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Abstract
We are given a set Z = {(R1, s1), . . . , (Rn, sn)}, where each Ri is a range in Rd, such as rectangle or
ball, and si ∈ [0, 1] denotes its selectivity. The goal is to compute a small-size discrete data distribution
D = {(q1, w1), . . . , (qm, wm)}, where qj ∈ Rd and wj ∈ [0, 1] for each 1 ≤ j ≤ m, and

∑
1≤j≤m

wj =
1, such that D is the most consistent with Z, i.e., errp(D, Z) = 1

n

∑n

i=1|si −
∑m

j=1 wj · 1(qj ∈ Ri)|p

is minimized. In a database setting, Z corresponds to a workload of range queries over some table,
together with their observed selectivities (i.e., fraction of tuples returned), and D can be used as
compact model for approximating the data distribution within the table without accessing the
underlying contents.

In this paper, we obtain both upper and lower bounds for this problem. In particular, we show
that the problem of finding the best data distribution from selectivity queries is NP-complete. On the
positive side, we describe a Monte Carlo algorithm that constructs, in time O((n+δ−d)δ−2 polylog n),
a discrete distribution D̃ of size O(δ−2), such that errp(D̃, Z) ≤ minD errp(D, Z) + δ (for p = 1, 2, ∞)
where the minimum is taken over all discrete distributions. We also establish conditional lower
bounds, which strongly indicate the infeasibility of relative approximations as well as removal of the
exponential dependency on the dimension for additive approximations. This suggests that significant
improvements to our algorithm are unlikely.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases selectivity queries, discrete distributions, Multiplicative Weights Update,
eps-approximation, learnable functions, depth problem, arrangement

Digital Object Identifier 10.4230/LIPIcs.ICDT.2024.18

Related Version Full Version: https://arxiv.org/abs/2401.06047 [1]

1 Introduction

The selectivity of a selection query on a set of objects in a database is the probability
of a random object in the database satisfying the query predicate. A key step in query
optimization, selectivity estimation is used by databases for estimating costs of alternative
query processing plans and picking the best one. Consequently, selectivity estimation has
been studied extensively in the last few decades [31, 36, 43, 44, 46].

Historically, selectivity estimation has been data-driven. These approaches construct,
or dynamically maintain, a small-size synopsis of the data distribution using histograms
or random samples that minimize estimation error. While these methods work well in low
dimensions, they suffer from the curse of dimensionality. As a result, interest in learning-based
methods for selectivity estimation has been growing over the years [24, 32, 33, 34, 38, 40].
Many different methods have been proposed that work with the data distribution, observed
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18:2 Computing Data Distribution from Query Selectivities

selectivities from query workloads, or a combination of both. At a high-level, many of these
techniques build a model of the underlying data distribution and use it to answer queries.
While they work very well in practice, often outperforming their traditional counterparts, a
theoretical understanding of this line of work is missing. This leads to the natural question,
whether selectivity can be learned efficiently from a small sample of query selectivities alone,
without access to the data distribution. Hu et al. [27] formalize the learnability of the
selectivity estimation problem in this setting. They use the agnostic-learning framework [25],
an extension of the classical PAC learning framework for real-valued functions, where one is
given a set of sample queries from a fixed query distribution and their respective selectivities
(the training set), and the goal is to efficiently construct a data distribution so that the
selectivity of a new query from the same query distribution can be answered with high
accuracy. They show that for a wide class of range queries, the selectivity query can be
learned within error ε ∈ (0, 1) with probability at least 1 − δ using a training set of size
ε−O(1) log δ−1, where the exponent of ε depends on the query type; see [27] for a precise
statement of their results. Informally, learnability implies that performance of a model on
the training set generalizes to unseen queries from the same distribution. This reduces the
task of learning to finding a (model of the) data distribution that best fits the training data
i.e. Empirical Risk Minimization (ERM). Although Hu et al. [27] prove a sharp bound on
the sample complexity, their algorithm for ERM takes prohibitively long and produces a
data distribution of large size. They also present fast heuristics to construct small-size data
distributions, but they do not provide any guarantee on the performance with respect to the
best data distribution fitting the training set. This raises the question of how to develop a
provably efficient and effective algorithm for constructing the best data distribution (in a
given family) from a training set.

Note that the size of the distribution computed by [27], can further be reduced to O(ε−2)
by choosing an ε-approximation, with an increase of ε in the error; see [23] and Section 3
below. However, the paper aims at computing a small-size distribution (whose performance
is comparable to the best data distribution) directly and efficiently, without constructing a
large-size distribution first. For this problem, we obtain hardness results as well as efficient
algorithms.

Problem Statement. A range space Σ = (X ,R) comprises a set of objects X and a collection
of subsets R ⊆ 2X called ranges. In this paper, X is a finite set of points, and each range
R ∈ R corresponds to a query that returns the subset of objects that fall within a simple
geometric region such as a rectangle (corresponding to an orthogonal range query), a ball
(neighborhood range query), or a half-space (query with a linear constraint). We will not
distinguish between a region R and R ∩ X , so with a slight abuse of notation, we will use R
to denote a set of geometric regions such as a set of rectangles or balls.

A discrete distribution D = {(p1, w1), ..., (pm, wm)} is defined by a finite set of points
and their associated probabilities, where each pi is a point in Rd for some constant d ≥ 1,
each wi > 0, and

∑m
i=1 wi = 1. We refer to the point set {p1, ..., pm} as the support of D

and denote it by supp(D). The size of a discrete distribution D is defined as the size of its
support and is denoted as |D|. Let D denote the family of all discrete distributions, and
let Dk be the family of discrete distributions of size at most k. Given a range R ⊆ R, let
sD(R) =

∑m
i=1 1(pi ∈ R)wi denote the selectivity of R over D, which is the probability for a

random point drawn from D to lie in R (or the total measure of D inside R).
In this paper, our goal is to learn a (discrete) distribution from the selectivities of range

queries. For ease of exposition, we will describe our results for rectangles (orthogonal ranges),
although our techniques extend to other natural range spaces.
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Let Z = {z1, ..., zn} be a set of training samples, where zi = (Ri, si), Ri is an axis-
aligned rectangle (orthogonal range) in Rd, and si ∈ [0, 1] is its observed selectivity.1 Let
R = {R1, ..., Rn} denote the set of ranges in Z. For a discrete distribution D ∈ D and for
p ≥ 1 we define the (ℓp) empirical error to be

errp(D,Z) = 1
n

n∑
i=1
|sD(Ri)− si|p , and for p =∞, err∞(D,Z) = max

1≤i≤n
|sD(Ri)− si| . (1)

We focus on p = 1, 2, and ∞.
Let α∗

p(Z) = minD∈D errp(D,Z) denote the minimum error achievable for all distributions
in the family. Given Z, our goal is to compute a discrete distribution D̃p with err(D̃p,Z) = α∗

p.
As argued in [27], such a discrete distribution of size O(nd) can be computed in nO(d) time.
However, this distribution is too large even for moderate values of n and d, so we are
interested in computing a smaller size distribution at the cost of a slight increase in the
empirical error. Hence, our problem becomes the following: given Z and some δ ∈ [0, 1],
compute a small-size distribution D, ideally of size that depends on δ and independent of n,
such that errp(D,Z) ≤ α∗

p + δ. Alternatively, given a size budget k, compute a distribution
D̂ ∈ Dk such that errp(D̂,Z) = minD∈Dk

errp(D,Z).

