
Conjunctive Queries on Probabilistic Graphs:
The Limits of Approximability
Antoine Amarilli #Ñ

LTCI, Télécom Paris, Institut Polytechnique de Paris, France

Timothy van Bremen #

National University of Singapore, Singapore

Kuldeep S. Meel #

University of Toronto, Canada

Abstract
Query evaluation over probabilistic databases is a notoriously intractable problem – not only in
combined complexity, but for many natural queries in data complexity as well [7, 14]. This motivates
the study of probabilistic query evaluation through the lens of approximation algorithms, and
particularly of combined FPRASes, whose runtime is polynomial in both the query and instance
size. In this paper, we focus on tuple-independent probabilistic databases over binary signatures,
which can be equivalently viewed as probabilistic graphs. We study in which cases we can devise
combined FPRASes for probabilistic query evaluation in this setting.

We settle the complexity of this problem for a variety of query and instance classes, by proving
both approximability and (conditional) inapproximability results. This allows us to deduce many
corollaries of possible independent interest. For example, we show how the results of [8] on counting
fixed-length strings accepted by an NFA imply the existence of an FPRAS for the two-terminal
network reliability problem on directed acyclic graphs: this was an open problem until now [37].
We also show that one cannot extend a recent result [34] that gives a combined FPRAS for self-
join-free conjunctive queries of bounded hypertree width on probabilistic databases: neither the
bounded-hypertree-width condition nor the self-join-freeness hypothesis can be relaxed. Finally, we
complement all our inapproximability results with unconditional lower bounds, showing that DNNF
provenance circuits must have at least moderately exponential size in combined complexity.

2012 ACM Subject Classification Theory of computation → Database query processing and opti-
mization (theory)

Keywords and phrases Probabilistic query evaluation, tuple-independent databases, approximation

Digital Object Identifier 10.4230/LIPIcs.ICDT.2024.15

Funding This project was supported in part by the National Research Foundation Singapore under
its NRF Fellowship programme [NRF-NRFFAI1-2019-0004] and Campus for Research Excellence
and Technological Enterprise (CREATE) programme, as well as the Ministry of Education Singapore
Tier 1 and 2 grants R-252-000-B59-114 and MOE-T2EP20121-0011. Amarilli was partially supported
by the ANR project EQUUS ANR-19-CE48-0019, by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) – 431183758, and by the ANR project ANR-18-CE23-0003-02
(“CQFD”). This work was done in part while Amarilli was visiting the Simons Institute for the
Theory of Computing.

Acknowledgements The authors thank Octave Gaspard for pointing out some oversights in some
proofs, which are corrected in the present version.

1 Introduction

Tuple-independent probabilistic databases (TID) are a simple and principled formalism to
model uncertainty and noise in relational data [13, 32]. In the TID model, each tuple of a
relational database is annotated with an independent probability of existence; all tuples are

© Antoine Amarilli, Timothy van Bremen, and Kuldeep S. Meel;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Database Theory (ICDT 2024).
Editors: Graham Cormode and Michael Shekelyan; Article No. 15; pp. 15:1–15:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:antoine.amarilli@telecom-paris.fr
https://a3nm.net/
https://orcid.org/0000-0002-7977-4441
mailto:tvanbr@comp.nus.edu.sg
https://orcid.org/0009-0004-0538-3044
mailto:meel@cs.toronto.edu
https://orcid.org/0000-0001-9423-5270
https://doi.org/10.4230/LIPIcs.ICDT.2024.15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Conjunctive Queries on Probabilistic Graphs: The Limits of Approximability

assumed to be independent. In the probabilistic query evaluation (PQE) problem, given a
Boolean query Q and a TID instance I, we must compute the probability that Q holds in a
subinstance sampled from I according to the resulting distribution. The PQE problem has
been studied in database theory both in terms of combined complexity, where the query and
instance are part of the input, and in data complexity, where the query is fixed and only the
instance is given as input [35]. Unfortunately, many of the results so far [32] show that the
PQE problem is highly intractable, even in data complexity for many natural queries (e.g., a
path query of length three), and hence also in combined complexity.

Faced with this intractability, a natural approach is to study approximate PQE : we
relax the requirement of computing the exact probability that the query holds, and settle
for an approximate answer. This approach has been studied in data complexity [32]: for
any fixed union of conjunctive queries (UCQ), we can always tractably approximate the
answer to PQE, additively (simply by Monte Carlo sampling), or multiplicatively (using
the Karp-Luby approximation algorithm on a disjunctive-normal-form representation of the
query provenance). However, these approaches are not tractable in combined complexity, and
moreover the latter approach exhibits a “slicewise polynomial” runtime of the form O(|I||Q|) –
rather than, say, O(2|Q|poly(|I|)) – which seriously limits its practical utility. Thus, our
goal is to obtain a combined FPRAS for PQE: by this we mean a fully polynomial-time
randomized approximation scheme, giving a multiplicative approximation of the probability,
whose runtime is polynomial in the query and TID (and in the desired precision). This
approach has been recently proposed by van Bremen and Meel [34], who show a combined
FPRAS for CQs when assuming that the query is self-join-free and has bounded hypertree
width; their work leaves open the question of which other cases admit combined FPRASes.

Main Results. In this paper, following the work of Amarilli, Monet and Senellart [7] for
exact PQE, we investigate the combined complexity of approximate PQE in the setting of
probabilistic graphs. In other words, we study probabilistic graph homomorphism, which is
the equivalent analogue of CQ evaluation: given a (deterministic) query graph G, and given
a instance graph H with edges annotated with independent probabilities (like a TID), we
wish to approximate the probability that a randomly selected subgraph H ′ ⊆ H admits a
homomorphism from G. This setting is incomparable to that of [34], because it allows for
self-joins and for queries of unbounded width, but assumes that relations are binary.

Of course, the graph homomorphism problem is intractable in combined complexity if
the input graphs are arbitrary (even without probabilities). Hence, we study the problem
when the query graph and instance graph are required to fall in restricted graph classes,
chosen to ensure tractability in the non-probabilistic setting. We use similar classes as those
from [7]: path graphs which may be one-way (1WP: all edges are oriented from left to right)
or two-way (2WP: edge orientations are arbitrary); tree graphs which may be downward
(DWT: all edges are oriented from the root to the leaves) or polytrees (PT: edge orientations
are arbitrary); and, for the instance graph, directed acyclic graphs (DAG), or arbitrary graphs
(All).

For all combinations of these classes, we show either (i) the existence of a combined
FPRAS, or (ii) the non-existence of such an FPRAS, subject to standard complexity-theoretic
assumptions. We summarize our results in Table 1, respectively for graphs that are labelled
(i.e., the signature features several binary relations), or unlabelled (i.e., only one binary
relation). We emphasize that the signature for labelled graphs is assumed to be fixed and
does not form part of the input, consistent with prior work [7] (although identical results
can likely be obtained even when dropping this assumption).

A. Amarilli, T. van Bremen, and K. S. Meel 15:3

▶ Result 1.1 (Sections 3 and 4). The results in Table 1, described in terms of the graph
classes outlined above, hold.

In summary, for the classes that we consider, our results mostly show that the general
intractability of combined PQE carries over to the approximate PQE problem. The important
exception is Proposition 3.1: the PQE problem for one-way path queries on directed acyclic
graphs (DAGs) admits a combined FPRAS. We discuss more in detail below how this result is
proved and some of its consequences. Another case is left open: in the unlabelled setting, we
do not settle the approximability of combined PQE for one-way path queries (or equivalently
downward tree queries) on arbitrary graphs. For all other cases, either exact combined PQE
was already shown to be tractable in the exact setting [7], or we strengthen the #P-hardness
of exact PQE from [7] by showing that combined FPRASes conditionally do not exist. We
stress that our results always concern multiplicative approximations: as non-probabilistic
graph homomorphism is tractable for the classes that we consider, we can always obtain
additive approximations for PQE simply by Monte Carlo sampling. Further note that our
intractability results are always shown in combined complexity – in data complexity, for the
queries that we consider, PQE is always multiplicatively approximable via the Karp-Luby
algorithm [32].

As an important consequence, our techniques yield connections between approximate
PQE and intensional approaches to the PQE problem. Recall that the intensional approach
was introduced by Jha and Suciu [21] in the setting of exact evaluation, and when measuring
data complexity. They show that many tractable queries for PQE also admit tractable
provenance representations. More precisely, for these queries Q, there is a polynomial-time
algorithm that takes as input any database instance and computes a representation of the
Boolean provenance of Q in a form which admits tractable model counting (e.g., OBDD,
d-DNNF, etc.). This intensional approach contrasts with extensional approaches (like [14])
which exploit the structure of the query directly: comparing both approaches is still open [27].

In line with this intensional approach, we complement our conditional hardness results
on approximate PQE with unconditional lower bounds on the combined size of tractable
representations of query provenance. Namely, we show a moderately exponential lower bound
on DNNF provenance representations for all our non-approximable query-instance class pairs:

▶ Result 1.2 (Section 5, informal). Let ⟨G,H⟩ be a conditionally non-approximable query-
instance class pair studied in this paper. For any ϵ > 0, there is an infinite family G1, G2, . . .

of G queries and an infinite family H1, H2, . . . of H instances such that, for any i > 0, any
DNNF circuit representing the provenance ProvGi

Hi
has size at least 2Ω((||Gi||+||Hi||)1−ϵ).

