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Abstract
Due to the importance of linear algebra and matrix operations in data analytics, there is significant
interest in using relational query optimization and processing techniques for evaluating (sparse) linear
algebra programs. In particular, in recent years close connections have been established between
linear algebra programs and relational algebra that allow transferring optimization techniques of the
latter to the former. In this paper, we ask ourselves which linear algebra programs in MATLANG
correspond to the free-connex and q-hierarchical fragments of conjunctive first-order logic. Both
fragments have desirable query processing properties: free-connex conjunctive queries support
constant-delay enumeration after a linear-time preprocessing phase, and q-hierarchical conjunctive
queries further allow constant-time updates. By characterizing the corresponding fragments of
MATLANG, we hence identify the fragments of linear algebra programs that one can evaluate with
constant-delay enumeration after linear-time preprocessing and with constant-time updates. To
derive our results, we improve and generalize previous correspondences between MATLANG and
relational algebra evaluated over semiring-annotated relations. In addition, we identify properties
on semirings that allow to generalize the complexity bounds for free-connex and q-hierarchical
conjunctive queries from Boolean annotations to general semirings.
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1 Introduction

Linear algebra forms the backbone of modern data analytics, as most machine learning
algorithms are coded as sequences of matrix operations [1,4, 19,20,42]. In practice, linear
algebra programs operate over matrices with millions of entries. Therefore, efficient evaluation
of linear algebra programs is a relevant challenge for data management systems which has
attracted research attention with several proposals in the area [30,33,34,37,41].

To optimize and evaluate linear algebra programs, we must first agree on the language in
which such programs are expressed. There has been a renewed interest in recent years for
designing query languages for specifying linear algebra programs and for understanding their
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12:2 Enumeration and Updates for Conjunctive Linear Algebra Queries

expressive power [6,12,13,23,40]. One such proposal is MATLANG [12], a formal matrix query
language that consists of only the basic linear algebra operations and whose extensions (e.g.,
for-MATLANG) achieve the expressive power of most linear algebra operations [23]. Although
MATLANG is a theoretical query language, it includes the core of any linear algebra program
and, thus, the optimization and efficient evaluation of MATLANG could have a crucial impact
on today’s machine learning systems.

In this work, we study the efficient evaluation of MATLANG programs over sparse matrices
whose entries are taken from a general semiring. We consider MATLANG evaluation in both
the static and dynamic setting. For static evaluation, we want to identify the fragment that
one can evaluate by preprocessing the input in linear time to build a data structure for
enumerating the output entries with constant-delay. For dynamic evaluation, we assume that
matrix entries are updated regularly and we want to maintain the output of a MATLANG
query without recomputing it. For this dynamic setting, we aim to identify the MATLANG
fragment that one can evaluate by taking linear time in the size of the update to refresh the
aforementioned data structure so that it supports constant-delay enumeration of the modified
output entries. These guarantees for both scenarios have become the holy grail for algorithmic
query processing since, arguably, it is the best that one can achieve complexity-wise in terms
of the input, the output, and the cost of an update [5, 8, 11,16,17,31,35,36,39].

To identify the MATLANG fragments with these guarantees, our approach is straightfor-
ward but effective. Instead of developing evaluation algorithms from scratch, we establish
a direct correspondence between linear algebra and relational algebra to take advantage
of the query evaluation results for conjunctive queries. Indeed, prior work has precisely
characterized which subfragments of conjunctive queries can be evaluated and updated
efficiently [5, 8, 9, 31]. Our main strategy, then, is to link these conjunctive query fragments
to corresponding linear algebra fragments. More specifically, our contributions are as follows.
1. We start by understanding the deep connection between positive first-order logic (FO+)

over binary relations and sum-MATLANG [23], an extension of MATLANG. We formalize
this connection by introducing schema encodings, which specify how relations simulate
matrices and vice-versa, forcing a lossless relationship between both. Using this machinery,
we show that sum-MATLANG and positive first-order logic are equally expressive over any
relation, matrix, and matrix dimension (including non-rectangular matrices). Moreover,
we show that conjunctive queries (CQ) coincide with sum-MATLANG without matrix ad-
dition, which we call conj-MATLANG. This result forms the basis for linking both settings
and translating the algorithmic results from CQ to subfragments of conj-MATLANG.

2. We propose free-connex MATLANG (fc-MATLANG) for static evaluation, a natural
MATLANG subfragment that we show to be equally expressive as free-connex CQ [5], a
subfragment of CQ that allows linear time preprocessing and constant-delay enumera-
tion. To obtain our expressiveness result, we show that free-connex CQs over binary
relations are equally expressive as the two-variable fragment of conjunctive FO+, a logical
characterization of this class that could be of independent interest.

3. For the dynamic setting we introduce the language qh-MATLANG, a MATLANG fragment
that we show equally expressive to q-hierarchical CQ [9,31], a fragment of CQ that allows
constant update time and constant-delay enumeration.

4. Both free-connex and q-hierarchical CQ are known to characterize the class of CQs
that one can evaluate efficiently on Boolean databases. We are interested, however, in
evaluating MATLANG queries on matrices featuring entries in a general semiring. To
obtain the complexity bounds for fc-MATLANG and qh-MATLANG on general semirings,
therefore, we show that the upper and lower bounds for free-connex and q-hierarchical
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CQs generalize from Boolean annotations to classes of semirings which includes most
semirings used in practice, like the reals. The tight expressiveness connections established
in this paper then prove that for such semirings fc-MATLANG and qh-MATLANG can
be evaluated with the same guarantees as their CQ counterparts and that they are
optimal: one cannot evaluate any other conj-MATLANG query outside this fragment
under complexity-theoretic assumptions [9].

An extended version of this paper that includes full proofs of formal statements is available
online [38].

Related work. In addition to the work that has already been cited above, the following
work is relevant. Brijder et al. [13] have shown equivalence between MATLANG and FO+

3 ,
the 3-variable fragment of positive first order logic. By contrast, we show equivalence
between sum-MATLANG and FO+, and study the relationship between the free-connex and
q-hierarchical fragments of MATLANG and FO∧, the conjunctive fragment of positive first
order logic.

Geerts et al. [23] previously established a correspondence between sum-MATLANG and
FO+. However, as we illustrate in [38] their correspondence is (1) restricted to square
matrices, (2) asymmetric between the two settings, and (3) encodes matrix instances as
databases of more than linear size, making it unsuitable to derive the complexity bounds.

Eldar et al. [18] have recently also generalized complexity bounds for free-connex CQs
from Boolean annotations to general semirings. Nevertheless, this generalization is with
respect to direct access, not enumeration. In their work the focus is to compute aggregate
queries, which is achieved by providing direct access to the answers of a query even if the
annotated value (aggregation result) is zero. By contrast, in our setting, zero-annotated
values must not be reported during the enumeration of query answers. This difference in
the treatment of zero leads to a substantial difference in the properties that a semiring must
have in order to generalize the existing complexity bounds.