Our results. We present both negative and positive results for the data-distribution2 learning
problem. On the negative side in Section 5, we prove that the problem is NP-complete even
for rectangles in R2. Namely, given Z where R is a set of rectangles in R2, p ∈ {1, 2,∞},
and two parameters δ ∈ [0, 1] and k ≥ 1, the problem of determining whether there is a data
distribution D of size k such that errp(D,Z) ≤ δ is NP-hard.

On the positive side, we focus on designing an efficient algorithm for constructing
a small-size distribution with additive-approximation error. We present a Monte Carlo
algorithm that computes, with high probability, a discrete distribution D̃ of size O(δ−2)
with errp(D̃,Z) ≤ α∗

p + δ, for p ∈ {1, 2,∞}, in O(nδ−2 logn + δ−d−2 log3 n) time (exact
time complexity is given in Lemma 8). Starting with p = 1 (ℓ1 empirical error), we first
present in Section 2 a basic algorithm that maps our problem to a linear program (LP)
with O(n) constraints and O(nd) variables. We show how the Multiplicative-Weight-Update
(MWU) method [5] can be used to solve this LP. A naive implementation of the MWU of
this algorithm takes Ω(nd) time. Next, in Section 3, we exploit underlying geometry in two
ways to solve this LP involving exponential number of variables efficiently, by representing it
implicitly. First, we give a geometric interpretation to the main step of the MWU method:
we map a maximization problem with O(nd) variables to the problem of finding the weighted
deepest point in an arrangement of n rectangles in Rd. The best algorithm to solve this
geometric problem takes O(nd/2) time [9], which would allow one to improve the running time
to O(δ−2nd/2 logn). But this is also expensive. Second, we use the notion of ε-approximation
to quickly compute an approximately deepest point in a weighted set of rectangles efficiently,
in time O(δ−d logn).

1 Note that we do not assume the training set Z to be consistent with any distribution distribution in
D, or any distribution in general; i.e., there might not exist any distribution D such that si reflects
the selectivity of Ri for every 1 ≤ i ≤ n. This flexibility allows us to model settings where the query
workload was executed on an evolving database instance, and the observed selectivities on different
concrete instances may not be consistent with each other.

2 In this paper we focus on discrete distributions. For simplicity, sometimes we use the term data
distribution instead of discrete distribution.
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18:4 Computing Data Distribution from Query Selectivities

In Section 4 we extend our algorithm to more general settings. We show that our near-
linear time algorithm works for the ℓ∞ and the ℓ2 empirical error. Furthermore, we show
that our algorithm can be extended to other ranges such as balls and halfspaces in Rd.

In Section 5, we also give conditional lower bounds that indicate that avoiding the
exponential dependency on d is not possible even for additive approximations. This makes
meaningful improvements to our algorithm unlikely. We also give conditional lower bounds
for a variant of our problem, allowing an arbitrary relative approximation factor on the size
of the distribution or an arbitrary relative approximation factor on the error of the returned
distribution. Our conditional hardness results are based on the FPT ̸= W [1] conjecture;
see [14] for the definition. Finally, we also show that when the distribution size is fixed, any
relative approximation is NP-hard.

2 Basic Algorithm

In this section we present our basic algorithm for computing a small-size discrete distribution
that (approximately) minimizes the ℓ1 empirical error. For simplicity, let err(·, ·) and α∗

denote err1(·, ·) and α∗
1, respectively. Given a training set Z and a parameter δ ∈ (0, 1), it

computes a discrete distribution D∗ of size O(δ−2 logn) such that err(D∗,Z) = α∗ +δ. At the
heart, there is a decision procedure IsFeasible that, given Z and parameters α, δ ∈ (0, 1),
returns a distribution D∗ with err(D∗,Z) ≤ α+ δ/2 if α ≥ α∗ and returns No if α < α∗.

We do not know the value of α∗, so we perform a binary search on the value of α. In
particular, let E = { δ

2 , (1 + δ
2 ) δ

2 , (1 + δ
2 )2 δ

2 , . . . , 1} be a discretization of the range [0, 1], and
let αj be the j-th value of E. Suppose the binary search currently guesses αi to be the
current guess of α∗. If IsFeasible(Z, δ, αi) returns a distribution D, we continue the binary
search for values less than αi in E. Otherwise, we continue the binary search for values
greater than αi in E. At the end of the binary search, we return the last distribution D∗

that IsFeasible found. Assuming the correctness of the decision procedure, the algorithm
returns the desired distribution in log 1

δ iterations. If α∗ ≤ δ/2, then IsFeasible(Z, δ, α1)
returns a distribution D∗ such that err(D∗,Z) ≤ α1 + δ/2 = δ ≤ α∗ + δ. In any other case,
without loss of generality assuming that αi−1 < α∗ ≤ αi, we have αi ≤ (1 + δ/2)α∗. By
definition, IsFeasible(Z, δ, αi) returns a distribution Di such that err(Di,Z) ≤ αi + δ/2.
Hence,

err(D∗,Z) ≤ err(Di,Z) ≤ αi + δ/2 ≤ (1 + δ/2)α∗ + δ/2 ≤ α∗ + δ.

We now describe the decision procedure IsFeasible.

2.1 Decision procedure
Let Z, δ, and α be as defined above. The decision problem can be formulated as follows:

(FP1) ∃? D ∈ D s.t.

1
n

n∑
i=1

ui ≤ α

|sD(Ri)− si| ≤ ui for i = 1 . . . n
ui ∈ [0, 1] for i = 1 . . . n.

Here ui models the error in the selectivity of Ri. A challenge in solving the above decision
problem is determining the candidate set of points in supp(D). The problem as stated is
infinite-dimensional. Our next lemma suggests how to reduce it to a finite-dimensional
problem by constructing a finite set of candidate points for supp(D).
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Figure 1 The (black) points qi represent points from the underlying data distribution D while
(blue) points pτ ∈ P. The (green) dashed segments show three cells of the arrangement in rectangle
R. The weights of points in P are: w(p1) = w1 +w3, w(p2) = w2, w(p3) = w4 +w5, w(p4) = w6 +w8,
w(p5) = w7.

