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Abstract
Information inequalities appear in many database applications such as query output size bounds,
query containment, and implication between data dependencies. Recently Khamis et al. [14] proposed
to study the algorithmic aspects of information inequalities, including the information inequality
problem: decide whether a linear inequality over entropies of random variables is valid. While the
decidability of this problem is a major open question, applications often involve only inequalities
that adhere to specific syntactic forms linked to useful semantic invariance properties. This paper
studies the information inequality problem in different syntactic and semantic scenarios that arise
from database applications. Focusing on the boundary between tractability and intractability, we
show that the information inequality problem is coNP-complete if restricted to normal polymatroids,
and in polynomial time if relaxed to monotone functions. We also examine syntactic restrictions
related to query output size bounds, and provide an alternative proof, through monotone functions,
for the polynomial-time computability of the entropic bound over simple sets of degree constraints.
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1 Introduction

Information inequalities are linear constraints on entropies of random variables. Often
referred to as the laws of information, these inequalities describe what is not possible in
information theory. More than three decades ago, Pippenger asked whether all such laws
follow from the polymatroidal axioms [25], depicted in Fig. 1. The polymatroidal axioms
are also known to be equivalent to the non-negativity of Shannon’s information measures,
which consist of entropy, conditional entropy, mutual information, and conditional mutual
information. The inequality constraints derivable from the polymatroidal axioms are hence
called Shannon inequalities. Pippenger’s question was famously answered in the negative by
Zhang and Yeung who were the first to find a non-Shannon information inequality that is
valid over entropies [28]. Zhang and Yeung’s proof was based on a novel innovation, identified
as the copy lemma in [4], which still today remains essentially the only tool to establish novel
non-Shannon inequalities [8].

Constraints on entropies are known to have many applications in database theory. Lee
[19, 20] observed already in the 80s that database constraints can alternatively be expressed
as equalities over information measures. More recently, the implication problem for data
dependencies has been connected to validity of information inequalities [13], information
theory has been used to analyze normal forms in relational and XML data models [1], and
query containment for conjunctive queries under bag semantics – a notoriously difficult
problem to study – has been proven to be equivalent in certain special cases to checking
information inequalities involving maximum [15]. Perhaps the most fruitful application has
been the use of information inequalities to obtain tight output size bounds for database
queries [2, 6, 7, 11, 16, 17], and the subsequent development of worst-case optimal join
algorithms that run in time proportional to these bounds [16, 17, 23, 24].
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19:2 Information Inequality Problem over Set Functions

Recently Khamis et al. [14] initiated the study of the algorithmic properties of information
inequalities. The most central problem, called the information inequality problem, is to
decide whether a given information inequality is valid over all entropic functions. The
decidability of this problem is a major open question in the foundations of information
theory. It was shown in [14] that checking the validity of monotone Boolean combinations
of information inequalities (including the aforementioned max-inequalities) is co-recursively
enumerable (co-r.e.). Since the implication problem for conditional independence implication
is undecidable [18, 21], validity for general Boolean combinations of information inequalities
is known to be undecidable. While the focus of [14] was on generalizations of the information
inequality problem, this paper shifts attention to simplifications of the problem. Many
applications, such as implication problems or query output size bounds, are related to
information inequalities that adhere to specific syntactic forms. These syntactic forms are
also often linked to semantic invariance properties which render the associated problems
computable and sometimes even tractable. Identifying factors that make the information
inequality problem either easy or hard is thus a task that can prove beneficial in multiple
application scenarios.

This paper examines the information inequality problem with respect to different syntactic
restrictions and semantic settings, focusing in particular on the boundary between tractable
and intractable cases. We demonstrate that different factors, including the influence of the
coefficients and the expressiveness of the information measures, give rise to coNP-completeness
with respect to normal polymatroids (the subset of entropic functions associated with a non-
negative I-measure [13, 27]), and disagreement between normal polymatroids and entropic
functions. Our findings also reveal that when we relax the semantics to monotone functions
or restrict it to modular functions (an implicit result in existing literature), the information
inequality problem can be solved in polynomial time. Additionally, we demonstrate that this
problem becomes polynomial-time solvable when we impose syntactic restrictions linked to
cases where computing the entropic query output size bound is known to be in polynomial
time. Finally, we identify a syntactic restriction over which monotone and entropic functions
agree, leading to an alternative proof for the previously established fact [11] that the entropic
bound is polynomial-time computable over simple sets of degree constraints.

2 Preliminaries

We write [n] for the set of integers {1, . . . , n}. We usually use boldface letters to denote sets.
For two sets X and Y , we write XY to denote their union. If A is an individual element,
we sometimes write A instead of {A} to denote the singleton set consisting of A.

2.1 Relational databases
Fix disjoint countably infinite sets Var and Val of variables and values. Each variable
A ∈ Var is associated with a subset of Val, called the domain of A, denoted Dom(A).
For a vector X = (A1, . . . , An) of variables, we write Dom(X) for the Cartesian product
Dom(A1) × · · · × Dom(An). Given a finite set of variables X, an X-tuple is a mapping
t : X → Val such that t(A) ∈ Dom(A). We write Tup(X) for the set of all X-tuples. For
Y ⊆ X, the projection t[Y ] of t on Y is the unique Y -tuple that agrees with t on X. A
relation R over X is a subset of Tup(X). The variable set X is also called (relation) schema
of R. We sometimes write R(X) instead of R to emphasize that X is the schema of R. For
Y ⊆ X, the projection of R on Y , written R[Y ], is the set of all projections t[Y ] where
t ∈ R. A database is a finite collection of relations D = {RD1 (X1), . . . , RDn (Xn)}. We assume
in this paper that each relation is finite.
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2.2 Information theory
Let X be a random variable associated with a finite domain D = Dom(X) and a probability
distribution p : D → [0, 1], where

∑
a∈D p(a) = 1. The entropy of X is defined as

H(X) := −
∑
x∈D

p(x) log p(x). (1)

Entropy is non-negative and does not exceed the logarithm of the domain size: 0 ≤ H(X) ≤
log |D|. In particular, H(X) = 0 if and only if X is constant (i.e., p(a) = 1 for some a ∈ D),
and H(X) = log |D| if and only if X is uniformly distributed (i.e., p(a) = 1/|D| for all
a ∈ D).

Fix n ≥ 1 and consider a set of variables X = {X1, . . . , Xn}. We will use α for subsets of
[n], and write Xα := {Xi | i ∈ α}. In the following, we list some common classes of vectors
h = (hα)α⊆[n] ∈ R2n . Note that such vectors h can alternatively be conceived as functions
from P(X) to R, called set functions. Hence we often write h(Xα) to denote the element hα
of h, and from now on refer to h as a function. We assume h(∅) = 0 for all functions h. For
a list of functions h1, . . . ,hn, the function c1h1 + · · ·+ cnh is called a positive combination
(resp. non-negative combination) of h1, . . . ,hn if ci > 0 (resp. ci ≥ 0) for all i ∈ [n].

Polymatroids. If h satisfies the polymatroidal axioms (Fig. 1), it is called a polymatroid.
The set of polymatroids over n is denoted Γn.

