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—— Abstract

Data analytics skills have become an indispensable part of any education that seeks to prepare its
students for the modern workforce. Essential in this skill set is the ability to work with structured

relational data. Relational queries are based on logic and may be declarative in nature, posing
new challenges to novices and students. Manual teaching resources being limited and enrollment
growing rapidly, automated tools that help students debug queries and explain errors are potential
game-changers in database education. We present a suite of tools built on the foundations of
database theory that has been used by over 1600 students in database classes at Duke University,
showcasing a high-impact application of database theory in database education.
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Extended Abstract

In a world where decisions are increasingly driven by data, data analytics skills have become
an indispensable part of any education that seeks to prepare its students for the modern
workforce, in particular, in the multi-billion dollar and rapidly-growing data analytics
industry [7]. Essential in this skill set is the ability to work with structured or relational data
in tabular form — such data can be queried directly to yield useful insights, or transformed into
other representations for additional analysis, model training, or visualization. The standard
“tools of trade” for manipulating structured data include the venerable and ubiquitous
SQL language as well as popular data manipulation libraries, e.g., dplyr for R, DataFrame
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for Python pandas, and Spark. Despite differences in syntax, they are all fundamentally
based on the relational model and rooted in relational query languages such as Relational
Calculus (RC, similar to First Order Logic (FOL)) and Relational Algebra (RA). Learning
and debugging relational queries, however, pose challenges to novices [2]. Even computer
science students with programming background are often not used to thinking in terms of
logic (e.g., when writing SQL queries) or functional programming (e.g., when writing queries
using operators that resemble RA). In stark contrast to the plethora of educational tools for
teaching traditional programming, there is a glaring lack of tools for helping novices learn
and debug relational queries. The problem becomes more critical in a classroom setting,
especially given the rapid growth of enrollment in database classes, and limited availability
of manual help from instructors and teaching assistants in assisting students debug their
queries. This motivates the need to build automated query debugging tools for database
education that can give students succinct but comprehensive information about the mistakes
they have made, and ideally also offer them advice or hints on how to resolve the mistakes
without giving out the entire correct query.

Building tools for verifying, debugging, and fixing relational queries requires foundational
research in database theory. Consider a scenario in a classroom setting where students are
learning to write relational queries and suppose a student has submitted a query @ for
a question they have been asked to solve. Since there are various tools for checking the
correctness of the syntax of a query, we can assume that @ is syntactically correct. Suppose
the instructor has a correct query Qo as reference for the same question. Since there can
be multiple equivalent ways of writing the same query, ideally we want to check whether @
and Qo are equivalent. However, unfortunately, “query equivalence” testing is undecidable in
general, for non-monotone RC or FOL queries involving universal quantifiers (V), for Datalog
with recursion, and for practical query languages such as SQL with support for even just
integer arithmetic [24, 25, 1, 5]. The problem is decidable but intractable for non-recursive
monotone queries [6, 23], but that does not give a solution for verifying student submissions
for general queries they need to learn in practice. “Eyeballing” errors manually by instructors
and teaching assistants is difficult, especially for subtle mistakes, and does not scale in large
classes. Therefore, the standard practice is to run both the student query @) and the reference
query Qo on some test database instances D and compare their results, which is often done
by “autograding” tools like GradeScope [11]. If the results differ, i.e., Q(D) # Qo(D), we
know @ is wrong. Note that this does not test query equivalence, i.e., there is no guarantee
that @ is correct if the results agree. For practical purposes, we resort to complex test
instances that attempt to exercise conceivable corner cases in order to increase the chances
of catching wrong queries.