There are deep connections known between the treewidth and the number of variables of a
conjunctive FO+ formula (FO∧). For example, Kolaitis and Vardi established the equivalence
of boolean queries in FO∧

k , the k-variable fragment of FO∧, and boolean queries in FO∧ of
treewidth less than k. Because they focus on boolean queries (i.e., without free variables),
this result does not imply our result that for binary queries free-connex FO∧ equals FO∧

2 .
Similarly, Geerts and Reutter [24] introduce a tensor logic TL over binary relations and
show that conjunctive expressions in this language that have treewidth k can be expressed
in TLk+1, the k-variable fragment of TL. While they do take free variables into account,
we show in [38] that there are free-connex conjunctive queries with 2 free variables with
treewidth 2 in their formalism – for which their result hence only implies expressibility in
FO∧

3 , not FO∧
2 as we show here.

Several proposals [30,33,34,37,41] have been made regarding the efficient evaluation of
linear algebra programs in the last few years. All these works focused on query optimization
without formal guarantees regarding the preprocessing, updates, or enumeration in query
evaluation. To the best of our knowledge, this is the first work on finding subfragments of a
linear algebra query language (i.e., MATLANG) with such efficient guarantees.

2 Preliminaries

In this section we recall the main definitions of MATLANG, a query language on matrices,
and first order logic (FO), a query language on relations.

ICDT 2024



12:4 Enumeration and Updates for Conjunctive Linear Algebra Queries

Semirings. We evaluate both languages over arbitrary commutative and non-trivial semir-
ings. A (commutative and non-trivial) semiring (K,⊕,⊙, 0, 1) is an algebraic structure
where K is a non-empty set, ⊕ and ⊙ are binary operations over K, and 0, 1 ∈ K with 0 ̸= 1.
Furthermore, ⊕ and ⊙ are associative operations, 0 and 1 are the identities of ⊕ and ⊙,
respectively, ⊕ and ⊙ are commutative operations, ⊙ distributes over ⊕, and 0 annihilates
K (i.e. 0⊙ k = k ⊙ 0 = 0). We use

⊕
L and

⊙
L to denote the ⊕ and ⊙ operation over all

elements in L ⊆ K, respectively. Typical examples of semirings are the reals (R, +,×, 0, 1),
the natural numbers (N, +,×, 0, 1), and the boolean semiring B = ({t, f},∨,∧, f, t).

Henceforth, when we say “semiring” we mean “commutative and non-trivial” semiring.
We fix such an arbitrary semiring K throughout the document. We denote by N>0 the set of
non-zero natural numbers.

Matrices and size symbols. A K-matrix (or just matrix) of dimension m× n is a m× n

matrix with elements in K as its entries. We write Aij to denote the (i, j)-entry of A.
Matrices of dimension m× 1 are column vectors and those of dimension 1×n are row vectors.
We also refer to matrices of dimension 1× 1 as scalars.

We assume a collection of size symbols denoted with greek letters α, β, . . . and assume
that the natural number 1 is a valid size symbol. A type is a pair (α, β) of size symbols.
Intuitively, types represent sets of matrix dimensions. In particular, we obtain dimensions
from types by replacing size symbols by elements from N>0, where the size symbol 1 is always
replaced by the natural number 1. So, (α, β) with α ̸= 1 ̸= β represents the set of dimensions
{(m, n) | m, n ∈ N>0}, while (α, α) represents the dimensions {(m, m) | m ∈ N>0} of square
matrices; and (α, 1) represents the dimensions {(m, 1) | m ∈ N>0} of column vectors and
(1, 1) represents the dimension (1, 1) of scalars.

Schemas and instances. We assume a setM = {A, B, C, V, . . .} of matrix symbols, disjoint
with the size symbols and denoted by bold uppercase letters. Each matrix symbol A has a
fixed associated type. We write A : (α, β) to denote that A has type (α, β).

A matrix schema S is a finite set of matrix and size symbols. We require that the special
size symbol 1 is always in S, and that all size symbols occurring in the type of any matrix
symbol A ∈ S are also in S. A matrix instance I over a matrix schema S is a function
that maps each size symbol α in S to a non-zero natural number αI ∈ N>0, and maps each
matrix symbol A : (α, β) in S to a K-matrix AI of dimension αI × βI . We assume that for
the size symbol 1, we have 1I = 1, for every instance I.

Sum-Matlang. Let S be a matrix schema. Before defining the syntax of sum-MATLANG,
we assume a set V = {u, v, w, x, . . . } of vector variables over S, which is disjoint with matrix
and size symbols in S. Each such variable v has a fixed associated type, which must be a
vector type (γ, 1) for some size symbol γ ∈ S. We also write v : (γ, 1) in that case.

The syntax of sum-MATLANG expressions [23] over S is defined by the following grammar:

e ::= A ∈ S (matrix symbol) | v ∈ V (vector variable)
| eT (transpose) | e1 · e2 (matrix multiplication)
| e1 + e2 (matrix addition) | e1 × e2 (scalar multiplication)
| e1 ⊙ e2 (pointwise multiplication) | Σv.e (sum-iteration).
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In addition, we require that expressions e are well-typed, in the sense that its type type(e) is
correctly defined as follows:

type(A) := (α, β) for a matrix symbol A : (α, β)
type(v) := (γ, 1) for vector variable v : (γ, 1)

type(eT ) := (β, α) if type(e) = (α, β)
type(e1 · e2) := (α, γ) if type(e1) = (α, β) and type(e2) = (β, γ)

type(e1 + e2) := (α, β) if type(e1) = type(e2) = (α, β)
type(e1 × e2) := (α, β) if type(e1) = (1, 1) and type(e2) = (α, β)
type(e1 ⊙ e2) := (α, β) if type(e1) = type(e2) = (α, β)

type(Σv.e) := (α, β) if e : (α, β) and type(v) = (γ, 1).

In what follows, we always consider well-typed expressions and write e : (α, β) to denote that
e is well typed, and its type is (α, β).

For an expression e, we say that a vector variable v is bound if it is under a sum-iteration
Σv, and free otherwise. To evaluate expressions with free vector variables, we require the
following notion of a valuation. Fix a matrix instance I over S. A vector valuation over I is
a function µ that maps each vector symbol v : (γ, 1) to a column vector of dimension γI × 1.
Further, if b is a vector of dimension γI × 1, then let µ[v := b] denote the extended vector
valuation over I that coincides with µ, except that v : (γ, 1) is mapped to b.

Let e : (α, β) be a sum-MATLANG expression over S. When one evaluates e over a matrix
instance I and a matrix valuation µ over I, it produces a matrix JeK(I, µ) of dimension
αI × βI such that each entry i, j satisfies:

JAK(I, µ)ij := AI
ij for A ∈ S

JvK(I, µ)ij := µ(v)ij for v ∈ V
JeT K(I, µ)ij := JeK(I, µ)ji

Je1 + e2K(I, µ)ij := Je1K(I, µ)ij ⊕ Je2K(I, µ)ij

Je1 ⊙ e2K(I, µ)ij := Je1K(I, µ)ij ⊙ Je2K(I, µ)ij

JΣv. e K(I, µ)ij :=
⊕γI

k=1JeK(I, µ[v := bγI

k ])ij

Je1 · e2K(I, µ)ij :=
⊕

kJe1K(I, µ)ik ⊙ Je2K(I, µ)kj

Je1 × e2K(I, µ)ij := a⊙ Je2K(I, µ)ij with Je1K(I, µ) = [a]

where v : (γ, 1) and bn
1 , bn

2 , . . . , bn
n are the n-dimension canonical vectors, namely, the vectors

[1 0 . . . 0]T , [0 1 . . . 0]T, . . ., [0 0 . . . 1]T , respectively.

