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Abstract
Data integrity is ensured by expressing constraints it should satisfy. One can also view constraints
as data properties and take advantage of them for several tasks such as reasoning about data or
accelerating query processing. In the context of graph databases, simple constraints can be expressed
by means of path constraints while simple queries are modeled as regular path queries (RPQs). In
this paper, we investigate the containment of RPQs under path constraints. We focus on word
constraints that can be viewed as tuple-generating dependencies (TGDs) of the form

∀x1, x2,∃ȳ, a1(x1, y1) ∧ . . . ∧ ai(yi−1, yi) ∧ . . . ∧ an(yn−1, x2) −→
∃z̄, b1(x1, z1) ∧ . . . ∧ bi(zi−1, zi) ∧ . . . ∧ bm(zm−1, x2) .

Such a constraint means that whenever two nodes in a graph are connected by a path labeled
a1 . . . an, there is also a path labeled b1 . . . bm that connects them. Rewrite systems offer an abstract
view of these TGDs: the rewrite rule a1 . . . an → b1 . . . bm represents the previous constraint. A set
of constraints C is then represented by a rewrite system R and, when dealing with possibly infinite
databases, a path query p is contained in a path query q under the constraints C iff p rewrites to
q with R. Contrary to what has been claimed in the literature we show that, when restricting to
finite databases only, there are cases where a path query p is contained in a path query q under the
constraints C while p does not rewrite to q with R. More generally, we study the finite controllability
of the containment of RPQs under word constraints, that is when this containment problem on
unrestricted databases does coincide with the finite case. We give an exact characterisation of the
cases where this equivalence holds. We then deduce the undecidability of the containment problem
in the finite case even when RPQs are restricted to word queries. We prove several properties related
to finite controllability, and in particular that it is undecidable. We also exhibit some classes of word
constraints that ensure the finite controllability and the decidability of the containment problem.
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1 Introduction

The problem. In this paper, we investigate the containment of regular path queries (RPQs)
under path constraints. We model graph databases as finite edge-labeled graphs. We call
ω-graph database (or ω-database) graph databases where we remove the finiteness constraint.
Queries we consider here are RPQs that test whether two nodes of the graph are connected
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17:2 Containment of Regular Path Queries Under Path Constraints

by a path whose label belongs to a given regular language. Query containment and query
equivalence are important properties when dealing with data: they play a central role in
query optimizations, and also in reasoning about data. Query containment for RPQs without
constraints is simply the problem of regular languages containment. In practice, query
containment is also often used when dealing with particular databases for which we have
knowledge about the actual data. We focus here on knowledge expressed by word constraints
of the form a1 . . . an ⊑ b1 . . . bm. Such a constraint means that whenever two nodes in a
graph are connected by a path labeled a1 . . . an, there is also a path labeled b1 . . . bm that
connects them. From the logical point of view, this constraint can be seen as the following
tuple-generating dependency (TGD):

∀x1, x2,∃ȳ, a1(x1, y1) ∧ . . . ∧ ai(yi−1, yi) ∧ . . . ∧ an(yn−1, x2) −→
∃z̄, b1(x1, z1) ∧ . . . ∧ bi(zi−1, zi) ∧ . . . ∧ bm(zm−1, x2) .

When b1 . . . bm is the empty word, the constraint a1 . . . an ⊑ ε is actually an Equality-
Generating Dependency (EGD) which can be written:

∀x1, x2, ∃ȳ, a1(x1, y1) ∧ . . . ∧ ai(yi−1, yi) ∧ an(yn−1, x2) −→ x1 = x2 .

In the rest of the paper we are going to be concerned only by word constraints p ⊑ q where
neither p nor q is the empty string. EGDs pose problems slightly different from TGDs and
part of the results of the paper does not apply when we remove this hypothesis.

Given a set of word constraints C and two RPQs P and Q, we may wonder whether
for every ω-database that satisfies C the answer set of the query P is included in that of
Q. In this case we write P ⊑ω

C Q. If we restrict our attention to (finite) databases, we then
write P ⊑f

C Q. In the context of databases without any constraints, the query containment
problem boils down to language inclusion and the relation of query containment coincides in
the finite case and in the infinite case. Such properties are called finitely controllable.

Word constraints are able to define precisely complex notions and then ensure that they
are well used in databases. A simple example consists in defining what it means to be of
the same generation in a genealogical tree, i.e. connecting two persons that are at the same
distance of a common ancestor. We assume that we are given the edge labels child (that
connects a person x to a person y when x is the child of y), parent (that connects a person
x to a person y when x is the parent of y) and sg (for same generation), the following
constraints give a definition of the relation sg:

child parent ⊆ sg
child sg parent ⊆ sg

Word constraints are basic and more refined properties would require more logical
connective, e.g. modalities, joins on paths etc. However, the undecidability results of the
paper for this basic class of constraints apply to more involved and more expressive classes.

Rewrite systems and word constraints. Suppose that there is a path labeled p1pp2 in an
ω-database that satisfies the constraint p ⊑ q. We then know that there is a path p1qp2
that connects the two vertices in the ω-database. If we further know that p1qp2 ⊑ q′, we
can deduce that there exists a path q′ between the two vertices. We can then apply the
same kind of reasoning any number of times. This deduction mechanism is similar to a well
known model of computation: rewrite systems or semi-Thue systems. Rewrite systems offer
an abstract view of these particular TGDs: the rewrite rule a1 . . . an → b1 . . . bm can be
associated with the constraint a1 · · · an ⊑ b1 · · · bm . A (finite) set of constraints C is then
represented by a (finite) rewrite system R.
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Given C a finite set of word constraints, consider the containment problem u ⊑ω
C v where

u and v are words. It is easy to see that if u rewrites to v , we have u ⊑ω
C v, as we have

seen that ⊑ω
C is transitive and closed under context (i.e. u ⊑ω

C v implies w1uw2 ⊑ω
C w1vw2).

With a classic construction, we can build an infinite model D of C such that D |= u ⊑ v iff u

rewrites to v (see Theorem 2). So, for word constraints, ⊑ω
C coincides with the associated

rewrite relation and so, it is undecidable as the word problem (deciding whether two words
are in the rewrite relation) for rewrite systems is in general undecidable.

Word constraints in databases and rewrite systems have already been connected in
different frameworks, e.g. for rooted path constraints in rooted databases [1, 8] and for
constraints in document stores [5]. The framework we consider here is the same as in [14] that
emphasizes this strong connection between the query containment problem in the presence
of word constraints and the word problem in rewrite systems. However, the connection is
slightly more subtle than expected and we investigate it.

Whereas ⊑ω
C and ∗→C coincide, ⊑f

C and ∗→C do not coincide in general - contrary to
what is stated in [14, Theorem 2]. Indeed, on the one hand, the set of descendants of u

by ∗→C is recursively enumerable. On the other hand, the set {v | u ⊑f
C v} is co-recursively

enumerable [8]: one can enumerate the databases until one finds D so that D |= C and there
is a path labeled u between two nodes and no path labeled v between these two nodes. So,
if they coincide, they are recursive: as soon as the set of descendants of u by ∗→C is not
recursive, it cannot be the case that the two sets coincide. As a consequence, there must
be cases where u ⊑f

C v while it is not true that u
∗→C v. We exhibit concrete examples that

illustrate this phenomenon in the paper.