The class of DNNF circuits is arguably the most succinct circuit class in knowledge compilation
that still has desirable properties [15, 16]. Such circuits subsume in particular the class of
structured DNNFs, for which tractable approximation algorithms were recently proposed [9].
Thus, these bounds help to better understand the limitations of intensional approaches.

Consequences. Our results and techniques have several interesting consequences of potential
independent interest. First, they imply that we cannot relax the hypotheses of the result of
van Bremen and Meel mentioned earlier [34]. They show the following result on combined
FPRASes for PQE in the more general context of probabilistic databases:

▶ Theorem 1.3 (Theorem 1 of [34]). Let Q be a self-join-free conjunctive query of bounded
hypertree width, and H a tuple-independent database instance. Then there exists a com-
bined FPRAS for computing the probability of Q on H, i.e., an FPRAS whose runtime is
poly(|Q|, ||H||, ϵ−1), where ϵ is the multiplicative error.

ICDT 2024

15:4 Conjunctive Queries on Probabilistic Graphs: The Limits of Approximability

It was left open in [34] whether intractability held without these assumptions on the query.
Hardness is immediate if we do not bound the width of queries and allow arbitrary self-join-
free CQs, as combined query evaluation is then NP-hard already in the non-probabilistic
setting. However, it is less clear whether the self-join-freeness condition can be lifted. Our
results give a negative answer, already in a severely restricted setting:

▶ Result 1.4 (Corollaries 6.1 and 6.2). Assuming RP ≠ NP, neither the bounded hypertree
width nor self-join-free condition in Theorem 1.3 can be relaxed: even on a fixed signature
consisting of a single binary relation, there is no FPRAS to approximate the probability of an
input treewidth-1 CQ on an input treewidth-1 TID instance.

A second consequence implied by our techniques concerns the two-terminal network
reliability problem on directed acyclic graphs (DAGs). Roughly speaking, given a directed
graph G = (V, E) with independent edge reliability probabilities π : E → [0, 1], and two
distinguished vertices s, t ∈ V , the two-terminal network reliability problem asks for the
probability that there is a path from s to t. The problem is known to be #P-hard even on
DAGs [29, Table 2]. The existence of an FPRAS for the two-terminal network reliability
problem is a long-standing open question [22], and the case of DAGs was explicitly left open
by Zenklusen and Laumanns [37]. Our results allow us to answer in the affirmative:

▶ Result 1.5 (Theorem 6.3). There exists an FPRAS for the two-terminal network reliability
problem over DAGs.

This result and our approximability results follow from the observation that path queries
on directed acyclic graphs admit a compact representation of their Boolean provenance as
non-deterministic ordered binary decision diagrams (nOBDDs). We are then able to use a
recent result by Arenas et al. [8, Corollary 4.5] giving an FPRAS for counting the satisfying
assignments of an nOBDD, adapted to the weighted setting.

Paper Structure. In Section 2, we review some of the technical background. We then
present our main results on approximability, divided into the labelled and unlabelled case, in
Sections 3 and 4 respectively. Next, in Section 5, we show lower bounds on DNNF provenance
circuit sizes. In Section 6, we show some consequences for previous work [34], as well as for
the two-terminal network reliability problem. We conclude in Section 7.

2 Preliminaries

We provide some technical background below, much of which closes follows that in [4] and [7].

Graphs and Graph Homomorphisms. Let σ be an non-empty finite set of labels. When
|σ| > 1, we say that we are in the labelled setting, and when |σ| = 1, the unlabelled setting. In
this paper, we study only directed graphs with edge labels from σ. A graph G over σ is a tuple
(V, E, λ) with finite non-empty vertex set V , edge set E ⊆ V 2, and λ : E → σ a labelling
function mapping each edge to a single label (we may omit λ in the unlabelled setting). The
size ||G|| of G is its number of edges. We write x

R−→ y for an edge e = (x, y) ∈ E with
label λ(e) = R, and x −→ y for (x, y) ∈ E (no matter the edge label). We sometimes use a
simple regular-expression-like syntax (omitting the vertex names) to represent path graphs:
for example, we write −→−→ to represent an unlabelled path of length two, and the notation
−→k to denote an unlabelled path of length k. All of this syntax extends to labelled graphs
in the obvious way. A graph H = (V ′, E′, λ′) is a subgraph of G, written H ⊆ G, if V = V ′,
E′ ⊆ E, and λ′ is the restriction of λ to E′.

A. Amarilli, T. van Bremen, and K. S. Meel 15:5

A graph homomorphism h from a graph G = (VG, EG, λG) to a graph H = (VH , EH , λH)
is a function h : VG → VH such that, for all (u, v) ∈ EG, we have (h(u), h(v)) ∈ EH and
λH((h(u), h(v)) = λG((u, v)). We write G⇝ H to say that such a homomorphism exists.

Probabilistic Graphs and Probabilistic Graph Homomorphism. A probabilistic graph is a
pair (H, π), where H is a graph with edge labels from σ, and π : E → [0, 1] is a probability
labelling on the edges. Note that edges e in H are annotated both by their probability value
π(e) and their σ-label λ(e). Intuitively, π gives us a succinct specification of a probability
distribution over the 2||H|| possible subgraphs of H, by independently including each edge e

with probability π(e). Formally, the distribution induced by π on the subgraphs H ′ ⊆ H is
defined by Prπ(H ′) =

∏
e∈E′ π(e)

∏
e∈E\E′(1− π(e)).

In this paper, we study the probabilistic graph homomorphism problem PHom for a fixed set
of labels σ: given a graph G called the query graph and a probabilistic graph (H, π) called the
instance graph, both using labels from σ, we must compute the probability Prπ(G⇝ H) that a
subgraph of H, sampled according to the distribution induced by π, admits a homomorphism
from G. That is, we must compute Prπ(G⇝ H) :=

∑
H′⊆H s.t. G⇝H′ Prπ(H ′).

We study PHom in combined complexity, i.e., when both the query graph G and instance
graph (H, π) are given as input. Further, we study PHom when we restrict G and H to be
taken from specific graph classes, i.e., infinite families of (non-probabilistic) graphs, denoted
respectively G and H. (Note that H does not restrict the probability labelling π.) To
distinguish the labelled and unlabelled setting, we denote by PHomL(G,H) the problem of
computing Prπ(G ⇝ H) for G ∈ G and (H, π) with H ∈ H when the fixed set of allowed
labels in G and H has cardinality |σ| > 1, and likewise write PHom̸L(G,H) when G and H are
classes of unlabelled graphs. We focus on approximation algorithms: fixing classes G and H,
a fully polynomial-time randomized approximation scheme (FPRAS) for PHomL(G,H) (in
the labelled setting) or PHom̸L(G,H) (in the unlabelled setting) is a randomized algorithm
that runs in time poly(||G||, ||H||, ϵ−1) on inputs G ∈ G, (H, π) for H ∈ H, and ϵ > 0. The
algorithm must return, with probability at least 3/4, a multiplicative approximation of the
probability Prπ(G⇝ H), i.e., a value between (1− ϵ) Prπ(G⇝ H) and (1 + ϵ) Prπ(G⇝ H).

Graph Classes. We study PHom on the following graph classes, which are defined on a
graph G with edge labels from σ, and are either labelled or unlabelled depending on σ:

G is a one-way path (1WP) if it is of the form a1
R1−−→ . . .

Rm−1−−−−→ am for some m, with all
a1, . . . , am being pairwise distinct, and with Ri ∈ σ for 1 ≤ i < m.
G is a two-way path (2WP) if it is of the form a1 − . . . − am for some m, with pairwise
distinct a1, . . . , am, and each − being Ri−−→ or Ri←−− (but not both) for some label Ri ∈ σ.
G is a downward tree (DWT) if it is a rooted unranked tree (each node can have an
arbitrary number of children), with all edges pointing from parent to child in the tree.
G is a polytree (PT) if its underlying undirected graph is a rooted unranked tree, without
restrictions on the edge directions.
G is a DAG (DAG) if it is a (directed) acyclic graph.

These refine the classes of connected queries considered in [7], by adding the DAG class. We
denote by All the class of all graphs. Note that both 2WP and DWT generalize 1WP and are
incomparable; PT generalizes both 2WP and DWT; DAG generalizes PT; All generalizes DAG
(see Figure 2 of [7]).

ICDT 2024

15:6 Conjunctive Queries on Probabilistic Graphs: The Limits of Approximability

Boolean Provenance. We use the notion of Boolean provenance, or simply provenance [20,
3, 30]. In the context of databases, provenance intuitively represents which subsets of the
instance satisfy the query: it is used in the intensional approach to probabilistic query
evaluation [21]. In this paper, we use provenance to show both upper and lower bounds.

Formally, let G = (VG, EG, λG) and H = (VH , EH , λH) be graphs. Seeing EH as a set of
Boolean variables, a valuation ν of EH is a function ν : EH → {0, 1} that maps each edge
of H to 0 or 1. Such a valuation ν defines a subgraph Hν of H where we only keep the edges
mapped to 1, formally Hν = (VH , {e ∈ EH | ν(e) = 1}, λH). The provenance of G on H is
then the Boolean function ProvG

H having as variables the edges EH of H and mapping every
valuation ν of EH to 1 (true) or 0 (false) depending on whether G⇝ Hν or not. Generalizing
this definition, for any integer n, for any choice of a1, . . . , an ∈ VG and b1, . . . , bn ∈ VH , we
write ProvG

H [a1 := b1, . . . , an := bn] to denote the Boolean function that maps valuations ν

of EH to 1 or 0 depending on whether or not there is a homomorphism h : G→ Hν which
additionally satisfies h(ai) = bi for all 1 ≤ i ≤ n.

