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—— Abstract

We propose and study a framework for quantifying the importance of the choices of parameter values
to the result of a query over a database. These parameters occur as constants in logical queries, such
as conjunctive queries. In our framework, the importance of a parameter is its SHAP score. This
score is a popular instantiation of the game-theoretic Shapley value to measuring the importance of
feature values in machine learning models. We make the case for the rationale of using this score by
explaining the intuition behind SHAP, and by showing that we arrive at this score in two different,
apparently opposing, approaches to quantifying the contribution of a parameter.

The application of the SHAP score requires two components in addition to the query and the
database: (a) a probability distribution over the combinations of parameter values, and (b) a utility
function that measures the similarity between the result for the original parameters and the result for
hypothetical parameters. The main question addressed in the paper is the complexity of calculating
the SHAP score for different distributions and similarity measures. We first address the case of
probabilistically independent parameters. The problem is hard if we consider a fragment of queries
that is hard to evaluate (as one would expect), and even for the fragment of acyclic conjunctive
queries. In some cases, though, one can efficiently list all relevant parameter combinations, and
then the SHAP score can be computed in polynomial time under reasonable general conditions. Also
tractable is the case of full acyclic conjunctive queries for certain (natural) similarity functions. We
extend our results to conjunctive queries with inequalities between variables and parameters. Finally,
we discuss a simple approximation technique for the case of correlated parameters.
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1 Introduction

The parameters of a database query may affect the result in a way that misrepresents the
importance of the parameters, or the arbitrariness in their chosen values. For example, when
searching for products in commercial applications (for clothing, travel, real estate, etc.), we
may fill out a complex form of parameters that produce too few answers or overly expensive
ones; what is the responsibility of our input values to this deficient outcome? We may phrase
a database query to select candidates for awards for job interviews; to what extent is the
choice of parameters affecting people’s fate?
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Considerable effort has been invested in exploring the impact of parameters on query
outcomes. In the empty-answer problem, the goal is typically to explore a space of small
changes to the query that would yield a nonempty result [14, 22]. In that vein, reasoning
about small parameter changes, or perturbations, has been applied to providing explanations
to non-answers, that is, tuples that are missing from the result [5, 31]. From a different angle,
the analysis of sensitivity to parameters has been applied to fact checking, and particularly,
the detection of statements that are cherry picked in the sense that they lead to conclusions
that overly rely on allegedly arbitrary parameter values. This may come in over-restriction
to a database fragment that serves the intended claim [35], or over-generalization that masks
the situation in substantial subgroups that oppose the claim [16].

In this work, we aim to establish a principled quantitative measure for the importance
of individual parameter values to the result Q(D) of a query @ over a database D. To this
end, we begin with the basic idea of observing how the result changes when we randomly
change the parameter of interest. Alternatively, we can observe the change in the result
when the parameter keeps its value while all others randomly change. Yet, these definitions
ignore dependencies among parameters; changing a parameter may have no impact in the
presence of other parameter values (e.g., the number of connecting flights does not matter if
we restrict the travel duration), or it may lead to an overestimation of the value’s importance
(e.g., changing the number of semesters empties the result since we restrict the admission
year). This can be viewed as a special case of a challenge that has been studied for decades in
game theory: How to attribute individual contributions to the gains of a team? Specifically,
we can view the parameter values as players of a cooperative game where each coalition
(set of parameter values in our case) has a utility, and we wish to quantify the contribution
of each parameter value to the overall utility. We then adopt a conventional formula for
contribution attribution, namely the Shapley value [29], as done in many domains, including
economics, law, bioinformatics, crime analysis, network analysis, machine learning, and
more (see, e.g., the Handbook of the Shapley value [1]). The Shapley value is theoretically
justified in the sense that it is unique under several elementary axioms of rationality for
profit sharing [29]. In the context of databases, this value has been studied recently for
measuring the contribution of individual tuples to query answers [17, 8, 2] and to database
inconsistency [18], as well as the contribution of constraints to the decisions of cleaning
systems [7].

Our challenge then boils down to one central question: What game are we playing? In
other words, what is the utility of a set J of parameter values? Following up on the two basic
ideas discussed above, we can think of two analogous ways. In the first way, we measure the
change in the query result when we randomly change the values of the parameters in J; the
parameter values in J are deemed important if we observe a large change. This change is
random, so we take the expected change. (We later discuss the way that we measure the
change in the result.) In the second way, we again measure the change in the result, but
now we do so when we fix the values of the parameters in J and randomly change the rest;
now, however, the values in J are deemed important if we observe a small change, indicating
that the other parameters have little impact once we use the values of J. This second way
is known as the SHAP score [20, 19] in machine learning, and it is one of the prominent
score-attribution methods for features (in addition to alternatives such as LIME [25] and
Anchor [26]).! This score quantifies the impact of each feature value on the decision for a
specific given instance. Interestingly, we show that the first way described above also coincides

1 For background on attribution scores see textbooks on explanations in machine learning, e.g., Molnar [21].



M. Grohe, B. Kimelfeld, P. Lindner, and C. Standke

with the SHAP score, so the two ways actually define the same measure (Theorem 3.4). We
prove it in a general setting and, hence, this equivalence is of independent interest as it shows
an alternative, apparently different way of arriving at SHAP in machine learning.

To materialize the framework in the context of a query @ and a database D, one needs
to provide some necessary mechanisms for reasoning about Q(D) and Q’(D), where @’ is
the same as @) up to the parameters: it uses the same values as @ for the parameters of J,
but the remaining parameter values are selected randomly. Specifically, to this aim, we need
two mechanisms:

1. A probability distribution I" of possible parameterizations of the query;

2. A similarity function s between relations to quantify how close Q'(J) is to Q(J).

The distribution I' may include any feasible combination of parameter values, and they
can be either probabilistically independent or correlated. For s, one can use any similarity
between sets (see, e.g., surveys on similarity measures such as [15, 28]) or measures that
account for the distance between attributes values (e.g., as done in the context of database
repairs [4]). We give examples in Section 3.