1. h(∅) = 0
2. h(X ∪ Y ) ≥ h(X) (monotonicity)
3. h(X) + h(Y ) ≥ h(X ∩ Y ) + h(X ∪ Y ) (submodularity)

Figure 1 Polymatroidal axioms.

Monotone functions. If h satisfies the first two axioms of the polymatroidal axioms, we
call it a monotone function, and denote the set of monotone functions over n by Monn.

Entropic functions. Consider a relation R over a set X = {Xi}ni=1 of variables with finite
domains, associated with a probability distribution p : R → [0, 1]. Each subset Y ⊆ X

can be viewed as a random variable with domain D = R[Y ] and probability distribution
pY (t) =

∑
t′∈R,t′[Y ]=t p(t′). In particular, the subset Y is thus associated with an entropy

H(Y ). The function h = (H(Xα))α⊆[n] arising from p in this way is called an entropic
function. Each entropic function is a polymatroid, but in the converse direction there are
polymatroids which are not entropic functions. In general entropic functions satisfy many
additional constraints which do not follow by the polymatroidal axioms alone. However, it
is not known whether there exists any effective procedure to check that a given function is
entropic. The entropic region Γ∗

n ⊆ R2n consists of all entropic functions over n. The almost
entropic region Γ∗

n is defined as the topological closure of Γ∗
n.

Normal polymatroids and step functions. For U ⊆X, the function

sU (W ) =
{

0 if W ⊆ U ;
1 otherwise;

(2)
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19:4 Information Inequality Problem over Set Functions

is called a step function. We also use the notation sV to denote the step function sX\V . Note
that the step function sV is the entropic function arising from the uniform distribution of
two tuples t and t′ such that t(A) ̸= t′(A) if and only if A ∈ V . The set of all step functions
over n is denoted Sn. A normal polymatroid is a positive combination of step functions, and
the set of all normal polymatroids over n is denoted Nn.

Modular functions. A polymatroid h is called modular if the submodularity inequality
(Fig. 1) is an equality: h(X) + h(Y ) = h(X ∩ Y ) + h(X ∪ Y ). Alternatively, a function
h is modular if it is non-negative and such that h(X) =

∑
Y ∈X h(Y ). The set of modular

functions over n is denoted Modn. Modular functions can alternatively be defined in terms of
basic modular functions, which are step functions s{A} defined in terms of singleton sets {A}.
We denote the set of all basic modular functions over n by Bn. A function f is a modular
function if and only if it is a positive combination of basic modular functions.

By continuity of Eq. (1), and since there are no restrictions on domain sizes, ch is entropic
for c > 0 and step functions h. Furthermore, if h and h′ are entropic functions defined by
probability distributions p and p′ over some relation R, the distribution p′′(t⊗ t′) := p(t)p′(t′)
on the direct product {t⊗ t′ | t, t′ ∈ R}, (t⊗ t′)(X) := (t(X), t′(X)), defines h + h′. This
shows that the entropic region is closed under multiplication by positive integers, even though
in general it is not closed under positive scalar multiplication [27]; in other words, Γ∗

n is
not a cone. We conclude that both modular and normal polymatroids are entropic. In fact,
Kenig and Suciu [13] have shown that the normal polymatroids are exactly those entropic
functions that have a non-negative I-measure [27]. The introduced set functions are related
to one another in the following way:

Bn ⊆ Sn⊆ ⊆

Modn ⊆ Nn ⊆ Γ∗
n ⊆ Γ∗

n ⊆ Γn ⊆ Monn.

If n ≥ 4, then all the above subset relations are strict.
We will repeatedly refer to the following Shannon’s information measures (over some h).
Conditional entropy: h(Y |X) := h(XY )− h(X).
Mutual information: Ih(X; Y ) := h(X) + h(Y )− h(XY ).
Conditional mutual information: Ih(Y ; Z |X) := h(XY ) + h(XZ)− h(X)− h(XY Z).

We may drop the subscript h if it is clear from the context.
An information inequality is an expression ϕ of the form

c1h(X1) + · · ·+ ckh(Xk) ≥ 0, (3)

where ci ∈ R, and Xi are sets of variables from {Xj}nj=1. We sometimes write ϕ(X) instead
of ϕ to emphasize that the set of variables appearing in ϕ is X. For V ⊆ R2n , we say that ϕ
is valid over V , denoted V |= ϕ, if it holds true for all functions h ∈ V .

▶ Example 1. Suppose X and Y are independent and uniformly either 0 or 1, and let
Z = X + Y (mod 2). This joint distribution can be constructed by taking the uniform
distribution over the relation R in Tab. 1. Let h be the entropic function arising from this
distribution. Let ϕ be an information inequality of the form Ih(X,Y, Z) ≥ 0 where

Ih(X,Y, Z) := h(XY Z)− h(XY )− h(XZ)− h(Y Z) + h(X) + h(Y ) + h(Z) (4)

is the mutual information of variables X,Y, Z. We observe that ϕ is not true for h because
Eq. (4) evaluates to −1. In particular, this means that Γ∗

3 ̸|= ϕ. On the other hand, ϕ is
true if we interpret h as any step function sU , U ⊆ {X,Y, Z}. Since normal polymatroids
are positive combinations of step functions, this entails N3 |= ϕ.
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Table 1 The relation R representing X + Y ≡ Z (mod 2).

R X Y Z

0 0 0
0 1 1
1 0 1
1 1 0

This paper focuses on the information inequality problem (IIP), introduced in [14], which is
to decide whether a given information inequality is valid over Γ∗

n. This problem is co-r.e. [14],
as the continuity of the entropy (1) and the density of the rationals in the reals imply that
enumeration of all rational distributions will eventually lead to a counterexample of (3),
if one exists at all. We introduce the following relativized version of IIP. Fixing sets of
functions Fn ⊆ R2n , n ≥ 1, and a set C of information inequalities, the information inequality
problem over Fn w.r.t. C (IIPFn

(C)) is to determine whether a given information inequality
ϕ ∈ C over n variables is valid over Fn. We leave out Fn (resp. C) if Fn = Γ∗

n (resp. C
contains all information inequalities). Note that an inequality ϕ is valid over the entropic
region Γ∗

n if and only if it is valid over the almost entropic region Γ∗
n. To see why, V |= ϕ

is tantamount to V ⊆ Cϕ, where Cϕ = {h ∈ R2n | h |= ϕ}, and by taking closures on both
sides, Γ∗

n ⊆ Cϕ entails Γ∗
n ⊆ Cϕ. More generally, validity over Γ∗

n and Γ∗
n disagrees with

respect to Boolean combinations of information inequalities [12, 14]. Since our focus is on
the information inequality problem alone, we now drop the almost entropic region Γ∗

n from
discussions.

Before proceeding, we shortly discuss input representation. We assume that the coefficients
are rational. Note that in [14] the inputs of IIP and other related problems are vectors
c ∈ Z2n representing the coefficients in Eq. (3). In this paper, we consider the input
as a sequence ((c1,X1), . . . , (ck,Xk)), which is potentially exponentially shorter than the
aforementioned coefficient vector c. This distinction is not important if one is solely interested
in decidability, as is the case in [14]. Since our aim is to chart the tractability boundary for
different information inequality problems, we opt for the latter more concise representation.
Furthermore, we assume that the coefficients themselves are encoded in binary.