Query containment is not finitely controllable. By the preceding remark, in the setting of
word constraints, for RPQs , ⊑ω

C and ⊑f
C do not coincide: query containment is not finitely

controllable. This result is central in this paper.
We study the finite controllability of the containment of RPQs under word constraints.

We give an exact characterization of P ⊑f
C Q relying on ∗→C . More precisely, P ⊑f

C Q

holds iff every regular language closed under R that intersects with P intersects with Q. We
then deduce from this characterization the undecidability of the containment problem in the
finite case even when RPQs are restricted to word queries. This characterization also allows
us to better understand when this containment problem on unrestricted databases does
coincide with the finite case. We investigate several aspects of the finite controllabillty, and,
in particular, we prove its undecidability. We also exhibit some classes of word constraints
that ensure the finite controllability and the decidability of the containment problem.

Related work. As we already pointed out, this paper is strongly related to [14]. The setting
we consider is the same. We correct some false claims -mainly the finite controllability of the
query containment problem- announced in the paper and give new proofs of correct results
whose proofs were relying on the finite controllability of the query containment problem. If
the proofs are new ones, some ideas in our proofs were already present in [14].

The strong link between rewriting and path constraints has been investigated in [1, 3] in
the rooted case: graphs are rooted, and queries are always evaluated starting from the root.
In this setting, this amounts to use rewrite system with the prefix rewriting strategy, i.e. if
u → v is a rule, only rewritings of the form “up rewrites to vp” are allowed. Prefix rewriting
preserves regularity[7], and given a word u, it is easy to build a finite database with two nodes
n1, n2, such that there is a path v between n1 and n2 iff v is a descendant of u by this prefix
rewriting. This ensures the finite controllability of query containment and the decidability of

ICDT 2024



17:4 Containment of Regular Path Queries Under Path Constraints

regular path queries containment in the rooted case. This construction cannot be extended
in general to the non-rooted case: indeed, the language of paths between two nodes in a
finite model is a regular language, so cannot coincide with the set of descendants of u, if this
set is non regular. Preservation of regularity is a key property, even if we prove that this is
sufficient but not necessary to guarantee finite controllability in our setting. Links between
rewriting and path constraints have also been used in the context of ontology-mediated query
answering [5] and consistent query answering [4].

Undecidability of path constraint implication has already been proved in different contexts.
In particular, undecidability of (resp. finite) implication has been proved r.e. (resp. co-r.e.)
complete in the context of rooted graphs for a constraint language allowing constraints of
the form ∀x, (α(r, x) =⇒ ∀y(β(x, y) =⇒ γ(x, y))) where r is a root of the graph, α, β, γ

are paths [8]. In [9], similar constraints are expressed in Description Logic (DL) and finite
implication is proved undecidable both in the rooted and in the global semantics. The global
semantics is actually more general than our setting. The undecidability result concerning
the global semantics of [9, Theorem 15] is strong enough to prove the undecidability of the
query containment problem. For the sake of completeness, we give an original and direct
proof of this result in Section 5.

Finite controllability for containment of conjunctive queries under inclusion and functional
dependencies was introduced in [16]. The notion of finite controllability was later studied
in several papers. In particular, finite controllability of containment for conjunctive queries
under arbitrary inclusion dependencies and under keys and foreign keys has been proved
in [18, 19] and finite controllability of UCQs was later showed for several classes of constraints,
e.g. [12, 13, 2]. Consistent query answering for CRPQs under conjunction regular-path
constraints have been studied in [4]. Finite Controllability for Ontology-Mediated Query
Answering of C2RPQs has been studied in [10] where a complete classification of fragments
of C2RPQs w.r.t. finite controllability under different classes of constraints, is provided
according to the class of the underlying graph structure underlying the query. The results
we obtain here for finite controllability are disjoint from these results, as we restrict to word
constraints and as we focus to RPQs containment. Let us note that the classes of word
constraints ensuring finite controllability that we exhibit don’t fall, as far as we know, in any
of the classes identified as ensuring finite controllability of CQs in the literature.

The problems we consider. Here follow the definitions of the main decision problems at
the heart of this paper:

QC Query Containment
Input A set of word constraints C, two RPQs P, Q

Question P ⊑f
C Q ?

QCω ω−Query Containment
Input A set of word constraints C, two RPQs P, Q

Question P ⊑ω
C Q ?

UF C Uniform Finite Controllability
Input A set of word constraints C

Question For any RPQs P, Q , P ⊑f
C Q iff P ⊑ω

C Q ?
F C Finite Controllability

Input A set of word constraints C, two RPQs P, Q
Question P ⊑f

C Q iff P ⊑ω
C Q ?

Unfortunately, we will see that these problems are undecidable in general. So, we
also consider subclasses of word constraints. Given Problem in {QC, QCω, UFC, FC},
Problem(C) will denote Problem restricted to the class C of word constraints. These
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Table 1 Decidability of query containment under word constraints (U: undecidable, D: decidable).
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Table 2 Finite controllability of query containment under word constraints (U: undecidable).
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problems can also be restricted to the cases when P or Q is a word query. We denote by
xyProblem(C) with x,y ∈ {u,w}, the problem Problem(C) where P (resp. Q) is restricted
to words if x = w (resp. y = w), unrestricted if x = u (resp. y = u). When both x and y
are u, they can be omitted. If C corresponds to the whole class of word constraints, it can
be omitted. E.g. uwQC denotes the problem of query containment where P is an RPQ and
Q is a word; let CF the class of word constraints associated with context-free grammars,
wwQC(CF) denotes the problem of query containment where P and Q are words and R

belongs to CF .
In the sequel, when we mention query containment we mean QC, i.e. we refer to the

finite case.

Summary of the results. Table 1 and Table 2 summarize most of the results presented in
the paper.

2 Preliminaries

Graph databases. We model graph databases as edge-labeled graphs. For this we fix a
finite alphabet of labels Σ, a graph database (or database) D is a pair (V, E) where V is a
finite set of objects and E ⊆ V ×Σ×V is a finite set of directed labeled edges. We call ω-graph
database (or ω-database) graph databases where we remove the finiteness constraint. When
there is an edge (x, a, y) in an ω-database we say that there is an edge labeled a between x

and y or from x to y. As it is customary, we allow ourselves to write a(x, y) for the edge
(x, a, y). Finally, we abuse notation and write x ∈ D or say x is in D to mention that x is an
object of D. Similarly, for edges, we write a(x, y) ∈ D or say a(x, y) belongs to D.

ICDT 2024



17:6 Containment of Regular Path Queries Under Path Constraints

Path queries and database contraints. The set of paths of labels (or simply paths) over the
alphabet Σ is Σ∗ the set of (possibly empty) words or sequences built on Σ. We write ε for
the empty path and Σ+ for Σ∗ \ {ε}. We inductively define the fact that two objects x and
y of a ω-database D are connected by a path labeled u (we note this property u(x, y) ∈ D)
as follows:

if u = ε, then u(x, y) ∈ D iff x = y,
if u = va, then u(x, y) ∈ D iff there is z so that v(x, z) ∈ D and a(z, y) ∈ D.

A path labeled u is considered as a query whose answer on an ω-database D is

ans(u, D) = {(x, y) | u(x, y) ∈ D} .

Adopting the logical point of view, a path query u = a1 · · · an can be seen as a particular
kind of conjunctive query:

∃x1. . . . ∃xn−1. a1(x, x1) ∧ a2(x1, x2) ∧ · · · ∧ an(xn−1, y) .