▶ Example 1. Let S = {A} where A : (α, α). Let I be an instance over S such that

αI = 3 and AI =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 . Let v ∈ V where v : (α, 1). The expression Σv.A · v is

well-typed and

JΣv.A · vK(I, ∅) = A · b3
1 + A · b3

2 + A · b3
3 =

a11
a21
a31

 +

a12
a22
a32

 +

a13
a23
a33

 .

▶ Example 2. Let S and I be as in Example 1. Let v ∈ V where v : (γ, 1). The expression
Σv.A is well-typed and

JΣv.AK(I, ∅) = A + · · ·+ A︸ ︷︷ ︸
γI times

.

ICDT 2024



12:6 Enumeration and Updates for Conjunctive Linear Algebra Queries

Matlang. MATLANG is a linear algebra query language that is a fragment of sum-MATLANG.
Specifically, define the syntax of MATLANG expressions over S by the following grammar:

e ::= A ∈ S | eT | e1 · e2 | e1 + e2 | e1 × e2 | e1 ⊙ e2 | 1α | Iα

for every size symbol α ∈ S. Here, 1α and Iα denote the ones-vector and identity-matrix,
respectively, of type type(1α) = (α, 1) and type(Iα) = (α, α). Their semantics can be
defined by using sum-MATLANG as:

J1αK(I, µ) := JΣv.vK(I, µ) JIαK(I, µ) := JΣv.v · vT K(I, µ)

Note that the original MATLANG version introduced in [12] included an operator for the
diagonalization of a vector. This operator can be simulated by using the Iα-operator and
vice versa. Furthermore, we have included the pointwise multiplication ⊙ in MATLANG, also
known as the Hadamard product. This operation will be essential for our characterization
results. In [12,23], the syntax of MATLANG was more generally parameterized by a family
of n-ary functions that could be pointwise applied. Similarly to [13,22] we do not include
such functions here, but leave their detailed study to future work.

Sum-Matlang queries. A sum-MATLANG query Q over a matrix schema S is an expression
of the form H := e where e is a well-typed sum-MATLANG expression without free vector
variables, H is a “fresh” matrix symbol that does not occur in S, and type(e) = type(H).
When evaluated on a matrix instance I over schema S, Q returns a matrix instance E over
the extended schema S ∪{H}: E coincides with I for every matrix and size symbol in S
and additionally maps HE = JeK(I, ∅) with ∅ denoting the empty vector valuation. We
denote the instance resulting from evaluating Q by JQK(I). If S is a matrix schema and Q a
sum-MATLANG query over S then we use S(Q) to denote the extended schema S ∪{H}.

K-relations. A K-relation over a domain of data values D is a function f : Da → K such
that f(d) ̸= 0 for finitely many d ∈ Da. Here, “a” is the arity of R. Since we want to compare
relational queries with sum-MATLANG queries, we will restrict our attention in what follows
to K-relations where the domain D of data values is the set N>0. In this context, we may
naturally view a K-matrix of dimensions n×m as a K-relation such that the entry (i, j) of
the matrix is encoded by the K-value of the tuple (i, j) in the relation (see also Section 3).

Vocabularies and databases. We assume an infinite set of relation symbols together with
an infinite and disjoint set of constant symbols. Every relation symbol R is associated with a
number, its arity, which we denote by ar(R) ∈ N. A vocabulary σ is a finite set of relation and
constant symbols. A database over σ is a function db that maps every constant symbol c ∈ σ

to a value cdb in N>0; and every relation symbol R ∈ σ to a K-relation Rdb of arity ar(R).

Positive first order logic. As our relational query language, we will work with the positive
fragment of first order logic (FO+). In contrast to the standard setting in database theory,
where the only atomic formulas are relational atoms of the form R(x), we also allow the
ability to compare variables with constant symbols. To this end, the following definitions
are in order. We assume an infinite set of variables, which we usually denote by x, y, z. We
denote tuples of variables by x, y, and so on. A relational atom is expression of the form
R(x1, . . . , xk) with R a relation symbol of arity k. A comparison atom is of the form x ≤ c

with x a variable and c a constant symbol. A positive first order logic formula (FO+ formula)
over a vocabulary σ is an expression generated by the following grammar:
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φ ::= R(x) | x ≤ c | ∃y. φ | φ ∧ φ | φ ∨ φ

where R and c range over relations and constants in σ, respectively. We restrict ourselves to
safe formulas, in the sense that in a disjunction φ1 ∨ φ2, we require that φ1 and φ2 have the
same set of free variables [2]. The notions of free and bound variables are defined as usual
in FO. We denote the set of free variables of φ by free(φ) and its multiset of atoms by at(φ).

We evaluate formulas over K-relations as follows using the well-known semiring se-
mantics [26]. A valuation over a set of variables X is a function ν : X → N>0 that assigns a
value in N>0 to each variable in X (recall that D = N>0). We denote by ν : X that ν is a
valuation on X and by ν|Y the restriction of ν to X ∩ Y . As usual, valuations are extended
point-wise to tuples of variables, i.e., ν(x1, . . . , xn) = (ν(x1), . . . , ν(xn)). Let φ be an FO+

formula over vocabulary σ. When evaluated on a database db over vocabulary σ, it defines a
mapping VφUdb from valuations over free(φ) to K inductively defined as:

VR(x1, . . . , xk)Udb(ν) := Rdb(ν(x1), . . . , ν(xn))

Vx ≤ cUdb(ν) :=
{
1 if ν(x) ≤ cdb

0 otherwise
Vφ1 ∧ φ2Udb(ν) := Vφ1Udb(ν|free(φ1))⊙ Vφ2Udb(ν|free(φ2))
Vφ1 ∨ φ2Udb(ν) := Vφ1Udb(ν)⊕ Vφ2Udb(ν)

V∃y.φUdb(ν) :=
⊕

µ : free(φ)s.t.µ|free(φ)\{y}=νVφUdb(µ)

FO queries. An FO+ query Q over vocabulary σ is an expression of the form H(x)← φ

where φ is an FO+ formula over σ, x = (x1, . . . , xk) is a sequence of (not necessarily distinct)
free variables of φ, such that every free variable of φ occurs in x, and H is a “fresh” relation
symbol not in σ with ar(H) = k. The formula φ is called the body of Q, and H(x) its head.

When evaluated over a database db over σ, Q returns a database JQKdb over the extended
vocabulary σ ∪{H}. This database JQKdb coincides with db for every relation and constant
symbol in σ, and maps the relation symbol H to the K-relation of arity k defined as follows.
For a sequence of domain values d = (d1, . . . , dk), we write d |= x if, for all i ̸= j with
xi = xj we also have di = dj . Clearly, if d |= x then the mapping {x1 → d1, . . . , xk 7→ dk} is
well-defined. Denote this mapping by x 7→ d in this case. Then

JQKdb(H) := d 7→

{
VφUdb(x 7→ d) if d |= x

0 otherwise

In what follows, if Q is a query, then we will often use the notation Q(x) to denote that the
sequence of the variables in the head of Q is x. If Q is a query over σ and H(x) its head,
then we write σ(Q) for the extended vocabulary σ ∪{H}.