We begin our analysis from intractable examples, and then move on to discuss tractable
cases and their connections to query output bounds.

3 Intractable cases

Kenig and Suciu [13] establish an interesting connection between information inequalities
and the implication problem for database dependencies. Fix a relation schema X of n
variables. An expression of the form σ = (V ; W | U) is called a conditional independence
(CI). If UV W = X, σ is specifically called a saturated conditional independence (SCI), and if
V = W , it is called a conditional and shortened as (V | U). Lee [19] observed that an SCI of
the form (V ; W | U) holds true on the uniform distribution of a database relation R(UV W )
if and only if R satisfies the corresponding multivalued dependency (MVD) U ↠ V . An
analogous correspondence can be drawn between a conditional (V | U) and the functional
dependency (FD) U → V . The results in [13] entail that if Σ is a set of SCIs and conditionals,
and τ is a conditional, then for any V such that Nn ⊆ V ⊆ Γn,

V |=
∑
σ∈Σ

h(σ) ≥ h(τ) ⇐⇒ Σ |= τ, (5)

ICDT 2024



19:6 Information Inequality Problem over Set Functions

where the right-hand side denotes implication between the corresponding MVDs and FDs
over database relations. Whether or not

∑
σ∈Σ h(σ) ≥ h(τ) is valid over V can be thus

decided in polynomial time, because the implication problem for MVDs and FDs is known
to be in polynomial time [3].

There are at least two ways to make the inequality in Eq. (5) harder. One possibility is
to allow more complex information measures, much like how one can allow more expressive
database dependencies in the implication problem. For instance, once the aforementioned
syntactic restrictions are lifted, the implication problem for CIs becomes undecidable in
both database theory (where CIs are known as embedded multivalued dependencies) and
probability theory [10, 18, 21]. Another possibility, which does not seem to have a counterpart
in the implication problem, is to permit coefficients distinct from 1. Next, we consider both
of these strategies in isolation, considering first complex information measures.

The mutual information of two random variables generalizes to the multivariate mutual
information over a set of random variables S. For a general set function h, the multivariate
mutual information is given as

Ih(S) =
∑
T ⊆S

(−1)|T |−1h(T ). (6)

Again, we drop the subscript whenever this is possible without confusion. A particular
case of the multivariate mutual information is the three-variate one, presented in Eq. (4).
Multivariate mutual information is non-negative on step functions, but, as discussed in
Example 1, it can be negative on entropic functions. Next we show that solving inequalities
containing three-variate mutual informations and conditional entropies can already be coNP-
hard, even if each coefficient is exactly one. The result, proven by a reduction from monotone
satisfiability, holds for step functions but does not extend to entropic functions.

A conjunctive normal form Boolean formula ϕ is called monotone if each clause in ϕ

contains only negative or only positive literals. The monotone satisfiability problem is the
problem of deciding whether such a formula ϕ has a satisfying truth assignment. This
problem is well known to be NP-complete [5], and it remains NP-complete even if each clause
consists of exactly three distinct literals [22]. Let us denote this restriction of the problem by
3DMONSAT. An instance of 3DMONSAT can be represented as a pair ϕ = (ϕ+, ϕ−), where
ϕ+ (resp. ϕ−) is the set of all positive (resp. negative) clauses of ϕ, and each clause is a set
of exactly 3 variables.

▶ Theorem 2. The information inequality problem over normal polymatroids is coNP-
complete.

Proof. Since normal polymatroids are positive combinations of step functions, and inequalities
are preserved under positive combinations, the information inequality problems over step
functions and normal polymatroids coincide. The upper bound is thus obvious. For the
lower bound, we present a reduction from the complement of 3DMONSAT to the information
inequality problem over step functions. Let ϕ = (ϕ+, ϕ−) be an instance of 3DMONSAT.
Suppose X is the set of variables appearing in ϕ. We may assume without loss of generality
that every satisfying assignment must map at least one variable to 1.

Define an information inequality∑
C∈ϕ+

h(X | C) +
∑

C∈ϕ−

I(C) ≥ h(X), (7)

where I(C) is the three-variate mutual information (4) over the variables of C, and h(X | C)
is the conditional entropy of X given C.
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Each subset Y ⊆X determines a unique step function sY (Eq. 2) and a unique Boolean
assignment

mY (A) =
{

1 if A ∈ Y ,

0 otherwise.

We claim that mY satisfies ϕ if and only if Eq. (7) is false for h = sY .
Assume first that mY satisfies ϕ. By our assumption some variable is mapped to 1, which

means that Y is non-empty. In particular, sY (X) = 1. For any positive clause C ∈ ϕ+, we
have C ∩ Y ̸= ∅, and consequently sY (X | C) = sY (X) − sY (C) = 0. For any negative
clause C ∈ ϕ−, we have C ̸⊆ Y , in which case it is straightforward to verify that I(C) = 0.
We conclude that Eq. (7) is false for h = sY .

Assume then that mY does not satisfy ϕ. If sY (X) = 0, then Eq. (7) is trivially
true for h = sY by the non-negativity of the conditional entropy and the multivariate
mutual information on step functions. Suppose then sY (X) ̸= 0, in which case sY (X) = 1.
Assuming mY does not satisfy some C ∈ ϕ+, we have C ∩ Y = ∅ implying sY (X | C) = 0.
Assuming mY does not satisfy some C ∈ ϕ−, we have C ⊆ Y implying I(C) = 1. We
conclude that, for h = sY , the left-hand side of Eq. (7) is at least 1, and thus the inequality
holds. This concludes the proof of the claim.

The claim implies that ϕ is not satisfiable if and only if Eq. (7) is valid over step functions.
The theorem statement follows, since the reduction is clearly polynomial. ◀

Observe that Eq. (7) is syntactically similar to the inequality in Eq. (5) in that each coefficient
is exactly one. The difference comes from allowing three-variate mutual information, whereas
the inequality in Eq. (5) allows only specific forms of conditional mutual information. The
above proof moreover establishes strong coNP-completeness, because the problem remains
coNP-complete even under unary encoding of the coefficients.

Alternatively, the preceding theorem can be proven by reducing 3-colorability to inequal-
ities that allow the coefficients to grow while using only conditionals. Let G = (V ,E) be a
graph consisting of a vertex set V and a set of undirected edges E. For each node A ∈ V ,
introduce variables Ar, Ag, Ab representing possible colors of A. Assume that the graph
contains n vertices. We define∑
c∈{r,g,b}
A∈V

h(Ac)+
∑

c,d∈{r,g,b}
c̸=d
A∈V

(2n+1)h(V | AcAd)+
∑

c∈{r,g,b}
{A,B}∈E

(2n+1)h(V | AcBc) ≥ (2n+1)h(V ).

(8)

Then G is three-colorable if and only if Eq. (8) is not valid over step functions (Appendix A).
This way of proving Theorem 2 establishes also strong coNP-completeness, since each
coefficient is bounded by a polynomial in the input size. It is necessary to allow coefficients
other than 1 in Eq. (8). Otherwise, the equivalence (5) holds, meaning that the validity
problem is equivalent to the implication problem for FDs, which is in polynomial time.