In actual graph database systems, queries do not restrict to path labels but rather to path
labels languages. Subsets of Σ∗ are called languages. A language Q can also be seen as a
query. The answer to that query on the ω-database D is:

ans(Q, D) = {(x, y) | ∃u ∈ Q. u(x, y) ∈ D} .

In other words, such a query collects all the ordered pairs of nodes that are connected by a
path labeled in Q. When Q is a regular language, the query induced by Q is called regular
path query (RPQ).

Given two languages P and Q included in Σ∗ and an ω-database D, whenever ans(P, D) ⊆
ans(Q, D) we say that D satisfies the constraint P ⊑ Q which we denote with D |= P ⊑ Q.
An ω-database D satisfies a set constraints C when for every P ⊑ Q ∈ C, D |= P ⊑ Q; in that
case we write D |= C. When for every ω-database D, D |= C implies D |= P ⊑ Q, we write
P ⊑ω

C Q. When for every (finite) database D, D |= C implies D |= P ⊑ Q, we write P ⊑f
C Q.

Clearly, P ⊑ω
C Q implies P ⊑f

C Q. In this paper, we focus on finite sets of word constraints,
i.e. constraints of the form {p} ⊑ {q} where p ̸= ε and q ̸= ε, that we also write p ⊑ q. We
also focus on properties P ⊑f

C Q and P ⊑ω
C Q when P and Q are regular languages that do

not contain ε and sometimes more specifically when P or Q are singleton sets, i.e. represent
words.

Rewrite systems. A rewrite system R on an alphabet Σ is a finite set of rules of the
form u → v with u, v in Σ+. The one-step rewrite relation of R, noted →R, is defined as
follows: p →R q when p = u1uu2, q = u1vu2 and R contains the rule u → v. We note
∗→R the reflexive transitive closure of →R. We write DR(u) for the set of descendants of u,

{v | u
∗→R v}. For a language L, DR(L) is

⋃
u∈L DR(u). We similarly define the set AR(u)

of ancestors of u, {v | v
∗→R u} and AR(L) =

⋃
u∈L AR(u). A language L is closed under R

when DR(L) = L. We let R−1 be the rewrite system obtained by reversing each rule of R

(AR(L) = DR−1(L)).
We restrict rewrite systems to rules with non-empty words as we only wish to consider

word constraints that are representable by means of TGDs. Notice that this restriction does
not diminish the computational power of rewrite systems.

The word problem for rewrite systems is the question, given two words u and v, whether
u

∗→R v. This question is known to be undecidable, even with rules with non-empty words.
We denote the set of left-hand (right-hand) sides of the rules in R by lhs(R) (rhs(R)). We
will use the following “modularity” property whose proof can be found in Appendix A:
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▶ Lemma 1. Let R = R1 ∪ R2 a rewrite system such that the letters occurring in lhs(R1)
do not occur in rhs(R2), then, ∗→R = ∗→R1 ◦ ∗→R2

Grammars. We will also use particular types of rewrite systems: grammars. A type-0
grammar G is a tuple (N, Σ, S, R) where N is a finite set of non-terminals, Σ is a finite set
of terminals, S is an element of N , the axiom of G, and R is a finite set of rewrite rules on
the alphabet N ∪ Σ. The language defined by G is L(G) = {w ∈ Σ∗ | S

∗→R w}. Notice that
the rules of grammars being rewrite rules, they use non-empty words. It is well known that
every recursively enumerable language can be defined by means of type-0 grammars. If L

is a recursive language in Σ+, L and its complement in Σ+ can be generated by a type-0
grammar. So, there exists a rewrite system R (resp. R′) over Σ ∪ N , for some alphabet
N (resp. N ′) such that there exists s (resp. s′) in N (resp. N ′) s.t., for every u in Σ+,
u

∗→R s (resp. u
∗→R′ s′) iff u belongs (resp. does not belong) to L. A type-0 grammar

G = (N, Σ, S, R) is a context-free grammar when each its rule is of the form A → w where A

is in N .

3 Query Containment and Rewriting

3.1 From word constraints to rewrite rules
As already explained, we can view word constraints and rewrite rules as similar objects. The
rewrite rule u → v is naturally mapped to the constraint u ⊑ v and vice-versa. So given a set
of contraints C we may consider it as a rewrite system and simply write u

∗→C v to mean that
the rewrite system naturally associated with C rewrites the word u to v. Similarly, given a
rewrite system R, we may write D |= R, u ⊑ω

R v or u ⊑f
R v to denote the fact that in the set

of constraints CR that is naturally associated with R, we have D |= CR, u ⊑ω
CR

v or u ⊑f
CR

v.
In the sequel, we will often conflate the set of word constraints and its naturally associated
rewrite system.

3.2 Comparing ⊑ω
R, ⊑f

R and
∗→R

For a set of word constraints R, a natural question is then how the ∗→R, ⊑ω
R and ⊑f

R are
related. We are first going to see that ∗→R and ⊑ω

R coincide, using a construction inspired
from [1]:

▶ Theorem 2. Given a set of word constraints R, we have

u ⊑ω
R v iff u

∗→R v .

Proof. The right to left part of the equivalence does not present any difficulty. For the other
direction, let D = (V, E) the ω-database defined by V = Σ∗ and E = {(v, a, u) | u

∗→R va}.
An easy induction shows that there is a path labeled w between the vertices v and u iff
u

∗→R vw. So if there is a path labeled w between the vertices v and u and w
∗→R t, then

u
∗→R vw

∗→R vt and so there is a path labeled t between v and u. Thus if w
∗→R t, then

D |= w ⊑ t. This shows that D |= R. Now, if u ⊑ω
R v, as there is a path labeled by u from

the vertex ε to the vertex u, we get that there is also a path labeled by v from ε to u, and
then, by what precedes that u

∗→R v. ◀

This theorem tells us also the conditions under which query inclusion holds.

ICDT 2024



17:8 Containment of Regular Path Queries Under Path Constraints

▶ Corollary 3. Given a set of word constraints R and two queries Q1 and Q2 on that alphabet,
the following are equivalent:

Q1 ⊑ω
R Q2,

for every p in Q1, DR(p) ∩ Q2 ̸= ∅.
Q1 ⊆ AR(Q2).

Proof. Consider the ω-database used in the proof of Theorem 2. If Q1 ⊑ω
R Q2, as D |= R, for

every p in Q1, there is a path labeled by some q in Q2 from the vertex ϵ to the vertex p, so
by what precedes, DR(p) ∩ Q2 ̸= ∅. The other implications do not present any difficulty. ◀

An important remark is that our characterization fails if we authorize rewrite rules with
empty right hand sides, i.e. of the form p → ε. For example, consider the rewrite system
R that contains only one rule a → ε. Clearly we do not have a

∗→R aa, however, for every
ω-database, if there is a path labeled a between two nodes x and y, as a →R ε, we must have
x = y, so for every k there is path labeled ak from x to y: in that case a ⊑ω

R aa while it is
not the case that a

∗→R aa.
We have seen in the introduction that contrary to what is stated in of [14, Theorem 2], it

is not true that ⊑f
R and ∗→R coincide. To summarize, we get:

▶ Theorem 4.
u

∗→R v iff u ⊑ω
R v .

Q1 ⊑ω
R Q2 iff Q1 ⊆ AR(Q2) .

If Q1 ⊑ω
R Q2, then Q1 ⊑f

R Q2 .

In general, u ⊑f
R v does not imply that u ⊑ω

R v .