For our lower bounds, we will often seek to represent Boolean formulas as the provenance
of queries on graphs:

▶ Definition 2.1. Given two graphs G and H, and a Boolean formula ϕ whose variables
{e1, . . . , en} ⊆ EH are edges of H, we say that ProvG

H represents ϕ on (e1, ..., en) if for every
valuation ν : EH → {0, 1} that maps edges not in {e1, ..., en} to 1, we have ν |= ϕ if and only
if ProvG

H(ν) = 1.

Circuits and Knowledge Compilation. We consider representations of Boolean functions
in terms of non-deterministic (ordered) binary decision diagrams, as well as decomposable
circuits, which we define below.

A non-deterministic binary decision diagram (nBDD) on a set of variables V =
{v1, . . . , vn} is a rooted DAG D whose nodes carry a label in V ⊔ {0, 1,∨} and whose
edges can carry an optional label in {0, 1}, subject to the following requirements:
1. there are exactly two leaves (called sinks), one labelled by 1 (the 1-sink), and the other

by 0 (the 0-sink);
2. internal nodes are labelled either by ∨ (called an ∨-node) or by a variable of V (called a

decision node); and
3. each decision node has exactly two outgoing edges, labelled 0 and 1; the outgoing edges

of ∨-nodes are unlabelled.
The size ||D|| of D is its number of edges. Let ν be a valuation of V , and let π be a
path in D going from the root to one of the sinks. We say that π is compatible with ν

if for every decision node n of the path, letting v ∈ V be the variable labelling n, then
π passes through the outgoing edge of n labelled with ν(v). In particular, no constraints
are imposed at ∨-nodes; thus, we may have that multiple paths are compatible with a
single valuation. The nBDD D represents a Boolean function, also written D by abuse
of notation, which is defined as follows: for each valuation ν of V , we set D(ν) := 1 if
there exists a path π from the root to the 1-sink of D that is compatible with ν, and set
D(ν) := 0 otherwise. Given an nBDD D over variables V , we denote by Mods(D) the set of
satisfying valuations ν of D such that D(ν) = 1, and by MC(D) the number |Mods(D)| of
such valuations. Further, given a rational probability function w : V → [0, 1] on the variables
of V , define WMC(D, w) to be the probability that a random valuation ν satisfies F , that is,
WMC(D, w) =

∑
ν∈Mods(D)

∏
x∈V s.t. ν(x)=1 w(x)

∏
x∈V s.t. ν(x)=0 (1− w(x)).

A. Amarilli, T. van Bremen, and K. S. Meel 15:7

In this paper, we primarily focus on a subclass of nBDDs called non-deterministic ordered
binary decision diagrams (nOBDDs). An nOBDD D is an nBDD for which there exists a
strict total order ≺ on the variables V such that, for any two decision nodes n ̸= n′ such
that there is a path from n to n′, then, letting v and v′ be the variables that respectively
label n and n′, we have v ≺ v′. This implies that, along any path going from the root to a
sink, the sequence of variables will be ordered according to V , with each variable occurring
at most once. We use nOBDDs because they admit tractable approximate counting of their
satisfying assignments, as we discuss later.

We also show lower bounds on a class of circuits, called decomposable negation normal form
(DNNF) circuits. A circuit on a set of variables V is a directed acyclic graph C = (G, W),
where G is a set of gates, where W ⊆ G × G is a set of edges called wires, and where we
distinguish an output gate g0 ∈ G. The inputs of a gate g ∈ G are the gates g′ such that there
is a wire (g′, g) in W . The gates can be labelled with variables of V (called a variable gate),
or with the Boolean operators ∨, ∧, and ¬. We require that gates labelled with variables
have no inputs, and that gates labelled with ¬ have exactly one input. A circuit C defines a
Boolean function on V , also written C by abuse of notation. Formally, given a valuation ν

of V , we define inductively the evaluation ν′ of the gates of C by setting ν′(g) := ν(v) for a
variable-gate g labelled with variable v, and setting ν′(g) for other gates to be the result of
applying the Boolean operators of g to ν′(g1), . . . , ν′(gn) for the inputs g1, . . . , gn of g. We
then define C(ν) to be ν′(g0) where g0 is the output gate of C.

The circuit is in negation normal form if negations are only applied to variables, i.e., for
every ¬-gate, its input is a variable gate. The circuit is decomposable if the ∧-gates always
apply to inputs that depend on disjoint variables: formally, there is no ∧-gate g with two
distinct inputs g1 and g2, such that some variable v labels two variable gates g′

1 and g′
2

with g′
1 having a directed path to g1 and g′

2 having a directed path to g2. A DNNF is a
circuit which is both decomposable and in negation normal form. Note that we can translate
nOBDDs in linear time to DNNFs, more specifically to structured DNNFs [4, Proposition 3.8].

Approximate Weighted Counting for nOBDDs. Recently, Arenas et al. [9] showed the
following result on approximate counting of satisfying assignments of an nOBDD.

▶ Theorem 2.2 (Corollary 4.5 of [8]). Let D be an nOBDD. Then there exists an FPRAS
for computing MC(D).

For our upper bounds, we need a slight strengthening of this result to apply to weighted model
counting (WMC) in order to handle probabilities. This can be achieved by translating the
approach used in [34, Section 5.1] to the nOBDD setting. We thus show (see Appendix A):

▶ Theorem 2.3. Let D be an nOBDD, and w : vars(D) → [0, 1] be a rational probability
function defined on the variables appearing in D. Then there exists an FPRAS for computing
WMC(D, w), running in time polynomial in ||D|| and w.

3 Results in the Labelled Setting

We now move on to the presentation of our results. We start with the labelled setting of
probabilistic graph homomorphism in which the fixed signature σ of the query and instance
graph contains more than one label (|σ| > 1). Our results are summarized in Table 1a.

ICDT 2024

15:8 Conjunctive Queries on Probabilistic Graphs: The Limits of Approximability

Table 1 Results on approximation proved in this paper. Key: white () means that the problem
lies in P; light grey () means that it is #P-hard but admits an FPRAS; dark grey () means
#P-hardness and non-existence of an FPRAS, assuming RP ̸= NP. All cells without a reference to a
corresponding proposition are either implied by one of the other results in this paper, or pertain to
exact complexity and were already settled in [7].

(a) Complexity of PHomL(G, H).

G ↓ H →
1WP 2WP DWT PT DAG All

1WP 3.1 3.3
2WP 3.7
DWT 3.5
PT

(b) Complexity of PHom̸L(G, H).

G ↓ H →
1WP 2WP DWT PT DAG All

1WP 4.1 ?
2WP 4.3
DWT 4.2 ?
PT

1WP on DAG. We start by showing the tractability of approximation for
PHomL(1WP, DAG), which also implies tractability of approximation for PHomL(1WP, PT),
since PT ⊆ DAG.

▶ Proposition 3.1. PHomL(1WP, DAG) is #P-hard already in data complexity, but it admits
an FPRAS.

For #P-hardness, the result already holds in the unlabelled setting, so it will be shown
in Section 4 (see Proposition 4.1). Hence, we focus on the upper bound. We rely on the
notion of a topological ordering of the edges of a directed acyclic graph H = (V, E): it is
simply a strict total order (E,≺) with the property that for every consecutive pair of edges
e1 = (a1, a2) and e2 = (a2, a3), we have that e1 ≺ e2. Let us fix such an ordering.

Proof of Proposition 3.1. We will show that every 1WP query on a DAG instance admits an
nOBDD representation of its provenance, which we can compute in combined polynomial time.
We can then apply Theorem 2.3, from which the result follows. Let G = a1

R1−−→ . . .
Rm−−→ am+1

be the input path query, and H the instance graph. We make the following claim:

▷ Claim 3.2. For every v ∈ H, we can compute in time O(||G|| × ||H||) an nOBDD
representing ProvL

G
H [a1 := v] which is ordered by the topological ordering ≺ fixed above.

Proof. Writing H = (V, E), we build an nBDD D consisting of the two sinks and of the
following nodes:
|V | × ||G|| ∨-nodes written nu,i for u ∈ V and 1 ≤ i ≤ m; and
|E| × ||G|| decision nodes written de,i for e ∈ E and 1 ≤ i ≤ m which test the edge e.

Each ∨-node nu,i for u ∈ V and 1 ≤ i ≤ m has outgoing edges to each de,i for every edge e

emanating from u which is labelled Ri. For each decision node de,i, letting w be the target
of edge e, then de,i has an outgoing 0-edge to the 0-sink and an outgoing 1-edge to either
nw,i+1 if i < m or to the 1-sink if i = m. The root of the nBDD is the node nv,1.