▶ Example 3. Eq. (8) behaves differently for step functions and entropic functions, even
though both functions are non-negative on all the occurring information measures; in contrast,
the proof of Theorem 2 relied on three-variate mutual information which is only guaranteed
to be non-negative for step functions but can be negative for entropic functions. For a
concrete example, suppose G is the complete graph of four vertices A,B,C,D. Since G is
not three-colorable, Eq. (8) is valid over step functions. For the entropic function arising
from the uniform distribution of Tab. 2, however, Eq. (8) is false.

ICDT 2024



19:8 Information Inequality Problem over Set Functions

Table 2 Three-tuple counterexample.

Ar Bg Cb Ag Bb Cr Ab Br Cg Dr Dg Db

0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0 1 1 1
1 1 1 0 0 0 0 0 0 2 2 2

4 Tractable cases

We have seen that intractable inequalities arise from (i) complex information measures
even if coefficients are restricted to 1, (ii) more simple information measures if coefficients
are allowed to grow, and (iii) inequalities where the negative coefficients are associated
with sets of size at most two. In this section we consider restrictions that give rise to
inequalities solvable in polynomial time. We are specifically interested in inequalities of the
form

∑
σ∈Σ wih(σ) ≥ h(X) where wi ≥ 0, and Σ is a set of conditionals. Such inequalities

make appearance when information theory is applied to obtain tight upper bounds for query
output sizes. Since inequalities of the form (8) are intractable, imposing syntactic restrictions
on Σ becomes necessary.

We next introduce information-theoretic query upper bounds, after which we move on
to discuss the complexity of related syntactic restrictions and semantic modifications of the
information inequality problem.

4.1 Query upper bounds
Fix a relation R over a variable set X. Given vectors U ,V of variables from X, and values
u ∈ Dom(U), the V -degree of U = u in R, denoted degR(V | U = u), is the number of
distinct values of V that occur in R together with the value u of U . The max-V -degree of
U , denoted degR(V | U) is the maximum V -degree of U = u over all u. Expressions of the
form degR(σ) ≤ B (omitting the parentheses of σ), where σ is a conditional and B ≥ 1, are
usually called degree constraints. Note that degR(V | U) = 1 if and only if R satisfies the
functional dependency U → V . A Σ-inequality is an information inequality ϕΣ(X,w) of the
form∑

σ∈Σ
wσh(σ) ≥ h(X), (9)

where w = (wσ)σ∈Σ is a sequence of non-negative reals.
Fix a self-join-free full conjunctive query, i.e., a quantifier-free first-order formula of the

form

Q(X) = R1(X1) ∧ · · · ∧Rn(Xn),

where Ri(Xi) are relational atoms over distinct relation names Ri, and variable sequences
Xi such that X lists all the variables occurring in them. Note that this incurs a slight abuse
of notation, because Ri(Xi) could also refer to a relation Ri over Xi. We also blur the
distinction between a set and a sequence of variables Xi, and say that a set of conditionals
Σ is guarded by Q if every σ = (V | U) from Σ is associated with a relation name Ri, called
the guard of σ and denoted Rσ, such that UV ⊆Xi. A sequence of the form B = (Bσ)σ∈Σ,
Bσ ≥ 1, form the degree values associated with Σ. A database D containing relations Rσ,
σ ∈ Σ, satisfies a conditionals-values pair (Σ,B), written D |= (Σ,B), if degRσ

(σ) ≤ Bσ for
all σ ∈ Σ.
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For a set S ⊆ R2n , and a set of conditionals Σ guarded by Q(X) and associated with
values B, define the bound of Q w.r.t. Σ, S,B as

BoundS(Q,Σ,B) := inf
w≥0

S|=ϕΣ(X,w)

∏
σ∈Σ

Bwσ
σ .

The bounds BoundModn ,BoundNn ,BoundΓ∗
n
,BoundΓn are often referred to as the modular

bound, the coverage bound, the entropic bound, and the polymatroid bound. Writing Q(D)
for the output of Q on a database D = {RD1 (X1), . . . , RDn (Xn)}, one can prove that the
entropic bound is valid: |Q(D)| ≤ BoundΓ∗

n
(Q,Σ,B) whenever D |= (Σ,B). Since Γ∗

n ⊆ Γn,
the entropic bound is less than or equal to the polymatroid bound. The entropic bound is
asymptotically tight, but it is open whether or not the bound is computable. The polymatroid
bound can be attained by solving a linear program of exponential size, but it is not tight.
For a derivation of the entropic bound and a discussion on the asymptotic tightness (or lack
thereof) of these bounds, we refer the reader to [26].

Fortunately, there are well-behaving syntactic restrictions for sets of conditionals Σ, some
of which are presented next.

For σ = (V | U), where U = ∅, degree constraints of the form degR(σ) ≤ B are called
cardinality constraints. The AGM bound [2] can be viewed as the entropic bound over a
specific set of cardinality constraints.
Σ is called acyclic if the following directed graph is acyclic: the vertices are the variables
in X, and there is an edge from A to B if A ∈X and B ∈ Y \X, for some (Y |X) ∈ Σ.
Σ is called simple if |U | ≤ 1 for each (V | U) ∈ Σ.

The entropic bound is polynomial-time computable in all of these cases. Let us call the Σ-
inequality (9) acyclic (resp. simple) if the underlying set Σ is acyclic (resp. simple). The sets
of conditionals underlying cardinality constraints are vacuously acyclic, and validity for acyclic
Σ-inequalities coincides for modular functions, entropic functions, and polymatroids [23].
Consequently, the entropic bound becomes computable in polynomial time through a linear
program describing the validity of Eq. (9) over basic modular functions. Validity for simple Σ-
inequalities similarly coincides for entropic functions, polymatroids, and normal polymatroids.
This does not immediately entail that the entropic bound for simple Σ is computable in
polynomial time, because normal polymatroids are constructed with step functions, and
there are exponentially many step functions in the number of variables. The entropic bound
is nevertheless known to be polynomial-time computable in this case, as has been shown
recently [11].

Eq. (8) can now be viewed as an Σ-inequality (9) (up to scaling) arising from Σ that does
not belong to any of the aforementioned well-behaving classes. Since validity of inequalities
of the form Eq. (8) is coNP-hard over step functions (Appendix A), this immediately gives
us the following result.

▶ Theorem 4. The information inequality problem over normal polymatroids w.r.t. Σ-
inequalities is coNP-complete. This problem remains coNP-hard even if |U | ≤ 2 for all
(V | U) ∈ Σ.

Related to the previous result, computing the coverage bound over a set of conditionals
is known to be NP-hard, and computing the polymatroid bound over an arbitrary set of
conditionals can be efficiently reduced to computing the polymatroid bound over another set
of conditionals (V | U) such that |U | ≤ 2 and |V | ≤ 3 [11].

We now turn to discuss tractable cases of the information inequality problem obtained
either by syntactic restrictions or semantic modifications. The syntactic restrictions we
consider correspond quite closely to the aforementioned acyclic/simple Σ-inequalities.
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4.2 Modular functions
Since modular functions can be constructed as positive combinations of basic modular
functions, the information inequality problem is trivially polynomial-time computable in this
context.

