is a directed path from x to y in the graph. So the grounded version of
the ICO of a Datalog◦ program has the following form:

X1 :- f1(X1, . . . , Xn)
. . . (6)

Xn :- fn(X1, . . . , Xn)

where the Xi’s are the IDB variables, and fi is the component of f corresponding to the
IDB variable Xi. Note that each component function fi is a multivariate polynomial in
the IBD variables of degree at most the maximum number of terms in any product in the
body of some rule in the Datalog◦ program. After q iterations of the iterative evaluation of a
Datalog◦ program, the semiring value associated with the ground atom corresponding to Xi

will be:

f
(q)
i (0) (7)

S. Im, B. Moseley, H. Ngo, and K. Pruhs 11:5

▶ Definition 1 (p-stability). Given a semiring S = (S,⊕,⊗, 0, 1) and u ∈ S, let u(p) :=
1 ⊕ u ⊕ u2 ⊕ · · · ⊕ up, where ui := u ⊗ u ⊗ · · · ⊗ u (i times). Then u ∈ S is p-stable if
u(p) = u(p+1), and semiring S is p-stable if every element u ∈ S is p-stable.

▶ Definition 2 (Stability index and convergence rate). A function f : Sn → Sn is p-stable if
f (p+1)(0) = f (p)(0), where f (k) is the k-fold composition of f with itself. The stability index
of f is the smallest p such that f is p-stable. The convergence rate of a Datalog◦ program is
the stability index of its ICO.

The following bounds on the rate of convergence of a general (multivariate) polynomial
function f : Sn → Sn, where S is p-stable; this result naturally infers bounds on the
convergence rate of Datalog◦ programs over p-stable semirings.

▶ Theorem 3 ([10]). The convergence rate of a Datalog◦ program over a p-stable commutative
semiring is at most

∑n
i=1(p + 2)i. Further, the convergence rate is at most

∑n
i=1(p + 1)i if

the Datalog◦ program is linear. Finally, the convergence rate of a Datalog◦ program is at
most n if p = 0.

Thus the natural question left open by [10] was whether these upper bounds on the rate of
convergence are (approximately) tight, and thus convergence can be exponential, or whether
significantly better bounds are achievable.

1.2 Our Results
When a Datalog◦ program over a semiring S is linear, its ICO f : Sn → Sn is a linear
function of the form f(x) = A⊗ x⊕ b, where A is an n by n matrix with entries from S, b

is an n× 1 column vector with entries from S, and the scalar multiplication and addition
are from S. To simplify notations, we will use + and · to denote the operations ⊕ and ⊗
respectively. Further, following the convention, we may omit ⊗ if it is clear from the context.
Then, we have

f(x) = Ax + b

▶ Example 3. For the APSP Datalog◦ program, n is the number of edges in the graph, b(u,v)
is E(u, v), and the matrix A would be:

A(u,v),(u,w) =
{

E(v, w) if u ̸= v

0 otherwise
(8)

The stability index of f can easily be expressed in terms of the matrix A and vector b.
Letting A0 = I where I is the identity matrix, we have

f (k)(x) = Akx + A(k−1)b where A(k) :=
k−1∑
h=0

Ah.

Thus, the linear function f = Ax + b is p-stable if and only if A(p)b = A(p+1)b. Using the
simple form of f for the linear case, we can rewrite Definition 2 into the following simpler
form.

▶ Observation 4 (Convergence Rate of a Linear Datalog◦ Program).
The convergence rate for a particular linear Datalog◦ program, with associated matrix A

and vector b, is the minimum natural number p such that A(p)b = A(p+1)b.
The convergence rate for general linear Datalog◦ programs over a semiring S is then the
maximum over all choices of A and b, of the convergence rate for that particular A and b.

ICDT 2024

11:6 On the Convergence Rate of Linear Datalog◦ over Stable Semirings

Our first result is an asymptotically tight bound of Θ(pn3) on the rate of convergence for
linear Datalog◦ programs.

▶ Theorem 5. Every linear Datalog◦ program over a p-stable commutative semiring S

converges in O(pn3) steps, where n is the total number of ground IDB atoms.

The proof Theorem 5 can be found in Section 3, but we will give a brief overview of the
main ideas of the proof here. Consider the complete n-vertex loop-digraph G where the edge
from i to j is labeled with entry Ai,j . Then note that row i column j of A(h) is the sum –
over all walks W from i to j of length ≤ h – of the product of the edge labels on the walk.
We show that the summand corresponding to a walk W with more than h = Ω(pn3) hops
doesn’t change the sum A

(h)
i,j . We accomplish this by rewriting the summand corresponding

to W , using the commutativity of multiplication in S, as the product of a simple path and of
multiple copies of at most n2−n distinct closed walks. We then note that, by the pigeon hole
principle, one of these closed walks, say C, must have mulitplicity greater than p. We then
conclude that the summand corresponding to W will not change the sum A

(h)
i,j by appealing

to the stability of the semiring element that is the product of the edges in C.
In section 4 we establish a matching lower bound by finding a graph G and a commutative

semiring S where the calculations in the upper bound are tight.

▶ Theorem 6. For any p, n ≥ 1, there is a linear Datalog◦ program over a p-stable semiring
S that requires Ω(pn3) steps to converge.

In the lower bound instance that establishes Theorem 6 the size of the ground set S of S

is of size Θ((p + 1)n2), so exponential in n. Thus one natural question is whether Datalog◦

programs over semirings with subexponentially sized ground sets will converge more quickly.
In section 5 we answer this question in the affirmative by showing that the rate of convergence
of a Datalog◦ program over a p-stable commutative semiring with L elements is O(pn log L).

▶ Theorem 7. Every linear Datalog◦ program over a p-stable commutative semiring that
contains L elements in its ground set converges in O(pn log L) steps.

Let us explain the high level idea of the proof, with some simplifying assumptions, starting
with the assumption that the stability of S is p = 1. Again we think of A

(k)
i,j as the sum of

products over walks W from i to j with at most k hops. Now consider a walk W from i to j

consisting of Ω(n log L) hops. Since there are n vertices, there exists a vertex v such that
there are at least Ω(log L) prefixes P1, P2, . . . , Pq of W ending at v. Let Ci be the closed
walk starting and ending at v such that appending Ci to Pi produces Pi+1. Let us make the
simplifying assumption that all of these closed walks Ci are distinct. The key observation is
that if we delete any subset C of these Ω(log L) closed walks from W , the result will still be
a walk from i to j. Thus there are at least 2Ω(log L) walks from i to j that can be formed by
deleting a subset C of these closed walk. Since there are at most L distinct elements, by the
pigeon hole principle, there must be some element e of S such that that are two subsets C, C′

where the product of the edges in them are the same. We then conclude by the stability of e

that the summand corresponding to W does not change the sum A
(k)
i,j .