A central challenge in the framework is the computational complexity, since the direct
definition of the SHAP score (like the general Shapley value) involves summation over
an exponential space of coalitions. Indeed, the calculation can be a hard computational
problem, #P-hard to be precise, even for simple adaptations of the SHAP score [3] and
the Shapley value [10, 6, 17]. Hence, instantiations of our framework require specialized
complexity analyses and nontrivial algorithms that bypass the exponential time of the naive
computation.

We begin the complexity analysis of the framework by establishing some general insights for
finite fully factorized distributions, i.e., where the parameters are probabilistically independent
and each is given as an explicit collection of value-probability pairs. First, the SHAP score
can be computed in polynomial time if we can evaluate the query, compute the similarity
measure, and enumerate all parameter combinations in polynomial time. We prove this using
a recent general result by Van den Broeck et al. [32] (from which we borrow some notation)
showing that, under tractability assumptions, the SHAP score is reducible to the computation
of the expected value under random parameter values. Second, under reasonable assumptions,
the computation of the SHAP score is at least as hard as testing for the emptiness of the
query, for every nontrivial similarity function; this is expected, as the definition of the SHAP
scores requires, conceptually, many applications of the query.

Next, we focus on the class of conjunctive queries, where the parameters are constants in
query atoms. Put differently, we consider Select-Project-Join queries where each selection
predicate has the form z = p where x is an attribute and p is a parameter. It follows from
the above general results that this case is tractable under data complexity. Hence, we focus
on combined complexity. As the emptiness problem is intractable, we consider the tractable
fragment of acyclic queries, and show that SHAP scores can be #P-hard even there.

We then focus on the class of full acyclic queries and establish that the SHAP score can
be computed in polynomial time for three natural, set-based similarity functions between
Q(D) and Q’(D). Interestingly, this gives us nontrivial cases where the SHAP score can be
computed in polynomial time even if Q(D) and Q'(D) can be exponential in the size of the
input, and hence, it is intractable to materialize them.

We then extend our results to conjunctive queries with inequalities, that is, built-in atoms
of the form x < p where z is a variable and p is a parameter. We show that this addition
can make the SHAP score intractable to compute, even if there is a single relational atom
in addition to the inequality atoms. Nevertheless, we identify cases in which tractability
properties are retained when adding inequalities to classes of parameterized queries (e.g., full
acyclic conjunctive queries), relying on structural assumptions on the use of inequalities.

14:3
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Given that the computation of the exact SHAP score is often intractable, we also study
the complexity of approximate evaluation. We show that using sampling, we can obtain an
efficient approximation scheme (FPRAS) with additive guarantees. Moreover, the tractability
of approximation generalizes to allow for parameters that are correlated through Bayesian
networks (and actually any distribution) that provide(s) polynomial-time sampling while
conditioning on assignments to arbitrary subsets of the random variables.

Details omitted due to space limitations, including the full proofs of the proof sketches,
can be found in the full version of the paper [11].

2 Preliminaries

We write 25 for the power set of S. Vectors, tuples and sequences are denoted by boldface
letters. If © = (2;);cr and J C I, then x; = (z;);cs. Moreover, |x| = |I| is the number of
entries of . We let [n] = {1,...,n}. Truth values (true/false) are denoted by tt and ff.

A (discrete) probability distribution is a function I': S — [0, 1], where S is a non-empty
countable set, and ) ¢ T'(s) = 1. The support of I" is supp(I") = {s € S: T'(s) > 0}. We use
Pr for generic probability distributions and, in particular, Prx..r to refer to probabilities
for a random variable or random vector X being drawn from the distribution I'. Likewise,
Ex~r refers to the expectation operator with respect to the distribution I' of X.

Whenever z is an input to a computational problem, we write ||z|| to refer to the encoding
length of = as it is represented in the input.

2.1 Schemas and Databases

A relation schema is a sequence A = (Ay,..., Ay) of distinct attributes A;, each with an
associated domain dom(A4;) of values. We call k the arity of A. If A = (A;,...,4;) is a
relation schema and S = {i1,...,4} C [k] with i1 < iy < -+ < iy, then Ag denotes the
relation schema (4;,,...,4;,).

A tuple over A is an element a = (ay,...,a;) € dom(A;) X -+ x dom(Ag). The set of
tuples over A is denoted by Tup[A]. A relation over A is a finite set of tuples over A. We
denote the space of relations over A by Rel[A]. We typically denote relations by T or Ty, T5,
and so on. By default, we assume that all attribute domains are countably infinite.

A database schema is a finite set of relation symbols, where every relation symbol is
associated with a relation schema. For example, if R is a relation symbol with associated
relation schema A = (Ay,..., Ag), we may refer to R by R(A) or R(Ay,...,Ax), and call k
the arity of R. A fact f over a database schema S is an expression of the shape R(a) with
R = R(A), where a is a tuple over A. A database over schema S is a finite set of facts over
S. We denote the space of databases over some schema S by DB[S].

2.2 Queries and Parameters

A relational query (or just query) is an isomorphism invariant function that maps databases
to relations. More precisely, a query ¢ has a database schema dom(q) for its valid input
databases (called the domain schema), and a relation schema range(q) for its output relation
(called the range schema). Then ¢ is a function that maps databases over dom(q) to relations
over range(q). We write ¢ = ¢(R) to denote that range(q) = R.