This construction clearly respects the time bound. To check correctness of the resulting
nBDD, it is immediate to observe that, for any path from the root to a sink, the sequence of
decision nodes traversed is of the form de1,1, . . . , dek,k where the e1, . . . , ek form a path of
consecutive edges starting at v and successively labelled R1, . . . , Rk. This implies that the
nBDD is in fact an nOBDD ordered by ≺. Further, such a path reaches the 1-sink iff k = m

and all decisions are positive, which implies that whenever the nOBDD accepts a subgraph
H ′ of H then indeed H ′ contains a match of G mapping a1 to v. For the converse direction,
we observe that, for any subgraph H ′ of H containing a match of G mapping a1 to v, then,

A. Amarilli, T. van Bremen, and K. S. Meel 15:9

letting e1, . . . , em be the successive edges traversed in the match of G, there is a path from
the root of D to the 1-sink which tests these edges in order. This establishes correctness and
concludes the proof of the claim. ◁

Now observe that ProvL
G
H = ProvL

G
H [a1 := v1] ∨ · · · ∨ ProvL

G
H [a1 := vn], where v1, . . . , vn are

precisely the vertices of H. Thus, it suffices to simply take the disjunction of each nOBDD
obtained using the process above across every vertex in H, which yields in linear time the
desired nOBDD. From here we can apply Theorem 2.3, concluding the proof. ◀

1WP on arbitrary graphs. We show, however, that tractability of approximation does not
continue to hold when relaxing the instance class from DAG to arbitrary graphs. This also
implies that more expressive classes of query graphs – such as 2WP, DWT, and PT also
cannot be tractable to approximate on All instances.

▶ Proposition 3.3. PHomL(1WP, All) does not admit an FPRAS unless RP = NP.

Proof. Our result hinges on the following claim:

▷ Claim 3.4. Let d > 1 be a constant. Given a monotone 2-CNF formula ϕ on n variables
where each variable occurs in at most d clauses, we can build in time O(|ϕ|) a 1WP Gϕ and
All graph Hϕ containing edges (e1, . . . , en) such that ProvGϕ

Hϕ
represents ϕ on (e1, . . . , en).

Proof. Let ϕ =
∧

1≤i≤m(Xf1(i) ∨ Xf2(i)) be the input CNF instance over the variables
{X1, . . . , Xn}. As we are in the labelled setting, let U and R be two distinct labels from the

signature. Define the 1WP query graph Gϕ to be U−→
(

R−→
d+2 U−→

)m

. The instance All graph

Hϕ is defined in the following way:
For all 1 ≤ i ≤ n, add an edge ai

R−→ bi.
Add an edge c0

U−→ d0 and for each clause 1 ≤ j ≤ m, an edge cj
U−→ dj .

For each clause 1 ≤ j ≤ m and variable Xi occurring in that clause, let p be the number
of this occurrence of Xi in the formula (i.e., the occurrence of Xi in the j-th clause is the
p-th occurrence of Xi), with 1 ≤ p ≤ d by assumption on ϕ. Then add a path of length p

of R-edges from dj−1 to ai and a path of length (d + 1)− p of R-edges from bi to cj .
The construction of Gϕ and Hϕ is in O(|ϕ|). Furthermore, notice the following (⋆). For any
1 ≤ i ≤ n, the edge e = ai

R−→ bi has at most d incoming R-paths and d outgoing R-paths;
the outgoing paths have pairwise distinct length (i.e., the number of edges until the next
edge is a U -edge), and likewise for the incoming paths. What is more, each incoming R-path
of length p corresponds to an outgoing path of length (d + 1)− p and together they connect
some dj−1 to some cj via the edge e, where the j-th clause contains variable Xi.

Now, define (e1, . . . , en) to be precisely the edges of the form ai
R−→ bi for every 1 ≤ i ≤ n.

Intuitively, the presence or absence of each of these edges corresponds to the valuation of
each variable in ϕ. We claim that ProvGϕ

Hϕ
represents ϕ on (e1, . . . , en). It will suffice to show

that there is a bijection between the satisfying valuations of ϕ, and the subgraphs of Hϕ that
both (i) contain all the edges not in (e1, . . . , en), as these are fixed to 1, and (ii) admit a
homomorphism from Gϕ.

Indeed, consider the bijection defined in the obvious way: keep the edge ai
R−→ bi iff Xi is

assigned to true in the valuation. First suppose that some valuation of {X1, . . . , Xn} satisfies
ϕ. Then, for each clause 1 ≤ j ≤ m, there is a variable in the clause which evaluates to
true. We build a match of Gϕ on the corresponding possible world of Hϕ by mapping the

ICDT 2024

15:10 Conjunctive Queries on Probabilistic Graphs: The Limits of Approximability

j-th U -edge to cj
U−→ dj for all 0 ≤ j ≤ m, and mapping the R-paths for each 1 ≤ j ≤ m by

picking a variable Xi witnessing that the clause is satisfied and going via the path of length
1 + (p) + ((d + 1)− p) = d + 2 that uses the edge ai

R−→ bi, which is present by assumption.
Conversely, assume that we have a match of Gϕ on a possible world of Hϕ. We show that

the corresponding valuation satisfies ϕ. Consider the edge cj
U−→ dj to which the first U -edge

is mapped. The R-path that follows must be mapped to a path from dj to some ai, and
then take the edge ai

R−→ bi, whose presence witnesses that the corresponding variable Xi is
true. But importantly, in order for the path to have length precisely d + 2 before reaching
the next U -edge, it must be the case that the length of the path before and after the edge
ai

R−→ bi sums up to d + 1. As a result of (⋆), this is only possible by taking a path that leads
to cj+1

U−→ dj+1, and so we know that variable Xi occurs in the j-th clause so that clause is
satisfied. Repeating the argument shows that all clauses from the j-th onwards are satisfied,
and as we have m + 1 U -edges in the graph Hϕ and m + 1 U -edges in the graph Gϕ we know
that in fact we must have mapped the first U -edge to the first U -edge (i.e., j = 0), and all
clauses are satisfied. ◁

By [31, Theorem 2], counting the independent sets of a graph of maximal degree 6 admits an
FPRAS only if RP = NP. It is not hard to see that this problem is equivalent to counting
satisfying assignments of a monotone 2-CNF formula in which a variable can appear in up to
6 clauses (see, for example, [25, Proposition 1.1]). Thus, we can apply Claim 3.4 above for
the class of formulas in which d = 6 to obtain (deterministic) graphs Gϕ and Hϕ, and then
build a probabilistic graph H ′

ϕ identical to Hϕ, in which the edges (e1, . . . , en) are assigned
probability 0.5 and all other edges probability 1, giving the desired reduction. ◀

DWT on DWT. Having classified the cases of one-way path queries (1WP) on all instances
classes considered, we turn to more expressive queries. The next two query classes to consider
are two-way path queries (2WP) and downward trees queries (DWT). For these query classes,
exact computation on 2WP instances is tractable by [7], so the first case to classify is that of
DWT instances. Exact computation is intractable in this case by [7], and we show here that,
unfortunately, approximation is intractable as well, so that the border for exact tractability
coincides with that for approximate tractability. We first focus on DWT queries:

▶ Proposition 3.5. PHomL(DWT, DWT) does not admit an FPRAS unless RP = NP.

Proof. Our result hinges on the following, whose proof adapts [26, Proposition 2.4.3]:

▷ Claim 3.6. Given a monotone 2-CNF formula ϕ on n variables, we can build in time
O(|ϕ| log |ϕ|) DWT graphs Gϕ and Hϕ, with the latter containing edges (e1, . . . , en) such
that ProvGϕ

Hϕ
represents ϕ on (e1, . . . , en).

Proof. Let ϕ =
∧

1≤i≤m(Xf1(i) ∨ Xf2(i)) be the input CNF instance over the variables
{X1, . . . , Xn}. We let L = ⌈log2 m⌉ be the number of bits needed to write clause numbers in
binary. As we are in the labelled setting, let 0 and 1 be two distinct labels from the signature.
Construct the query graph Gϕ as follows:

For all 1 ≤ i ≤ m, add an edge z
0−→ xi.

For each 1 ≤ i ≤ m, letting b1 · · · bL be the clause number i written in binary, add a path
of L edges xi

b1−→ yi,1
b2−→ . . .

bL−1−−−→ yi,L−1
bL−→ yi,L.

Now, construct the DWT instance Hϕ as follows:
For all 1 ≤ i ≤ n, add the edges a

0−→ ci.

A. Amarilli, T. van Bremen, and K. S. Meel 15:11

For all 1 ≤ i ≤ n and 1 ≤ j ≤ m such that Xi occurs in the j-th clause of ϕ (i.e., Xi is in
f−1

1 (j) or f−1
2 (j)), letting b1 · · · bL be the clause number j written in binary, add a path

of L edges ci
b1−→ di,j,1

b2−→ . . .
bL−1−−−→ di,j,L−1

bL−→ di,j,L.
It is clear that Gϕ ∈ DWT, Hϕ ∈ DWT, and that both graphs can be built in time
O(|ϕ| log |ϕ|). Now, define (e1, . . . , en) to be the edges of the form a

0−→ ci for every 1 ≤ i ≤ n.
We claim that ProvGϕ

Hϕ
represents ϕ on (e1, . . . , en). It suffices to show that there is a

bijection between the satisfying valuations ν of ϕ, and the subgraphs of Hϕ that both (i)
contain all the edges not in (e1, . . . , en), as these are fixed to 1, and (ii) admit a homomorphism
from Gϕ. Indeed, consider the bijection defined in the obvious way: keep the edge a

T−→ ci iff
Xi is assigned to true in the valuation. First, if there is a homomorphism from Gϕ to such a
subgraph, then the root z of the query must be mapped to a (since this is the only element
with outgoing paths of length L + 1 as prescribed by the query), and then it is clear that the
image of any such homomorphism must take the form of a DWT instance that contains, for
each clause number 1 ≤ i ≤ m, a path of length L representing this clause number. This
witnesses that the valuation ν makes a variable true which satisfies clause i. Hence, ν is a
satisfying assignment of ϕ. Conversely, for every satisfying assignment ν, considering the
corresponding subgraph of Hϕ, we can construct a homomorphism mapping the edges of Gϕ

to the edges of Hϕ, by mapping the path of every clause to a path connected to a variable
that witnesses that this clause is satisfied by ν. ◁

The result then follows by an argument analogous to the one in Proposition 3.3. ◀

2WP on DWT. We then move to 2WP queries:

▶ Proposition 3.7. PHomL(2WP, DWT) does not admit an FPRAS unless RP = NP.