▶ Proposition 5. The information inequality problem over modular functions is in polynomial
time.

One example of a syntactic class with respect to which validity over entropic functions
corresponds to validity over modular functions are the acyclic Σ-inequalities. Given an
acyclic set Σ of conditionals (V | U), and a polymatroid h over X, one can construct
a modular function f such that (i) f(X) = h(X), and (ii) f(V | U) ≤ h(V | U) for
all (V | U) ∈ Σ [23]. Consequently, validity of acyclic Σ-inequalities (9) coincides for
polymatroids, entropic functions, normal polymatroids, and modular functions. Thus it is
known that all the aforementioned bounds (modular, coverage, entropic, and polymatroid
bounds) coincide and are polynomial-time computable if Σ is acyclic. With respect to the
information inequality problem, we analogously obtain the following result.

▶ Proposition 6. Let Modn ⊆ K ⊆ Γn. The information inequality problem over K w.r.t.
acyclic Σ-inequalities is in polynomial time.

4.3 Monotone functions
Next we will show that, at the other extreme direction, the information inequality problem
over monotone functions is also in polynomial time.

▶ Theorem 7. The information inequality problem over monotone functions is in polynomial
time.

Analogously to the previous section, this semantic modification of the information inequality
problem helps us identify syntactic classes with respect to which the general information
inequality problem is tractable. Before we proceed into details, let us give a short sketch of the
proof of this theorem. We associate an information inequality (3) with a set representation
(S+, S−), where

S+ :={(Xi, k) | k ∈ [|ci|], ci > 0}, and
S− :={(Xi, k) | k ∈ [|ci|], ci < 0}.

Then, we present a fixed-point algorithm (Alg. 1) to capture validity of information inequal-
ities over monotone functions. This algorithm iteratively decomposes an input inequality
into monotonicity axioms. For this, it maintains a bipartite directed graph G initialized
as GS = (S+ ∪ S−, E), where E is the set of edges from S+ to S− that correspond to
possible monotonicity axioms (forward edges). The initial graph contains no edges from
S− to S+ (backward edges). The number of these backward edges, which represent those
monotonicity axioms that are currently selected for the decomposition, is increased in each
iteration. Although the algorithm as such does not run in polynomial time (it runs in
pseudo-polynomial time, i.e., in polynomial time in the length of the input and the numeric
values of the coefficients), it does guide us toward a characterization of valid inequalities as
positive combinations of monotonicity axioms and non-negativity axioms h(X) ≥ 0, which
are derivable as combinations of the first two polymatroidal axioms. These combinations are
polynomial in the input length, and consequently can be found through a linear program of
polynomial size, which entails the desired result.
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Algorithm 1 Decomposition algorithm for inequalities.

Input: Set representation S = (S+, S−) of ϕ
Output: true iff ϕ is Mn-valid

1: G← GS , S0 ← S+, S1 ← S−

2: while G contains a path u0, . . . , um from S0 to S1 do
3: remove u0 from S0 and um from S1

4: remove from G (backward) edges (u1, u2), (u3, u4), . . . , (um−2, um−1)
5: add to G (backward) edges (u1, u0), (u3, u2), . . . , (um, um−1)

return true if S1 is empty, otherwise false

The following example demonstrates the use of Alg. 1.

▶ Example 8. Consider an information inequality of the form

XY + Y Z + 2XZ + X ≥ Y + 3Z. (10)

The set representation is (S+, S−), where

S+ ={(XY , 1), (Y Z, 1), (XZ, 1), (XZ, 2), (X, 1)}, and
S− ={(Y , 1), (Z, 1), (Z, 2), (Z, 3)}.

Clearly, the inequality (10) is valid over monotone functions. Alg. 1 also returns true after
four iterations. The leftmost graph in Fig. 2 illustrates the starting point for the last iteration
in one possible implementation. The edges from right to left (backward edges) represent
monotonicity axioms that have been selected in the previous iteration. The edges from left
to right (forward edges), some of which are visible in the middle graph of Fig. 2, represent
possible monotonicity axioms. Since there is a path from S0 to S1, we can increase the
number of selected monotonicity axioms by deleting the backward edges in the path, and
changing the direction of the forward edges in the path. The rightmost graph illustrates
the result of this modification. Since S1 becomes empty, the algorithm terminates returning
true. The final state of the algorithm represents an integral decomposition of Eq. (10) into
monotonicity and non-negativity axioms.
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(Z, 1)
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Figure 2 Last iteration of Alg. 1 for Eq. (10).
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An inequality ϕ of the form (3) can be identified with its coefficient function cϕ, where
cϕ(X) = c if the term ch(X) appears in (3), and otherwise cϕ(X) = 0. We then say that
ϕ is a (positive) combination of inequalities ϕ1, . . . , ϕn if cϕ is a (positive) combination
of cϕ1 , . . . , cϕn . We furthermore say that a combination of functions c1h1 + · · · + cnhn is
separable if there exist no i, j and Y such that hi(Y ) < 0 and hj(Y ) > 0, while ci ̸= 0 ̸= cj .
This definition is extended to combinations of inequalities in the natural way. For example,
any positive combination of h(A) + h(B) ≥ 0 and h(B)− h(AB) ≥ 0 is separable, but no
positive combination of inequalities h(A)− h(B) ≥ 0 and h(A) + h(B) ≥ 0 is separable. In
particular, if ϕ is a positive and separable combination of monotonicity and non-negativity
axioms, then h(X) cannot appear in the left-hand side of ψ0 and in the right-hand side of
ψ1, for any two axioms ψ0 and ψ1 appearing in the combination.

We also say that a set function h is Boolean-valued if it maps every X to either 0 or 1.
The proof the following lemma is located in Appendix B.

▶ Lemma 9. Let ϕ be an information inequality of the form

c1h(X1) + · · ·+ ckh(Xk) ≥ 0 (ci ∈ R). (11)

The following are equivalent:
1. ϕ is valid over monotone functions.
2. ϕ is valid over monotone, Boolean-valued functions.
3. ϕ is a positive and separable combination of monotonicity and non-negativity axioms.

Since linear programming is in polynomial time, we can now establish Theorem 7 as a
consequence of the following lemma. This lemma will also be applied in the next section
that focuses on simple Σ-inequalities.

▶ Lemma 10. For each information inequality ϕ of the form

c1h(X1) + · · ·+ ckh(Xk) ≥ d1h(Y 1) + · · ·+ dlh(Y l) (ci, di > 0), (12)

there exists a matrix M such that the inequality Mx ≥ cd has a solution x ≥ 0 if and only
if ϕ is valid over monotone functions. In particular, M can be constructed in polynomial
time from ϕ (with rational coefficients).