We focus on queries that are expressed in variants of first-order logic without equal-
ity. In this case, range(q) is the domain of the free variables of q. Whenever we discuss
queries in this paper, it is assumed that they are first-order queries, unless explicitly stated
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otherwise. To emphasize that ¢ has free variables @ = (z1,...,2,), we write ¢ = g(x). If
a = (ai,...,a,) € Tup[R], then g(a) denotes the Boolean query obtained from ¢ by sub-
stituting every occurrence of z; with a;, ¢ € [n]. If D is a database over dom(g), then
a(D) = {a € TuplR]: D - g(a)}.

A parameterized query @ is a relational query in which some of the free variables are
distinguished parameters. We write Q(x;y) to denote that x are the non-parameter (free)
variables of @, and that y are the parameters of (). A parameterized query @ has a parameter
schema param(Q), such that Tup[param(Q)] is the set of valid tuples of parameter values for
Q. If Q = Q(z; y) is a parameterized query, and p € Tup[param(Q)], then Qp(z) = Q(x;p)
is the relational query obtained from @ by substituting the parameters y with the constants
p. The domain and range schemas of () coincide with dom(Qp) and range(Qp), respectively,
which is independent of the choice of p € Tup[param(Q)]. We write Q@ = Q(R; P) to denote
that range(Q) = R and param(Q) = P. If Q = Q(R; P), then for every database D over
dom(Q) and every p € Tup[P] we have

Qp(D) = {a € Tup[R]: D = Qp(a)} € Rel[R].

> Example 2.1. For illustration, we consider a parameterized query over flights data, assuming
access to a database with relations Flight(ld, Date, AirlineName, From, To, Departure, Arrival)
and Airline(Name, CountryOfOrigin). Then

Q(f, tdep, tarr; d, c) = Ja: Flights(f,d, a, CDG, JFK, tdep, tarr) A Airline(a, c)

is a parameterized query. For parameters (d,c) it asks for departure and arrival times of
flights from Paris to New York City on date d operated by an airline from country c. J

Parameterized queries inherit structural properties from the underlying relational query.
For example, if Q(x;y) is a parameterized query with free variables @, then @ is called
an (acyclic) conjunctive query, if the relational query Q(x,y) with variables x, y is an
(acyclic) conjunctive query. We emphasize that for the notion of acyclicity, the parameters
act as additional free variables. However, a parameterized query @ is called Boolean, if all
(non-parameter) variables in () are quantified, i.e., if @, is Boolean for all p.

2.3 The Shapley Value

A cooperative game is a pair (I,v) where I is a non-empty set of players, and v: 2/ — R is a
utility function that assigns a “joint wealth” v(J) to every coalition v(J) C I. The Shapley
value of player ¢ € I in (I v) is defined as

Shapley(I,v,1) = |I|' Z v(o; U{i}) —v(oy)) = o—]~ESI [v(os U{i}) — v(oi)], (1)

o€ST

where St is the set of permutations of I, and o; is the set of players appearing before i in

the permutation o € Sy (and o ~ Sy refers to drawing from the uniform distribution on Sy).
Intuitively, Shapley (7, v, ) measures the importance (or, contribution) of ¢ among coalitions.

An equivalent, alternative expression is

Shapley(I,v,i) = > IL(J)- (W(JU{i}) —v(])) = E w(JU{i}) —v())], (2

I~
JCN{i}
where II; is the probability distribution on I\ {i} with
1t (=[] = 1) 1
Hz(‘]) = |I|' = Ji [I]-1y " (3)
’ | |'( || )

(For further details, see textbooks on the Shapley value, e.g., [1].) In the next section, we
will discuss the intuition behind using the Shapley value in the context of our paper.
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3 The SHAP Score of Query Parameters

In this section, we shall give our exact definition of the SHAP score of a query parameter, and
we will argue that it measures the contribution of the parameter to the outcome of the query
in a natural way. We start with a database D over dom(Q); a parameterized query Q(R; P);
and a reference parameter p* = (p},...,p;) over P. We want to quantify the contribution
of each parameter p} to the query answer Qp(D).

3.1 Intuition

A basic idea is to see what happens to the answer if we either modify p} and keep all other
parameters fixed or, conversely, keep p; fixed but modify the other parameters. The following
example shows that neither of these two approaches is sufficient.

» Example 3.1. We let Q(z;y1,y2,y3) = R(y1,y2,ys, x) for a relation R(B;, B2, Bs, A). Let
N :=[n]={1,...,n}, and D be the database where the tuple set of R is

({1} x N)U (N x {1})) x N x N.

Let p* = (pfﬁpgapg) = (1,1,1). Then Qp~ (D) =N.

Let us try to understand the contribution of each parameter p;. Intuitively, the parameter
p3 is completely irrelevant. Whatever value it takes in any configuration of the other two
parameters, the query answer remains the same. Parameters p} and p3 are important, though.
If we change both of their values to values p1,ps € N \ {1}, the query answer becomes empty.
However, for this change to take effect, we need to change both values at the same time. If
we change only p; keeping p5 and p3 fixed, the query answer does not change. If we keep p}
fixed and modify p, and p3, then again the query answer does not change. The same holds
for the second parameter. a

What this example shows is that even if we just want to understand the contribution of
the individual parameters, we need to look at the contributions of sets of parameters. This
will immediately put us in the realm of cooperative game theory with the parameters acting
as players in a coalitional game.

Assume for a moment that we have a function v : 2/ — R such that, for J C [/], the
function value v(J) quantifies the combined contribution of the parameters with indices in J.
We will discuss later how to obtain such a function v.