Finally in section 6 we establish a nearly matching lower bound by finding a graph G

and a commutative semiring where the calculations in the upper bound are nearly tight.

▶ Theorem 8. There are linear Datalog◦ programs over a p-stable commutative semiring
that contains L elements that require Ω(pn log L

log p) steps to converge.

Finally in the appendix we consider a special case from [10], in which the commutative
semiring S is naturally ordered.

S. Im, B. Moseley, H. Ngo, and K. Pruhs 11:7

2 Preliminaries

In this section, we introduce the notation and terminology used throughout the paper.

▶ Definition 9 (Semiring). A semiring [7] is a tuple S = (S,⊕,⊗, 0, 1) where
⊕ and ⊗ are binary operators on S,
(S,⊕, 0) is a commutative monoid, meaning ⊕ is commutative and associative, and 0 is
the identity for ⊕,
(S,⊗, 1) is a monoid, meaning ⊗ is associative, and 0 is the identity for ⊕,
0 annilates every element a ∈ S, that is a⊗ 0 = 0⊗ a = 0, and
⊗ distributes over ⊕.

A commutative semiring S = (S,⊕,⊗, 0, 1) is a semiring where additionally ⊗ is commutative.

If A is a set and p ≥ 0 a natural number, then we denote by Bp(A) the set of bags
(multiset) of A of size p, and Bfin(A) :=

⋃
p≥0 Bp(A). We denote bags as in {{a, a, a, b, c, c}}.

Given x, y ∈ Bfin(R+ ∪∞), define

x ⊎ y := bag union of x, y x + y := {{u + v | u ∈ x, v ∈ y}}

▶ Example 4. For any multiset x = {{x0, x1, . . . , xn}}, where x0 ≤ x1 ≤ . . . ≤ xn, and any
p ≥ 0, define:

minp(x) := {{x0, x1, . . . , xmin(p,n)}}

In other words, minp returns the smallest p + 1 elements of the bag x. Then, for any p ≥ 0,
the following is a semiring:

Trop+
p := (Bp+1(R+ ∪ {∞}),⊕p,⊗p, 0p, 1p)

where:

x⊕p y
def= minp(x ⊎ y) 0p

def={∞,∞, . . . ,∞}

x⊗p y
def= minp(x + y) 1p

def={0,∞, . . . ,∞}

For example, if p = 2 then {{3, 7, 9}} ⊕2 {{3, 7, 7}} = {{3, 3, 7}} and {{3, 7, 9}} ⊗2 {{3, 7, 7}} =
{{6, 10, 10}}. The following identities are easily checked, for any two finite bags x, y:

minp(minp(x) ⊎minp(y)) =minp(x ⊎ y) minp(minp(x) + minp(y)) =minp(x + y) (9)

Note that Trop+
0 is the natural “min-plus” semiring that we used in Example 2.

In the following fact about p-stable commutative semiring will be useful.

▶ Proposition 10. Given a p-stable commutative semiring S = (S,⊕,⊗, 0, 1), for any u ∈ S,
we have pu = (p + 1)u, where pu here is shorthand for ⊕p

i=1u.

Proof. This follows directly from the p-stability of 1, and the fact that 12 = 1. ◀

Let us now explain the general procedure for creating a matrix A and a vector b from
a linear Datalog◦ program Q. Each ground tuple for each IDB predicate R can be viewed
as a variable, and ground tuples of EDB predicates can be viewed as constants. Then a
Datalog◦ rule, where the head is IDB predicate R, can be converted into a collection of linear
equations, one for each ground tuble of R. Since all rules that share IDB R as a the head can
be combined via ⊕, we can compactly rewrite the entire set of Datalog◦ rules as a collection
of linear equations of the following form:

ICDT 2024

11:8 On the Convergence Rate of Linear Datalog◦ over Stable Semirings

Ti ←
n⊕

j=1
(Aij ⊗ Tj)⊕ bi

where T1, T2, . . . , Tn are the variables corresponding to ground tuples of IDB predicates. By
using more familiar notation +, · in the lieu of ⊗,⊕, we can model a linear Datalog◦ program
Q by a linear function f : Sn → Sn of the form:

f(x) = Ax + b

where n is the total number of ground tuples across all IDB predicates, x is an n-dimensional
vector with entries from S, A is an n by n matrix with entries from the S, and b is a
dimensional column vector with entries from S. For some more examples of converting linear
Datalog◦ programs into linear equations see [10].

3 Upper bounding the Convergence as a Function of the Matrix
Dimension and the Semiring Stability

This section is devoted to proving Theorem 5, the main theorem of the paper. More
specifically, we will show the following lemma. This lemma upper bounds the convergence of
a p-stable semiring and implies Theorem 5.

▶ Lemma 11. Let A be an n× n matrix over a p-stable semiring S. Then A(k+1) = A(k),
where k = n(n2 − n)(p + 2) + n− 1.

Consider the complete n-vertex loop-digraph G where the edge from i to j is labeled with
entry Ai,j . Then

Ah
i,j =

∑
W ∈Wh

i,j

Φ(W)

where Wh
i,j is the collection of all h-hop walks from i to j in G, and

Φ(W) =
∏

(a,b)∈W

Aa,b

is the product off all the labels on all the directed edges in W . That is, row i column j of
Ah is the sum over all h-hop walks W from i to j of the product of the labels on the walk.
Similarly then,

A
(h)
i,j =

h∑
g=0

Ag
i,j =

h∑
g=0

∑
W ∈Wg

i,j

Φ(W)

That is, row i column j of A(h) the sum over all walks W from i to j with at most h hops of
the product of the labels on the walk. Further,

A
(h+1)
i,j = A

(h)
i,j + Ah+1

i,j = A
(h)
i,j +

∑
W ∈Wh+1

i,j

Φ(W)

Our proof technique is to show that, by the p-stability of S, it must be the case that for
each W ∈ Wp+1

i,j it is the case that

A
(k)
i,j + Φ(W) = A

(k)
i,j

S. Im, B. Moseley, H. Ngo, and K. Pruhs 11:9

The proof that A
(k)
i,j = A

(k+1)
i,j then immediately follows by applying this fact to each

W ∈ Wk+1
i,j .

Fix W = i, . . . , j to be an arbitrary walk in Wk+1
i,j . Our next intermediate goal is to

rewrite Φ(W) using the commutativity of multiplication in S as the product of a simple path
and at most n2 − n multicycles. That is,

Φ(W) = Φ(P)
ℓ∏

h=1
Φ(Czh

h)

where P is a simple path from i to j in G, each Ch is a simple cycle in W that is repeated zh

times, and ℓ ≤ n2 − n. We accomplish this goal via the following tail-recursive construction.
The recursion is passed a collection of edges, and a parameter h. Initially, the edges are
those in W and h is set to zero.