3.3 Characterizing ⊑f
R: from query containment to non-separability

We have seen that u ⊑f
R v and u

∗→R v do not coincide. However, we will give a precise
characterization of Q1 ⊑f

R Q2 that uses closure under R:

▶ Theorem 5. The following propositions are equivalent:
Q1 ⊑f

R Q2,
every regular language closed under R that intersects with Q1 intersects with Q2.

Proof. Suppose that it is not the case that Q1 ⊑f
R Q2. Then there exists D, a model of R

with two vertices x and y so that:
there is a path of Q1 labeled q from x to y,
there is no path labeled by a word of Q2 from x to y.

Seeing D as an automaton with initial state x and final state y, it must be the case that:
it defines a regular language that is closed under R,
it intersects with Q1,
it does not intersect with Q2.

So there is a regular language closed under R that intersects with Q1 and does not intersect
with Q2.

We now suppose that there is a regular language K closed under R that intersects with
Q1 (i.e. K ∩ Q1 ≠ ∅) and does not intersect with Q2 (i.e. K ∩ Q2 = ∅). We will build a
database D so that D |= R and D does not satisfy Q1 ⊑ Q2.

Let K1, . . . , Kn be the finite set of left residuals of K. The left residual of K by a word
q, noted q−1K, is the language q−1K = {p | qp ∈ K}. A language is a left residual of K

when it is of the form q−1K for some q. It is well-known that a language is regular iff the set
of its left residuals is finite. We start by making the following remark about the Ki’s:
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▶ Lemma 6. For every i in [n], Ki is closed under R.

Proof. Take i in [n], p in Ki and p′ such that p
∗→R p′. There is q so that Ki = q−1K and qp

is in K. Since K is closed under R, qp′ is also in K implying that p′ is in q−1K = Ki. ◀

We define the database D as follows:
the set of vertices is {K1, . . . , Kn},
there is an edge labeled a between Ki and Kj iff Kj ⊆ a−1Ki .

▶ Lemma 7. There is a path in D labeled by p ∈ Σ+ between Ki and Kj iff p−1Ki ⊇ Kj.

Proof. We proceed by induction on p.
When p = a, the conclusion directly follows from the definition.
Let p = p′a with p′ ∈ Σ+. We first suppose that there is a path labeled p from Ki to

Kj . So, there is Kk so that there is a path labeled p′ from Ki to Kk and there is an arc
labeled a between Kk and Kj . From the induction hypothesis, we have that p′−1Ki ⊇ Kk

and by definition a−1Kk ⊇ Kj , thus p−1Ki = a−1p′−1Ki ⊇ a−1Kk ⊇ Kj . Suppose now that
p−1Ki ⊇ Kj , we let Kk = p′−1Ki. By induction, there is a path labeled p′ between Ki and
Kk, and moreover a−1Kk = p−1Ki ⊇ Kj so that there is an edge labeled a between Kk and
Kj . Therefore there is a path labeled p between Ki and Kj . ◀

▶ Lemma 8. If there is a path labeled p between Ki and Kj, for any constraint p ⊑ q in R,
there is a path labeled q between Ki and Kj.

Proof. If there is a path labeled p between Ki and Kj , then p−1Ki ⊇ Kj from Lemma 7.
So, if t belongs to Kj , pt belongs to Ki. As p ⊑ q in R, we have p →R q and therefore
pt →R qt. Now, from Lemma 6, qt also belongs to Ki and thus t is in q−1Ki. Consequently
q−1Ki ⊇ Kj and Lemma 7 implies that there is a path labeled q between Ki and Kj . ◀

The previous lemma shows that D |= R. Now let x = K and y = q−1K with q ∈ K ∩ Q1
(recall that K ∩ Q1 ̸= ∅).

We now show that the set of words that label paths between x and y intersects with
Q1 and is included in K and so does not intersect with Q2. It intersects with Q1 as from
Lemma 7, there is a path labeled by q between K and q−1K. When there is a path labeled
by p between K and q−1K, we have that p−1K ⊇ q−1K (Lemma 7). Now since q ∈ K, we
have that ε ∈ q−1K and therefore ε is also an element of p−1K so p belongs to K and does
not belong to Q2 by hypothesis.

In a nutshell, we have D |= R, there is a path between x and y labeled by a word of Q1
(the word q) and no path labeled by a word in Q2. This finally shows that it is not the case
that Q1 ⊑f

R Q2. ◀

So, we get as corollaries:

▶ Corollary 9. The following propositions are equivalent:
p ⊑f

R Q2,
every regular language closed under R that contains p intersects with Q2.

▶ Corollary 10. The following propositions are equivalent:
p1 ⊑f

R p2,
every regular language closed under R that contains p1 contains p2.
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4 About (non) finite controllability

4.1 Non finitely controllable systems
We now show how to construct examples where we have u ⊑f

R v and we do not have
u ⊑ω

R v. We first illustrate the idea of the construction by taking R = {c → acb}. The
set of descendants of c by R is {ancbn | n ∈ N}. Every finite database D such that
D |= R and that contains a path labeled c between two nodes has necessarily (by a usual
pumping argument) a path labeled ancbm with n > m between these two nodes. Now, let
T = {acb → c, ac → c, ac → 0}. It is easy to see that any word ancbm ∗→T 0 iff n > m . Thus,
in every finite database D such that D |= R ∪ T , if there is a path labeled by c between two
vertices, then there is also a path labeled by 0: c ⊑f

R∪T 0. However, one can check that c

does not rewrite to 0 with R ∪ T . The idea underlying this construction can be used for any
rewrite system R and any word u such that DR(u) is recursive but not regular.

▶ Proposition 11. Let any set of word constraints R and any word u such that DR(u) is
recursive but not regular. Let R′ = R ∪ T ∪ B defined as above: then u ⊑f

R′ 0 while it is not
the case that u ⊑ω

R′ 0.

Proof. We assume that the symbols used by R are taken from the finite set Σ. We now take
a finite set Σ with the same number of elements as Σ and a bijection between Σ and Σ. We
define B = {a → a | a ∈ Σ}. Given a word w in (Σ ∪ Γ)∗ with Γ ∩ Σ = ∅, we write w, for the
word obtained by replacing all occurrences of a in Σ by a and leaving other letters unchanged.
As we suppose that DR(u) is recursive, we can assume the existence of a rewrite system T

based on an alphabet Γ disjoint from Σ and that contains Σ and {0} so that: v →T 0 iff v

is not in DR(u). Furthermore, we can suppose that 0 does not occur in lhs(T ). We take
R′ = R ∪ T ∪ B.

▶ Lemma 12. For every v in Σ+, v
∗→R′ 0 iff there is w in Σ+ so that v

∗→R w and w /∈ DR(u).

Proof. The if part of the statement is a simple consequence of the definitions. For the only
if part we prove a slightly stronger property. Given a word v we prove that there is w so
that:

v
∗→R w and

w
∗→T 0.