Merely marking ) as wrong, however, does not guide students toward a correct solution.
As a first step, how do we explain to students “why” their query is wrong? One option for the
instructor to explain the errors in the student query @ is to show the test database instance
D for which we know Q(D) # Qo(D) as a “counterezample”, together with Q(D) and Qo (D)
(without revealing Qg itself). This approach may not work since D tends to be large and
complex by design. For example, in the database courses at Duke University, one assignment
is based on the real DBLP database with millions of rows; another assignment uses synthetic
test databases, and we needed tens of thousands of rows in order to catch most of the errors
that were manually found [17]. Showing millions, thousands, or even just dozens of database
rows can overwhelm the student, especially when the student is learning to think about the
solution logic as well as the query syntax and semantics for the first time. Further, revealing
a test instance D in its entirety encourages the behavior of tweaking one’s query just to pass
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Figure 1 Wrong query Q.

each particular test, which is not conducive to learning. Hence, we need to develop solutions
to help students better understand what is wrong, and make it scale for a large number
of students and easily customizable for different exercises across classrooms. The problem
becomes more challenging when we consider different classes of relational queries, as the
solutions for the procedural RA queries and declarative SQL queries may be very different.

At Duke University, we have been working on a project called HNRQ): Helping Novices
Learn and Debug Relational Queries [27], where we are building a suite of tools for debugging
queries. Furthermore, we are using these tools in our large undergraduate and graduate

database classes to provide automated and scalable help to students debug their own queries.

We are evaluating the effectiveness of these tools on learning by running user studies and
surveys employing techniques from CS Education in consultation with the Institutional
Review Board (IRB) at our university. These tools are built upon foundations and techniques
from database theory, whereas they have simple user-friendly interactive graphical interfaces
targeted towards students who are learning to write relational queries. This research direction
showcase a practical application of database theory to help students learn to write relational
queries and has a direct impact on any data science curriculum. Building query debugging
tools has applications beyond the educational setting, e.g., to help debug database queries
that fail regression tests commonly used by the software industry.

In the rest of the paper, we give a brief overview of our query debugging tools, and some
ongoing and future research directions. We skip discussions of related work in this extended
abstract; a detailed discussion of related work can be found in our research papers [17, 10, 16],
in the articles in a Data Engineering Bulletin Special Issue on “ Widening the Impact of Data
Engineering through Innovations in Education, Interfaces, and Features” that Roy and Yang
co-edited [22], and in the recent workshops “Data Systems Education (DataEd)” [21].

Explaining Wrong Queries with Small Counterexamples

In our first tool called RATest [17, 18], we focused on explaining wrong RA queries adapting
the idea of using a test instance D where Q(D) # Qo(D). Instead of showing the entire test
database instance D, the key idea behind RATest is to show a small subinstance D’ C D (still
conforming to all database constraints like keys and foreign keys) such that Q(D’) # Qo(D’),
i.e., D’ is a small counterexample still able to illustrate the difference between @ and Q.

» Example 1. Consider the popular Drinker database with information about bars and
bar-goers as follows (keys are underlined):

Drinker(name, address), Bar(name, address), Beer(name, brewer),
Frequents(drinker, bar, times_a_week), Likes(drinker, beer), Serves(bar, beer, price).

2:3
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name addr name brewer
Eve Edwards | 32767 Magic Way American Pale Ale | Sierra Nevada
(a) Drinker. (b) Beer.
name addr

Restaurant Memory 1276 Evans Estate

Tadim 082 Julia Underpass drinker beer
Restaurante Raffaele | 7357 Dalton Walks Eve Edwards | American Pale Ale
(c) Bar. (d) Likes.
bar beer price

Restaurant Memory | American Pale Ale 2.25
Restaurante Raffaele | American Pale Ale 2.75
Tadim American Pale Ale 3.5

(e) Serves.

Figure 2 A small counterexample returned by RATest.

Students are asked to write the following query in RA: “for each beer liked by any
drinker with first name Eve, find the bars that serve this beer at the highest price”” A
common incorrect query () is shown in Figure 1 that considers not-lowest price instead
of highest price among other errors. The test database instance D for this database used
in our database classes contains thousands of tuples and would not be useful to the stu-
dent. RATest, on the other hand, is able to find a remarkably small counterexample in
Figure 2 automatically to illustrate why @ is wrong. RATest also shows that @ returns
both (AmericanPale Ale,RestauranteRaffaele) and (AmericanPale Ale, Tadim) on this
small instance, whereas the correct result should contain only (AmericanPale Ale, Tadim).
RATest further allows the student to trace the execution of @) over the counterexample along
the RA query plan. The correct query Q) itself is never revealed.