Recursive Construction. The base case is if W is a simple path. In the base case the path
P is set to W and ℓ is set to 0. Otherwise:

h is incremented
Ch is set to be an arbitrary simple cycle in W .
Let zh be the minimum over all edges e ∈ Ch of the number of times that e is traversed
in W .
Let W ′ be the collection of edges in W except that zh copies of every edge in Ch are
removed.
The construction then recurses on W ′ and h.

In Lemma 13 we show that a particular statement about W is invariant through the
recursive construction. A proof Lemma 13 requires the following lemma. The proof of
the following lemma (or at least, the techniques needed for a proof) can be found in most
introductory graph theory texts, e.g. [20] Theorem 23.1.

▶ Lemma 12.
A loop digraph G has a Eulerian walk from from a vertex i to a vertex j, where i ̸= j, if
and only if vertex i has out-degree one greater than its in-degree, vertex j has out-degree
one less than its in-degree, every other vertex has equal in-degree and out-degree, and
all of the vertices with nonzero degree belong to a single connected component of the
underlying undirected graph.
A loop digraph has an Eulerian cycle that includes a vertex i if and only if every vertex
has equal in-degree and out-degree, vertex i has non-zero in-degree, and all of the vertices
with nonzero degree belong to a single connected component of the underlying undirected
graph.

▶ Lemma 13. Let W be a collection of edges that is passed at some point in the recursive
construction. Let D1, . . . , Dh be a partition of the edges of W with the property that if the
edges in W were viewed as undirected, then the connected components would be D1, . . . , Dh.

If i ∈ Df then Df is a walk from i to j.
If i /∈ Df then Df is a Eulearian circuit.

Proof. The proof is by induction on the number of steps of the recursive construction. The
statement is obviously true for the initial walk W , which is the base case. Now consider one
step of the recursive construction. Removing copies of a cycle from W does not change the
difference between the in-degree and out-degree of any vertex. Thus by Lemma 12 the only

ICDT 2024

11:10 On the Convergence Rate of Linear Datalog◦ over Stable Semirings

issue we need to consider is vertex i and vertex j possibly ending up in different connected
components of W ′. Let Df be the connected component of W that contains i (which also
contains j by the induction hypothesis), let D′

a be the connected component of W ′ that
contains i, and let D′

b be the connected component of W ′ that contains j, where a ̸= b. Then
the walk in Df from i to j must cross the cut (in either direction) formed by the vertices in
D′

a an odd number of times. But the edges in Ch must cross the cut (in either direction)
formed by the vertices in D′

a an even number of times. Thus there must be an edge in Df

minus zh copies of Ch that must cross the cut (in either direction) formed by the vertices in
D′

a. However, then this is a contradiction to D′
a be a connected component in W ′. ◀

We now make a sequence of observations, that will eventually lead us to our proof of
Lemma 11.

▶ Observation 14.
1 ≤ ℓ ≤ n2 − n.
The recursive construction terminates.
Φ(W) = Φ(P)

∏ℓ
h=1 Φ(Czh

h).

Proof. As W contains k +1 = n(n2−n)(p+2)+n edges, then it must contain a simple cycle,
which implies ℓ ≥ 1. Consider one iteration of our recursive construction. There must be a
directed edge e ∈ Ch that appears exactly zh times in W . Thus there are no occurrences of
e in W ′. Thus e can not appear in any future cycles, that is e /∈ Cg for any g > h. The first
observation then follows because there are at most n2 − n different edges in G. The second
observation is then an immediate consequence of the first observation, and the invariant
established in Lemma 13 . The third observation follows because no edges are ever lost or
created in the recursive construction. ◀

▶ Observation 15. There is a cycle Cs, 1 ≤ s ≤ ℓ, such that zs is at least p + 2.

Proof. Since P is a simple path it contains at most n− 1 edges. Thus W − P contains at
least n(n2−n)(p+2) edges. As any simple cycle contains at most n edges, and as there are at
most ℓ ≤ n2−n cycles, then by applying the pigeon hole principle to the cycle decomposition
of W we can conclude that there must be a cycle Cs that has multiplicity at least p + 2, that
is zs ≥ p + 2. ◀

For convenience, consider renumbering the cycles so that s = 1 where zs ≥ p + 1, which
exists by Observation 15. For each h such that 1 ≤ h ≤ p + 1, let define Wh be the collection
of edges in W minus h copies of every edge in C1.

▶ Observation 16. The edges in each Wh, 1 ≤ h ≤ p + 1 form a walk from i to j.

Proof. As z1 ≥ p + 2 and h ≤ p + 1, every edge that appears in W also appears in Wh. So
Wh has the same connectivity properties as W , and Wh has the same vertices with positive
in-degree as does W . Also as C1 is a simple cycle, the difference between in-degree and
out-degree for each vertex is the same in Wh as in W . Thus the result follows by appealing
to Lemma 12. ◀

▶ Observation 17. For each h such that 1 ≤ h ≤ p + 1 it is the case that

Φ(Wh) = Φ(P)Φ(Cz1−h
1)

ℓ∏
f=2

Φ(Czf

f)

Proof. This follows directly from the defintion of Wh. ◀

S. Im, B. Moseley, H. Ngo, and K. Pruhs 11:11

▶ Observation 18. For all h such that 1 ≤ h ≤ p + 1, we have Wh ∈
⋃k

f=0W
f
i,j. That is

Φ(Wh) appears as a term in A
(k)
i,j .

Proof. This follows because W has k + 1 edges and C1 is non-empty, so removing edges in
Ci strictly decreases the number of edges. ◀

We are now ready to prove Lemma 11. By Observation 18 we know that each Φ(Wh) is
included in A(k), and thus there exists an element r in the semiring S such that

A
(k)
i,j = r +

p+1∑
h=1

Φ(Wh)

Thus

A
(k)
i,j + Φ(W) = r +

p+1∑
h=1

Φ(Wh) + Φ(W)

= r +
p+1∑
h=1

Φ(P)Φ(Cz1−h
1)

ℓ∏
f=2

Φ(Czf

f)

+ Φ(P)
ℓ∏

f=1
Φ(Czf

f)

= r +

Φ(P)
ℓ∏

f=2
Φ(Czf

f)

(p+1∑
h=1

Φ(Cz1−h
1) + Φ(Cz1

1)
)

(10)

= r +

Φ(P)
ℓ∏

f=2
Φ(Czf

f)

(Φ(Cz1−(p+1)
1)

p+1∑
h=0

Φ(Ch
1)
)

= r +

Φ(P)
ℓ∏

f=2
Φ(Czf

f)

(Φ(Cz1−(p+1)
1)

p+1∑
h=0

[Φ(C1)]h
)

(11)

= r +

Φ(P)
ℓ∏

f=2
Φ(Czf

f)

(Φ(Cz1−(p+1)
1)

p∑
h=0

[Φ(C1)]h
)

(12)

= r +

Φ(P)
ℓ∏

f=2
Φ(Czf

f)

(Φ(Cz1−(p+1)
1)

p∑
h=0

Φ(Ch
1)
)

= r +

Φ(P)
ℓ∏

f=2
Φ(Czf

f)

(p+1∑
h=1

Φ(Cz1−h
1)

)

= r +
p+1∑
h=1

Φ(P)Φ(Cz1−h
1)

ℓ∏
f=2

Φ(Czf

f)


= r +

p+1∑
h=1

Φ(Wh) = A
(k)
i,j

The equality in line (10) follows from Observation 17. The equality in line (11) follows from
the defintion of Φ. The key step in this line of equations is the equality in line (12), which
follows from the stability of Φ(C1). The rest of the equalities follow from basic algebraic
properties of semirings, or by definition of the relavent term.