Given v, we now quantify the contribution of every individual parameter j € [¢]. This is
exactly what the Shapley value Shapley([¢],v,j) does. And not only that: as Shapley [29]
proved, subject to a few natural assumptions (“axioms”) and the technical requirement that v
is zero on the empty set, it is the only way of doing this. Let us briefly review these axioms (for
details and a proof of Shapley’s theorem, we refer to the literature, e.g., [29, 27, 1]). The first
axiom, symmetry, says that if any two parameters ¢ and j (or rather parameter indices) have
the same contribution to any coalition J C [¢]\{4, j}, then Shapley([¢], v, i) = Shapley([¢], v, j).
The second axiom, efficiency, says that the sum of Shapley([], v, j) for all parameters j € [¢]
equals the contribution of the “grand coalition” [¢]. Thus, the Shapley values “distribute” v([¢])
among the individual parameters. The third axiom, null player, says that if a parameter
makes no contribution to any coalition, then Shapley([{],v,j) = 0. The fourth axiom,
additivity, says that if we have two different functions vy, vs : 20 — R measuring the value of
a coalition of parameters, then Shapley([¢], v1 + 14, j) = Shapley([¢], v1, j)+ Shapley([¢], v, j).
All of the axioms strike us as completely natural also for evaluating the contribution of
parameters to a query answer.
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Figure 1 On a given database D, we evaluate a parameterized query () with respect to a
reference parameter p*. The result is compared (using a similarity function s) against different
parameterizations of @), according to a probabilistic model T'.

Concluding the discussion so far, to understand the contribution of individual parameters,
we need to look at sets of parameters, and the method of choice to retrieve this contribution
from a valuation for sets is the Shapley value.

3.2 The Utility Function

What remains to be done is constructing a natural valuation for sets of parameters, that
is, a function v : 2[/ — R such that, for J C [f] the value v(.J) quantifies the combined
contribution of the parameters p7, for j € J, to the query answer. The first thing we need is
a way of measuring the similarity between query answers, that is, a function s that takes

two relations of the schema of our query answer and assigns a similarity value to them.

Formally, a similarity function is just an arbitrary function s : DB[R] x DB[R] — R. We
make no restrictions on this function, similarity can have different meanings depending on
the application. Let us just note that the intended use of this function is always to quantify
similarity: the higher s(Q, Q*), the more similar @ and Q* are.

» Example 3.2.

(a) Prime examples of similarity functions are set-similarity measures such as the Jaccard
index, the Sorensen inder, and Tverski’s index, which attempt to capture the degree
of similarity between two sets [23]. If @ and Q* are two relations of the same relation
schema R, then, e.g., their Jaccard index is given by

_enQ_, leaq
QU Q| QuUQ*|’
and Jaccard(f), 9) = 0 by convention.

(b) In the same spirit, but somewhat simpler, are similarities based on cardinalities and
basic set operations, for example:

Jaccard(Q, Q") :

Int(Q, Q") = |Q NQ"|, (size of the interesection)
NegSymDiff(Q, Q) = —|Q A Q7, (negative symmetric difference)
NegSymCDiff(Q, Q") := —||Q| — |Q*||. (negative symmetric cardinality difference)

Note that we do not require similarity to be non-negative, thus NegSymDiff and
NegSymCDiff are well-defined. Intuitively, the negative sign makes sense because two
relations get more similar as their symmetric difference gets smaller.

14:7
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(c) In our applications, @ and Q* have different roles: Q* is always a fixed “reference
relation”, and @ is a modification of @Q*, obtained by changing some parameters in
the query. In some situations, it can be useful to use similarity measures that are not
symmetric. For example, we may only care about not losing any tuples from Q*, whereas
additional tuples may be irrelevant. This leads to an asymmetric similarity measure:

NegDiff(Q,Q") = —|Q" \ Q|- (negative difference)

We can also use similarity functions that are specialized to the application at hand. For
example, we can use a similarity function that accounts for differences of attribute values,
such as arrival time minus departure time:

MinDiff 4 p(Q, Q") = —|min(Q.A —Q.B) —min(Q*.A — Q*B)|

where Q). A is the vector obtained from numerical A column of @ (hence, Q.A — Q.B is the
vector of differences between the A and B attributes). Alternatively, we can use

ExpMinDiff , 5(Q, Q%) = exp(min(Q.4 — Q.B) — min(Q*.A — Q*.B)).
which uses the exponent function instead of the absolute value. J

Suppose now that we have a subset J C [¢]. We need a value v(J) quantifying how
important the subtuple p% = (p;);es is to obtain a query answer similar to Qp+ (D). The
crucial idea of the SHAP score in a very similar setting in machine learning [20] was to see
what happens if we fix the parameters p’ and change the other parameters: the value of
J is high if changing the other parameters has no big effect on the query answer. In other
words, the value of J is large if for parameter tuples p with p; = p% the relations Qp(D)
and Qp+ (D) are similar, that is, s(p, p*) is large.? But of course this depends on how exactly
we change the other parameters. The idea is to change them randomly and take the expected
value, as illustrated in Figure 1. So we assume that we have a probability distribution I" on
the space of all possible parameter values, and we define

v(J) = E [s(p,p") | ps=p}] = E [5(Qp(D),Qp (D)) | s = p3].

» Remark 3.3. Officially, we should “normalize” to v(()) = 0 by subtracting Ep, [s(p,p*)]. We
chose not to do so, because it leads to the same Shapley values due to linearity. a

With the above, we can quantify the contribution of any individual parameter ¢ as
Shapley ([¢],v,4). In using different probability distributions, we can incorporate various
assumptions about the usage of parameters. For example, I' may apply to only a subset of
interesting parameters and be deterministic (fixed) on the others; it can also be concentrated
on certain values (e.g., locations of a reasonable distance to the original value) or describe
any other statistical model on the parameter space.