The arrangement of R, denoted A(R), is a partitioning of Rd into contiguous regions
called cells such that for every (d-dimensional) cell τ in the arrangement, τ lies in the same
subset of R. For each d-dimensional cell τ ∈ A(R), we choose an arbitrary point pτ in the
interior of τ . Let P = {pτ | τ ∈ A(R)} be the set of candidate points. Note that A(R) has
O(nd) cells, and it can be computed in O(nd logn) time [3]. Therefore, |P| = O(nd) and P
can be computed in O(nd logn) time.

▶ Lemma 1. For any discrete distribution D ∈ D, there is another discrete distribution D′

such that supp(D′) ⊆ P and err(D,Z) = err(D′,Z).

Proof. For each d-dimensional cell τ ∈ A(R), let

wτ =
∑

pi∈supp(D)

1(pi ∈ τ)wi

be the total weight of points of supp(D) that lie in τ . We define

D′ = {(pτ , wτ ) | τ ∈ A(R), wτ > 0}.

See also Figure 1. By definition, for any rectangle R ∈ R, the cells of A(R) lying inside R
induce a partitioning of R. Let A(R | R) denote this partitioning of R into cells. Then

sD′(R) =
∑

pτ ∈P
1(pτ ∈ R)wτ =

∑
τ∈A(R|R)

wτ =
∑

τ∈A(R|R)

∑
pi∈τ∩supp(D)

wi

=
∑

pi∈supp(D)

1(pi ∈ R)wi = sD(R).

Hence, err(D,Z) = err(D′,Z). ◀

▶ Remark. We note that the choice of point pτ in each cell τ ∈ A(R) is arbitrary; one can
use any point in τ as its representative point.

In view of Lemma 1, it suffices to restrict supp(D) to be a subset of P . We order the cells
of A(R) arbitrarily and let pj denote the point chosen from the j-th cell, so P = {p1, . . . , pm}
where m = |P |. We introduce a real variable vj ∈ [0, 1] that models the weight of pj ∈ P.
Then (FP1) can be rewritten as

ICDT 2024



18:6 Computing Data Distribution from Query Selectivities

(FP2)
1
n

n∑
i=1

ui ≤ α∣∣∣∣∣∣
∑

j:pj∈Ri

vj − si

∣∣∣∣∣∣ ≤ ui for i = 1 . . . n (2)

m∑
j=1

vj ≤ 1 (3)

ui, vj ∈ [0, 1] for i = 1 . . . n, j = 1 . . .m

We require that the sum of weights of the discrete distribution we compute is at most 1
because, for any distribution returned with

∑m
j vj < 1, we can add an arbitrary point that

is not contained in any range with weight 1−
∑m

j vj .
The above decision problem can be written as a linear program by replacing (2) with two

linear inequalities.

(LP1) −
1
n

n∑
i=1

ui ≥ −α (4)

ui −
∑

j:pj∈Ri

vj ≥ −si for 1 ≤ i ≤ n (5)

ui +
∑

j:pj∈Ri

vj ≥ si for 1 ≤ i ≤ n (6)

m∑
j=1

vj ≤ 1 (7)

ui, vj ∈ [0, 1] for i = 1 . . . n, j = 1 . . .m

It will be convenient to write the above LP in a compact form. Let u = (u1, . . . , un),
v = (v1, . . . , vm), and x = (u, v). Set

X = {x = (u, v) ∈ [0, 1]n+m | ∥v∥1 ≤ 1}.

For 0 ≤ κ ≤ 2n, let Aκx ≥ bκ denote the κ-th constraint of (4), (5), (6). Namely, A0x ≥ b0
denotes (4), and for 1 ≤ i ≤ n, A2i−1x ≥ b2i−1 and A2ix ≥ b2i denote the constraints (5) and
(6), respectively, for the rectangle Ri. Then (LP1) asks whether there exists an x ∈ X such
that Ax ≥ b.

We use a Multiplicative-Weight-Update (MWU) method to solve this linear program,
following the general approach described by Arora et al. [5], though the exact implementation
depends on the specific LP; see also [42]. We describe how this approach is implemented in
our setting. We will need this algorithm for the faster implementation described in Section 3.

2.2 MWU algorithm
We describe an algorithm that either returns a x̃ ∈ X such that Ax̃ ≥ b − δ/4 or returns
that there is no feasible solution for (LP1). We set two parameters η = δ

c1
and T =⌈

c2δ
−2 ln(2n+ 1)

⌉
, where c1, c2 > 0 are sufficiently large constants to be chosen later. The

algorithm works in T rounds. At the beginning of round t, it has a (2n + 1)-dimensional
probability vector w(t) = (w(t)

0 , . . . , w(t)
2n). Initially, w(1) = ( 1

2n+1 , . . . ,
1

2n+1 ). In the t-th round,
the algorithm solves the decision problem consisting of one constraint

w(t)⊤Ax ≥ w(t)⊤b, x ∈ X (8)

which we refer to as the expected constraint. The algorithm computes, as described below,
x(t) = arg maxx∈X w(t)⊤Ax.
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If w(t)⊤Ax(t) < w(t)⊤b, we conclude that (LP1) is infeasible because, by definition, any
feasible solution of (LP1) satisfies (8), and we return No. Otherwise, for i = 0 . . . 2n, we set

w(t+1)
i = w(t)

i

1− η(Aix(t) − bi)
µ(t+1)

(9)

where µ(t+1) is a normalization factor so that ∥w(t+1)∥1 = 1.
If the algorithm does not return No within the first T rounds, then after completing

T rounds, it returns x̃ = 1
T

∑T
i=1 x(t). Suppose x̃ = (ũ, ṽ). We return the distribution

D̃ = {(pj , ṽj) | ṽj > 0}.

Computing x(t)x(t)x(t). We now describe the computation of x(t) = (u(t)
1 , . . . , u(t)

n , v(t)
1 , . . . , v(t)

m ) at
each step. We can express the LHS of the expected constraint (8) as

w(t)⊤Ax =
n∑

i=1
φ(t)

i ui +
m∑

j=1
ψ(t)

j vj (10)

where φ(t)
i = w(t)

2i + w(t)
2i−1 −

w(t)
0
n

for 1 ≤ i ≤ n, (11)

ψ(t)
j =

∑
i:pj∈Ri

w(t)
2i − w(t)

2i−1 for 1 ≤ j ≤ m. (12)

Note that the two terms in (10) do not share variables and (7) does not involve ui’s, so we
can maximize each of them independently. Recall that ui ∈ [0, 1], so to maximize (10), we
choose for 1 ≤ i ≤ n,

u(t)
i =

{
1 if φ(t)

i > 0,
0 otherwise.

(13)

Next, we choose v(t)
j as follows. Let j(t) = arg max1≤j≤m ψ(t)

j . Since v ∈ [0, 1]m and ∥v∥1 ≤ 1
for (u, v) ∈ X, we choose for 1 ≤ j ≤ m,

v(t)
j =

{
1 if j = j(t) and ψ(t)

j > 0,
0 otherwise.