In the backend, to simplify the problem of finding a small D’ C D further for efficiency such
that Q(D) # Qo(D), we choose a result tuple t € Qo(D) \ Q(D) (or t € Q(D) \ Qo(D)), and
try to find a small instance D’ C D such that still ¢ € Qo(D") \ Q(D’). If @ and Qo are
monotone, we can solve this problem efficiently in polynomial time in the size of data (i.e.,
data complexity [26]). The problem becomes more interesting and challenging when @ or
Q is intrinsically non-monotone, then a non-answer can become an answer in a smaller
database instance. In [17], we discussed both the data complexity and combined complexity
(when both data size and query size are parameters) for different query classes: as soon as
queries involve projection, join, and difference operations, even the data complexity becomes
NP-hard. Nevertheless, in [17] we provided practical solutions for general RA queries with
the difference operation. The intuitive idea is to compute the provenance [13] as a Boolean
formula ¢ = ¢1 A~y for the tuple of interest, say t € (Qo — Q)(D), where ¢1, ¢2 denote
its provenance or lineage [12] in Qo (D), Q(D) respectively (joint usage of two tuples by join
< is captured with A, and alternative usage by projection 7 or union U is captured by V).
Then we find a minimum satisfying solution of ¢ by setting the smallest number of variables
to true (min-ones satisfiability problem), which can be tackled by SMT (satisfiability modulo
theories) solvers. We use an automatic rewrite procedure to convert the queries into SQL
that will compute not only their results but also provenance expressions for the results tuples.
We apply optimizations such as pushing down selections for interactive performance.
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Suppose Eve likes beer B,
bar X1 serves beer B at price Pi,
bar Xo serves beer B at price Pa,
bar X3 serves beer B at price Ps,
and P, < P1 < Pg,'
then your query would incorrectly return { beer B, bar X1 ).

Figure 3 Intended generalization of the counterexample in Figure 2.

More challenges arise once we consider extended RA queries with aggregation, grouping,
and HAVING (i.e., a selection after a group-by aggregation), for which the previous approach
may not yield a small counterexample, because its aggregate (say SUM) value generally depends
on all member tuples in the input group corresponding to ¢, and because of predicates like
HAVING Count(*) > 1000 that seek to output a database with at least 1000 tuples. Our
solution is to parameterize the queries and allow a counterexample to differentiate two queries
on some setting of the parameters (which may be different from the original setting) and
constructing the provenance for aggregates using the approach by Amsterdamer et al. [4].

We built RATest as a web-based teaching tool, deployed it in an undergraduate database
class at Duke university in Fall 2018 with about 170 students, and conducted a detailed
user study with 10 homework problems where RATest was available only for a subset of the
problems. We collected usage patterns on RATest as well as how students eventually scored
on the homework problems. The usage of RATest was high in the class and more for harder
queries, and RATest seemed to have helped students solve harder queries as well as other
similar hard queries. We also collected 134 anonymous responses from the students and the
feedback was largely positive. 69.4% of the respondents agreed or strongly agreed that the
counterexamples helped them understand or fix the bug in their queries, and 93.2% would
like to use similar tools in the future for assignments on querying databases. Open-ended
comments were overwhelmingly positive, e.g.,

“It was incredibly useful debugging edge cases in the larger dataset not provided in our

sample dataset with behavior not explicitly described in the problem set.”

“QOverall, very helpful and would like to see similar testers for future assignments.”

“I liked how it gave us a concise example showing what we did wrong.”

Since Fall 2018, we have used RATest regularly in graduate and undergraduate courses at
Duke with continued extensive use and positive feedback from students; till date RATest has
been used by more than 1600 students at Duke University.

Explaining Wrong Queries with Abstract Conditional Instances

Since RATest was successful both in terms of research and practical uses in a classroom setting,

the next step was improving this tool in terms of usability, generality, and deployability.
For instance, in Example 1 and Figure 1, it can be noted that ) makes multiple mistakes.