There is a different, in some way complementary approach to quantifying the contribution
of a set J of parameters: instead of measuring what happens if we fix p% and randomly
change the other parameters, we can also fix the other parameters and randomly change
the parameters in J. Then the contribution of J is the higher, the more the query answer
changes. Thus, now instead of our similarity measure s we need a dissimilarity measure s. We
simply let 5(p, p’) := c—s(p, p’), where ¢ € R is an arbitrary constant. (We will see that this

2 We use s(p, p*) as shorthand for 5(Qp(D), Qp- (D)) in case Q and D are clear from the context.
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constant is completely irrelevant, but it may have some intuitive meaning. For example, if
our similarity measure is normalized to take values in the interval [0, 1], as Jaccard similarity,
then it would be natural to take ¢ = 1.) Letting J := [{] \ J for every J C [f], our new value
functions for sets of indices is
v(J) = E [sp.p") | p7 = p3].

We could have started our treatment with introducing 7 instead of v; indeed, the only reason
that we did not is that the analogue of v is what is used in machine learning. Both v
and 7 strike us as completely natural value functions for sets of parameters, and we see no
justification for preferring one over the other. Fortunately, we do not have to, because they
both lead to exactly the same Shapley values for the individual parameters.

» Theorem 3.4. For all i € [{] we have Shapley ([ﬂ, v, z) = Shapley ([Z],U, z)

Proof sketch. Linearity of expectation entails v(J) = ¢ — 7(J). The main observation is
then on the relationship between J and J U {i}, for J C [¢] \ {i}: Both sets have the same
probability under II; and, moreover, there is a one-to-one correspondence between them.
Changing the summation accordingly shows that the SHAP scores coincide. <

When Q, D, p*,s,T" are clear from the context, we write SHAP () := Shapley([¢], v, ); hence:
SHAP(i) =

JEEHi [p]EF [5(QP(D)7 Qp* (D)) | Pjufiy = pju{i}] - pINEF [5(QP(D)7 Qp* (D)) | pJ = p?ﬂ .

We illustrate the framework using our running example from Section 2.

» Example 3.5. In Example 2.1, we considered a flights database D and a query @,
parameterized with a date d and an airline country ¢, asking for flights between Paris and
New York City. We assess the importance of ’s parameters with respect to the reference
parameter d = 02/24/2024 and ¢ = USA.

In specifying the parameter distribution I', we can tune the exploration of the parameter

space. For example, we may choose to only take local parameter perturbations into account.

For this, we can specify I' to be a product distribution whose support is restricted to dates in
the vicinity of 02/24/2024, and to the countries USA and France. If the similarity function
NegSymCDiff is used, e.g., then it is measured how close Q) and @Qp+ are in terms of the
number of given flight options. If NegDiff is used, it is measured how many of @p-’s flight
options are lost when the parameters are changed. With MinDiff Arrival,Departure, the difference
in duration of the shortest flight options is assessed. _|

3.3 Formal Problem Statement

We now have all the ingredients to formulate the computation of SHAP scores as a formal
computational problem. It can be phrased concisely as follows.

» Problem 3.6. SHAP(Q,PR,s) is the following computational problem:
On input (Q,p*, D,T"), compute SHAP(i) for all i € [{]. 4

Table 1 presents an overview of the problem parameters and inputs. For technical reasons
(which we explain next), the problem is parameterized with a class of parameterized queries
Q, a class of parameter distributions PR, and a (class of) similarity function(s) s.
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Table 1 Problem parameters and inputs for SHAP score computation.

Problem parameters Problem inputs

Q  class of parameterized queries Q(R; P) parameterized query
PR class of parameter distributions D € DB[dom(Q)] database

5 similarity function p* = (pi,...,p;) € P reference parameter

I € PRp, I'(p*) > 0 parameter distribution

Parameter distributions. For simplicity, we only consider parameter distributions with
finite support and rational probabilities. A class of parameter distributions will always
mean a class PR = |Jp PRp where P are relation schemas, and PRp is a set of functions
I': Tup[P] — [0,1] such that > I'(p) = 1.

» Example 3.7. One of the simplest classes of parameter distributions is the class IND of fully
factorized distributions, where all parameters are stochastically independent. A probability
distribution I" over Tup[P] is called fully factorized if

L(p1,...,pe) =T1(p1) - - - Te(pe)

for all (p1,...,pe) € Tup[P] where T'; is the marginal distribution of p; under I'. To represent
T, it suffices to provide the ¢ lists of all pairs (p;, I';(p;)) where T';(p;) > 0. J

Technically, PR is a class of representations of probability distributions in the SHAP problem.
For convenience, we do not distinguish between a distribution and (one of) its representation.
The only assumption we globally make about classes of parameterized distributions is that
the encoding length of parameters is polynomially bounded in ||T||.

Similarity functions. It would feel natural to consider s as an input to the problem.
Discussing computational complexity in terms of an encoding of such functions is, however,
beyond the scope of this paper. We therefore assume, that the similarity function (or rather, a
class (sp) g of versions of the same abstract similarity function s, one per query range schema)
is a parameter to the problem. We abuse notation, and call this class s too. Moreover, we
write s(T7,T») for sg(T1,To) when T1,T> € DB[R], and R is clear from the context.

Parameterized queries. The parameterized queries we consider are formulated in first-order
logic, unless explicitly stated otherwise. The encoding size of @, can be larger than that of
the parameterized query ). By our assumptions on I'; this blow-up is at most polynomial in
Q[ and ||T'[| if p € supp(T').

Complexity. We abuse notation and use s o Q to denote the class of functions mapping
(Q,p,p*, D) to s(Qp(D), Qp~ (D)) where Q = Q(R; P) € Q, where D € DB[dom(Q)], and
where p, p* € Tup|[P].