Indeed, by Lemma 1, using the fact that the alphabet of rhs(T ) is disjoint from the
alphabet of lhs(R ∪ B), that the alphabet of rhs(B) is disjoint from the alphabet of the
lhs(R), we get that there exists w in Σ+,w′ in (Σ ∪ Σ)∗+ such that v

∗→R w
∗→B w′ ∗→T 0. As

0 is only produced by T and as the alphabet of lhs(T ) is disjoint from Σ,we have w′ = w. ◀

Now, let K be a language containing u that is regular and closed under R′. Then K ∩ Σ∗

is regular and contains DR(u): as DR(u) is not regular K ∩ Σ∗ contains a word v in Σ∗ that
is not in DR(u): then v

∗→B v
∗→T 0: as K is closed under R′, K contains 0 and by Theorem

5, u ⊑f
R′ 0 while it is not the case that u

∗→R′ 0. ◀

4.2 Finite controllability: word queries vs RPQs
A consequence of [14, Theorem 2] that is also false, is that Q1 ⊑f

R Q2 iff for every q1 in Q1
there is q2 in Q2 so that q1 ⊑f

R q2 [14, Lemma 3]. We construct here an example of a rewrite
system for which this property does not hold. We take the following rewrite system R:
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a → aab aab → a

b → abb abb → b

ab → ba ba → ab

Let p, q be two words. If p = ϵ or q = ϵ, it is easy to check that p
∗→R q iff p = q iff p ⊑f

R q.
Let us now suppose that both are non empty. First, it is easy to check that p

∗→R q iff
|q|a−|q|b = |p|a−|p|b 1. Second, p ⊑f

R q iff p
∗→Rq. Indeed, let Nq = |q|a−|q|b, Np = |p|a−|p|b.

If we do not have p
∗→Rq, then Nq ̸= Np. Let K = {w | |w|a−|w|b ≡ Np mod (Nq+1)(Np+1)}.

The language K is regular and closed under R, contains p and does not contain q. So, using
Theorem 5, we do not have p ⊑f

R q.
Now, let p = ab and let Q be the regular language b+. By what precedes, there is no q in

Q so that p ⊑f
R q. Now, let K a regular language that contains p and that is closed under

R. Then K contains {anbn | n > 0}. Using the pumping lemma for regular languages we
deduce that for some m > 0 we must have that anbn+m is in K. As K is closed under R, it
contains bm.

So, by Theorem 5, we do have p ⊑f
R Q, while there is no word q of Q so that p ⊑f

R q.
Furthermore, by Corollary 3, P ⊑ω

R Q iff for every q1 in P there is q2 in Q2 so that
q1 ⊑ω

R q2. So, R provides an example of system such that containment of word queries is
finitely controllable whereas the containment for regular path queries is not:

▶ Theorem 13. There are sets of word constraints for which the containment of word queries
is finitely controllable, while the containment of regular path queries is not.

5 Query containment under word constraints is undecidable

In [14], the proof of undecidability of query containment under word constraints is a mere
corollary of the assertion that u ⊑f

R v and u
∗→R v coincide. As we have seen earlier, this

assertion is false. However, query containment under word constraints is actually undecidable.
In this section, we give a proof of that fact. Notice that this result can also be derived
from [9, Theorem 15].

▶ Theorem 14. wwQC is undecidable.

Proof. The undecidability result is obtained by reduction from the problem of the separability
of context-free languages by some regular language. Formally this decision problem is stated
as follows:

Input two context free grammars G1 and G2

Question Is there a regular language R so that L(G1) ⊆ R and L(G2) ∩ R = ∅ ?
This problem is known to be undecidable [15].
Take G1 = (N1, Σ, S1, R1) and G2 = (N2, Σ, S2, R2) two context free grammars on the

alphabet Σ. We assume w.l.o.g. that
N1 ∩ N2 = ∅,
they do not have rules of the form A → ε,
they are reduced (every non-terminal is reachable from the start symbol and defines a
non-empty language).

We let R be the rewrite system on the alphabet Γ = Σ ⊎ N1 ⊎ N2 containing the rules of R1
and R−1

2 .

1 |u|x denotes the number of occurrences of the letter x in the word u.
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▶ Lemma 15. Given u and v in Γ∗, we have that u
∗→R v iff there is w so that u

∗→R1 w

and w
∗→R−1

2
v. Furthermore, if u does not contain any non-terminal of G2 and v does not

contain any non-terminal of G1, then w is in Σ+.

Proof. As we have supposed that N1 ∩ N2 = ∅, it must be the case that left hand side of a
rule in R1 does not share any symbol with the right hand side of a rule in R−1

2 . So, we get
the first part of the lemma by Lemma 1. Finally, as R1 (resp. R−1

2 ) cannot generate (resp.
eliminate) nonterminals of G2 (resp. G1), w does not contain any non-terminal symbol of
G2 (resp. G1). ◀

We are going to show that it is not the case that S1 ⊑f
R S2 iff there is a regular language

that separates L(G1) and L(G2).
Suppose that it is not the case that S1 ⊑f

R S2: by what precedes, there exists a regular
language L closed under R that contains S1 and does not contain S2. As it is closed under
R, it is closed under R1: as it contains S1, it contains L(G1). Similarly, it is closed under
R−1

2 and as it does not contain S2, so it does not contain any word of L(G2): L is a regular
language that separates L(G1) and L(G2).

Suppose now that L is a regular language that separates the languages of G1 and of G2,
e.g. that contains L(G1) and does not intersect with L(G2). We can suppose L ⊆ Σ∗. Let
us note Σ1 the alphabet Σ enriched with the non terminals of G1. By Theorem 5, we only
have to prove that there is a regular language closed under R that contains S1 and does not
contain S2.

Let us first notice that R1 (resp. R−1
2 ) preserves regularity by ascendants (resp. descend-

ants).
Let K1 = Σ∗

1/AR1(Σ∗/L). K1 is regular. Let us prove that K1 is closed under R1; let u

in K1, u
∗→R1 v: then v belongs to Σ∗

1; if v does not belong to K1, v belongs to AR1(Σ∗/L)
and, as u

∗→R1 v, u belongs to AR1(Σ∗/L), which contradicts the fact that u belongs to K1.
By construction, K1 ∩ Σ∗ ⊆ L. As DR1(S1) ∩ Σ∗ = L(G1), DR1(S1) ∩ Σ∗ ⊆ L: S1 belongs
to K1 and as K1 is closed under R1, K1 ∩ Σ∗ ⊇ L. So, K1 ∩ Σ∗ = L.

Now, let K = DR−1
2

(K1); S1 belongs to K, as S1 belongs to K1. By Lemma 15, K is closed
by R, as K1 is closed by R1. Furthermore, by the same lemma, K ∩ Σ∗

2 = DR−1
2

(K1 ∩ Σ∗),
i.e. K ∩ Σ∗

2 = DR−1
2

(L). As L ∩ L(G2) is empty, K does not contain S2.
So, K is a regular language closed under R that contains S1 and does not contain S2 :

by Theorem 5, it is not the case that S1 ⊑f
R S2. So L(G1) and L(G2) are separable by a

regular language iff we do not have S1 ⊑f
R S2.

So, given R, u, v, it is undecidable whether u ⊑f
R v. ◀

6 How to ensure decidability and finite controllability of QC?

As we have proven that generally, u ⊑f
R v does not necessarily imply that u

∗→R v, we naturally
wonder which classes of rewrite systems ensure the equivalence between u ⊑f

R v and u
∗→R v.

We will see later that this equivalence is in general undecidable for arbitrary rewrite systems.
This entails, that we must content ourselves with finding particular restrictions which have
this property without ever having a complete and effective characterization. More generally,
we can also try to identify classes of rewrite systems which ensure the equivalence between
Q1 ⊑f

R Q2 and Q1 ⊑ω
R Q2 for any RPQs Q1 and Q2.