We denote by FO∧ the fragment of FO+ formulas in which disjunction is disallowed. A
query Q = H(x)← φ is an FO∧ query if φ is in FO∧. If additionally φ is in prenex normal
form, i.e., Q : H(x) ← ∃y.a1 ∧ · · · ∧ an with a1, . . . , an (relational or comparison) atoms,
then Q is a conjunctive query (CQ). Note that, while the classes of conjunctive queries and
FO∧ queries are equally expressive, for our purposes conjunctive queries are hence formally a
syntactic fragment of FO∧ queries.

An FO+ query is binary if every relational atom occurring in it (body and head) has
arity at most two. Because in sum-MATLANG both the input and output are matrices, our
correspondences between sum-MATLANG and FO+ will focus on binary queries.

ICDT 2024



12:8 Enumeration and Updates for Conjunctive Linear Algebra Queries

Discussion. We have added comparison atoms to FO+ in order to establish its correspond-
ence with sum-MATLANG. To illustrate why we will need comparison atoms, consider the
sum-MATLANG expression Iα of type (α, α) that computes the identity matrix. This can
be expressed by means of the following CQ Q : I(x, x)← x ≤ α. We hence use comparison
atoms to align the dimension of the matrices with the domain size of relations.

To make the correspondence hold, we note that in MATLANG there is a special size
symbol, 1, which is always interpreted as the constant 1 ∈ N. This size symbol is used in
particular to represent column and row vectors, which have type (α, 1) and (1, α) respectively.
We endow CQs with the same property in the sense that we will assume in what follows that
1 is a valid constant symbol and that 1db = 1 for every database db.

3 From matrices to relations and back

Geerts et al. [23] previously established a correspondence between sum-MATLANG and FO+.
However, as we illustrate in the full version [38] their correspondence is (1) for square matrices,
(2) asymmetric, and (3) encodes matrix instances as databases of more than linear size,
making it unsuitable to derive the complexity bounds that we are interested in here. In
this section, we revisit and generalize the connection between sum-MATLANG and FO+ by
providing translations between the two query languages that works for any matrix schema,
are symmetric, and ensure that matrices are encoded as databases of linear size. Towards
this goal, we introduce next all the formal machinery to link both settings. We start by
determining precisely in what sense relations can encode matrices, or matrices can represent
relations, and how this correspondence transfers to queries. Then we show how to generalize
the expressibility results in [23] for any matrix sizes and every encoding between schemas.

How we relate objects. Let A be a matrix of dimension m × n. There exist multiple
natural ways to encode A as a relation, depending on the dimension m× n.

We can always encode A, whatever the values of m and n, as the binary K-relation R

such that (1) Ai,j = R(i, j) for every i ≤ m, j ≤ n and (2) R(i, j) = 0 if i > m or j > n.
If A is a column vector (n = 1) then we can also encode it as the unary K-relation R

such that Ai,1 = R(i) for every i ≤ m and R(i) = 0 if i > m.
Similarly, if A is a row vector (m = 1) then we can encode it as the unary K-relation R

with A1,j = R(j) for every j ≤ n and R(i) = 0 if j > n.
If A is a scalar (m = n = 1), we can encode it as a nullary K-relation R with A1,1 = R().

Note that if A is scalar then we can hence encode it by means of a binary relation, a unary
relation, or a nullary relation; and if it is a vector we can encode it by a binary or unary
relation. In what follows, we write A ≃ R to denote that R encodes A.

Conversely, given a (nullary, unary, or binary) K-relation R we may interpret this as
a matrix of appropriate dimension. Specifically, we say that relation R is consistent with
dimension m× n if there exists a matrix A of dimension m× n such that A ≃ R. This is
equivalent to requiring that relation is 0 on entries outside of m × n. Note that, given R

that is consistent with m× n there is exactly one matrix A : m× n such that A ≃ R.

How we relate schemas. A matrix-to-relational schema encoding from a matrix schema S
to a relational vocabulary σ is a function Rel : S → σ that maps every matrix symbol A in S
to a unary or binary relation symbol Rel(A) in σ, and every size symbol α in S to a constant
symbol Rel(α) in σ. Here, Rel(A) can be unary only if A is of vector type, and nullary only
if A is of scalar type. Intuitively, Rel specifies which relation symbols will be used to store
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the encodings of which matrix symbols. In addition, we require that Rel(1) = 1 and that
Rel is a bijection between S and σ. This makes sure that we can always invert Rel. In what
follows, we will only specify that Rel is a matrix-to-relational schema encoding on S, leaving
the vocabulary σ unspecified. In that case, we write Rel(S) for the relational vocabulary σ.

Conversely, we define a relational-to-matrix schema encoding from σ into S as a function
Mat : σ → S that maps every relation symbol R to a matrix symbol Mat(R) and every
constant symbol c to a size symbol Mat(c). We require that all unary relations are mapped
to matrix symbols of vector type, either row or column, and that all nullary relations are
mapped to matrix symbols of scalar type. Furthermore, Mat must map 1 7→ 1 and be
bijective. Similarly, we denote by Mat(σ) the matrix schema S mapped by Mat.

Note that the bijection assumption over Mat imposes some requirements over σ to encode
it as matrices. For example, Mat requires the existence of at least one constant symbol in σ

for encoding matrices dimensions, since every matrix symbol has at least one size symbol in
its type, and that size symbol is by definition in S. The bijection between constant and size
symbols is necessary in order to have lossless encoding between both settings.

Given that Rel and Mat are bijections between S and σ, their inverses Rel−1 and Mat−1

are well defined. Furthermore, by definition we have that Rel−1 and Mat−1 are relational-to-
matrix and matrix-to-relational schema encodings, respectively.

How we relate instances. We start by specifying how to encode matrix instances as
database instances. Fix a matrix-to-relational schema encoding Rel between S and Rel(S).
Let I be a matrix instance over S and db a database over Rel(S). We say that db is a
relational encoding of I w.r.t. Rel, denoted by I ≃Rel db, if

AI ≃ Rel(A)db for every matrix symbol A in S, and
Rel(α)db = αI for every size symbol α in S.

Note that, given I and Rel, the relational encoding db is uniquely defined. As such, we also
denote this database by Rel(I).

We now focus on interpreting database instances as matrix instances, which is more subtle.
Fix a relational-to-matrix schema encoding Mat from σ to Mat(σ). We need to first leverage
the consistency requirement from relations to databases. Formally, we say that a database
db over σ is consistent with Mat if for every relation symbol R in σ, Rdb is consistent with
dimension cdb × ddb where Mat(R) : (Mat(c), Mat(d)). In other words, a consistent database
specifies the value of each dimension, and the relations are themselves consistent with them.