Proof. Consider first a set Y i from the right-hand side of the inequality. Let Xi1 , . . . ,Xim

list all those sets Xj from the left-hand side that contain Y i as a subset. We need to describe
how the term dih(Y i) is distributed to monotonicity axioms. For this, define

xii1 + · · ·+ xiim ≥ di, (13)

where xij is a variable denoting the coefficient of the monotonicity axiom h(Xj) ≥ h(Y i).
We also need to ensure that this variable does not grow exceedingly large. Consider a set
Xj from the left-hand side of the inequality, and let Y j1 , . . . ,Y jn

list all those sets from the
right-hand side that are contained in Xj .

xj1
j + · · ·+ xjn

j ≤ cj . (14)

Combining Eqs. (13) and (14) we obtain an inequality Mx ≥ cd, where M is a ((k+ l)×kl)-
matrix with entries of from −1, 0, 1, x is a vector of length kl, and cd (i.e., c and d

concatenated) is a vector of length k + l. Obviously M can be constructed in polynomial
time given ϕ. Moreover, Mx ≥ cd has a solution x ≥ 0 if and only if ϕ is a positive and
separable combination of monotonicity and non-negativity axioms. The statements of the
theorem then follow by Lemma 9. ◀
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4.4 Simple Σ-inequalities
Let us first recall the reason why normal and general polymatroids are known to agree on
the validity of simple Σ-inequalities. On the one hand, any such Σ-inequality over a variable
set X can be presented in the form

c1h(X1) + · · ·+ cnh(Xn) ≥ d1h(Y 1) + · · ·+ dmh(Y m) (ci, di > 0), (15)

where each Y i is either the full set X or some singleton set {X}. On the other hand,
every polymatroid h over X can be associated with a normal polymatroid f over X such
that f(Y ) ≤ h(Y ) for all Y ⊆ X, f(X) = h(X), and f(X) = h(X) for all X ∈ X [26].
Hence, if h is a counterexample for Eq. (15), then f must also be a counterexample. Since
normal polymatroids are positive combinations step functions, it follows that at least one
step function is also a counterexample. This brings us to the following result.

▶ Theorem 11 ([26]). Let ϕ(X) be an information inequality of the form Eq. (15), where
each Y i is either the full set X or a singleton set. Then, ϕ is valid over step functions if
and only if it is valid over polymatroids.

Since Sn ⊆ Nn ⊆ Γ∗
n ⊆ Γn, it follows that validity for simple Σ-inequalities coincides for step

functions, normal polymatroids, entropic functions, and polymatroids. If we remove terms of
the form h(X) from the right-hand side of Eq. (15), the previous result extends to monotone
functions.

▶ Theorem 12. Let ϕ(X) be an information inequality of the form Eq. (15), where each Y i

is a singleton set. Then, ϕ is valid over step functions if and only if it is valid over monotone
functions.

Proof. Since step functions are monotone, we only need to consider the “only-if” direction.
To show the contraposition, assume that ϕ is not valid over monotone functions. By Lemma
9, we find a monotone, Boolean-valued function h such that Eq. (15) becomes false. Consider
the step function sU , where U consists of all those variables Ai that are mapped to 1 by
h. Clearly, h and sU agree on the right-hand side of Eq. (15). Furthermore, for any set Z,
we have sU (Z) ≤ h(Z) by monotonicity of h. Consequently, Eq. (15) is also false for sU ,
meaning that ϕ is not valid over step functions. ◀

It follows that validity for information inequalities of the form (15), where Y i are singletons,
is decidable in polynomial time with respect to any K such that Sn ⊆ K ⊆ Monn, including
K = Γ∗

n. Note that simple Σ-inequalities are not of this form; rewritten in the form (15) one
of the sets Y i is the full variable set. However, as we will see next, it is possible to remove
such terms in a single step.

Continuing our analysis of ϕ(X) of the form (15), fix a variable A from X. Define sums

cA =
∑
i∈[n]
A∈Xi

ci and dA =
∑
i∈[n]
A∈Y i

di,

and define the A-reduction of ϕ as the inequality ϕA(X \ {A}) given as

(cA − dA)h(X \ {A}) +
∑
i∈[n]
A/∈Xi

cih(Xi) ≥
∑
i∈[n]
A/∈Y i

dih(Y i), (16)
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▶ Lemma 13. An information inequality ϕ(X) of the form (15) (having no restrictions on
sets Y i) is valid over step functions if and only if for all A ∈X, the A-reduction ϕA of ϕ is
valid over step functions.
1. cA ≥ dA, and
2. the A-reduction ϕA(X \ {A}) is valid over step functions.

Proof. Note that s{A} |= ϕ if and only if cA ≥ dA. Also, if ∅ ̸= Y ⊆ X \ {A}, we have
sY ∪{A} |= ϕ if and only if sY |= ϕA, where sY ∪{A} and sY refer specifically to the set
functions over X and X \ {A}, respectively. The statement of the lemma follows. ◀

In particular, if each Y i in the inequality (15) is either a singleton or the full set X,
then checking validity of this inequality reduces to checking validity of a linear number of
inequalities in which the sets appearing in the right-hand side are all singletons. Theorems 7,
11, and 12, and Lemma 13 thus entail that the validity of such inequalities (15) over normal
polymatroids, entropic functions, and polymatroids can be determined in polynomial time.
This leads us to the following corollary.

▶ Corollary 14. The information inequality problem w.r.t. simple Σ-inequalities is in
polynomial time over normal polymatroids, entropic functions, and polymatroids.

One may recall from Theorem 4 that, at least in the context of step functions, the requirement
of Σ being simple is necessary.

We conclude this section by offering an alternative proof for the fact that the entropic
bound for simple sets of conditionals Σ is polynomial-time computable. In order to formulate
this statement precisely, we need the concept of the logarithmic bound. Similarly to the
degree values, the log-degree values associated with Σ are defined as a sequence b = (bσ)σ∈Σ,
where bσ ≥ 0. A function h satisfies (Σ, b), denoted h |= (Σ, b), if h(σ) ≤ bσ for all σ ∈ Σ.
For a set S ⊆ R2n , and a set of conditionals Σ guarded by a query Q(X) and associated
with values b, define the log-bound of Q w.r.t. S as

Log-BoundS(Q,Σ, b) := inf
w≥0

S|=ϕΣ(X,w)

∑
σ∈Σ

wσb
σ,

where ϕΣ(X,w) is the Σ-inequality (9). It is known that the entropic log-bound Log-BoundΓ∗
n

is computable in polynomial time [11]. In the following, we present an alternative proof for
this fact via monotone functions.

▶ Theorem 15. Let Σ be a set of conditionals that is guarded by a query Q(X) and associated
with values b. If Σ is simple, the entropic log-bound Log-BoundΓ∗

n
(Q,Σ, b) is computable in

polynomial time in the size of the input (Q,Σ, b).