By Subsection 3.3, we get easily (Proofs in Appendix B) the three following lemmas:

▶ Lemma 16. For any word query p and RPQ Q, if DR(p) is regular, then p ⊑f
R Q iff

p ⊑ω
R Q.



S. Salvati and S. Tison 17:13

▶ Lemma 17. There is a set of word constraints R and RPQs P and Q so that DR(P ) is
regular, P ⊑f

R Q, but we do not have P ⊑ω
R Q.

▶ Lemma 18. For any RPQs Q1, Q2, if AR(Q2) is regular, then
Q1 ⊑f

R Q2 iff Q1 ⊑ω
R Q2.

So, an obvious property ensuring finite controllability of a rewrite system R is the
preservation of regularity by R or its inverse R−1. A rewrite system R (resp. R−1) preserves
regularity when for every regular language Q, DR(Q) (resp. DR−1(Q) = AR(Q)) is a regular
language. Lemma 17 tells us that it is not enough that the rewrite system preserves the
regularity of a particular regular language.

▶ Corollary 19. Let R a rewrite system. If R (resp. R−1) preserves regularity, query
containment is finitely controllable.

Proof. If R−1 preserves regularity, we get the result by Lemma 18. If R preserves regularity,
let us suppose that Q1 ⊑f

R Q2. It implies that for every p in Q1, p ⊑f
R Q2, and then by

Lemma 16 p ⊑ω
R Q2: so, Q1 ⊑ω

R Q2. ◀

We say that R effectively preserves regularity when it preserves regularity and when
given a regular language Q (effectively presented by a regular expression or a finite state
automaton) it is possible to compute (a representation of) DR(Q). We write RewRec to
denote this class of rewrite systems and RewRec−1 the class rewrite systems R whose
inverse R−1 effectively preserves regularity.

▶ Corollary 20.
The problem wuQC(RewRec) is decidable.
The problem uuQC(RewRec−1) is decidable.

Deciding whether a rewrite system preserves regularity is an undecidable property [17].
However, several classes of string rewrite systems that effectively preserve regularity have
been identified, e.g. monadic systems [6] and match-bounded systems [11]. Monadic systems
are systems whose rules have a letter as right-hand side – so the corresponding TGDs can be
viewed as a Datalog program. A context-free grammar can be viewed as the inverse of a
monadic rewrite system and so query containment is finitely controllable and decidable for
the corresponding class of word constraints.

The first part of Corollary 20 cannot be generalized to uuQC(RewRec) which happens
to be undecidable. We prove a slightly stronger result in Theorem 21 using the problem
of universality of context-free languages which is well known to be undecidable. It can be
stated as follows:

Input A context free grammar G

Question L(G) = Σ+?

The reduction is as follows: take a context free grammar G = (N, Σ, S, ∆) (w.l.o.g. we
suppose that ϵ does not belong to G and does not occur in r.h.s. of ∆). The rewrite system
R = ∆−1 is monadic and thus effectively preserves regularity [6]. Thus, Lemma 18 and
Theorem 2 tell us that Σ+ ⊑f

R−1 S is equivalent to the universality problem for G and is
thus undecidable. This gives us an alternative proof of [14, Theorem 4]. Both proofs rely on
similar constructions but the proof in [14] relies on a false theorem, namely [14, Theorem 3].

▶ Theorem 21. The problem uwQC(RewRec) is undecidable.
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Our characterization leaves room for finding rewrite systems that do not preserve regularity
but for which query containment is finitely controllable. The following proposition (Proof
in Appendix C) states a modularity property: if two sets of word constraints are alphabet-
disjoint and if both ensure finite controllability of query containment, their union does also
ensure finite controllability.

▶ Proposition 22. Let R1 and R2 two rewrite systems on disjoint alphabets Σ1 and Σ2 that
ensure finite controllability of regular query containment. Then, R = R1 ∪ R2 also ensures
finite controllability of regular query containment.

As the preservation of regularity of rewrite systems is not in general closed under union,
this proposition allows us to construct rewrite systems R that ensure finite controllability
of regular queries containment while neither R nor R−1 preserves regularity. E.g., let
R1 = {c → acb} and R2 = {dfe → f}. R−1

1 and R2 are monadic and so preserve regularity
and then R1 and R2 ensure both finite controllability. By the preceding proposition, R =
{c → acb, dfe → f} ensures finite controllability. However, neither R nor R−1 preserve
regularity, as DR(c) = {ancbn | n ∈ N } and AR(f) = {dnfen | n ∈ N }.

7 Finite controllability is undecidable

We are now looking at the decidability of finite controllability (wwFC) and of uniform finite
controllability (wwUFC) defined in Section 1.

As u ⊑ω
R v implies u ⊑f

R v, we focus on the undecidability of u ⊑ω
R v under the

hypothesis that u ⊑f
R v. We use a reduction from the following undecidable problem (Proof

in Appendix D):

▶ Lemma 23. The following problem is undecidable:
Input L1, L2 two recursive sets that are not separable by a regular set.

Question Is L1 ∩ L2 empty?

So, let L1, L2 be two recursive sets on the alphabet Σ+ that are not separable by a regular
set. As previously, we take a finite set Σ in bijection with Σ. We define B = {a → a | a ∈ Σ}.
Given an alphabet Γ disjoint from Σ and a word w in (Σ ⊎ Γ)∗, we write w, for the word
obtained by replacing all occurrences of a in Σ by a and leaving other letters unchanged.

As L1, L2 are recursive, there exist two rewrite systems :
R1 on an alphabet Σ1 containing Σ and a symbol s1 such that for any u in Σ∗, s1

∗→R1 u

iff u ∈ L1.
R2 on an alphabet Σ2 containing Σ and a symbol s2 such that for any u in Σ∗, u

∗→R2 s2
iff u ∈ L2.

We can suppose that Σ1 ∩ Σ2 = ∅. Let ∆ = Σ1 ∪ Σ2 ∪ {♯l, ♯r, g} where ♯l, ♯r and g are
fresh symbols. We define:

R♯ = {x → ♯ls1♯r | x ∈ ∆ \ {♯l, ♯r}}
Rg = {♯ls2♯r → g} ∪ {g → xg, g → x, xg → g, gx → g | x ∈ ∆}
RL1,L2 = R1 ∪ R2 ∪ R♯ ∪ B ∪ Rg.
In the sequel, we denote RL1,L2 by R. Then, we get (Proof in Appendix E):

▶ Lemma 24.
1. If L1 ∩ L2 ̸= ∅, u

∗→R v for any (u, v) in ∆+ \ {♯l, ♯r}∗ × ∆+ .

2. If L1 ∩ L2 = ∅, we do not have ♯ls1♯r
∗→R ♯ls2♯r .

3. ♯ls1♯r ⊑f
R ♯rs2♯r .

4. If u ∈ {♯l, ♯r}∗, then u ⊑f
R v (resp. u

∗→R v) iff u = v .

5. u ⊑f
R v iff u ∈ ∆+ \ {♯l, ♯r}∗ or u = v .
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A consequence of Lemma 24 is that deciding equivalence of ♯ls1♯r ⊑f
R ♯rs2♯r and ♯ls1♯r

∗→R

♯rs2♯r amounts to decide non emptiness of L1 ∩ L2. More generally, for every u, v ∈ ∆+,
u ⊑f

R v is equivalent to u
∗→R v only when L1 ∩ L2 ̸= ∅. Therefore we get the undecidability

of finite controllability and uniform finite controllability of a rewrite system:

▶ Theorem 25. wwFC and wwUFC are undecidable.