This result follows from a general reduction technique from DWT queries on DWT instances
to 2WP queries on DWT instances, which allows us to conclude using the result already
shown on DWT queries (Proposition 3.5). We note that this technique could also have been
used to simplify the proofs of hardness of exact computation in [7] and [2]. We claim:

▶ Lemma 3.8. For any DWT query G, we can compute in time O(||G||) a 2WP query G′

which is equivalent to G on DWT instances: for any DWT H, there is a homomorphism
from G to H iff there is a homomorphism from G′ to H.

For lack of space, we give only the construction of G′ here, and defer the full proof of the
correctness of this construction to Appendix B.

Proof. Let G be a DWT query. We build G′ following a tree traversal of G. More precisely,
we define the translation inductively as follows. If G is the trivial query with no edges,
then we let the translation of G be the trivial query with no edges. Otherwise, let x be
the root of G, let x

R1−−→ y1, . . . , x
Rn−−→ yn be the successive children, and call G1, . . . , Gn the

DWT subqueries of G respectively rooted at y1, . . . , yn. We define the translation of G to
be R1−−→ G′

1
R1←−− · · · Rn−−→ G′

n
Rn←−−, where G′

1, . . . , G′
n are the respective translations of G1, . . . ,

Gn. This translation is in linear time, and the translated query has twice as many edges as
the original query. ◀

Lemma 3.8 allows us to conclude from Proposition 3.5, as it allows us to reduce in linear
time (in combined complexity) the evaluation of a DWT query on a DWT probabilistic instance
to the evaluation of an equivalent 2WP query on the same instance. This establishes that any
approximation algorithm for 2WP queries on DWT instances would give an approximation
for DWT queries on DWT instances, which by Proposition 3.5 is conditionally impossible.

ICDT 2024

15:12 Conjunctive Queries on Probabilistic Graphs: The Limits of Approximability

These results complete Table 1, concluding the classification of the complexity of PHom
in the labelled setting: all cases that were intractable for exact computation are also hard to
approximate, with the notable exception of 1WP queries on DAG instances.

4 Results in the Unlabelled Setting

We now turn to the unlabelled setting of probabilistic graph homomorphism, where the
signature σ has only one label (|σ| = 1). Our results are summarized in Table 1b: we
settle all cases except PHom̸L(1WP, All) and PHom̸L(DWT, All), for which we do not give an
FPRAS or hardness of approximation result. Note that both problems are #P-hard for exact
computation [7]. Further, they are in fact equivalent, because DWT queries are equivalent to
1WP queries in the unlabelled setting (stated in [7] and reproved as Proposition 4.2 below).

1WP on DAG. We start with 1WP queries, and state the following:

▶ Proposition 4.1. PHom̸L(1WP, DAG) is #P-hard already in data complexity, but it admits
an FPRAS.

The positive result directly follows from the existence of an FPRAS in the labelled setting,
which we have shown in the previous section (Proposition 3.1). By contrast, the #P-hardness
does not immediately follow from previous work, as DAG queries were not studied in [7]. We
can nevertheless obtain it by inspecting the usual #P-hardness proof of PQE for the CQ
∃x y R(x), S(x, y), T (y) on TID instances [32]. We give a proof in Appendix C.

DWT on DAG. We can easily generalize the above result from 1WP queries to DWT queries,
given that they are known to be equivalent in the unlabelled setting:

▶ Proposition 4.2 ([7]). PHom̸L(DWT, DAG) is #P-hard already in data complexity, but
admits an FPRAS.

This is implicit in [7, Proposition 5.5]: we give a self-contained proof in Appendix D.

2WP on PT. In contrast to 1WP queries, which are exactly tractable on PT instances and
admit an FPRAS on DAG instances, 2WP queries have no FPRAS already on PT instances:

▶ Proposition 4.3. PHom̸L(2WP, PT) does not admit an FPRAS unless RP = NP.

Proof. It suffices to prove the claim below, which is the analogue to the unlabelled setting
of Claim 3.6 after having transformed the query to 2WP via Lemma 3.8:

▷ Claim 4.4. Given a monotone 2-CNF formula ϕ on n variables, we can build in time
O(|ϕ| log |ϕ|) an unlabelled 2WP graph Gϕ and unlabelled PT graph Hϕ, with the latter
containing edges (e1, . . . , en) such that ProvGϕ

Hϕ
represents ϕ on (e1, . . . , en).

We show this claim via a general-purpose reduction from the labelled setting to the unlabelled
setting, which works in fact for All queries on All graphs. This reduction codes labels via
specific unlabelled paths; a similar but ad-hoc technique was used to prove [7, Proposition 5.6]:

A. Amarilli, T. van Bremen, and K. S. Meel 15:13

▶ Lemma 4.5. For any constant k ≥ 2, given a All query G and All graph H on a labelled
signature with relation labels {1, . . . , k}, we can construct in linear time an unlabelled All
query G′ and All graph H ′ such that there is a (labelled) homomorphism from G to H iff
there is an (unlabelled) homomorphism from G′ to H ′. Further, if G is a 2WP then G′ is
also a 2WP, and if H is a PT then H ′ is also a PT.

Proof. We construct G′ from G and H ′ from H by replacing every edge by a fixed path that
depends on the label of the edge. Specifically, we consider every edge x

i−→ y of the query,
where x is the source, t is the target, and 1 ≤ i ≤ k is the label. We code such an edge in G′

by a path defined as follows: x→k+3 ← →i+1 ←k+2 y, where exponents denote repeated
edges and where intermediate vertices are omitted. We code the instance H to H ′ in the
same way. This process is clearly linear-time, and it is clear that if G is a 2WP then G′ is
also a 2WP, and that if H is a PT then H ′ is also a PT. Further, to establish correctness of
the reduction, one direction of the equivalence is trivial: a homomorphism h from G to H

clearly defines a homomorphism from G′ to H ′ by mapping the coding in G′ of every edge e

of G to the coding of the image of e by h in H ′

What is interesting is the converse direction of the equivalence. We establish it via a claim
on homomorphic images of the coding of individual edges: for any 1 ≤ i ≤ k, letting e′ be
the coding of an edge e = x

i−→ y, for any homomorphism h′ from e′ to H ′, there must exist
an edge f = a

i−→ b in H such that h′ maps x to a and y to b. This claim implies the converse
direction of the equivalence: if there is a homomorphism h′ from G′ to H ′, then applying
the claim to the restrictions of h′ to the coding of each edge of G, we see that h′ defines
a function h that maps the vertices of G to vertices of H, and that h is a homomorphism.
Hence, all that remains is to prove the claim, which we do in the rest of the proof.

Consider an edge e = x
i−→ y as in the claim statement, and let e′ be its coding and h′

the homomorphism mapping e′ to H ′. Observe that, in H ′, the only directed paths of length
k + 3 are the first k + 3 edges of the coding of edges of H. (This hinges on the fact that
the paths of length k + 3 defined in the coding of edges of H are never adjacent in H ′ to
another edge that goes in the same direction, even across multiple edges, and no matter
the directions of edges in H.) This means that, considering the directed path →k+3 at the
beginning of e′, there must be an edge f = a

j−→ b of H, with coding f ′ in H ′, such that the
source x of e is mapped to the source a of f , and the first k + 3 edges of e′ are mapped to the
first k + 3 edges of f ′. What remains to be shown is that i = j and that y is mapped to b.

To this end, we continue studying what can be the image of e′ into f ′. After the directed
path →k+3, the next edge ← of e′ must have been mapped forward to the next edge ←
of f ′: indeed, it cannot be mapped backwards on the last edge of the preceding path →k+3

because k + 3 > 1 and i + 1 > 1 so the next edges →i+1 would then have no image. Then
the next directed path →i+1 of e′ is mapped in f ′, necessarily forward because we fail if
we map the first edge backwards: this implies that there at least as many edges going in
that direction in f ′ as there are in e′, i.e., i ≤ j. Now, the last path ←k+2 of e′ cannot be
mapped backwards because k + 2 > i + 1, so we must map it forwards in f ′: for this to be
possible, we must have reached the end of the directed path →j+1 in f ′, so that we have
j = i. We are now done reading e′ and f ′, so we have indeed mapped y to b. This, along
with i = j, establishes that the claim is true, and concludes the proof. ◀

We can thus prove Claim 4.4, starting from Claim 3.6 and translating it first via Lemma 3.8
and then via Lemma 4.5. Using the same argument as in Proposition 3.3, we conclude the
proof of Proposition 4.3. ◀

ICDT 2024

15:14 Conjunctive Queries on Probabilistic Graphs: The Limits of Approximability

5 DNNF Lower Bounds

In this section, we investigate how to represent the provenance of the query-instance pairs that
we consider. More specifically, we study whether there exist polynomially-sized representations
in tractable circuit classes of Boolean provenance functions ProvG

H , for G ∈ G and H ∈ H
in the graph classes studied in this paper. Certainly, for every graph class G and H,
the (conditional) non-existence of an FPRAS for PHom(G,H) implies that, conditionally,
we cannot compute nOBDD representations of provenance in polynomial time combined
complexity – as otherwise we could obtain an FPRAS via Theorem 2.3. In fact, beyond
nOBDDs, it follows from [9, Theorem 6.3] that, conditionally, we cannot tractably compute
provenance representations even in the more general class of structured DNNFs. Indeed, as
for nOBDDs, fixed edges in the reductions can be handled by conditioning [28, Proposition 4].