Proof. We construct a linear program that is polynomial in the size of the input and such
that its optimal value is attained at the entropic log-bound. Theorem 11 entails

Γ∗
n |= ϕΣ(X,w) ⇐⇒ Sn |= ϕΣ(X,w), (17)

where ϕΣ is the Σ-inequality (9). Lemma 13 implies that

Sn |= ϕΣ(X,w) ⇐⇒ ∀A ∈X : cA ≥ dA and Sn−1 |= ϕAΣ, (18)

where cA, dA are the sums of coefficients wσ computed from ϕΣ for a variable A. Since ϕAΣ
contain only singletons on their right-hand sides, Lemma 12 yields

Sn−1 |= ϕAΣ ⇐⇒ Monn−1 |= ϕAΣ.
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By Theorem 7 we can construct in polynomial time matrices MA such that

Monn−1 |= ϕAΣ ⇐⇒ MAxA ≥ wA for some xA ≥ 0,

where wA is a list (with possible repetitions) of coefficients wσ that appear in ϕAΣ. Note
that we should now treat wσ as variables, since we are interested in optimizing their values.
Thus we rewrite MAxA ≥ wA ∧ cA ≥ dA as M ′

AxAwA ≥ 0, where M ′
A is obtained from

(MA | −I|wA|) by adding one extra row to describe the inequality cA ≥ dA. Then we construct
a single matrix M∗ such that M∗xw = (xAwA)A∈X , where w = (wσ)σ∈Σ, and x is the
concatenation of all xA. Finally, composing M ′

A diagonally into a single matrix MX , and
writing Mσ = MXM

∗, we obtain

∀A ∈X : cA ≥ dA and Sn−1 |= ϕAΣ ⇐⇒ MΣxw ≥ 0. (19)

By Eqs. (17), (18), and (19) we obtain

Log-BoundΓ∗
n
(Q,Σ, b) = inf

w≥0
Γ∗

n|=ϕΣ(X,w)

∑
σ∈Σ

wσb
σ = min

xw≥0
MΣxw≥0

∑
σ∈Σ

wσb
σ.

Since MΣ can be constructed in polynomial time in the size of (Q,Σ, b), we can compute in
polynomial time the entropic log-bound Log-BoundΓ∗

n
(Q,Σ, b) as the optimal value of the

linear program

minimize
∑
σ∈Σ

wσb
σ

subject to MΣxw ≥ 0
xw ≥ 0. ◀

5 Conclusion

The present paper marks the first attempt to demarcate the tractability boundary for different
variants of the information inequality problem, introduced in [14]. We established that this
problem is coNP-complete over normal polymatroids, and in polynomial time over monotone
functions. Restricted to Σ-inequalities where |U | ≤ 2 for all (V | U) ∈ Σ, we proved that
the information inequality problem remains coNP-hard over normal polymatroids. The same
problem was shown to be in polynomial time over normal polymatroids, entropic functions,
and polymatroids if |U | ≤ 1. If every set in the right-hand side of Eq. (15) is a singleton
or the full variable set, we proved that the information inequality problem is in polynomial
time over any K that falls inbetween normal polymatroids and monotone functions. Using
this result, we constructed an alternative proof for the polynomial-time computability of the
entropic bound in the case where the set of conditionals Σ is simple.

Based on these findings we may delineate a preliminary complexity classification of
information inequalities over different set functions and syntactic classes. Consider an
information inequality ϕ over n variables, presented in the form (15). If A and B are subsets
of [n], we say that ϕ is of type (A,B) if |Xi| ∈ A for each Xi appearing in the left-hand side
in (15), and |Y j | ∈ A for each Y j appearing in the right-hand side in (15). For instance, the
inequality (8) is of type ({1, n}, {2}), and all simple Σ-inequalities are of type ([n], {1, n}).
Using this convention, Tab. 3 summarizes the results of this paper.

Specifically, we showed that results on step functions and monotone functions lead to a
polynomial-time algorithm for the entropic bound over simple degree constraints. To find
more results of this kind, it may be useful to extend investigations to also other classes
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Table 3 Complexity of the information inequality problem for different syntactic types and set
functions.

types/set functions Modn Nn Γ∗
n Γn Monn

([n], [n]), ({1, n}, {2}) ∈ P[23] coNP-complete ∈ Π0
1 [14] ∈ EXP [27] ∈ P

([n], {1, n}) ∈ P[23] ∈ P ∈ P ∈ P ∈ P

of set functions. For instance, as illustrated in Examples 1 and 3, as k grows uniform
distributions over (bags of) k tuples yield increasingly accurate answers to questions about
entropic constraints, compared to step functions derived from two tuples. One way to identify
more decidable classes of information inequalities would be to find syntactic restrictions for
which validity is captured by uniform distributions over k tuples, for some fixed k.
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A Alternative coNP-hardness proof

Recall that validity coincides for step functions and normal polymatroids, and thus it suffices
to consider validity in the former sense. We reduce from three-colorability. Let G = (V ,E)
be a graph consisting of a vertex set V and a set of undirected edges E. For each node
A ∈ V , we introduce variables Ar, Ag, Ab representing possible colors of A. Assume that the
graph contains n vertices. We define∑
c∈{r,g,b}
A∈V

h(Ac)+
∑

c,d∈{r,g,b}
c̸=d
A∈V

(2n+1)h(V | AcAd)+
∑

c∈{r,g,b}
{A,B}∈E

(2n+1)h(V | AcBc) ≥ (2n+1)h(V ).

(20)

We claim that G is three-colorable if and only if Eq. (20) is not valid over Sn.
Assume first Eq. (20) is not valid, and let sU , U ⊆ V , be a step function such that Eq.

(20) is false for h = sU . We claim that the function that maps each vertex A to a color c if
Ac ∈ U is well-defined and constitutes a coloring of the graph. Since the entropy and the
conditional entropy are non-negative for all step functions, we have sU (V ) = 1, and thus the
right-hand side of Eq. (20) is 2n+ 1. Consequently, the left-hand side is at most 2n. From
the first summation term, we obtain that U must contain at least n elements. Moreover,
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each term of the form h(V | AcAd) or h(V | AcBc) must be zero. In particular, we have
AcAd ̸⊆ U and AcBc ̸⊆ U , which entails that each vertex is assigned exactly one color, and
no two vertices connected by an edge are assigned the same color. We conclude that the
function defined by the step function is well defined and constitutes a graph coloring.

Assume then Eq. (20) is valid. For each coloring of the vertices we may define a subset
U ⊆ V such that Ac ∈ U if and only if vertex A is assigned color c. Then, the first
summation term in the left-hand side of Eq. (20) is n, and the second summation term is
zero. By hypothesis, some term of the form h(V | AcBc) must be non-zero, which means
that there exists an edge whose endpoints are assigned the same color. This concludes the
proof of the claim.

Since the reduction is in polynomial time, and each coefficient is bounded by a polynomial
in the input size, strong coNP-completeness again follows. ◀

B Completeness of fixed-point algorithm

▶ Lemma 9. Let ϕ be an information inequality of the form

c1h(X1) + · · ·+ ckh(Xk) ≥ 0 (ci ∈ R). (11)

The following are equivalent:
1. ϕ is valid over monotone functions.
2. ϕ is valid over monotone, Boolean-valued functions.
3. ϕ is a positive and separable combination of monotonicity and non-negativity axioms.

Proof. The implications (3)⇒ (1) and (1)⇒ (2) are immediate. We prove that (2)⇒ (3).
Clearly, if this implication holds w.r.t. ci ∈ Z, then it holds w.r.t. ci ∈ Q. We first prove the
following claim.

▷ Claim 16. If the implication (2)⇒ (3) holds w.r.t. ci ∈ Q, then it holds w.r.t. ci ∈ R.