(14)

Note that although many ui’s could be set to 1, at most one vj is set to 1. This property
will be crucial for our faster implementation in the next section. Since at most T vj ’s are
non-zero, |D̃| ≤ T = O(δ−2 logn).

This completes the description of our basic algorithm. We now analyze its running time
and correctness.

2.3 Analysis
▶ Lemma 2. Assume that the MWU algorithm returns a solution x̃ after T rounds. Then
Aix̃ ≥ bi − δ/4, for every 0 ≤ i ≤ 2n.

Proof. It is straightforward to verify that for any round 1 ≤ t ≤ T , |Aix(t) − bi| ≤ 2. Let
T −

i = {t ≤ T | Aix(t) − bi < 0} be the subset of rounds where Aix(t) − bi < 0. Using the
analysis in Arora et al. [5] (see the proof of Theorem 3.3), for every 0 ≤ i ≤ 2n, we obtain,

ICDT 2024
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0 ≤
T∑

t=1

1
2(Aix(t) − bi) + η

T∑
t=1

1
2 |Aix(t) − bi|+

ln(2n+ 1)
η

= (1 + η)
T∑

t=1

1
2(Aix(t) − bi) + 2η

∑
t∈T −

i

1
2 |Aix(t) − bi|+

ln(2n+ 1)
η

≤ (1 + η)
T∑

t=1

1
2(Aix(t) − bi) + 2ηT + ln(2n+ 1)

η
.

The last inequality follows because |Aix(t) − bi| ≤ 2. Noting that x̃ = 1
T

∑T
i=1 x(t), we get

0 ≤ (1 + η)(Aix̃ − bi) + 4η + 2 ln(2n+1)
ηT . By choosing c1 = 32 and c2 = 512, we obtain η = δ

32
and T =

⌈
512δ−2 ln(2n+ 1)

⌉
. Therefore

(1 + η)(Aix̃ − bi) + δ/4 ≥ 0⇔ Aix̃ ≥ bi − δ/4. ◀

▶ Lemma 3. Given a training set Z and parameters α, δ, the algorithm IsFeasible either
returns a discrete distribution D̃ of size O(δ−2 logn) such that err(D̃,Z) ≤ α + δ/2, or
returns No for α < α∗.

Proof. First, by definition, our algorithm always solves the expected constraint optimally.
Hence, if the algorithm stops in iteration t ≤ T (because we cannot satisfy the expected
constraint w(t)⊤Ax ≥ w(t)⊤b for x ∈ X) then it is also true that there is no x ∈ X such that
Ax ≥ b. So the algorithm correctly returns that the LP is infeasible and α < α∗.

Next, assume that the algorithm returns D̃. Recall that x̃ = (ũ, ṽ) =
(ũ1, . . . , ũn, ṽ1, . . . , ṽn) ∈ X. Since X is convex and x(t) ∈ X for each 1 ≤ t ≤ T , it also
holds that x̃ ∈ X and ∥ṽ∥1 ≤ 1. Hence, it follows that D̃ is indeed a distribution of size at
most T = O(δ−2 logn). From Lemma 2 and the equivalence of (FP2) and (LP1), we get

1
n

n∑
i=1

ũi ≤ α+ δ/4 and

∣∣∣∣∣∣
∑

j:pj∈Ri

ṽj − si

∣∣∣∣∣∣ ≤ ui + δ/4

for i = 1 . . . n. Recall that sD̃(Ri) =
∑

j 1(pj ∈ Ri)ṽj . Hence

err(D̃,Z) = 1
n

n∑
i=1
|sD̃(Ri)− si| ≤

1
n

n∑
i=1

ũi + δ/4 ≤ α+ δ/4 + δ/4 = α+ δ/2. ◀

As for the running time, the binary search executes O(log 1
δ ) iterations, each of which

runs the IsFeasible algorithm. We need O(m logn) = O(nd logn) time to construct (LP1).
The IsFeasible algorithm runs for T = O(δ−2 logn) rounds. In each round t, we need O(n)
time to compute the values of u(t) by (11) and (13). We need O(m logn) = O(nd logn) time
to find all the values ψ(t)

j by (12). Putting everything together, we have the following lemma.

▶ Lemma 4. The algorithm runs in O(δ−2nd log2 n log δ−1) time.

3 The Improved Algorithm

We present an implementation of a small variant of the algorithm in the last section that
computes the desired distribution with high probability in n(δ−1 logn)O(1) time (see The-
orem 9 below for a more precise characterization). There are two challenges in implementing
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the IsFeasible procedure efficiently. First, (LP1) has O(nd) variables – although u has
dimension n, v has dimension m = O(nd) – so we cannot afford to represent (LP1) explicitly.
Second, in each round t, computing u(t) is easy, but computing v(t) quickly seems challenging
even though only one of the values in v is non-zero. We exploit underlying geometry to
address both challenges. We first describe how to implement IsFeasible without writing
the LP explicitly and then describe how to compute x(t) quickly.

Implicit representation of LP. We maintain the probability vector w(t) as before. We
also maintain a multi-set F ⊂ Rd of points. Initially, F = ∅. Each round adds one point
to F , so |F| ≤ T = O(δ−2 logn). Since we have w(t) at our disposal, we can compute
u(t)

i , for 1 ≤ i ≤ n, using (11) and (13) as before. The main question is how to compute
j(t) = arg max1≤j≤m ψ(t)

j without maintaining all the variables explicitly. For each rectangle
Ri ∈ R, let ω(t)(Ri) = w(t)

2i − w(t)
2i−1. For each point x ∈ Rd, we define its depth with respect

to (R, ω(t)), denoted by ∆(x), to be

∆(x) =
∑
R∈R

1(x ∈ R)ω(t)(R).

It is easily checked that the depth of all points lying in the same cell of A(R) is the same, and
that many cells may have the same depth. By the definition of the depth, ψ(t)

j = ∆(pj). Thus
the problem of computing j(t) is equivalent to choosing a point p(t) in Rd of the maximum
depth, i.e., ∆(p(t)) = maxp∈Rd ∆(p). Chan [9] has described an O(nd/2) time algorithm to
compute a point of maximum depth in a set of n weighted rectangles in Rd. We refer to this
algorithm as DeepestPt(R, ω), where R is a set of n rectangles in Rd and ω ∈ Rn is the
weight vector.