ICDT 2024

11:12 On the Convergence Rate of Linear Datalog◦ over Stable Semirings

4 A Lower Bound for Convergence Rate of Linear Datalog◦ Programs

This section lower bounds the convergence rate of linear Datalog◦ programs using naive
evaluation and establishes Theorem 6. In particular, this section will construct a semiring and
a datalog program that requires Ω(pn3) iterations to converge. The section first constructs a
semiring then defines a matrix A and finally the converge rate is bounded. We remark that
we only show this lower bound holds for this specific semiring and matrix.

4.1 Constructing the Semiring
The ground set S consists of multi-sets of {1, . . . m}; later we will set m = Θ(n2). To avoid
confusion, we will refer to 1, 2, . . . m as items, which will be distinguished from the elements
of S. An element in S can have up to p ≥ 1 copies of each item i ∈ [m]. Additionally, there
is a special element O in the semiring. Thus, the ground set S has (p + 1)m + 1 elements.

For a multiset A we denote the number of copies of item i in A as Ai. We now define the
semiring operations. Consider two distinct elements (multisets) A and B in S \ {O}. Define
C = A + B, where Ci = max{Ai, Bi} for all i ∈ [m]. Further, O + A = A +O = A for all
A ∈ S. Multiplication C = A ·B is defined as follows: Ci = min{Ai + Bi, p} for all i ∈ [m].
Further O ·A = A · O = O for all A ∈ S.

We establish that this is a semiring where O is the additive identity and the empty
multi-set ∅ is the multiplicative identity (i.e. 1). By definition, O is the annihilator element.
We show in Appendix B that this is a commutative semiring. The proof easily follows from
the definition of the semiring.

4.2 Defining the Matrix A

B C D

This section defines the matrix A. To do so, we first define a graph G. Let G be a
directed graph where the vertex set is the integers from 1 to n inclusive. For simplicity
assume n is divisible by 3. The vertices are partitioned into 3 parts, B = {1, . . . , n/3},
C = {n/3 + 1, . . . , 2n/3} and D = {2n/3 + 1, . . . n}. There is a directed edge from each
vertex in B to vertex n/3 + 1, there is a directed edge from vertex 2n/3 to each vertex in D,
and there is a directed edge from each vertex in D to each vertex in B. Finally, all vertices
in C are sequentially connected from n/3 + 1 to 2n/3, i.e., there is a directed edge from τ to
τ + 1 for all τ ∈ [n/3 + 1, 2n/3− 1].

Index the edges by 1 through m and assign distinct labels (items) to them. So, m is
exactly equal to the number of distinct items. Notice that m is Θ(n2). If there is a directed
edge (i, j) with label k in G then Ai,j = {k}. This is the element corresponding to the
multiset with one copy of k. If there is no directed edge (i, j) in G then Ai,j = O.

▶ Lemma 19. The number of steps until convergence is Ω(pn3).

Proof. Note that there are |B| · |D| = n2/9 edges from D to B. Consider a long walk, say
from i := n/3+1 to j := n/3+2. Observe that the walk must visit all edges within C (and the
edge from 2n/3 to 2n/3+1) before visiting exactly one edge from D to B. Thus, to visit each

S. Im, B. Moseley, H. Ngo, and K. Pruhs 11:13

edge from D to B at least p times, the walk must have length at least p|B| · |D| · |C| = pn3/27.
Similarly, there is such a walk of length at most p|B| · |D|(|C|+ 2) + 1 ≤ 4pn3. Thus, we
have shown that A(k) includes the multiset Q that has p copies of each item when k ≥ 4pn3.
Further, we have shown that A(k) doesn’t include Q when k < p(n/3)3. This proves the
lower bound on the convergence rate. ◀

5 Bounding Convergence in Terms of the Semiring Ground Set Size

This section investigates the convergence rate with the assumption that the semiring has a
ground set of size at most L. With this assumption, we can prove significantly better upper
bounds. This section’s goal is to prove Theorem 7. We prove the following lemma, which
will immediately imply Theorem 7. As before, we let Φ(W) =

∏
e∈W e for a walk W .

▶ Lemma 20. Let A be an n by n matrix both a p-stable semiring S with a ground set
consisting of L elements. Then A(k+1) = A(k), where k = ⌈8p(lg L + 1)n⌉+ 1 = O(np lg L).

Proof. Fix i, j ∈ [n]. Consider any W ∈ Wk+1
i,j for the value of k stated in the lemma. To

show the lemma it suffices to show Φ(W) + A
(k)
i,j = A

(k)
i,j . By the pigeon hole principle, there

must exist a vertex v visited at least 8p(lg L + 1) + 1 times. We now conceptually cut W at
visits to v to form a cycle decomposition of W . That is, we can write W as TC1, . . . , ChT ′

where T is a walk from i to v such that the only time it visits vertex v is on the last step,
each Ci is a closed walk that includes vertex v exactly once, and T ′ is a walk from v to j

that doesn’t visit v again after initially leaving v. Note by the definition of vertex v it must
be the case that h ≥ 8p(lg L + 1). Let C = {Cf | 1 ≤ f ≤ h} be the collection of cycles in
this cycle decomposition.

We now partition C into parts C1, . . . , Cℓ,J where for each closed walk C that has
multiplicity m in C there are 2f copies of C in Cf and m − 2f copies of C in J where
f = ⌊lg m⌋. For a collection D of cycles, it will be convenient to use Φ(D) to denote Φ(

⋃
D).

Thus it then immediate that Φ(W) = Φ(T)Φ(C)Φ(T ′)Φ(J). Note that the cardinality of the
multiset

⋃ℓ
f=1 Cf is at least 4p(lg L + 1).

We change C repeatedly without changing Φ(C). When changing C into C′, we satisfy:
1. Φ(C) = Φ(C′).
2. N(C) = N(C′), where N(C) denotes the size of multi-set C. So, a cycle C contributes to

N(C) by the number of times it appears in C. Further, C′ has no more edges in total than
C when we count 1 for each edge in one cycle appearance, i.e.,

∑
C′∈C′ |C ′| ≤

∑
C∈C |C|.