Proof. To prove this, assume ϕ is valid over Mon0,1
n . Let (ϕn) be a sequence of information

inequalities

cn1h(X1) + · · ·+ cnkh(Xk) ≥ 0 (cni ∈ Q, n ≥ 1), (21)

where limn→∞ cni = ci and cni ≥ c
n+1
i . We may assume that c1

i is negative if ci is negative.
That is, (cni ) is a sequence of positive (resp. negative) values if ci is positive (resp. negative).
Clearly, if ϕ is valid over Boolean-valued, monotone functions, then so are ϕn. By hypothesis,
ϕn decompose into positive and separable combinations of monotonicity and non-negativity
axioms. Writing cϕ for the coefficient function arising from ϕ, we may write

cϕn = dn1 cψ1 + · · ·+ dnmcψm (dni ≥ 0), (22)

where ψl list all possible monotonicity and non-negativity axioms respectively of the form
h(Xi) ≥ 0 and h(Xi)− h(Xj) ≥ 0, where i, j ∈ [k] and Xj ⊆ Xi, excluding those ψl for
which the coefficient dnl is always zero. That is, the combinations (22) are separable and have
fixed length over all n ≥ 1; recall that separability was defined with respect to terms having
a non-zero coefficient. Fix attention to an arbitrary ψl being either of the form h(Xi) ≥ 0
or h(Xi) − h(Xj) ≥ 0. In this case, the coefficient function cψl

maps Xi to 1, that is,
cψl

(Xi) = 1. We claim that the coefficient ci of h(Xi) in Eq. (11) is positive. For this,
consider some p ≥ 1 such that the coefficient dpl of cψl

is strictly positive. Assume toward
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contradiction that ci is not positive, meaning that it is negative. Then by construction, cpi is
negative (i.e., cϕp

(Xi) < 0), whence cψl′ (Xi) < 0 for some l′ ̸= l associated with a strictly
positive coefficient dpl′ . Since cψl

(Xi) > 0, this contradicts separability of (22), proving our
claim. The claim entails by construction that cni are positive for all n ≥ 1. Hence we obtain
dnl ≤ cni ≤ c1

i by separability of (22).
We conclude that (dn) = (dn1 , . . . , dnm) is an infinite and bounded sequence of Rm. The

Bolzano-Weierstrass theorem entails that (dn) has a subsequence (dnp
) that converges to

some d = (d1, . . . , dm). Obviously the vector d is non-negative. By continuity,

cϕ = lim
p→∞

cϕnp
= lim
p→∞

d
np

1 cψ1 + · · ·+ dnp
m cψm = d1cψ1 + · · ·+ dmcψm .

The obtained combination is separable, because otherwise some combination (22) is not
separable for large enough np, which leads to a contradiction. We conclude that ϕ is a
positive and separable combination of monotonicity and non-negativity axioms, which shows
that (2)⇒ (3) w.r.t. ci ∈ R. ◁

It remains to prove that (2) ⇒ (3) w.r.t. ci ∈ Z. Let S = (S+, S−) be the set
representation of ϕ. We associate S with a directed graph GS , where

the set of nodes are the elements of S+ and S−, and
there is a directed edge from (X, i) to (Y , j) if (X, i) ∈ S+, (Y , j) ∈ S−, and Y ⊆X.

Consider Alg. 1 which maintains a bipartite directed graph G that is initially set up as
GS . The monotonicity axioms isolated at the current step are represented as directed edges
going from S− to S+ backward edges; in the beginning no such edges have been introduced
yet. The edges that proceed from S+ to S− (forward edges) are kept fixed.

We say that a node u is connected to a node v in a directed graph if u = v, or there is a
sequence of nodes (a path from u to v) in which the first node is u, the last node is v, and
each node is connected to the following node by a directed edge. A set U is connected to
another set V is some node in U is connected to some node in V .

Consider the following claim.

▷ Claim 17. If Alg. 1 returns true on ϕ, then ϕ is a positive and separable combination of
the monotonicity and non-negativity axioms.

Proof. Consider the graph G and the sets S0 and S1 after termination of the algorithm. Note
that if G contains a backward edge (u, v), then the reverse edge (v, u) forms a forward edge
of GS and consequently corresponds to a monotonicity axiom. The backward edges also
form a bijection from S− \ S1 to S+ \ S0. Since S1 is empty by assumption, and S0 can be
viewed as representing non-negativity axioms, it can now be observed that ϕ decomposes
into a positive and separable combination of monotonicity and non-negativity axioms. This
proves the claim. ◁

We now prove the contraposition of (2)⇒ (3) w.r.t. ci ∈ Z. Suppose ϕ is not a positive
and separable combination of the monotonicity axioms. The previous claim entails that the
algorithm returns false. Consider again the graph G and the sets S0, S1 after termination of
the algorithm. Note that S1 is now non-empty. Let V denote the set of variables appearing in
ϕ. Let Y be the (non-empty) collection of sets Y ⊆ V such that for some j, (Y , j) belongs to
S− and is connected to S1. Consider also its upper closure Y↑ := {Z ⊆ V | ∃Y ∈ Y : Y ⊆ Z}.
Define a mapping h such that h(Z) = 1 if Z ∈ Y↑, and otherwise h(Z) = 0. Clearly, h is a
Boolean, monotone function. We show that h does not satisfy ϕ.
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Consider a pair (X, i) ∈ S+ such that h(X) = 1. Then, X contains a set Y from Y . Let
j be such that (Y , j) belongs to S− and is connected to S1. Since there is an edge from
(X, i) to (Y , j), it follows that (X, i) is connected to S1. Now, if (X, i) belonged to S0, the
algorithm could not have terminated yet. Hence (X, i) must belong to S+ \ S0. Recall that
the backward edges form a bijection from S− \ S1 to S+ \ S0. In particular, (X, i) is the
target of a unique backward edge with a source node (Z, k). Since (X, i) is connected to S1,
it follows that (Z, k) is also connected to S1. This entails that h(Z) = 1. In particular, this
shows that any (X, i) ∈ S+ such that h(X) = 1 is paired by a backward edge with a unique
(Z, k) ∈ S− \ S1 such that h(Z) = 1. In addition, because S1 is non-empty, there exists an
element (U , l) ∈ S− ∩ S1 such that h(U) = 1. In particular, (U , l) is not the source node of
any backward edge. These observations entail that h does not satisfy ϕ. This proves the
contraposition of (2)⇒ (3) w.r.t. ci ∈ Z.

This concludes the proof of the direction (2)⇒ (3). ◀

The following example demonstrates that Alg. 1 correctly returns false on the submodularity
axiom, as this axiom is not a consequence of monotonicity and non-negativity.

▶ Example 18. The submodularity axiom XY + XZ − X − XY Z ≥ 0 is not valid over
monotone functions. This can be also seen by referring to Alg. 1. The set representation is
(S+, S−) where S+ = {(XY, 1), (XZ, 1)} and S− = {(X, 1), (XY Z, 1)}. Suppose at the first
step the algorithm introduces a backward edge from (X, 1) to (XY, 1); the only other option
is the symmetric scenario where it introduces an edge from (X, 1) to (XZ, 1). After the first
step we have S0 = {(XZ, 1)} and S1 = {(XY Z, 1)}. Then, no path exists from S0 to S1,
since no forward edge points to (XY Z, 1). The algorithm therefore terminates returning
false. Accordingly, the function that maps XY Z to 1 and all other sets to 0 is monotone,
Boolean-valued, and does not satisfy the aforementioned submodularity axiom.
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