We thus proceed in the t-th round of IsFeasible as follows. First, compute the vector
u(t) as before. Next, we compute the deepest point p(t) by calling DeepestPt(R, ω(t)).
If ∆(p(t)) > 0, then we add p(t) to the set F ; otherwise we ignore it. Intuitively, this
is equivalent to setting vj(t) = 1 if ψj(t) > 0 and 0 otherwise. We do not know how to
compute j(t) efficiently and thus cannot compute which vj needs to be set to 1. But what
comes to our rescue is that we only need to compute w(t)

q Aqx, for all 0 ≤ q ≤ 2n, to check
whether the expected constraint holds and to update the weight factors. Fortunately, we can
accomplish this using only u and p(t), without an explicit representation of x, as follows. We
set w(t)

2i−1A2i−1x = w(t)
2i−1u

(t)
i and w(t)

2i A2ix = w(t)
2i u

(t)
i if ∆(p(t)) ≤ 0 or p(t) /∈ Ri, and we set

w(t)
2i−1A2i−1x = w(t)

2i−1(u(t)
i − 1) and w(t)

2i A2ix = w(t)
2i (u(t)

i + 1) if ∆(p(t)) > 0 and p(t) ∈ Ri. It
can be checked that these values are the same as when we set vj(t) as above.

After having computed w(t)
q Aqx for all 0 ≤ q ≤ 2n, we check whether w(t)⊤Ax < w(t)⊤b.

If so, we stop and return No. Otherwise, we compute w(t+1) using (9) as before. If the
algorithm is not aborted within the first T rounds, we return D̂ = {(p, 1

T ) | p ∈ F}. Recall
that F is a multi-set. If there are s copies of a point p, we keep only one copy of p and set
its weight to s

T . The following lemma establishes the correctness of the algorithm.

▶ Lemma 5. Given Z and δ ∈ [0, 1], err(D̃,Z) = err(D̂,Z).

Proof. For simplicity, we assume that for any ω(t), 1 ≤ t ≤ T , the maximum-depth cell
in A(R) with respect to ω(t) is unique and that j(t) are distinct for each t ≤ T . Then by
the definition of depth, p(t) and pj(t) lie in the same cell of A(R), so the value of w(t)⊤Ax
computed by the implicit algorithm is the same as w(t)⊤Ax(t) computed by the basic algorithm.
Hence, assuming w(t) computed by the two algorithms is the same, w(t+1) computed by them
is also the same. Recall that v(t)

j(t) is set to 1 if and only if ψ(t)
j(t) > 0, which is the same
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condition when p(t) is added to F by the implicit algorithm. v(t)
j(t) = 1 if and only if p(t) ∈ F .

Hence, pj(t) ∈ supp(D̃) if and only if p(t) ∈ supp(D̂) and pj(t) and p(t) lie in the same cell of
A(R). The same argument as in Lemma 1 now implies that err(D̃,Z) = err(D̂,Z). ◀

Fast computation of p(t)p(t)p(t). The main observation is that it is not crucial to compute
x(t) = arg maxx∈X w(t)⊤Ax in the t-th round of the MWU algorithm. Instead, it suffices to
compute x̃(t) such that w(t)⊤Ax̃(t) ≥ w(t)⊤Ax(t) − δ/12. In the terminology of the implicit
LP algorithm, this is equivalent to saying that it suffices to compute a point p̃(t) with
∆(p̃(t)) ≥ maxp∈Rd ∆(p)− δ/12. We use ε-approximations and random sampling [23, 11] to
compute p̃(t) quickly. The notion of ε-approximation is defined for general range spaces but
we define ε-approximation in our setting.

Given a set R of rectangles and a weight function ω : R → [0, 1] a multi-subset N ⊂ R is
called an ε-approximation of (R, ω) if for any point x ∈ Rd,∣∣∣∣∆(x,R, ω)

ω(R) − ∆(x,N )
|N |

∣∣∣∣ ≤ ε, (15)

where ∆(x,R, ω) is the weighted depth of point x in the set of rectangles R with weights ω,
and ∆(x,N ) is the depth of point x in the set of rectangles N assuming that the weight of
each rectangle in N is 1.

Let A be a random (multi-)subset of R of size O(ε−2 lnϕ−1) where at each step each
rectangle of R is chosen with probability proportional to its weight (with repetition). It is well
known [23, 11] that A is an ε-approximation with probability at least 1− ϕ. With this result
at our disposal, we compute p̃(t), an approximately deepest point with respect to (R,w(t)),
as follows. Let w(t) be as defined above. Let w+ = (w+

1 , . . . , w
+
n ) and w− = (w−

1 , . . . , w
−
n ) be

two vectors such that w+
i = w(t)

2i and w−
i = w(t)

2i−1 for every 1 ≤ i ≤ n. We set r = c3δ
−2,

where c3 > 0 is a sufficiently large constant. We repeat the following for µ = O(logn)
times: For each h ≤ µ, we choose a random sample N+

h of (R,w+) of size r and another
random sample N−

h of (R,w−) of size r. Let Nh = N+
h ∪N

−
h . We define the weight function

ω̄h : Nh → R as

ω̄h(R) =
{

∥w+∥1
r if R ∈ N+

h ,

−∥w−∥1
r if R ∈ N−

h .
(16)

We compute a deepest point p̃(t)
h with respect to (Nh, ω̄h) along with ∆(p̃(t)

h ,Nh, ω̄h)
by calling DeepestPt(Nh, ω̄h). After repeating µ times, we choose as p̃(t) the point p̃(t)

ξ

with the median ∆(p̃(t)
ξ ,Nξ, ω̄ξ) among depths {∆(p̃(t)

1 ,N1, ω̄1), . . . ,∆(p̃(t)
µ ,Nµ, ω̄µ)}, where

ξ ∈ [1, µ]. Recall that ω(t)
i = w(t)

2i − w(t)
2i−1.

▶ Lemma 6. ∆(p̃(t),R, ω(t)) ≥ maxx∈Rd ∆(x,R, ω(t)) − δ/12 with probability at least 1 −
1/nO(1).

Proof. If we choose the constant c3 sufficiently large, then both N+
h and N−

h are δ
48 -

approximations with probability greater than 1/2. Therefore, for any point x ∈ Rd,∣∣∣∣∣∆(x,R,w+)
∥w+∥1

−
∆(x,N+

h )∣∣N+
h

∣∣
∣∣∣∣∣ ,

∣∣∣∣∣∆(x,R,w−)
∥w−∥1

−
∆(x,N−

h )∣∣N−
h

∣∣
∣∣∣∣∣ ≤ δ

48 . (17)

Using (17) and the fact that ∥w+∥1, ∥w−∥1 ≤ 1, we obtain

∆(x,R, ω(t))=∆(x,R,w+)−∆(x,R,w−) ≤ ∥w
+∥1

r
∆(x,N+

h )−∥w
−∥1

r
∆(x,N−

h )+2 δ48

= ∆(x,Nh, ω̄h) + δ

24 .
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Similarly, ∆(x,R, ω(t)) ≥ ∆(x,Nh, ω̄h)− δ
24 . Next, we define x∗ = arg maxx∈Rd ∆(x,R, ω(t)).

Hence, with probability greater than 1/2,

∆(p̃(t)
h ,R, ω(t)) ≥ ∆(x∗,R, ω(t))− δ

12 .