3. Consider ⟨. . . , N3(C′), N2(C′), N1(C′)⟩ and ⟨. . . , N3(C), N2(C), N1(C)⟩. The first vector
dominates the second lexicographically. Here Nℓ(C) denotes the number of cycles in C of
exponent 2ℓ.

4. When we terminate, Nℓ(C) ≤ 2⌊lg L + 1⌋ for all ℓ ≤ ⌊lg p⌋.
5. Every cycle in C′ also appears in C.

We now describe the transformation from C into C′. Consider the smallest ℓ such that
Nℓ > 2⌊lg L + 1⌋. Consider every subset of cardinality ⌊lg L + 1⌋, that consists of cycles of
exponent 2ℓ; so they are in Cℓ. The number of such subsets is at least

(2⌊lg L+1⌋
⌊lg L+1⌋

)
> 2lg L = L.

Since the semiring has at most L distinct elements, there must exist distinct subsets A and
B of cycles of exponent 2ℓ such that |A| = |B| and Φ(A) = Φ(B). Assume wlog that B’s
cycles have no more edges in total than A’s cycles. Then, we replace A with B in C and let
C′ be C after this change.

It is easy to see that Φ(C) = Φ(C′). This is because we replaced A with B such
that Φ(A) = Φ(B). More formally, Φ(C) =

∏
ℓ′ Φ(Cℓ′) = (Φ(Cℓ \ A)Φ(A))

∏
ℓ′ ̸=ℓ Φ(Cℓ′) =

(Φ(Cℓ \ A)Φ(B))
∏

ℓ′ ̸=ℓ Φ(Cℓ′) = Φ(C′). The second property is also obvious because when

ICDT 2024

11:14 On the Convergence Rate of Linear Datalog◦ over Stable Semirings

we replace A with B in the change, we ensured |A| = |B|, which implies that the multiset
size remains unchanged. Also, it is immediate that the total number of edges don’t increase
as B has no more edges in total than A. The forth property, the termination condition, is
immediate. The fifth property is also immediate since we do not create a new cycle when
replacing A with B.

To see the third property, before replacing A with B, we had A ∪ B in Cℓ, and their
exponent was 2ℓ. After the replacement, all cycles in B\A come to have exponent 2·2ℓ = 2ℓ+1,
the cycles in A \ B disappear from Cℓ, and those in A ∩ B remain unchanged. Note that
every cycle remains to have an exponent that is a power of two. Therefore, we have
Nℓ+1(C′) > Nℓ+1(C), and Nℓ′(C′) = Nℓ′(C) for all ℓ′ ≥ ℓ + 2.

Observe that due to the second property and the third, the process must terminate. Thus,
starting from C, at the termination we have C′ that satisfies the first, second, and fourth
properties. We know N(C′) = N(C) > 4p(lg L + 1). Further, we know that cycles of exponent
at most p contribute to N(C′) by at most 2(lg L + 1)(1 + 2 + 4 + . . . + 2⌊lg p⌋) < 4p(lg L + 1).
Thus, there must exist a cycle in C′ of exponent greater than p. Let C denote the cycle. So,
we have shown that

Φ(W) = Φ(T)Φ(C′)Φ(T ′) = Φ(T)Φ(C)qΦ(C′ \ Cq)Φ(T ′),

where q ≥ p + 1. Here C′ \ Cq implies the resulting collection of cycles we obtain after
removing q copies of C from C′. Now consider walk Wq′ that concatenates T , q′ copies
of C, C′ \ Cq′ , and T ′. Here, the walk starts with T and ends with T ′, and the cycles
can be placed in an arbitrary order. This is because T is a walk from i to v, and all the
cycles in C′ start from v and end at v – due to the fifth property – and T ′ is a walk from
v to j Further, they are all shorter than W because Wq is no longer than W due to the
second property. Therefore, W0, W1, . . . Wq−1 ∈ W(k)

i,j . Thus, thanks to p-stability, we have
Φ(W) + A

(k)
i,j = A

(k)
i,j as desired. ◀

Although we gave the full proof of Theorem 7, to convey intuition better, we also give
some warm-up analyses in Appendix C by giving a looser bound for the general case and
subsequently by considering a special case of p = 1.

6 Lower Bounds on Convergence in Terms of the Semiring Ground
Set Size

This section constructs a lower bound of the convergence rate in terms of the size of the
ground set. The goal is to show Theorem 8, which is implied by the following lemma.

▶ Lemma 21. There exists an idempotent semiring on L elements and a matrix A of size n

by n that requires Ω(nL) steps to converge to a fixed point.

Proof. Consider a semiring that whose all powers of 2 from 1 to 2L and the value 0. The
value of 2L is the largest value. Summation A and B in the semiring is min{A · B, 2L},
where · is standard multiplication. Addition is standard maximum. By definition, addition
is idempotent ensuring the semiring is idempotent.

The matrix A corresponds to a computation graph with a cycle of length n. All edges
that are not in cycles are labeled 0. All edges of the cycle are labeled 1, the identity in
standard multiplication, except for one edge, which is 2. Notice that multiplying all edges of
the cycle i times results in the symbol 2i.

The cycle needs to be traversed L times to reach 2L. The walk is of length Θ(nL). ◀

S. Im, B. Moseley, H. Ngo, and K. Pruhs 11:15

▶ Lemma 22. There exists a matrix A of size n by n which requires Ω(np log L
log p) steps to find

a fixed point over a semiring of L elements that is p-stable.

Proof. Consider the following semiring. The L elements are over vectors of ℓ dimensions.
Each position can be 0, 1, 2, . . . , p. Consider any two elements x and y. Let xi and yi be the
ith dimension of x and y, respectfully. The addition operation on x and y returns whichever
among x and y are lexicographically larger. Multiplication of x and y produces the vector z

where zi = min{xi + yi, p}.
We first claim that this is a semiring. Notice that the all 0 vector is a monoid for

multiplication. The vector of all p’s is the multiplicative identity. The only case that is
non-obvious is that multiplication distributes over addition. Consider three vectors a, b and c.
Consider the expression c · (a + b). We aim to show that this is equal to c · a + c · b. Without
loss of generality say a is lexicographically bigger than b. Then we have that c · (a + b) = c · a
because a + b = a using that a is lexiographically bigger than c. Similarly, c · a + c · b = c · a
because multiplication is standard addition and a is lexicographically bigger than b.

The matrix A corresponds to the following graph. There are two special nodes a and b.
They are connected by ℓ one-hop path using two edges from a to b. The kth path goes via a
node ck. The edge from a to ck is labeled with the 0 vector. The edge from ck to b is labeled
with a vector of all 0s except a 1 in dimension k. Additionally, b is connected to a via a
directed path of length n− ℓ− 2. The edges of this path are all labeled with the all 0 vector.