The counterexample in Figure 2 shows the mistake that for a given beer, @) actually finds
bars that do not serve it at the lowest price (a monotone query), as opposed to bars that
serve it at the highest price (requires a non-monotone query). The other mistake, where
the predicate “LIKE ’Eve%’” may incorrectly pick up a drinker whose first name is Evelyn,
is not illustrated in this counterexample. While this omission might be helpful for some
students who can focus on one mistake at a time, it is also useful to show all the mistakes in
the explanation for why @ is wrong. Further, Figure 2 does not “pinpoint” the mistake that
the error is due to the presence of three distinct price values of the same beer, due to the
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name | addr bar | beer | price
x1 * x1 b1 p1
name | addr Z2 * x2 b1 D2
di * T3 * T3 b1 D3
(a) Drinker relation. (b) Bar. (c) Serves.
name | brewer drinker | beer
b1 * dl bl
(d) Beer. (e) Likes.

I d; LIKE ‘Eve % Ap1 > p2 Ap2 > p3 l
(f) Global condition.

Figure 4 An abstract conditional instance generated by CINSGEN generalizing the concrete
small instance in Figure 2 and capturing the intuitive explanation in Figure 3.

presence of redundant information in the form of attribute values in several other tuples in
other tables. Ideally, we want an explanation as given in Figure 3, which would explain one
major error why the query @ in Figure 1 is wrong. Moreover, the intrinsic limitation of an
instance-based explanation starting with a test instance D is that it may not detect a wrong
query. Further, in some cases, a good test instance D may be unavailable, especially when
new queries are created on a new database schema.

Our next tool named CINSGEN [10, 15]) focused on addressing these issues. In [10] we
considered queries in the form of Relational Calculus (the prototype [15] provided a procedure
to convert SQL queries without aggregates to RC). The broad goal in CINSGEN was to
understand all possible solutions to a query @’ by a set of “generic” and “representative”
instances that (1) illustrate different ways the query @’ can be satisfied, and (2) summarize
all specific instances that would satisfy the query in the same way by abstracting away
unnecessary details. To formalize this, we develop the concept conditional instances or
c-instances by adapting the notion of c-tables by Imilienski and Lipski [14] for incomplete
databases, which are abstract database instances comprising variables (labeled nulls) along
with a condition on those variables. An example c-instance capturing the intuitive condition
in Figure 3 and generalizing the concrete small instance in Figure 2 is shown in Figure 4.
Another c-instance (not shown) will illustrate the second error of the first name being
“Eve” vs. the first name starting with “Eve”. Thus, each c-instance can be considered a
representative of all grounded instances that replace its variables with constants that satisfy
the conditions that they are involved in. Since it may be hard to capture all satisfying
instances with abstract c-instances (e.g., they can be unbounded in size), we use the idea
of coverage from the software validation field [19, 20, 3], covering different ways a query
can be satisfied. Since now we are essentially testing equivalence of two first order logic
queries, the problem of finding such conditional instances in general is undecidable by
a reduction from the finite satisfiability problem and Trakhtenbrot’s Theorem [25]. Hence
we developed practical algorithms inspired by the “chase” procedure by Fagin et al. [8, 9]
with a user-specified input stopping condition (on the number of steps or time) to generate
such instances. Hence, if CINSGEN does not return any c-instances, the query @ may
still be wrong and not equivalent to Q. Our user study with undergraduate and graduate
students shows that although both RATest [17] and CINSGEN [10] help students detect
errors, conditional instances by CINSGEN help students detect multiple errors in wrong
queries unlike concrete instances provided by RATest.
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Tracing Outputs and Errors in Declarative SQL Queries