However, even in settings where there is conditionally no combined FPRAS, it could be
the case that there are polynomial-sized tractable circuits that are difficult to compute, or
that we can tractably compute circuits in a more general formalism such as unstructured
DNNF circuits. The goal of this section is to give a negative answer to these two questions,
for all of the non-approximable query-instance class pairs studied in Sections 3 and 4.

Specifically, we show moderately exponential lower bounds on the size of DNNF circuits
for infinite families of graphs taken from these classes. Remember that DNNF is arguably the
most general knowledge compilation circuit class that still enjoys some tractable properties [16].
Hence, these lower bounds imply that no tractable provenance representation exists in other
tractable subclasses of DNNFs, e.g., structured DNNFs [28], or Decision-DNNFs [10]. We
also emphasize that, unlike the intractability results of Sections 3 and 4 which assumed
RP ̸= NP, all of the DNNF lower bounds given here are unconditional.

We first show a strongly exponential lower bound for labelled 1WP on All instances:

▶ Proposition 5.1. There is an infinite family G1, G2, . . . of labelled 1WP queries and an
infinite family H1, H2, . . . of labelled All instances such that, for any i > 0, any DNNF circuit
representing the Boolean function ProvGi

Hi
has size 2Ω(||Gi||+||Hi||).

Proof. By treewidth of a monotone 2-CNF formula, we mean the treewidth of the graph on
the variables whose edges correspond to clauses in the expected way; and by degree we mean
the maximal number of clauses in which any variable occurs. Let us consider an infinite
family ϕ1, ϕ2, . . . of monotone 2-CNF formulas of constant degree d = 3 whose treewidth is
linear in their size: this exists by [18, Proposition 1, Theorem 5]. We accordingly know by
[4, Corollary 8.5] that any DNNF computing ϕi must have size 2Ω(|ϕi|) for all i > 1. Using
Claim 3.4, we obtain infinite families G1, G2, . . . of 1WP and H1, H2, . . . of All graphs such
that ProvGi

Hi
represents ϕi on some choice of edges, and we have ||Gi||+ ||Hi|| = O(|ϕi|) for

all i > 0 (from the running time bound). Now, any representation of ProvL
Gi

Hi
as a DNNF

can be translated in linear time to a representation of ϕi as a DNNF of the same size, simply
by renaming the edges (e1, . . . , en) to the right variables, and replacing all other variables
by the constant 1. This means that the lower bound on the size of DNNFs computing ϕi

also applies to DNNFs representing ProvGi

Hi
, i.e., they must have size at least 2Ω(|ϕi|), hence

2Ω(||Gi||+||Hi||) as we claimed. ◀

We now present lower bounds for the remaining non-approximable query-instance class pairs,
which are not exponential but rather moderately exponential. This is because our encoding of
CNFs into these classes (specifically, Claim 3.6, and its images by Lemma 3.8 and Lemma 4.5)
do not give a linear, but rather linearithmic bound. We leave to future work the question of
proving strongly exponential lower bounds for these classes, like we did in Proposition 5.1.

A. Amarilli, T. van Bremen, and K. S. Meel 15:15

▶ Proposition 5.2. For any ϵ > 0, there is an infinite family G1, G2, . . . of labelled
DWT queries and an infinite family H1, H2, . . . of labelled DWT instances such that, for
any i > 0, any DNNF circuit representing the Boolean function ProvGi

Hi
has size at least

2Ω((||Gi||+||Hi||)1−ϵ).

Proof. The proof is identical to that of Proposition 5.1, except that we apply Claim 3.6:
for all i > 0, ||Gi||+ ||Hi|| = O(|ϕi| log |ϕi|). We perform a change of variables: if we write
y = |ϕi| log |ϕi|, then we can show that |ϕi| = eW (y), where W denotes the Lambert W

function [12]; equivalently |ϕi| = y/W (y) as the W function satisfies W (z)eW (z) = z for all
z > 0. Thus, the lower bound of 2Ω(|ϕi|) on DNNF representations of ϕi implies that any
DNNF for ProvGj

Hj
has size at least 2Ω

(||Gi||+||Hi||
W (||Gi||+||Hi||)

)
. In particular, as W grows more slowly

than nϵ for any ϵ > 0, this gives a bound of 2Ω((||Gi||+||Hi||)1−ϵ) for sufficiently large ϕj . ◀

The proof for the following two claims are analogous to that of Proposition 5.2, but using
Lemma 3.8 (for the first result) and Claim 4.4 (for the second result):

▶ Proposition 5.3. For any ϵ > 0, there is an infinite family G1, G2, . . . of labelled
2WP queries and an infinite family H1, H2, . . . of labelled DWT instances such that, for
any i > 0, any DNNF circuit representing the Boolean function ProvGi

Hi
has size at least

2Ω((||Gi||+||Hi||)1−ϵ).

▶ Proposition 5.4. For any ϵ > 0, there is an infinite family G1, G2, . . . of unlabelled
2WP queries and an infinite family H1, H2, . . . of unlabelled PT instances such that, for
any i > 0, any DNNF circuit representing the Boolean function ProvGi

Hi
has size at least

2Ω((||Gi||+||Hi||)1−ϵ).

We finish by remarking that all of the lower bounds above apply to acyclic query classes
(i.e., queries of treewidth 1), for which non-probabilistic query evaluation is well-known to be
linear in combined complexity [36]. Thus, these results give an interesting example of query
classes for which query evaluation is in linear-time combined complexity, but computing even
a DNNF representation of query provenance is (moderately) exponential.

6 Consequences

In this section, we consider some corollaries and extensions to the results above.

Optimality of a Previous Result. Recall from the introduction that, as was shown in [34],
PQE for self-join-free conjunctive queries of bounded hypertree width admits a combined
FPRAS (in the general setting of probabilistic databases, rather than probabilistic graphs):

▶ Theorem 1.3 (Theorem 1 of [34]). Let Q be a self-join-free conjunctive query of bounded
hypertree width, and H a tuple-independent database instance. Then there exists a com-
bined FPRAS for computing the probability of Q on H, i.e., an FPRAS whose runtime is
poly(|Q|, ||H||, ϵ−1), where ϵ is the multiplicative error.

Can a stronger result be achieved? Our Proposition 4.3 immediately implies the following:

▶ Corollary 6.1. Assuming RP ̸= NP, even on a fixed signature consisting of a single binary
relation there is no FPRAS to approximate the probability of an input treewidth-1 CQ on an
input treewidth-1 TID instance.

ICDT 2024

15:16 Conjunctive Queries on Probabilistic Graphs: The Limits of Approximability

Hence, tractability no longer holds with self-joins. So, as unbounded hypertree width queries
are intractable in combined complexity even for deterministic query evaluation, we have:

▶ Corollary 6.2. The result in Theorem 1.3 is optimal in the following sense: relaxing either
the self-join-free or bounded-hypertree-width condition on the query implies the non-existence
of a combined FPRAS, unless RP = NP.

Network Reliability. The two-terminal network reliability problem asks the following: given
a graph with probabilistic edges and with source and target vertices s and t, compute the
probability that s and t remain connected, assuming independence across edges. Valiant
showed that this problem is #P-complete [33, Theorem 1], and Provan and Ball showed
that this holds already on directed acyclic graphs [29, Table 1]. Hardness also holds for the
related problem of all-terminal reliability [29, Table 1], which asks for the probability that
the probabilistic graph remains connected as a whole. Given the inherent #P-hardness of
these problems, subsequent research has focused on developing tractable approximations.

Although significant progress has been made on FPRASes for all-terminal
(un)reliability [19, 23], designing an FPRAS for two-terminal reliability has remained open.
This question was even open for the restricted case of directed acyclic graphs; indeed, it
was explicitly posed as an open problem by Zenklusen and Laumanns [37]. We now point
out that the nOBDD construction of Proposition 3.1 implies an FPRAS for two-terminal
reliability on DAGs, again by leveraging the approximate counting result of Arenas et al. [8]:

▶ Theorem 6.3. There exists an FPRAS for the two-terminal network reliability problem
over directed acyclic graphs.

Proof. Given as input an unlabelled probabilistic DAG instance H = (V, E) and two dis-
tinguished source and target vertices s and t ∈ V , construct the labelled DAG instance
H ′ = (V, E, λ) as follows. All vertices and edges are identical to that of H, but every edge of
the form (s, x) emanating from s is assigned label λ((s, x)) = Rs, every edge (x, t) directed
towards t is assigned label λ((x, t)) = Rt, and every other edge (x, y) is assigned the label
λ((x, y)) = R. In the case that (s, t) ∈ E, then assign λ((s, t)) = R′.