To collect the vector consisting of p in each dimension, one needs to walk a cycle starting
at a at least pℓ times. To see why, notice multiplication of the edges corresponding to a
single time-around cycle increases a single dimension by at most one. Moreover, addition’s
definition ensures the final output is the vector that is lexicographically the biggest among
each walk. Each cycle is of length Ω(n). The length of the walk required is Ω(pℓn). Setting
ℓ = log L

log p gives the lemma by noting that L = pℓ is the number of elements. ◀

7 Related Work

If the semiring is naturally ordered2, then the least fixpoint of a Datalog◦ program is the
least fixed point of f under the same partial order extended to Sn componentwise. This
is the least fixpoint semantics of a Datalog◦ program. The naïve evaluation algorithm for
evaluating Datalog programs extends naturally to evaluating Datalog◦ programs: starting
from x = 0n, we repeatedly apply f to x until a fixpoint is reached x = f(x). The core
semiring of a POPS is naturally ordered. Thus, we can find the least fixpoint of a Datalog◦

program by applying the naïve evaluation algorithm [10].
Computing the least fixpoint solution to a recursive Datalog◦ program boils down to solving

fixpoint equations over semirings. In particular, we are given a multi-valued polynomial
function f : Sn → Sn over a commutative semiring, and the problem is to compute a (pre-)
fixpoint of f , i.e. a point x ∈ Sn where x = f(x). As surveyed in in [10], this problem
was studied in a very wide range of communities, such as in automata theory [12], program
analysis [4, 16], and graph algorithms [3, 14, 15] since the 1970s. (See [7, 8, 13, 17, 21] and
references thereof).

When f = Ax + b is linear, as shown in the paper f (k)(x) = A(k−1)b and thus at
fixpoint the solution is A(ω)b = limk→∞ A(k−1)b, interpreted as a formal power series over
the semiring. If there is a finite k for which A(k) = A(k+1), then it is easy to see that

2 S is naturally ordered if the relation x ⪯S y defined as ∃z : x ⊕ z = y is a partial order.

ICDT 2024

11:16 On the Convergence Rate of Linear Datalog◦ over Stable Semirings

A(ω) = A(k). The problem of computing A(ω) is called the algebraic path problem [17], which
unifies many problems such as transitive closure [19], shortest paths [5], Kleene’s theorem
on finite automata and regular languages [11], and continuous dataflow [4,9]. If A is a real
matrix, then A(ω) = I + A + A2 + · · · is exactly (I −A)−1, if it exists [2, 6, 18].

There are several classes of solutions to the algebraic path problem, which have pros and
cons depending on what we can assume about the underlying semiring (whether or not there
is a closure operator, idempotency, natural orderability, etc.). We refer the reader to [7, 17]
for more detailed discussions.

References
1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley,

1995. URL: http://webdam.inria.fr/Alice/.
2 R. C. Backhouse and B. A. Carré. Regular algebra applied to path-finding problems. J. Inst.

Math. Appl., 15:161–186, 1975.
3 Bernard Carré. Graphs and networks. The Clarendon Press, Oxford University Press, New

York, 1979. Oxford Applied Mathematics and Computing Science Series.
4 Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for

static analysis of programs by construction or approximation of fixpoints. In Robert M.
Graham, Michael A. Harrison, and Ravi Sethi, editors, Conference Record of the Fourth ACM
Symposium on Principles of Programming Languages, Los Angeles, California, USA, January
1977, pages 238–252. ACM, 1977. doi:10.1145/512950.512973.

5 Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345, 1962. doi:
10.1145/367766.368168.

6 M. Gondran. Algèbre linéaire et cheminement dans un graphe. Rev. Française Automat.
Informat. Recherche Opérationnelle Sér. Verte, 9(V-1):77–99, 1975.

7 Michel Gondran and Michel Minoux. Graphs, dioids and semirings, volume 41 of Operations
Research/Computer Science Interfaces Series. Springer, New York, 2008. New models and
algorithms.

8 Mark W. Hopkins and Dexter Kozen. Parikh’s theorem in commutative kleene algebra. In
14th Annual IEEE Symposium on Logic in Computer Science, Trento, Italy, July 2-5, 1999,
pages 394–401. IEEE Computer Society, 1999. doi:10.1109/LICS.1999.782634.

9 John B. Kam and Jeffrey D. Ullman. Global data flow analysis and iterative algorithms. J.
ACM, 23(1):158–171, 1976. doi:10.1145/321921.321938.

10 Mahmoud Abo Khamis, Hung Q. Ngo, Reinhard Pichler, Dan Suciu, and Yisu Remy Wang.
Convergence of datalog over (pre-) semirings. In Leonid Libkin and Pablo Barceló, editors,
PODS ’22: International Conference on Management of Data, Philadelphia, PA, USA, June
12 - 17, 2022, pages 105–117. ACM, 2022. doi:10.1145/3517804.3524140.

11 S. C. Kleene. Representation of events in nerve nets and finite automata. In Automata studies,
Annals of mathematics studies, no. 34, pages 3–41. Princeton University Press, Princeton, N.
J., 1956.

12 Werner Kuich. Semirings and formal power series: their relevance to formal languages and
automata. In Handbook of formal languages, Vol. 1, pages 609–677. Springer, Berlin, 1997.
doi:10.1007/978-3-642-59136-5_9.

13 Daniel J. Lehmann. Algebraic structures for transitive closure. Theor. Comput. Sci., 4(1):59–76,
1977. doi:10.1016/0304-3975(77)90056-1.

14 Richard J. Lipton, Donald J. Rose, and Robert Endre Tarjan. Generalized nested dissection.
SIAM J. Numer. Anal., 16(2):346–358, 1979. doi:10.1137/0716027.

15 Richard J. Lipton and Robert Endre Tarjan. Applications of a planar separator theorem.
SIAM J. Comput., 9(3):615–627, 1980. doi:10.1137/0209046.

16 Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of program analysis.
Springer-Verlag, Berlin, 1999. doi:10.1007/978-3-662-03811-6.

http://webdam.inria.fr/Alice/
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/367766.368168
https://doi.org/10.1145/367766.368168
https://doi.org/10.1109/LICS.1999.782634
https://doi.org/10.1145/321921.321938
https://doi.org/10.1145/3517804.3524140
https://doi.org/10.1007/978-3-642-59136-5_9
https://doi.org/10.1016/0304-3975(77)90056-1
https://doi.org/10.1137/0716027
https://doi.org/10.1137/0209046
https://doi.org/10.1007/978-3-662-03811-6

S. Im, B. Moseley, H. Ngo, and K. Pruhs 11:17

17 Günter Rote. Path problems in graphs. In Computational graph theory, volume 7 of Comput.
Suppl., pages 155–189. Springer, Vienna, 1990. doi:10.1007/978-3-7091-9076-0_9.