» Definition 3.8. Let Q be a class of parameterized queries, s a similarity function. We call
Q tractable, if (Q,p, D) — Qp(D) can be computed in polynomial time.
s tractable, if (Th,T5) — s(T4,T2), can be computed in polynomial time.
50 Q tractable, if (Q,p,p*, D) — $(Qp(D), Qp+(D)) can be computed in polynomial time.

Tractability of both s and Q imply tractability of s o @, but the converse is not true in
general (see [12]). For illustration of this phenomenon, consider the query answering problem
for full ACQs: The query answer may be exponentially large, but the answer count can be
computed efficiently [24, Theorem 1].
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» Definition 3.9. Let Q be a class of parameterized queries, PR a class of parameter
distributions, and s a similarity function, and let C be a complexity class.
If the complexity of solving SHAP(Q,PR,s), as a function of ||Q|| + ||lp*|| + | D] + [|IT]|, s
in C, then we say that SHAP(Q,PR,s) is in C in combined complexity.
If for every fixred Q € Q, the complexity of solving SHAP({Q},PR,s), as a function of
lp*|l + | D|| + |IT||, is in C, then we say that SHAP(Q,PR,s) is in C in data complexity.

That is, we discuss the computational complexity in terms of variants of the classical
combined, and data complexity [34]. If not indicated otherwise, our statements about the
complexity of SHAP(Q,PR,s) always refer to combined complexity.

4 General Insights for Fully Factorized Distributions

We first discuss fully factorized distributions. We start by showing that for tractable similarity
functions, tractability of SHAP(Q, IND, s) in terms of data complexity is guided by the data
complexity of Q. This contrasts other query evaluation settings involving probabilities, like
query evaluation in probabilistic databases [30, 33]. The intuitive reason is that here, the
probability distributions are tied to the parameterized query instead of the database.

» Proposition 4.1. Let s be a tractable similarity function and let Q(R; P) be a fixed
parameterized query such that Qp(D) can be computed in polynomial time in || D| for all
p € Tup[P]. Then SHAP({Q},IND,s) can be solved in polynomial time.

Proof sketch. When the parameterized query is fixed, ¢ is constant. In particular, the
probability spaces II; are of constant size. The problem can thus be solved by brute force,
i.e., by evaluating the explicit formula for the SHAP score. <

For this reason, in the remainder of the paper, we will focus on the combined complexity
of the computation of SHAP(Q, IND, s).

Next, we point out two relationships with other computational problems. First, we see that
SHAP(Q, IND, s) is at least as hard as deciding whether the output of a parameterized query is
non-empty. To be precise, let Q be a class of parameterized queries and let NONEMPTY(Q) be
the problem that takes inputs (Q,p*, D), and asks to decide whether Qp-(D) # 0. In order
to establish a relationship to the SHAP(Q, IND, s) problem, we need two more ingredients.

» Definition 4.2. A similarity function s strongly depends on its first argument, if for all
possible range schemas R, one of the following is satisfied:

(s1) for all non-empty T € Rel[R] we have sg(0,0) # sr(T,0); or
(s2) for all non-empty T € Rel[R] we have sg(0,T) # sr(T,T).

Both are highly natural conditions for meaningful similarity functions. Moreover, they
entail that s can, to a certain extent, distinguish whether its first argument is empty or not.
For example, the similarity functions from Example 3.2(a)—(c) all satisfy (s2), whereas a
version of NegDiff that swaps the roles of @ and Q* would always satisfy (s1).

» Theorem 4.3. Let s strongly depend on its first argument. Let Q be a class of param-
eterized queries such that for all Q(R; P) € Q there exists ig € [¢] (which we can find in
polynomial time) such that, for all D € DB[dom(Q)] and all p = (p1,...,pe) € Tup[P] with
pi, ¢ adom(D), we have Qp(D) = (. Then NONEMPTY(Q) <R} SHAP(Q, IND, 5).
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Proof sketch. Our probability distribution I is just a coin flip between two parameter values
p* and p“, where p” coincides with p* on all parameters except for p; which is replaced with
a value a # p; outside of the active domain of D. Calculation shows that the SHAP(ig) = 0
if and only if Qp+(D) = 0. (We reduce to the SHAP instance (Q,p®, D,T) or (Q,p*, D,T),
depending on whether s satisfies (s1) or (s2)). <

The restriction we impose on Q expresses that one of the parameters immediately renders
the query result on D empty, if it is chosen outside the active domain of D. This is fulfilled,
for example, for unions of conjunctive queries for which there exists a parameter that appears
in each of its conjunctive queries, and can be extended to Datalog queries for which there
exists a parameter that appears in the body of every rule.

Van den Broeck et al. [32] have shown a reduction from computing SHAP to computing
the expected similarity. The latter problem, ESIM(Q, PR, s), takes the same parameters and
inputs as SHAP(Q, PR, s), but asks for E,r[s(p, p*)] instead of SHAP(i).

» Theorem 4.4 (Cf. [32, Theorem 2]). For any class of parameterized queries Q and any
similarity function s such that s o Q is tractable, we have SHAP(Q, IND, s) = ESIM(Q, IND,s).

» Remark 4.5. The paper [32] discusses a more general setting, in which SHAP scores are
computed for tractable functions F' over f-ary domains. They provide an algorithm that
computes SHAP scores of F' using oracle calls to the expected value of F with different
parameter distributions I' € IND. This algorithm runs in polynomial time in ||T']| and is
independent of the choice of F' (apart from the oracle, of course). For our version of the
theorem, we use this algorithm on functions Fg p+ p(p) = s(Qp(D), Qp-(D)). a

The key property we needed for Proposition 4.1 was the manageable size of the parameter
distributions. This can be formulated as a property of a class of queries.