Let db be a database over σ, consistent with Mat and let I be a matrix instance of Mat(σ).
We say that I is a matrix encoding of db w.r.t. Mat, denoted db ≃Mat I, if

Mat(R)I ≃ Rdb for every relation symbol R ∈ σ; and
cdb = Mat(c)I for every constant symbol c ∈ σ.

Given Mat and a consistent database db, the matrix encoding I is uniquely defined. As such,
we also denote this instance by Mat(db).

From the previous definitions, one notes an asymmetry between both directions. Although
an encoding always holds from matrices to relations, we require that the relations are consistent
with the sizes (i.e., constants) from relations to matrices. Nevertheless, this asymmetry does
not impose a problem when we want to go back and forth, as the next result shows.

▶ Proposition 3. Let Rel and Mat be matrix-to-relational and relational-to-matrix schema
encodings from S to σ and from σ to S, respectively, such that Mat = Rel−1. Then

Rel−1(Rel(S)) = S and Mat−1(Mat(σ)) = σ;
Rel(I) is consistent with Rel−1, for every instance I over S;
Rel−1(Rel(I)) = I, for every instance I over S; and
Mat−1(Mat(db)) = db, for every db consistent with Mat.
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12:10 Enumeration and Updates for Conjunctive Linear Algebra Queries

The previous proposition is a direct consequence of the definitions; however, it shows that
the consistency requirement and schema encodings provide a lossless encoding between the
relational and matrix settings. This fact is crucial to formalize the expressiveness equivalence
between sum-MATLANG and FO+, and their subfragments in the following sections.

From sum-Matlang to positive-FO. We first aim to simulate every sum-MATLANG query
with an FO+ query w.r.t. some matrix-to-relational schema encoding. This was already
proven in [23] for a different but related setting, and only for Rel encodings that map matrix
symbols with vector types into unary relations. Here we generalize it to arbitrary encodings.

In what follows, fix a matrix schema S. Let Q be a sum-MATLANG query over S, and
Rel be a matrix-to-relational schema encoding on S(Q). We say that FO+ query Q simulates
Q w.r.t. Rel if Rel(JQK(I)) = JQKRel(I) for every matrix instance I over S. Note that the
definition implies that the output matrix symbol of Q must be mapped to the output relation
symbol of Q by Rel, since Rel is a bijection and the condition must hold for every matrix
instance. Indeed, it is equivalent to JQK(I) = Rel−1(JQKRel(I)), namely, that one can evaluate
Q by first evaluating JQKRel(I) and then mapping the results back.

Next, we show that we can simulate every sum-MATLANG query in the relational setting.

▶ Proposition 4. For every sum-MATLANG query Q over S and every matrix-to-relational
schema encoding Rel on S(Q), there exists an FO+ query Q that simulates Q w.r.t. Rel.

From positive-FO to sum-Matlang. We now aim to simulate every FO+ query with a
sum-MATLANG query. Contrary to the previous direction, the expressiveness result here is
more subtle and requires more discussion and additional notions.

Fix a vocabulary σ. Let Q be a FO+ query over σ and let Mat be relational-to-matrix
schema encoding on σ(Q). We say that a matrix query Q simulates Q w.r.t. Mat if
Mat(JQKdb) = JQK(Mat(db)) for every database db consistent with Mat. We note again that
this definition implies that the input vocabulary and output relation symbol of Q coincides
with the input schema and output matrix symbol of Q, respectively. Further, it is equivalent
that JQKdb = Mat−1(JQK(Mat(db))).

Before stating how to connect FO+ with sum-MATLANG, we need to overcome the
following problem: a FO+ query can use the same variable within different relational atoms,
which can be mapped to matrix symbols of different types. For an illustrative example of
this problem, consider the query

Q : H(x, y)← R(x, y), S(y, z)

and a relational-to-matrix schema encoding such that Mat maps R and S to symbols of type
(α, β), H to a symbol of type (β, β), and c and d to α and β, respectively. For a consistent
database db w.r.t. Mat, we could have that R and S are consistent with cdb × ddb, but H is
not consistent with ddb × ddb if ddb < cdb. Moreover, Mat bounds variable y with different
sizes cdb and ddb. It is then problematic to simulate Q under Mat in sum-MATLANG because
sum-MATLANG expressions need to be well-typed.

Given the previous discussion, the well-typedness definition of a FO+ formula is necessary.
Let Mat be a relational-to-matrix schema encoding on σ. Given a FO+ formula φ over σ and
a function τ from free(φ) to size symbols in Mat(σ), define the rule Mat ⊢ φ : τ inductively as
shown in Figure 1, where τ1 ∼ τ2 if and only if τ1(x) = τ2(x) for every x ∈ dom(τ1)∩dom(τ2).
We say that φ over σ is well-typed w.r.t. Mat if there exists such a function τ such that
Mat ⊢ φ : τ . Note that if φ is well-typed, then there is a unique τ such that Mat ⊢ φ : τ .
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type(Mat(R)) = (α, β)
Mat ⊢ R(x1, x2) : {x1 7→ α, x2 7→ β}

type(Mat(R)) = (α, 1) or (1, α)
Mat ⊢ R(x) : {x 7→ α}

type(Mat(R)) = (1, 1)
Mat ⊢ R() : {} Mat ⊢ x ≤ c : {x 7→ Mat(c)}

Mat ⊢ φ : τ

Mat ⊢ ∃y.φ : τ |free(φ)\y

Mat ⊢ φ1 : τ1, Mat ⊢ φ2 : τ2 and τ1 ∼ τ2

Mat ⊢ φ1 ∧ φ2 : τ1 ∪ τ2

Mat ⊢ φ1 : τ1, Mat ⊢ φ2 : τ2 and τ1 ∼ τ2

Mat ⊢ φ1 ∨ φ2 : τ1 ∪ τ2

Figure 1 Well-typedness of FO+ formulas under relational-to-matrix mapping Mat.

Now, let Q : H(x) ← φ be a binary FO+ query over σ and Mat be a matrix encoding
specification on σ(Q). We say that Q is well-typed w.r.t. Mat if φ is well-typed w.r.t. Mat
and for τ such that Mat ⊢ φ : τ , we have:

if x = (x1, x2), then type(Mat(H)) = (τ(x1), τ(x2)); or
if x = (x), then type(Mat(H)) is either (τ(x), 1) or (1, τ(x)).

We write Mat ⊢ Q : τ to indicate that Q is well-typed w.r.t. Mat, and τ is the unique function
testifying to well-typedness of FO+ formula of Q. We note that that we can show that the
query obtained by Proposition 4 is always well-typed.

The next proposition connects well-typedness with consistency.

▶ Proposition 5. For binary FO+ query Q : H(x)← φ over a vocabulary σ, if Mat ⊢ Q : τ

then for any db consistent with Mat we have:
If x = (x1, x2) then JQKdb(H) is consistent with dimension τ(x1)db × τ(x2)db.
If x = (x) then JQKdb(H) is consistent with both dimension τ(x)db × 1 and 1× τ(x)db.

We have now all the formal machinery to state how to simulate every FO+ query over
relations with a sum-MATLANG query over matrices.