Now, by the result in Proposition 3.1, we can construct an nOBDD for each of the following
|E| different labelled 1WP queries: R′

−→, Rs−−→ Rt−−→, Rs−−→ R−→ Rt−−→, . . . , Rs−−→
(

R−→
)|E|−2 Rt−−→. All of

the nOBDDs have the same ordering (given by a topological ordering of the edges of H ′),
so we may take their disjunction to obtain a (complete) nOBDD D in linear time, whose
accepting paths are in bijection with the (s, t)-connected valuations of the edges in H. From
here we conclude by applying Theorem 2.3. ◀

We remark that, after submission of this work, Theorem 6.3 was also obtained independently
(and with a different approach) in a recent preprint by Feng and Guo [17].

7 Conclusions and Future Work

We studied the existence and non-existence of combined approximation algorithms for the
PQE problem, as well as the existence of polynomially-sized tractable circuit representations
of provenance, under the lens of combined complexity.

We see several potential directions for future work. First, it would be interesting to see
if the results in Proposition 3.1 and Theorem 6.3 can be extended beyond DAG instances:
graph classes of bounded DAG-width [11] could be a possible candidate here. We also leave
open the problem of filling in the two remaining gaps in Table 1. Namely, we would like to

A. Amarilli, T. van Bremen, and K. S. Meel 15:17

obtain either an FPRAS or hardness of approximation result for the equivalent problems
PHom̸L(1WP, All) and PHom̸L(DWT, All). It is also natural to ask whether our results can
be lifted from graph signatures to arbitrary relational signatures, or whether they apply in
the unweighted setting where all edges are required to have the same probability [6, 1, 24].
Another question is whether we can classify the combined complexity of approximate PQE
for disconnected queries, as was done in [7] in the case of exact computation, for queries that
feature disjunction such as UCQs (already in the exact case [7]), or for more general query
classes, e.g., with recursion [5].

References
1 Antoine Amarilli. Uniform reliability for unbounded homomorphism-closed graph queries. In

ICDT, 2023. doi:10.4230/LIPIcs.ICDT.2023.14.
2 Antoine Amarilli, Pierre Bourhis, Mikaël Monet, and Pierre Senellart. Combined tractability

of query evaluation via tree automata and cycluits. In ICDT, 2017. doi:10.4230/LIPIcs.
ICDT.2017.6.

3 Antoine Amarilli, Pierre Bourhis, and Pierre Senellart. Provenance circuits for trees and
treelike instances. In ICALP, 2015. doi:10.1007/978-3-662-47666-6_5.

4 Antoine Amarilli, Florent Capelli, Mikaël Monet, and Pierre Senellart. Connecting knowledge
compilation classes and width parameters. ToCS, 2020. doi:10.1007/s00224-019-09930-2.

5 Antoine Amarilli and İsmail İlkan Ceylan. The dichotomy of evaluating homomorphism-closed
queries on probabilistic graphs. LMCS, 2022. doi:10.46298/lmcs-18(1:2)2022.

6 Antoine Amarilli and Benny Kimelfeld. Uniform reliability of self-join-free conjunctive queries.
LMCS, 2022. doi:10.46298/lmcs-18(4:3)2022.

7 Antoine Amarilli, Mikaël Monet, and Pierre Senellart. Conjunctive queries on probabilistic
graphs: Combined complexity. In PODS, 2017. doi:10.1145/3034786.3056121.

8 Marcelo Arenas, Luis Alberto Croquevielle, Rajesh Jayaram, and Cristian Riveros. #NFA
admits an FPRAS: efficient enumeration, counting, and uniform generation for logspace
classes. J. ACM, 68(6), 2021. Extended version available as arXiv preprint arXiv:1906.09226
[cs.DS]. doi:10.1145/3477045.

9 Marcelo Arenas, Luis Alberto Croquevielle, Rajesh Jayaram, and Cristian Riveros. When is ap-
proximate counting for conjunctive queries tractable? In STOC. ACM, 2021. Extended version
available as arXiv preprint arXiv:2005.10029 [cs.DS]. doi:10.1145/3406325.3451014.

10 Paul Beame, Jerry Li, Sudeepa Roy, and Dan Suciu. Exact model counting of query expressions:
Limitations of propositional methods. TODS, 42(1), 2017. doi:10.1145/2984632.

11 Dietmar Berwanger, Anuj Dawar, Paul Hunter, Stephan Kreutzer, and Jan Obdrzálek. The
DAG-width of directed graphs. J. Comb. Theory, Ser. B, 102(4), 2012. doi:10.1016/j.jctb.
2012.04.004.

12 Robert M. Corless, Gaston H. Gonnet, D. E. G. Hare, David J. Jeffrey, and Donald E. Knuth.
On the lambert W function. Adv. Comput. Math., 5(1), 1996. doi:10.1007/BF02124750.

13 Nilesh N. Dalvi and Dan Suciu. Efficient query evaluation on probabilistic databases. In
VLDB, 2004. doi:10.1016/B978-012088469-8.50076-0.

14 Nilesh N. Dalvi and Dan Suciu. The dichotomy of probabilistic inference for unions of
conjunctive queries. J. ACM, 59(6), 2012. doi:10.1145/2395116.2395119.

15 Adnan Darwiche. Decomposable negation normal form. J. ACM, 48(4), 2001. doi:10.1145/
502090.502091.

16 Adnan Darwiche and Pierre Marquis. A knowledge compilation map. J. Artif. Intell. Res., 17,
2002. doi:10.1613/jair.989.

17 Weiming Feng and Heng Guo. An FPRAS for two terminal reliability in directed acyclic
graphs, 2023. doi:10.48550/arXiv.2310.00938.

18 Martin Grohe and Dániel Marx. On tree width, bramble size, and expansion. J. Comb. Theory,
Ser. B, 99(1), 2009. doi:10.1016/j.jctb.2008.06.004.

ICDT 2024

https://doi.org/10.4230/LIPIcs.ICDT.2023.14
https://doi.org/10.4230/LIPIcs.ICDT.2017.6
https://doi.org/10.4230/LIPIcs.ICDT.2017.6
https://doi.org/10.1007/978-3-662-47666-6_5
https://doi.org/10.1007/s00224-019-09930-2
https://doi.org/10.46298/lmcs-18(1:2)2022
https://doi.org/10.46298/lmcs-18(4:3)2022
https://doi.org/10.1145/3034786.3056121
https://arxiv.org/abs/1906.09226
https://doi.org/10.1145/3477045
https://arxiv.org/abs/2005.10029
https://doi.org/10.1145/3406325.3451014
https://doi.org/10.1145/2984632
https://doi.org/10.1016/j.jctb.2012.04.004
https://doi.org/10.1016/j.jctb.2012.04.004
https://doi.org/10.1007/BF02124750
https://doi.org/10.1016/B978-012088469-8.50076-0
https://doi.org/10.1145/2395116.2395119
https://doi.org/10.1145/502090.502091
https://doi.org/10.1145/502090.502091
https://doi.org/10.1613/jair.989
https://doi.org/10.48550/arXiv.2310.00938
https://doi.org/10.1016/j.jctb.2008.06.004

15:18 Conjunctive Queries on Probabilistic Graphs: The Limits of Approximability

19 Heng Guo and Mark Jerrum. A polynomial-time approximation algorithm for all-terminal
network reliability. SIAM J. Comput., 48(3), 2019. doi:10.1137/18M1201846.

20 Tomasz Imielinski and Witold Lipski Jr. Incomplete information in relational databases. J.
ACM, 31(4), 1984. doi:10.1145/1634.1886.

21 Abhay Kumar Jha and Dan Suciu. Knowledge compilation meets database theory: Compiling
queries to decision diagrams. ToCS, 52(3), 2013. doi:10.1007/s00224-012-9392-5.

22 Ravi Kannan. Markov chains and polynomial time algorithms. In FOCS. IEEE, 1994.
doi:10.1109/SFCS.1994.365726.

23 David R. Karger. A randomized fully polynomial time approximation scheme for the all-terminal
network reliability problem. SIAM Rev., 43(3), 2001. doi:10.1137/S0036144501387141.

24 Batya Kenig and Dan Suciu. A dichotomy for the generalized model counting problem for
unions of conjunctive queries. In PODS, 2021. doi:10.1145/3452021.3458313.

25 Jingcheng Liu and Pinyan Lu. FPTAS for counting monotone CNF. In SODA. SIAM, 2015.
doi:10.1137/1.9781611973730.101.

26 Mikaël Monet. Combined complexity of probabilistic query evaluation. (Complexité combinée
d’évaluation de requêtes sur des données probabilistes). PhD thesis, University of Paris-Saclay,
France, 2018. URL: https://pastel.archives-ouvertes.fr/tel-01980366.

27 Mikaël Monet. Solving a special case of the intensional vs extensional conjecture in probabilistic
databases. In PODS. ACM, 2020. doi:10.1145/3375395.3387642.

28 Knot Pipatsrisawat and Adnan Darwiche. New compilation languages based on structured
decomposability. In AAAI. AAAI Press, 2008. URL: http://www.aaai.org/Library/AAAI/
2008/aaai08-082.php.

29 J. Scott Provan and Michael O. Ball. The complexity of counting cuts and of computing the
probability that a graph is connected. SIAM J. Comput., 12(4), 1983. doi:10.1137/0212053.

30 Pierre Senellart. Provenance in databases: Principles and applications. In Reasoning Web,
volume 11810 of LNCS. Springer, 2019. doi:10.1007/978-3-030-31423-1_3.

31 Allan Sly. Computational transition at the uniqueness threshold. In FOCS. IEEE Computer
Society, 2010. doi:10.1109/FOCS.2010.34.