» Definition 4.6. Let Q(R; P) be a parameterized query and D € DB[dom(Q)], and denote
psupp(Q, D) = {p € Tup[P]: Qp(D) # 0}. A class Q of parameterized queries has polynomi-
ally computable parameter support if there ezists a polynomial time algorithm (in ||Q||+D]|)
which, on input Q(R; P) € Q and D € DB[dom(Q)], outputs a set P(Q, D) 2 psupp(Q, D).

There are simple, yet relevant classes with this property, e.g., parameterized CQs with a
bounded number of joins, or where parameters only appear in a bounded number of atoms.
This property allows the efficient computation of expected similarities.

» Proposition 4.7. Let Q have polynomially computable parameter support, and suppose
50 Q is tractable. Then SHAP(Q, IND,s) can be solved in polynomial time.

Proof sketch. We solve ESIM(Q, IND, s) efficiently, by first computing some P D psupp(Q, D)
and then evaluating the formula for Ey[s(p, p*)]. For this, we explicitly compute the terms
for p € P, and bundle those for p ¢ P. By Theorem 4.4, this yields tractability of
SHAP(Q, IND, s). <

5 Parameterized Conjunctive Queries with Independent Parameters

In this section, we study the complexity of the SHAP score for the parameters of acyclic
conjunctive queries. Later in the section, we also investigate the addition of inequalities to
such queries.
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5.1 Acyclic Conjunctive Queries

We first focus on parameterized acyclic conjunctive queries (pACQs). In particular, we will
also consider classes of Boolean parameterized queries. If R is a Boolean relation schema,
then the only possible inputs to a similarity function sg are pairs of tt and ff. In particular,
the properties from Definition 4.2 become

(s1”) sg(ff,ff) # sg(tt, ff) for (s1);

(s2’) sg(ff,tt) # sg(tt, tt) for (s2).

If s takes Boolean inputs and is strongly dependent on its first argument, then s satisfies one
of (s1'), (s2'). Such s is also always tractable, because it has only four possible inputs: the
pairs of the constants tt and ff.

» Proposition 5.1. Let Q be the class of Boolean parameterized queries of the shape

QGyr,-- -, ye) =z Ra(w,y1) A+ A Re(2,ye) (4)
and let s be strongly dependent on its first argument. Then SHAP(Q, IND,s) is #P-hard.

Proof sketch. It can easily be checked that Q is tractable (although it does not have
polynomially computable parameter support). Therefore, so is s 0 Q. We use Theorem 4.4
and show that ESIM(Q, IND, s) is #P-hard by reduction from #posDNF. The main idea is as
follows. Let ¢ be a positive DNF formula with variables X; and disjuncts ¢;. Construct a
database D in which the tuples R;(j,y;) represent the possible truth assignments for X; to
satisfy ¢;: If X; occurs in ¢;, then y; should be tt; otherwise, X; does not matter in ¢; and
y; can take both values tt or ff. With this interpretation, @, on D, expresses the existence of
a disjunct ¢;, in which all occurring variables are set to tt. The expected similarity under
the uniform distribution can be used to recover #p. <

» Remark 5.2. Our hardness results are stated for PR = IND. Inspection of our proofs reveals
that they already hold for the subclass PR = UNIF of parameter distributions that are uniform
on their support. J

Next, we show a tractability result for parameterized full ACQs. In contrast, by Propo-
sition 5.1, even a single existential quantifier can make the problem difficult. A similar
observation has been made for the (weighted) counting for ACQ answers [24, 9] (which we
use to establish tractability here).

» Proposition 5.3. Let Q be the class of full pACQs, and let s be any of Int, NegSymDiff,
or NegDiff. Then SHAP(Q,IND,s) can be solved in polynomial time.

Proof sketch. The main idea of the proof is to introduce an artificial “similarity” function
Count with Count(T},T:) = |T1|. Tractability of Count o Q is given, since counting the
answers to full ACQs is tractable [24]. Thus, we can use Theorem 4.4 again and discuss
ESIM(Q, IND, Count) first. This problem can be reduced to the weighted answer counting
problem for ACQs, which is also tractable for full ACQs by [9]. A simple construction allows
transferring tractability to SHAP(Q, IND, Int). The similarities NegSymDiff and NegDiff are
linear combinations in Int and Count. Therefore, we can compute the SHAP scores for the
former two efficiently by computing the SHAP scores for the latter two. |

» Remark 5.4. In light of [9, Proposition 5], our tractability result for Int may seem surprising,.
The construction in our proof relies on the fact that in our case, the intersection concerns
different parameterizations of the same query, one of them being fixed. If it were performed
for two arbitrary full ACQs, acyclicity can be lost. J
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5.2 Conjunctive Queries with Inequalities

In this section, we investigate parameterized conjunctive queries Q with inequalities of the
shape x; < y;, where x; is a variable (which also appears in the inequality-free part of Q)
and y; is a parameter. We refer to such queries as p=CQs. For simplicity, we assume that
all attribute domains are numerical.

If Q is a class of pCQs (i.e., without inequalities), then for t = 0,1,2,... we let Q(=:)
denote the class of pSCQs obtained by adding at most ¢ inequalities of the above shape to
the body of a query from Q. We let Q< = [ J;°, Q=Y.

» Remark 5.5. In practice, such inequalities would typically be used for attributes with
continuous domains, like R. Continuous parameter values would require a treatment of
continuous parameter distributions. Our framework can handle continuous parameter
distributions as follows: On the technical side, the definition of the SHAP score needs to
be changed to avoid conditional probabilities. For fully factorized distributions, this can
be done easily. On the algorithmic side, we can discretize the continuous distribution into
intervals defined by the values in the database to obtain a discrete distribution with finite
support that yields the same output. a

» Proposition 5.6. Let Q be the class of p=CQs of the shape

QGyr,y ..y ye) =T, ...,z R(x1, ..., xe) AMzy <y1) A Axe < ). (5)
and let s be strongly dependent on its first argument. Then SHAP(Q, IND,s) is #P-hard.