Furthermore, let C be the class of systems RL1,L2 for L1, L2 recursive sets on the alphabet
Σ that are not separable by a regular set. On the one hand, for any rewrite system R in C,
u ⊑f

R v iff u ∈ ∆+/{♯l, ♯r}∗ or u = v. So, for any rewrite system R in C, ⊑f
R is decidable.

On the other hand, s1
∗→R s2 is equivalent to L1 ∩ L2 = ∅ so is undecidable in C. So, we get:

▶ Proposition 26. There exists a class of rewrite systems for which the wwQC is decidable
whereas wwQCω is undecidable.

This proposition contradicts [14, Corallary 2] that is a consequence of [14, Theorem 2 ].

8 Conclusion

Starting with an error in the proof of [14], we have studied the containment of RPQs under
word constraints. Contrary to what was claimed in [14], we have showed that this property
is not finitely controllable in general. We also have given counter-examples to properties that
were corollaries of this false claim and alternate proofs to those that were correct.

For this, we have studied the relation between word constraints and rewrite systems. We
have given a precise characterization of P ⊑f

R Q in terms of separability and closure under
rewriting by R. This characterization has played a key role in identifying the properties of
query containment in this setting and in giving a correct proof of the undecidability of the
containment problem.

The stage being set we have studied further properties of finite controllability in this
setting. In particular, we have showed that it is undecidable and we have exhibited some
classes of constraints that ensure the finite controllability and the decidability of query
containment. This study allowed us to show that the finite controllability of the containment
of word queries and that of RPQs do not coincide. More specifically we give examples of
constraints for which the containment of word queries is finitely controllable, whereas it is
not the case for general RPQs. Interestingly we have also showed that when p ⊑f

R Q, we do
not necessarily have p ⊑f

R q for some word q in Q, i.e. the “witness” of containment depends
on the model.

We observe that for obtaining finite controllability in this setting, it suffices to consider
constraints for which the underlying rewrite system preserves regularity by inverse rewriting.
We also observe that those for which the underlying rewrite system preserves regularity have
nice properties. Such rewrite systems have been widely studied. We show that other rewrite
systems can also have interesting properties with respect to that containment problem (as
done in Proposition 22).

Finally many of the results of the paper could be extended to RPQ constraints of the
form P ⊆ u, where P is an RPQ , u a word. In particular, we think that the characterization
of u ⊑f

R v in terms of separability could likely be extended. An interesting consequence
would then be that decidability results about finite controllability and query containment
would then hold for some classes of RPQs .
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A Proof of Lemma 1

Proof. First let us note that if u →R2 w →R1 v, there exists w′ such that u →R1 w′ →R2 v.
Indeed, as u →R2 w , u = u1l2u2, w = u1r2u2 for some rule (l2, r2) in R2. As w →R1 v,
w = v1l1v2 for some rule (l1, r1) in R2 and v = v1r1v2. By hypothesis the letters of l1 do
not occur in r2: so either v1l1 is a prefix of u1, or l1v2 is a suffix of u2. W.l.o.g., let us
suppose that v1l1 is a prefix of u1: w = v1l1w1r2u2 , v = v1r1w1r2u2 and u = v1l1w1l2u2:
u →R1 v1r1w1l2u2 →R2 v1r1w1r2u2 = v.

Now, let u
∗→R v: there exists a derivation u →R u1 →R . . . un = v. At step i either a

rule of R1 or a rule of R2 is applied. An inversion in the derivation is a couple (i, j) with
i < j such that the rule applied at step i is in R2 whereas the rule applied at step j is in R1.
We will prove that the derivation can be “sorted” and that u

∗→R1 ◦ ∗→R2 v by induction of
the number of inversions in the derivation. If the number of inversions is 0, by definition,
u

∗→R1 ◦ ∗→R2 v. Otherwise, there is an inversion: this implies that there exists a step i such
that the rule applied at step i is in R2 whereas the rule applied at step i + 1 is in R1. By
what precedes, we can permute these two steps and we get a derivation u

∗→R v whose number
of inversions is strictly smaller: so, by induction, u

∗→R1 ◦ ∗→R2 v. ◀

B Proof of Lemmas 16, 17, 18

Proof of Lemma 16. By Theorem 4 we just need to prove that if p ⊑f
R Q then p ⊑ω

R Q.
DR(p) is a regular language closed by R and contains p. Then, by Theorem 5, if p ⊑f

R Q,
DR(p) intersects with Q and so, there exists q in Q such that p

∗→R q; then, by Theorem 2,
p ⊑ω

R q and so, p ⊑ω
R Q. ◀

Proof of Lemma 17. We take the rewrite system R of Section 4.2. We let P = Σ+ and
Q = a+ + b+. We define B as the set {u | u ̸= ε ∧ |u|a = |u|b}. For every u /∈ B, we either
have that |u|a > |u|b or |u|a < |u|b. In the first case, u

∗→R ak for k = |u|a − |u|b and, in the
second case, u

∗→R bk for k = |u|b − |u|a. So for every u /∈ B, we have that u ⊑ω
R a+ + b+ and

thus u ⊑f
R a+ + b+ . In contrast, we have that DR(B) = B and B ∩ a+ + b+ = ∅. Therefore

for every u ∈ B, we do not have u ⊑ω
R a+ + b+ . Thus, we do not have that Σ+ ⊑ω

R b+ + a+ .
However, for every u ∈ B, let n = |u|a, as u

∗→R anbn we have that u ⊑f
R anbn. We have

seen Section 4.2 that anbn ⊑f
R bm for some m > 0. This shows that Σ+ ⊑f

R a+ + b+ . ◀

Proof of Lemma 18. By Theorem 4 we just need to prove that if Q1 ⊑f
R Q2 then Q1 ⊑ω

R Q2.
K = Σ∗/AR(Q2) is a regular language closed under R that does not intersect with Q2. From
Theorem 5, if Q1 ⊑f

R Q2, K does not intersect with Q1; then Q1 ⊆ AR(Q2) and by Theorem
4 Q1 ⊑ω

R Q2. ◀
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C Proof of Proposition 22

Proof. We only need to prove that q ⊑f
R Q implies q ⊑ω

R Q. Take a path q and a regular
set of paths Q such that there is no p in Q with q

∗→R p. We will prove the existence of a
regular language K closed under R containing q and not intersecting with Q.

Let q1p1 . . . qnpn be the unique decomposition of q such that q1 ∈ Σ∗
1, pn ∈ Σ∗

2, q2, . . . , qn ∈
Σ+

1 and p1, . . . , pn−1 ∈ Σ+
2 .

Let P = Σ∗
1(Σ+

2 Σ+
1 )n−1Σ∗

2. If Q ∩ P is empty, we can choose P for K: it is easy to check
that it satisfies all the conditions. Otherwise, Q∩P is a non empty regular language included
in P .

We use the following property: given three regular sets N, A, B, if N ⊆ AB, then
N =

⋃
i∈I AiBi where the Ai (resp. Bi) are all regular, all included in A (resp. B)

and I is finite. Indeed it is easy to check that N =
⋃

u∈A([u] ∩ A).(u−1N ∩ B), where
[u] = {v | u−1N = v−1N}. The number of distincts [u] and u−1N is finite as N is regular,
so we get the required finite decomposition.