18 Robert E. Tarjan. Graph theory and gaussian elimination, 1976. J.R. Bunch and D.J. Rose,
eds.

19 Stephen Warshall. A theorem on boolean matrices. J. ACM, 9(1):11–12, 1962. doi:10.1145/
321105.321107.

20 Robin J. Wilson. Introduction to Graph Theory. Prentice Hall/Pearson, New York, 2010.
21 U. Zimmermann. Linear and combinatorial optimization in ordered algebraic structures. Ann.

Discrete Math., 10:viii+380, 1981.

A Convergence of Naturally Ordered Semirings

▶ Definition 23 (Natural Order). In any (pre-)semiring S, the relation x ⪯S y defined as
∃z : x ⊕ z = y, is a preorder, which means that it is reflexive and transitive, but it is not
anti-symmetric in general. When ⪯S is anti-symmetric, then it is a partial order, and is
called the natural order on S; in that case we say that S is naturally ordered.

For simplicity, we may use ≤ in lieu of ⪯. We naturally extend the ordering to vectors
and matrices: for two vectors v, w ∈ Sn, we have v ≤ w iff vi ≤ wi for all i ∈ [n]. Similarly,
for two matrices A and B (which includes vectors) A ≤ B means that componentwise each
entry in A is at most the entry in B, that is for all i and j it is the case that Ai,j ≤ Bi,j .

Here we take k to be the longest chain in the natural order.

▶ Theorem 24. Every linear Datalog◦ program over a p-stable naturally-ordered commutative
semiring with maximum chain size k converges in O(kn) steps.

▶ Theorem 25. There are linear Datalog◦ programs over a p-stable naturally-ordered com-
mutative semiring with maximum chain size k that require in Ω(kn) steps to converge.

This section considers bounds in terms of the longest chain in the partial order of a
naturally ordered semiring. Recall that natural ordering means the following: for two
elements a and b a ≤ b if and only if there exists a c such that a + c = b. Let L be the length
of the longest chain in this partial order. We seek to bound the convergence rate in terms of
n and L.

▶ Lemma 26. Consider a naturally ordered semiring where L is the length of the longest
chain in the partial order. Let A be an n × n matrix. Convergence must occur within nL

steps.

Proof. Consider A(k)x as k increases for any fixed x. If there is a k ≤ nL such that
A(k)x = A(k+1)x then convergence has been reached within the desired number of steps.
Otherwise when A(k)x ≠ A(k+1)x there exists an i such that dimension i in A(k+1)x is strictly
greater than dimension i in A(k)x. This can only occur L times for each i by definition of the
partial order. Knowing that there are at most n dimensions in A(k)x, the lemma follows. ◀

▶ Lemma 27. There exists a naturally ordered semiring where L is the length of the longest
chain in the partial order and a n by n matrix where convergence requires Ω(nL) steps.

Proof. Consider the following semiring. The semiring is on the set of integers 0, 1, 2, . . . , L

and a special element O. Here, the additive identity is O and the multiplicative identity is 0.
Consider two elements a and b that are not O. Define the addition and multiplication of a

and b to be equal to min{a + b, L}. Define a multiplied by O to be O for any a and a added
to O to be a for any a. Intuitively, addition and multiplication act as standard addition
capped at L, except for the special O element.

ICDT 2024

https://doi.org/10.1007/978-3-7091-9076-0_9
https://doi.org/10.1145/321105.321107
https://doi.org/10.1145/321105.321107

11:18 On the Convergence Rate of Linear Datalog◦ over Stable Semirings

Consider the following graph corresponding to a n× n matrix A. There is a cycle on n

nodes. Order the edges from 1 to n. Each edge is labeled 0 except the edge from 1 to 2,
which is labeled as 1. Traversing the cycle k times and multiplying the labels of the edges
returns min{k, L}. It takes a walk of length Ω(nL) to reach the element L. ◀

B Missing Proof from Section 4.1

We show that the semiring we defined in Section 4.1 is indeed a (commutative) semiring.
Monoid (S, +) with identity O:

A +O = O + A = A. This follows from the definition.
(A + B) + C = A + (B + C). When A, B, C ̸= O, this is equivalent to showing
max{max{Ai, Bi}, Ci} = max{Ai, max{Bi, Ci}} for all i ∈ [m], which follows from max
being commutative. If A, B, or C is O, then it is easy to check that it holds true.

Monoid (S, ·) with identity ∅:
A · ∅ = ∅ · A = A. If A ̸= O, this is immediate from the definition. If A = O, again by
definition, O · ∅ = O · ∅ = O.
(A ·B) ·C = A · (B ·C). When A, B, C ̸= O, it is an easy exercise to see ((A ·B) ·C)i =
(A · (B · C))i = min{Ai + Bi + Ci, p}. If A, B or C is O, both sides become O.

Commutative:
A + B = B + A. If A, B ̸= O, we have (A + B)i = max{Ai, Bi} = (B + A)i. Otherwise,
it is immediate from the definition of O.
A ·B = B ·A. We also show that the multiplication is also commutative. If A, B ̸= O, we
have (A·B)i = min{Ai +Bi, p} = min{Bi +Ai, p} = (B ·A)i. Otherwise A·B = B ·A = O
from the definition.

O is an multiplicative annihilator: We have O ·A = A · O = O for all A ∈ S from the
definition.
Distributive:

A · (B +C) = A ·B +A ·C. Assume that A, B, C ≠ O since otherwise it is straightforward
to see that it holds true. We then have,

(A · (B + C))i = min{Ai + max{Bi, Ci}, p} = min{max{Ai + Bi, Ai + Ci}, p}
= max{min{Ai + Bi, p}, min{Ai + Ci, p}} = max{(A ·B)i, (A · C)i}
= (A ·B + A · C)i

(B + C) ·A = B ·A + C ·A. The proof is symmetric.

C Warm-up for Proof of Theorem 7

In Section 5 we gave the full proof of Theorem 7, which gives an upper bound of O(np log L)
on the convergence rate when the underlying semiring has a ground set of size at most L.

To convey intuition better of the analysis, we give two warm-up proofs. Our first warm-up
is giving a looser bound on the convergence rate. The proof makes use of the fact that a
sufficiently long walk must visit the same vertex many times with the same product value.
Here, we think of a prefix of the walk as a product of edges on the prefix. This prefex
evaluates to an element of the semiring.

▶ Lemma 28. Let A be an n by n matrix over a p-stable semiring on a ground set S

consisting of L elements. Then A(k+1) = A(k), where k = npL.