▶ Proposition 6. For every binary FO+ query Q over a vocabulary σ and every relational-
to-matrix schema encoding Mat on σ(Q) such that Q is well typed w.r.t. Mat there exists a
sum-MATLANG query Q that simulates Q w.r.t. Mat.

Conjunctive Matlang. Taking into account the correspondence between sum-MATLANG
and FO+ established by Propositions 5 and 6, in what follows we say that matrix query
language LM ⊆ sum-MATLANG and relational language LR ⊆ FO+ are equivalent or equally
expressive if (1) for every matrix query Q ∈ LM over a matrix schema S and every matrix-to-
relational schema encoding Rel on S(Q) there exists a query Q ∈ LR that simulates Q w.r.t.
Rel and is well-typed w.r.t. Rel−1; and (2) for every binary query Q ∈ LR over a vocabulary
σ and every relational-to-matrix schema encoding Mat such that Q is well-typed w.r.t. Mat
there exists Q ∈ LM that simulates Q w.r.t Mat.

Let conj-MATLANG be the sum-MATLANG fragment that includes all operations except
matrix addition (+). Then we can derive the following characterization of CQs.

▶ Corollary 7. conj-MATLANG and conjunctive queries are equally expressive.

While this result is a consequence of the connection between sum-MATLANG and FO+, it
provides the basis to explore the fragments of conj-MATLANG that correspond to fragments of
CQ, like free-connex or q-hierarchical CQ. We determine these fragments in the next sections.
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4 The fragment of free-connex queries

In this section, we specialize the correspondence of Corollary 7 between conj-MATLANG and
CQs to free-connex CQs [5]. Free-connex CQs are a subset of acyclic CQs that allow efficient
enumeration-based query evaluation: in the Boolean semiring and under data complexity they
allow to enumerate the query result JQKdb(H) of free-connex CQ Q : H(x)← φ with constant
delay after a preprocessing phase that is linear in db. In fact, under complexity-theoretic
assumptions, the class of CQs that admits constant delay enumeration after linear time
preprocessing is precisely the class of free-connex CQs [5].

Acyclic and free-connex CQs. A CQ Q : H(x)← ∃y.a1 ∧ · · · ∧ an is called acyclic [7,10,21]
if it has a join-tree, i.e. an undirected tree T = (V, E) with V the set {a1, . . . , an} of atoms
in the body and where for each variable z occurring in Q the set {ai ∈ V | z ∈ vars(ai)}
induces a connected subtree of T . Note that we consider inequality predicates as unary.
Furthermore, Q is free-connex [5, 11] if it is acyclic and the query Q′ obtained by adding
the head atom H(x) to the body of Q is also acyclic. The second condition forbids queries
like H(x, y) ← ∃z.A(x, z) ∧ B(z, y) since when we adjoin the head to the body we get
∃z.A(x, z) ∧ B(z, y) ∧ H(x, y), which is cyclic. We will usually refer to free-connex CQs
simply as fc-CQs in what follows.

To identify the sum-MATLANG fragment that corresponds to fc-CQs, we find it convenient
to first observe the following correspondence between fc-CQs and FO∧

2 , the two-variable
fragment of FO∧. Here, a formula φ in FO∧ is said to be in FO∧

2 if the set of all variables
used in φ (free or bound) is of cardinality at most two. So, ∃y∃z.A(x, y) ∧ B(y, z) is not
in FO∧

2 , but the equivalent formula ∃y. (A(x, y) ∧ ∃x.B(y, x)) is. An FO∧
2 query is a binary

query whose body is an FO∧
2 formula. Recall that a query is binary if every relational atom

occurring in its body and head have arity at most two.

▶ Theorem 8. Binary free-connex CQs and FO∧
2 queries are equally expressive.

We find this a remarkable characterization of the fc-CQs on binary relations that, to the
best of our knowledge, it is new. Moreover, this result motivates the fragment of MATLANG
that characterizes fc-CQs.

Free-connex MATLANG. Define fc-MATLANG to be the class of all MATLANG expressions
generated by the grammar:

e ::= A | 1α | Iα | eT | e1 × e2 | e1 ⊙ e2 | e1 · v2 | v1 · e2

where v1 and v2 are fc-MATLANG expressions with type (α, 1) or (1, α). In other words,
matrix multiplication e1 · e2 is only allowed when at least one of e1 or e2 has a row or column
vector type.

Interestingly, we are able to show that FO∧
2 and fc-MATLANG are equally expressive.

▶ Theorem 9. fc-MATLANG and FO∧
2 are equally expressive.

From Theorem 8 and Theorem 9 we obtain:

▶ Corollary 10. fc-MATLANG and binary free-connex CQs are equally expressive.
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5 The fragment of q-hierarchical queries

We next specialize the correspondence between conj-MATLANG and CQs to q-hierarchical
CQs [5]. The q-hierarchical CQs form a fragment of the free-connex CQs that, in addition to
supporting constant delay enumeration after linear time preprocessing, have the property
that every single-tuple update (insertion or deletion) to the input database can be processed
in constant time, after which the enumeration of the updated query result can again proceed
with constant delay [9].

Q-hierarchical CQs. Let Q : H(x)← ∃y.a1 ∧ . . . ∧ an be a CQ. For every variable x, define
at(x) to be the set {ai | x ∈ var(ai)} of relational atoms that mention x. Note that, contrary
to acyclic queries, here we make the distinction between relational atoms and inequalities.
Then Q is q-hierarchical if for any two variables x, y the following is satisfied:
1. at(x) ⊆ at(y) or at(x) ⊇ at(y) or at(x) ∩ at(y) = ∅, and
2. if x ∈ x and at(x) ⊊ at(y) then y ∈ x.
For example, H(x)← ∃y.A(x, y) ∧ U(x) is q-hierarchical. By contrast, the variant H(x)←
∃y.A(x, y) ∧ U(y) is not q-hierarchical, as it violates the second condition. Furthermore,
H(x, y)← A(x, y) ∧ U(x) ∧ V (y) violates the first condition, and is also not q-hierarchical.
Note that all these examples are free-connex. We refer to q-hierarchical CQs simply as qh-CQs.

Q-hierarchical Matlang. The fragment of sum-MATLANG that is equivalent to qh-CQs is a
two-layered language where expressions in a higher layer can only be built from the lower
layer. This lower layer, called simple-MATLANG, is a fragment of fc-MATLANG defined as:

e ::= A | 1α | Iα | eT | e1 × e2 | e1 ⊙ e2 | e · 1α.

Note that in simple-MATLANG matrix multiplication is further restricted to matrix-vector
multiplication with the ones vector. Intuitively, all simple-MATLANG expressions can already
define q-hierarchical CQs like H(x)← ∃y.A(x, y)∧U(x), but it cannot define cross-products
like H(x, y)← A(x) ∧B(y), which are q-hierarchical. For this reason, we need to enhance
simple-MATLANG with the higher layer. Specifically, we define qh-MATLANG as follows:

e ::= e1 | e1 ⊙
(
e2 · (1α)T

)
|

(
1α · e1

)
⊙ e2 |

(
1α · e1

)
⊙

(
e2 · (1α)T

)
where e1 and e2 are simple-MATLANG expressions. Note that the subexpressions 1α · e1 and
e2 · (1α)T are valid if e1 and e2 have a row and column vector type, respectively. Then, both
subexpressions are useful for expanding vector-type expressions into a matrix-type expression.