Proof sketch. This proof works very similar to that of Proposition 5.1. First, we observe that
Q is tractable (but again not with polynomially parameter support). Then s o Q is tractable
t0o. In the remainder of the proof, we prove hardness of ESIM(Q, IND, s) by reduction from
#posDNF, similar to the proof of Proposition 5.1. <

The simple shape of (5) indicates that structural restrictions on the usage of inequalities
are needed to establish tractability. If Q is a class of pCQs (i.e., without <), then we call a
query Q € QS acyclic (a pSACQ), if it becomes a pACQ, when < is interpreted as a relation
symbol. It can be shown that Proposition 5.3 extends to this setting:

» Proposition 5.7. Let Q be the class of full pACQs (i.e., without <), and let Q' be a class
of full pSACQs such that Q' C QS. Moreover, let 5 be any of Int, NegSymDiff, or NegDiff.
Then SHAP(Q',IND,s) can be computed in polynomial time.

Proof sketch. We replace inequalities z; < y; with atoms R<(x;,y;) and hard-code the
relevant R< tuples in the database D. Then, Proposition 5.3 can be applied. <

6 Correlated Parameters and Approximability

In this section, we allow classes PR of parameter distributions with correlations. We only

need to make the following tractability assumptions (which are trivially satisfied by IND).

1. For every fixed ¢, and every I € PRp with |P| = ¢, the support supp(I') can be computed
in polynomial time in [|T]|.

2. For all p and J, we can compute Prp wr(p’; = ps) in polynomial time in ||T||.

For example, the first property holds for distributions encoded by Bayesian networks. The

second one holds for structurally restricted classes of Bayesian networks, like polytrees [13].

The following result states that given these assumptions, the data complexity of the SHAP

problem remains in polynomial time even for parameter distributions with correlations. The

proof is similar to the proof of Proposition 4.1.
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» Proposition 6.1. Let s be a tractable similarity function and let Q(R; P) be a fixed
parameterized query such that Qp(D) can be computed in polynomial time in |D| for
all p € Tup[P]. Moreover, let PR be a class of distributions as described above. Then
SHAP({Q},PR,s) can be solved in polynomial time.

We conclude this section by explaining how SHAP can be approximated via sampling.
Consider an input (@, p*, D,T) of SHAP(Q,PR,s), where Q = Q(R; P) and |p*| = ¢. We
rewrite SHAP(4) as an expectation in a single probability space, instead of nested expectations
in different spaces. Let {i}° = 0 and {i}! = {i}. Consider the following two-step random
process, for b € {0,1}:

1. Draw J C [{] \ i according to II;.

2. Draw p according to I', conditioned on having p agree with p* on J.

This defines a joint probability distribution on pairs (p, J). By I'*! and I'“?, we denote the
corresponding marginal distributions over parameter tuples p. A simple calculation shows
that the following equality holds:

Suar(i) = E [s(p,p")] = E_[s(p,p")]. (6)

p~IHt p~IH0
We give a proof of this statement in the full version of the paper [11].

We say that PR admits efficient conditional sampling if for all " € PR, all p* € supp(T),
and all J C [f], the conditional distribution of I' subject to p; = p% can be sampled in
polynomial time in ||']| + ||p*||. This is again the case, for example, for structurally restricted
classes of Bayesian networks. By the structure of the two-step process defining I'?, we can
efficiently sample from I'? if we can efficiently sample from conditional distributions of I'. A
proof of this can be found in the full version of the paper [11].

A similarity function s is bounded for a class of parameterized queries Q if there are
a < b such that for all (Q, p',p?), Q € Q, we have a < s(p*, p?) < b. For example, similarity
measures, like Jaccard, are usually [0, 1]-valued. The following theorem states that, under
the assumptions of efficient conditional sampling and boundedness, we have an additive
FPRAS for the SHAP score of a parameter.

» Theorem 6.2. Let Q be a class of tractable parameterized queries, let s a tractable similarity
function, and let PR be a class of parameter distributions such that

(a) Every T € PR admits efficient conditional sampling.

(b) The value range of s is bounded for Q.

Then, for all inputs (Q,p*,D,T) and all i € [{], we can compute a value S satisfying
Pr(|S — SHAP(i)| < &) > 1—§ in time polynomial in 1, log 3, and the size of the input.

Proof sketch. The proof uses a simple sampling procedure and approximates the two terms
in Equation (6) from the means of the samples. The guarantee is then given by a variant of
Hoeflding’s inequality (requiring boundedness of s to be applicable). |

7 Conclusions

We proposed a framework for measuring the responsibility of parameters to the result of a
query using the SHAP score. We studied the computational problem of calculating the SHAP
score of a given parameter value. We gave general complexity lower and upper bounds, and
presented a complexity analysis for the restricted case of conjunctive queries and independent
parameters. We also discussed the complexity of approximate calculation and correlated
parameters. The rich framework we introduced here offers many opportunities for future
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research. Especially important is the direction of aggregate queries, where the similarity
between results accounts for the numerical values such as sum, average, median, and so
on. For such queries, it is important to study numerical parameter distributions, which are
typically continuous probability measures. It is also important to identify general tractability
conditions for similarity measures and parameter distributions in order to generalize the
upper bounds beyond the special cases that we covered here. Finally, we plan to explore the
applicability of SHAP to measuring parameters in various queries and datasets, such as those
studied in the context of fact checking [5, 31].
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