Using the well known median trick (an application of the median trick can be found
in [29]), we know that p̃(t) = p̃(t)

ξ that has the median depth satisfies

∆(p̃(t),R, ω(t)) ≥ ∆(x∗,R, ω(t))− δ

12 ,

with probability at least 1− 1/nO(1). ◀

▶ Lemma 7. With probability at least 1− 1/nO(1), the IsFeasible decision procedure either
returns a discrete distribution D̃ of size O(δ−2 logn) such that err(D̃,Z) ≤ α+δ/2 or returns
No for α < α∗.

Proof. Using the proofs of Lemma 2 and Lemma 3 (by slightly increasing the constants
c1, c2) we get that with probability at least 1− 1/nO(1), if the algorithm does not abort in
the first T iterations in the end it finds x̃ ∈ X such that Ax̃ ≥ b− 3δ/12 = b− δ/4. Using
Lemma 5 and Lemma 3, we conclude the result. ◀

▶ Lemma 8. The improved algorithm runs in time

O((n+ δ−2 log2 n+ δ−d logn)δ−2 logn log δ−1).

Proof. In each round, we spend O(n) time to compute u(t). For each h, we construct two
ε-approximations N−

h ,N
+
h of size O(δ−2) by applying weighted random sampling. Using

a binary search tree constructed at the beginning of each round of the MWU algorithm,
we get each sample in O(logn) time. Hence, we construct Nh in O(δ−2 logn). We spend
O((δ−2)d/2) time to compute p̃(t)

h using [9]. Overall we spend O((δ−2 logn+ δ−d) logn) time
to compute the point p̃(t). Summing these bounds over all iterations of the binary search
and the MWU method, we have the desired bound. ◀

The algorithm we proposed computes a discrete distribution D̃ of size O(δ−2 logn). The
size can be reduced to O(δ−2) as follows. We first run the algorithm above with δ ← δ/2.
After obtaining D̃, we repeat the following procedure O(logn) times. In the h-th iteration,
we get a Ñh of O(δ−2) weighted random samples from D̃. This is a δ/2-approximation with
probability at least 1/2. Let D̃h be the distribution of size O(δ−2) defined by Ñh. In the
end, we return the best δ/2-distribution D̃h with respect to err(D̃h,Z). With probability at
least 1− 1/nO(1), we find a distribution of size O(δ−2) and additive error δ. The running
time of the additional steps is dominated by the running time in Lemma 8.

▶ Theorem 9. Let Z = {z1, . . . , zn} be a set of training samples such that zi = (Ri, si),
where Ri is an axis aligned rectangle in Rd and si ∈ [0, 1] is its selectivity. Given a parameter
δ ∈ (0, 1), a discrete distribution D̃ of size O(δ−2) can be computed in O((n+ δ−2 log2 n+
δ−d logn)δ−2 logn log δ−1) time such that err1(Z, D̃) ≤ α∗

1(Z) + δ, with probability at least
1− 1/nO(1).

▶ Remark. As we will see in the next section, our main algorithm can be extended to other
settings. However, for axis-aligned rectangles, we can improve the dependency on d if we
use a more sophisticated construction of ε-approximations for rectangular ranges. In fact,
using [41] to construct the ε-approximation [11], we can get a distribution D̃ with the same
properties as in Theorem 9 in O((n+ δ−6 log2 n+ δ−d/2)δ−2 logn log δ−1) time.
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4 Extensions

4.1 Extending to other error functions
So far, we only focused on the ℓ1 empirical error. Our algorithm can be extended to ℓ∞ and
ℓ2 empirical errors with the same asymptotic complexity. In both cases, we run the same
binary search as we had for the ℓ1 error, and we call the IsFeasible(Z, δ, α).

ℓ∞ℓ∞ℓ∞ error. Following the same arguments as in Section 2.1, we can formulate the problem
as a simpler LP than (LP1). More specifically, by definition, we have to satisfy ui ≤ α for
1 ≤ i ≤ n instead of constraint (4). However, we observe that the linear problem is then
equivalent to (LP1) setting ui = α for 1 ≤ i ≤ n. Without having a vector u, in each round t,
the algorithm only computes the vector v by computing p(t) as we had in Section 3. The
result follows.

ℓ2ℓ2ℓ2 error. The goal now is to find a distribution D that minimizes err(D,Z). This is
equivalent to the feasibility problem (LP1) replacing constraint (4) with

− 1
n

n∑
i=1

u2
i ≥ −α. (18)

Interestingly, the MWU method works even if the feasibility problem is on the form f(x) ≥ 0,
where f(·) is concave. It is straightforward to see that the new constraint (18) is concave.
The rest of the constraints remain the same as in (LP1) so they are linear. Hence, we can
use the same technique to optimize the new feasibility problem. Still the goal is to try and
satisfy the expected constraint (8) by maximizing its LHS. In fact the new LHS of (8) is

w(t)⊤Ax =
n∑

i=1
−w

(t)
0
n
u2

i + (w(t)
2i + w(t)

2i−1)ui +
m∑

j=1
ψ(t)

j vj (19)

The variables vi are set by efficiently computing p(t) as shown in Section 3. So we only focus
on setting the variables ui. Recall that our goal is to maximize the LHS in order to check if
the expected constraint is satisfied. By simple algebraic calculations it is straightforward to
see that the function g(ui) = −w(t)

0
n u2

i + (w(t)
2i + w(t)

2i−1)ui under the constraint ui ∈ [0, 1] is
maximized for

u(t)
i = min

{
n(w(t)

2i + w(t)
2i−1)

2w(t)
0

, 1
}
. (20)

After computing w(t), we can find u(t) in O(n) time. Hence, using (20) instead of (13) we can
set u that maximizes the expected constraint. All the other steps of the algorithm remain the
same. Following the improved algorithm along with the proofs of Lemmas 2, 3, if α > α∗

2(Z),
with high probability, we get a distribution D̃ of size O(δ−2) in near linear time such that
err2(D̃,Z) ≤ α+ δ/2.

▶ Theorem 10. Let Z = {z1, . . . , zn} be a set of training samples such that zi = (Ri, si),
where Ri is an axis-aligned rectangle in Rd and si ∈ [0, 1] is its selectivity. Given the
parameters δ ∈ (0, 1) and p ∈ {1, 2,∞}, a discrete distribution D̃ of size O(δ−2) can be
computed in O((n + δ−2 log2 n + δ−d logn)δ−2 logn log δ−1) time such that errp(Z, D̃) ≤
α∗

p(Z) + δ with probability at least 1− 1/nO(1).
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4.2 Extending to other types of ranges

Besides rectangles, our algorithm can be extended to more general ranges such as balls and
halfspaces in Rd. A semi-algebraic set in Rd is a set defined by Boolean functions over
polynomial inequalities, such as a unit semi-disc {(x2 + y2 ≤ 1) ∩ (x ≥ 0)}, or an annulus
{(x2 + y2 ≤ 4) ∩ (x2 + y2 ≥ 1)}. Most familiar geometric shapes such as balls, halfspaces,
simplices, ellipsoids, are semi-algebraic sets. The complexity of a semi-algebraic set is the sum
of the number of polynomial inequalities and their maximum degree. See [6] for a discussion
on semi-algebraic sets. Our results extend to semi-algebraic ranges of constant complexity.
Let Z = {(Γ1, s1), . . . , (Γn, sn)} be a training set where each Γi is a semi-algebraic set of
constant complexity. Let Γ = {Γ1, . . . ,Γn}. It is known that A(Γ) has nO(d) complexity,
that for any weight function ω : Γ→ [0, 1], the deepest point can be computed in O(nd) time,
and that a random sample of size O(δ−2 log ϕ−1) is a δ-approximation with probability at
least 1− ϕ, [2, 3]. With these primitives at our disposal, the algorithm in Section 3 can be
extended to this setting. Omitting all the details we obtain the following.