32 Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Probabilistic Databases.
Synthesis Lectures on Data Management. Morgan & Claypool Publishers, 2011. ISBN:
978-1608456802. doi:10.2200/S00362ED1V01Y201105DTM016.

33 Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM J. Comput.,
8(3), 1979. doi:10.1137/0208032.

34 Timothy van Bremen and Kuldeep S. Meel. Probabilistic query evaluation: The combined
FPRAS landscape. In PODS. ACM, 2023. doi:10.1145/3584372.3588677.

35 Moshe Y. Vardi. The complexity of relational query languages (extended abstract). In STOC.
ACM, 1982. doi:10.1145/800070.802186.

36 Mihalis Yannakakis. Algorithms for acyclic database schemes. In VLDB. IEEE Computer
Society, 1981.

37 Rico Zenklusen and Marco Laumanns. High-confidence estimation of small s-t reliabilities in
directed acyclic networks. Networks, 57(4), 2011. doi:10.1002/net.20412.

A Proof of Theorem 2.3

▶ Theorem 2.3. Let D be an nOBDD, and w : vars(D) → [0, 1] be a rational probability
function defined on the variables appearing in D. Then there exists an FPRAS for computing
WMC(D, w), running in time polynomial in ||D|| and w.

Proof. We may assume without loss of generality that D contains no variable v such that
w(v) = 0 or w(v) = 1, since any such variable can be dealt with in constant time by
conditioning D accordingly. We will use the fact that for any positive integer n and set

https://doi.org/10.1137/18M1201846
https://doi.org/10.1145/1634.1886
https://doi.org/10.1007/s00224-012-9392-5
https://doi.org/10.1109/SFCS.1994.365726
https://doi.org/10.1137/S0036144501387141
https://doi.org/10.1145/3452021.3458313
https://doi.org/10.1137/1.9781611973730.101
https://pastel.archives-ouvertes.fr/tel-01980366
https://doi.org/10.1145/3375395.3387642
http://www.aaai.org/Library/AAAI/2008/aaai08-082.php
http://www.aaai.org/Library/AAAI/2008/aaai08-082.php
https://doi.org/10.1137/0212053
https://doi.org/10.1007/978-3-030-31423-1_3
https://doi.org/10.1109/FOCS.2010.34
https://doi.org/10.2200/S00362ED1V01Y201105DTM016
https://doi.org/10.1137/0208032
https://doi.org/10.1145/3584372.3588677
https://doi.org/10.1145/800070.802186
https://doi.org/10.1002/net.20412

A. Amarilli, T. van Bremen, and K. S. Meel 15:19

of variables S = {x1, . . . , xk} such that k ≥ ⌈log n⌉ + 1, we can construct in time O(k) a
complete OBDD Cn(x1, . . . , xk), implementing a “comparator” on the variables of S, that
tests if the integer represented by the binary string x1 . . . xk is strictly less than n (hence,
Cn(x1, . . . , xk) has precisely n satisfying assignments, for any permitted value of k).

By [4, Lemma 3.16], we may assume that D is complete; thus, there is a bijection between
the models of the Boolean function captured by D, and the paths from the root to the
1-sink of D. Now, complete the following procedure for every variable label vi with weight
w(vi) = pi/qi appearing in D. Set k = ⌈log d⌉ + 1, where d = max{pi, qi − pi}. Send the
1-edge emanating from every node r ∈ D labelled with vi to the OBDD Cpi

(x1, . . . , xk)
(where x1, . . . , xk are fresh variables), redirecting edges to the 1-sink of Cp(x1, . . . , xk) to
the original destination of the 1-edge from n. Do the same for 0-edge from r, but with the
OBDD Cqi−pi

(x1, . . . , xk). Observe that D remains a complete nOBDD. Moreover, it is not
difficult to see that there are now exactly pi paths from the root to the 1-sink of D that pass
through the 1-edge emanating from r, and qi − pi paths passing through the 0-edge.

After repeating this process for every variable in D, we may apply Theorem 2.2, before
normalizing the result by the product of the weight denominators

∏
qi. ◀

B Proof of Lemma 3.8

▶ Lemma 3.8. For any DWT query G, we can compute in time O(||G||) a 2WP query G′

which is equivalent to G on DWT instances: for any DWT H, there is a homomorphism
from G to H iff there is a homomorphism from G′ to H.

Proof. Let G be a DWT query. We build G′ following a tree traversal of G. More precisely,
we define the translation inductively as follows. If G is the trivial query with no edges,
then we let the translation of G be the trivial query with no edges. Otherwise, let x be
the root of G, let x

R1−−→ y1, . . . , x
Rn−−→ yn be the successive children, and call G1, . . . , Gn the

DWT subqueries of G respectively rooted at y1, . . . , yn. We define the translation of G to
be R1−−→ G′

1
R1←−− · · · Rn−−→ G′

n
Rn←−−, where G′

1, . . . , G′
n are the respective translations of G1, . . . ,

Gn. This translation is in linear time, and the translated query has twice as many edges as
the original query. Note that we can also inductively define a homomorphism from G′ to G

mapping the first and last elements of G′ to the root of G: this is immediate in the base
case, and in the inductive claim we obtain suitable homomorphisms from each G′

i to each Gi

by induction and combine them in the expected way.
We claim that, on any DWT instance H, there is a match of G mapping the root to a iff

there is a match of G′ mapping both the first variable and last variable of the path to a. One
direction is clear: from the homomorphism presented earlier that maps G′ to G, we know
that any match of G in H implies that there is a match of G′ in H mapping the first and last
elements as prescribed. Let us show the converse, and let us actually show by induction on G

a stronger claim: if there is a match of G′ mapping the first variable of G′ to a vertex a, then
the last variable is also mapped to a and there is a match of G mapping the root variable
to a. If G is the vacuous query, then this is immediate: a match of the empty query G′

mapping the first variable to a must also map the last variable to a (it is the same variable),
and we conclude. Otherwise, let us write x the root of G and x

R1−−→ y1, . . . , x
Rn−−→ yn be

the children and G1, . . . , Gn the subqueries as above. We know that the match of G′ maps
the first variable to a vertex a, and as H is a DWT instance it maps x to a child a1 of a.
Considering G1 and its translation G′

1, we notice that we have a match of G′
1 where the

first variable is mapped to a1. Hence, by induction, the last variable is also mapped to a1,
and we have a match of G1 where the root variable is mapped to a1. Now, as H is a DWT

ICDT 2024

15:20 Conjunctive Queries on Probabilistic Graphs: The Limits of Approximability

instance, the next edge R1←−− must be mapped to the edge connecting a and a1, so that the
next variable in G′ is mapped to a. Repeating this argument for the successive child edges
and child queries in G, we conclude that the last variable of G′ is mapped to a, and we
obtain matches of G1, . . . , Gn that can be combined to a match of G. ◀

C Proof of Proposition 4.1

▶ Proposition 4.1. PHom̸L(1WP, DAG) is #P-hard already in data complexity, but it admits
an FPRAS.

Proof. As mentioned in the main text, the positive result directly follows from the existence
of an FPRAS in the labelled setting, which was shown in Proposition 3.1. It remains to
show #P-hardness here. Consider the following reduction from the #P-hard problem ♯BIS,
which asks to count the independent sets of a bipartite undirected graph B = (X, Y, EG).
We reduce to PHom̸L(G, DAG), where G is fixed to be the 1WP of length three, i.e., →→→.

Construct a probabilistic graph H = ({s, t} ⊔ X ⊔ Y, EH) and probability labelling π,
where s and t are fresh vertices, and the edge set EH comprises:

a directed edge s→ a for every a ∈ X, with probability 0.5;
a directed edge a→ b for every (a, b) ∈ EG, with probability 1 (i.e., the original bipartite
graph instance, with every edge directed from X towards Y);
a directed edge b→ s for every b ∈ Y , with probability 0.5.

We claim that Prπ(G ⇝ H) is precisely the number of independent sets of B, divided by
|X ⊔ Y |. Indeed, just consider the natural bijection between the subgraphs of H and the
independent sets of B, where for a ∈ X we keep the edge s→ a iff a is in the independent
set, and for b ∈ Y the edge b→ s iff b is in the independent set. ◀

D Proof of Proposition 4.2

▶ Proposition 4.2 ([7]). PHom̸L(DWT, DAG) is #P-hard already in data complexity, but
admits an FPRAS.

Proof. Hardness follows directly from Proposition 4.1, so we show the positive result here.
Let G be a DWT query graph, and m its height, i.e., the length of the longest directed path
it contains. Let G′ be this 1WP of length m, computable in polynomial time from G. We
claim the following.

▷ Claim D.1. For any H ∈ DAG, PHom̸L(G, H) = PHom̸L(G′, H).

Proof. Certainly, if H ′ ⊆ H admits a homomorphism from G, then it admits one from G′

too since G′ ⊆ G. On the other hand, if H ′ admits a homomorphism from G′, then it also
admits one from G: just map all vertices of distance i from the root of G to the image of the
i-th vertex of G′. ◁

Now the result follows from the FPRAS for PHom̸L(G′, DAG) given by Proposition 3.1. ◀

	1 Introduction
	2 Preliminaries
	3 Results in the Labelled Setting
	4 Results in the Unlabelled Setting
	5 DNNF Lower Bounds
	6 Consequences
	7 Conclusions and Future Work
	A Proof of Theorem 2.3
	B Proof of Lemma 3.8
	C Proof of Proposition 4.1
	D Proof of Proposition 4.2