Part of convincing a student why a relational query @ is wrong is to help the student
understand the semantics of @) and its behavior of on an input instance D. Even if D is
small, it may not be obvious why @ produces Q(D) as its result, especially for students who
may have misunderstandings about how certain query constructs work. A useful way of
debugging @ would be to “trace” its execution over D. For RA (or other operator-based
relational languages), a straightforward approach, which we have used successfully in [17, 18],
is to show the algebraic query expression tree and the intermediate results produced by each

operator when executed in a bottom-up fashion. However, for the practical “declarative”

language of SQL, which draws inspiration from logic, it is not even clear what “tracing”
means. For instance, for a correlated subquery, we cannot talk about its result without the
context from which it derives its variable bindings. Using the schema in Example 1, the

following simple query has a correlated subquery:

SELECT address

FROM Drinker

WHERE EXISTS

(SELECT * FROM Frequents WHERE drinker = Drinker.name)

Clearly, the result of the subquery depends on the particular Drinker.name value, which
comes from the outer query over Drinker. Hence, tracing intermediate results in a bottom-up
fashion does not work. In practice, with or without correlated subqueries, SQL queries are
almost never executed as the way they were written because of query optimization. Instead,
we must be able to trace SQL at a logical level, in a way consistent with how a query is
originally written, without requiring any additional knowledge of relational algebra or its
mapping from SQL. Toward explaining how answers are generated from a SQL query, we
developed a tracing tool named I-REX [16] that provides a novel interactive interface that
allows users to trace query evaluation in a way faithful to how the query is written originally.
For instance, I-Rex explains how the results are semantically generated (and non-answers are
filtered out) by first computing the cross product of tables in the FROM clause, applying
the predicates in the WHERE clause in a logical tree form, grouping intermediate results
in the GROUP BY clause, applying predicate in the HAVING clause, and executing the
subqueries in a “context” with specific variable bindings provided during the evaluation of
its outer queries. In the backend, I-REX extends provenance support for SQL in non-trivial
ways to work with various query constructs. This tool is currently being deployed in our
classes and evaluations by user studies are being performed.

Ongoing and Future Work

When a student understands that their query is wrong, the next natural step is to provide
some “hints” to fix their queries. While it is possible to quickly suggest students to restructure
their approaches if the wrong queries are too far off from the solution, many wrong queries
contain subtle mistakes which require potentially long time for examining and resolving
errors, and instructors need to come up with good hints for fixing errors without showing
the solution. Further, for wrong queries with smaller mistakes (e.g., missing a predicate in
the WHERE clause), it is important to show the incremental changes that have to be made
on the wrong query instead of suggesting a correct query that is drastically different from
the student query. Toward this goal, we are developing a tool that takes two non-equivalent
SQL queries (a correct query and a wrong query), pinpoints the parts of the wrong query
that causes “semantic” differences between the queries, and also provides hints for direct
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edits to make it equivalent to the correct query. Our approach works for simple single-block
SQL queries (without nested sub-queries, NULLSs, constraints, etc.), and it will be interesting
to develop methods for larger classes of SQL queries (e.g., two non-equivalent queries can
become equivalent in the presence of certain integrity constraints).

A much more challenging and open-ended research direction is designing and building
query debugging solutions in the realm of Large language Model (LLM)-based tools such as
ChatGPT. These tools can return queries in standard relational query languages like SQL,
but may produce incorrect solutions for complex queries. While questions like whether and
how such tools should be allowed in database classes are being discussed in the community
in various panels and workshops, the form of query debugging may be very different in the
presence of LLMs, and may lead to a novel direction of research spanning multiple areas
such as database theory, natural language processing, and programming languages.

Another important aspect in building query debugging tools is evaluating their effect
on learning — e.g., whether they help students learn to write a query when such tools are
not available, whether they inspire students to seek help more from instructors, or whether
the students merely use them as a shortcut for getting their class assignments completed
in less time. While we have been conducting extensive user studies and surveys in the
large database classes at our university at different stages of development of these tools,
there are restrictions on how such studies can be performed in classroom settings due to
several compliance and ethical concerns. For instance, the gold standard of inferring causal
conclusions by “Randomized Controlled Trials” to test whether these tools help students
learn to write queries may not be feasible in an active class. Continued discussions and
collaborations across universities will lead to fundamental database research as well as
effective scalable solutions potentially revolutionizing database and data science education.
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