▶ Theorem 11. Let Z = {z1, . . . , zn} be a set of training samples such that zi = (Γi, si),
where Γi is a semi-algebraic set of constant complexity and si ∈ [0, 1] is its selectivity. Given
the parameters δ ∈ (0, 1) and p ∈ {1, 2,∞}, a discrete distribution D̃ of size O(δ−2) can
be computed in O((n+ δ−2 log2 n+ δ−2d logn)δ−2 logn log δ−1) time such that errp(Z, D̃) ≤
α∗

p(Z) + δ with probability at least 1− 1/nO(1).

5 Hardness Results

5.1 NP-Completeness

Let Selectivity be the decision problem of constructing a distribution with small size
and minimum error. More specifically, let Z = {(R1, s1), ..., (Rn, sn)} be the input training
set consisting of n rectangles R1, . . . , Rn in Rd along with their selectivities s1, . . . , sn,
respectively. Let k be a positive natural number and ε ∈ [0, 1] be an error parameter. The
Selectivity problem asks if there exists a distribution D ∈ Dk such that errp(D,Z) ≤ ε.
In the full version of the paper [1], we prove the following theorem.

▶ Theorem 12. The Selectivity problem is NP-Complete, even for d = 2.

The NP-hardness proof is based on a gadget used by [37] to prove the NP-hardness of
the Square Cover problem: given a set R of n squares, and a parameter k, decide if there
are k points S ∈ R2 such that R ∩ S ̸= ∅ for each R ∈ R. We prove Theorem 12 by reducing
3 -SAT to the Selectivity problem in R2. Let (X,C) be the 3 -SAT formula consisting
of variables x1, ..., xn and clauses C1, ..., Cm. We construct a set of weighted axis-aligned
rectangles Z and a number k such that (X,C) is satisfiable if and only if there exists a
discrete distribution D of size k such that errp(D,Z) = 0.

In the above reduction, we construct a training set Z such that there exists a D ∈ Dk

with errp(D,Z) = 0 if and only if the formula is satisfiable. This construction implies a
stronger result. Given Z and k, let α∗

p,k = minD∈Dk
errp(D,Z).

▶ Corollary 13. Let f : N −→ N be a monotonically non-decreasing function. Assuming
P ̸= NP , there is no polynomial-time algorithm that given a training set Z and an input
parameter k ∈ N can compute D ∈ Dk such that errp(D,Z) ≤ f(n)α∗

p,k(Z).
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5.2 Conditional lower bounds

A natural question to ask is whether given Z and k, a discrete distribution of size at most
g(n)k can be computed in polynomial time such that the error is at most f(n)α∗

p,k, where
f(n), g(n) are monotonically non-decreasing non-negative functions. We prove conditional
lower bounds for this problem, assuming the FPT ≠ W [1] conjecture; see [14] for details of
this conjecture.

Consider the following problem, which we refer to as Selectivity+: given a training
set Z of n rectangles in Rd along with their associated selectivities and a parameter k,
compute a discrete distribution D ∈ D such that |D| ≤ g(n)k and errp(D,Z) ≤ f(n)α∗

p,k,
where g : N −→ N and f(n) : N −→ N are any functions that satisfy f(n) ≥ 1, g(n) ≥ 1, and
g(n) · k = O(n).

We prove a conditional lower bound on Selectivity+ by a reduction from the coverage
problem: given a set R of n rectangles in Rd and a box B, does the union of rectangles in R
cover B, i.e. B ⊆

⋃
R∈R

R. The coverage problem is known to be W [1]-Hard, therefore, there

cannot be an algorithm for coverage with running time h(d)nO(1), where h : N→ N, under
the FPT ̸= W [1] conjecture.

▶ Theorem 14. The Selectivity+ problem cannot be solved in h(d)nO(1) time, where h is
any computable function h : N→ N, under the FPT ̸= W [1] conjecture.

Proof. Suppose on the contrary there is an algorithm A for Selectivity+ that runs in
h(d)nO(1) time.

We show a reduction from the coverage problem. Let R, B, as defined above, be an
instance of the coverage problem. For each rectangle Ri ∈ R, we construct zi = (Ri, 0), i.e.,
rectangle Ri with selectivity 0. Finally, we add zn = (B, 1). We set k = 1. The running time
to construct the instance of the Selectivity+ problem is O(d · n). We then run A on this
instance.

We first consider the case when the input is a No instance of the coverage problem.
This implies that there exists a point q ∈ Rd such that q ∩ B ≠ ∅ and q

⋂
(
⋃

Ri∈R Ri) = ∅.
Consider the distribution D = {(q, 1)}. Notice that errp(D,Z) = 0 = α∗

p,1 = α∗
p,k = f(n)α∗

p,k

because q lies only inside B, where B has selectivity 1 and all other rectangles Ri have
selectivity 0. By definition of Selectivity+, A in this instance must return a distribution
D such that errp(D,Z) = 0.

In the Yes instance of the coverage problem, if q ∈ B then q ∈
⋃

Ri∈R Ri. Hence, if we
add any point q ∈ B in distribution D with positive probability then errp(D,Z) > 0 because
the selectivity of every rectangle in R is 0. On the other hand, the selectivity of B is 1
so if we do not add any point q ∈ B in D with positive probability then errp(D,Z) > 0.
In any case, f(n)α∗

p,k ≥ errp(D,Z) > 0. Actually, it is easy to verify that for any D ∈ D,
errp(D,Z) > 1

2n2 for any p ∈ {1, 2,∞}. Thus, f(n)α∗
p,k >

1
2n2 > 0.

Overall, let D be the distribution returned by A. Given D, we can compute errp(D,Z)
in O(n2) time, because |D| ≤ g(n)k ≤ n. If errp(D,Z) = 0 then the solution to the coverage
problem in the original instance is No. Otherwise, if errp(D,Z) > 0, then the solution to
the coverage problem in the original instance is Yes.