The qh-MATLANG syntax does not allow expressions like, for example, 1α · e1 where e1 is
a simple-MATLANG expression. Nevertheless, one can define this expression alternatively as
(1α · e1)⊙ (1α · (1α)T ). For presentational purposes, we decided to define qh-MATLANG as
simple as possible, leaving out some expressions in fc-MATLANG that are not in qh-MATLANG,
although an equivalent qh-MATLANG expression defines it.

▶ Theorem 11. qh-MATLANG and binary q-hierarchical CQs are equally expressive.

6 Efficient evaluation of free-connex and q-hierarchical queries

Now that we have precise connections between subfragments of MATLANG and subfragments
of CQ, we can use these connections to derive efficient evaluation algorithms for MATLANG.
Unfortunately, to apply the algorithms for CQ, we must first face two problems: (1) the
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evaluation algorithms for fc-CQs and qh-CQs are usually restricted to the Boolean semiring,
and (2) these algorithms are for CQ without inequalities (comparison atoms). To overcome
these problems, we need to revisit the fc-CQs and qh-CQs evaluation problem, generalize the
algorithmic results to other semirings (e.g., R), and extend the results when queries have also
inequalities. Only then can we derive efficient algorithms for the fragments of fc-MATLANG
and qh-MATLANG.

The evaluation setting. In our setting, we consider query evaluation as an enumeration
problem. Specifically, let Q be a CQ over vocabulary σ, H its relation symbol in the head,
and K a semiring. We define the evaluation problem Eval(Q, σ,K) as follows:

Problem: Eval(Q, σ, K)
Input: A K-database db over σ

Output: Enumerate {(d, JQKdb(H)(d)) | JQKdb(H)(d) ̸= 0}.

In other words, the evaluation problems ask to retrieve the set of all tuples output by Q

on db, together with their non-zero annotations. Similarly, we can define the evaluation
problem Eval(Q,S,K) for a conj-MATLANG query Q over a matrix schema S where we
aim to enumerate the non-zero entries of JQK(I) given as input a matrix instance I over S,
represented sparsely as the set of its non-zero entries.

As it is standard in the area, we consider enumeration algorithms on the Random Access
Machine (RAM) with uniform cost measure [3]. We assume that semiring values can be
represented in O(1) space and that the semiring operations ⊕ and ⊙ can be evaluated
in O(1) time. We say that Eval(Q,S,K) can be evaluated with linear-time preprocessing
and constant-delay, if there exists an enumeration algorithm that takes O (∥db∥) time to
preprocess the input database db, and then retrieves each output (d, JQKdb(H)(d)) one by
one, without repetitions, and with constant-delay per output. Here, the size of database
db is defined to be the number of non-zero entries. The same extends to Eval(Q,S,K) as
expected. Note that we measure the time and delay in data complexity as is standard in the
literature [5, 8, 9, 32].

Evaluation of free-connex queries. We are ready to state the algorithmic results for fc-CQ
and fc-MATLANG. A semiring (K,⊕,⊙, 0, 1) is zero-divisor free if, for all a, b ∈ K, a⊙ b = 0

implies a = 0 or b = 0. A zero-divisor free semiring is called a semi-integral domain [25].
Note that semirings used in practice, like B, N, and R, are semi-integral domains.

▶ Theorem 12. Let K be a semi-integral domain. For every free-connex query Q over σ,
Eval(Q, σ,K) can be evaluated with linear-time preprocessing and constant-delay. In particu-
lar, Eval(Q,S,K) can also be evaluated with linear-time preprocessing and constant-delay
for every fc-MATLANG Q over S.

The semi-integral condition is necessary to ensure that zero outputs could only be
produced by some zero entries. For instance, consider a semiring (K,⊕,⊙, 0, 1) such that
there exist a, b ∈ K where a ̸= 0, b ̸= 0 and a ⊙ b = 0. Further, consider the query
Q : H(x, y) ← R(x) ∧ S(y) over the previous semiring. Let R and S be relation symbols
with arity one and db a database over σ = {R, S} such that R(1) = a; R(2) = a; S(1) = b

and S(2) = b. Then, the output of Eval(Q, σ,K) with input db is empty, although the body
can be instantiated in four different ways, all of them producing 0 values.
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We derive the enumeration algorithm for Eval(Q, σ,K) by extending the algorithms in [5]
for any semi-integral domain K and taking care of the inequalities in Q. We derive the
enumeration algorithm for Eval(Q,S,K) by reducing to Eval(Q, σ,K), using Corollary 10.

To illustrate the utility of Theorem 12, consider the fc-MATLANG query A⊙ (U ·VT )
where U, V are column vectors. When this query is evaluated in a bottom-up fashion, the
subexpression (U ·VT ) will generate partial results of size ∥U ∥∥V ∥, causing the entire
evaluation to be of complexity Ω(∥A∥ + ∥U∥∥V∥). By contrast, Theorem 12 tells us that
we may evaluate the query in time O(∥A∥ + ∥U∥ + ∥V∥).

For lower bounds, we can also extend the results in [5] and [8] for the relational setting
under standard complexity assumptions. As in previous work, our lower bounds are for
CQ without self-joins and we need some additional restrictions for inequalities. Specifically,
we say that an inequality x ≤ c in Q is covered, if there exists a relational atom in Q that
mention x. We say that Q is constant-disjoint if (i) for all covered inequalities x ≤ c we have
c ̸= 1, and (ii) for all pairs (x ≤ c, y ≤ d) in Q of covered inequality x ≤ c and non-covered
inequality y ≤ d if c = d then y ̸∈ free(Q). In other words, if a constant symbol other than 1
occurs in both a covered and non-covered inequality in Q, then it occurs with a bound
variable in the non-covered inequality.

A semiring K = (K,⊕,⊙, 0, 1) is zero-sum free [27, 28] if for all a, b ∈ K it holds that
a⊕ b = 0 implies a = b = 0. We are ready to extend the lower bound in [5, 8] as follows.

▶ Theorem 13. Let Q be a CQ over σ without self-joins and constant-disjoint. Let K
be a semiring such that the subsemiring generated by 0K and 1K is zero-sum free. If
Eval(Q, σ,K) can be evaluated with linear-time preprocessing and constant-delay, then Q is
free-connex, unless either the Sparse Boolean Matrix Multiplication, the Triangle Detection,
or the (k, k + 1)-Hyperclique conjecture is false.

It is important to note that most semirings used in practice, like B, N, and R, are such that
the subsemiring generated by 0K and 1K is zero-sum free. Furthermore, the Sparse Boolean
Matrix Multiplication conjecture, the Triangle Detection conjecture, and the (k, k + 1)-
Hyperclique conjecture are standard complexity assumptions used by previous works [5,8]
(see the formal statements in the full version [38]).