Iterating the aforementioned property, we get that Q ∩ P can be decomposed in a finite
union of products of regular languages

⋃
i∈I A1,iB1,i . . . An,iBn,i for some finite I, where

A1,i ⊆ Σ∗
1, Bn,i ⊆ Σ∗

2, Aj,i ⊆ Σ+
1 for j ̸= 1, Bj,i ⊆ Σ+

2 , for j ̸= n.
As, by hypothesis, there is no p in Q so that q

∗→R p, Q∩P ∩DR(q) = ∅. Thus, for every i

in I, A1,iB1,i . . . An,iBn,i ∩ DR(q) is empty and so there exists j such that Aj,i ∩ DR1(qj) = ∅
or Bj,i ∩ DR2(pj) = ∅. Since R1 (resp. R2) is finitely controllable, there is a regular language
K1 (resp. K2) closed under R1 (resp. R2) containing DR1(qj) (resp. DR2(pj)) and not
intersecting with Aj,i (resp.Bj,i).

Define Li as:
Li = Σ∗

1(Σ+
2 Σ+

1 )j−2Σ+
2 (K1 ∩ Σ+

1 )(Σ+
2 Σ+

1 )n−jΣ∗
2

in case Aj,i ∩ DR1(qj) = ∅ ,
Li = Σ∗

1(Σ+
2 Σ+

1 )j−1(K2 ∩ Σ+
2 )(Σ+

1 Σ+
2 )n−j−1Σ+

1 Σ∗
2

otherwise (in this case Bj,i ∩ DR2(pj) = ∅ ).

It is easy to check that in both cases Li is regular, closed under R, contains q, does not
intersect with A1,iB1,i . . . An,iBn,i.

Define K as
⋂

i∈I Li: K is regular, closed under R, contains q, does not intersect with Q.
By Theorem 5, we obtain that it is not the case that q ⊑f

R Q. ◀

D Proof of Lemma 23

Proof. Our proof relies on undecidability of emptiness of the intersection of recursive sets of
numbers. We represent sets of numbers as one letter languages. For k ̸= 0, we let pk to be
the kth prime number and, given a letter a and a set of numbers N , we write Pa(N ) for the
language {apn | n ∈ N }. We write Pa for the language {ap | p prime number} and Pc

a for
a∗ − Pa.

First, let us notice that if L is regular and L is included in Pa, then L is finite. Indeed,
by a pumping argument, we get that if L is an infinite regular language included in Σ∗, there
exists n ≥ 0, m > 0 such that an+pm belongs to L for any integer p. But, then an+(n+2m+2)m

belongs to L. As n + (n + 2m + 2) ∗ m = (n + 2m) ∗ (m + 1) is not prime, L is not included
in Pa .

Let N1 and N2 two infinite arbitrary recursive sets of numbers. We let L1 = Pc
a ∪Pa(N1),

L2 = Pa(N2). We have that N1 ∩ N2 = ∅ iff L1 ∩ L2 = ∅. If R is a regular language
containing L1, a∗/R is included in Pa, and then, from what precedes, is finite; so, R contains
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all, but finitely, many elements of a∗ and as L2 is infinite, we must have L2 ∩ R ≠ ∅. In
other words, L1 and L2 cannot be separated by a regular set. However deciding L1 ∩ L2 = ∅
is equivalent to deciding N1 ∩ N2 = ∅. ◀

E Proof of Lemma 24

Proof. We prove below the different items, the second one being the most technical.

1. If L1 ∩ L2 is non empty, there exists w such that s1
∗→R1 w

∗→B w
∗→R2 s2, so s1

∗→R s2.
Let (u, v) in ∆+/{♯l, ♯r}∗ × ∆+: u can be decomposed in u1xu2 with x /∈ {♯l, ♯r}.
Then, u →R♯

u1♯ls1♯ru2
∗→R u1♯ls2♯ru2 →Rg

u1♯lg♯ru2
∗→Rg

g.
As g can generate any word of ∆+, we have u

∗→R v.
2. Suppose ♯ls1♯r

∗→R ♯ls2♯r.
We first prove that ♯ls1♯r

∗→R1∪B∪R2∪R♯
m1♯ls2♯rm2. If no g occurs in the derivation,

the derivation is in R1 ∪ B ∪ R2 ∪ R♯ and satisfies the requirements. Otherwise, let us
consider ig, the first step of the derivation where g occurs. As g is only produced by
♯ls2♯r → g or by a rule containing g in its l.h.s., the derivation truncated at its ig − 1
first steps is of the form ♯ls1♯r

∗→R1∪B∪R2∪R♯
m1♯ls2♯rm2 for some m1, m2.

Now, let us prove that by induction of the length of the derivation the following property:
Let u in (Σ1 ∪ Σ2)∗; If ♯ls1♯r

∗→R1∪B∪R2∪R♯
m1♯lu♯rm2 for some m1, m2, there exists a

derivation ♯ls1♯r
∗→R1∪B∪R2 ♯lu♯r.

If the derivation is of length 1, either ♯ls1♯r →R1 ♯lu♯r or ♯ls1♯r →R♯
♯l♯ls1♯r♯r and u = s1.

In both cases, ♯ls1♯r
≤1→R1 ♯lu♯r.

Let us now suppose that the property is true for derivations of length n and let a
derivation of length n + 1: If ♯lu♯r is not concerned by the last rewriting step, we
have ♯ls1♯r

n→R m′
1♯lu♯rm′

2 for some m′
1, m′

2 and we have the property by induction.
If ♯lu♯r is concerned by the last step, as u is in (Σ1 ∪ Σ2)∗, either the last step uses
a rule x →R♯

♯ls1♯r and u = s1, so the property is trivial or the derivation is of
the form ♯ls1♯r

n→R1∪B∪R2∪R♯
m1♯lu

′♯lm2 →R1∪B∪R2 m1♯lu♯rm2. Then by induction,
♯ls1♯r

∗→R1∪B∪R2 ♯lu
′♯r →R1∪B∪R2 ♯lu♯r.

Applying the property to ♯ls1♯r
∗→R1∪B∪R2∪R♯

m1♯ls2♯rm2, we get that there is a derivation
♯ls1♯r

∗→R1∪B∪R2 ♯ls2♯r. By adapting the reasonment already used in Lemma 12, there
exists a derivation ♯ls1♯r

∗→R1 ♯lm♯r
∗→B ♯lm♯r

∗→R2 ♯ls2♯r. But then m belongs to L1 ∩ L2
that would not be empty.

3. Every regular language closed under R containing ♯gs1♯d contains ♯gL1♯d and then
intersects with ♯gL2♯d as L1 and L2 are not regularly separable. So, by Corollary 10,
♯gs1♯d ⊑f

R ♯gs2♯d .

4. If u ∈ {♯g, ♯d}∗, then DR(u) = {u} is a regular language closed under R. By Corollary 10,
u ⊑f

R v iff u = v and, therefore, iff u
∗→R v .

5. Let u ∈ ∆+/{♯l, ♯r}∗: we have u = u1xu2 with x ∈ ∆. Therefore, u →R♯
u1♯ls1♯ru2, so

u ⊑f
R u1♯ls1♯ru2, As ♯ls1♯r ⊑f

R ♯ls2♯r , u ⊑f
R u1♯ls2♯ru2 ⊑f

R u1gu2 ⊑f
R v for any v.

In case u ∈ {♯l, ♯r}∗, we have already seen that that u ⊑f
R v iff u = v .

In a nutshell, u ⊑f
R v iff u ∈ ∆+/{♯l, ♯r}∗ or u = v . ◀
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