S. Im, B. Moseley, H. Ngo, and K. Pruhs 11:19

Proof. Fix i, j ∈ [n]. Consider any W ∈ Wk+1
i,j . To show the lemma it suffices to show

Φ(W) + A
(k)
i,j = A

(k)
i,j . Let Wh be the prefix of W of length h. Let v(Wh) denote the ending

point of Wh. Consider all pairs (Φ(Wh), v(Wh)), h ∈ [k + 1]. Since these tuples are subsets
of S × [n] and |S| = L, due to the pigeonhole principle, there must exist H ⊆ [k + 1] of
size p + 1 such that (Φ(Wh), v(Wh)) is the same tuple for all h ∈ H. By renaming we can
represent the prefixes as X1, X1X2, X1X2X3, . . ., X1X2X3 . . . Xp+1.

For some T (possibly empty), we have W = X1X2X3 . . . Xp+1T . By definition Φ(X1) =
Φ(X1X2) = . . . = Φ(X1X2 . . . Xp+1).

Thus, Φ(W) = Φ(X1X2X3 . . . Xp+1T) = Φ(X1X2X3 . . . XpT) . . . = Φ(X1T), This uses
the fact that X1T , X1X2T , . . ., X1X2X3 . . . XpT all are walks from i to j since X1, X1X2, . . . ,
X1X2 . . . Xp+1 all end where T starts. Further, all walks X1T , X1X2T , . . ., X1X2X3 . . . XpT

are strictly shorter than W . This implies that Φ(W) appears at least p times in A
(k)
i,j . Using

Proposition 10, we conclude Φ(W) + A
(k)
i,j = A

(k)
i,j as desired. ◀

Next we consider the special case of p = 1. In this case we give an exponential improvement
over what we showed in the previous lemma. The key idea is the following. Previously
we identified p disjoint cycles X2, X3, . . . , Xp+1 that share the same starting and ending
vertex from a long walk W in Wk+1

i,j . Then, by removing them sequentially we were able to
obtain p copies of the same element that have already appeared; thus adding W (or more
precisely Φ(W)) doesn’t change A

(k)
i,j . Now we would like to make the same argument with

an exponentially smaller number of cycles. Roughly speaking, we will identify Θ(lg L) such
cycles and find 2Θ(lg L) walks by combining subsets of them. That is, the key idea is that we
find more walks with the same product from far fewer cycles.

▶ Lemma 29. Let A be an n by n matrix both over a 1-stable semiring S with a ground set
consisting of L elements. Then A(k+1) = A(k), where k = O(n lg L).

Proof. As before, fix i, j ∈ [n]. Consider any k ≥ ⌈2 lg L⌉n. For any W ∈ Wk+1
i,j we show

Φ(W) + A
(k)
i,j = A

(k)
i,j . Since there are n vertices, the walk must visit some vertex at least

⌈2 lg L⌉+ 1 times. Formally, we can decompose W into

W = TC1C2 . . . CHT ′ (13)

where T , TC1, TC1C2, . . . , TC1C2 . . . CH all end at the same vertex v, and H = ⌈2 lg L⌉.
Note that all the cycles (or closed walks) C1, C2, . . . CH start from v and end at the same
vertex v. It is plausible that some of them are identical.

For a subset A of [H] we let Φ̂(A) :=
∏

h∈A Φ(Ch). Since there are 2|H| subsets of [H]
and 2H > L, there must exist A, B ⊆ [H] such that A ̸= B and Φ̂(A) = Φ̂(B). Assume wlog
that B \A ̸= ∅. Thus we know

Φ̂(A ∩B)Φ̂(A \B) = Φ̂(A ∩B)Φ̂(B \A) (14)

We can then show,

Φ(W) = Φ(T)Φ̂([H])Φ(T ′) [Eqn. 13]

= Φ(T)Φ̂(A ∩B)Φ̂(A \B)Φ̂(B \A)Φ̂([H] \ (A ∪B))Φ(T ′)

= Φ(T)Φ̂(A ∩B)(Φ̂(B \A))2Φ̂([H] \ (A ∪B))Φ(T ′) [Eqn. 14]

Consider a walk W ′ that starts with T , has Ch for each h ∈ (A∩B)∪(B\A)∪([H]\(A∪B)) =
[H] \ (A \B) and ends with T ′. Similarly, consider a walk W ′′ that starts with T , has Ch

for each h ∈ (A ∩B) ∪ ([H] \ (A ∪B)) and ends with T ′. Note that W and W ′ are different

ICDT 2024

11:20 On the Convergence Rate of Linear Datalog◦ over Stable Semirings

since B \ A ̸= ∅. Further they are walks from i to j since every cycle Ch, h ∈ [H] starts
from and ends at the same vertex v. Further, both walks are shorter than W , and therefore
are in W(k)

i,j . Since we have Φ(W ′) = Φ(T)Φ̂(A ∩ B)Φ̂(B \ A)Φ̂([H] \ (A ∪ B))Φ(T ′) and
Φ(W ′′) = Φ(T)Φ̂(A∩B)Φ̂([H]\ (A∪B))Φ(T ′). We will show using 1-stability of the semiring
that Φ(W ′) + Φ(W ′′) + Φ(W) = Φ(W ′) + Φ(W ′′), implying Φ(W) + A

(k)
i,j = A

(k)
i,j as desired.

Thus, it suffices to show Φ(W ′) + Φ(W ′′) + Φ(W) = Φ(W ′) + Φ(W ′′). To see this:

Φ(W ′) + Φ(W ′′) + Φ(W)

= Φ(T)Φ̂(A ∩ B)Φ̂(B \ A)Φ̂([H] \ (A ∪ B))Φ(T ′) + Φ(T)Φ̂(A ∩ B)Φ̂([H] \ (A ∪ B))Φ(T ′)

+ Φ(T)Φ̂(A ∩ B)(Φ̂(B \ A))2Φ̂([H] \ (A ∪ B))Φ(T ′)

= Φ(T)Φ̂(A ∩ B)Φ([H] \ (A ∪ B))Φ(T ′)(1 + Φ(B \ A) + Φ(B \ A)2)
[associative and 1 is the multiplicative identiy]

= Φ(T)Φ̂(A ∩ B)Φ([H] \ (A ∪ B))Φ(T ′)(1 + Φ(B \ A)) [1-stable]
= Φ(W ′) + Φ(W ′′) ◀

	1 Introduction
	1.1 Background
	1.2 Our Results

	2 Preliminaries
	3 Upper bounding the Convergence as a Function of the Matrix Dimension and the Semiring Stability
	4 A Lower Bound for Convergence Rate of Linear Datalog^o Programs
	4.1 Constructing the Semiring
	4.2 Defining the Matrix A

	5 Bounding Convergence in Terms of the Semiring Ground Set Size
	6 Lower Bounds on Convergence in Terms of the Semiring Ground Set Size
	7 Related Work
	A Convergence of Naturally Ordered Semirings
	B Missing Proof from Section 4.1
	C Warm-up for Proof of Theorem 7