Unfortunately, given the asymmetry between the relational and matrix settings, the lower
bounds do not immediately transfer from the relational to the matrix setting. Specifically,
we need a syntactical restriction for conj-MATLANG that implies the constant-disjointedness
restriction in the translation of Theorem 8. Intuitively, this happens when both dimensions
of a conj-MATLANG query H := e are fixed by matrix symbols in S. For example, the
expressions A⊙ (U ·VT ) and Σv. A · v have both dimensions (i.e., row and column) fixed
by A where U, V are column vectors. Instead, the expression U · (1α)T does not, since its
column dimension depends on the value assigned for α and is not necessarily fixed by U.
Formally, FixDim(e) is the set of fixed dimensions of a conj-MATLANG expression e and it is
inductively defined as follows:

FixDim(A) := {0, 1}
FixDim(v) := {1}

FixDim(eT ) := {(i + 1) mod 2 | i ∈ FixDim(e)}
FixDim(e1 · e2) := (FixDim(e1) \ {1}) ∪ (FixDim(e2) \ {0})

FixDim(e1 × e2) := FixDim(e2)
FixDim(e1 ⊙ e2) := FixDim(e1) ∪ FixDim(e2)

FixDim(Σv.e) := FixDim(e).

An expression e has guarded dimensions if FixDim(e) = {0, 1}.
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The former is straightforwardly extended to a conj-MATLANG query Q, where FixDim(Q)
stands for FixDim(e). The following lower bound is now attainable.

▶ Corollary 14. Let Q be a conj-MATLANG query over S such that Q does not repeat matrix
symbols and Q has guarded dimensions. Let K be a semiring such that the subsemiring
generated by 0K and 1K is zero-sum free. If Eval(Q,S,K) can be evaluated with linear-time
preprocessing and constant-delay, then Q is equivalent to a fc-MATLANG query, unless either
the Sparse Boolean Matrix Multiplication, the Triangle Detection, or the (k, k+1)-Hyperclique
conjecture is false.

The dynamic evaluation setting. We move now to the dynamic query evaluation both in
the relational and matrix scenarios. Specifically, we consider the following set of updates.
Recall that K = (K,⊕,⊙, 0, 1) is a semiring and σ a vocabulary.

A single-tuple insertion (over K and σ) is an operation u = insert(R, d, k) with R ∈ σ, d

a tuple of arity ar(R), and k ∈ K. When applied to a database db it induces the database
db + u that is identical to db, but Rdb+u(d) = Rdb(d)⊕ k.
A single-tuple deletion (over K and σ) is an expression u = delete(R, d) with R ∈ σ and
d a tuple of arity ar(R). When applied to a database db it induces the database db + u

that is identical to db, but Rdb+u(d) = 0.
Notice that if every element in K has an additive inverse (i.e., K is a ring), one can simulate
a deletion with an insertion. However, if this is not the case (e.g., B or N), then a single-tuple
deletion is a necessary operation.

We define the dynamic query evaluation problem DynEval(Q, σ,K) as the extension of
Eval(Q, σ,K) under the set of updates U of all single-tuple insertions and deletions over
K and σ. We say that DynEval(Q, σ,K) can be evaluated dynamically with constant-time
update and constant-delay, if Eval(Q, σ,K) can be evaluated with linear-time preprocessing
and constant delay, and, moreover, for every update u ∈ U , it takes constant-time to update
the state of the algorithm from db to db + u so that, immediately after, we can retrieve
each output (d, JQKdb+u(H)(d)) one by one, without repetitions, and with constant-delay
per output. Similarly, we define the dynamic query evaluation problem DynEval(Q,S,K) of
Eval(Q,S,K) for the matrix setting, requiring the same dynamic guarantees.

Note that updates allow to modify the contents of relations, but not of constant symbols.
Similarly, in the linear algebra setting updates only affect matrix entry values, not matrix
dimensions. An interesting line of future work is to consider dimension updates, which
correspond to allow updates of constant symbols in CQs.

Evaluation of q-hierarchical queries. Similar than for free-connex queries, we can provide
dynamic evaluation algorithms for qh-CQ and qh-MATLANG queries. However, for this
dynamic setting, we require some additional algorithmic assumptions over the semiring. Let
K = (K,⊕,⊙, 0, 1) be a semiring and M be the set of all multisets of K. For any k ∈ K

and m ∈M , define ins(k, m) and del(k, m) to be the multisets resulting from inserting or
deleting k from m, respectively. Then we say that K is sum-maintainable if there exists a data
structure D to represent multisets of K such that the empty set ∅ can be built in constant
time, and if D represents m ∈M then: (1) the value

⊕
k∈m k can always be computed from

D in constant time; (2) a data structure that represents ins(k, m) can be obtained from D
in constant time; and (3) a data structure that represents del(k, m) can be obtained from
D in constant time. One can easily notice that if each element of K has an additive inverse
(i.e., K is a ring), then K is sum-maintainable, like R. Other examples of sum-maintainable
semirings (without additive inverses) are B and N.
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▶ Theorem 15. Let K be a sum-maintainable semi-integral domain. For every q-hierarchical
CQ Q, DynEval(Q, σ,K) can be evaluated dynamically with constant-time update and constant-
delay. In particular, DynEval(Q,S,K) can also be evaluated dynamically with constant-time
update and constant-delay for every qh-MATLANG Q over S.

Similar than for free-connex CQ, we can extend the lower bound in [9] when the subsemir-
ing generated by 0K and 1K is zero-sum free, by assuming the Online Boolean Matrix-Vector
Multiplication (OMv) conjecture [29].

▶ Theorem 16. Let Q be a CQ over σ without self-joins and constant-disjoint. Let K
be a semiring such that the subsemiring generated by 0K and 1K is zero-sum free. If
DynEval(Q, σ,K) can be evaluated dynamically with constant-time update and constant-delay,
then Q is q-hierarchical, unless the OMv conjecture is false.

This transfers to conj-MATLANG, similarly to the lower bound in the free-connex case.

▶ Corollary 17. Let Q be a conj-MATLANG query over S such that Q does not repeat matrix
symbols and Q has guarded dimensions. Let K be a semiring such that the subsemiring
generated by 0K and 1K is zero-sum free. If DynEval(Q,S,K) can be evaluated dynamically
with constant-time update and constant-delay, then Q is equivalent to a qh-MATLANG query,
unless the OMv conjecture is false.

7 Conclusions and future work

In this work, we isolated the subfragments of conj-MATLANG that admit efficient evaluation in
both static and dynamic scenarios. We found these algorithms by making the correspondence
between CQ and MATLANG, extending the evaluation algorithms for free-connex and q-
hierarchical CQ, and then translating these algorithms to the corresponding subfragments,
namely, fc-MATLANG and qh-MATLANG. To the best of our knowledge, this is the first
work that characterizes subfragments of linear algebra query languages that admit efficient
evaluation. Moreover, this correspondence improves our understanding of its expressibility.

Regarding future work, a relevant direction is to extend fc-MATLANG and qh-MATLANG
with disjunction, namely, matrix summation. This direction is still an open problem even for
CQ with union [14]. Another natural extension is to add point-wise functions and understand
how they affect expressibility and efficient evaluation. Finally, improving the lower bounds to
queries without self-join would be interesting, which is also an open problem for CQ [8,15].
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