We thus obtain a h(d)nO(1) time algorithm for the coverage problem, which is a contra-
diction under the FPT ̸= W [1] conjecture. Hence, A cannot run in h(d)nO(1) time under the
FPT ̸= W [1] conjecture, as claimed. ◀
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The above theorem implies there is no near-linear algorithm for Selectivity+ under the
FPT ̸= W [1] conjecture. In fact, we can prove a stronger conditional lower bound. We define
the Approx-Selectivity problem: given a training set Z of n rectangles in Rd along with
their associated selectivities and a parameter δ > 0, compute a D ∈ D such that |D| ≤ 1

δ3

and errp(D,Z) ≤ f(n)α∗
p,1 + δ, where f(n) : N −→ N is any function that satisfies f(n) ≥ 1.

The requirements for Approx-Selectivity are considerably weak. First, we are allowed
to use more points than our algorithm i.e. 1

δ3 points. Second, we only need to compete with a
multiplicative factor of the best solution using just one point i.e. f(n)α∗

p,1. It turns out that
for small δ, the conditions of the Approx-Selectivity become the same as Selectivity+
and hence the proof technique for Theorem 14 also proves the following:

▶ Theorem 15. The Approx-Selectivity problem cannot be solved in h(d)
(
nO(1)+δ−O(1)+

nO(1)δ−O(1)) time, where h is any computable function h : N→ N, under the FPT ≠ W [1]
conjecture.

Proof. Similar to the proof of Theorem 14, we map an instance of the coverage problem to
an instance of Approx-Selectivity, picking δ = 1

8n2 . The same argument shows that in
the No instance an algorithm for approx-selectivity returns a distribution with error at
most 1

8n2 while in the Yes instance, it returns a distribution with error at least 1
2n2 . ◀

▶ Remark. Notice that both theorems are based on reductions from the coverage problem.
Chan [8] proved that the coverage problem is W [1]-hard with respect to dimension d, showing
that the existence of a d-clique in a graph with

√
n vertices can be reduced to the coverage

problem with O(n) boxes in Rd. Thus, the time complexity of the d-clique problem is
intimately related to our problem. If fast matrix multiplication is allowed, the best known
algorithm for the d-clique problem requires ω(nd/3) time [39].

Due to inefficiencies of fast matrix multiplication, there is a lot of interest in solving
the clique problem using combinatorial algorithms (i.e. without fast matrix multiplication).
However, the best current combinatorial algorithm for the d-clique problem in general
graphs requires Ω(nd/ polylog(n)) running time. This lower bound implies that an o(nd/2−η)
time combinatorial algorithm for the Selectivity+ problem or a o(n + δ−d/2+η) time
combinatorial algorithm for the the Approx-Selectivity problem, for any η > 0, is unlikely.
Such an algorithm would lead to a o(nd−η) combinatorial algorithm for d-clique, solving a
major open problem in graph theory.

6 Related Work

Selectivity Estimation. Selectivity estimation techniques can be broadly classified into
three regimes: query-driven, data-driven, and hybrid. Most literature focuses on orthogonal
range queries.

Query-driven methods: These methods derive selectivity estimates based on previous
queries and their results. They do not require access to the underlying data distribution.
Methods falling under this category include DQM [24] and the query-driven histogram
techniques such as STHoles [7], Isomer [45], and QuickSel [40]. They construct models or
histograms using results from previous queries and apply these models to estimate selectivity
for new queries.

Data-driven methods: These methods, on the other hand, derive selectivity estimates
from the underlying data distribution. They sample data and build statistical models that
capture the data distribution, which are then used for selectivity estimation. There is long
history along this direction, but some recent examples in this category include Naru [49],
DQM-D [35], and DeepDB[26].
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Hybrid methods: These methods take into account both the query workload and the
underlying data distribution. They not only model the data distribution but also incorporate
query feedback to refine the model over time. Examples of such methods include MSCN [28]
and LW [15], which utilize both data and query features in a regression-based framework for
selectivity estimation. See [47] for a detailed literature review.

Our method is query-driven, but is unique because none of query-driven and data-driven
models above offered theoretical guarantees on the learnability of the functions or their
learning procedures.

Multiplicative-Weights-Update (MWU) method. The MWU method has been independ-
ently rediscovered multiple times and has found applications in several areas including
machine learning [17], game theory [18, 20], online algorithms [16], computational geometry
[12], etc. In the context of optimization problems, there is a rich body of work on using MWU
and related techniques to efficiently solve special classes of LPs and SDPs [30, 42, 50, 4].
The technique we use in this paper is an adaption of the one used by [42] to solve packing
and covering LPs. See also [5] for a detailed overview. The MWU method has also been
used to implicitly solve linear programs. A classical example is the multi-commodity flow
problem where the describing the LP explicitly requires exponential number constraints [19].
Furthermore, there has been a lot of work related to implicitly solving special classes of LPs in
computational geometry or combinatorial optimization using the MWU method [10, 12, 13],
the primal dual method [48], or the ellipsoid method [22, 21].

Despite the geometric nature of our problem, to the best of our knowledge, all previous
(geometric) techniques that implicitly solve an LP do not extend to our problem. In particular,
in [12] the authors study various geometric packing and covering problems, such as the
weighted set cover of points by disks, and the maximum weight independent set of disks,
using the MWU method. The main difference from our setting is that for all problems they
study, the matrix A and the vector b are non-negative. One of the main challenges in our
setting is that we have to deal with both positive and negative values in A and b. It is not
clear how their algorithms can be extended to our setting. For example, for the maximum
weight independent set problem, they also describe an efficient algorithm to compute an
approximately deepest point. However, their algorithm works in 2 dimensions while all ranges
have positive weights. In our setting, we have ranges in any constant dimension d with both
positive and negative weights.

7 Conclusion and future work

In this work, we studied the problem of finding the data distribution to fit a query training
set consisting of axis-aligned rectangles (representing orthogonal range selectivity queries)
with the smallest error. While the problem has been studied in the past, only an expensive
Ω(nd) algorithm was known for constructing a distribution of size O(nd). We showed that the
decision problem is NP-complete even for d = 2. Based on a standard complexity conjecture,
we also gave conditional lower bounds showing that the exponential dependency on d is
inevitable for additive or relative approximations. On the positive side, for the ℓ1 empirical
error, we gave a O((n+ δ−d)δ−2 polylogn) time algorithm that returns a data distribution
of size O(δ−2) with additive error δ. Furthermore, we showed that our algorithm for ℓ1 error
can be extended to ℓ2 and ℓ∞, as well as any type of ranges as long as they are algebraic
sets of constant complexity. In view of our hardness results, significant improvements to our
upper bounds are unlikely.
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There are some interesting directions following from this work. What properties should
the data and query distribution satisfy so that the running time is polynomial in d as well?
In addition to selectivity queries, another interesting line of work is to study the construction
of distributions for other types of database queries such as aggregation and joins.
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